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Zusammenfassung

RNA-Molekiile dienen nicht nur als Trager von Information, sondern auch als
selbststandige funktionelle Einheiten. Thre dreidimensionale Struktur spielt
eine wichtige Rolle bei einer groflen Anzahl von biologischen Prozessen. Sekun-
darstrukturen bieten die Moglichkeit, die Struktur von RNA-Molekiilen in
einer groberen Auflosung zu untersuchen. Ihr Studium liefert fiir die Vorher-
sage von 3D-Strukturen und fiir das Verstiidnis biochemischer Vorgénge wert-

volle Information.

RNA Sekundarstrukturen konnen als planare Graphen beschrieben werden.
Eine Reihe schon frither entwickelter Algorithmen zur Berechnung der Grundzu-
standsenergie und der Zustandssumme, die auf der Abzdhlung von alterna-
tiven Graphen beruhen, wurden zusammengestellt und in konsistenter Nota-
tion beschrieben. Ein neuer Algorithmus zur Berechnung der Zustandsdichte
von RNA Sekundarstrukturen, basierend auf dynamic programming, wurde

entwickelt und in ein Programm umgesetzt.

Eine Anzahl von Berechnungen wurde durchgefiithrt, um die sich aus der Zu-
standsdichte ergebende Menge an Information zu verdeutlichen. Die vollstén-
dige Zustandsdichte der Phenylalanin-tRNA von Hefe wurde sowohl bei einer
Energieauflésung von 0,1 kcal/mol, als auch — fiir den Bereich von 5 kcal/mol
tiber der Grundzustandsenergie — mit einer Auflésung von 0,01 kcal /mol berech-
net. Die Zustandsdichten von 30 E. Coli tRNAs wurden mit den Ergebnissen
fiir Zufallssequenzen mit gleicher Basenzusammensetzung und gleicher Lange
verglichen. Die Ergebnisse zeigen, daldie urspriinglichen tRNA-Sequenzen im
Vergleich weniger Zustidnde in der Umgebung des Grundzustandes aufweisen
und der Abstand vom Grundzustand zum ersten angeregten Zustand hoher

ist.
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Abstract

RNA molecules serve not only as carriers of information, but also as func-
tionally active units. The three dimensional shape of tRNA molecules plays a
crucial role a wide variety of biological processes. Secondary structures pro-
vide a convenient form of coarse graining, and their study yields information
useful in the prediction of the full 3D structures and in the interpretation of
the biochemical function of the molecules. Furthermore, secondary structures

are discrete and therefore well suited for computational methods.

RNA secondary structures can be represented as planar vertex-labeled graphs.
A variety of dynamic programming algorithms based on graph enumeration de-
rived previously were compiled and presented in a consistent notation. A new
dynamic programming algorithm for the density of states of RNA secondary

structures was developed and implemented for the first time.

A number of sample calculations were performed in order to highlight the
amount of information yielded from the density of states. The complete den-
sity of Yeast tRNAY2 was computed at a resolution of 0.1kcal/mol, and,
within a region of 5kcal/mol above the ground state, at an energy resolution
of 0.01 kcal/mol. A number of 30 E. Coli tRNAs were analyzed and compared
with random sequences of same base composition and length. The results show
that original tRNA sequences have less states in the vicinity of the ground state

and the energy gap is usually larger.
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1 Introduction

RNA molecules serve not only as carriers of information, but also as function-
ally active units. The three dimensional shape of tRNA molecules plays a cru-
cial role in the process of protein synthesis. RNA is known to exhibit catalytic
activity (Cech 1986; Guerrier-Takada et al. 1983; Guerrier-Takada & Altman
1984; Joyce 1989a). While the activity of these so called “ribozymes” is usually
restricted to cleavage and splicing of RNA itself, recent evidence suggests that
RNA also plays a predominant role in ribosomal translation. These discover-
ies have given much support to the idea that an RNA World (Gilbert 1986;
Joyce 1988; 1989b; 1991) stood at the origin of life, in which RNA served both
as carrier of genetic information as well as catalytically active substance. RNA
may not necessarily have been the first step in prebiotic evolution, but the idea
that RNA preceded not only DNA, but also the invention of the translational
system, seems widely accepted. Furthermore, RNA provides an ideal, cur-
rently the only, system to study genotype-phenotype relationships. Following
Sol Spiegelman (Spiegelman 1971), the phenotype for an RNA molecule can
be defined as its spatial structure.

Although RNA offers a limited repertoire of catalytic functions, ribozymes
gain importance for biotechnological applications, since these molecules are
suited for ¢rrational design: Large scale synthesis of RNA molecules underlying
mutation and selection experiments, in which the ribozymes are screened for
positive catalytic functions, are spreading in use.

In many biologically evolved RNA molecules such as viral genomes and
tRNA, the structure seems to be more conserved than the sequence. Viruses
belonging to the same family show little sequence similarity, yet exhibit strongly
conserved structural motifs in terminal regions. The wide variety of tRNA se-
quences provided by databases fit into almost ident cloverleaf patterns.

RNA secondary structures can be represented as planar vertex-labeled
graphs. Dynamic programming algorithms for calculation of the minimum
free energy structure based on graph enumeration have been available now for
some time (Waterman & Smith 1978; Zuker & Stiegler 1981). Naturally the
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algorithm yields only the ground state structure; there is of course an expo-
nentially high number of other configurations, and even though the ground
state is more probable than any other state, the probability within the whole
ensemble of structures may be neglighle. An elegant solution for this problem
was suggested by McCaskill (McCaskill 1990), who proposed an algorithm to
compute the partition function and the matrix of base pairing probabilities of
an RNA molecule. The Vienna RNA Package (Hofacker et al. 1994a) provides
an efficient implementation of both the minimum free energy and the partition
function algorithm, which makes calculations even for large sequences possible.

Paul Higgs (Higgs 1993; 1995) presented thermodynamic studies on the
stability of tRNA molecules, based on an algorithm for the density of states,
i.e., the distribution of energies of all possible secondary structure configu-
rations. From the density of states all thermodynamic parameters can be
derived. While the partition, too, yields the frequency of the ground state
in the thermal equilibrium, specific information about suboptimal structures
can only be obtained from the density of states. Higgs algorithm is based on
compiling compatible stems of minimum length 3 and uses a rather simlified
energy model (Higgs 1993).

In this work we introduce a dynamic programming algorithm for the com-
putation of the distribution of states of RNA secondary structures, which im-
plements the energy parameter set used within the Vienna RNA Package and
is not restricted to any minimum stem length. It will be shown that the re-
cursions underlying all dynamic folding algorithms are accessible from a single
basic recursion for the enumeration of secundary structure graphs. This al-
gorithm can be extended to yield the complete density of states. The key
observation is that the density of states of a sequence can be obtained from
the density of states of smaller subsequences.

The algorithm, however, is quite demanding both in terms of memory
and CPU time: A total of O(n®m?) operations, where n and m give the se-
quence length and number of energy bins, respectively, are required to compute
O(n*m) entries, which have to be stored throughout the execution time. With

a constant energy resolution the number of energy bins used to store the num-
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ber of states, becomes proportional to the number of bases n, resulting in CPU
time requirements of O(n%).

In spite of this unfavorable scaling, it will be shown that the computation
of the distribution of states of biologically important molecules is feasible at
a sufficient energy resolution. This is due to implementation variants of the
algorithm, which reduce the scaling of the CPU requirements and the prefac-
tors. The study of large samples of (small) RNA molecules on statistical basis
to gain thermodynamic information is possible.

A few examples were studied to elucidate the facilities offered by the algo-
rithm. A variety of tRNA molecules from E. Coli were compared with random
sequences of same base composition and length. The results show that bio-
logically evolved sequences are far from equilibrium. It seems probable that a

stable ground-state structure is an important criterion in natural selection.
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2 RNA Secondary Structures

RNA molecules consist of ribonucleotides linked together by covalent chemical
bonds. Each ribonucleotide contains one of the four bases adenine, cytosine,
guanine, or uracil. The specific sequence of bases along the chain is called the
primary structure and determines the kind of the molecule.

In biological systems RNA chains bend and twine about themselves and
bases in close vicinity form weak chemical hydrogen bonds with a complemen-
tary base: A binds with U, G with C (Watson-Crick base pairs).

Much like DNA, RNA can form stable double helices of complementary

GCGGGAAUAGCUCAGUUGGBUAGAGCACGACCUUGCCAAGGBUCGERRUCCCGAGUUCGAGUCUCGUUUCCCGCUCCA

Figure 1: Folding of an RNA sequence into its spatial structure. The process is
partitioned into two phases: in the first phase only the Watson-Crick-type base
pairs are formed which constitute the major fraction of the free energy, and in the
second phase the actual spatial structure is built by folding the planar graph into
a three-dimensional object. The example shown here is phenylalanyl-transfer-RNA

tRNAPhe whose spatial structure is known from X-ray crystallography.
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strands. Since RNA usually occurs single stranded, formation of double he-
lical regions is accomplished by the molecule folding back onto itself to form
Watson-Crick G-C and A-U base pairs or the slightly less stable G-U pairs.
Base stacking and pairing are the major driving forces for RNA structure for-
mation, see section 5. Other, usually weaker, intermolecular forces and the
interaction with the aqueous solvent shape its spatial structure.

Since the number of degrees of freedom in the RNA chain is very high
and exeeds that in polypeptides, the full structural prediction problem is hard
to solve. However, for RNA it has seen to be possible to focus initially on
an intermediate level representation of the folding. This secondary structure
representation contains only information on what base pairs are formed and
relegates more detailed and additional information to a later and subsequent
stage of analysis. The resulting secondary structures are useful in the pre-
diction of the full 3D structures and in the interpretation of the biochemical

function of the molecules for several reasons:

(1) The conventional base pairing and the base pair stacking cover the major

part of the free energy of folding.

(2) Secondary structures are used successfully in the interpretation of RNA

function and reactivity.
(3) Secondary structures are conserved in evolutionary phylogeny.
At the same time the secondary structure representation is very convenient:
(1) Secondary structures are discrete and therefore easy to compare.
(2) They are easy to visualize since they are re planar graphs.
(3) Efficient methods exist for the computation of secondary structures.

In the following section we will give a formal definition of secondary structures
as graphs: RNA secondary structures can be represented as planar vertex-

labeled graphs or as trees. Note that our definition ranks pseudo-knots as a
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tertiary interaction. Although pseudo-knots seem to be important for biolog-
ical function, their inclusion would complicate the mathematical and compu-
tational treatment unduly. There is by now no satisfying secondary structure

prediction algorithm dealing with pseudo-knots.
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3 Secondary Structure Graphs

3.1 Definitions

Definition 3.1. (Waterman 1978; Waterman & Smith 1978) A secondary
structure is a vertex-labeled graph on n vertices with an adjacency matrix A
fulfilling

(1) ajjpr=1for1 <i<m
(2) For each i there is at most a single k& # i — 1,7 + 1 such that a; = 1;
(3) Ifaijzaklzlandi<k<jtheni<l<j.

We will call an edge (i,k), |i — k| # 1 a bond or base pair. A vertex i
connected only to i —1 and ¢+ 1 will be called unpaired. Condition (3) assures
that the structure contains no pseudo-knots. A vertex i is said to be interior
to the base pair (k,[) if £ < ¢ < [. If, in addition, there is no base pair (p, q)

such that p < i < g, we will say that ¢ is immediately interior to the base pair

Figure 2: An example for an RNA secondary structure, with free dangling ends,

stems and loops.
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(k,1). A base pair (p,q) is said to be (immediately) interior, if p and ¢ are
(immediately) interior to (k,1).

Definition 3.2. A secondary structure consists of the following structure

elements

(1) A stem consists of subsequent base pairs (p,q), (p+1,¢—1), ..., (p+
h—1,¢q—h+1), (p + h,qg— h) such that neither (p — 1,¢ + 1) nor
(p+h+1,g—h—1)is a base pair. h+ 1 is the length of the stem, (p, q)

is the terminal base pair of the stem.

(2) A loop consists of all unpaired vertices which are immediately interior to

some base pair (p, q), the “closing” pair of the loop.
g

(3) An external vertexis an unpaired vertex which does not belong to a loop.
A collection of adjacent external vertices is called an external element.

If it contains the vertex 1 or n it is a free end, otherwise it is called joint.

Lemma 3.3. Any secondary structure ® can be uniquely decomposed into
stems, loops, and external elements.

Proof. Each vertex which is contained in a base pair belongs to a unique
stem. Since an unpaired vertex is either external or immediately interior to
a unique base pair, the decomposition is unique: Each loop is characterized

uniquely by its “closing” base pair.

p-1 p pt+1 p+th  p+h+1
C L ’—\\
\
2 I ~ 0
- _ .7
agtl ¢ g-1 g-h g-h-1

$— terminal basepair (p,q)

Subsequent base pairs (p, q), (p+1,9—1), ..., (p+h,q—h) form a stem such that neither
(p+h+1,g—h—1) nor (p—1,q+1) is a base pair. h + 1 is the length of the stem, (p,q)
is the terminal base pair. (p+h,q—h) is the closing pair of a loop. Base pairs (p,q) to
(p+h—1,g—h+1) can be seen as closing base pairs of minimal loops of size z = 0 and
degree k = 2.
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free end joint joint free end

Foo ¢ ' rod

O O
L L

-

L
component 1 component 2 component 3

Figure 3: An example for an RNA secondary structure consisting of three compo-

nents and six external vertices (2 joints and 4 free ends).

Definition 3.4. A stem [(p,q),-.., (p+k,q—k)] is called terminal, if p—1 =0
or ¢+ 1=mn+1, or if the two vertices p — 1 and ¢ + 1 are not interior to any
base pair. The sub-structure enclosed by the terminal base pair (p,q) of a
terminal stem will be called a component of ®. We will say that a structure

on n vertices has a terminal base pair, if (1,7) is a base pair.

Lemma 3.5. A secondary structure may be uniquely decomposed into com-
ponents and external vertices. Each loop is contained in a component.
The proof is trivial. Note that by definition the open structure has 0 compo-

nents.

Definition 3.6. The degree k of a loop is given by 1 plus the number of
terminal base pairs of stems which are interior to the closing bond of the loop.
A loop of degree 1 is called hairpin (loop), a loop of a degree larger than 2 is
called multi-loop. A loop of degree 2 is called bulge if the closing pair of the
loop and the unique base pair immediately interior to it are adjacent; otherwise

a loop of degree 2 is termed interior loop.

Definition 3.7. The size z of a loop is given by the number of unpaired
vertices immediatly interior to the closing base pair (p,q) of the loop. If a
stem ends in a base pair (p, ¢) with no unpaired vertices immediately interior
to it, we speak of a loop with size zero. m denotes the minimum number of

unpaired digits in a hairpin loop (minimal loop size).
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interior base pair closing base pair
A
5|___G U__./’—\\\ [
\' C
= A___\\ /,I ==
't U
closing base pair
stacking pair hairpin loop
interior base pair closing base pair
G C
5. A__L77N 5.5
‘, A
3- _— ,/ 3=
C U \\—’ CA U=—"
’T G ) l\ interior base pair
/
closing base pair ' \
\\ ,
\\_,,
interior loop bulge
TN
r' R
\ |
\‘ | ,’ interior base pairs
c G‘%
5- A G_,’-\\\
\
|
| _ /
3 U C \\_/,

T A A

closing base pair

multiple loop

Figure 4: The classification of loops for the decomposition of RNA secondary

structure.

It is often useful to lump loops of all degrees together into one class and to

consider, for example, the total number of loops
nL, = ng + ng + N1 + num

which must be identical to the number of stems, n, = ns.
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3.2 Representation of Secondary Structures

A string representation S can by obtained by the following rules:
(1) If vertex i is unpaired, then S; =’ .
(2) If (p, q) is a base pair and p < ¢, then S, =>(’> and S, =")"

These rules yield a sequence of matching brackets and dots called bracket
notation.

Secondary structure graphs as defined above can be drawn by placing the
bases of a sequence equidistant to one another on a line. Pairing bases are

connected by arcs.

Figure 5: The secondary structure of tRNAF® in linked graph representation.

A particularly easy way to draw secondary structure graphs was suggested
by Ruth Nussinov (Nussinov et al. 1978). The bases of the sequence are
placed equidistant to one another on a circle and for each base pair a chord is
drawn between the two bonded bases. Since the structures are un-knotted by
definition, no two chords will intersect. See Figure 6 for circular representation
of tRNAF".

Paulien Hogeweg and Danielle Konings conceived a related graphical method
for the comparison of RNA secondary structures called mountain representa-
tion (Hogeweg & Hesper 1984; Konings & Hogeweg 1989; Konings 1989) by
identifying >(?, ?)’, and ’.’, with “up”, “down”, and “horizontal”, respec-

tively. See Figure 7 for mountain representation.

e Peaks correspond to hairpins. The symmetric slopes represent the stems
enclosing the unpaired bases in the hairpin loop, which appear as a

plateau.
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Figure 6: The secondary structure of tRNA™* in Circular representation.

o Plateaus represent unpaired bases. When interrupting sloped regions
they indicate bulges or interior loops, depending on whether they occur
alone or paired with another plateau on the other side of the mountain

at the same height respectively.

e Valleys indicate the unpaired regions between the branches of a multi-
stem loop or, when their height is zero, they indicate unpaired regions

separating the components of secondary structures.

The height of the mountain at sequence position £ is simply the number of base
pairs that enclose position k; i.e., the number of all base pairs (7, 7) for which
t < k and 7 > k. The mountain representation allows for straightforward
comparison of secondary structures and inspired a convenient algorithm for

alignment of secondary structures (Konings & Hogeweg 1989).
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15

10

m(k)

60 80

0 n n
20 40

0
Position

Figure 7: The secondary structure of tRNAF" from Yeast (see Figure 1)
in mountain representation. The same structure in string representation is
..... CCCCCaaac el MMM .-

CCCCCCC . e annn 2))) - (CCCCnnnn )))))
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4 Enumeration of Secondary Structure Graphs

4.1 The Basic Recursion

A secondary structure on n digits may be obtained from a structure on n — 1
digits by adding a base at the right hand. This base n» may constitute a free
end or form a base pair (k,n) with any other base k. In the first case the
number of structures on n digits is equal to the number on n — 1 digits. In the
second case the substructure enclosed by the new pair is an arbitrary structure
on n — k — 1 digits, and the remaining part of length k£ — 1 is also an arbitrary
valid secondary structure. The total number of structures is the product of
the number of substructures Sy ; and S, ;1 on the substrings. Therefore,
we obtain the following recursion formula for the number S,, of secondary

structures:

Theorem 4.1. Let S,, be the number of secondary structures on n vertices. If

m 1s minimal loop size and Sy = 1 then S, satisfies

n—m—1
Sn = Sp—1+ Z Sk—1 Sn—k+1, n>m-+1 (1)
k=1
S():S]_:...: m+1:]- (2)
1 nl n
N — N | K
Sn-1 Sk—1 k1 k1S, g
If the newly added base does not pair, If the base n pairs with k’,’fﬁ/e number
the number of structures on string of structures is the produkt of all struc-
n equals the number of structures in tures in the remaining part S;_1 and
string n — 1. the newly formed component S, 1 1.
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Proof. It is easy to see from Definition 3.1 that for n < m 4 1 the only

structure is the open chain and therefore
So=51=...=511=1

For n > m + 1 see above.

Theorem 4.1. was derived by Waterman (Waterman 1978), see also (Ho-
facker 1994) and (Waterman 1995). Note that our definition of S, differs from
(Waterman 1995) where Sy = 0.

4.2 Structures with Given Numbers of Components

Let J,(b) denote the number of structures on n vertices with exactly b compo-
nents. The derivation of the recursion relations parallels the argument leading
to equ.(1):

n—m—1

To(®) = Jusi®)+ D Secidaka(b—1),  b>0,n>m+1 (3)
k=1
Jo(b) =0,b>0,n <m+1, J,(0)=1,n>0

because adding an unpaired digit to a structure on n digits does not change
the number of components, while introducing an additional bracket makes
the bracketed part of length £ a single component and does not affect the

remainder of the sequence.

4.3 Structures with Given Numbers of Base Pairs

Let H,(b) denote the number of structures with exactly b base pairs (bonds)

on n vertices. The recursion

n 161

H,(b) = ) + f: Hy1(€) Hp—pa(b— £ — 1) (4)

k=1 0

b>0,n>m+1

ES
Il

H,(b)=0,b>0,n<m+1
H,(0)=1,n>0



4 Enumeration of Secondary Structure Graphs 16

is immediate. It is only necessary to introduce an additional sum over the

number of unpaired digits in the newly bracketed part of the structure.

4.4 Structures with prescribed loop energies

Definition 4.2. If we treat stacked base pairs as loops of minimal size (size
zero and degree 2) and assign each loop L a distinct loop energy H, the total

energy of a structure & is

E(®) =Y H(L) (5)

Le®

We then obtain for the number of structures N, (e¢) with exactly energy € on

n vertices
n—-m—1 €
Nn(E) = Nn_l(G) + Z Z Nk_l(Gl) Nn_k_l(G — 6’ - Hc) (6)
k=1 €'=0
n>m+1
No(e=0) =1, Nu(e#0)=0, (7)
n<m+1

Hc is the energy of the loop closed by the newly added base pair (k,n). See

Section 5 for a detailed discussion of the energy model.

1 n-l1 n 1 i é n-l n
\ ] /
€

1 k k+
N — . \—AI
€ \\HC €—¢
If the newly added base is not contained The total energy is the sum of loop en-
in a loop, the total energy of a structure ergies: e—¢' of the substructure (k+1,n-
is equal to the energy of the same struc- 1), € of the remaining structure (1,k-1)

ture without the free end. and H¢ of the newly formed loop.
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4.5 Number of Structures on a String of Bases

Up to now we have neglected the fact that secondary structures are built on
sequences. Not all secondary structures can be formed by a given biological
sequence, since not all combinations of nucleotides form base pairs. The results

of the previous sections will be generalized to this situation in the following.

Definition 4.3. Let A be some finite alphabet of size k, let IT be a symmetric
Boolean k x k-matrix and let ¥ = [0 ...0y] be a string of length N over A.
A secondary structure is compatible with the sequence X if for all base pairs
(p,q) holds I, ,, = 1.

The number of secondary structures N compatible with some string can

be enumerated as follows:

Definition 4.4. Let N, ; denote the number of structures compatible with
the substring [o; ... o;]. The number of structures N,%; on a substring [o; . . . 0]

under the condition the o; and o; form a base pair then is
ij = Niy1,j-1lls, 0, (8)

The total number of structres on a substring [o; ... 0;] satisfies the recursion:

j—m—1

Nij = Nij1+ Z Nik—1Niy1j-1llo, o, (9)
k=i
j—m—1

Nij 1+ Z Nz‘,qu;fj (10)
k=1
Remark: (Hofacker 1994) For a random sequence, the expected number S,
of compatible structures is then

n—m—1

Sin=>Sn1+p Z Stk 15k+1nk (11)

k=l

where

1 K
P=3 > Ty (12)
t,j=1

is called the stickiness of the alphabeth A.
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For short substrings, j — ¢ < m, where m is the minimal size of a hairpin

loop, we find

t—m—1
Nii=Nii1+ Z .=1 (see Sp=1) (13)
1 k=t
i+1—m—1
Ni,H—l = Ni,i + Z .o=1 (14)
k=1
+2—m—1
Ni,i+2 == Ni,i—f—l + Z o=1 (15)
k=1
t+m—m—1
Niitm = Nijigm + Z o=1 (16)
k=i

1+m+l—-m—1=2
B
Niitm+1 = Niigms1 + E Nik—1 NiZiitms1 (17)
k=i Y

The first m + 1 sums are empty because N,fj = 0 for j — k < m. This

corresponds to condition (2) in equ. (10).

We are now recursivly substituting the first term in equ. (10).

Ni

J
DY

N‘i,i—l l:z+m+1 k:’L

j—m—1

N; -1+ Z Ni,k—lN]fj

k=1
j—1—-m-—1 Jj—m—1

Nija+ > NualNE_i+ Y NuwNE

k=1 k=1

l 1

> Nig 1N (18)

This expression will be useful in the following section, where we will show that

an equal recursion scheme can be derived by decomposition of structures.
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4.6 Decomposition of Structures

An equivalent recursive expression for the number of structures can be derived

by the following approach.

Definition 4.5. Let Ni‘f‘j denote the number of structures compatible with
a string of bases [o;...0,| consisting of a single component enclosed by base
pair (i,1) with (i+m+1 < < j) and an arbitrary number of free ends at the
right (3’) side.

Each structure compatible with a string of bases can be attributed to one

of the following three cases:

. . | .
O O &
|
NA
The open chain is a valid secondary N

.7 counts all structures consisting of a
structure compatible to a string of single component enclosed by a base pair
bases. (,1) and an arbitrary number of free ends

at the right (3”) side.

—

k j
O
|

R
[IEN

I
A
Nig—1 N

For a vertex k (i < k < j — m) the string [0;...0;] is diveded into two substrings
[0%-..05] and [0;...051]. N, is the number of all structures compatible to [o%...0;]
with k binding to a base [ satisfying k+m < [ < 7, thus forming the terminal base pair
of a terminal stack. N;_1 is the number of all structures compatible to [o;...06—1].
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Figure 8: Recursive decomposition of multicomponent secondary structures: The
total number of structures is always derived by the multiplication of the number of
structures on two substrings [o; ... 0x—1] and [0 ... 0j]. N, ,fj sums up all structures
which consist of a single component with base k£ forming a base pair with any other
base [ (k+m <[ < j), and all bases > [ being unpaired. The unconstrained number
of structures IV; ,_; compatible to the remaining string is derived by (recursively)
decomposeing the remaining string into a substring containing the rightmost com-
ponent and the remaining string containing the other components or — at the end
of the recursion — an arbitrary number of unpaired bases.

(1) The single open structure, containing no base pairs.

1) _
N =1

(2) All structures consisting of a single component with no free ends at the
left (5’) side and and an arbitrary number of unpaired bases at the right
side adjacent to the terminal base pair of the single component. The

number of these structures on a string [o; ... ;] is denoted N7}.

(2) _ arA
Ni,j - Ni,j

(3) All structures consisting of a single component and unpaired bases at

the left (57) side or consisting of more than one component. The number
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of these structures on a string [o; ... 0;] is derived recursively from the
number of structures N,fj with k£ forming the terminal base pair of the
rightmost component on [o; . ..0;] and N; ;1 denoting the total number
of structures on the remaining sequence, [0;...0x 1].

j—m—1

3
Nz'(,j): Z Nik-1 Nﬁj
k=i+1

The total number of structures on the string [o; ... o;] then is
- NO 2) ®3)
Nij = N+ N +N;;

j—m—1

= 1+NA+ ) Ny Ny (19)
k=1+1

By definition N;f}- is the number of all structures with 7 pairing to any base [

satisfying (i +m+1 <1< j)and [+ 1...j being unpaired. Thus (¢,1) is the

terminal base pair of the single component. According to equ. (8), ij denotes
i1 +2 i+mimel im 2 1

FITTTTT

i+2

i+m

i+m+1

j-m
j-2
j-1

Figure 9: The array elements N,fl added up under the double sums in equ. (18)
and (22) are identical. Equ. (18) sums up rows, equ. (22) sums up columns.
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the number of structures on a string [o; . .. 0] under the condition that o;

22

and

o; form a base pair. The number N{"‘j of all structures consisting of a single

component enclosed by (7,1) therefore is

J
A __ B
Ni,j - Z Ni,l
l=i+m+1

Substituting this to equ. (19) yields

j j—m—1 j
Ny = 14+ > Ni+ Y [Ni,k_l > N,fl]

l=i+m+1 k=1+1 I=k+m-+1
J
Ny = 1+ j-m-1

i D Y NN (21)

k=i+1 I=k+m-+1

j—m—1  j
= 1+ > > NyiNZ (22)

k=i I=k+m+1

The argument explained in Figure 9 shows that the last expression can be

arranged in such a way that equ. (18) is recovered.

(20)
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4.7 Loop Decomposition

In this section we derive a recursion for the number ij of secondary struc-
tures in which ¢ and j form a base pair. It involves three distinct possibilities
(McCaskill 1990):

(1) Base pair (7, j) closes a hairpin loop; there are no base pairs interior to
(i,7). For a given i and j there is only one structure forming a hairpin.
NEO — 1
] 4,05
(2) (i,7) closes an interior loop or a stem; there is a single base pair (k,1)

immediately interior to (7,7). The number of structures satifying this

restriction is
Jj—m—2

j—1
Nf}@) =1y, 0, - Z Z lel

k=t+1 l=k+m+1

b
i i
For given vertices i and j thereis only a  Base pair (4, j) closes an interior loop, base
single possibility to form a hairpin loop.  pair (k,l) is immediatly interior to (,j).
Minimal loop size is 3. The number of structures for all possible
values of k and [ are considered.

Base pair (i,j) closes a multiloop, base
pairs (k,1), (k',1") ... are immediatly in-
terior to (i,7). Multiloop structures are
divided in substructures containing the
rightmost stem and the remaining struc-
ture. The actual number of multiloop
structures on (i+1,j-1) is given by the
product of the number of structures on the
two parts. The number NJY, , , of arbi-
trary structures on the 5’ part is again de-
i j termined from smaller fragments.
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(3) (i,7) closes a multiloop; there are at least two pairs immediately interior
0 (4,7). The string forming the multiloop is divided in two parts, one
containing the rightmost stem, the other containing the remaining string.
This decomposition is essentially the same as the one discussed in the
previous section, i. e., the total number of structures is the product of two
contributions derived from a substructure containing a single component,
NML and an arbitrary remaining structure, N, which may consist of

one or more stems plus joining or tailing unpaired bases, see Figure 10.

Jj—m-—2

B(3) _ M Z
N,] Hoi,oj Nz—|—1] 1= m,a]‘ —|—1k 1Nk,] 1

k=i+1

The total number of structures N5 on the string [o; ... 0;] then is

NE = 1, - [ NEO 4 NEO) 4 ij(?’)]

2y
j—m—2 — j—m—2
_ B M Ml
= Ilpo - |1+ E E Ngy + E Nty Nejo1 | (23)
=i+1 l=k+m+1 =i+1

It remains to derive the recursion for the multiloop-related contributions. By
definition N% 1 counts all structures consisting of a single component enclosed

by the base pair (7,1). In complete analogy with equ. (20) we obtain

J
NM*= Y Nf (24)

l=i4+m+1

The number N} of (arbitrary) structures on the remaining substring can be

obtained recursively:

j—m—1 j—m—1

NN o= Y NN+ Y N (25)
k=t+m+1 k=t
N}jﬁl = N% = N%H = ... = N;}iﬁm =0 (26)

The first term contributing to N% takes into account all substructures con-

taining two or more than two stems, the second term counts all structures with
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Figure 10: Recursive decomposition of multiloops: The total number of struc-
tures is derived by the multiplication of the number of structures on two substrings
[0it1..-0x—1] and [o...0j_1] with k& running over all possible values. Multiloop struc-
tures are thus decomposed into substructures consisting of a single (arbitrary) right-
most component enclosed by (k,[) plus free ends and an arbitrary remaining struc-
ture. According to equ.(24), N,f?jl_l depends on the number of structures N,fl,
kE+m <1< j—1. An expression for N™ has to take into account that the remain-
ing substructure may again consist of two or more components Nij\—ﬁl,k—l , which

are recursively decomposed, or might consist of a single component Nz-]‘fll,k,_1 , thus
constituting the end of the recursion (equ. 25).

one stem. The substructure enclosed by the closing pair (7, 7) of a multiloop
is thus recursively decomposed into a substructure containing the rightmost
stem and the arbitrary remaining structure. Remaining structures consisting
only of a single stem are taken into account by the second term, see Figure 10.

Table 1 summarizes the loop-decomposed version of the the basic recursion
(equ. 1), which forms the basis of all thermodynamic based folding algorithms.

In the following section the energy model will be introduced and discussed

in detail.
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j—m—2  j—1

Nﬁ = lgo - [1+ Z Z N/fl

k=it+1 l=k+m+1

]m?

Ml
z—|—1k: 1 k] 1

k=i+1

J

D I

l=t+m+1
j—m—1 Jj—m—1

N%I = Z Nzk R\l + Z NMI

k=i+m+1

J
DS

l=1+m+1
j—m—1
Nij = 14+NA5+ > N Ny
k=1+1

Table 1: Recursion for the enumeration of secondary structure graphs:
The number Ng of substructures on the substring [z, j] subject to the condition
that ¢ and j form a base pair is determined recursively from smaller fragments.
The base pair (i,j) can be the closing pair of a hairpin, it may close an interior
loop (or extend a stack), or it might close a multi-loop. The auxiliary variables
NM and NM! are necessary for handling the multi-loops (McCaskill 1990), N4
helps reducing the CPU requirements. The unconstrained number of structures
of the substring [7, j] is stored in N;;. The first term accounts for the unpaired
structure. The second term collects all structures that consist of a single compo-
nent, possibly with an unpaired “tail” at the 3’ end. The final term arises from
the formal construction of multi-component structures from a 1-component part
at the 3’ side and an arbitrary structure at the 5’ side.
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5 The Energy Model

5.1 Base-Base Interactions in Nucleic Acids

Base-base interactions in nucleic acids are of two kinds: (a) base pairing in the
plane of the bases (horizontal) due to hydrogen bonding and (b) base stacking
perpendicular to the plane of bases stabilized by London dispersion forces and
hydrophobic effects (Saenger 1984; Poerschke 1977). Whilst hydrogen bonding
is fundamental to the genetic code, both kinds of interactions play a significant

role in determining the spatial structure and energy state of an RNA molecule.

5.1.1 Hydrogen Bonding

Hydrogen bonds (Schuster 1987) are mainly electrostatic in character. A hy-
drogen bond X-H---Y is formed when a hydrogen atom H is situated between
two atoms X, Y of higher electronegativity. The strength of the hydrogen
bond is determined by the partial charges located on X and Y. In the case of
base-base interactions, the hydrogen bonding involved is of type N-H- --O and
N-H---N, with the donor N-H group of either the amino or imino type.
Compared with covalent bonds, hydrogen bonds are weaker and do not
show well-defined length and orientation. Modification of the charges on the
involved atoms in a hydrogen bond due to polarisation lead to additivity and
cooperativity of the bond forming process: H becomes more electropositive,
X,Y more negative. The thus increased affinity of X,Y for accepting further
hydrogen bonds facilitates the forming of (at least) a second hydrogen bond.
With bases A,C,G and U ten combinations of purine-pyrimidine base pairs
involving at least two hydrogen bonds are possible, see Figure 11. Watson-
Crick, Reverse Watson-Crick, Hoogssteen and Reverse Hoogsteen A-U pairs
differ in relative orientation of the bases and in selection of the binding sites.
In apolar solvents, a mixture of Watson-Crick and Hoogsteen base pairs are
formed with at least two hydrogen bonds, involving all potential binding sites.
Association constants depend greatly on the chemical nature of the two bases:

Modification of bases leads to different association constants. Thermodynamic
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Figure 11: The ten possible purine-pyrimidine base pairs (Saenger 1984; Tinoco
1993).

investigations have shown that complementary A-U and G-C bases are more
stable than self-associates. Watson-Crick, Reversed Watson-Crick, Hoogsteen
and Reversed Hoogsteen base pairs cannot be differentiated, so that all ther-
modynamic data for A-U and G-C refer to a combination of base pair types
(Saenger 1984). Quantum chemical studies have demonstrated that electronic
complementarity is most important for the stability of base pairs, a term refer-

ring to the intrinsic electronic structures of associating bases and not merely
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to the number of hydrogen bonds (Saenger 1984): Relative energy values for
different base pairs suggest that complementary pairs in the Watson-Crick
sense are more stable than the self-associates of the individual components.
All non-complementary base pairs (such as A-G, G-U) are less stable than the

corresponding self-associated pairs.

5.1.2 Vertical Base-Base Stacking

In addition to the horizontal base-base interactions due to hydrogen bonding
described above, vertical stacking of bases such that one base plane is at the
van der Waals distance (~ 3.4 A) and parallel to the adjacent base plane,
is observed in aqueous solution and in the solid state (Saenger 1984). This
interaction strongly influences the stability of nucleic acid secondary structure
(Poerschke 1977). Association and stacking of bases in aqueous solution goes
beyond the dimeric state and follows isodesmic behavior: The addition of one
base to another or to an existing stack is reversible with a constant free energy
increment for each step and thus additive; each addition step is independent
and displays the same thermodynamic and kinetic parameters, see Figure 12.

Thermodynamic parameters for the self-association (stacking) of nucleosides

S S O O
¢@¢@¢@¢@
|
S

4+

S

Figure 12: Reaction Scheme of base stacking (Saenger 1984; Poerschke 1977).
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and bases in aqueous solution indicate that (a) association (reaction) constants
K are characteristic for weak interactions, (b) both enthalpies AH and AS
are negative, (c) Gibbs Free Energy change AG is negative in the order of
thermal energy kT = 0.6 kcal/mol. Methylation of bases in general leads to
a moderate increase of stacking. Stability of stacks greatly depends on the
chemical nature of the bases; purine-purine stacks are most stable, followed by
pyrimidine-purine and pyrimidine-pyrimidine stacks.

Bases linked together to oligonucleotides or polynucleotides in aqueous so-
lution form single-stranded, helical structures due to stacking interactions be-
tween adjacent bases, see Figure 13. Their stabilities exhibit the same depen-
dence on the character of the stacking bases with polyA chains forming stable
helices and polyU forming random coils at room temperature. Again methyla-
tion gives rise to increased stability, indicated by higher melting temperature
T,, at higher degree of methylation. Investigations on oligomers of different
chain length suggest that the formation of the single stranded structure is

again noncooperative (Poerschke 1977).

Figure 13: Base stacking to polyA single stranded helices (Saenger 1984; Poerschke
1977).
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Forces mainly contributing to the stabilisation of base stacking in aqueous
solution are dipolar and London dispersion forces in combination with hy-
drophobic forces due to an overall gain in entropy during the association pro-
cess: Bases dissolved in water adopt a hydration sphere with the distribution of
water structures within this sphere shifted into a state with more-ordered H,O
molecules. Association of bases results in the reduction of their surface ex-
posed to water and thus in the reduction of the higher-order hydration sphere
(and increase of entropy). Albeit, hydrophobic interactions cannot explain the
stacking specificity, see above. These sequence determined properties are due
to dipolar and London dispersion forces, which depend mainly on permanent
dipoles and polarizability of the interacting molecules. Both effects are more
pronounced in purine than in pyrimidine bases.

Quantum chemical calculations were employed to estimate the total stabi-
lizing energy of base paired stacking dimers as 2:8'_% g: Due to the restric-
tions of the model (molecules in vacuo), the base pairing components of the
total energy appear to be larger than the stacking components. In aqueous
solutions, however, hydrophobic interactions have to be taken into account.
Melting experiments on oligoA-oligoU double helices show that with increas-
ing chain length (a) T, increases and (b) the slope at the point of inflection
(T,,) becomes steeper due to enhanced cooperativity, thus suggesting a two-
state model (helix - coil). Melting temperatures of double-helical nucleic acids
increase also with the G-C/A-U ratio of the polynucleotide. Because of this
dependence of melting behaviour on nucleotide composition, in a double heli-
cal nucleic acid with random base sequence, A-U rich regions should melt at
lower temperatures than G-C rich regions. The resulting local breakdown of
the helical order leads to broader spectra of the relaxation process. Analysis
of melting profiles yields different melting points for individual regions of dis-
tinct base composition. From these melting information, stability parameters

for individual base pairs can be derived.
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5.2 Thermodynamic Nearest Neighbor Parameters

The results of both quantum chemical calculations and thermodynamic mea-
surements suggest that horizontal (base pairing) contributions to the total en-
ergy depend exclusively on the base pair composition, whereas vertical (base
stacking) contributions depend on base pair composition and base sequence
i.e. the upstream and downstream neighbors along the chain (Saenger 1984).
The nearest neighbor model introduces the assumption that the stabiltity of a
base pair, or any other structural element of an RNA, is dependent only on
the identity of the adjacent bases and/or base pairs. The model is justified
by the major contribution of short-range interactions (hydrogen bonding, base
stacking) to the overall stabilizing energy of nucleic acid structures. In addi-
tion, it is natural to assign loop entropies to entire loops instead of individual
bases. Treating stacks as special types of loops, one assumes therefore that
the energy of an RNA secondary structure ® is given by the sum of energy

contributions € of it’s loops L.

B®) = 3" (L) + e(Lewr), (27)
Led
where L.,; is the contribution of the “exterior” loop containing the free ends.
Note that here stacked pairs are treated as minimal loops of degree 2 and
size 0. In the following we shall discuss the individual contributions in some
detail.

In particular, the energy model contains the following contributions (Turner,
Sugimoto, & Freier 1988):

Stacked pairs and G-U mismatches contribute the major part of the
energy stabilizing a structure. Surprisingly, in aqueous solution parallel stack-
ing of base pairs is more important than hydrogen bonding of the complemen-
tary bases. By now all 21 possible combinations of A-U G-C and G-U pairs
have been measured in several oligonucleotide sequences with an accuracy of a
few percent. The parameters involving G-U mismatches were measured more
recently in Douglas Turner’s group (He et al. 1991) and brought the first

notable violation of the nearest-neighbor model: while all other combinations
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could be fitted reasonably well to the model, the energy of the g:%:g ‘;’: stacked
pair seems to vary form +1.5kcal/mol to —1.0 kcal/mol depending on its con-
text.

Unpaired terminal nucleotides and terminal mismatches: unpaired
bases adjacent to a helix may also lower the energy of the structure through
parallel stacking. In the case of free ends, the bases dangling on the 5" and 3
ends of the helix are evaluated separately, and unpaired nucleotides in multi-
loops are treated in the same way. For interior and hairpin loops, the so called
terminal mismatch energy depends on the last pair of the helix and both
neighboring unpaired bases. While stacking of an unpaired base at the 3’ end
can be as stabilizing as some stacked pairs, 5’ dangling ends usually contribute
little stability. Terminal mismatch energies are often similar to the sum of the
two corresponding dangling ends. Typically, terminal mismatch energies are
not assigned to hairpins of size three. Few measurements are available for the
stacking of unpaired nucleotides on G-U pairs, and for this reason they have
to be estimated from the data for G-C and A-U pairs.

Loop energies are destabilizing and modeled as purely entropic. Few
experimental data are available for loops, most of these for hairpins. The
parameters for loop energies are therefore particularly unreliable. Data in the
newer compilation by Jaeger et al. (Jaeger, Turner, & Zuker 1989) differ widely
from the values given previously (Freier et al. 1986). Energies depend only on
the size and type (hairpin, interior or bulge) of the the loop. Hairpins must
have a minimal size of 3, and values for large loops (k > 30) are extrapolated
logarithmically:

H(k) = H(30) + const. * log(k/30) (28)

Asymmetric interior loops are furthermore penalized (Papanicolau, Gouy, &
Ninio 1984), using an empirical formula depending on the difference |u; — us|

of unpaired bases on each side of the loop.
AF’ninio = min {AFmaxa ‘ul - U2| * A}?ninio [mln{40a Uz, Ug}] } (29)

For bulge loops of size 1, a stacking energy for the stacking of the closing and

the interior pair is usually added, while larger loops are assumed to prohibit
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stacking. Finally, a set of eight hairpin loops of size 4 are given a bonus en-
ergy of 2kcal/mol. These tetraloops have been found to be especially frequent
in TRNA structures determined from phylogenetic analysis. Melting experi-
ments on several tetraloops (Antao & Tinoco 1992) show a strong sequence
dependence that is not yet well reflected in the energy parameters.

No measured parameters are available for multi-loops, their contribution
(apart from dangling ends within the loop) being usually approximated by the
linear ansatz

AG =a+bu+cm, (30)

where u is the size of the loop and m is the number of base pairs interior to the
loop, i.e. its degree—1. Good results have been achieved using a = 4.6, b = 0.4
and ¢ = 0.1 kcal/mol. While a logarithmic size dependency of loop energies
would be more realistic, the linear ansatz allows faster prediction algorithms.
Since all energies are measured relative to the unfolded chain, free ends do not
contribute to the energy.

Energy parameters for the contributions described above have been derived
mostly from melting experiments on small oligonucleotides. The first compi-
lation of such parameters was done by Salser (Salser 1977). The parameters
most widely in use today are based on work of D. Turner and coworkers .
The current work uses the compilation of (Freier et al. 1986; Turner, Sugi-
moto, & Freier 1988; He et al. 1991), who performed measurements at 37°C
in 1 M NaCl. More recently the differences between symmetric and asym-
metric loops have been reported to be only half the magnitude suggested
by Papanicolau et. al. (Papanicolau, Gouy, & Ninio 1984) and of higher
sequence dependence (Peritz et al. 1991). Serra et. al. found a depen-
dence of hairpin loop energies on the closing base pair (Serra et al. 1993)
and presented a model to predict the stability of hairpin loops (Serra, Ax-
enson, & Turner 1994). Walter and coworkers suggested a model system
for the coaxial stacking of helices (Walter et al. 1994). Wu and Walter
studied the stability of tandem GA mismatches and found them to depend
upon both sequence and adjacent base pairs (Walter, Wu, & Turner 1994;
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Wu, McDowell, & Turner 1995). Ebel and coworkers measured the thermody-
namic stability of RNA duplexes containing tandem G-A mismatches (Ebel,
Brown, & Lane 1994). Morse and Draper presented thermodynamic param-
eters for RNA duplexes containing several mismatches flanked by C-G pairs.
Mismatches are reported to have a wide range of effects on duplex stability;
the nearest neighbor model is considered not to be valid for G-A mismatches
(Morse & Draper 1995). These results are, however, not yet included into the
parameter set used in this work.

The energy contributions described above result in nearest neighbor param-
eters for the individual types of loops, thus constituting the energy model used
in the present work. Assigning energy values to secondary structure graphs,
depending on the degree k£ and size z of each loop, we distinguish the following

Ccases:

(1) Stacking Pairs (k = 2, z = 0): The energy Z(i,i+1,j—1,j) depends on
the identity of the bases i, 141, 7—1, j

(2) Interior Loops and Bulges (k = 2): The energy Z(i,k,1,j) depends on
the identity of the bases i, k, [, j and on the size z of the loop with
z=k—(G+1)+j—(+1).

(3) Hairpin Loops (k = 1): The loop energy H(z) depends on the size z of

the loop with z = j — 7. m is the minimal loop size with m = 3.

(4) Multiloops (k > 2): Multiloop energies M are modeled by the linear
ansatz
M = M + Mj - degree + Mg - unpaired, (31)

where M denotes the multiloop closing energy, M denotes the energy
contribution related to the number of stems (= degree) and Mp the

destabilizing energy per unpaired base (size of the loop).

Since the concept of dangling ends is not compatible with the definition of
RNA secondary structure, energy paramenters reflecting the contributions of
unpaired terminal nucleotides to the stability of an RNA are not passed to the

energy model used in this work.
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Figure 14: The secondary structure of Yeast tRNA"". The sequence (n = 76) is
taken from the EBI database (Steegborn et al. 1995): GCGGAUUUALCUCAGDDGGGAGA-
GCRCCAGABU#AAYAP?UGGAG7UC?UGUGTPCG"UCCACAGAAUUCGCACCA.

The Free Energy of the structure according to the energy model used in this
work is —12.26 kcal/mole. Multiloop energies are Mo = 4.60 kcal/mole, Mp =
0.40 kcal/mole and Mj; = 0.10kcal/mole. See the appendix for the abbreviation

and translation of modified bases.
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6 Dynamic Programming Scheme

for the Density of States

In this section we will show that an algorithm for the computation of the
complete density of states of an RNA (in terms of secondary structure) can be
derived from the recursion scheme outlined in Section 4, see Table 1.

Within the energy model for RNA secondary structure graphs used in this
work, the total energy of an RNA molecule is given by the sum of the loop
energies of its structural elements, see Section 5. An expression for the number
of structures compatible to a string [o;...0;| with exactly energy e can be
derived as follows.

Remember the underlying decomposition of structures: The finite set S of
all structures compatible to a string [o; . . . 0] is split into subsets Sy, Sy, and S;
such that $; USUS; = S and §;NS; = 0, see Figure 15. S; contains the open
chain; there is only one unpaired structure, with the number of structures
in this subset being always 1. &, is the collection of all single-component
structures where the leftmost base o; forms the closing base pair with another
base o; and all bases right of o; are unpaired. The number of structures in
this subset is denoted N{f}-. S3 is the subset of all multi-component structures,
consisting of at least two components, and of all single component structures
with a tailing end at the left (5’) side. This set is further split into subsets.

all structures

single component multi component

Figure 15: The complete set S of all secondary structures ® compatible to string
[0i...0;] is split into subsets &1, S», and Ss.



6 Density of States 38

Each subset contains those structures which can be formally constructed from
an arbitrary — even unpaired — structure at the left (5") side on a substring
[0;...0k_1] and an single-component structure at the right side on a substring
[0k...0;], where oy forms the closing base pair (k,!) of the component and all
bases > [ are unpaired, see Figure 16. There is a subset for each value of £k,
with k£ running from 2+ 1 to j — m — 1. The number of structures in a set is
equal to the product of the number of structures on the two substrings.

The reason for dividing the complete set of structures into distinct subsets
by applying this relation is the opportunity to construct the number of struc-
tures on a larger string from the — earlier computed — number of structures on
smaller strings, which is only possible for structures consisting of two or more
independent components. This idea underlying the recursion scheme implies
that, when dealing with energies, the total energy of the complete structure
has to be given by the sum of the energies of the components. The number of
structures with a certain energy is therefore derived by the number of struc-
tures on a substring [o; ... 01| with energy ¢ and the number of structures

on a substring [0y ... o;] with energy (e — €’). For a given vertex k this means

multi component structures
j—m—1

A
> Nig-1 N
k=1+1

A
) Nz‘+8,j

N, ,1+7

i+l joi

Figure 16: The set of all multi-component structures is split into subsets consisting
of all secondary structures formed by an arbitrary structure on substring [o;...0% 1]
and a single component on substring [o%...0;] with (k,[) enclosing the component.
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that there is only a structure with energy € on [o;...0;] consisting of two or
more components, if there is a structure on [o;...0,_1] with exactly energy
¢, and if there is at least one single-component structure on [0y ...o;] with
exactly energy (e - €'), see equ. (6).

Following the argument given above, let IV; ;(¢) be the number of structures

compatible to a string [o;...o;] with exactly energy e. N; ;(€) now can be

written as
Nij(e) = 6(0,6)
A
+NV;; ()
j—m—1 €
+ )0 D Niga(€) Ne(e =€) - (32)
k=i+1 Le=0

The first term referring to the open structure equals 1, if ¢ = 0, and is 0
otherwise, because there is only a single open chain structure; its energy is
0 by definition. The second term counts all structures consisting of a single
component. The energy of that components equals the energy of the total
structure, for tailing ends do not contribute to the energy. The last term
counts all structures consisting of at least two components; these structures
are constructed from their components, see Figure 8. We have to take into
account that the total energy is the sum of the energy of the components, and,
therefore, and we have to consider all possible energy distributions between
the individual components. Therefore an additional sum over the component
energy € is introduced.

The number of all structures on substring [o; ... o;] consisting of a single

component is derived by

NA(e) = > N (33)

I=it+m+1
NJ(€) denotes the number of structures on substring [, ... 0;] under the con-
dition that ¢ and j form a base pair. N ;(e) can again be obtained recursively

from smaller fragments:

NE© = 6(H(ij).e



6 Density of States 40

Figure 17: Recursive decomposition of multiloops and multiloop energies: Mul-
tiloop structures of energy e are constructed from the closing base pair (i,7) with
multiloop closing energy Mc, a region running from k to j —1 with energy (e-¢'-M¢)
containing a single component with a possible tailing end at the right side, and a
region running from 7 + 1 to k — 1 containing an arbitrary structure of energy €.
Multiloop energy contributions are attributed to individual vertices or base pairs
and are additive, see equ. (31), Figure 14.

j—m—2

+ Z Z N,fl Z(i,7,k,1))

k=i4+1 l=k+m+1

—2 e—Mc

Z z—|—1k 1 ( Nk] (e~ € = Mo) (34)

j—m
k=i+1 L ¢=0

The first term represents the hairpin case; its contribution is 1, if the energy
of the loop is exactly €, and otherwise 0. If bases o; and o; do not pair, the
hairpin energy H is infinite by definition; therefore, we do not have to weigh
the contributions to N2 by Iy, ;- The second term counts all structures where
base pair (i, j) closes an internal loop, a bulge or a stack. The number of these
structures with energy e is given by the number of structures enclosed by (&, )

with energy € minus the energy of the loop Z(i, 7, k,1)).
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Following the scheme discussed in Section 4.7, the multiloop structures are
constructed from three parts: The first part consists only of the base pair
(i,7) closing the multiloop. The second part contains a region at the right side
running from base k satisfying i < £ < j —m to base (j —m — 1), where £k is
forming an interior base pair with another base [, satisfying k+m+1 <[ < j+1
and [ +1,...,5 — 1 being unpaired. This region thus consists of a substructure
enclosed by (k.l) and, if any, unpaired bases between [ and j. The number
of structures deriving from this region is denoted N,}"'(e). The third region
running from (¢ + 1) to (kK — 1) contains at least 1 base pair immediately
interior to the closing pair. The number of structures contained by this region
is denoted N (e). Since the multiloop structures are again constructed from
independent parts, the total energy of a multiloop structure equals the sum
of the energy of these parts. This is only possible, if the energy model for a
multiloop follows a linear ansatz similar to equ. (31). An additional sum over
energy € is introduced.

If the rightmost multiloop region contains more than one stem, it is further
decomposed into independent components M1 and M. The total number of
structures is the product of the number of structures N and N™ on the two
substrings, see Figure 17. The total energy ¢ is the sum of the energies ¢ and

€ — € of the two substructures.

NN = YD NE(e=Ms- (=)= My) (35)

j—m—1
N = + Y D NN e—d)
k=i+m-+1 €
j—m—1
+ ) N e—Mp- (k- i) (36)
k=t
The second term in equ. (36) is nonzero when the leftmost region N does not,
contain any stem and is thus 0: The number of multiloop substructures N

formed of unpaired bases is 0 by definition. The energy contribution of that
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region, (Mg - fk —i)), depends on the number of unpaired bases (k — i) and
is constant for a given substring.

Table 2 summarizes the recursion scheme for the density of states. The next
section will extend the recursion scheme to the computation of the partition

function.
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j—m—2

NE(e) = s(H( )+ ) Z NE(e—T(i,j, k1))
k=i+1 l=k+m+1
j—m=—2 [e Mc

Z Z z—|—1k 1 ( Nk] (€ EI_MC)]

k=1+1 e
J
NiHe) = D Nife— Mg(G —1) = Mz)
l=i+m—+1
Jj—m—1
N = [ZNi‘il(e') Nzﬁ‘,@l(e—f')]
k=i+m-+1 €’
j—m—1
+ > NY'(e— Mgk — 1))
k=t
Vi = Y N
l=i+m+1
Nl’j(E) = 6(0,6)+N{3(€)
j—m—1
+ ) 1D Nigca(@)N (e =€)
k=i+1 €

Table 2: Recursion for the calculation of the density of states: Cal-
ligraphic symbols denote energy parameters for different loop types: hairpin
loops H(i, 7), interior loops, bulges, and stacks Z (i, j, k,1); the multi-loop energy
is modeled by the linear ansatz M = M + M7 - degree + Mp - unpaired, e.g.
(Zuker & Sankoff 1984). The number Ng (e) of substructures on the substring
[i, 7] with energy € subject to the condition that ¢ and j form a base pair is de-
termined recursively from smaller fragments. The contributions depend on the
type of the secondary structure element as a consequence of the energy model.
The base pair (i,j) can be the closing pair of a hairpin, it may close an interior
loop (or extend a stack), or it might close a multi-loop. The auxiliary variables
NM and NM!1 are necessary for handling the multi-loops (McCaskill 1990), N4
helps reducing the CPU requirements. The unconstrained d.o.s. of the substring
[i, 7] is stored in Nj;(e). The first term accounts for the unpaired structure. The
second term collects all structures that consist of a single component, possibly
with an unpaired “tail” at the 3’ end. The final term arises from the formal
construction of multi-component structures from a 1-component part at the 3’
side and an arbitrary structure at the 5 side.
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7 Partition Function

In this section we will present the algorithm for the computation of the parti-
tion function of an RNA molecule first derived by McCaskill (McCaskill 1990).
It will be shown that the algorithm follows the same general recursion scheme
as described in the previeous sections.

The Free Energy F' is related to the partition function Q by
F=—-kThQ, (37)

where () is the partition function, 7" is the temperature and £ is the Boltzmann
factor.

The partition function of a given RNA molecule is

Q=) e "W, (38)

deM

where M is the set of all secondary structures ® compatible to the nucleotide
sequence.
The additivity of free energy contribution of the various loops L of a struc-

ture ®, see equ. (27), implies a multiplicativity in the partition function Q.

Q = Ze_[ZLE‘I’FL]/kT (39)
PeM
= > J[e™* (40)
®eM Led

Decomposing an individual secondary structure ® into its components, S;
... Sy, leads to an expression emphasizing that every loop is contained in one
of the components and that the contribution of the structure to the partition
function can be derived from the product of the contributions of its compo-

nents.

o = S I m

PeM Sed LesS

= > J[e™™ (42)

PeM Sed



7 Partition Function 45

This multiplicativity of the partition function contributions in terms of com-
ponents (and loops) parallels the multiplicativity of the number of structures,
see previous sections. Therefore, the complete partition function of an RNA
molecule can be derived by following the recursion scheme presented for the
density of states.

In complete analogy with section 6 we split the set M of all structures
into three subsets. The first subset contains the open structure, the second
all structures consisting of a single component with an arbitrary number of
unpaired bases at the right side. The third subset contains all structures
consisting of more than one component, see Figure 15. The complete partition
function @;; on the string [o;...0,] is the sum of the contributions of the three

subsets:
Qij = Qij(S1) + Qij(S2) + Qi (S3) (43)

The first term is always 1, because the energy of the open structure is 0
by definition and e = 1. The second term is the sum of the contributions

of all structures in subset S;. Their contribution is denoted ij. Again in

multi component structures
j—m—1

> Qir1Qf

k=i+1

A A
Qi,i+7 : Qi+8,j Qi,j—fm—?Qj—m_Lj

(RN joi

Figure 18: The contribution of each set is derived by the multiplication of the
unconstrained partition function on the left substring times the contribution of all
single-component structures on the right string. Summing up yields the total con-
tribution of all multi-component structures.
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analogy with section 6, the set of multicomponent structures is recursively
split into subsets consisting of all structures formed by an arbitrary structure
on substring [o;...0,_1] and a single component on substring [oy...c;]. The
contribution of all structures contained in a certain subset is derived by the
product of the contributions ;1 of all structures on substring [o;...0%_1]
and the contributions ;3’ ; of all single-component structures on [0%...05]. The
contribution of all multicomponent structures is the sum of the contributions
of all subsets, see Figure 18. Therefore, we receive for the complete partition

function
j—m—1

Qi =10+QY+ D Qix1Qf;. (44)
k=i+1
The contribution to the partition function of all single-component structures,

A
VA

contain a base pair (3, j).

is received by summing up all contributions fj of all structures which

L= > Q@ (45)

l=i+m+1
Hence Qi'; is the partition function of the segment S;;, given that o; and o}
pair, i. e. that (4, j) € ®;;. Qf} can be written as a recursive formula

g= eI e (46)
L

(h,1)EL
i<h<l<j

where the sum runs over all possible loops closed by (i,7). If L is a hairpin
loop, there is no pair (h,l) € L; if L is an interior loop or a bulge, there
is exactly one pair (h,l) € L. But if L is multiloop, then there are n pairs
(h,l) €l withi < hy <ly <--- < h, <l, <j. Clearly no base can pair with
itself, therefore the initial condition of the above recursion formula is Q2 = 0.

Dividing Qg- into the contribution coming from the different loop forms,
equation (46) can be rewritten as

j—m—-2 -1

fj = ¢ HEI/KT Z Z QkBilefI(i,j,k,l)]/kT (47)
k=1+1 l=k+m-+1

Jj—m—2

+ Z Q%l,klekM,jlfleiMc/kT- (48)
k=i+1
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Calligraphic symbols H,Z, M refer to the classification of loops described in
the previous sections according to the value of & (k = 0 — hairpin loop,
k =1 — stack, interior loop, bulge). The third term in equation (48) represents
the multiple loop contribution, derived in analogy to equations (36) and (36),

see Figure 17. We obtain for the multiloop contributions

j—m—1 j—m—1
Z sz 1 k’J Z Ml 7./\/[13(’{: l)/kT (49)
k=it+m+1

with Q¥ = 0 and Q%M = 0. The contribution of all structures forming a

single rightmost stem, Q! j» 1s obtained to

= Z QB —[Mz+Mp(i-D]/kT (50)
l=14+m+1

Table 3 summarizes the recursion scheme for the partition function. The
next section will extend the recursion scheme to the computation of the mini-

mum free energy.
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j—m—2 —
B _ f’H(z,])/kT B I(z,]kl 1/kT
i = t Q.
k=i+1 I=k+m-+1
j—m-—2

QM1 ¢ Me/kT
+ E QH—Ik 1@k 1€
k=1+1

M1 _ Z QP ¢ Mzt My DI/AT
27‘7
l=14+m+1

j—m—1

M
ij Z sz 1 ]C,]

k=i4+m-+1

j—m—1

+ Z Q MB(k i)/kT

k=1

J

A _ B
o= 2 Qb
I=i+m+1

j—m—1

Qiy = 1.0+Q+ Z Qik-1Q1,

k=1+1

Table 3: Recursion for the calculation of the partition function: Cal-
ligraphic symbols denote energy parameters for different loop types: hairpin
loops H(i, 7), interior loops, bulges, and stacks Z (%, j, k,[); the multi-loop energy
is modeled by the linear ansatz M = M¢ + My - degree + Mg - unpaired, e.g.
(Zuker & Sankoff 1984). The partition function Qg of substructures on the sub-
string [7, j] subject to the condition that ¢ and j form a base pair is determined
recursively from smaller fragments. The contributions depend on the type of the
secondary structure element as a consequence of the energy model. The base pair
(7,4) can be the closing pair of a hairpin, it may close an interior loop (or extend
a stack), or it might close a multi-loop. The auxiliary variables Q™ and QM1 are
necessary for handling the multi-loops (McCaskill 1990), @* helps reducing the
CPU requirements. The unconstrained partition function of the substring [i, j]
is stored in @);;. The first term accounts for the unpaired structure. The second
term collects all structures that consist of a single component, possibly with an
unpaired “tail” at the 3’ end. The final term arises from the formal construction
of multi-component structures from a 1-component part at the 3’ side and an
arbitrary structure at the 5’ side.
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8 Minimum Free Energy

The algorithm used in the previous sections to compute the partition function
and the density of states of an RNA molecule can also be used to obtain the
minimum free energy of the RNA, i.e. the free energy of the ground state sec-
ondary structure (Zuker & Stiegler 1981; Zuker & Sankoff 1984; Hofacker et al.
1994b). The minimum free energy algorithm relys on the same mechanisms and
displays the same CPU requirements: (a) The complete set of all structures
is (recursively) split into subsets of single-component and multi-component
structures and (b) multicomponent structures are formally constructed from
smaller fragments. Therefore, the algorithm implements dynamic program-
ming; earlyer computed values for substrings yield values for larger strings,
thus reducing CPU requirements to O(n?).

Let Ff; denote the minimum free energy of all single-component structures
on string [;...0;] with (¢,l) forming the closing pair and bases > [ being
unpaired. The minimum free energy F;; of all structures on string [o;...0}]

then is
Fji:j = min ] {07 EA [E7k_1 + Fka]] } (51)

k€[i+1,j—m—1 g7

The first element, 0, is the free energy of the open chain. The second element
is the minimum energy of all single-component structures, see above. All
following elements, {F; x_1+ Fy ;| i+1 < k < j—m—1}, are the minimum free
energies of a distinct subset of all multi-component structures, see Figures 16
and 18. Multi-component structures are constructed from smaller fragments,
i.e. from a arbitrary structure on substring [0;...04_1] and a single-component
structure on substring [0y...0;], thus the minimum free energy of the complete
structure equals the sum of the minimum energies of it’s components.

In analogy to equ. (20), Ff; is obtained from the minimum of all minimum
energies of all structures on [0;...0,], which have a closing pair (¢, [):

Ff; = min ]{Fﬁ } (52)

le[i+m+1,5

FJ then is the minimum free energy of all structures on [0;...0;], which are

enclosed by (7,7), i.e. (i,j) € ®; ;. Three subsets are contributing to this set
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of structures, depending on the number of base pairs immediatly interior to
(i,7), see equ.(23). The minimum energies of these three subsets are again
(recursively) obtained from smaller fragments:

Ff = min {H(i,j), min  {F+7Z(i,5,k,1) },

kEfi+1,j—m—2]
lelk+m+1,5—1]

i FM FM J
Ice[i+IlI,1]l'£lm—2] { i+1,k—1 T L LM (53)

H(i,j) denotes the free energy of a hairpin loop closed by (i,7). The second
element is the minimum energy of all structures where (i, j) closes an interior
loop; their minimum energy equals the sum of the minimum energy of the
smaller fragment, F, ,fl, and the energy of the closing loop, Z(i, 7, k, ). Multiloop
structures enclosed by (i, 7) are obtained by constructing the multiloop from
two sections, see Figure 10. The minimum free energy is thus the sum of

the minimum energy of the two parts, I, , ; and F’! |, plus the multiloop

]1’

closing energy Me. FZ]‘]J ! denotes the minimum free energy of the rightmost

stem plus an arbitry number of unpaired bases at the right side and is obtained

from the sum of the minimum energy of the stem, FZ, the multiloop base

&0

energy, Mp(j — 1), which is added for each unpaired base, and the multiloop

internal energy, M.

P = min SRS+ M~ 1)+ My | (54)

Y lefitm1,4]

FM, 1, equ. (53), denotes the minimum free energy of the remaining section

of a multiloop structure, see Figure 10. This section may contain one ore more

stems. In analogy with equ. (25), we derive for the minimum free energy

M __ : ]
E,j = min { ke[i_’_mlilig_m 1 { i,k—1 + Fk] }’ (55)
mm { L Mp(k — 1) } } (56)

1,j—m—1]

The first element yields the minimum energy of all multiloop sections, which
can themselves be constructed from one part containing the rightmost stem a

remaining part consisting of at least one stem at the left side. The energy is
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the sum of the energy of the two components. The second element yields the
minimum free energy of multiloop substructres, which consist only of a single
remaining stem. These structures are constructed only from the stem plus
unpaired bases at both sides. The energy of the structure is abtained from the
sum of the minimum energy of the stem plus the bases at the right side, F) ,%1,
see equ. (54), plus the energy of the unpaired bases at the left side of the stem,
Mgk —1).

Table 4 summarizes the algorithm for the computation of the minimum

free energy.
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FE = win{H(j), _ min  {F5+T0j.kD},
1€[k+m+1,j—1]

: M }
ke[i+1il]1'§m 2] { i+1—1 1 L +MC}

F;]’\;n = .min ] {E{?-FMB(]—Z)-{-MI}
le[i+m+1,5]
- - ke[i-}-mI-If—l%,I;*m 1] { th—1 + 5

min  {FM 4 Mgk — i)} }

keli,j—m—1]
Fy o= min {3}
: lE€[i+m+1,5] ’
Fy = kE[i-I—IlI,lJ‘l'I—lm—l]{O Fij [E’k_l+Fk’j]}

Table 4: Recursion for the calculation of the minimum free energy:
Calligraphic symbols denote energy parameters for different loop types: hairpin
loops H(i,7), interior loops, bulges, and stacks Z (%, j, k,1); the multi-loop energy
is modeled by the linear ansatz M = M + M| - degree + Mp - unpaired, e.g.
(Zuker & Sankoff 1984). The minimum free energy FB of substructures on the
substring [¢, j| subject to the condition that ¢ and j form a base pair is determined
recursively from smaller fragments. The contributions depend on the type of the
secondary structure element as a consequence of the energy model. The base pair
(,7) can be the closing pair of a hairpin, it may close an interior loop (or extend
a stack), or it might close a multi-loop. The auxiliary variables FM and FM! are
necessary for handling the multi-loops (McCaskill 1990), F'4 helps reducing the
CPU requirements. The unconstrained minimum free energy of the substring
[i,7] is stored in Fj;. The first term accounts for the unpaired structure. The
second term collects all structures that consist of a single component, possibly
with an unpaired “tail” at the 3’ end. The final term arises from the formal
construction of multi-component structures from a 1-component part at the 3’
side and an arbitrary structure at the 5’ side.
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9 Implementation of the Algorithms

9.1 The Vienna RNA Package

Implementations of the algorithms described in sections 7 and 8 are available
within the Vienna RNA Package (Hofacker et al. 1994b; Hofacker 1994). The
package provides both stand-alone programs for folding and comparing of sec-
ondary structures as well as a library to link with other C programs. It can
be obtained via anonymous ftp from www.tbi.univie.ac.at, (Hofacker et al.
1994a).

9.2 Density of States

The algorithm for the computation of the density of states of RNA molecules
presented in section 6 was implemented as an interactive programm running
on UNIX workstations. All code was written in ANSI C. Table 5 shows an
interactive example run of RNAdos, and table 6 provides a pseudocode.

In complete analogy to the dynamic programming solution of the minimum
free energy problem (Waterman 1978; Waterman & Smith 1978; Nussinov et
al. 1978; Nussinov & Jacobson 1980; Hofacker et al. 1994b), the additive form
of the energy model, Section 5, allows for an dynamic programming algorithm
for the density of states of secondary structures, Section 6. The algorithm
described in this work is essentially an extension of the algorithm for the
computation of the partition function by McCaskill (McCaskill 1990). The
algorithm works by calculating the density of states of all (j — ¢)? substrings,
proceeding from smaller to larger fragments: Values of N ;(e), N (e), N} (e),
N}'(e), and N/(e), see Table 2, are calculated from values computed before,
see Figure 19. The algorithm uses integer arithmetic, since integral numbers of
states are computed. The triangular matrices are stored in columns, each entry
containing a vector of length m, where m is the number of energy bins used
for storing the number of states in an energy interval. Memory requirements,
therefore, are generally high and scale as O(n?m).

The algorithm is rather demanding both in terms of memory and CPU
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time: While it is possible to reduce the CPU requirements of the minimum
free energy algorithm, see Table 4, from O(n*) to O(n3) by restricting the
size of interior loops to a constant maximum value (Hofacker 1994), execution
time of the density of states algorithm remains high: For each of the O(n?)
subsequences one needs to compute O(nm) convolutions which in turn require
O(m) operations. Thus a total of O(n3*m?) operations is required to compute
the O(n?m) entries that need to be stored throughout the calculation. With a
fixed energy resolution the vector length m becomes proportional to the chain
length n resulting in O(n°) operations and a memory requirement of O(n?).
The performance data compiled in Table 7 shows that only the calculation
of the density of states (d.o.s.) of small molecules is feasible within a few hours.
To allow the computation of the d.o.s. of larger molecules, it is necessary
to reduce the energy resolution. Since execution time scales as O(n®*m?), a
reduction of the number of energy bins yields a significant acceleration of the

calculations. The energy parameters used within the Vienna RNA Package are

1 2 m mlme2 nm n2 nl n
1 o|o o * |06 06 0 0 o o
2 olo|lo|o|e|e|e|e e e e
m oO|lo|lo|OC|® | e |e | e o e
m+1 olo|o|o|e|e e e e
m+2 olo|lo|o|e|e | e e
i ololo[ole|e|e i
O|O| O [ ] ®

[¢]

o
O|O|O|O

O

n-m O O O
n-2 o | O
n-1 O | O
n ¢
Figure 19: Filled circles denote entries in N, NZ, ..., that are computed as

indicated. Unfilled circles denote entries set by initial conditions. Computation
of an entry N[m,n-2,e] requires entries N[i,j,e] left and below, shown as shaded
bars. Calculation of NB[m,n-2,e] requires all entries within the more slightly shaded
triangle.
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implemented with an accuracy of 0.01 kcal/mol, thereby limiting the energy
resolution that can be achieved. On the other hand, a resolution coarser than
thermal energy (RT = 0.6 kcal/mol) will hide the most interesting information.

Oftentimes one is not interested in the complete density of states but only
in the vicinity of the ground state. It is sufficient in this case to consider only
a limited energy range above the most stable state for each subsequence; this
technique should lead to a significant reduction of the CPU requirements.

To implement both possibilities, optional arguments can be supplied to
RNAdos. Option ’-s 10’ forces a re-calculation of the energy parameter set.
Only 1/10 of the original number of energy bins are used; the resolution is
thus coarser. This option yields a reduction of execution time that makes the
calculation of the d.o.s. of tRNA molecules feasible, see Table 7, Figure 21.

However, a resolution of 0.01kcal/mol at least within a limited range above

turner "> RNAdos

’RNAdos’, ver <97/01/14 16:36:25 >

Input string (upper or lower case); @ to quit
e 2 P T
ACGAUCGUAGUCACGAUG

MM

Fold: minimum free energy = -2.52 kcal/mol
Fold: partition function = 87.715393
MinEn: minimum free energy = -2.52 kcal/mol (scale=1)

number of bins: 3457
Dfold: Number of Structures = 1265
Results: N[ij] = 1265

NB[i,j] = 0

NM[i,j] = 1264

Table 5: Interactive example run of RNAdos: RNAdos calls routines con-
tained in the Vienna RNA package to compute the minimum free energy and the
partition function of the sequence (Fold). Depending on the string length, the
energy parameters are rescaled and the minimum free energy recalculated by an
own routine similar to Fold (MinEn). For small string length the scaling factor
is 1; this yields an energy resolution of 0.01 kcal/mol. The number of energy
bins is calculated from the minimum energy. A modified version of the partition
function routine, where all loops are assigned 0 energy, is called to obtain the
total number of structures.
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// data arrays
int N[i,j,el,NB[i,j,e],NA[i,j,e]l,NM[i,]j,e],NM1[i,],e]

for(j=1...n)
for(i=j..1)
NB[i,j,H(j-1)]1 + 1 // H = hairpin energy
for(k=i+1...j-1)
for(l=k...1l)
for(e=mfe. ..max) // I = internal energy
NB[i,j,el + NB[k,1,e-I(i,j,k,1)]

for(k=i...j)

for(e=mfe. . .max)
for(e’=mfe...max)
NB[i,j,e] + NM[i+1,k-1,e’]*NM1[k,j-1,e-e’-Mc]
for(1=i...j)
for(e=mfe...max)
NMi[i,j,e] + NB[i,1,e-Mb(j-1)-Mi]
for(k=i...j)
for(e=mfe. . .max)
for(e’=mfe. . .max)
NM[i,j,e]l + NM[i,k-1,e’]1*[NM1i[k,j,e-e’]
NM[i,j,e] + NM1[k,j,e-Mb(k-1i)
for(1=1...j)
for(e=mfe...max)
NA[i,j,e] + NB[i,1,e]
N[i,j,0] +1 // open chain
for(e=mfe...max)
N[i,j,e] + NA[i,j,e]l // single component
for(k=i...j)
for(e’=mfe...max) // multi component
N[i,j,e]l + N[i,k-1,e’]*NA[k,j,e-e’]
for(e=mfe...max)
DensityOfStates[e] = N[1,n,e]

Table 6: Pseudocode for the calculation of the density of states: Calli-
graphic symbols denote energy parameters for different loop types: hairpin loops
H(i, j), interior loops, bulges, and stacks Z(i, j, k,1), multiloops M.

ground state would be interesting. By restricting the number of energy bins to
a certain fraction of the normal energy span, the computation time is reduced.

Albeit, CPU requirements still scale with m?, see Figures 22, 24. The cutoff
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N (F) 20 -

0
0.0 1000.0 2000.0
F [kcal/mole]

Figure 20: Example for a density of states plot. Height of lines indicates the
number of structures with a certain free energy. The programm uses an energy scale
relative to the ground state.

option is invoked by *~K 1000’ (for a cutoff of 1000 bins). Care has to be taken
that the cutoff is chosen high enough, so that no structures at low energies are

lost, see Figure 23.

Table 7: Performance Data for the Density of States. CPU times are measured on
an SGI Power Challange R8000 with 1 GB memory. All times are in seconds.

n Sequence Number of Energy Resolution

Structures 0.01 0.1
8 (ACGU), 5 8 <1
12 (ACGU)3 35 139 2
16 (ACGU), 2.7-102 1254 14
20 (ACGU)s 2.2:103 5049 51
24 (ACGU)g 2.0-10% 16926 143
28 (ACGU); 1.8-10° 41089 329
32 (ACGU)g 1.7-108 * 691
35 random 2.0-107 * 804
40 (ACGU)yg 1.6-108 * 1791
76 tRNA-phe 1.5-10'6 * 28678
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Figure 21: CPU requirements of RNAdos at energy resolutions of 0.01 kcal/mol
(squares) and 0.1 kcal/mol (circles) for the computation of the d.o.s. of n(ACGU).
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Figure 22: CPU requirements of RNAdos for the computation of the d.o.s. of a
random sequence, n = 60, at cutoff values of 1500, 200 and 2500 energy bins.
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10
cutoff 2500
AN (F)
cutoff 2000 }
’ I MM LALLM
cutoff 1500 nl[wﬂrh ,“
% 200 300 400 500

F [0.01 kcal/mol]
Figure 23: Computation of the d.o.s. of tRNAFP® with different cutoff bins. The
figure shows the missing states: While the first missing state at a cutoff of 2500 is
as high as 5 kcal/mol above the ground state, at lower cutoff values many states are
not found.

2.00x10°
——-+ SGI Power Challange
1.75x10° | = Linux PC PP200

1.50x10° |
1.25x10° |

1.00x10° |

cpu time [s]

75x10° |
50x10° |

25x10°

(ZI).OOO 1500 2000 2500 3000 3500 4000
cutoff (bins)

Figure 24: CPU requirements for the computation of the d.o.s. of tRNAF"® with

different cutoff bins. Due to the integer arithmetics dominant within the programm,

the PP 200 Linux PC with 128 MB proved to be faster than the SGI Power Challange

(MIPS R8000, 75MHZ) with 1 GB main memory.
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10 Examples of Applications

10.1 Random Sequences

A set of 100 random sequences of equal base composition, n = 30, was an-
alyzed. Figure 25 shows an example of the density of states. The minimum
free energy, the partition function, and the denisty of states were calculated
for each sequence. The density of states yielded the gap energy, i.e. the energy
gap between the ground state and the first “exited” state. The structural en-
tropies of the molecules were calculated from the d.o.s. The partition function
yields the frequency of the minimum free energy structure in the ensemble.
Table 8 provides some example results. Note that the free energy of the en-
semble is derived from AG = —kT'In Z and includes entropic contributions
from structural entropy. From the density of states the geometric entropy S

was obtained by
N
S=—kp» pilnp, (57)
=1

with p; being the probability of state ¢ in the ensemble in Z the partition

function of the molecule:

(58)

The overall shape of N(F) is Gaussian, see Figure 25. This is not sur-
prising, since F' is composed of a large number of additive contributions.
The overwhelming majority of structures has positive energy, hence only a
small subset of all possible structures is physically important. The ground
state of all sequences was unique both at a resolution of 0.lkcal/mol and
0.01kcal/mol. However, in general there is a substantial number of struc-
tures within a few RT above the ground state. It is also worth noting that
there is a strong correlation between the size of the energy gap between the
ground state and the first “excited state” and the fraction py of ground state
structure in thermodynamic equilibrium, see Figure 26. The latter quan-
tity can be obtained directly from the partition function (McCaskill 1990;
Hofacker et al. 1994b).
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Table 8: Example results for the the calculated values: MFE = minimum free
energy, F(Ens) = free energy of ensemble, CPU = execution time, Z = partition

function, gap = gap energy [kcal/mol], N = number of structures, v = frequency of

minimum free energy structure in ensemble.

MFE F(Ens) CPU Z gap S/kp N v
-2.53 -3.87 17318 537.61 0.10 4.11506 757277 0.112801
-5.94 -6.20 25132 23266.7 1.60 1.48706 1014238  0.659061
-3.17 -3.86 18709 522.74 0.35  2.24817 784080 0.327705
-1.37 -2.13 15109  31.7853  0.69  3.30730 755248 0.290505
-4.82 -5.28 22555  5248.38  0.87  1.93574 718227 0.474701
-3.49 -4.00 19735  659.428  0.85  2.50307 830975 0.4366
-3.66 -3.82 20045  488.285 1.83  1.24879 731060 0.776906
-3.54 -3.95 19371 608.39 1.40  2.52384 671276 0.513219
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Figure 25: Example for the density of states of a random sequence of 30 bases.
minimum free energy = —3.54 kcal/mol, Total number of structures = 671,276, se-

quence: ACUAGUCGCGGGGAAUACCUUGGUUCCAAC.

Gap Energy vs. Frequency of MFE in Ensemble
n=30, sample = 100

200.00 T
+ . +
lin corr. coeff. = 0.8380208
150.00 - 1
T
E
< 100.00 - 1
£
w
50.00 - 1
n
0.00 4+ + h + * L L
0.0 0.2 0.4 0.6 0.8

frequency of MFE structure in ensemble

Figure 26: Frequency of the minimum free energy structure in the ensemble versus
energy gap between ground state and first suboptimal state. Data shows a linear

correlation.
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10.2 Yeast tRNAPhe

While it is not possible to calculate the density of states of tRNA at full energy
resolution, the d.o.s. at reduced energy resolution or within a certain energy
range is computationally feasible. The density of states of Yeast Phenylalanine
tRNA at different energy resolutions is given as an example.

The total number of structures is 14,995,224, 405, 213,184; again only a
minimal fraction of 1.77 - 10 structures have negative energy. The reference
state is the open structure. The minimum free energy is E = —12.26 kcal/mol.
The full density of states can be calculated at an energy resolution of 0.1
kcal/mol, see Figure 27. The overall shape of N(F') is again Gaussian. An
enlargement of the left side of the figure shows that a number of suboptimal
states can be distinguished even at low resolution, see Figure 28.

Calculations performed with cutoff of 3500 bins yield the density of state

within a few kcal/mol above ground state. It can be seen that there is a

15

1.10 ‘
N(F)
8.10" | ]
6.10" | |
410" | .
210" | .
o L L Il L
MFE 0.0 25.0 50.0 75.0 100.0

F [kcal/mol]

Figure 27: Density of states of Yeast tRNAFP¢ (n=76). Energy resolution is
0.1 kcal/mol.The total number of structures, 14,995,224, 405,213,184 emphasizes
the need for a recursive approach. Less than 1.77 - 10% structures have negative
energy, the reference state being the open structure. The minimum energy structure
is the familiar cloverleaf with E = —12.26 kcal/mol.
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considerable energy gap between the minimum free energy and the energy of
the first suboptimal structure. The ground state has proven to be unique both
at a resolution of 0.1kcal/mol and 0.01 kcal/mol. However, in general, there is

a substantial number of structures within a few RT above the ground state.
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Figure 28: Low region of the density of states of Yeast tRNAPP (n=76). Energy

resolution is 0.01 kcal/mol at the lower figure and 0.1 kcal/mol at the upper figure.
The ground state is unique both at a resolution of 0.1kcal/mol and 0.01 kcal/mol.
There are, only 2 suboptimal structures within 1kcal/mol above the ground state.
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10.3 E. Coli tRNA

66

Higgs (Higgs 1993; 1995) found that the density of states of natural (evolved)

sequences such as tRNAs differs significantly from random RNA sequences.

His studies were based on a non-recursive algorithm using a drastically sim-

plified energy model (Higgs 1993; 1995). Our own computations support his

RA1660

RF1660

RC1660

r

RG1660

RD1660

RH1660

RE1660
20

n(F)

10 —

0

0.0

|||||||I‘.. ‘Il‘l‘ll“l“l
2.5

F [kcal/mol]

500

R11660

2.5 5.0
F [kcal/mol]

Figure 29: The complete density of states with an energy resolution of 0.1 kcal/mol
was computed for a variety of E. Coli tRNA sequences. The enlargement shows all
states within 5kcal/mol above ground state. Each calculation was done on a SGI
Power Challenge and took 9h cpu time and 150 MB mail memory.
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Figure 30: Density of states of E. Coli tRNA sequences. The enlargement shows all
states within 5kcal/mol above ground state. See the appendix A for the sequence

numbers and the text for the translation of modified bases.

conclusions:

A number of tRNA sequences from EMBL tRNA Database, which is based

on a compilation of Steegborn (Steegborn et al. 1995), were analyzed. See

Appendix A for the sequences and sequence numbers referred to in the text.

Figures 29, 30 provide enlargements of the regions containing all states within
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5 kcal/mol above the ground state. Reference state is the minimum free energy.

tRNAs differ in some extend from other types of RNA: tRNAs contain a
large variety of modified bases, in addition to the four standard bases A, C,
G, and U. There are, however, no experimentally measured parameters avail-
able for non-standard bases, so it is necessary to develope a consistent method
of dealing with these bases. Since it seems obvious that some of these bases
are modified to prevent bonding, a class of non-bonding bases ('N’) has to
be introduced. This method was first suggested by Ninio (Ninio 1979). Higgs
1993, following Ninio, treated the following bases as non-bonding: Dihydro uri-
dine (D), 7-methyl guanosine (7), N2-methyl guanosin (L), 1-methyl guanosine
(K), queuosine (Q), wybutosine (Y), and 3-methyl cytidine (’). All other bases
were treated as the standard base to which they most resemble (Higgs 1993).
A slightly different method was described by Higgs 1995 (Higgs 1995): Since
the majority of all tRNA sequences fit the familiar cloverleaf folding pattern,
it is possible to construct a class of all modified bases which never occur in
a paired position in the cloverleaf. These bases were treated as non-bonding.
All other bases were translated to their standard base analogue. Following this

method we worked with the following assignments:

H -~ — A
<BM? — C
; L#R — G
NJP]Z — U
all other symbols — N

All calculations were performed at an energy resolution of 0.1kcal/mol. The
mean execution time on a SGI Power Challenge was 9h cpu. Each calculation
required at maximum 150 MB main memory.

Figure 31 shows the mean distribution of 30 tRNA sequences. The mean
energy gap of these sequences between ground state and first suboptimal state
is 1.1kcal/mol. There are only 1.3 structures within the first kcal/mol above
ground state and 6.7 structures within 2kcal/mol. It would be interesting

to compare this values with mean data for other classes of tRNA and with
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Figure 31: Mean distribution of states of 30 E. Coli tRNA sequences at an energy
resolution of 0.1 kcal/mol. The mean energy gap is 1.1 kcal/mol.

data from random sequences: Higgs 1995 computed the density of states for
a number of sequences, using his own program, which implemented a rather
simplified energy model. His figures, however, show consistent differences be-
tween random and biological evolved sequences. To follow his calculations with
our program and as an example of application, we computed the distribution
of states both of a number of tRNA sequences from E.Coli and of random
sequences of same length and same base composition. Figure 32 shows some
example plots. It is clearly visible that (a) original tRNA sequences have less
states in the vicinity of the ground state and (b) the energy gap is usually
larger. Table 9 compiles similar data, showing lower minimum free energy
values and larger energy gaps for tRNA sequences than for random sequences
of the same base composition. Note that the number and the position of non-
bonding bases have not been changed. The results of Higgs (Higgs 1995) are
thus supported by our calculations.

The problem remains, that it might not be justified to compare tRNA

sequences with random sequences, even at the same base composition, since
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they fold into completely different minimum free energy structures:

@4

RA1662

RA1662 Random

It is clear, that the structure of tRNA is highly functional, so that a biolog-

ically active tRNA has to exhibit increased stability. This gives rise to lower

minimum free energies and larger gaps. If we want to show that of the large

Table 9: Minimum free energy and gap energy of E. Coli tRNA sequences (upper

part) and random sequences of same base composition (lower part). Biologically

evolved sequences have lower minimum free energies and exhibit larger energy gaps.

Sequence Anti- MFE Number of Energy gap
Number  Codon [kcal/mol]  Structures [kcal/mol]
RA1660 GGC —2.04 64 -10% 0.5
RA1661 VGC —2.15 71-10% 0.3
RA1662 VGC —-1.98 6310 0.1
RC1660 GCA —1.89 3.9-10% 0.2
RD1660 QUC —1.63 35101 1.2
RE1660 SuC —2.57 125 -10% 2.1
RE1661 SuC —2.54 82-10%° 2.0
RE1662 SuC —2.57 48-10%5 0.9
MUA1660 —1.60 3.1-10% 0.2
MUA1661 —1.88 82-10% 0.1
MUA1662 —1.92 84-10% 0.2
MUC1660 —0.88 0.41-10%° 0.7
MUD1660 —1.25 171 - 1013 0.1
MUE1660 -1.31 48 -10% 0.1
MUE1661 —0.89 49 .10% 0.1
MUE1662 —0.77 4.6 -10%° 0.2
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Figure 32: The distribution of states 5 kcal/mol above ground state are shown for
three E. Coli tRNA molecules (on the left, see Appendix A), and for three random
sequences with the same base composition. The energy gap between the ground
state and the first suboptimal state is usually larger for tRNA than for random se-
quences, and there are less suboptimal structures within 1kcal/mol than for random
sequences. The random sequences do not fold into the cloverleaf structure,however.
These calculations were performed with an energy resolution of 0.1 kcal/mol and an
cutoff of 500 energy bins and took 1h CPU time on an SGI Power Challenge.

number of sequences, that fold into the cloverleaf, the most stable sequences
have evolved, we have to compare tRNA sequences with neutral mutants, 7.e.
sequences that are one-point mutations and fold into the same structure. We
have considered the neutral one-point mutations of RN1660 E. Coli tRNA as
an example. 206 one-point mutations were produced by changing all standard

bases. All non-bonding bases N remained unchanged in number and position.
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Figure 33: The distribution of states 5 kcal/mol above ground state are shown
for RN1660 E.Coli tRNA (on the left, see Appendix A), and for a one-point mu-
tation of the original sequence. The mutated sequence has the same ground state
structure, i.e. sequences fold into the same minimum free energy structure. Only
the biologically evolved sequence shows enhanced stability: the gap energy is larger
(1.5 keal/mol for the original and 0.4 kcal/mol for the evolved sequence), and there
are generally more structures within 1 kcal/mol above ground state. These calcula-
tions were performed with an energy resolution of 0.1 kcal/mol and an cutoff of 500
energy bins and took 1h cpu time on an SGI Power Challenge.

94 of the neighbors fold into the clover leaf. Generally speaking, most of the
one-point mutants are almost undistinguishable from the original string. The
average energy gap is only slightly lower, due to the majority of sequences,
which have exactly the same gap. In those sequences, where the mutation
shows some effect, the gap energy is smaller. Figure 33 presents an example
calculation for the original string and one mutated sequence. It is clearly visi-
ble, that the overall distribution has changed and that there are generally more
accessible suboptimal structures. The gap energy is 1.5kcal for the original
string and only 0.4 kcal/mol for the mutated sequence. While we do not have
sufficient data for a detailed statistical analysis, our results so far are consistent
with the conjecture that biologically evolved sequences with functionally im-
portant structure are generally stabilized by larger energy gaps and a reduced

number of suboptimal states.
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11 Conclusion and Outlook

RNA structures play a significant role in a wide range of problems. Secondary
structures provide a convenient form of coarse graining, and their study yields
information useful in the prediction of the full 3D structures and in the inter-
pretation of the biochemical function of the molecules. Furthermore, secondary
structures are discrete and therefore well suited for computational methods.

To understand the biological role of an RNA molecule, it is not sufficient,
to know the ground state structure. Only the complete density of states,
i.e. the distribution of energies of all possible configurations, can provide all
information concerning the stability and structural flexibility of a structure
and the suboptimal states.

The representation of RNA secondary structures as vertex-labeled, planar
graphs are discussed in detail. A variety of dynamic programming algorithms
derived previously were compiled and presented in a consistent notation. While
the algorithms for the minimum free energy and the partition function have
already been available for some time, the density of states algorithm was de-
veloped and implemented for the first time. CPU time requirements of the
algorithm scale as O(n*m?), with n denoting the number of bases and m the
number of energy bins used to store the number of states. The computation of
the density of states of biologically significant molecules is feasible at sufficient
energy resolutions. Variants of the implementation allow for a reduced energy
resolution and for a restriction to a sufficient energy range above the ground
state.

A number of sample calculations were performed in order to highlight the
amount of information yielded from the density of states. The complete den-
sity of Yeast tRNAP® was computed at a resolution of 0.1kcal/mol, and,
within a region of 5kcal/mol above the ground state, at an energy resolution
of 0.01 kcal/mol. A number of 30 E. Coli tRNAs were analyzed and compared
with random sequences of same base composition and length. The results show
that original tRNA sequences have less states in the vicinity of the ground

state and the energy gap is usually larger. However, large investigations on a
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Figure 34: (Hofacker et al. 1996)
Representation of the memory usage
at the parallel folding algorithm. The
triangular data matrices are divided
\ into sectors with an equal number of
2 diagonal elements. The computation
\ proceeds from the main diagonal to-
i wards the upper right corner. The
3 information needed by processor two
in order to calculate the elements of
the dashed diagonal are highlighted.

statistical base have not yet been performed.

An additional feature not yet included into the program, is a back-tracking
mechanism. It would be of great interest, not only to know the mere number
of states, but to gain knowlegde of the structures themselves. The implemen-
tation of such a mechanism will constitute a next step.

Hofacker (Hofacker et al. 1996) implemented a parallel version of the min-
imum free energy of very large chains. Since the data elements are stored in
triangular matrices, the entries can be calculated by proceeding from the main
diagonal towards the upper right corner. The matrices are divided into sectors
with an equal number of diagonal. The implementation of a parallel version

of the algorithm for the density of states seems particularly promising.
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A EMBL tRNA Database

All tRNA sequences are from the compilation of Steeghorn (Steegborn et al.
1995), which can be obtained via anonymous ftp from EMBL Heidelberg,
ftp.embl-heidelberg.de, in directory /pub/databases/trna/.

Abbreviation of Modified Bases

The one-letter code and the abbreviation for all modified bases in the tRNA

database:

D (D) dihydrouridine

B (Cm) 2’-0-methylcytidine

Y (yW) wybutosine

?  (m5C) 5-methylcytidine

;0 (@ unknown modified guanosine
L (m2G) N2-methylguanosine

# (Gm) 2’-0-methylguanosine

R (m22G) N2,N2-dimethylguanosine

7 (m7G) 7-methylguanosine

K (miG) 1-methylguanosine

> (m3C) 3-methylcytidine

< (70 unknown modified cytidine

M (ac4C) N4-acetylcytidine

(m5C) 5-methylcytidine
T (T thymine
" (m1A) 1-methyladenosine

(ms2i6A) 2-methylthio-N6-isopentenyladenosine
H (74) unknown modified adenosine
~ (Ar(p))  2’-O-ribosyladenosine (phosphat)
N (70) unknown modified uridine

(Um) 2’-0-methyluridine

P (psi) pseudouridine
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] (milpsi)  1-methylpseudouridine

Z (psi m) 2’-0-methylpseudouridine

\  (m5Um) 5, 2’-0-dimethyluridine

{ (mnmbU)  b5-methylaminomethyluridine

X (acp3U)  3-(3-amino-3-carboxypropyl)uridine
S (mnmbs2U) 5-methylaminomethyl-2-thiouridine
V  (cmobU) uridine b5-oxyacetic acid

Q @ queuosine

}  (k2C) lysidine

Bases are translated as suggested by Higgs (Higgs 1995): Modified bases in
pairing regions were translated to their non-modified analogues; bases exclu-

sively found in loop regions were treated as non-bonding bases.

E. Coli tRNA Sequences

All E. Coli tRNA sequences from the EMBL tRNA Database used in this work
are given. The sequence number codes as follows: First letter is D or R for
DNA or RNA respectively. Second letter gives the one-letter symbol of the
amino acid. In addition to the commonly used one-letter amino acid code, Z
means seleno cysteine and X stands for initiator tRNA. The four digit number

codes for organism and isoacceptor (see manual.txt in the database).

Sequence Anti- Organism Kingdom

Number Codon

RA1660 GGC E.COLI EUBACT
GGGGCUANAGCUCAGCDGGGAGAGCGCUUGCAUGGCAUGCAAGAG7UCAGCGGTPCGAUCCCGCUUAGCUCCACCA
RA1661 VGC E.COLI EUBACT
GGGGGCA4AGCUCAGCDGGGAGAGCGCCUGCUUVGCACGCAGGAG7UCUGCGGTPCGAUCCCGCGCGCUCCCACCA
RA1662 VGC E.COLI EUBACT
GGGGCUAUAGCUCAGCDGGGAGAGCGCCUGCUUVGCACGCAGGAG7UCUGCGGTPCGAUCCCGCAUAGCUCCACCA
RC1660 GCA E.COLI EUBACT
GGCGCGU4AACAAAGCGGDDAUGUAGCGGAPUGCA*APCCGUCUAGUCCGGTPCGACUCCGGAACGCGCCUCCA
RD1660 Quc E.COLI EUBACT

GGAGCGG4AGUUCAGDCGGDDAGAAUACCUGCCUQUC/CGCAGGGG7UCGCGGGTPCGAGUCCCGPCCGUUCCGCCA
RE1660 SucC E.COLI EUBACT
GUCCCCUUCGUCPAGAGGCCCAGGACACCGCCCUSUC/CGGCGGUAACAGGGGTPCGAAUCCCCUGGGGGACGCCA
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RE1661 SuC E.COLI EUBACT
GUCCCCUUCGUCPAGAGGCCCAGGACACCGCCCUSUC/CGGCGGUAACAGGGGTPCGAAUCCCCUAGGGGACGCCA
RE1662 SucC E.COLI EUBACT
GUCCCCUUCGUCPAGAGGCCAGGACACCGCCCUSUC/CGGCGGUAACAGGGGTPCGAAUCCCCUAGGGGACGCCA
RF1660 GAA E.COLI EUBACT
GCCCGGA4AGCUCAGDCGGDAGAGCAGGGGAPUGAA*APCCCCGU7XCCUUGGTPCGAUUCCGAGUCCGGGCACCA

RG1660 ccc E.COLI EUBACT
GCGGGCG4AGUUCAAUGGDAGAACGAGAGCUUCCCAAGCUCUAUACGAGGGTPCGAUUCCCUUCGCCCGCUCCA
RG1661 GCC E.COLI EUBACT
GCGGGAAUAGCUCAGDDGGDAGAGCACGACCUUGCCAAGGUCGGG7UCGCGAGTPCGAGUCUCGUUUCCCGCUCCA
RG1662 NCC E.COLI EUBACT
GCGGGCAUCGUAUAAUGGCUAUUACCUCAGCCUNCCAAGCUGAUGAUGCGGGTPCGAUUCCCGCUGCCCGCUCCA
RH1660 QUG E.COLI EUBACT

GGUGGCUA4AGCUCAGDDGGDAGAGCCCUGGAUUQUG/PPCCAGUU7UCGUGGGTPCGAAUCCCAUUAGCCACCCCA
RI1660 GAU E.COLI EUBACT
AGGCUUGUAGCUCAGGDGGDDAGAGCGCACCCCUGAUBAGGGUGAG7XCGGUGGTPCAAGUCCACPCAGGCCUACCA

RI1661 GAU E.COLI EUBACT
AGGCUUGUAGCUCAGGUGGDDAGAGCGCACCCCUGAUBGAGGGUGAG7XCGGUGGTPCAAGUCCACPCAGGCCUACCA
RI1662 }AU E.COLI EUBACT

GGCCCCU4AGCUCAGU#GDDAGAGCAGGCGACUTAUBAPCGCUUG7XCGCUGGTPCAAGUCCAGCAGGGGCCACCA
RK1660 SUU E.COLI EUBACT
GGGUCGUUAGCUCAGDDGGDAGAGCAGUUGACUSUUGAPCAAUUG7XCGCAGGTPCGAAUCCUGCACGACCCACCA

RM1660 MAU E.COLI EUBACT
GGCUACG4AGCUCAGDD#GDDAGAGCACAUCACUMAUGAPGAUGGG7XCACAGGTPCGAAUCCCGUCGUAGCCACCA
RN1660 QuUU E.COLI EUBACT
UCCUCUG4AGUUCAGDCGGDAGAACGGCGGACUQUU6APCCGUAU7UCACUGGTPCGAGUCCAGUCAGAGGAGCCA
RQ1660 CUG E.COLI EUBACT
UGGGGUA4CGCCAAGC#GDAAGGCACCGGAJUCUG/PPCCGGCAUUCCGAGGTPCGAAUCCUCGUACCCCAGCCA
RQ1661 NUG E.COLI EUBACT

UGGGGUA4CGCCAAGC#GDAAGGCACCGGUJUNUG/PACCGGCAUUCCCUGGTPCGAAUCCAGGUACCCCAGCCA
RR1660 ICG E.COLI EUBACT
GCAUCCG4AGCUCAGCDGGDAGAGUACUCGG),UICG/ACCGAGCG7XCGGAGGTPCGAAUCCUCCCGGAUGCACCA
RR1661 ICG E.COLI EUBACT
GCAUCCG4AGCUCAGCDGGADAGAGUACUCGGCUICG/ACCGAGCG7XCGGAGGTPCGAAUCCUCCCGGAUGCACCA
RR1662 {cu E.COLI EUBACT
GUCCUCUUAGUUAAAUGGADAUAACGAGCCCY,U{CU6AGGGCUAAUUGCAGGTPCGAUUCCUGCAGGGGACACCA
RR1663 {CcU E.COLI EUBACT
GCGCCCUUAGCUCAGUUGGAUAGAGCAACGACY,U{CU6AGPCGUGGGCCGCAGGTPCGAAUCCUGCAGGGCGCGCCA
RR1664 CCG E.COLI [EUBACT
GCGCCCGUAGCUCAGCDGGADAGAGCGCUGCCY,UCCGKAGGCAGAG7UCUCAGGTPCGAAUCCUGUCGGGCGCGCCA
RT1660 GGU E.COLI EUBACT
GCUGAUAUAGCUCAGDDGGDAGAGCGCACCCUUGGUEAGGGUGAG7UCGGCAGTPCGAAUCUGCCUAUCAGCACCA
RT1661 GGU E.COLI [EUBACT
GCUGAUAUGGCUCAGDDGGDAGAGCGCACCCUUGGUEAGGGUGAG7UCCCAGTPCGACUCUGGGUAUCAGCACCA
RV1660 GAC E.COLI [EUBACT
GCGUCCG4AGCUCAGDDGGDDAGAGCACCACCUUGACAUGGUGGGG7XCGGUGGTPCGAGUCCACUCGGACGCACCA
RV1661 GAC E.COLI EUBACT
GCGUUCA4AGCUCAGDDGGDDAGAGCACCACCUUGACAUGGUGGGG7XCGUUGGTPCGAGUCCAAUUGAACGCACCA

7
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RV1662 VAC E.COLI EUBACT
GGGUGAU4AGCUCAGCDGGGAGAGCACCUCCCUVAC=AGGAGGGG7UCGGCGGTPCGAUCCCGUCAUCACCCACCA
RW1660 CCA E.COLI EUBACT
AGGGGCG4AGUUCAADDGGDAGAGCACCGGUBUCCA*AACCGGGU7UUGGGAGTPCGAGUCUCUCCGCCCCUGCCA
RX1660 CAU E.COLI EUBACT
CGCGGGG4GGAGCAGCCUGGDAGCUCGUCGGGBUCAUAACCCGAAGAUCGUCGGTPCAAAUCCGGCCCCCGCAACCA
RX1661 CAU E.COLI EUBACT

CGCGGGG4GGAGCAGCCUGGDAGCUCGUCGGGBUCAUAACCCGAAG7UCGUCGGTPCAAAUCCGGCCCCCGCAACCA

78
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