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Abstract

The present work studies the inverse folding problem for a class of “block-world” model
proteins. The primary structure of the model proteins consists of a sequence of space
filling blocks of various shapes and chain attachment points. Modelling a hydrophobic
core a native structure is considered to be a cube of appropriate size entirely filled with
blocks.

e In this context the inverse folding problem is approached in two stages.

(1) The set of possible native structures (given a set of blocks) is viewed as the
problem of tiling a cube. The resulting tiles were denoted as microconfigu-
rations in this thesis.

For some instances the tilings of a cube could be systematically generated.
For large configuration spaces an ergodic move set was defined to convert

one tiling into another.

(2) Once the set of tilings had been generated, it was tested if a chain could

actually be laid through them.

e It was possible to calculate the folding probability of sequences to form hydro-
phobic cores for sets of blocks in the 3 X 3 X 3 and 4 X 4 X 4 cube. Folding
probabilities were obtained by exhaustive folding of all sequences on a given set
of blocks.



Zusammenfassung

In der vorliegenden Arbeit wurde das “inverse protein folding problem” anhand von
Modellproteinen betrachtet. Die Priméarstruktur der angewandten Modellproteine be-
steht aus einer Sequenz von raumfillenden Blécken unterschiedlicher Form und Groéfle.
Jeder Block representiert dabei eine Aminosidure. Der hydrophobe Kern der nativen
Proteinstruktur ist im Modellprotein ein Wiirfel, welcher kompakt mit Blocken ausgefiillt

ist.

e Das “inverse protein folding problem” wurde im Modell in zwei Schritten behan-
delt.

(1) Die nativen Strukturen einer gegebene Menge von Blocken wurden als
Wiirfelzerlegungen, in dieser Arbeit als Mikrokonfigurationen bezeichnet, be-
trachtet.

Fiir einige Blockmengen konnten alle Mikrokonfiguration berechnet werden.
Fiir grofle Konfigurationsraume wurde ein ergodisches Moveset festgelegt mit
dessen Hilfe alle Mikrokonfigurationen durch einen “random walk” ineinan-

der umwandelbar sind.

(2) Fir die ermittelten Mikrokonfigurationen konnten die faltenden Sequenzen

berechnet werden.

e  Die Faltungswahrscheinlichkeit der Sequenzen konnte fur Blockmengen des 3 X
3 X 3 und 4 x 4 x 4 Wiirfels berechnet werden. Bei diesen Berechnung wurde die
Kette fiir alle Sequenzen einer gegebenen Menge von Blocken einem “exhaustive

folding”-Algorithmus unterworfen.
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1. Introduction

1.1. Proteins

Proteins are biopolymers. Their ribosomal synthesis regularly works with 20 diffe-
rent amino acids. They can have a large variety of functions in biological systems
and thus their localisations, concentrations and activities have to be controlled
carefully. Enzymes catalyze very specific reactions and speed up reaction rates by
factors of up to 106 and more. The transport of O, by hemoglobin or myoglobin
are examples for transport processes of small molecules mediated by protein. The
cytoskeleton of cells consists of different protein polymers or filaments. Keratin,
collagen, actin filaments, or microtubuli are examples. Keratin and collagen sta-
bilize cells and tissues against external forces. Actin filaments are important for
motility of cells and, together with myosin filaments, for contraction of muscles.
Motorproteins like kinesin and dynein transport vesicles to the peripherie (antero-
grad direction) or to the cellcenter (retrograd direction). If proteins are classified
according to their shape and solubility in water fibrous and globular proteins can
be distinguished. Figure 1 shows the overall shape of globular (coiled) and fibrous
(rodlike) proteins.

Figure 1: Shapes of proteins: a) shows a coiled globular protein and b) a typical rodlike fibrous
protein

Fibrous proteins are long molecules of rodlike structure that are insoluble in water.
Keratin, and collagen can be classified as fibrous proteins. Globular proteins in
contrast have spherical shape, forming a coil, and are in general soluble in water.
They are no random coils but have well defined unique structures.
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Enzymes, hemoglobin (myoglobin in muscles), antibodies are globular proteins.
Transmembrane proteins like receptors or ionic channels form a third class of
proteins because they are insoluble in water without being fibrous proteins.

1.2. The structure of proteins

Proteins consist of amino acids. The a-amino group and the a-carboxyl group
of two amino acids are covalently linked to form the peptide bond. There is no
free rotation around the CO-NH peptide bond, because it has partial double bond
character. This is indicated by the two planes in figure 2. In figure 2 a definition

of the two dihedral angles (¢, ¥) is given.

Figure 2: Dominant structure of amino acids at pH =~ 7 and definition of the two dihedral

angles determining the conformation of the peptide bond

The primary structure of a protein is the covalent structure of the polypeptide
chain of this protein, excluding disulfide bonds between cystein residues. It is
commonly expressed as the sequence of amino acid residues. Rotation about co-
valent bonds (¢ and 1) gives different conformations of a protein. Certain regular
conformations of the polypeptide backbone build the secondary structure. The
backbone of a polypeptide chain forms a linear group if its dihedral angles are
repeated. Every linear group is a helix. Conformations like a-helices as well as
(-sheets have sets of repeating backbone dihedral angles and contain helices. A
pair of amino acids in a given secondary structure element has characteristic (¢, 1)

values.
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The Ramachandran diagram (figure 3) gives the backbone dihedral angle sets that
are possible in a protein under the assumption that atoms can be treated as hard
spheres. For alanin or any other amino acid exept of glycin and prolin three diffe-
rent regions in the Ramachandran diagram are accessible (figure 3). The left upper
region of figure 3 contains the (¢, 1) values of parallel and antiparallel S-sheets
as well as the collagen helix. A second region contains the right handed a-helix
(=(1) in figure 3). In a third region the left handed a-helix (=(2)) is theoretically,
according to the hard sphere model, possible. Because of the energetically unfa-
vorable situation it is not realized in real proteins. Glycin has, with a proton as
residue, relatively free rotation and can access an additional fourth region (hatched
in figure 3). Prolin in contrast has a very restricted rotation because the p-value
of the C, — N bond is fixed at -65°.

180

-180

Figure 3: Ramachandran diagram. (1) apg-helix (The polypeptide of the backbone chain traces
a right handed helical path.) (2) oy-helix (The polypeptide of the backbone traces a
left handed helical path.) (3) =-helix (or 4,41¢-helix) (4) 3,010-helix (5) flat 2,27-helix
(6) polyprolin-helix (7) kollagen-helix (8) antiparallel and (9) parallel 8-sheet (10) plain
cyclopentapeptide ring
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1.2.1. Elements of secondary structure

1.2.1.1. Helices
Figure 4 shows that different avarage numbers of amino acids per helix turn (3,0,
3,6, and 4,4) are possible.

wd 000k

[

Figure 4: Comparision of different hydrogen bond systems in different helices. a: 3,01(-helix;
b: a-helix (3,613-helix); ¢: w-helix (4,416-helix)

The indices 10, 13, and 16 of figure 4 are defined as the number of atoms per helix
turn to build the corresponding hydrogen bond (figure 5).

¢ a-helix

' 2,2;-helix ¥ 3.019-helix } 3,615-helix fdAm—lmlEx

B Tl I L L e

Figure 5: Determination of indices in figure 4 as the number of atoms per helix-turn (7, 10, 13,

and 16)
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The 3, 019-helix has an unfavorable side chain packing. Small pieces, about one or
two turns, can be observed that tend to be at the N- and C-termini of a-helices.
An a-helix has on average 3,6 amino acids per helix turn. The 7-helix has never
be observed. It would form an axial hole which cannot be filled with water and
the van der Waals attractions would be reduced. Side chain interaction disfavor
the left handed 3,019, o, and 7-helices which have never been observed yet.

1.2.1.2. Reverse turns

The peptide chain can form sharp reverse turns which contain a hydrogen bond.
Three favorable conformations of three consecutive peptide units with a hydro-
gen bond between O; and N;,3, named reverse turn I, II, and III, can be found
(Venkatachalon). While reverse turn III is a piece of 3;p-helix, reverse turn I is a
deformed 31g-helix. In reverse turn II the peptide unit between residues ¢z + 1 and
i + 2 of reverse turn I has flipped over (figure 6). Because of the steric hindrance
between side chain R; 2 and O;4 residue 7 + 2 has to be a gly.

Figure 6: Reverse turns of type I and II. In type II residue i+2 has to be a gly.
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1.2.1.3. Sheets

Pauling and Corey postulated the parallel planar and antiparallel planar 3-sheet as
regular hydrogen bond structures for polypeptide chains. A planar (antiparallel)
sheet can be found in glutathione reductase. Globular proteins contain about 15%
sheet structure. The side chains of a sheet point alternatively to either side of
the sheet. The C, — C3 bond of the side chain are perpendicular to the sheet
plane. No preference for parallel or antiparallel sheets is observed. There is a

clear preference of twisted sheets compared to planar sheets (figure 7).

7 rd Ay
H~K C=0Q-H-N c=0
\ / \ /
RCH HCR RCH HCR
7 A\ / A\
G=c N-H-0=C N-H
N=H- - 0=C N-H - 0=C
Y N\ / \
HCR RCH HCR RCH
Y / \ /
=0 HeN L=0-H-N_

H-N C=0 H—-N C=0
\ / y 7
RCH HCR RCH HCR
one’ \ . \
==%, N=H Q=" N—H

Figure 7: a) and b) show two possible forms of 3-sheet-conformations; a: antiparallel S-sheet;
b: parallel 3-sheet; c: most observed sheets are twisted

The reason for this preference of twisted sheets is local optimization of hydrogen
bonds. In either type of sheet, parallel as well as antiparallel, the chain forms a
linear group with one residue as group element. Every linear group has to be a
helix and in the case of #-sheets it is a very extended left handed helix. This helix
corresponds to a right handed rotation of carbonyl and amide groups of about 60°
per two residues. For an optimal hydrogen bond formation between neighbouring
strands it is necessary that the strands form an angle of about 25° with each
other. The twisted single strands are the reason for the twisted sheet. If the sheet
is viewed along the plane perpendicular to the sheet strands it has a left handed

twist.
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1.2.2. Elements of supersecondary structure

Frequently observed combinations of secondary structure, also called motifs, form

elements of supersecondary structure. Some of these elements are shown in figure 8.
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Figure 8: Elements of supersecondary structur: a: two a-helices build a superhelix - a coiled coil
a-helix; b: two possibilities for a 3¢B8-unit; c: successive Sa3-units (Rossmann-fold); d:
B-Maander
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1.3. States in protein folding

1.3.1. General considerations

How does a given sequence of amino acids fold into its functional active tertiary
structure? A random search of the right conformation would mean that every
already folded region of the protein could unfold again at any time during the
folding process. Because there are so many possible conformations of an amino
acid chain a random search is out of discussion. It would take years for such
a globally exhaustive search to find the native conformation [30]. Consequently
some correctly folded parts of the protein have to be conserved during the folding
process by cumulative selection. The free energy difference between the unfolded
and the native state of a typical protein is not very large. For a protein with
hundred amino acids it is at room temperature on average only 40 kJ/mol. Each
residue has therefore an average stabilisation of 0,4 kJ/mol which is lower than the
thermal energy (RT = 2,5kJ/mol). This makes clear that cumulative selection
does not mean a fixation of correct but randomly positioned short streches of the
amino acid chain because such short folded parts could easily be disrupted by
thermal energy. The meaning of cumulative selection has to be conservation of
cooperatively folded, and therefore larger streches, of the protein.

1.3.2. The native state as free energy minimum

Anfinsen recognized that reduced ribonuclease regained its characteristic biological
activity on removal of the denaturating agent in the absence of other macromo-
lecules. Ribonoclease, with 8 cystein amino acids, could also have been paired to
104 wrong configurations. The native form was build as the thermodynamically
most stable form and it turned out to be the only form with enzymatic activity.
So it became clear that the information for the tertiary structure of ribonuclease
is determined by the amino acid sequence. Fraenkel-Conrat & Williams (1955)
reassembled infectious tobacco mosaic virus by incubating together the seperated

purified virion components.

— 10 —
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The self-assembly principle, steming from these works, states that all the informa-
tion required to specify structure and function of a protein, by folding of newly syn-
thesized polypeptides and association into oligomers, is determined by the amino
acid sequences of the polypeptides comprising that protein. Protein assembly
means the formation of secondary, tertiary, and quartary structure. Being in no
contradiction to the self-assembly principle in some cases pre-existing proteins
are present to assist protein assembly. Proteins like disulphide isomerase perform
covalent post-translational modifications to some proteins. Known molecular cha-
perons on the other hand build a class of unrelated families of protein that assist
the correct non-covalent assembly of other polypeptide containing structures in
vivo. They do not convey steric information essential for correct assembly. Their
binding to interactive protein surfaces prevents incorrect interactions that would
otherwise produce non-functional structures. Chaperons are not components of

the assembled structures.

Several features are characteristic for the native state of a protein.:

e The native state of small proteins is in most cases thermodynamic
stable [28].

e Proteins have characteristic secondary and tertiary structure [19].

e The protein core is very tightly packed. It is usally devoid of the simple
spatial regularity of a crystal [24, 25].

1.3.3. The molten globule state

1.3.3.1. a-Lactalbumin

The refolding kinetic of a-lactalbumin was studied by following the time-dependent
changes in the circular dichroism spectra (CD) in the aromatic and the peptide
regions [18]. This was done by 20-fold dilution of the unfolded protein in 6M guani-
dinium hydrochloride (Gdn.HCI). In the cited work an early folding intermediate
was found being still unfolded when measured by the aromatic bands (CD values
at 220 nm) but had folded secondary structure as measured by the peptide bands
(CD values at 270 nm). This intermediate with presence of secondary structure
but absence of rigid tertiary structure was called molten globule.

— 11 —
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Human [8, 9] and bovine [9, 20] a—lactalbumines show a first-order temperature
transition. This transition is called all-or-none temperature transition because at
the transition temperature there are only native states and denatured states but
no partly native states. The temperature-denatured states are molten globules
[8, 9]. So these native-molten globule transitions are compareable to the melting
of a crystal. If proteins could denature noncooperatively they could be destroyed
by thermal motions at all temperatures. A first-order phase transition requires a
denaturation temperature that is large enough to destroy the structure as a whole.

This resulted in the scheme:
U=M=N

1.3.3.2. Cytochrome c

After sudden dilution of unfolded horse ferricytochrome c¢ in 5M Gdn.HCI the
refolding kinetic was investigated by stopped-flow methods, using far-UV circu-
lar dichroism (CD), near UV CD, and tryptophan fluorescence [11]. A partially
condensed intermediate with a fluctuating core and no stable hydrogen bonds was
found. This intermediate contained a significant amount of helical secondary struc-
ture, 44% of the total change associated with refolding, was formed in less than
4ms. The remaining 56% of a-helical structure were formed in a time interval
from 10ms to 1s. The compact tertiary structure only began to appear in a 400ms

step and was completed in a final 10s phase. Consequently one had to write:

U=L=...=1,=M=N

1.3.3.3. Lysozyme

Lysozym has four a-helices and one [3-sheet. Using the stopped-flow method and
far-UV CD, near-UV CD as well as tryptophan fluorescence the investigation of a
detailed folding kinetic was possible [23]. The complete folding of a-helices took
60ms. Compared to the folding of the 3-sheet domain, which was completed after
600ms, the a-helical domain folded faster. A faster folding of a-helical domains
compared to [3-sheet domains can be observed in most molecules. It is after the
formation of the a-helix domain and (3-sheet domain that tertiary structure can
be formed. This work stressed another important fact. No prescribed sequence
of intermediates were existent but many alternative folding pathways could be

shown.

- 12 —
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These multiple pathways can be visualized as paths starting at an unfolded state
and “funneling” down to the native state (figure 9).

free energy

configuration space

Figure 9: Protein folding as paths leading down the energy landscape of possible conformations
of the protein

1.3.3.4. General properties

In most cases the activity of a protein is destroyed by different mild denaturation
conditions (0,5M Gdn.HCI or 4M urea, low or high pH, by high temperature, and
by the influence of LiClOy4). These conditions result in the molten globule state
of the protein. The molten globule was postulated as an equilibrium state at mild
denaturating conditions [9] and as kinetic intermediate of protein folding [10, 22].
In contrast to the molten globule state there is a puzzle like specific tight packing
in the native state. There are several experimental findings that support this
model.

(1) The molten globule state is stabilized mainly by hydrophobic interactions.
Site-directed mutagenesis of apomyoglobins by Hughson and Baldwin [1,
15, 16] brought more light into this question. By replacements of cys—leu,
ala—leu, phe—trp, ser—leu, and ser—phe they showed that an increase
in side chain hydrophobicity stabilized the molten globule state against
unfolding. The same mutations destabilized almost always the native state.

(2) NMR and near-UV CD measurements show that the environment of many
side chains is much more rigid in the native state than in the molten glo-
bule. The mobility of aliphatic side chains is increased at the native-molten
globule transition [13]. The motion of aromatic side chains in the molten
globule state is hindered [26].

- 13 —
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The molten globule has the following properties:
e compactness
e the presence of secondary structure

e the absence of rigid tertiary structure

Moreover the molten globule shows in many cases, e.g. apomyoglobin [21], native-
like tertiary fold (figure 10).

NATIVE STATE MOLTEN GLOBULE
STATE

Figure 10: The molten globule is compact but has no tight puzzle like packing.

Robert T. Sauer [27] used the method of combinatorial mutagenesis to the N-
terminal domain of the A-repressor. The result showed that the information most
important for folding is carried by residues in the hydrophobic core. The tight
complementary packing of hydrophobic residues in the protein core seems to play
a major role in specifying structure and stability.

— 14 —
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1.4. Models for protein folding

1.4.1. Molecular dynamics simulation

Molecular dynamics is the science of simulating the motions of a system of par-
ticles [17]. Energy landscapes can be explored by molecular dynamics techniques
where Newton’s laws of motion, with interaction energies obtained from smaller
molecules, are solved. The problem is that these brute-force calculations are limi-
ted by computational restrictions in calculation time and accuracy of potentials.
In molecular dynamics the relevant conformations are sampled locally or in the
case of Monte Carlo methods sparsely. Moreover high resolution models require
arbitrary parameters and permit in most cases only limited sampling of confor-
mational space. Atomic-level simulations can currently explore only the small
conformational changes occuring in the range of picoseconds to nanoseconds. For
molecular properties of simulation models entropies, energies, and free energies
have to be computed from statistical mechanical partition functions. Partition
functions are gained from counting of possible conformations.

1.4.2. Lattice models

The use of lattice models in protein folding has important consequences. With
lattice models the full conformational space can be investigated. In a possible
conformation the “excluded volume” condition has to be respected and this means
for lattice models that no lattice site may be occupied twice. It is clear that
certain disadvantages are linked with lattice models. For example resolution is lost
and details of protein structure as well as details of energetics are not accurately
represented.

1.4.2.1. Collaps models
(A) Homopolymers

Homopolymers are polymers being composed of a single species of monomer. Paul
Flory asked for the reason of polymer compactness (1949). A polymer chain con-
sisting of hydrophobic monomers would ball up in water. The fewer compact than
expanded conformations lead to a lower conformational entropy in the compact
state of the molecule resulting in a force opposing collapse. According to the ho-
mopolymer collapse theory of Oleg Ptitsyn and Yuili Eisner (in 1965) a change in
the strength of the monomer-monomer attraction leads to a sharp collapse from
open to compact conformations. Homopolymers collapse to large ensembles of
compact conformations. Some form elements of secondary structure like a-helices
and (-sheets.

— 15 —



AAN LAV U LA LN

(B) Two polymer class lattice models

Two polymer class lattice models can collapse to a very small number of com-
pact states. Shakhnovich and Gutin developed a heteropolymer model with B;;
as Gaussian distributed monomer-pair interaction strength and B as width of the
heterogenity distribution B;;. They found that B plays a critical role in deter-
mining the number of degenerated ground states of the energy landscape. If B is
large in their model, meaning that the sequences are sufficiently heterogenous, the

number of lowest-energy states in the low-temperature phase is low.

The HP-Dill model [4] is , like the “perturbed homopolymer” model, a simple exact
lattice model. In simple exact lattice models different residues of the mino acids
at their corresponding a-C atoms are omitted [14]. The amino acids are simplified
to beads. Space is devided by the lattice into monomer-sized units or lattice sites.
Those lattice sites may either be empty or filled by one bead. As lattice types in
most cases 2D or 3D lattices are chosen. The different amino acids are classified as
hydrophobic monomers (denoted by H) and polar or charged monomers (denoted
by P). The energy landscape [2, 5] of a given conformation is regarded as function
of H-H and H-P monomer contacts. Each interaction between two H monomers
that are adjacent in space but not covalently linked is favored by a contact energy
€ < 0. All other interaction energies are zero. A maximum of H-H contacts gives
the native state [6, 7, 12, 29].

Exhaustive enumeration is only possible for chain lengths up to about 30 monomers
on the two-dimensional square lattice. The two-dimensional HP lattice model is a
good simulation for the general properties of globular proteins. With small H-H
attraction the chains populate a large ensemble of conformations, corresponding to
denatured proteins, is obtained. With increasing H-H attraction a small ensemble
of compact conformations with nonpolar core is formed. HP lattice models behave
therefore like real proteins. In globular proteins H monomers tend to be hidden
from water in the densly packed protein core while the P monomers, interacting
favorably with water, tend to build the protein surface [3, 5, 19].

— 16 —
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1.5. Present Work

At the inverse protein folding problem one is interested in the prediction of amino
acid sequences that can adopt a given fold. The present work deals with the
inverse folding problem in a hypothetical cubic shaped protein on a cubic lattice.
If the third dimension of the problem is omitted a quadratic shaped protein on
a quadratic lattice is regarded. Proteins contain, like the dipeptid in figure 11, a
sequence of amino acids with certain residues linked to their C', atoms.

NH3

T !
C’:a 1 C ITI c’:a 2 Ccoo
R, H R,

peptide bond

Figure 11: Dipeptide. The residues are linked to the peptide backbone at the C\, atoms

Figure 12 shows the threedimensional pictures of frequent aliphatic amino acid

residues.
R:
: Cp Ca ey “Cv
Ca Ca Ca
glycine (gly) alanine (ala) valine (val)

Cae
R:

Cy Cg

Ca Cq
leucine (leu) isoleucine (ileu)

Figure 12: Three dimensional pictures of the most frequent aliphatic amino acids

— 17 —
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The cubic or square shaped protein of the used model consists of one folded amino
acid chain with absolutely compact amino acid residues in the proteincore. Mo-
tivated by figure 12 each C-atom of an amino acid is given the same volume of
one unit cell. This results in a block that represents the rough overall form of the
corresponding amino acid (figure 13).

ALIPHATIC AMINO ACIDS

(major amino acids contributed to a hydrophobic region) 2dim. blocks 3dim. blocks

glycine (gly) H,N— CH;— COOH E
H
\ NN N
danine (ala) CH,— C— COOH D} .
|
NH,
valine (val) CH,— (‘ZH - (",‘H — COOH ‘ ﬁ Q ‘ T
I I
CH, NH, ‘
leucine (lev) CH,— CH — CH;~ CH — COOH ‘ ‘ ﬁ Q ‘ ‘ T
I I
CH, NH, ‘
isoleucine (ile) ~ CHy— CH,— CH — CH — COOH ‘ ‘ TF Q ‘ ‘ T
I I
CH, NH, ‘

Figure 13: Simulation of amino acids by similar structured blocks

To investigate the characteristic properties of the model, the set of blocks in the
last figure is applied in a simplified form (figure 14).

dimension ry r l3a I3

on | [ I | LI | |0

O | Oy |-

Figure 14: Simplified set of blocks that is used in the present work.

— 18 —
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2. The Compact Block Model

2.1. Terminology

2.1.1. Blocks

In the compact block model (CBM) amino acids in a protein core are represented
by blocks fitting into each other like pieces of a puzzle. They block out a square
(two dimensional case) or a cube (three dimensional case) of give side length
n resulting in quadratic or cubic cells of equal size. This work deals with the
three-dimensional case. Sometimes the square model is used to visualize general
principles in an easy way. Each block may contain a maximum of three cells and
the number of different sized blocks is given by ry, ro, r3. A block with three
neighboured cells exists in a linear or angled form which is denoted by r3, or r3;
for the second case. Figure 15 shows the shape of rq, r9, r3,, and r3; blocks in a
square and cube model.

Two dimensional case: square one block of: —— term:

block of
1cel:
cell center

with blocks:

e

|
]

3x3 square

Three-dimensional case: cube

block of
N NN 1cel:
DNENEENEEN

NS ex— cell cent

@ with blocks

3x3x3 cube —
The planes of the schematic cube are laid through the cell centers.

el
|

Figure 15: Kind of blocks for square and cube models

— 19 —
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2.1.2. Partition, subpartition, and microconfiguration

In the beginning it is necessary to agree on a basic terminology. The meaning of
partition, subpartition, and microconfiguration is now defined.

(i) In a partition of a square or cube with given side length n the number of
different sized blocks ry, ro, r3 are specified. These values will be given by

{Tla r2, T3}-

e.g.: 11=5, ro=1, r3=3 (={5,1,3}) ... in a 4x4 square

(ii) In a subpartition linear rz, and angled r3, blocks are distinguished.
The number of different sized and shaped blocks will be given by

{Tla T2, T3a, TBb}-

e.g.: 11=5, ro=1, r3,=3, r3,=0 (={5, 1, 3, 0}) ... in a 4x4 square

(iii) In a microconfiguration (= MC) the position and typ of each block is
specified.

e.g.: 11=5, ro=1, r3,=3, r5,=0 (={5,1,3,0}) ... in a 4x4 square

— 20 —



4 11 JULVLIL AVl JJUVJVUIN AvaAaJ UL

2.1.3. Considerations on arithmetical restrictions

2.1.3.1. Number of partitions and subpartitions

Let n be the side length of a given square (dimension d = 2) or a cube (d = 3).
With b as total number of blocks and 71, 2, r3 as number of blocks (residues) that
occupy one, two, or three neighboured cells one can write:

ri+reo+r3==b (1)

The total number of cells n¢ equals the number of cells occupied by the different
blocks. Because all cells of the cube (square) have to be occupied it holds that

r1 + 2ry + 3r3 = n (2)

The number of two-celled blocks 75 equals at least half the number of all cells n?.

d
0<m < {%J (3)
... where | | is the floor function. (|z]: largest integer smaller or equal than x)

For the choice of r3 equation (2) determines the boundaries

nd — 2r,
0<r3< —3

(4)

For given r5 in a 3 X 3 X 3 cube r3 can be choosen from the intervalls of table 1.

rs combinations
0§7"3<9
0§7"3<8
0S7"3<7
0S7"3<7
0§’I"3<6
0§’I"3<5
0ST3<5
0ST3<4
OST3S3
0ST’3§3
0ST’3§2
0<rs<1
0<rs<1

7‘3:0

—_ =

DD ©00-o Uk WwN O
—
o

—_
[\V)
NN WS PBS OO OO ] 0 0 ©

—_
w

table 1

Table 1 shows that there are 75 different partitions in a 3x3x3 cube.
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In mathematical terms the number of different partitions p can be expressed by

d nd_2p d
] e sl

2 D SRS St P )

ro=0 r3=0 ro=0

This sum is equivalent to

2 2
1+”§+L%J+L%J +%<L"d?’—1j+[”d3_1j ) ... if nis even

2 2
bl g a3 L (L”d;lj + 2 ) ... if n is odd

(6)

If all floor brackets are ommited, resulting in pymm, and a overall floor function is
applied on pop,m for even n, p,,, is recieved as very good approximation for p.

% ... if nis even . 3n2d 4+ 260 + 32 .
Pomm =\ sn¥a26niesr 1 ifnisodd TP L 36 1@

In a subpartition it holds that r3 = r3, 4+ r3,. In cubes with n > 2 (squares, n > 3)
are for fixed 7o all values for r3, possible. For these cubes (squares) the number
of different subpartitions s can be calculated.:

B WTZL”jJ rggjrzj :3,12:3 - ;TQTZL?J({@J . 1)({@J o s

This sum is equivalent to

(1 (6+3nd + 11[%) + 1505 ) + 4[]+
+5|_nd3_1J + 6|_ndg_1J2 + L”d?,_ljg) ... if n is even
S = 9 (9)
b (15+3nd 20 22 | + pp(mia g ntes )’y
| 515+ 6|21 + L”d?jlf’) ... if n is odd

Omission of all floor brackets results in $,,,,,. The application of an overall floor
function on s, for even n yields s,,, as approximation for s.

3d 2d d . o
. { 6n -|-105n64-§570n 4536 Cifnis even
omm 6n3?4+105n2¢4+570n+536 1 . .
618 — 5 - if n is odd (10)
6n3¢ 4+ 105n%? + 570n? 4 536

= Sapp = | 648 ]
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number of partitions p in a cube of side length n

10
L —p
8 Hpapp
o 6 -
>
2
S
a4l
2 [
0 ' N Vel 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
side length n of cube
number of subpartitions s in a cube of side length n
10
o—eoS
8 i SEPP
.
P
[%2]
s
£
©
8 4
3
2 [
0 o N N V'

0 1 2 3 4 5 6 7 8 9 10

side length n of cube

Figure 16: Number of partitions p and subpartitions s for given side length n of the cube. The
approximations are given by pepp and sapp.
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In Figure 16 p and p,p, as well as s and s,,, are compared. With larger n the

relative error of the approximation functions becomes increasingly small.

2.1.3.2. Chain length

The chain length [ equals b because at each position of the chain there is one block.
=0 (11)

There is a restriction on b and therefore on [ at given side length n of the square

or cube.

Combination of equation (1) and (2) gives:
d
[%} <i<nd (12)

... where [ ] is the ceiling function. ([z]: smallest integer greater or equal than x)
Elimination of r3 in (1) and (2) yields:

ry = 31 —n? — 2r; (13)
Substitution of ro in (1) using (13) gives:

n:even then r; and r3 are both even or both odd

— — — d :
r-rg=2l—nt: {n :odd  then r; or (exclusive) r3 is even (14)

In a cube (square) of side length n the chain length has no influence on the case
in (14). The left side of (14) is a constant for all partitions in a cube or square of

side length n with equal chain length [.

— 24 —



4 11 JULVLIL AVl JJUVJVUIN AvaAaJ UL

2.2. Coding of microconfigurations

2.2.1. Cell position

A microconfiguration (MC) consists of blocks of defined type and position. A
block consists of different cells. To distinguish the positions of cells from each
other the cube is fixed in a system of coordinates and the cells are numbered.

At this point a definition of the used system of coordinates is necessary.:

The origin of the used left handed system of coordinates lies in the center
of the left upper cell (figure 17). The positive coordinates are parallel with
the cube sides in such a way that the direction of the positive z coordinate
points to the basis of the cube. Two neighboured cell centers have a distance

of one.

+X

+Z

Figure 17: The applied coordinates

— 25 —



4 11 JULVLIL AVl JJUVJVUIN AvaAaJ UL

The numbering is done by the following steps:

(i) The numbering starts with 0 at the origin of the described system of
coordinates.

(ii) Proceeding with numbering the direction of x has the highest priority. This
means that if a neighboured cell in x-direction exists, this cell gets the next
(natural) number. If there is no neighboured cell in the direction of x,
numbering continues with a neighboured cell of a cell of lowest number in
y-direction . Numbering in the direction of z has the lowest priority. If
numbering in x-direction or y-direction is impossible the neighboured cell
of a cell of lowest number in z-direction gets the next number.

Figure 18 gives the numbering of a 3x3x3 cube.

1 +X

+Z

Figure 18: Cell positions

The resulting number that a cell gets by numbering is called its cell position p. It
can be calculated from the coordinates of the cell center and the side length n of
the numbered cube by:

p= n’z + ny +x

— 26 —



4 11 JULVLIL AVl JJUVJVUIN AvaAaJ UL

2.2.2. Block orientations

If a block of given type is randomly thrown into a cube and shifted without rotation
as near to the origin as possible, the resulting block has after translation the same
type and orientation than before. By this procedure one gains a reduced set of
19 blocks. In figure 19 each translated block of given size and orientation has a
corresponding number. The number that results from a hypothetical translation of
a given block is defined as the block orientation of this block.

X ™ - . ~ K x ~, X ~, - K W X X Hq
N = ) ~ . \, s ~ K - - ~ -~
N N - - .

™, ™ ™, ™ = ~ - ~ -,
< . < N S N —
N ™ Y N o Y Y ™ Y ™ ™ ™ N

) SO DN 12 R i 13 - > 14 [~ § § ; 15 [ i é
N o~ . AN ; E N N ~ . AR
S . . ™ . N . S N, . , .

X~ X N, X B ~ X X X
X X R ~ N, .
™ . . = i N . =,

16 [ N R 17 X e 18 XN ~ N 19 |~ N N N
SN S Y SOUSITN AN
ST < \\\\ TN,

Figure 19: Table of all possible block orientation numbers for the used blocks
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2.2.3.Code 1

If a MC is given one can visit all cells on a path P of increasing cell positions p;
with index i as number of steps along this path. Path P is defined to be:

P — 0, for i = 0;
"P= pi—1+1, fori> 0.

Each time a new block occurs the first time on path P, the block orientation of
this block becomes the next number of code 1. Code 1 has as many numbers
as the given MC has blocks because block orientations of blocks that occured
already before on P are ignored. This code was used for the exhaustive calculation

procedure. Figure 20 shows a MC with corresponding code 1.

X X X
al|b|b e | f | f o]
a c|c e e |f bl
a d|d g h|h g/ 9]h
y y y
z= z=1 z=2

Cellswith equal letters belong to the same block.
—= codel=(6,2 22 14,11,9,12,5,5)

Figure 20: Code 1

2.2.4. Code 2

In code 1 each number represents one block. To decode code 1 one has to know the
block orientation table. In a given MC one can also choose the following procedure.
Path P, as defined in chapter 2.2.3., is used. Like at the determination of code 1

the first occurence of a block on P is important.
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Now two steps, a labeling and reading step, are done.

(i) labeling step: Only unlabeled blocks are labeled. All cells of the block with
lowest position on P are labeled with 1. The cells of the second unlabeled

block along P are all labeled with 2. This procedure is continued until all
cells of the MC are labeled.

(ii) reading step: Again P is traced. The number of the cells along P are the
numbers of code 2.

Code 2 was applied in the microconfiguration space. It turned out to be very useful
in comparing MCs. Common blocks in two MCs = and y have the same number
on the same positions of their codes. Figure 21 shows the example of figure 20
with the corresponding code 2.

X X X
a|b|b e | f | f i i i
alc|c e|e|f Pl
a|d|d g|h|h glg|h

y y y

z=0 z=1 z=2

\L 1) labeling
X X X
11212 1011 |11 19119 | 19
1,55 1010 | 11 22|22 |22
1,88 16 | 17 | 17 16 | 16 | 17
y y y
7=0 z=1 z=2

\L 2) reading

code2=(1,22,15,5,1,8,8,10, 11, 11, 10, 10, 11, 16, 17, 17, 19, 19, 19, 22, 22, 22, 16, 16, 17)

Figure 21: Code 2
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3. Exhaustive calculation of microconfigurations

3.1. Basic concepts

Before the exhaustive calculation algorithm, or EC-algorithm for short, is descri-
bed a short summary of necessary concepts is given.:

A block with one, two, three linear arranged, or three nonlinear arranged
cells, is called a block of type 1, type 2, type 3a, or type 3b. In a MC
r1,T9,T3q, OT T'3p are the numbers of blocks being of type 1, type 2, type 3a,
or type 3b. All MCs having the same values for r1, 79, 73,, and 73, belong
to the same subpartition {rq, 79,734, 735}. A subpartition can therefore be
imagined as blocks of specified type in a pool. The MC gives the specific
way of how these blocks are put together to block out the final cubic space.
As described in chapter 2.2.2. each block orientation have a corresponding,
in the block orientation table predefined, number between 1 and 19. The
block orientation of a block specifies the type of this block. The block start
position of a block is the lowest cell position of the cells belonging to this
block. Block orientation and block start position define type and exact
position of a block in a cube.

The EC-algorithm treats the set of given blocks from a subpartition as block pool.
An exhaustive calculation of all MCs that can be generated by these blocks is
done. These MCs are calculated in one series of code 1 strings. The algorithm
can roughly be described as construction of MCs with blocks from a given block
pool. A block has to lie completly within the cube to be accepted and cells being
occupied by previous blocks may not be part of a new block. If a block is accepted
by the algorithm it is removed from the pool and inserted in the cube. Blocks that
were previously accepted but do not lead to a valid or new MC are removed from
the cube and added to the pool. The next section describes the algorithm more
detailed. Cells of the cube that are not occupied by a block are called free cells.
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3.1.1. Algorithm

The EC-algorithm consists of the following steps.:

(1)

(2)

(4)

A free cell with lowest cell position has to be the block start position of the
next block.

If the block orientation x is given, this block orientation is tested at the
known block start position for acceptance. Otherwise x = 1. From the
block orientation x the type of the block is specified. If no block of this
type can be found in the pool or if it is not accepted in the cube the next
higher block orientation x + 1 is tested in step 2. If there is no next higher
block orientation continue with step 3. If the block with block orientation
x is accepted in the cube and a block of this type is contained in the pool, it
is removed from the pool and inserted in the cube. Its block orientation is
accepted as next number in code 1. If there are free cells left the algorithm
continues with step 1. If the whole cube has been blocked out now code 1

is stored as solution and the algorithm continues with step 3.

The block orientation x of the last inserted block is stored as x,;4. This
block is removed from the cube and given back to the pool. The last number
from code 1 is removed. If x,4 < 19 the algorithm stores x4 + 1 as new
block orientation x for step 2 and continues with step 1. If x = 19 there

are two cases:

(a) If the first number in code 1 has been removed in this step the algorithm
ends with step 4.

(b) It was not the first number in code 1 that has been removed and step 3

is repeated.

All possible MC have been calculated.

In step 3 the EC-algorithm removes the last inserted block from the cube and adds

a block of next higher block orientation (at the block start position of the removed

block) to the cube. If no new block with higher block orientation exists the next

“last inserted block” becomes removed.
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Figure 22 shows that the EC-algorithm can be visualized by a block tree.

block 1 block 2 block 3 block 4 block 5

iRy
|
|
‘
|
|
|
|
‘
|
|
|
|
|
|
|
N
‘
‘
|
|
‘
‘
|
‘
‘
‘
|
|
‘
|
|
v

//

steps: block 1, 2, 3 fit in the cube

there is no way to place ablock of the pool at the lowest cell position

1

2

3. block 3 gets removed from the cube

4:  next higher block orientation than that of block 3 istried
5

now block 4 and 5 fit in the cube

Figure 22: EC-algorithm visualized by a block tree

3.1.2. Resulting code 1

Code 1 of a MC m is a string of elements c,, ; with ¢ as string number. The value
of ¢, ; gives the block orientation of the it" block by, along path P of rising block
start positions.

If it is true for two MCs z and y that ¢, ; > c,; at the first ¢ with ¢, ; # c,; the
notation code 1(y)>code 1(z) is used.

The EC-algorithm generates y after x = code 1(y)>code 1(x)

To proof this let MC z with code 1(x) be generated earlier than MC y with
code 1(y) by the EC-algorithm. Blocks in z and y with the same block start
position and block orientation are equal. The first string number ¢ with ¢, ; # ¢, ;
belongs to blocks b, ; and b, ;. These blocks have different block orientations c, ;
and c,; but the same block start position. All lower positions of z and y than
this block start position have identical blocks. This means for the EC-algorithm
that it has to remove b, ; with block orientation c, ; and to insert b, ; with a block
orientation ¢, ; > ¢, ; at the same block start position.
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3.2. Symmetry of microconfigurations

The described EC-algorithm can be used together with two modules for rotation
and reflection of microconfigurations.

3.2.1. Rotation symmetry

The EC-algorithm finds the number of different MCs (= counts) for a given sub-
partition. MCs that generate each other by rotation are rotational equivalent and
therefore rotamers. All rotamers of a MC are contained in a rotation class. A
representive rotamer of a rotation class was defined in the following way:.:

A MC a; belonging to a rotation class A = {a1,as,...,a,} is called the
representive rotamer of A iff

code 1(a;) = min(code 1(ay), code 1(az),...,code 1(ay))

Let MC b be a rotamer of MC a. MC b can be looked at in such a way that it looks
exactly like MC a. This means that a transformation of cube coordinates {z,y, z}
to the cube coordinates {x,,y,, 2} can be done to describe rotation. Figure 23
shows an example for the effect of a rotation (rotation with rotation number 3
from table 1 (next chapter)) on a typ 3 block.

X X

rotation with rotation number 3:  x,=y
=z
z=X

Figure 23: For rotation the cube coordinates has to be transformed.
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3.2.1.1. Algorithm for rotation

The transformed system of coordinates may be centered at each of the eight corners
of a cube. For each edge there are three rotational possibilities for a new system
of coordinates. This short consideration shows that a microconfiguration can, in
the absence of rotational symmetry, generate 24 different microconfigurations by
rotation. To generate these rotations 24 rotational transformations of the system
of coordinates were used (table 2).

rotation number X, yr Z
1 X y 7
2 V/ X y
3 y v/ X
4 y n-x zZ
5 X n-z y
6 V/ n-y X
7 n-x n-y v
8 n-z n-x y
9 n-y n-z X

10 n-y X v/
11 n-x zZ y
12 n-z vy X
13 y X n-z
14 X zZ n-y
15 v/ y n-xX
16 X n-y n-z
17 v/ n-x n-y
18 y n-z n-x
19 n-y n-x n-z
20 n-x n-z n-y
21 n-z n-y n-x
22 n-x y n-z
23 n-z X n-y
24 n-y 7 n-x
table 2
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The transformation of each cell (z,y, z) to (z,, y,, z») is accompanied with an one
to one map of the cell positions p to p,:

p:n26+ny+x—>pr:n26r—|—nyr+xr

All cells of the same block in a given MC a are labeled with the same block
number. Cube b with transformed coordinates {x., y,, 2z } contains no blocks in the
beginning of the procedure. From the block arrangement in a, given by the labeled
blocks, the block arrangement in b has to be determined. Path P, introduced in
chapter 2.2.3. as path through cells of stepwise increasing cell position, is followed
in b. With the rotation number for each p, on P the cell position p in a is
determined and the block number of p is copied to p,. This results in MC b as
rotamer of a. Using table 3 the new block orientations in b result from the old
block orientations in @ and the rotation number.

rotation number block orientation

123456 7 8 910 11 12 13 14 15 16 17 18 19
1 112(3|4(|5|6| 7| 8| 9/10|11(12|13|14|15(16|17|18|19
2 311/2(6|4|5|10|14(15|13| 9| 8| 7|12|11|18|16|17|19
3 213/1(5|6(4|13|12|11| 7|15|14|10| 8| 9|17|18|16|19
4 113246510 7| 8| 9|13|15(14|16|18|11(12|17|19
5 3/12/1|6|5(4|13|10|14|15] 7|11|12({18|17| 9| 8|16|19
6 2(1|13/5|4(6| 7|13(12|11(10| 9| 8|17|16|15|14|18|19
7 112(3|4|5|6| 9(10| 7| 8|14|18|16|11|17(13|15]12|19
8 3(112/6|4(5|15|13(10|14(12|17|18| 9|16| 7|11| 8|19
9 213/1(5|6(|4|11| 7|13|12| 8|16|17|15|18|10| 9|14(19
10 1(3(2(4|6|5| 8| 9(10| 7|16|17|11|13|12|14|18|15|19
11 312/1(6|5(4|14|15(13|10(18|16| 9| 7| 8|12[17|11|19
12 21113(5|4|6[12|11| 7|13|17|18|15|10|14| 8|16| 9[19
13 113/2(4/6|5(15(18|17|12|14|10|13|11| 7|16| 9| 8|19
14 3/12/1|6|5(4|11|17|16| 8[12|13| 7| 9]10|18|15|14|19
15 211(3(5|4|6| 9|16|18|14| 8| 7|10|15|13|17|11|12|19
16 1(2(3(4|5|6|12|15|18|17|13| 7|11|16| 8|14|10| 9|19
17 311/2(6|4|5| 8|11|17|16| 7|10| 9|18|14|12|13|15|19
18 213/1(5|6|4|14| 9]16|18|10|13|15|17|12| 8| 7|11|19
19 1(3(2|4|6|5|17|12|15|18|11| 8|16|14| 9|13| 7|/10|19
20 3(2|1/6|5(4|16| 8(11|17| 9|14|1812|15| 7(10|13|19
21 2(1|13/5|4(6|18|14| 9|16|15|12|17| 8|11|10(13| 7|19
22 112(3|4|5|6|18(17|1215|16| 9|14 |13|10(11| 8| 7|19
23 3/1|12/6|4|5|17|16| &8|11|18|15|12| 7|13| 9(14|10|19
24 213/1(5|6|4|16|18|14| 9|17|11| 8|10| 7|15[12|13|19

table 3
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Because path P is followed in b the code 1 of b is generated automatically. If a
block number occurs the first time on P in b the block orientation of the block is
the next number in code 1 of b. The rotation modul calculates for every rotamer

of a MC the corresponding code 1.

Together with the EC-algorithm all representive MCs of a subpartition can be
calculated. First each MC is calculated by the EC-algorithm. If code 1 of the
calculated MC is larger than code 1 of any of its rotamers (chapter 3.1.2.) it is
ignored because it is no representive rotamer (chapter 3.2.1.).

3.2.2. Reflection symmetry

A set of rotamers belonging to rotation class A shall be reflected on several re-
flection planes. To how many rotation classes do the reflected rotamers belong?
Figure 24 shows the general case for two reflection planes.

reflection plane 1

m rotation class By

---------- T 1@ rotation class B2

rotation class A

reflection plane 2

rotation class C1 rotation class C2

Figure 24: Reflection of rotamers belonging to the same rotation class on two reflection planes.
The points indicate that more than two rotation classes could exist for reflection on

both reflection planes.
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A closer look proves that the rotation classes C'1, Cs, ... have to be pairwise iden-
tical with the rotation classes By, Bs,.... Consequently the problem is reduced to
one reflection plane.

3.2.2.1. Reflection plane

To gain helpful equations a watch as a simple planar model is useful (figure 25).
From this figure it can be seen that the following equation for the rotation operator
Orotation and the reflection operator O,¢ficction 1S true:

Orotation X Oreflection = 0_1 X O_l = Oreflection X 0_1 (]-)

reflection rotation rotation

Rotation from 12 o’clock by +30° followed by reflection on the x axis yields
5 o’clock. The same time can be reached by reflecting the watch on the x axis and
doing an inverse rotation by —30°. The planar case can be described by the z axis

as rotation axis and a reflection plane containing the z vector.

rotation { =307 )
_—

reflection( ) reflection ()

rotation | e=30" )
e —

Figure 25: Planar example
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The three dimensional situation is not very different from the two dimensional
one. The following consideration was done with the {y, z} reflection plane but
there is no need for this choice. In the case of a microconfiguration there are three
rotation axis (x, y, and z) that have to be considered. In the case of the y (or z)
axis as rotation axis, the y (or z) vector is parallel to the {y, z} plane. Only for
such cases equation 1 remains valid. With the x axis as rotation axis (like any
other axis that is not parallel to the reflection plane) one have to be careful. Now
rotation and reflection are independent operations and therefore another equation

has to be applied.:

Orotation X Oreflection = Oreflection X Orotation (2)

Table 4 gives an overview.

rotation axis reflexion plane: {y, z} plane
X O'rotation X OTeflection = Oreflection X O'rotation
-1
y Orotation X Oreflection = Oreflection X Orotation
—1
Z Orotation X Oreflection = Oreflection X Orotation
table 4

This can be generalized for a combined rotation operation:

(Orot,z X Orot,y X Orot,x) X Oref = Oref X (0_1 X 0_1 X OTot,a:) (3)

rot,z rot,y

If Or_oiy and Or_olt,z are defined to be not inverse operators the corresponding

operators on the left side of the equation become inverse. This yields:

(0_1 X 0_1 X Orot,x) X OT‘ef = OTef X (OTot,z X OTot,y X Orot,:c) (4)

rot,z rot,y

or:

Oref = (0_1 X O_l X Orot,m)_l X Oref X (Orot,z X Orot,y X Orot,w) (5)

rot,z rot,y

Equation 5 states that the reflexion of a MCy on the {y, z} plane results in the
same MC than the right rotation of any reflected rotamere of MCy. All micro-
configurations that are reflected on the {y, z} plane can be transformed into each
other by rotation.
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3.2.2.2. Algorithm for reflection

A MC has reflexion symmetry if the reflected form of this MC equals one of
its rotameres. Such a MC can generate each of the reflected MCs by rotation,

independent of the used reflection plane. This means:

In the case of the existence of reflection symmetry the reflected and not

reflected microconfigurations belong to the same rotation class with one

representive rotamere.

The used algorithm tests if the reflected MC equals one of its rotamers. As reflec-
tion plane the {y, z} plane is choosen. The coordinates and block orientations has
to be transformed (table 5, table 6).
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Xref n-x
Yref y
Zref V4
table 5
block orientationg 112(3|4/5|6|7 9(10111]12/13|14|15|16|17|18|19
block orientation,. fiected 112(3(4/5|6]9 71101161814 |13 (15|11 |17|12|19
table 6
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4. Sequence Space And Microconfiguration Space

4.1. Sequence space

Figure 26 gives an overview over the correlation between sequence space and
structure space. In general there is no 1 to 1 mapping between compact folding
sequences and microconfigurations with chains.

/
N

! !
| |

s rnmber of sequences in a z: munber of microconfigurations in
subpartton p that can fold to a subpartion p that have a walid
atleast one corresponding chein and therefore at least
oicroconflgration one corresponding sequence

SP: mnhber of sequences for a given Zp: number of microconfigurations

subpartidon p. for a given subpartition p

3 momber of all possible sequences Z.,- wumber of all possible wdcroconfigurations
in & nxmm cube in & non cobe

Figure 26: Correlation between sequences and microconfigurations
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4.1.1. Number of sequences in a given cube

4.1.1.1.No r3, or rs3;, residues

The sequences shall be build by residues of typ r; and 5. Again the basic equations
rH+ro=r (1)

1 4 2ry = n¢ (2)

are valid. n? shall be written as number of cells ¢. From equation (2) it is clear,
that
r1 € [0, c] (3)

ra€ 0, 1] (4)

In contrast to ry in (4), 71 cannot take on every value of the intervall in (3).

The total number of different sequences S from all different subpartitions

is given by:

d
2
2
Se= S, (4)

ro=0

For a given 9 (and r1) S,, can be calculated:

r! r! r
ST‘ = = = 5
oo xrl (=1l x 1! <r2> (5)

Equations (1) and (2) give:

r=c¢—rog (6)

The last equation combined with (4) and (5) results in the total number of

sequences for a given cube.:

Lo ]
2 (c—ry
S. = E 7
7'220( "2 ) ( )
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4.1.1.2. Use of all residues

Now the basic equations are:
T Ty A T30+ T3 =T (1)

71+ 2r9 + 3r3, +3r3p, = ¢ (2)

As in section 1.1. the intervalls for r3p, r3,, and 75 can be given.:

ra € 0,3 (3)

raa €0, 15— 7] (4)

c—3(rsq + 73p)
2

ro € [O,L

1l ()

After rap, 734, T2 has been choosen from the intervalls in (3), (4), (5), the remaining
blocks are of typ ry.

The total number of different sequences S from all different subpartitions

is given by:
I_c_3(r32a+r36)J I_%J_"'Sb I_%J
Se = Z Z Z Sraraaras (6)
ro=0 r34=0 13,=0
Sryrsars, Can be expressed as:
r! r!
S”'2"'3a"'3b = 1 1 1 1 = 1 1 1 _ o _ (7)
ril X ol X rgp! X rgp! ol X rgn! X gl X (1 —1rg — r3, — T3p)
Equations (1) and (2) give:
r=c—r9—2(rs, + rap) (8)
r—Tg— T3, —T3p =11 = C— 21y — 3(T34 + T3p) (9)

These equations combined with (6) and (7) yield:

c—3(rgq+r ¢ ¢
| 28atsb) | e | gy |g)

(c =712 —2(r3q +13p))!
S. = 10
Z Z Z TQ! X Tga! X 7‘35! X (C — 2r9 — 3(T3a + 7"3b))! ( )

7‘2:0 "'30.:0 7‘31,:0
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4.1.2. Sequences and microconfigurations

With p={1, 1, 0, 1} the possible sequences s are: s(1):1,2,4 (The numbers are the indicesi of p and give
\ \ 2:1,4,2 the block types along the chain.)
i: 1234 (3):2,1,4
4:2,4,1=(2)
(5):4,1,2=(3)
6):4,2,1=()

there are 12 microconfigurations in a 2x3 rectangle:

i:J

a ] e *’—‘
b: j f: —‘—‘ j: L
sl

d: L h: ’—L I: T

By rotation and reflexion of these microconfigurations one gets three not further reduceable microconfigurations.
Such a set of microconfigurationsis:

a ] b: ] e j—‘

With C={set of al possible chains through a, b, and €}
Every foldable sequence is represented by a chain of the set C.
There is no one to one correlation between sequences and microconfigurations.:

2 a
3) b
@ e

One can see that there exist sequences like (1) that cannot fold as well as (in this special case)
sequences like (2) that fold to every possible microconfiguration!

Figure 27: Example to visualize the kind of correlation between sequences and microconfigu-

rations
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4.2. Distance and microconfiguration space

To get a clearer idea of structural similarities between MCs of a given subpartition
one have to compare them. For this purpose the microconfiguration space (=
MCS) was developed. The MCs are represented by points in this finite space.
Introducing the distance between two points as their number of different blocks
the MCS is developed as finite metric space.

4.2.1. Distance d(r, s) of two microconfigurations r and s

Let the blocks of a MC x be elements of a blockset X. In a Venn diagram the
blocks of a block set are represented by points in a circle. A Venn diagram of three
block sets R, S, and T of MCs r, s, and t is shown in figure 28.

With: a a b a a e h i i
Rila | d|b Scla | f | f Tl n | |i
c |d|b g |8 |8 g |8 |8

IR, S, T)

T

Figure 28: The block sets R, S, and 1T of MCs 7,8, and ¢ in a 3 X 3 square belonging to the
subpartition {1, 1,1, 1} are shown. Different blocks are denoted by different letters.
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MCs of a given subpartition have the same total number of blocks b. If | X | denotes
the size of a block set X this means that

Rl =I[S] =[T| =b (1)

The term block is used very strictly. Two blocks are equal if they have the same
block start position, the position of their first cell, and the same block orienta-
tion. Equal blocks of MCs r and s are elements of the intersection (R, S) of the
corresponding block sets R and S with

I(R,S)=RnNS (2)
A space containing p1, p2, p3 as points has a metric d if:

1) d(p1,p2) > 0 and d(p1,p2) =0< p; = ps... (definitness)
2) d(p1,p2) = d(p2,p1) - .. (symmetry)
3) d(p1,p2) < d(p1,p3) + d(p3, p2) ... (triangular inequality)
Lemma: The block distance d(.,.) is a metric on the microconfiguration space.

Proof:

(i) Definitness

The number of different blocks d(R, S) between two MCs r and s cannot
be smaller than zero. If it is equal to zero the MCs r and s are equal
(definitness).

(ii) Symmetry

The number of blocks of r that are not part of s (= d(R, S)) shall be equal
to the number of blocks in s that are not part of r (= d(S, R)). It holds
that

d(R,S)=b—|I(R,S)] (3)

with I(R,S)=RnNS =SNR=1I(S,R) (equation (2)) one gets:

d(RaS):b_‘I(RaS”:b_|I(SaR)‘:d(SaR) (4)
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(iii) Triangular inequality

For MCs r, s and t the intersection of the block sets R, S, and T'is I(R, S, T).
It holds that

I(R,S,T)=I(S,R)NI(R,T) = I(R,S)NI(S,T) = I(R,T) N I(T, S) (5)

Because an intersection of two sets is a subset of the sets that are intersected
it is clear that

I(R,T)NI(T,S) = I(R,S,T) = I(R,S) N I(S,T) ¢ I(R,S)  (6)
If | X| denotes the size of set X equation (6) can be written:
(R, T) N (T, S)| <[I(R,S)] (7)
Addition of [I(R,T)|+ |I(T,S)| on both sides of (7) gives:
(R, T)|[+[I(T, S)| = [I(R, S)| < [I(R, T)|+|I(T, S)| = |I(R, T)NI(T, S)| (8)

A look on the Venn diagram (figure 28) makes clear that the right side of
equation (8) can be expressed easier:

(R, T)|+[L(T, )] = [[(R,S)| < [I(R,T)U I(T, 5)| (9)
Because of
(T, X1)UI(T,X2)... UI(T, X,,)| <|T| (10)

for any sets X1, X5...X,, and T an upper boundary for the right side of
equation 9 can be given. This results in

(LR, T)| + [I(T, S)| = [I(R, S)| < [T (11)
Combination of equation (1) and (11) gives
[I(R,T)| + [I(T, S)| = [I(R, S)| < b (12)
The use of equation (3) yields
(b—d(R,T))+ (b—d(T,S)) — (b—d(R,S)) <b (13)

or

d(R,S) < d(R,T) + d(T, S)
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4.2.2. Rotation reduced distance d(p, R,)

In the last section (4.2.1.) it was shown that d(p,q) between two MCs p and ¢
is a metric on the MCS. A second kind of distance is the distance between a MC
and a set of MCs. Let R, be the rotation class of ¢ containing all MCs that are
rotational equivalent to ¢q. The distance d(p, R,) between p and Ry, a distance
between a point p and a not empty subset R, of the MCS, is defined to be

d(p, Ry) = inf{d(p,q) : ¢ € Ry}

This means that d(p, R,) is gained for p and ¢ by rotation of ¢ until its distance to
p is at a minimum value d;,in (P, ¢rot). Of course ¢ can already be at a minimum

distance d(p, q) to p and
d(p, Rg) = drmin(p, @rot) = d(p, q)
A MC g € R, was called neighboured to MC p if
d(p, Ry) = d(p q)

Not neighboured MCs have a d(p, ¢) > d(p, R;). More than one neighboured MCs
with the same minimum value d(p, R,) can exist as shown in figure 29.

1'1 .y
ER——
| 1'2 . l'?
or R d(p, R) = d(p, 1'2) = d(ps 1'3) < d(p= 1'1)
p - SRR T
I3
. 1-6 . rB

Figure 29: More than one MCs of the same rotation class can be neighboured to p
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5. Block permutations and graphs

5.1. Representation of block sets

5.1.1. Coarse grained representation of block sets

With a given set of blocks the position of block cells and the orientation of blocks
have to be known. There exist coarse grained representations of block sets with
certain features in common.

A uniform translation of all blocks in a block set S as near to the origin as possible
results in a block set S;. In S; the information of block orientation and neighbour-
ship of cells in S is still given but knowledge on the position of cells in S is lost.
G of a microconfiguration provides information on the neighbourship of cells and
with Gy the neighbourship of blocks is known. G(S) and G#(S) are induced sub-
graphs of G and Gy describing the blocks of a given block set S. G(S) and G#(S5)
contain no information what cells or blocks are neighboured to each other.

Figure 30 shows an example for G and G.

2 A ®-e
f_l_‘ I — ,I:—(\ )
% al Y V/ —
V- & -«
blocksin MC G G]c

Figure 30: Generation of G and Gy from a MC in a 2x2x2 cube with one block consisting of

two cells.

G;(S) is called connected if a path between every pair of vertices in G ¢(.S) exists.
An example for a connected and not connected graph in a microconfiguration is

given in figure 31.
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Gf(X) with X asblock set of all blocksinMC x ; a./ B
N e b
X i -~
alalb a—a---b
) o
cla|lb| ——= ¢—— a-b ——= e ® ;
d|d|e d—d e .
) s N
S8
d
X={a, b, c,d, € G(X) Gf (X) isaways connected
Gf (S) with S as subset of X :
S={c, d, €}: SA{b, c, €}:
Gi(S) o G (S): oF
e e T
. c ¢
[ € o
d c
... isconnected ... isnot connected

Figure 31: G;(S) has not to be connected
If two blocks of set S are neighbours in & the corresponding two vertices in G'¢(.5)

are linked by at least one edge.

Two graphs G = (V, Ey, E2) and G' = (V', EY, E}) are equal if they are isomorphic.
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5.1.2. Projection of block set representations

S, St, G(S), G ¢(S) are the block set representations of a block set S. They contain
information on size, orientation, and neighbourship of blocks. G(S;) equals G(S)
because block type and relative orientation of blocks in S; and S is the same.

S size and orientation of blocks and position of their cells

S;: size and orientation of blocks and neighbourship of their cells
G(S¢): size of blocks and neighbourship of their cells

G#(St): size and neighbourship of blocks

The projections t, g, and f are defined as:

t:S+— 5
g: St — G(Sy) = G(9)
[ G(Se) — Gf(Sy) = G(S)

Let the different blocks of two MC x and 2’ belong to block set S and S’. The

block set representations of S and S’ are given by
St S, s G(Sy) - G(SY)

S 81 G(S)) Hs G (S

The block sets (5,5’) and their coarse grained representations (S¢,S}),
(G(S:), G(S}), and (G¢(St),Gf(S})) are converted into each other by permuta-
tions. In the next section a method to change blocks of a block set S is developed.

5.2. Cell migrations as method to modify blocks in a block set

In a block permutation 7 the blocks of S and S’ occupy the same cells of the cube.
The blocks of S’ have to be the rearranged blocks of S.

78 +— 5

In this chapter cell migrations are developed as method to change a set of blocks

S into a any set of different blocks S’ containing the same cells than S.
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(a) Migration of a sigle cell

In the concept of cell migration, or migration for short, an initial unchanged block

as donor block contains a migrating cell.

(1) The migrating cell seperates in a first step from its donor block. The cells
of the donor block that do not migrate remain part of the donor block.

(2) In a second step, the migration step, the free migrating cell fusions with an
acceptor cell. The arrow starting at the migrating cell and heading to the
acceptor cell is called the migration path of the migrating cell.

The acceptor cell as part of the acceptor block can be:

(i) the free migrating cell to form a new singlecelled block. This kind of

migration is named reflexive migration.

Figure 32: Reflexive migration

(ii) a cell neighbouring the donor block. By the fusion of the migrating
cell with the acceptor cell the migrating cell becomes part of the ac-
ceptor block. The resulting migration is referred to as nonreflexive cell

migration.

aa\1a albl|c

b’/-h —= b
b b

Figure 33: Nonreflexive migration
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(b) Rules for combined migrations

(i) A migrating cell has exactly one outgoing arrow. (An accepting cell may have

more than one incoming arrow).

(ii) The sequential concatenation of migrations is forbidden (because composition

of sequential migration is not commutative).

—K=>

:\N‘t"n =

X

—K=
K>

f=5]

n:ﬁ_&c-
=

o | o

= | =

a.—-"

Figure 34: Application of the two selection rules for migration

Application of these rules on migration results always in a unique result. As an
example Figure 35 shows a combined reflexive and nonreflexive migration.

—~

a |™a<] b
b | S

Figure 35: The reflexive migration has to be carried out first
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In example 1 there are two possible ways to apply the two migrations but only
one of these ways is legal.

(1) If the reflexive migration is carried out first, an outgoing arrow leaves the
migrating cell ¢; and in a second step an incoming arrow enters c; as ac-
cepting cell of itself. Only the last action in ¢, described by the incoming
arrow, is important for the next action of this cell. The second migration,
fusion of the migrating cell ¢y with ¢; as acceptor cell, results in a second
incoming arrow in c;. A cell, like ¢;, may be accepting cell of more than
one cells. This combination of migrations is therefore legal.

(2) If the nonreflexive migration is carried out first, the migrating cell ¢o has
c1 as acceptor cell and an incoming arrow enters c;. Application of the
reflexive migration would be started by an outgoing arrow. This would be
a sequential concatenation of migrations, which is forbidden by rule (ii).

As a consequence of this consideration the reflexive migration has to be carried
out first.

(¢) Equivalence of combined migrations

Combined migrations with the same block sets S, S’ are equivalent (figure 36).

-
| |1
| |1
—
| | ] 1
» — 8
| |1 _
T
| |1 g g
| |1
]

Figure 36: Equivalent combined migrations have the same effect on a given block set.
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To reduce the number of equivalent migrations the use of reflexive migration is
restricted to those cases where it cannot be avoided. The combined migration of
figure 35 is legal but, as shown in example (1) of figure 37, can be substituted by
one single nonreflexive migration.

1) a b — > al|b|b
N

alal|b —_— al|b|b

(2) al[a| a —= alb|c

Figure 37: The reflexive migration in (1) can be substituted. In (2) there is no equivalent

nonreflexive migration.

If a cell after reflexive migration is an acceptor cell for cells of surrounding do-
nor blocks, an equivalent nonreflexive migration is always possible. An isolated
reflexive migration on the other hand increases the number of blocks and has no
equivalent nonreflexive migration. To avoid complicated migration pattern refle-

xive migration is only used as isolated reflexive migration.

In a permutation the number of blocks in S, and S’ may not differ. Consequently
it holds that

(1) A permutation of two blocks contains no reflexive migration.

(2) One of three permutated blocks may have a reflexive migration. A more
detailed discussion is given in section 5.3.1..
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5.3. Permutation of block set representations

The permutations 7, 7’,~, and ¢ are defined as:

. !
T:5+— S S}L)Stri)G(St)li)Gf(St)
7'('/ . S [ — SI
¢ t / resulting in: 17" IW’ 17 ISO
v : G(Sy) — G(S}) !
t
¢ : G5(St) — G (S}) 1 S GUS) = G (51

The sets P, M, Q, and R contain all possible permutations , 7/, v, and ¢.:

T=(S,8)€eP

w = (5,5 €M
v=(G(S:),G(S})) € Q

¢ =(Gs(St),Gp(S1) € R

The size |P|, or number of elements, of set P is larger than than M because
block sets being different from S can have the same S;. The loss of specifity in
S, S¢, G(S¢), and G#(St) results in

[Pl > [M]=|Q| = R

In this section the permutations m, 7, v, and ¢ are described as migration proces-
ses.

(a) Block permutation 7

Let x and y be MCs belonging to the same subpartition. The sets X, Y, S, S’ are
defined as:

X = { blocks in x as ordered pairs of (block startposition, block orientation)}
Y = { blocks in y as ordered pairs of (block startposition, block orientation)}
S=X\(XnY)
=Y\ (XnY)
A block permutation 7 changes z into y and S C X into S’ = n(S) C Y. It is
defined as a restricted set of migrations, such that neighter the number nor the

type of blocks is changed.
7:8— 5
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Figure 38 shows two different block permutations 7y and ms.

Figure 38: A permutation acts on a well defined set of blocks.

(b) Move «’

The move 7’ is defined as: 7’ : Sy — S

A translation ¢ of permutation m = (S, S’) as near to the center of the coordinate

system as possible results in 7’ = (S, S}).

(i) Every cell of S is tranlated to the corresponding cell of S; (figure 39).

(ii) Corresponding, translational equivalent, cells of S and S; migrate in

the same way.

y

N
I t1
\ \\&v‘ T[l Sj_% Si

<

\

e

I
|
|
N

Nt W S;—= Sy

Figure 39: Function t translates the permuted blocks as near as possible to the origin.
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The two different permutations w1, 7y of figure 40 would have the same move if
rotation of S and S’ was permitted additionally to translation in v = (S, Sj).

EEE NI ei;%
S St’,l: Y

.
y
T

b

TU,:
NSRN SIEN
SI’,Z:

IR

Figure 40: p1 and P9 are different permutations. If they would act in an asymmetric block

surrounding, different MC’s would be the result.

The move set M2 (M3, M4, ...) contains all moves that belong to permutations of
2 (3, 4, ...) blocks.

(c) Graph permutation
The graph permutation ~ is defined as: v : G(S;) — G(S})

Two different moves 71 = (S,1,.5; 1) and 75 = (St,2, S; o) With the same migration
pattern have the same graph permutation 7 if their graphs G(S,) and G(S2,)
are equal (figure 41).

X X X

Syt— Syt Sy t— Sat

1 - |

G(S1,)=G(Sz,) G(Sy,{) =G(S,()

Figure 41: Very similar moves have the same graph permutation.
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(d) Move type ¢

The move type ¢ describes the migration pattern between blocks of certain size.
It is defined as:

0 Gp(St) — G(S;)
Each vertex in ¢ represents a block of S; that is changed by migration into a
different block of Sj. The block size of these blocks is noted at each vertex. The
edges of neighboured blocks in G f(S;) and Gf(S;) are omitted in .

The number of migrating cells is given on the migration paths because for fusioned

migration paths it is larger than one.

Fusion of migration paths is done in the following way:

(i) Two nonreflexive migration paths of v add in ¢ if their start vertices in
G(S;) are fusioned to one vertex in G ¢(S;) and their end vertices in G(.S¢)
are fusioned to one end vertex in G ¢(S;).

X X
a|a )

ala = a\/b) = ) N

b) N 3—1 1—3
a
L

y y
T ™ y 0

Figure 42: Addition of nonreflexive migrations in a move type

(ii) Reflexive migration paths become migration paths ending at a acceptor

block with size zero.

1
N a >a“ O _/\.
a >a“ = bT'c = = 2—1 1 0—1
TN .ﬂ. '/\'
b”]"c 1—-0 12
y y
T 1y Yy ¢

Figure 43: Generation of a new block is indicated by an acceptor block of size zero
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The two moves of figure 44, 7} = (Si,1,5; ;) and 75 = (Si 2,5y 5), have different

graph permutations v but equal move types .

X X X
T || T || [T
R I
y y y
Syt 77 St Sp1 T S2l
A
yl | y2 /‘\:
G(Sl, 0 G(Sl,yt) G(Sz, 0 G(SZ,’t)
1
S;: LETR .
3b-2 2-=3b
S e--—--- - S e----- -
Gi(Sy,0) n > Gi(Sy,v) 5 "
1
S,: 92 . o
3b=-2 2-=3b
Gi(Sy0) o Gi(Sy1): > m

Figure 44: Different graph permutations v with equal move types ¢

For every move 7’ = (S, S}) with move type ¢ exists the inverse move
/)=t = (8%, S¢) with move type ¢~ 1. In ¢~! all arrows of ¢ are inverted. ¢!
57 ype ¢ @ @ @
for the example ¢; of figure 45 is:
-1 1
Sl . ¢1: o/\o
2=3b 3b=2
Gi(Sy, v : 5 ””” e Gi(Sp0): & e

Figure 45: In (pl_l all arrows of ¢! (figure 44) are simply inverted. (pl_l and ¢! describe the
same move type.

Because ¢ and ¢! describe the same magration pattern with the same pairs of
corresponding blocks in Sy and S } they are two equivalent descriptions of the same
move type.
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5.3.1. Developement of move type sets R2 and R3

5.3.1.1. Considerations on move types in R2 and R3

The move type set R3 contains a set of nonequivalent migration pattern of all
possible permutations of three blocks. It contains R2. The following considerations

on R3 include therefore move types of R2 as specialcase.

(A) Possible permutations

With bl blocks the number of possible permutations of block size is bl!. For three
blocks bl! = 6 and for two blocks bl! = 2.

a a b c c
b I b 9 C 9 a 9 I a I b
b c b

(3) = (). (2)

The size of all blocks may be unchanged (figure 46).

2

—:-2 1 2—_*2
I —
L = I I I 1 1
N [ |1
12

—
—

Figure 46: Example of a move where each block is changed into a block of equal size
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(B) Schematic representation of permutations

The most general description of a R3 move type is given by figure 47.

0 + 0

e

w " a a'
v t b SN bl
c c

2

(=1 J

Figure 47: General description of a move type belonging to R3

If the move of the move type has no reflexive migration paths x, y, and z are zero.
In this case a system of three equations is implied with |a| as size, the number of
cells, in block a:

la|+v+s—r—w=|d|
b +r—s+u—t=|V|
le] +t—u+w—v=||

Rearrangement of the first and last equation gives:

r=s+(v—w)+ (la| —|a'|)
t=u+(v—w)+(lc|—|c])

The general linear move type with no parallel edges is a special case with:

v=w=0 s=0 u=0

The general linear case is therefore:

a|—=la’| , |¢'|—]¢]
a — b — ¢
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(C) Use of selection rules

To find a legal move type between blocks of fixed size, several migration pattern
can be tried (figure 48). A migration pattern has to obey the rules of migration
and neighter an old block nor a newly formed block may have a block size larger
than three. Let i be the number of incoming migration paths and o be the number
of outgoing migration paths. The difference A = 7 — 0 is then the size change
of the block. The minimal possible block size, the necessary number of cells in
the block, is given by the use of the two selection rules. The number of incoming
migration paths may have the same acceptor cell while each outgoing migration
path has to start from a different cell. If there are only outgoing migration paths
and no new block is formed by reflexive migration in the corresponding move, the
block has to be one cell larger than o. It holds therefore that

A=i—o0
0 if 2 = 0 and at least one new blocks is formed
Smin = { or o = 0 and at least one block is removed
o+ 1 otherwise
Sl = Smin + A
zz:: i 3 } restriction on block size

These equations distinguish between theoretically possible and impossible move
types. If a move type is theoretically possible it has to describe at least one
permutation. This procedure is demonstrated in figure 48, 49, and 50.

(i)
structure of move type:

a b( >c

(i)

Q )
= =
[ [ = = =
o o

1
aﬁ SC (i)

2

Figure 48: Three different move type candidates of given structure
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0]

1
% with
a C

1

(ii) asinverse of (i)!
(same move type as (i))

1
% with
a C

1
(iii)

1
% with
a C

2

Figure 49: The minimal block sizes before (s,,:») and after the move (s

min. block size:

al b| c
Sal 3] 2| 2
s, 2] 3| 2

min. block size:

a b c

i 0 2 1
o 1 1 1
A -1 1 0
Shin 2 2 2
Siin 1 3 2
a b c

i 1 1 1
o] 0 2 1
A 1 -1 0
Shin 2 3 2
Shin 3 2 2
a b c

i 1 2 1
o} 0 2 2
A 1 0 -1
Shin 1 3 3
Shn 2 3 2

al b| c
Snin 2 3 3
sl 3|1 3| 2

!
min

) have to be calcu-

lated to decide if a move type candidate for a given structure is legal.

For all three theoretically possible move types examples can be given. Figure 50
shows graph permutations as examples of the move types (i), (ii), and (iii).

)

(ii)

Figure 50: For a move type that passes the minimal block size test a permutation has to exist.

— 63 —



AT LA OIN L LJAVIVIU L AL I IND AAINLT Aailuvlial 110

5.3.1.2. Move type sets R2 and R3
(A) Move types of R2

Figure 51 shows that R2 consists of five move types.

A move type was called linear if it had no parallel edges otherwise it was called
cyclic. R2 consists of three linear move types and two cyclic ones. The linear
move types describe moves on blocks with different size while the cyclic move
types belong to moves on blocks with equal size.

block 1
1 2 3
1 2
— =l — =l 1
2 1| 3 1
1
O S S ,  block?2
2172 |3 2

Figure 51: Possible move types of R2
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(B) Move types of R3

Move type set R3 contains 33 move types for permutation of three blocks. R3

contains all moves of R2.

R3 consists of:

(a) 5 move types of R2

(b) 3 move types of moves with a reflexive move path

(¢) Move types of moves with no reflexive move path

(1) 11 linear move types

(2) 14 cyclic move types

(a) Move types of R2

The five move types of R2 belong to R3.

(b) Move types of moves with a reflexive move path

Figure 52 shows the three move types of M3 with one reflexive move path.

®

(i)

(iii)

« Ty

e drv\ . ._._.

Figure 52: The three move types of moves with a reflexive move path in R3 having no equivalent

move without a reflexive move path
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(c1) Linear move types

The general linear move type has the structure:

T el = el

b — ¢

la|—|a
—

With M¢M2 all three blocks a, b, ¢ get permuted. This means that |a| # |d’|
and |c| # |¢/|. The size of b may be unchanged. Three classes of move types are

possible.:

“ lal=1b] , lal—le]

(1) b | — [ ¢ | witha =" b =" ¢ la| # |b], |a| # |c|

a

“ ¢ lal—le| , [bl—|cl

i) [ b | — | a]| witha —" b —"¢ la| # |c|, |b] # |c|
c b
“ lal—lel , lal—|e]

(i) [ o | — [ b | witha =0 "= ¢ la| # |c|
C a

Application of the operation of class (i) on the inverted sequence ¢, xb, xa equals

an application of the operation of class (ii) on the sequence a, b, c.:

a b *C *b a c
bl —lc]l~| x| —|* ]| =]b] —|a
a *a *C b

Classes (i) and (ii) are therefore identical. Application of the operation of class (iii)
on ¢, xb, xa equals an application of the operation of class (iii) on the sequence

a, b, c.

a c *C *a a c
bl — b~ x| — | x| =|b]—10
a *Q *C a

Class (iii) contains therefore pairwise identical move types.

In (i) and (iii) |a|—|c| cells move to c. It holds therefore the restriction |b|+|c| > |al.

The resulting eleven linear (not equivalent) move types are given in figure 53.
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1y /1y 1y 1y 2y 272013 a b
2 2 3 3 1 3 3 2 | b |—|cC
2003702703737 017,37 12 C a
14v/14 /2 a C
2 3011 b |—|b
3772713 C a

Figure 53: The eleven linear move types of R3

(c2) Cyclic move types

A nonlinear move type representing a move without reflexive migration path is
called a cyclic move type. In this section a set of cyclic move types for R3 is
developed. A cyclic move type in R3 has six structural possibilities (figure 54).

class 1: class 2: class 3:

class 4. class 5 class &

Figure 54: The six structural possibilities for a cyclic move type belonging to R3 but not to R2

Application of selection rules on move type candidates of these classes results in
twentyone move types. These possible cyclic move types are given in figure 55

(next three pages).
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1 < "{"‘"‘""‘"“"" e
(10) (g dert—e ey [.—4 —
a:2=2 bh2=3 c3=-2 3 S’
i

b
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a:3=3 h2=3 c3=2 ] \

RS SR UVE o (R

—_— 4

1 1
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S b ¢
(3i) 1/ N eg. P
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(3ix) AN Y 4 P b

w33
A ;'L'\
- I , e
(3} 1/ WA c.g. | f,.
) N by
- 1 RN /'/T’d

e 3 F B
1/?’}\\ ‘ f—[ b sy b
{4i) 7 /N ki | .
ié/ LS % /%@q; / // i‘a
# A3 B 3+3
{ ;;:—{ . .
i
A ”r T“
(45H) J.; lf'r \\i eg:

€ 33 — b
_f-: | b o
e 2;'/ IJI 1 . /f [C /
{4iii) P2 VA By -

a 3-~3 h: 33 i
= ;5-3 a
- s .
Gl }’ ij \.\1 \\_l EE- a B e N
P

g 32 [

(50

(X a

Figure 55: The twentyone possible cyclic move types of R3 (cyclic move types of R2 not inclu-
ded)
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If a move belongs to a linear move type a migration of two cells from one to
another block cannot be described by a move type with migration of only one cell
between this pair of blocks. In a cyclic migration a move involving a migration of
two cells from one to another block has always an equivalent move with migration
of not more than one cell between each pair of blocks. These equivalent moves
are represented by equivalent move types (describing the same permutations).
The pairs of equivalent cyclic move types of R3 are: ((1iii), (1ii)), ((3v), (3ii)),

((3vi), (i), ((3vid), (3ii)), ((3vili), (3iv), ((4ii), (41)), ((4iii), (2iii)).

The 14 move types (1i), (1ii), (2i), (2ii), (2iii), (3i), (3ii), (3iii), (3iv), (3ix), (3x),
(4i), (5i), and (6i) are the not equivalent cyclic move types of R3.
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6. Results

6.1. Exhaustive calculation of microconfigurations

6.1.1. Counts

In a subpartition the number of blocks with one, two, three linear, and three

nonlinear cells is given as {ry,ra,r3q, 7p}. For all subpartitions with ro = 5 and
ro = 6 the number of MCs , or counts, is calculated using the EC-algorithm.

subpartition counts
{2,5,0,5} | 79869312
{2, 5,1, 4} 130960632
{2, 5,2,3} | 69067704
{2,5,3,2} | 18797736
{2,5,4,1} | 2594688
{2, 5, 5, 0} 164292
{5,5,0,4} |701113836
{5, 5,1, 3} | 777968208
{5, 5,2, 2} |286447560
{5, 5, 3,1} | 46311768
{5, 5,4,0} | 2844996
{8, 5,0, 3} | 874520544
{8, 5,1, 2} |651630144
{8, 5,2, 1} |148570392
{8,5,3,0} | 10978140
{11, 5, 0, 2} |283048176
\\; {11, 5,1, 1} 129191040
\7/ V {11, 5,2, 0} | 13749552
{145, 0, 1} | 28371360
V {14,5,1,0} | 6022152
2
: ° = 14 (17,5,0,0} | 778452

r(1)

Figure 56: Counts in subpartitions with five two-celled blocks in a 3x3x3 cube. r(1) and r(3a)

are the number of blocks with single and linear arranged cells
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subpartition counts

{0,6,0,5} | 2383152

{0, 6, 1,4} | 4553460

{0,6,2,3} | 2457804

{0, 6, 3, 2} 759912

{0, 6, 4, 1} 107064

{0, 6, 5, 0} 10188

{3, 6,0, 4} 212968812

{3, 6, 1, 3} |254904324

{3,6,2,2} | 98298624

{3, 6, 3,1} | 17022000

{3,6,4,0} | 1143420

{6, 6, 0, 3} | 728726104

{6, 6, 1, 2} |570745380

{6, 6,2, 1} |135584088

{6, 6, 3,0} | 10555036

{9, 6,0, 2} 450723684

B \V““‘ . {9, 6, 1,1} |213586728
{9, 6,2,0} | 23537016

:7/ %%ﬂG,O,l} 72768768
L) {12, 6,1, 0} | 15931776

3 6 9 12 {15, 6, 0,0} | 2913096

r(1)
Figure 57: Counts in subpartitions with six two-celled blocks in a 3x3x3 cube. r(1) and r(3a)
are the number of blocks with single and linear arranged cells

If the number of r; and ry blocks are constant the remaining cells have to belong
to r3, blocks, three linear arranged cells, or rg3;, blocks, three nonlinear arranged
cells. From figure and it can be seen that in general the variability of MCs is higher
for subpartitions with higher amount of compact rs, blocks. In subpartitions
consisting only of r3,, no r3,, and a small number of other blocks (r; and ry
blocks) a second effect can be seen. The exchange of one r3, against a r3, blocks

increases the number of counts.
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6.1.2. Symmetry

a) Rotation symmetry

MCs that are rotational equivalent belong to the same rotation class. One MC
of a rotation class is generated first by EC-algorithm. This MC is defined as
representive rotamere of the corresponding rotation class. Code 1 of a MC belongs
to a representive rotamere if no rotated MC with a smaller code 1 exists. A
representive rotamere generates 24 different MCs if it has no rotational symmetry.

The size of rotation class s; given by [s;| is the number of MCs belonging to this
class. For a MC with rotational symmetry |s;| will be smaller than 24. The ratio f
of counts ¢, the total number of MCs calculated by EC-algorithm, and the number
of representive MCs c,¢, equals the mean rotation class size |s|.

c E?:l ‘87/‘

= = =<| s |>
Crep Crep

In figure 58 the f values for the different subpartitions of partition {0, 6, 5} are
plotted.
f = counts / (generative MCs)
3x3x3 cube; r,=0, r,=6, r,=5

24.0 -

239 r

23.8

23.7

23.6

235 r

234

f value of subpartition

233 r

23.2

23.1 - i

230 | | | |

Figure 58: Mean rotation class size in partition {0,6,5}. T34 is the number of blocks with three
linear arranged cells.
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At constant rq,r9, and r3 only the number of r3, and r3;, blocks can be varied. If

there are no MCs with rotational symmetry in a given subpartition f is 24. It will

be lower than 24 if rotational symmetric MCs are present in the subpartition. A

steady decrease of f with increasing r3, blocks can be seen.

Table 7 gives all f values for ro = 5 in a 3 X 3 X 3 cube. It can be seen that it is

important for rotational symmetry if r3, has an odd or even value. Subpartitions

with odd r3, have f = 24 and therefore no rotational symmetry.

subpartition counts representive rotameres f
{2, 5,0, 5} 79869312 3327888 24,0000
{2, 5,1, 4} 130960632 5456830 23,9994
{2, 5,2, 3} 69067704 2877821 24,0000
{2, 5, 3, 2} 18797736 783353 23,9965
{2, 5,4, 1} 2594688 108112 24,0000
{2, 5, 5, 0} 164292 6862 23,9423
{5, 5,0, 4} 701113836 29213527 23,9996
{5, 5,1, 3} 777968208 32415342 24,0000
{5, 5, 2, 2} 286447560 11935574 23,9995
{5, 5,3, 1} 46311768 1929657 24,0000
{5, 5, 4, 0} 2844996 118588 23,9906
{8, 5,0, 3} 874520544 36438356 24,0000
{8, 5,1, 2} 651630144 27151600 23,9997
{8, 5,2, 1} 148570392 6190433 24,0000
{8, 5, 3, 0} 10978140 457526 23,9946
{11, 5, 0, 2} 283048176 11794065 23,9992
{11, 5, 1, 1} 129191040 5382960 24,0000
{11, 5, 2, 0} 13749552 573009 23,9954
{14, 5, 0, 1} 28371360 1182140 24,0000
{14, 5, 1, 0} 6022152 250972 23,9953
{17, 5, 0, 0} 778452 32476 23,9701

table 7: 3 x 3 X 3 cube, ro =5
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Subpartitions with ro = 6 show a similar behavior.

subpartition counts representive rotameres f
{0, 6, 0, 5} 2383152 99298 24,0000
{0, 6, 1, 4} 4553460 189769 23,9948
{0, 6, 2, 3} 2457804 102427 23,9957
{0, 6, 3, 2} 759912 31689 23,9803
{0, 6, 4, 1} 107064 4465 23,9785
{0, 6, 5, 0} 10188 439 23,2073
{3, 6,0, 4} 212968812 8873840 23,9996
{3, 6,1, 3} 254904324 10621273 23,9994
{3, 6, 2, 2} 98298624 4096091 23,9982
{3, 6,3, 1} 17022000 709330 23,9973
{3, 6, 4, 0} 1143420 47730 23,9560
{6, 6, 0, 3} 728726104 30364121 23,9996
{6, 6, 1, 2} 570745380 23782124 23,9989
{6, 6, 2, 1} 135584088 5649563 23,9990
{6, 6, 3, 0} 10555036 440161 23,9799
{9, 6, 0, 2} 450723684 18780906 23,9990
{9,6,1, 1} 213586728 8899698 23,9993
{9, 6, 2, 0} 23537016 981140 23,9895
{12, 6, 0, 1} 72768768 3032262 23,9982
{12, 6, 1, 0} 15931776 664230 23,9853
{15, 6, 0, 0} 2913096 121557 23,9649

b) Rotation and reflection symmetry

In chapter it is proofed, that MCs of the same rotation class R; may belong after
reflection again to R; or may be part of a, from R; different, rotation class Rs.
In the latter case by the permission of rotation and reflection a new equivalence
class R = R; U R is generated. This equivalence class has a representive MC, the

reflective representive rotamere. Those reflective representive rotameres generate

table 8: 3 x 3 X 3 cube, ro =6

the set of rotation and reflection reduced counts.
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The effect of pairwise equivalent rotation classes under the permission of reflection
can be seen in partition {0, 6, 5} (table 9, figure 59). The number of representive
MCs is approximately halved by permission of reflection.

Figure 59: grafic to table 9

Table 10 shows that the average size of equivalence classes, the number of reflective

. reflective
r3, r3p count representive rotameres .
representive rotameres
0 5 2383152 99298 49649
1 4 4553460 189769 94920
2 3 2457804 102427 51236
3 2 759912 31689 15880
4 1 107064 4465 2242
5 0 10188 439 238
table 9
number of microconfigurations (3x3x3 cube; partition {0, 6, 5})
51 06 effect of permitted rotation (a) and rotation and reflection (b)
G——0 no rotation
E—+H (a): rotation
4.106 +—« (b): rotation & reflection
g
2 3.10°
S
S
E
5 2.10°
3
g
1.10°

2 3

number of r,, residues

representive rotameres, for subpartitions with ro = 6 is approximately 48.
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subpartition counts representive rotameres ¢
p rotation rotation and reflection rot, ref
{0, 6, 0, 5} 2383152 99298 49649 48,0000
{0, 6, 1, 4} 4553460 189769 94920 47,9716
{0, 6, 2, 3} 2457804 102427 51236 47,9703
{0, 6, 3, 2} 759912 31689 15880 47,8534
{0, 6, 4, 1} 107064 4465 2242 47,7538
{0, 6, 5, 0} 10188 439 238 42,8067
{3, 6,0, 4} 212968812 8873840 4437180 47,9964
{3, 6,1, 3} 254904324 10621273 5311070 47,9949
{3, 6, 2, 2} 98298624 4096091 2048420 47,9875
{3, 6, 3, 1} 17022000 709330 354889 47,9643
{3, 6, 4, 0} 1143420 47730 24059 47,5257
{6, 6, 0, 3} 728726104 | 30364121 15183100 47,9959
{6, 6, 1, 2} 570745380 | 23782124 11892200 47,9933
{6, 6,2, 1} 135584088 5649563 2825430 47,9871
{6, 6, 3, 0} 10555036 440161 220791 47,8056
{9, 6, 0, 2} 450723684 18780906 9391570 47,9924
{9, 6,1, 1} 213586728 8899698 4450540 47,9912
{9, 6, 2, 0} 23537016 981140 491440 47,8940
{12, 6,0, 1} 72768768 3032262 1516730 47,9774
{12, 6, 1, 0} 15931776 664230 332757 47,8781
{15, 6, 0, 0} 2913096 121557 61008 47,7494

table 10

6.1.3. Distance

For two MCs x and y it is shown in section that d(zx, y) is a metric on the MCS. To
investigate the problem of shortest distance between two MCs if rotation of these
MCs is possible, the class distance d.(x, y) between MC x belonging to rotation
class X and MC y belonging to rotation class Y is used. It is defined as

de(z, y) = inf{d(x,y) : veX, yeY}.

This means that y is rotated until its distance to z is at a minimum value d.(z, y).
It is possible that by rotation of y more than one MC is generated having the same
minimum value d.(z, y). MCs = and y are called neighboured if

dc(l', y) = d(l‘,y)
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(a) Comparision of d(z,y) and d.(x,y)

Distances d(z,y) and class distances d.(z,y) of subpartition {0, 6, 5, 0} to a fixed
MC x, that was choosen to be the first EC-algorithm solution of the subpartition,
are compared in figure 60.

distance without and with rotation
subpartition {0, 6, 5, 0}, 10188 microconfigurations (representive: 439)

3000 T T T T T T T T T T
C—>9 no rotation
+—— rotation
[%2]
5
5 2000 a
=]
2
c
o
(8]
o
8
IS
©
2
c 1000 - i
=]
c
0 o & I |

5 6 7 8 9 10 11
distance

o
[k 2
N
w
N

Figure 60: Distance and class distance of MCs in {0,6,5,0} to the first EC-algorithm solution
of {0,6,5,0}.

Curve C; shows number of MCs at distance d(z,y). Obviously d(x,y) # 1 because
two MCs cannot differ in only one block. Most MCs are completly different from
MC z. This results in a sigmoid shape of C; with a maximum at d(z,y) = 11.
For the general case d(x,y) = b when b is the total number of blocks.

The number of neighboured MCs, those MCs with d(z,y) = d.(z,y), give curve
Cy. C; equals Cy for low values of d(x,y) because at low distance every y is
neighboured to x. Cy has a maximum at a medium distance d(z, y).
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(b) Neighboured MCs and rotation symmetry

The last section analysed the number of neighboured MCs having a certain distance
d(x, y) from a fixed MC z. The sum of all neighboured MCs y over all d(z, y) is
called neighbour number n(z). With b as number of total blocks it is defined as

i=b

n(z) = Z {ye MCS : d(z,y) = de(z,y) = i}

In figure 61 the number of all x with the same neighbour number n(x) is calculated
for subpartition {0, 6, 5, 0}.
neighbour number in subpartition {0, 6, 5, 0}

400

300 r :

200 r 7

number of MCs x

100 - .

N -

0 500 1000 1500 2000

neighbour number n(x)

Figure 61: Number of MCs having a neighbour number n(z) in {0, 6, 5, 0}

Two clearly seperated classes of neighbour numbers are observed. A test on the
rotational symmetry properties of all MCs gives the following result:

Class 1 at n(z) ~ 700 consists of all MCs with no rotational symmetry

whereas all MCs of class 2 at n(x) ~ 1300 have rotational symmetry.
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6.2. Random walk with move sets M2 and M3

For two MCs z and y the distance d(z,y) is a metric (chapter , p ). A step of a
random walk changes a MC z to a different MC y # z. Steps with d(z,y) < 2 and
d(x,y) < 3 were used.

6.2.1. Move set M2

6.2.1.1. Diffusion

A random walk is a diffusion process from a given startpoint. To show that the
used random walks are diffusion processes, the distance d(z,y) to a given start
MC has to increase in a linear manner with /steps. The average distance from
a start MC after a large number of steps has also to be in accordance with other
results.

(a) Expectation for subpartition {0,6,5,0}

As the number of steps s is increased the average distance d,,, of MCs is a measure
for diffusion and is given by: .
>iodi

S

dcw =

The number of MCs having distance d from the start MC are the counts ¢y at d.
The largest possible distance between two MCs is the total number of blocks. The
mean distance of all MCs from the subpartition to the start MC is:

_nCd X d _nCd X d
< d >= d_(g—b = d=0
- C
d=0 Cd

In C of figure 12 in chapter 3.4 the c4 values were calculated in the same subpar-
tition with the same reference MC. If one calculates the mean for this system the
result is:

<d>=94

As the step number in a random walk experiment is increased the average distance
dq, should converge against the mean distance < d >.

lim d,, =<d >=94

S§—0O0
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(b) Result and interpretation

The two diagrams of figure 16 show how d,, behaves as the number of steps s is
increased. The final step number was 100.

1) The first diagram shows that d,, of a single random walk converges against
a much lower value than < d >=9.4.

2) In the second diagram the mean of d,, values from 1000 random walks at
given step number was calculated. To check if d,, is at the beginning of
the random walk proportional to /s the /s versus d,, is shown. In a cube
of side length 3 after 4 or 5 steps a convergence behaviour of d,, can be
seen. The cube is therefore to small to decide this question. Convergence
against d,,=4.8<<9.4 can be seen.

This result makes clear that obviously only a certain part of MCs is accessible
to this random walk with step length = 2. If all MCs would have been reached
convergence against < d >=9.4 should have been occured. This interpretation
that not all MCs of MCS can be reached by a random walk with step length = 2
will be proofed in the next chapter.

d2-random walk with 100 steps

subpartition {0, 6, 5, 0}
6 T T T T T

average distance from starting microconfiguration

0 L 1 L 1 L 1 L 1 L
0 2 4 6 8 10

sqrt (steps)

Figure 62: Diffusion moving on a single random walk with permutation of two blocks (d2-walk).
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1000 d2-random walks (each with 100 steps)
subpartition {0, 6, 5, 0}; walks with same start point

6 ‘ \ ‘ ‘ ‘ ‘ ‘ ‘

average distance from starting microconfiguration

sqrt (steps)

Figure 63: Average diffusion of 1000 d2 random walks.

6.2.1.2. Accessible microconfigurations

In the diffusion experiment of chapter 4.2 the gap between expectation and result
was explained by the hypothesis that not all MCs could be reached with steps of
d=2 (permutation of two blocks) and the first EC-algorithm solution as start MC
in subpartition {0, 6, 5, 0}. The diffusion experiment had the following properties:

e The 1000 random walks with 100 steps/walk were calculated independent
from each other but had the same start MC.

e The distance d between two legal steps was 2. The largest distance d,,qz
between two MCs is their number of blocks b (=11). 100 steps/walk are
therefore enough to reach every MC.

The data of this calculation were 1000 x 100 MCs given in code 2. In a new
context these data were used now differently. The MCs of the first walk were
given to an empty pool and the number of different MCs ¢, (reached counts) in
that pool was determined. Now the MCs of the second walk were added to the
pool and ¢, of that larger pool was determined.
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The general algorithm is:
1) Take an empty pool.

2) The next of the 1000 calculated random walks is investigated. Add the new
MCs of this walk to the MC pool.

3) Determine ¢, of the resulting pool and go to step 2.

The result of this algorithm is shown in figure 64.

(1000/100/2) r-walk

3x3x3 cube; subset {0, 6, 5, 0}
2000 \ : : ‘ ‘ ;

1500

1000

visited microconfigurations

500

0 200 400 600 800 1000

walk number

Figure 64: Only 1800 MCs are visited by 1000 random walks with 100 steps if two blocks are
permutated in each step.

It can be seen that ¢, converges against a value (1800) that is much lower than
¢ = 10188 (the total number of MCs). This convergence shows that new walks
will visit no MCs that has not been occured in former walks.

A random walk in subpartition {0, 6, 5, 0} with steps of d=2 is not
capable to reach all possible MCs. It is therefore not ergodic.
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6.2.1.3. Subspaces

Subspace of a MCS are generated by the use of a certain move set like the permu-
tation of two blocks. In figure 64 a subspace with 1800 MCs is described. There
exist two other subspaces with 1800 MCs. The size and number of all subspaces
in {0,6,5,0} is given in the next figure.

number of subspaces with equal size

subpartition {0, 6, 5, 0}
24 — — T

18 r :
15 .

12;“0 :

number of subspaces

O L L 1 L L 1 L L 1 L L 1 L L 1 L L 1 L
0 300 600 900 1200 1500 1800
size of subspace

Figure 65: Size and number of subspaces

The next section will give the results of permutation of three blocks.

— 85 —



Ao UL O

6.2.2. Move set M3

6.2.2.1. Accessible microconfigurations

The algorithm used in chapter 4.3.1.1 with steps of d=2 was now used for steps
of d < 3. 10000 steps/walk were done. The start MC was the first EC-algorithm
solution.

MC5 walk 1

walk 3

Figure 66: Ergodic random walk in microconfiguration space (MCS)

Figure 67: 70 random walks in subpartition {0, 6, 5, 0} were done. The pool
was successively enlarged and the number of different MCs ¢, (reached counts)
were determined (see 4.3.1.1). The reached counts converge against the total
counts of 10188 for this subpartition. The random walk with d <3 in subpartition
{0, 6, 5, 0} is ergodic.

36 random walks in subpartition {0, 6, 4, 1} were done. The reached counts
converge against the total counts of 107064 for this subpartition. The random
walk with d < 3 in subpartition {0, 6, 4, 1} is therefore ergodic.

Random walks in subpartition {0, 6, 3, 2} and other subpartitions are also ergodic
(not shown).

Until there are no other data the hypothesis was established that a random walk
with d <3 is ergodic for any subpartition and any cube side length n.
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r-walk (w/10000/3) ; w: 0 -> 70
subpartition {0, 6, 5, 0}; walks with same start MC
12000 T T T T T T T T T T T T

10000

8000 .
S
O 6000 :
4000 |
2000 —— visited MCs B
total number of MCs
O L | L | L | L | L | L |
0 10 20 30 40 50 60 70
walk number
r-walk (w/100000/3); w: 0->36
subpartition {0, 6, 4, 1}; walks with same start MC
150000 ‘ \ ‘ \ ‘ \ ‘
100000 T
(9]
@)
=
50000 T
o——o visited MCs
total number of MCs
O L | L | L |
0 10 20 30 40

walk number

Figure 67: Permutation of three blocks results in an ergodic random walk.
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6.2.2.2. Random walks in similar subpartitions

Random walks in subpartitions {0, 6, 5, 0}, {0, 6, 4, 1}, {0, 6, 3, 2} with d <3 are
ergodic. An experiment with no available interpretation till now is shown in figure
68. A single random walk was done in the three mentioned subpartitions. With
steps s, total counts ¢, reached counts ¢, the ¢./s versus s/c plot had a linear
course as s came closer to c in all three cases. Moreover the slope was equal.

c(s)/s vers. s/c plot

1.0 — | : : ‘
i \ e—— sybpartition {0, 6, 5, 0}
¢ subpartition {0, 6, 4, 1}
0.8 - subpartition {0, 6, 3, 2} 7
0.6 - i
L
[72]
0.4 8
0.2 8
0.0 : : : : :
0.5 0.6 0.7 0.8 0.9

c(s)/s

Figure 68: Random walks in similar subpartitions have similar walk properties

6.2.2.3. Probability p of MCs in a random walk

In a random walk a step leads from MC x to y. Steps with d < 3 in 3 X 3 X 3 cubes
are ergodic. Accessibility of MCs is another important point. It will be shown
how the structure of a MC determines its accessibility.
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To get a measure for the accessibility of a MC an ergodic random walk is done. The
number of steps between two successive visits of a MC gives one possible recurrent
walk length. As the walk continues the mean of this recurrent walk length can be
determined. It is clear that the ratio of the number of steps s and the hit number
h (= number of visits) of MCs converges against the average recurrent walk length
as the number of steps increases. On the other hand the ratio of the hit number
h and steps s is the probability p that a MC is visited by a random walk. The
average recurrent walk length (= ARW) is given by:

ARW = lim & =1

S—+ooch D

A first calculation on ARW values was done in subpartition {0, 6,5, 0} for the MCs
with list number 1, 2, 3, 13, 511, and 800. The result is shown in figure 69. The
MCs 1, 2, 3 show that structural very similar MCs have very similar ARW values.
The MCs 13, 511, 800 show that the ARW can exceed the sum of all MCs.

average recurrent walk length
{0, 6,5, 0}; MCs 1, 2, 3, 13, 511, 800

10 T T T T
—— MC1
g L ——— MC2 |
. MC 3
S —— MC13
< MC 511
5 MC 800
S 6L 4
3
S
o
(]
g
(]
z
2 iy _
K/VW
0 200 400 600 800

cycle number

Figure 69: Different MCs can have different ARW
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(a) ARW values and EC-algorithm solutions

The EC-algorithm generates a complete list of possible MCs in a given subparti-
tion. The number of occurence of a MC in this list, the list number, identifies the
MC. The subpartition {0,6,5,0} consists of 10188 MCs. The plot of list number
versus ARW of MCs for this subpartition is given in figure 70.

list number vers. ARW
random-3 walk in {0, 6, 5, 0}; 0,5.10° steps

14 -

(o]
T
.
B
.
|

ARW / 10°

»
T
|

L

WS s
FEe T T

4000 6000

list number

Figure 70: ARW values of all MCs in {0,6,5,0} in order of their calculation with the
EC-algorithm.

The measure for the probability p; of a MC with list number ¢ in a random walk
is ARWi_l. If two MCs with list numbers i and j are visited the probability p that
at least one of them is visited will lie between a depentent, if the visit of the first
MC implies very strongly the visit of the second MC, and independent probability.

Ddep < D < Di +pj = Pind

— 90 —



Ao UL O

From the ARW values the probability p;,q for a random walk visiting any MC in
subpartition {0, 6,5,0} yields:

counts
1
Pina = Y Try, ~ Lool=1=p
i=1

This demonstrates that for a large ensemble of MCs the assumption of independent
MCs gives a good upper boundary for p.

With proceeding list number MCs have raising and falling ARW values. The lokal
ARW maxima occure as ARW peaks. 24 lokal ARW maxima are larger than 6.10%.

(b) High ARW values and ordered blocks

The ARW is defined as the average recurrent walk length over an infinit number of
steps. If 13,14.106 instead of 0, 5.10° steps are done the mentioned 24 MCs with
ARW maxima remain the only lokal ARW maxima larger than 6.10*. Their ARW
values are of course improved (figure 71). A closer investigation reveals that the
24 MCs belong to two rotation classes, each containing 12 MCs. It is clear that
rotameres of a MC converge against the same ARW.

The second high lokal maximum at list number 560 (MC 560), which is a rotamer
of the first high maximum, is now regarded. The code 1 and ARW of MC 560 and
the preceeding and succeeding MCs are listed in figure 71.

code 1 lokal maximum at MC 560:
list number ARW abcde f g hi j k
a \ b\ b\
558 16756 12 553 6 31 6 3 6
RN
559 26726 12 556 131 166 w“
a e\ f N\
560 90512 12 556 133 2575
g e N h
561 41868 12 556 13 36 6 3 m“
IRNANEAN
562 30087 12 556 3315 52
AN
AN AT

Figure 71: Structure of MC 560

Because MC 561 differs only in the three last blocks from MC 560 it has the next
highest ARW of the nearer surrounding. From this and other possible examples it
gets clear that two very similar MCs, like successive EC-algorithm solutions, have
always a relatively similar ARW. MC 560 has very ordered blocks. So the question
shows up if the order of blocks has an influence on high ARW values.
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(b1) Expectation

An EC-algorithm calculation starts with MCs that have blocks with lowest pos-
sible block orientation (block table) resulting in very ordered blocks. During the
algorithm the blocks are packed in a more mixed orientation. At the end of the
calculation all blocks are forced to be of highest possible block orientation resul-
ting again in MCs with very ordered blocks. If the order of blocks determines the
ARW of a MC a histogram like figure 72 should be observed.

ARW

0 10188

list number
Figure 72: Expected histogram

(b2) Result

In figure 73 blocks of 505 succeeding MCs are analysed. Inspite of the fact that the
number of MCs with ARW> 10* decreases with the list number, the histogram is
not of the expected form. The order of blocks is therefore no good way to predict
a high or low ARW of a MC.
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list number vers. ARW
random-3 walk in {0, 6, 5, 0}: 13,14.10° steps

14 - :

12 - .

10 + .

ARW / 10°
(o]
T
|

(o]
T
I

J‘ P iR
L e

e v S

4000 6000

list number

0

average frequency of ARW > 10%in groups of MCs withesuccessive list number
random-3 walk in {0, 6, 5, 0}: 13,14.10 steps
1.0 T T T T T T T T T T T T T T T T T T T

4

0.6 - ]

avarage frequency of ARW > 10

0.2 - :

0.0
0 5 10 15 20

groups of 505 MCs with successive list numbers

Figure 73: Average frequency of MCs with ARW >10? in groups of 505 successive MCs (EC-
algorithm solutions)
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(c) Degree/ARW plot

Each MC in MCS is represented by a vertex of a graph G. If a move between two
MCs is possible the two vertices of G are connected by an edge. The degree of a
MC is the degree of its corresponding vertex on G.

The calculation of the degree and ARW of all MCs in subpartition {0, 6,5,0} is
shown in figure 74. An ergodic random walk with steps of d < 3 is used.

number of neighboured MCs vers. ARW

random-3 walk in {0, 6, 5, 0}: 13,14.10° steps

ARW /10*
()]

m
R

.
-
. rm———-
S -+
R
.
-
T —
T

—
——
-
-
-
-
-

5 10 15 20 25

degree of microconfigurations

Figure 74: Degree and ARW of MCs in {0, 6,5, 0}

A clear negative correlation between the ARW and the degree can be seen. MCs
of larger degree tend to be visited more frequently (= low ARW value) than MCs
of lower degree. The two MCs and their rotameres with ARW> 10° have a very
low degree of 8.
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6.3. Chain in microconfiguration space and sequence space

With given subpartition a MCS is determined. The MCs that are generated by a
folded chain are destinguished from the rest of MCs by the selection rule that the
chain has to pass trough each block exactly one time but may not pass the middle
cell of blocks with three cells (linear or angled).

6.3.1. Probability of MCs
(a) ARW values and EC-algorithm solutions
The subpartition {0, 6, 5,0} has 10188 MCs with 276 MCs, distributed over all list
numbers, where a chain is impossible (figure 75).
list number vers. ARW

random-3 walk in {0, 6, 5, O}; 13,14.10° steps

14 .

ARW /10*
= P
oo o N
T T T
| | |

»
T
|

0 5000 10000

- chain is impossible list number

Figure 75: ARW of MCs where a chain is impossible

From several random walks (each more than 10° steps) the probability pes, for
a MC to have a chain was determined. Equivalence of pe,, with p;,q, which is
calculated from the ARW values, is observed.

1
exp = 0,982 = pip =
Pexp Pind = 2 g
i=MCs with chain
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The value of 0,982 is larger than the ratio R = MCs Cv(\)lliltIllltschain = 190911828 =0,973.
The random walk visits MCs with chain therefore more often than MCs without

chain.
(b) Degree/ARW plot
Some considerations on graph G are:

If MC z has a high degree and therefore a large number of possible moves to other
MCs and if these surrounding MCs have also a high degree, the ARW of z is low.
A second consequence of a high degree of a MC and its surrounding should be
a higher combinatorical flexibility of the chain between the blocks of this MC.
For MCs with high degree and high accessibility, which means low ARW, a chain
should be more probable. It is expected that large and dense regions of G consist
of MCs where a chain is more probable than in large regions of G that consist of
MCs of low degree.

Again subpartition {0,6,5,0} is regarded. In figure 77 those 276 MCs where a
chain is impossible are destinguished from the other MCs.

number of neighboured configurations vers. ARW
random-3 walk in {0, 6, 5, 0}: 13,14.10° steps

T T T T T
10 - chain is possible E
i O chain is impossible
8 r i |
;
- .
—
= 6 - i
x
< i
4 % [ : % ’ ‘ |
F 6 7§
o | lol 70 |
y | 2 °F
¥ ! i I ' '
' 30 14 I
L L L L L L L
5 10 15 20 25

number of neighboured configurations

Figure 76: Degree and ARW of MCs without chain. The eight different classes of MCs where
no chain is possible are numbered.
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Figure 76 is in accordance with the expectation. In all MCs of low ARW and high
degree a chain is possible.

Those MCs where no chain is possible are localized at eight regions in the de-
gree/ARW plot. If in a MC no chain is possible the same holds for the rotated
and reflected forms of that MC. A closer investigation shows that they consist of
10 representive MCs and their rotated and reflected forms (figure 77).

class number of MCs desciption

1 24 R,: 24 MCs

2 12 R,: 12 MCs

3 24 R,:24 MCs

4 48 R;: 24 MCs, R, :reflected MCs of R

5 48 R : 24 MCs, R.: reflected MCs of R1

6 24 R, :24 MCs

7 72 R;:12MCs, R, :reflected MCs of R,
R; 12MCs, Ry:reflected MCsof R4
R 24 MCs

& 24 R, :24 MCs

Figure 77: Analyse of MC where no chain is possible

All rotameres and enantiomeres of a MC have the same ARW. Class 1,2, 3,4,5,6,
and 8 consist of rotameres and enantiomeres of one representive MC and their
ARWs should be exactly the same. Obviously more than 13,14.10% steps have to

be done to reach an identity of ARW values. Class 7 contains three indepentent
MCs.
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6.3.2. Approximation of p using walks with restricted degree

The degree of a MC is the number of different block permutations that lead to MCs
within a certain distance (0 < d < 3). To find the next step of a real random walk
all possible different permutations are determined and one is randomly choosen as
next step. This works for subpartitions having MCs with not too high degree in
the 3 x 3 x 3 cube. For cubes of larger dimensions it is very time consuming to

determine all possible permutations.

In MC {0, 6, 5,0} the range of possible degrees deg is 7 < deg < 24. In figure 78 not
more than 10 different permutations are determined and one of them is choosen

randomly.
Approximation of R in {0, 6, 5, 0}

step: random choice from max. 10 different permutations of 3 random blocks
0.99 &\ ]
0.98 |
m /Aw ]
0.97 i/ E
| E
0.96 f
x 0.95
0.94 31 — walk 1 7
E — walk 2 ]
0.93 £ walk 3 3
E — walk 4 E
E walk 5 3
0.92 walk 6
E R ]
0.91 a E

0.90 E 1 1 1 1 1 1

5 10 15 20 25 30

step number / 10°

Figure 78: Random choice of the next MC out of subset S, |S|<10, of the set of possible

permutations of three blocks

A convergence against a value (0,970) which lies below r (0,973) is observed.
Compared to a random walk (peyp =0,982) there is an error of 0,012. - This
low difference to pesp, of a real random walk makes the idea attractive.
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Approximation of R in {0, 6, 5, 0}
step: random choice from max. 10 different permutations of 4 random blocks
T

0.99 |
0.98 g E
0.97 ¢ 3
0.96 ]
x 0.95 | £
0.94 0 — walk 1 7
— walk 2
0.93 — walk 3 E
— walk 4 ]
0.92 — walk 5 ,
' —— walk 6 ]
— R ]
0.91 .

090 | | | |

5 10 15 20
step number / 10°
Approximation of R in {0, 6, 5, 0}

step: random choice from max. 100 different permutations of 4 random blocks
0.99
0.98 |
:‘ ]
0.97 | E
0.96 ;
x 0.95 5
0.94
E — walk 1 E
E — walk 2 1
0.93 ¢ wak3 ]
E — walk 4 E
0.92 ¢ wakk5 7
f walk 6 1
0.91 | R :

0.90 | | | |

5 10 15 20

step number / 10°

Figure 79: Random choice of the next MC out of subset S of the set of possible permutations
of four blocks
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Approximation of R in {0, 6, 5, 0}
step: random choice from max. 10 different permutations of 5 random blocks
T T T T

0.99
0.98 3
0.97 | I .
0.96 E
< 0.95 [ 3
0.94 * — walk 1 *
3 —— walk 2
093 - walk 3 E
i —— walk 4 ]
g walk 5 ]
0.92 3 walk 6 E
E R ]
091 - .

090 E | | | |

5 10 15 20
step number / 10°
Approximation of R in {0, 6, 5, 0}

step: random choice from max. 100 different permutations of 5 random blocks
0.99 -
0.98 3
0.97 E
0.96 |
< 0.95 1 E
0.94 7 — walk 1 7
E — walk 2 3
0.93 - wak3 7
g —— walk4 ]
092 © wakk5
walk 6
0.91 - R

0.90 E | | | |

5 10 15 20

step number / 10°

Figure 80: Random choice of the next MC out of subset S of the set of possible permutations
of five blocks
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MCs with higher A.R.W. values in higher permutations

In section 6.2.2. it was described for the d<3 randomwalk that MCs with lower
surrounding number had higher A.R.W. values. Now this reachability problem
was investigated in the higher ergodic walks d<4 and d<5.

6.3.3. Sequence space

If blocks of a given subpartition are lined up on a chain in general different block
sequences are possible. With f, as fraction of sequences in a subpartition that can
fold to a cube subpartitions of the 3 x 3 x 3 and 4 x 4 x 4 cube were analyzed.

3 x 3 x 3 cube 4 x 4 x 4 cube
subpartition sequences fs subpartition sequences fs
{27,0,0,0} 1 1 {64,0,0,0} 1 1
{1,13,0,0} 14 1 {0,32,0,0} 1 1
{0,0,9,0} 1 1 {1,0,21,0} 21 1
{0,0,0,9} 1 1 {1,0,0,21} 21 1
{0,6,5,0} 254 0,55
{0,6,0,5} 254 0,77
{6,6,1,2} 1261260 0,68
{13,4,1,1} 813960 0,65
table 11

On the one hand it can be seen that chains with a maximal number of blocks of
the same type fold into a cube. If a mixture of blocks is used a chain sequence

with flexible r3; blocks has better chances to fold than a chain sequence with linear
blocks.
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7. Conclusion and outlook

The work presented in this thesis deals with an aspect of the inverse folding pro-
blem for proteins. Given a structure the task is to find amino acid sequences
that form this structure under the specified folding conditions. A simplified mo-
del for protein folding is developed which mimicks amino acid residues by blocks
of different shapes. The blocks are composed from elementary cubes. Shapes of
the blocks resemble space filling models of real amino acid residues. The model
is applied to the formation of compact hydrophobic cores. In accordance with
the simplifications of the model the compact core is represented by a cube of n3
elementary cubes. The problem is to find compact “puzzle-like” foldings of se-
quences which can be arranged in the cube without leaving blocks unoccupied.
Folding probabilities are computed by exhaustive enumeration of successful and

unsuccessful trials.

A formula was obtained to enumerate the sequences for given n. A certain ar-
rangement of blocks in a cube was called microconfiguration (MC), and all MCs
form the corresponding microconfiguration space (MCS). It was proven that the
number of different blocks between two MCs is a metric. Two MCs at distance

two (three) can be tranformed into each other by a permutation of the two (three)
differing blocks.

To classify permutations the concept of a move type was developed. Every per-
mutation of two (three) blocks belongs to one of five (thirtythree) corresponding
move types.

(i) For applied sets of blocks with not too many MCs an algorithm was de-
veloped to exhaustively enumerate the MCs. The rotational and mirror
symmetry of MCs was analyzed.

(i) Random walk was tested in small MCSs and was proposed as a method to
investigate large MCSs.

Moves involving the permutation of two blocks resulted in random walks being
restricted to subspaces of the MCS. If steps permutating three blocks were used,
ergodic random walks ensued. The probability to reach a MC in a random walk
is the inverse of this walk length.
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The random walk algorithm calculates for each step all possible permutations and
chooses one randomly. To reduce computation time only a restricted number of
permutations was calculated for each step. The error in the probability of MCs
was observed to be small.

For some sequences with an applied set of blocks in the 3 x 3 x 3 and 4 x 4 x 4 cube
it was possible to compute the folding probabilities. The available data show that
chains with a maximal number of blocks of the same type can always fold into a
cube.

The present study has shown that the simplified block model is suitable for the
analysis of compact hydrophobic cores. In particular, probabilities of forming
compact cores can be defined and computed. Investigations were restricted here
to very small cubic arrangements of 27 and 64 blocks (with n = 3 and 4, re-
spectively). In order to study realistic proteins with hundred amino acid residues
and more the current algorithm is not suitable because the computations increase
too fast, presumably exponentially with the size of the core. Future work on the
model presented in this thesis would therefore be dealing with the developement
of suitable statistical evaluation methods of folding probabilities. The model can
be easily extended to handle larger amino acid residues resembling more closely
the natural shapes. Such an extension would necessarily require larger cubes for
representing hydrophobic cores.
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