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Zusammenfassung

Die Vorhersage der nativen dreidimensionalen Struktur von Biopolymeren,
wie zum Beispiel von RNA, ist nach dem heutigen Stand der Wissenschaft
noch sehr problematisch, mehr noch, in vielen Fallen unmoglich. Im allge-
meinen ist die Funktion einer Sequenz nicht bestimmbar. Fiir die qualitative
Beschreibung von RNA Molekiilen ist die Sekundarstruktur oft ausreichend,
da die Basenpaarungskontakte das Grundgeriist fiir die 3-dimensionale Struk-
tur bilden.

Fiir die Berechnung der Sekundarstruktur, gibt es seit einiger Zeit praktikable
Faltungsalgorithmen, die von der Sequenz ausgehend, eine Sekundarstruktur
zuriickliefern, wobei iiber Energiebeitrage der Basenpaare optimiert wird.
Eine bessere Beschreibung der flexiblen Natur der RNA erlaubt die Berech-
nung der Zustandsumme iiber alle Strukturen und die Wahrscheinlichkeiten
der Paarung einzelner Basen im Ensemble der Strukturen.

Lange RNA-Molekiile findet man in den Genomen von RNA-Viren. Diese
viralen RNA Molekiile erfiillen im Virus zweierlei Aufgaben. Zum einen
kodiert die Sequenz der RNA die viralen Proteine, zum anderen wird durch
die Ausbildung bestimmter Sequenz- Struktur-Motive der Lebenszyklus des
Virus reguliert. Eine Reihe spezifischer Strukturelemente, wie z.B. das TAR
in HIV oder IRES in Hepatitis C virus oder Picornaviridae wurden bereits
unter diesem Aspekt experimentell untersucht.

Funktionell wichtige Strukturelemente bleiben im Laufe der viralen Evo-
lution konserviert. Schon wenige zuféllige Mutationen wiirden ausreichen,
Strukturelemente zu zerstoren. Besonders nicht translatierte Bereiche des
Virusgenoms sind moglicherweise funktionell bedeutend, da der hohe Selek-
tionsdruck irrelevante Sequenzteile tendenziell eliminiert.

Konservierte Sekundarstrukturelemente konnen tiber rein theoretische Meth-
oden identifiziert werden, indem man die vorhergesagten Strukturen ver-
wandter Viren miteinander vergleicht. Eine Kombination von Sequenzver-
gleich und Sekundarstrukturvorhersage filtert aus einem verwandten Satz von
Virusgenomen, z.B. Vertreter eines Genus, konservierte RNA Motive heraus.
Dies erlaubt nicht nur eine qualitative Beschreibung von RNA-Viren, sondern
konnte auch ein Ansatzpunkt fiir neue antivirale Strategien sein.



Abstract

The prediction of the native three dimensional structure of biopolymers, such
as RNA | is currently problematic and often infeasible. In general the function
of a sequence can not be determined. Often secondary structure is sufficient
for a qualitative description, since base pairing contacts form the basis of the
three dimensional structure.

For several years folding algorithms have been available that compute sec-
ondary structures from sequence data alone by energy minimization. A better
description of the flexible nature of RNA is obtained by calculating the par-
tition function and the base pairing probability matrix of the ensemble of all
structures.

Long RNA molecules are located in virus genomes. These viral RNA molecules
are responsible for two functions. On one hand they encode viral proteins,
on the other hand they form characteristic RNA motifs regulating the viral
life-cycle. Numerous specific RNA motifs, such as the TAR-region in HIV
and the IRES-region in Hepatitis C virus or Picornaviridae have already been
experimentally examined.

Functionally important secondary structures are conserved in the course of
viral evolution. In the absence of selection, few random mutations are enough
to destroy structure motives. Thus, conserved structures must carry some
function, that converse a selectional advantage. Especially the non translated
regions of virus genomes are probably functionally important, otherwise the
high selection pressure would eliminate these regions.

Conserved RNA secondary structure elements can be identified by raw theo-
retical methods by comparing predicted structures of related virus genomes.
A combination of sequence alignment and secondary structure prediction ex-
tracts conserved RNA motives from a sample of related sequences, such as
members of one virus genus. The result is a qualitative description of RNA
virus genomes and furthermore that could lead to establish new anti-viral
strategies.
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1 Introduction

RNA molecules are well known to have two functions in nature. The sequence
of RNA encodes proteins on the other hand its structure can have functional
importance, e.g. ribozymes. All RNA molecules form structures, but the
presence of structure does not have any functional significance in itself.

If a structure element is preserved by selection this indicates it must of course
have some function. This can be used to search for conserved RNA secondary
structure elements in RNA sequences. A purely theoretical approach can be
used to detect such elements, based on sequence information only.

This work considers RNA virus genomes, because they show a rather high
sequence diversity in a related virus group, and are therefore ideal objects.
We can perform this approach even on a small sample of sequences. Thus
there are enough sequences in data bases for numerous virus genera.

Our approach is based on a combination of thermodynamic structure pre-
diction and sequence alignment and allows us to detect common structure
motifs in a related sample of sequences. The problem computing the sec-
ondary structure of long RNA-sequences was solved by porting the folding
algorithms to parallel computer architectures. This enables us to fold en-
tire viral genomes and thus to extend our search to sequence lengths up to
13000nt.

Especially long RNA virus genomes yield huge amounts of data and analysis
cannot be done without a specialized selection tool. For this purpose a
graphical user interface was developed to screen huge sequences for conserved
RNA motifs. This makes analysis more efficient and faster, moreover the
approach became more user friendly. A collection of software is now available
that allows a routine investigation of even the largest viral RNA sequences.

The purpose of this work is to prove that a comprehensive survey of con-
served RNA secondary structures in viral genomes is feasible, and that the
resulting data provide a valuable basis for further investigations into viral
evolution and phylogeny. Members of the virus families Flaviviridae and
Bunyaviridae give an example that this approach is not restricted to already
known structure elements, but also detects numerous conserved elements not
previously described.

A list of conserved structure motifs, of course can not tell us what the function
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of the conserved structure elements might be, nevertheless, knowledge about
their location can be used to guide, for instance, deletion studies.

1.1 RNA

The native three dimensional structure of RNA is at present inaccessible
to purely theoretical methods. Present day computer algorithms are not in
the position to calculate the correct native structure from a given sequence.
RNA secondary structure provides a course grained description of RNA struc-
tures that is both computationally convenient and biochemically useful. The
secondary structure of RNA also enables computer experiments to find out
regularities in RNA folding. That is because secondary structure provide the
scaffold for tertiary structure formation.

Structure prediction algorithms based on thermodynamic criteria are suffi-
ciently powerful to examine the sequence structure relations. These investiga-
tions of relations between sequence- and structure-space have been studied in
a series of papers [57, 82, 24, 17|, in order to discover regularities in sequence
to structure mappings. The results presented in this sections are the base for
the development of an approach to find common secondary structures in a
set of diverse sequences, which are believed to be functionally important.The
following general results for sequence-structure relations of RNA molecules
are found.

e There are more sequences than structures
The number of different sequences scales to N(I) = 4" whereas the
number of structures scales to S(I) ~ 1.4817%/2(1.85)!. In other words
we are dealing with many more sequences than structures. Thus the
mapping from sequence space onto structure space is many to one and
not invertible.

e There are many common and few rare shapes
For long sequences almost all sequences fold into a vanishingly small
fraction of all shapes.

e Neutral networks are formed by common structures
Sets of sequences showing the same structure are connected through
mutation in the sequence space [60]. Such connected sets have been
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Figure 1: RNA sequence-structure map. Almost all structures can be found almost
anywhere in sequence space and a small fraction of mutated positions almost surely
changes the structure completely.

termed ‘“neutral networks”. Sequences on large neutral nets are char-
acterized by a significant average fraction of nearest neighbors, that is,
sequences that differ at a single nucleotide, that also fold into the given
structure. A large enough degree of neutrality leads to percolation in
the sequence space [57], causing connected neutral networks.

The algorithms used for the prediction of RNA secondary structures are based
on thermodynamic rules. The most widely used methods compute a single
minimum free energy structure through dynamic programming [53, 73, 82].
Approaches to kinetic folding [46, 18] are also based on the thermodynamic
rules. Because of the approximations of the energy model and inaccuracies
the measured parameters, the accuracy of these predictions is often insuf-
ficient. In cases where the correct structure is known from phylogenetic
analysis it has been found that predicted structures contain only 30% to
80% of the correct base pairs [39, 35]. The correct structure can, however,
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be found within a relatively small energy interval above the ground state.

There are variants of the folding algorithm for computing a sample of subop-
timal folds [80], or even all structures within a prescribed energy range [76].
Non-deterministic kinetic folding algorithms [18, 14] can produce ensembles
of structures by repeatedly running them with different random numbers. A
much more elegant and efficient solution is the computation of the complete
matrix of base pairing probabilities [44], which contains suitably weighted in-
formation about all possible secondary structures and therefore reduces the
impact of inaccuracies in the structure prediction. The disadvantage of these
methods is of course that they leave it up to the user to decide which of the
proposed structures to believe.

1.2 Conserved RNA in Virus Genomes

Sequences can diverge while their structure remains conserved. On the other
hand, a relatively small number of random mutations is sufficient to destroy
structural motifs in the absence of selection. Thus, if structures are conserved
in spite of sequence variation, the conserved structures must clearly carry an
important function.

In this respect RNA viruses are an ideal proving ground. The high mutation
rates, estimated to be from 107° to as much as 1072 errors per nucleotide [30]
should lead to unrelated structures. On this account consistently found RNA
motifs or also sequences should be functional important.

As a consequence to high mutation rate , the virus populations include large
numbers of mutants that allow rapid adaptation to new environmental con-
ditions. This can lead to rapid functional divergence of the RNA viruses, as
reflected in the rapid sequence divergence among closely related virus species,
and even among progeny of a single virus.

Despite their high mutation rates, cis-acting sequences of RNA viruses, recog-
nized for initiation of transcription or replication, can form conserved RNA
motifs. Conserved sequences in related virus genomes can be a hint for
functional sequence regions. Note, that computer investigations on RNA se-
quences have shown, that only 10% sequence diversity is enough to destroy
common secondary structures if mutations are placed randomly. The se-
quence of the minimal promoter of Alphaviruses gives an example, that it is
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all well conserved as the polymerase protein: the minimal promoter sequences
of Sindbis and Semliki Forest viruses are identical at 83% of the nucleotides
positions (range of 71-92% identity among the alpha-viruses). In comparison,
their nsP4 genes, that encode the elongation activity of the viral polymerase,
have 65% identity at the RNA level, and the corresponding nsP4 proteins
are identical at 74% of the amino acid residues, 83% homology if amino acid
similarities are included. Although cis-acting sequences are conserved on the
sequence level, common secondary structures should be destroyed, if only
10% mutations occur randomly. Well known functional important sequences
often show a lot of compensatory mutations, a hint, that folding the sequence

to a specific secondary structure is crucial, e.g. Pestivirus internal ribosome
entry site (IRES).

Conserved, probably cis-acting sequences are found in all families of RNA
viruses. Most of them are found at or close to the termini of the genomic
RNA, probably recognized for initiation of replication. Cis-acting parts of
the genome sequences often play an important role for transcription initiation
or termination. This has been already documented for various virus families
such as Picornaviridae, Flaviviridae, Togaviridae, which include important
human and animal pathogens.

Coupled Evolution

The considerations of the last sections can be resumed in a model of coupled
evolution. Functional RNA structures are determined by viral or host pro-
teins. Since the native three dimensional structure is crucial for RNA protein
interactions and RNA secondary structure is a course grained description,
therefore conserved structures can provide a qualitative description of these
interactions.

Cis-acting sequences, e.g. the IRES of the 5’end of several RNA viruses
are well known to specifically bind translation factors or ribosomal subunits.
Suppose that the specificity of recognition is determined by a host protein,
this protein evolves at very much slower rate and remains unchanged for
relatively long time spans. The virus, however, mutates at high rates, such
that the cis-acting sequence, folding in a special shape is rapidly selected to
achieve an optimal interaction with the host protein. Once this occurs, most
mutations in the cis-acting sequence will be sub-optimal, and be selected
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Figure 2: Four examples of protein RNA coevolution. Top figure, the shape of
RNA is optimized to protein interaction. Bottom left, RNA is mutated and the
shape is different , no interaction possible. Bottom middle, the protein is mutated
and alters its surface, interaction to RNA disturbed. Bottom right, protein and
RNA change their shapes in a compensatory manner, interaction enabled.

against. Thus, the cis-acting sequence will now evolve only at a rate com-
parable to the cognate host protein, or mutations inside base paired regions
led to consistent or compensatory mutations. If, instead, recognition of the
cis-acting sequence is mediated by a viral protein, their interaction should
also be rapidly optimized [62]. Once this occurs, they become mutually con-
strained, neither can change independently without disturbing the optimized
interaction. A change is only possible if both mutate coincidentally, and in
an exactly compensatory fashion.

Although RNA viruses have high mutation rates, the predominant or wild-
type genome persists with remarkable stability during passage in culture.
This is true even though substantial numbers of mutants are detectable at
each passage [7]. To reconcile this apparent paradox, it was proposed that
the relevant sequences are quickly optimized when environmental conditions
change (e.g., adaptation to culture) resulting in a predominant, wildtype se-
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quence [62]. The wildtype sequence persists because, among the distribution
of mutants generated during virus growth, none have a competitive advantage
over the wildtype, so long as the environmental conditions remain stable [62].

The initial optimization process is likely to be facilitated by the high mu-
tation rates and large population sizes that generate an enormous diversity
for selection to operate upon efficiently. If the environmental conditions are
altered, some other sequence might be selectively advantageous, and it be-
comes the dominant species, superior to most of the mutants that arise. This
explanation for the persistence of the wildtype in culture may be generalized
to evolution in nature. As viruses diverge over time, to adapt to disparate
niches or environmental conditions, only those features that are the most
strongly selected for under a variety of environmental conditions will remain
conserved. Whether the cis-acting sequence is recognized by a host or a viral
protein, the model predicts that it should evolve quite slowly compared to
most of the rest of the genome. If this is true, then the recognition of cis-
acting sequences should be functionally conserved, and also the secondary
structure responsible for the specific shape for RNA-protein recognition.



2 Methods

Developing a method for searching for conserved RNA secondary structures
is quite challenging, because different algorithms have to be linked, such as
folding, or multiple alignment algorithms. Additionally a sorting procedure
uses aligned sequences and secondary structures to extract common base
pairs on a set of diverse sequences. The huge number of extracted base
pairs by analyzing long viral genomes cannot be managed without a selection
tool, it helps to pick out useful information in other words conserved RNA
elements. In this section all necessary steps are explained, to give the reader
an overview of our approach, but a parallel implementation of the folding
algorithms, the aligned minimum energy folding algorithm and a graphical
tool for selecting conserved elements is presented in more detail, because they
are developed by the author himself.

Folding of RNA molecules is the most important step in searching for consis-
tent RNA motifs, so an overview of folding algorithms is provided. Several
algorithms exist for the prediction of RNA secondary structures based on
thermodynamic rules. McCaskill proposed an algorithm to compute the par-
tition function of the thermodynamic ensemble and the matrix of base pairing
probabilities Pj; of an RNA molecule. The large size of, say, HIV genomes
(n &~ 9200 nucleotides) implies that there is a huge number of low energy
states. For example, the frequency of the minimum energy structure in the
ensemble at thermodynamic equilibrium is in general smaller than 10723 for
RNAs of the size of a HIV viral genome. Hence one would need a huge
number of different structures to adequately describe the ensemble. While
such an approach is feasible for RNAs with up to some 100 nucleotides [76],
the direct generation and analysis of the necessary amount of structure in-
formation for long sequences exceeds by far the capabilities of even the most
modern computer systems. Porting these algorithms to parallel computer
architecture was therefore desirable. The current implementation adheres to
the Message Passing Interface (MPI) standard, which allows to use different
parallel computer architectures [10]. Short RNA sequences are still folded
by the seriell implementations of the folding algorithms. The Vienna RNA
Package! is a software package for predicting and comparing RNA Secondary
Structure [24].

'http://www.tbi.univie.ac.at/~ivo/RNA
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Thermodynamic structure prediction of RNA is only the first step towards
a search for conserved RNA secondary structures and computer resources
are the bottleneck for large virus genomes. Several other algorithms are
necessary to obtain a list of RNA motifs. A correct sequence alignment is
crucial for the success of the whole procedure, therefore an advanced multiple
sequence alignment algorithm was developed by Roman Stocsits [63] called
Ralign. It is based on the multiple sequence alignment of Clustal W. Sorting
procedures to extract common base pairs from a sample of aligned sequences
are also described in this section.

2.1 RNA Secondary Structures

Most RNA molecules are single stranded in vivo, but the molecules can fold
back onto itself to form double helical regions stabilized by Watson-Crick
G-C and A-U base pairs or the slightly less stable G-U pairs. Base stacking
and base pairing are hence the major driving forces of structure formation in
RNA. Other, usually weaker, intermolecular forces and the interaction with
aqueous solvent shape its spatial structure. As opposed to the protein case,
the secondary structure of RNA sequences is well defined, provides the ma-
jor set of distance constraints that guide the formation of tertiary structure,
and covers the dominant energy contribution to the 3D structure. Further-
more, secondary structures are conserved in evolutionary phylogeny [19] and
therefore represent a qualitatively important description of the molecules.

The secondary structure can be described as a set of vertices
V={1,2,...,i,...., N} and a set of edges S = {i-j,1 <i < j < N} fulfilling

(1) For1<i<mn,i-(i+1)€S.
(2) For each i there is at most one h # i — 1,7+ 1 such that i - h € S.

(3) Ifi-jeSand h-l€ Sandi<h < j, theni<lI<j.

The first condition simply states that RNA is a linear polymer, the second
condition restricts each base to at most a single pairing partner, and the
third forbids pseudo-knots and knots. While pseudo-knots are important
structural elements in many RNA molecules [75], they are excluded from
many studies mostly for a technical reason [74]. In their absence the folding
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Figure 3: Secondary structures decompose into five distinct loop types, which form the
basis of the additive energy model. One distinguishes three loop energy functions: H(i, j)
for hairpin-loops, Z (i, j, h,l) for the three types of loops that are enclosed by base pairs
i-j and h -l and the additive model for multi-loops described in the text. Stacked pairs
(h=14i+1,l=7—1) and bulges (either h =i+ 1,1l #£j—1lorl=j5—1h#i+1) are
treated as special cases of interior-loops. The energies depend on the types of closing base
pairs indicated by 7 - j and interior base pairs as well as on the size of the loops.

problem for RNA can be solved efficiently by dynamic programming [81,
74]. In many cases pseudo-knots can be “added” to a predicted secondary
structure graph during a post-processing step.

A base pair h -1 is called interior to the base pairi-j,ifi <h <l <j. It is
immediately interior if there is no base pair p- ¢ such that i <p < h <l <
q < j. For each base pair ¢ - j the corresponding loop is defined as consisting
of 7 - j itself, the base pairs immediately interior to i - 7 and all unpaired
regions connecting these base pairs. In graph theoretical terms, the loops
form the unique minimal cycle basis of the secondary structure graph [41].

The standard energy model for RNA contains the following types of param-
eters: (i) base pair stacking energies depend explicitly on the types of the
four nucleotides 7 - j and (7 + 1) - (j — 1) that stack. For the purpose of the
recursions in table 1 it is useful to view stacked base pairs as a special type of
interior-loop, hence we denote the stacking energies Z(i, 7, i+1, j—1). (ii) loop
energies depend on the type of the loop, its size, the closing pairs and the un-
paired bases adjacent to them, see figure 3. We write H (i, j) for hairpin-loops
and Z(, j, h,l) for interior loops. Multi-loops energies are assumed to have
a linear contribution of the form M = M+ M| - degree + Mg - unpaired,
in addition the so-called dangling end energies are taken into account which
refer to mismatches next to the base pairs that delimit the loop. The im-
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plementation of the folding algorithms used in this contribution assumes
the energy parameters summarized by [72], except that co-axial stacking of
helices is neglected. Co-axial stacking is, strictly speaking not part of the sec-
ondary structure graph as defined above. The energy model is thus identical
to Zucker’s Mfold 2.3 [78].

Minimum Free Energy versus Base Pairing Probabilities

The additive energy model of RNA secondary structure folding allows a el-
egant solution for minimum free energy folding and calculation of base pair
probabilities, using dynamic programming algorithms. The minimum free en-
ergy calculation works by calculating optimal structures for all subsequences
of the sequence. The result is an optimal structure and energy over all
subsequences. The structure is obtained in a backtracking procedure. The
minimum free energy algorithm calculates only one structure the thermody-
namic most stable one, and no information about other possible alternate
structures is given. This snap shot of the structure space does not tell us
a lot about how probably this structure is in the ensemble of structures, or
how well determined the ground state is. Calculating only the minimum free
energy structure is unsatisfactory for two reasons. An RNA molecule will
not always fold in its minimal energy configuration, changes between many
structures of similar energy or within a given energy region happens and is
often important for functionality. Secondly, if several structures have ener-
gies very close to the ground state, choosing one of them becomes arbitrary
because of the inaccuracies of the used energy model. One possible solution
to this problem is to generate all structures within a prescribed increment of
the ground state [79, 76].

A more elegant solution was presented by McCaskill, who noticed, that the
partition function @) of all secondary structures can be calculated by dynamic
programming as well. The free energy of the ensemble can be obtained as F' =
—kTIn@. Such an algorithm does not predict a secondary structure, instead
one get the probability Py, for the formation of a base pair h-l. The number of
steps necessary for calculating the minimum free energy or partition function
scale O(n3) with sequence length, the backtracking procedure of the base
pair probability too, where backtracking of the ground state structure scales
O(n). The use of integers instead of floating point figures allows a faster
computation of the minimum free energy. The memory requirements of both



Methods 12

algorithms scale to O(n?). Minimum free energy calculation is faster needs
less memory. The larger sequences can be computed on serial computers,
computing the base pair probabilities makes the use of parallel computers
unavoidable. However the base pairing probabilities of a RNA molecules
allows us a more detailed view of the structural properties, which is needed
for a better understanding of the function of RNA secondary structures.

McCaskill’s Algorithm

McCaskill’s partition function algorithm naturally decomposes into two parts,
namely the computation of the partition function and the subsequent com-
putation of the pairing probabilities. We will refer to the two parts as folding
and backtracking, respectively. The logic of the folding part is essentially
the same as for minimum energy folding [81] while the backtracking part is
much more elaborate. The recursions of McCaskill’s algorithm are summa-
rized in table 1. An efficient implementation for serial machines is part of the
Vienna RNA Package [24]. In the reminder of this section we briefly review
this algorithm.

The partition function of the complete RNA molecule can be derived from
the partition functions of all its sub-sequences. For the sub-sequence from 1
to j we have to distinguish whether i - j forms a base pair or not. We write
Qg for the partition function of the substring subject to the constraint that
i-7 is paired and @);; for the unconstrained partition function. Consequently,
the partition function of the entire molecule is Q = Q1,,.

If 2 to j are paired, this pair can close either a hairpin-loop, an interior-loop
delimited by i - 5 and h - [, or a multi-component-loop. The three terms
in table 1 correspond to these possibilities. Multi-loops can be dealt with
efficiently due to a linear ansatz for their energies contributions. This al-
lows for a decomposition into three terms: one for unpaired substructures,
one for substructures consisting of single component, and a multi-component
reminder. The auxiliary variables @™ and Q! are necessary for handling
multi-loop contributions. Introducing @ and restricting the size of interior-
loops t0 U < Upax reduces the CPU requirements from O(n*) to O(n?®). Most
programs set upa., = 30. The restriction on the size of interior loops does
not have a serious effect in practice, since long interior loops are energet-
ically unfavorable and therefore very rare. For further details we refer to
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Table 1: Recursion for Computing the Partition Function.
The parameter m is the minimum size of a hairpin-loop, usually m = 3.

Folding Backtracking
B _  _—M(ij)/kT
Qp = e W .
jom—2  j-1 pe Q1h-19m Q41,0
o § e, = hholEhiidLn
+ Z Z QELE*[I(LJJLJ)]/&T Qin
h=itl l=htm+1
u<umax ) h—1 n QB i ) T
j—m=—2 Pyo= > 3> Py bl e~ (i,5,h,1)/
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j 2, QrrrnmaQhgo 1=k
J P = QB l(McHMI/RT]
M1 B - i—1)]/kT
Ga = 2 Qe MErMeETAY "o M M
=i > (PR Qi 1 + P Qi1
i=1
j—m—1 _
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h=itm+1
M 2 Py M
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Pn = Pg+ Py + Py
j—m—1
A A
Qij = 14+Q5+ > Qin-1Qh;
h=it1

McCaskill’s [44] original paper.

In the backtracking part of the algorithm, the pairing probabilities P;; are
obtained by comparing the partition functions Qf? and @Q;; with and without
an enforced pair ¢ - 7. While the partition function for longer subsequences
is computed from shorter ones during the folding part, the backtracking
recursion proceeds in the reverse direction. The probability P, of the pair
h -1 is the sum of three independent terms: (i) it closes a component with
probability Pg,, (ii) it is an interior base pair of an interior-loop, bulge, or
stack with probability P}, or (iii) it is immediately interior to a multi-loop
with probability P;}. Again, two auxiliary arrays are needed to handle the

multi-loop contribution in cubic time. The complete recursion is summarized
in Table 1.

For long (sub)sequences the partition functions ();; become very large since
they are the products of a large number of exponential functions. In order
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to reduce the numerical problems we rescale the partition function of a sub-
sequence of length ¢ by a factor QY™ where Q is an a priory estimate for
the partition function. A sufficiently accurate estimate can be obtained from
the ground state energy En:

InQ ~ —1.04 X Ep/kT (1)

We use the message passing implementation of the minimum energy folding
algorithm, which is described by [26, 27] to compute E,.

2.2 Representation of Secondary Structure

Looking at the raw output of folding algorithms is often less presentive,
especially if long RNA sequences are folded. Graphical representation of
folding output is therefore more user friendly and enables a better overview
at all.

The used folding algorithms parallel or serielle version returns either the min-
imum free energy structure in bracket notation , its energy, or the free energy
of the thermodynamic ensemble and the base pairing probability matrix of
the sequence. It also produces PostScript files with plots of the resulting
secondary structure graph and a dot-plot of the base pairing matrix.

The programs read RNA sequence strings from stdin and calculate their
minimum free energy structure, partition function and base pairing proba-
bility matrix [25, 44]. The output is a minimum free energy structure in
bracket notation, its energy, or the free energy of the thermodynamic ensem-
ble and the frequency of the minimum free energy structure in the ensemble.
The dot-plot shows a matrix of squares with area proportional to the pairing
probability in the upper half, and one square for each pair in the minimum
free energy structure in the lower half. The results are used as an input
for a search for consistently predicted RNA motifs in a set of related se-
quences [22, 23].

2.3 Parallel Folding of RNA Virus Genomes

A former parallel computer implementation of the folding algorithms was
restricted only to Intel hypercube or mesh architecture [9]. A new im-
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4.3 Bracket notation
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4.4 Dot plot

Figure 4: Representation of secondary structures produced by Vienna RNA
Package, Alidot, Pfrali or Alifold. All drawings contain the same informa-
tion. Structure graph. A two-dimensional drawing of base pairs contacts.
Mountain plot. Base pairs are draw by horizontal lines, and plateaus symbolize
unpaired regions. Bracket notation. Dots symbolize unpaired bases in sequence,
and matching brackets predicted base pairs. Dot plot. The upper right part
shows the predicted base pair probabilities computed with the partition function
algorithm of the Vienna RNA Package. The area of the squares is proportional to
the pairing probability. The lower left part gives the minimum free energy struc-
ture, see Structure graph for comparison. Note that the minimum free energy
structure is the ground state structure in the thermodynamic ensemble.
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plementation to the common Message Passing Interface standard [10] was
therefore desirable.

Secondary structure predictions of large RNA molecules with several thou-
sand nucleotides are often performed by folding fairly small subsequences.
This has two disadvantages, however, (i) by definition one cannot detect
long-range interactions that span more than the size of the sequence win-
dow, and (ii) the results depend crucially on the window’s exact location.
This is because subsequences fold independently of the rest of the sequence
only if they form a component by themselves, i.e., if there are no base pairs
to the out-side of the sequence window. Often long range base pairs can not
be neglected and folding of subsequences results in different predicted base
pairs, i.e the panhandle structure of Hantavirus. The only way, however,
of identifying the component boundaries or long range interactions is to fold
the sequence in its entirety.

Folding of large sequences is quite demanding both in terms of memory and
CPU time. For a sequence of length n, CPU time scales to O(n?) and memory
requirements to O(n?). While this is not a problem for small RNA molecules,
such as tRNAs, the requirements exceed the resources of most computers for
large RNA molecules such as viral genomes. In most cases, memory, rather
than computational speed, becomes the fundamental resource bottleneck.
The use of modern parallel computers thus becomes unavoidable once the
memory requirements exceed, say, 1GByte and many viral genome sizes are,
unfortunately, well above this limit.

Message Passing

Since the folding and the back-tracking part are independent of each other
it seems logical to parallelize them independently. The folding part can
be parallelized in a way that is very similar to our earlier message passing
implementation of minimum energy folding algorithm [24, 26]. However,
some of the intermediate results (partial partition functions @);; and Qg) are
required again during the backtracking stage. Storing these values in such a
way that the backtracking recursion can efficiently be distributed among a
large number of processors is the main difficulty of our task.
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Memory Requirements for the Parallel Partition Function

M
\ QB QM QB Q P
2 QB

QMI QA QM

5.1 Folding 5.2 Backtracking

Figure 5: Logical memory required by a single processor during folding and back-
tracking, resp., of the entries of sub-diagonal d.

Folding. The work is divided among the processors in sectors by evenly dividing
each sub-diagonal d. The matrices @, QM, and QP are stored in form of rows, the
auxiliary arrays of @M! and Q4 as columns. Each processor calculates the entries
of its part of sub-diagonal d (dashed line). The shaded region representing Q7
does not extend to the diagonal, because we have restricted the maximal size of
interior-loops. After the calculation of one sub-diagonal d the rows of the Q? and
QM matrices are stored permanently (dashed lines), the memory allocated to the
other arrays is recycled.

Backtracking proceeds from the longest subsequences to shorter ones. Each
processor computes a horizontal slice of the triangle matrices in order to reduce
the number of messages. The computation of Plil requires entries of P from the
shaded region, while newly calculated values of P are then stored in rows (horizon-
tal stripes). The shaded rows and columns of @ (shaded, towards upper left and
lower right) are needed for multi-loop contribution P™. The auxiliary arrays PM
and PM1 (vertical stripes) are stored as columns; only those columns intersecting
the current sub-diagonal are necessary.
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Message Passing Requirements

Folding \

Backtracking

Figure 6: Message passing requirements.

Top: Folding. Each processor has to send an/or receive at most rows or columns
of data to its neighbors when the calculation proceeds from diagonal d to d+1. We
have to distinguish three cases: left side The required rows to calculate the sub-
diagonal entry for d and d + 1 are the same, while columns have been shifted. We
have to send the left-most column to processor 1 and receive the left-most column
of processor 3. middle The required columns stay the same for d and d + 1. The
right-most row is not needed anymore and is sent to processor 3, while processor
2 receives the right-most row of processor 1. right side In this case the left-most
row is the same, we have to send the left-most column to processor 1, while the
right-most row is not needed anymore and is sent to processor 3.

Below: backtracking. The required rows to compute a sub-diagonal entry from
d to d + 1 are always the same, while the columns are shifting. We have to send
the right-most column of the processor k to processor k+ 1. Additionally we need
rows of data, calculated during the folding procedure.
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Folding

The crucial observation is that the computation of all those matrix entries
that lie on the same sub-diagonal (7,7 + d) are independent of each other.
Furthermore, they depend only on those entries that are located closer to
the main diagonal. The computation therefore proceeds from the diagonal
of the matrices @);;, Qg, etc. towards the corner (1,n). In order to compute
the entries (4,7 + d) all previously computed data from row i of the arrays
Q, QB, and QM and from column (i + d) of QM! and Q* are necessary.
Furthermore we need a triangular part of the Q7 array up to depth .y for
the interior-loop contributions. For each processor these triangles add up the

trapezoidal area indicated in figure 5.1.

We divide each sub-diagonal as evenly as possible between the available N
processors. Set w = |(n —d)/N] and r = n —d mod N. Then the first
r processors calculate w + 1 matrix entries, the remaining N — r processors
compute only w entries. After completing a sub-diagonal, each processor
has to send either the right-most row or the left-most column of its memory
to its right or left neighbor, respectively, see figure 6 (upper part). This
arrangement, which is the same as for the minimum energy folding [27], is
quite efficient since each processor sends and receives only n messages with
O(n) bytes during the entire folding computation.

In contrast to minimum free energy folding, we need to store the entire arrays
QB and QM for the backtracking part, where this information will be needed
at different processors. Whenever the last entry of a row in Q® and QM has
been calculated, the data are stored for backtracking. A row 7 will be stored
on node [i-N/n|, so that the same number of rows is kept on each processor.
This causes an additional n message passing operations during the folding
procedure.

Backtracking

The backtracking part starts in the corner (1,n) and proceeds towards the
main diagonal. Again, the entries within each sub-diagonal are independent
from each other. To compute a base pair probability P;; we need @ and Q™
data that were calculated during the folding part as well as P, PM and PM!
data that were calculated earlier during backtracking. A detailed description
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of data required by each processor is given in figure 5.2.

To simplify memory access, we do not divide the sub-diagonals evenly be-
tween all processors. Instead, each processor computes a horizontal slice of
the triangle matrices as shown in figure 5.2. The first n/N sub-diagonals are
therefore computed by a single processor at the beginning of the backtrack-
ing part. The poor load balancing during the initial steps, is not crucial,
however, since at the beginning all rows and columns are short and the com-
putational effort is small. Towards the end of the backtracking procedure,
when all rows and columns are long, the work is distributed ideally among the
available nodes. Although the overall load balancing is somewhat worse than
in the folding part, this arrangement minimizes the communication overhead,
see figure 6 (lower part).

Memory Requirements

Table 2 summarizes the memory requirements of the message passing imple-
mentation. In order to ensure a reasonably efficient computation it is neces-
sary to store some of the intermediate data more than once. The trapezoidal
arrays are necessary for computing interior-loop contributions. Their height
is determined by the constant .y, i.e., the maximum length of interior-
loops for which we search rigorously. Their total size is numay + Nu?,,, and
hence negligible in comparison to the triangular arrays. The matrices P¢,
Pt and P™ need not be stored explicitly. In addition, the matrix @) can be
reused to store to the newly computed entries of P since in each sub-diagonal
we need the Q-values that are located closer to the main diagonal (shorter
subsequences) and P-values closer to the upper right corner.

Memory usage is thus dominated by the backtracking part of the algorithm.
On each processor we need approximately

1
M= N (3n2 + numm) +Tn (2)
real numbers. A number of arrays of length n, such as the last column of the
matrix @), are stored on each processor in order to facilitate memory access.
In addition, a few integer fields of length n are used to manage memory and
message passing.

For sequences longer that some 3000 nucleotides it is necessary in general
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Table 2: Memory requirements.

The folding part requires 5 triangular matrices, while we need 6 such matrices
for the backtracking part because the values of QM are required in both row and
column form.

Matrix ‘ row-wise ‘ column-wise ‘ trapezoidal
Folding
QY Qb Qb
QY Qm
QMI Qmm
Q4 Qq
Q q
Backtracking
Qm Qm
Qb
P Pr Pr
pM Prml
pMi Prmlt

to use double precision reals. Hence we need some 2.5GBytes to fold a HIV
sequence with our implementation.

CPU Requirements

The present implementation is suitable for routinely folding large genomic
virus RNAs with a chain length of sometimes more than 10000 nucleotides,
see table 3 for performance data.

The exact number of instructions required for computing the partition func-
tion is sequence dependent. We tested the performance of our parallel pro-
gram on several RNA virus genomes, such as Q3 bacteriophage, n = 4220,
polio viruses, n ~ 7500, and HIV viruses, n ~ 10000). In the following we
will use t to denote the time required to perform the folding in real time on
the Delta, while T' = tN refers to the CPU time consumed on all processors.
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Figure 7: Efficiency of parallelization versus number N of processors on the Intel
Delta.

The total computational effort is represented quite well by
T* ~ an® + bu?,,,n’ (3)

3 2

comes from the calculation of multi-loops and bu?,, n? is deter-
mined by the calculation of interior-loops. From several test runs on the Q3
sequence with different values of ,,,, We obtain a = 900ns and b = 1200ns.
The CPU requirements vary very little with the sequence composition. In
order to measure the pure CPU requirements of the folding algorithm (as
opposed to I/O and message passing overhead) we have extrapolated folding
times for different numbers N of processors to a hypothetical single-node
CPU requirement T*. The efficiency of the parallelization is then given by

E(N) := T*/(Nt) (4)

where an

The data in figure 7 show that we achieve efficiencies of more than 50% when
the smallest number of nodes satisfying our memory requirements is used.
The computation of the minimum energy for estimating Q, equ.(1) take less
than 20% of the total execution time. Folding and backtracking each need
about 40% of the total time.
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Table 3: Wall clock times calculating base pairing probability matrix.

Hardware Sequence n| N ¢ (min)
Pentium II 450 Mhz (serial) | Qg 4220 1 84.0
Beowulf Pentium I 450 Mhz | Qp 4220 | 16 14.5

HIV LAI 9229 | 16 123.6
Pestivirus 12573 17 315.2
Intel Delta HIV LAI 9229 | 320 77.0

Recently cost-effective workstation clusters have become widely available.
We use a Beowulf architecture consisting of 9 two-processor PCs (Pentium
I1, 450Mhz) with 512MByte each, connected by 100Mbit Fast Ethernet,
running Linux and LAM 6.3. This setup is sufficient for the routine computa-
tion of base pairing probability matrices from complete RNA virus genomes.
Typical execution times are compiled in table 3. For comparison, folding the
HIV LAI sequence, n = 9229, took about 77min using 320 processors on the
Intel Delta and 2h on 16 Pentium II 450MHz. The serial code took 42h
on a DEC alpha and 64h on Cray YMP for the same sequence.

Despite the relatively slow network connection in the Beowulf workstation
cluster we find efficiencies above 50% on 16 nodes already for the chain length
n = 4000. The efficiencies increase somewhat for larger n. Executing the
parallel code on a single CPU shows that the overhead from the paralleliza-
tion is about 20% to 25%. This is mainly because some parts of the algorithm
can be implemented more efficiently in the serial version, where the memory
organization is not constrained by requirements of easy message passing.

2.4 Sequence Alignment

An alignment is the most basic sequence analysis task to realize whether two
or more sequences are related and how close this relationship is in terms of
sequence similarity. To find the best possible alignment of sequences is of
central importance for bioinformatics and data processing after routine lab-
oratory procedures like sequencing nucleic acids. Some alignment algorithms
exist which are used to find an optimal alignment, and, of course, a scoring
system is necessary to rank alignments. In principle all known algorithms are
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based on two criteria, (i) maximum similarity or (ii) minimum (Hamming-)
distance [13, 16, 21].

For evaluating the difference between two sequences we have three possibil-
ities of pairs of opposite symbols: (i) identity, (ii) substitution or mismatch
and (iii) insertion or deletion. The procedure is usually done by first align-
ing the sequences and then deciding whether that alignment has occurred
because the sequences are related, or just by chance. In any case the scoring
system should help to answer this question regarding to identical and similar
positions in the alignment. (Similar pairs of residues in amino acid align-
ments are those which have a positive score in the substitution matrix used
to score the alignment, e.g. aspartate-glutamate pairs, D-E, both negatively
charged amino acids.)

Careful thought must be given to the scoring system used to evaluate an
alignment by looking for evidence when sequences have diverged from a com-
mon ancestor by a process of mutation and selection. As mentioned above,
the basic mutational processes that are considered are substitutions, which
change, and insertions and deletions, which add or remove residues in a
sequence and are referred to as 'gaps’. The total score we assign to an align-
ment is a sum of terms for each aligned pair of residues, plus terms for each
gap. Informally, using an additive scoring system we expect identities and
conservative substitutions to be more likely in good (biologically relevant)
alignments than we expect by chance, and so they should contribute positive
score terms. And on the other hand non-conservative changes are expected
to be observed less frequently so they contribute negative score terms. This
system also corresponds to the assumption that we can consider mutations
at different sites in a sequence to have occurred independently (treating a
gap of arbitrary length as a single event). All alignment algorithms depend
crucially on such a scoring scheme and from a biological point of view the
assumption of independence appears to be a reasonable approximation for
DNA and protein sequences, although we know that intra-molecular interac-
tions between residues of a protein play a very important role in determining
protein structure. Regarding the secondary structures of RNAs, where base
pairing introduces very critical long range dependencies, the model of inde-
pendent mutations is biologically inaccurate [33, 37, 40].

We need score terms for each aligned residue. We derive substitution scores
from a probabilistic model that gives a measure of the relative likely-hood



Methods 25

that the sequences are related as opposed to being unrelated. Models assign
a probability to the alignment in each of the two cases. Then we consider the
ratio of the two probabilities. The random model R assumes that a letter in
the sequence (for proteins an amino acid or one of the four bases in the case
of DNA or RNA) occurs independently with some frequency q, and hence
the probability of the two sequences is the product of the probabilities of
each amino acid (or base):

Pz, y|R) = H%quj (5)

where x and y is a pair of sequences. In the alternative match model M,
aligned pairs of residues occur with a joint probability p.,. This value p,, can
be thought of as the probability that the residues a and b have each indepen-
dently been derived from some unknown original residue ¢ in their common
ancestor (¢ might be the same as a and/or b). This gives a probability for
the whole alignment:

.T y‘M przyz (6)

The ratio of these two likelihoods is the odds ratio:

P(z,y|M) _ IL; Poiy: _ Da;y;
Pz,y|R)  II; . I1; a, 7 Az y;

We want to arrive at an additive scoring system, so we have to take the
logarithm of this ratio, known as the log-odds ratio:

S = Zs(ﬂfi,yi) (8)

(7)

where

s(a,b) = log(- 22 )

is the log likelihood ratio of the residue pair(a, b) occurring as an really valid
aligned pair, as opposed to an unaligned pair (or by chance joined pair of
residues or nucleic acids). We can see that S in this equation is a sum
of individual scores s(a,b) for each aligned pair of residues which can be
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arranged in a matrix. The highest positive entries in the matrix are given
for identical residue pairs, lower, but also positive, values do the conservative
substitutions have while non-conservative substitutions give a negative score.
So it is possible to derive scores, in fact s(a,b) in the above equation, for
every pair of residues in the alignment. Any matrix like this is making a
statement about the probability of observing ab pairs in real (biologically
relevant) alignments and is called substitution matrix or score matrix or
weight matrix.

There are two possibilities for penalizing gaps: the standard cost associated
with a gap of length ¢ could be given by a linear score

v(9) = —gd (10)

where d is called the gap open penalty. It makes a difference whether a gap
is newly opened or an existing gap is just extended. A type of score could
be used which is known as the affine score

Y(g) =—-d—(g9—1e (11)

where e is called the gap extension penalty. This penalty should be smaller
than the gap open penalty d, so that extension of existing insertions (or dele-
tions) is penalized less than opening further gaps. Gap penalties also corre-
spond to a probabilistic model of alignment. We assume that the probability
of a gap occurring at a particular site in a given sequence is the product of a
function f(g) of the length of the gap, and the combined probability of the
set of inserted residues,

P(gap) = f(9) || ar- (12)

i€gap

The form of this equation as a product of f(g) with the g,, terms corresponds
to an assumption that the length of the gap is not correlated to the residues
it contains. The natural values for the g, probabilities here are the same
as those used in the random model above, because they both correspond to
unmatched independent residues. When we divide by the probability of this
region according to the random model to form the odds ratio, the ¢,, terms
cancel out. This gives a term dependent on length v(g) = log(f(g)) where
the gap penalties correspond to the log probability of a gap of that length.
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After having determined a certain scoring system we need an algorithm for
finding an optimal alignment for a pair of sequences. We have

(Qn) I 13)

n (n!)? 2mn

possible global alignments between two sequences of length n. The quantity
of possible alignment solutions grows by about 4™ This means for sequences
of length 30 there are 10° possibilities, and with length 60 we have 10'®
possible alignments. But in terms of molecular biology sequences of length
30 or even 60 are comparatively short and often it is necessary to find the
best alignment between sequences which have a length of a few thousand
amino acids or nucleotides (like in the case of virus genomes). It is of course
not computationally feasible to enumerate all these, even for moderate values
of n.

So we need to find a way which gives us the possibility to gain optimal align-
ments without testing and valuing every possible solution. The algorithms
for finding optimal alignments given an additive alignment score of the type
described above is called dynamic programming [45, 51, 52].

Multiple Alignments

Using dynamic programming in order to align just two sequences guarantees
a mathematically optimal alignment. But attempts at generalizing dynamic
programming to multiple alignments are limited to small numbers of short
sequences [42]. For much more than ten or so proteins of average length,
the problem is infeasible given current computer power. Therefore, all of the
methods capable of handling larger problems in practical time-scales make
use of heuristics. Nowadays, the most widely used approach is to exploit
the fact that homologous sequences are evolutionary related. Multiple align-
ment are produced progressively by a series of pairwise alignments, following
the branching order in a phylogenetic tree [11]. First all possible pairs of
sequences are aligned to derive a distance matrix in order to calculate the
initial guide tree which is built up by the distances between the sequences.
Then the most closely related sequences get aligned progressively accord-
ing to the branching order in the guide tree, gradually adding in the more
distant ones when we already have some information about the most basic
mismatches or gaps.
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This approach is fast enough to allow alignments of virtually any size. Fur-
ther, in most (simple) cases, the quality of the alignments is very good,
as judged by the ability to correctly align corresponding domains from se-
quences of known secondary or tertiary structures [2]. The placement of gaps
in alignments between closely related sequences is much more accurate than
between distantly related ones. Therefore, the positions of the gaps which
were introduced during the early alignments of the closely related sequences
are not changed as new sequences are added. One problem is that this ap-
proach becomes less reliable if all of the sequences are highly divergent. More
specifically, any mistakes like misaligned regions made early in the alignment
process cannot be corrected later as new information from other sequences
is added. Thus, there is no guarantee that the global optimal solution has
been found and the alignment is not captured in a local minimum. This risk
increases with the divergence of the initially aligned sequences.

Furthermore, the parameter choice a weight matrix and two gap penalties
(one for opening a new gap and one for extension of an existing gap) is
very important. When the sequences are closely related identities dominate
an alignment, almost any weight matrix will find approximately the correct
solution. With very divergent sequences the scores given to non-identical
residues will become critically important, because there are more mismatches
than identities. The range of gap penalty values which will find the correct
or best possible solution can be very broad for highly similar sequences, but
the more divergent the sequences are, the more exact values of gap penalties
have to be used [71].

Clustal W

A widely used multiple alignment program is Clustal W [66]. Clustal W
addresses the alignment parameter choice problem and dynamically varies
the gap penalties in a position- and residue-specific manner. As the align-
ment proceeds, Clustal W chooses different weight matrices depending on
the estimated divergence of the sequences to be aligned at each stage. Some
matrices are appropriate for aligning very closely related sequences where
most weight by far is given to identities, with only the most frequent con-
servative substitutions receiving high scores. Other matrices work better at
higher evolutionary distances where less importance is attached to identi-
ties. Besides, sequences are weighted by Clustal W to correct for unequal
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sampling across all evolutionary distances in the data set [70, 71]. This down-
weights sequences which are very similar to other sequences in the data set
and up-weights the most divergent ones. The weights are calculated directly
from the branch lengths in the initial guide tree [67, 66]. In Clustal W the
initial guide tree used to guide the multiple alignment, is calculated using
the Neighbor-Joining method [58] which is quite robust against the effects of
unequal evolutionary rates in different lineages and gives good estimates of
individual branch lengths. These branch lengths are used to derive the se-
quence weights. And finally it is possible for the user to choose between fast
approximate alignments [3] or full dynamic programming for the distance
calculations used to make the guide tree.

The trees used to guide the final multiple alignment process are calculated
from the distance matrix derived in the first step. This produces unrooted
trees with branch lengths proportional to the estimated divergence. Then the
root of one tree is established at a position where the means of the branch
lengths on either side of the root are equal. These trees are then also used
to derive a weight for each sequence.

The basic procedure of the progressive alignments is to use a series of pair-
wise alignments to align larger and larger groups of sequences, following the
branching order in the guide tree. First the most similar sequences at the tips
of the tree get aligned. Then this alignment gets aligned with the third most
similar sequence and so. At each stage a full dynamic programming algo-
rithm [49] is used with a residue weight matrix and penalties for opening and
extending gaps. Clustal W varies gap penalties used with different weight
(substitution) matrices to improve the accuracy of the sequence alignments.
Further, the per cent identity of the two (groups of) sequences to be aligned
is used to increase the gap opening penalty for closely related sequences and
to decrease it for more divergent sequences. Also, if there are already gaps at
a position, then the gap opening penalty is reduced in proportion to the num-
ber of sequences with a gap at this position and the gap extension penalty is
lowered by a half.

The Ralign Algorithm

Alignments of nucleic acid sequences can bear one main problem: the se-
quence heterogeneity on the level of nucleic acid makes good alignments often
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impossible. The resulting alignments contain too many gaps although the
sequences should be very similar regarding their high degree of relationship.
While protein sequences can still show substantial homology, the correspond-
ing nucleic acid sequences are already essentially randomized. This is caused
by the inherent redundancy of the genetic code: most amino acids have more
than one codon on the level of nucleic acid. In a protein alignment these
amino acids would match each other while the differences on the level of
nucleic acids can produce gaps within coding regions in a nucleic acid align-
ment. Whereas, on the level of protein alignments many of this gaps could
have been avoided.

Therefore, in most cases it is possible to obtain better alignments on the
level of protein than on the level of nucleic acids. The scores (the per cent
homologies) are higher and the number of gaps within the protein sequences
is not as high as it would be in the case of nucleic acids. Reducing the gaps
within an alignment improves the resulting alignment which may be used as
input into other sequence data processing programs like those for secondary
structure prediction.

Virus genomes contain various open reading frames within their nucleic acid
sequences as they are available as data sets in various data banks (e.g.
GenBank). The lengths of small virus genomes can vary from some 3500
bp as in hepatitis B up to about 20000 bp as in the case of Ebola. The
typical genome size is about 10000 bp. The genomes can consist of single- or
double-stranded DNA or RNA. Retrotranscribing viruses are the retroviruses
(e.g. HIV), the hepatitis B viruses as well as caulimoviruses which have a
DNA genome but use RNA as an intermediate during their replication. RNA
viruses have enormously high mutation rates of up to 10~2 per position and
replication. The number of the open reading frames depends on the type of
virus considered. In addition, the organization of virus genomes is extremely
variable. Overlapping open reading frames are possible, hence one part of
the nucleic acid sequence codes for more than one protein in different frames.
Theoretically, three open reading frames can be covered by the same nucleic
acid sequence in all three possible reading frames. This possibility is actually
realized in the hepatitis B virus. In addition, various non-coding regions can
exist in a certain virus genome.

The idea behind the combined amino acid and nucleic acid based alignments
like Ralign [64] is that coding regions on the level of protein vary less than
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on the level of nucleic acid, because most amino acids are coded by more
than one codon (base triplet) and some different nucleic acid sequences can
produce the same protein sequence after translation. Thus, this approach was
to improve the quality of sequence alignments of RNA viruses by creating
and implementing a combined alignment algorithm.

One could argue that the quality of sequence alignments could be raised
simply by translating the entire nucleic acid sequence into protein and pro-
cessing on the level of proteins. But a very important factor is that the viral
genomic sequence could consist of more than just one open reading frame
(various coding regions in different frames) as well as some non-coding re-
gions. These non-coding regions should, of course, be processed as nucleic
acids, and every open reading frame should be processed in the correct frame.

The combined amino acid and nucleic acid based alignment procedure is made
available in a program called Ralign developed by Roman Stocsits [64] and
described in his diploma thesis. The source code of the package is written in
the programming language C and will run on computers with a conforming
C compiler.

Ralign reads GenBank nucleic acid sequences from sequence files in Pearson’s
format and GenBank format. Besides, it is possible for the us er to define one
or more than one codon tables for each sequence or a group of sequences.
Every input file can be processed using its own codon table. The standard
codon table is the universal genetic codon table which fits most cases. Enter-
ing 'Ralign’ without any options or input files displays a list of the various
available codon tables. These user-defined codon tables are then used by
the program for translation and, of course, for finding the correct start- and
stop-codons in the nucleic acid sequences. Then the program finds all possi-
ble open reading frames which have a previously defined minimal length.

GenBank files may contain information about the exact positions of start-
and stop-codons, the genomic structure of exons and introns or the protein
sequence after translation. If some information like this (e.g. regarding exons
and introns) is present in the GenBank file, it can be obtained and used as
preferred information.

The detected coding regions are translated, using the correct codon table, and
the resulting proteins are compared to the protein sequences in the GenBank
file, if available. An output file is created which contains all data about
the detected open reading frames, either derived by reading the data in the
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GenBank file or as a result of the automatic search done by the program.
From this file the user can get information about all open reading frames,
about their length, their start and stop, and the lengths of their proteins after
translation. Also a second file is created: a PostScript output file which
gives a graphical representation of the found open reading frames either in
one of the three frames or, beyond these, as derived from the GenBank file
input with all introns.

An output file is created which contains all data about the detected open
reading frames, either derived by reading the data in the GenBank file or as
a result of the automatic search done by the program. From this file the
user can get information about all open reading frames, about their length,
their start and stop, and the lengths of their proteins after translation. Also
a second file is created: a PostScript output file which gives a graphical
representation of the found open reading frames either in one of the three
frames or, beyond these, as derived from the GenBank file input with all
introns.

In many cases we can see significant differences in the genetic structure re-
garding the number and order of various open reading frames even between
very closely related sequences. This makes it difficult to decide which ORFs
correspond to each other in the various sequences.

Overlapping open reading frames are quite frequent in virus genomes. If a
certain part of the sequence is coding for two or three proteins, a decision
has to be made which open reading frame is used for the protein alignment.
Ralign constructs a hierarchy which considers the lengths of the open reading
frames. The longest coding region has highest priority and gets aligned first
as a protein alignment.

The program makes a first decision, which coding regions are maintained
through the alignments as protein sequences and what regions get aligned
on the level of nucleic acids. The proposed assignment is presented in a
file listing the open reading frames chosen for protein alignment. The user
now has the possibility to alter this assumption and to tell the program
exactly what coding regions are to be used for alignments on protein level.
The information in both output files (text and PostScript) turned out to
be quite helpful to make meaningful decisions about the choice of the open
reading frames.

After the user has either manipulated or accepted the chosen open reading
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frames, Ralign uses Clustal W to align the homologous sequence parts. End
gaps are not penalized by the Clustal W algorithm. As only a piece of the
genomic sequence is aligned end gaps are not desirable. Since CLUSTAL W is
used as a ‘black box’ via a system call, a trick is used:

Ralign cuts off the end gaps such that the remaining central alignment block
has no gaps both at the first and the last position. The sequence pieces that
have been cut off are joined to the neighboring sequence parts before and
after the now aligned protein parts of the sequence. In the case of overlapping
coding regions these cut off parts are again handled on the level of the proteins
that these regions code for. On the other hand, if the neighboring sequences
are non-coding, the cut off sequence pieces are handled directly as nucleic
acids.

Then the second protein alignment of the second largest open reading frames
(with second priority) is started. In the case of overlapping coding regions,
the central block of the first alignment (the alignment of higher priority)
is still overlapping the second open reading frame, then the second protein
alignment processes only this part of the second open reading frame which is
not covered by the prior alignment. In order to be able to smoothly join the
first and second central alignment block the generation of end gaps in the
second alignment have to be suppressed. This is achieved by adding a tag
to each of the sequences to be aligned. In the present implementation this
tag consists of 12 copies of the string THISISATAG, which is quite unlikely
both for a native amino acid and nucleic acid sequence. In almost all cases,
therefore, CLUSTAL W aligns the artificial tag sequences with each other and
hence provides us with well defined edges for the alignment of the real se-
quence. The ends of the second protein alignment part which lie adjacent to
the first central alignment block are therefore forced to lie exactly one above
the other.

After having aligned all protein subsequences (all chosen open reading frames),
removed all end gap containing regions, and linked them to the neighboring
parts of the sequences, the alignments of the non-coding regions start. Again
the ends of the aligned sequence parts are forced to lie one above the other,
if these ends are adjacent to formerly aligned protein parts. That way all
parts can be joined smoothly together.

The protein alignments are then reverse translated. At every position where
the protein alignments contain a gap of length n, a gap of length 3n is inserted
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into the corresponding nucleic acid sequence at the corresponding site.

Finally, all alignments, either on the level of proteins or nucleic acids, get
combined and a resulting alignment output file is created which contains the
complete nucleic acid sequence alignment.

In some rare cases CLUSTAL W will not properly align the tag regions added
to suppress end gaps. Gaps inserted into the tags can lead to imperfect
removal of the tags and thereby corruption of the sequences. In a last step
the final alignment is checked for such errors. Currently, the only recourse is
to remove the offending sequence from the alignment.

SplitsTree, Split Decomposition

Evolutionary data is most often presented as a phylogenetic tree, the under-
lying assumption being that evolution is a branching process. However, real
data is never ideal and thus doesn’t always support a unique tree, but often
supports more than one possible tree. Hence, it makes sense to consider
tree reconstruction methods that produce a tree, if the given data heav-
ily favors one tree over all others, but otherwise produces a more general
graph that indicates different possible phylogenies. One such method is the
Split Decomposition introduced by Hans-Juergen Bandelt and Andreas
Dress (1992) and its variations.

To show aligned sequences as a tree we used the program SplitsTree2.4.1,
it is a program for analyzing and visualizing evolutionary data. Input is input
a file containing sequences, distances, or a system of splits and produces as
output a weakly compatible system of splits and a splits graph representing
the given data. It contains a number of transformations to obtain distances
from sequences and methods for obtaining compatible or weakly compatible
split systems from distances or sequence [34].

2.5 Conserved Structure Detection

The method for detecting conserved secondary structures [23, 29] aims at
utilizing the information contained in a multiple alignment of a small set of
related sequences to extract conserved features from the pool of plausible
structures generated by thermodynamic prediction for each sequence. A
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flow chart is shown in figure 9. Our approach is different from efforts to
simultaneously compute alignment and secondary structures [59, 65, 6].

One disadvantage of these methods is the much higher computational cost
which makes them unsuitable for long sequences such as viral genomes, if no
parallel computers are available. Furthermore they assume implicitly that
all sequences have a common structure, not just a few conserved structural
features. The same is true for the related program Construct [43].

The basic two inputs for the algorithm are a multiple sequence alignment
and the base pair probabilities from McCaskill’s algorithm. We calculate the
multiple sequence alignment using CLUSTAL W [68]. No attempt is made to
improve the alignment based on predicted secondary structures. While this
might increase the number of predicted structural elements, it would also
compromise the use of the sequence data for verifying these structures. Fur-
thermore we find that most regions that have functional secondary structure
tend to align fairly well, at least locally.

While the related Alidot method [23] uses only minimum energy structures,
i.e., one structure per sequence, Pfrali [28] uses base pairing probabilities
as obtained from McCaskill’s partition function algorithm. Since the base
pairing probabilities contain information about a large number of plausible
structures, this approach is less likely to miss parts of the correct structures.
In both cases, we make explicit use of the sequence variation to select the
credible parts of the predicted structures. Thus, we do not assume a priori
that there is a conserved secondary structure for all (or even most) parts of
the sequence.

Base pair probability matrices are conveniently displayed as “dot plots”.
The Vienna RNA Package [24] contains an efficient implementation of Mc-
Caskill’s algorithm that produces dot-plots in PostScript format, see fig-
ure 4.

The Pfrali program reads the pair probabilities from these files as well as
a multiple sequence alignment in CLUSTAL W format. The gaps in the align-
ment are inserted into the corresponding probability matrices. We can now
superimpose the probability matrices of the individual sequences to produce
a combined dot plot. To keep the number of base pairs manageable we keep
only pairs that occur with a probability of at least p* = 1073 for at least
one sequence. Base pairs with even lower probabilities are very unlikely to
be part of an important structure. In the combined dot-plot the area of a
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dot at position i, j is proportional to the mean probability p; ; (averaged over
all sequences). In addition we use a color coding to represent the sequence
information.

A sequence is compatible with base pair (i.j) if the two nucleotides at po-
sitions ¢ and j of the multiple alignment can form either a Watson-Crick
(GC, CG, AU, or UA) pair or a wobble (GU, UQG) pair. When different
pairing combinations are found for a particular base pair (i.j) we speak of
consistent mutations. If we find combinations such as GC and CG or GU
and UA, where both positions are mutated at once we have compensatory
mutations. The occurrence of consistent and, in particular, compensatory
mutations strongly supports a predicted base pair, at least in the absence of
non-consistent mutations.

Phylogenetic methods in general consider only compensatory mutations even
though GU base pairs are clearly important as evidenced by the fact that
RY—YR conversions are rare [20]. While compensatory mutations of the
type RY—=RY, such as GC—AU, can be obtained by two subsequent con-
sistent point mutations, for instance GC—GU—AU, a double mutation is
required for RY—YR mutations. We argue therefore that all consistent
mutations, not only compensatory ones, should be seen as support for a
proposed structure.

The sequence variation, the number of non-compatible sequences, and the
number ¢; ; of different pairing combinations is incorporated in the combined
dot-plot as color information. For the details of the encoding scheme see the
caption to the color plate in figure 8.

The base pairs contained in the combined dot-plot will in general not be a
valid secondary structure, i.e., they will violate one or both of the following
two conditions: (i) No nucleotide takes part in more than one base pair.
(ii) Base pairs never cross, that is, there may not be two base pairs (i.5) and
(k.l) such that ¢ < k < 7 < [. In the reminder of this section we describe
how to extract credible secondary structures from the list of base pairs.

In essence, we rank the individual base pairs by their “credibility”, using the
following criteria:

(1) The more sequences are non-compatible with (i.5), the less credible is
the base pair.
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(2) If the number of non-compatible sequences is the same, then the pairs
are ranked by the product p;; x ¢;; of the mean probability and the
number of different pairing combinations.

Then we go through the sorted list and remove all base pairs that conflict
with a higher ranked pair by violating conditions (i) or (ii).

OO LG DM L (- DD NN NI

Figure 8: Hepatitis C virus IRES, an example of a color dot-plot, left picture and
the two-dimensional graph of its secondary structure right side. Colors

indicate the number of consistent mutations ® 1, ® 2 W 3 different types
of base pairs. Saturated colors, M, indicate that there are only compatible
sequences. Decreasing saturation of the colors indicates an increasing number
of non-compatible sequences: W 1, 2 sequences that cannot form a base
pair (7,7). If there are more than 2 non-compatible sequences the entry
is not displayed. In the two-dimensional graph of the secondary structure
consistent base pairs are symbolized by a single circle around one base pairing
part, compensatory mutations by two circles around both pairing partners.

The list now represents a valid secondary structure, albeit still containing
ill-supported base pairs. Since our goal is to produce a list of well-supported
secondary structure features that contains as few false positive as possible,
we use a series of additional “filtering” steps: First, we remove all pairs
with more than two non-compatible sequences, as well as pairs with two
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non-compatible sequences adjacent to a pair that also has non-compatible
sequences. Helices with so many non-compatible sequences can hardly be
called “conserved”. (For large samples these rules might have to be modified
to tolerate somewhat larger numbers of non-compatible sequences.) Next, we
omit all isolated base pairs. The remaining pairs are collected into helices and
in the final filtering step only helices are retained that satisfy the following
conditions: (i) the highest ranking base pair must not have non-compatible
sequences. (ii) for the highest ranking base pair the product p;; X ¢; ; must
be greater than 0.3. (iii)if the helix has length 2, it must not have more
non-compatible sequences than consistent mutations. In general, these fil-
tering steps only remove insignificant structural motifs that one would have
disregarded upon visual inspection anyways. The remaining list of base pairs
is the conserved structure predicted by the Pfrali program.

The final output of the program consists of a color coded dot-plotin PostScript
format, as well as a text output containing the sorted list of all base pairs
and the final structure. Additional tools are provided to produce annotated
secondary structure plots from these data.

Manual reconstruction of a consensus structure proved to be a time-consuming
and error-prone task. In contrast, the structure in figure 8 was produced
without human intervention.



Methods 39

McCaskill's
Algorithm

RNA Sequencs
CLUSTAL W
Multiple Sequence Alignment
Dot Plots = —= =
MO -

Combined Pair

Table
sequence and
pairing probability

Credibility Ranking
Reduce Pair List

CHECK

compensatory

mutations

Conserved sub-structures

Figure 9: Flow diagram of the algorithm. A multiple sequence alignment is cal-
culated using CLUSTAL W. RNA genomes are folded using McCaskill’s partition
function algorithm as implemented in the Vienna RNA Package. The sequence
alignment is then used to align the predicted structures. From this structural
alignment we extract putative conserved regions. In the final step the sequence
information, in particular compensatory mutations, are used for validating or re-
jecting predicted structure elements.
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2.6 Aligned Minimum Energy Folding

Secondary structure prediction is based on folding only a single sequence and
common structures of related sequences are detected afterwards. Common
RNA structures on a sample of sequences are only presented in a two step
process by folding algorithms and the algorithms Alidot and Pfrali. How-
ever it would be nice to compute common structures of a set of sequences in
a one step process and the algorithm presented in this section is an attempt
in this respect.

The aim is to develop a method that use thermodynamic structure prediction
on a sample of aligned sequences, or to combine the algorithm Alidot [23]
and minimum free energy calculation [24]. The result of this attempt is a new
folding algorithm called Alifold. Its main idea is to assign to each struc-
tural element an mean energy, averaged over all sequences in the alignment.
Otherwise it is similar to the usual minimum free energy calculation using
the same thermodynamic energy set. Major differences are, that we use a
sample of aligned sequences as input, and we get no energy evaluation of
the secondary structure. The result of the computation is a common ground
state structure over a sample of aligned sequences.

We can use even small data sets, of about 10 sequences, or huge data sets of
about 100 sequences to search for consistent RNA secondary structures. For
a large number of aligned sequences the algorithm Alidot faces the problem
of two many sequences not pairing a given base pair ¢ - j. The number of
unpaired sequences is fixed to three, only three sequences of all may not
base pair a given base pair, otherwise the base pair is forbidden and not
predicted. The total amount of sequences can influence the result, that is
really a problem for a large sample of sequences. In opposite to AliDot we
use in Alifold a user-defined fraction of all sequences to decide whether a
base pair can be formed or not. That is a practicable solution to reduce the
influence of the total amount of used sequences on predicting base pairs at

all.

In our respect conserved RNA elements contain consistent or compensatory
mutations, that favors a special structure over the sample of sequences. In
our algorithm the same set of energy parameters are used as implemented
in the Vienna RNA Package and energy contributions of different types of
loops are identical, see figure 3 and table 4. A pseudo minimum free energy
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(Epseudo) is calculated over a set of aligned sequences. This pseudo energy
consists of the average energy over the aligned sequences plus bonus energies
for consistent and compensatory mutations. Adding finally sequences not
pairing a given base pair i-j get a penalty energy proportional to the number
of sequences not pairing. The bonus and penalty energy contributions are
summed up for each i - j.

The bonus energy for consistent (Conli,j]) or compensatory (Compli,j]) muta-
tions is practicable to set to —0.05 kcal /mol and the penalty energy (Unpli,j])
to 0.05 kcal /mol for unpaired sequences, and the fraction of sequences having
to pair a base pair i - j is set to 80%.

This settings allows us to find mutations quite well without changing the
predicted secondary structure in its entirety. Bonus or penalty energies are
only added with hairpin-loops and interior-loops, multi-loops are not yet con-
sidered. This may cause that multi-loop could not be predicted as well. One
should keep in mind, that good multi-loop energy parameters are not avail-
able at present, and all dynamic folding algorithms use a simple estimate
to contribute multi-loops, so the prediction of multi-loops is still a prob-
lem of thermodynamic folding algorithms. Fortunately most conserved RNA
elements can be found in hairpins or interior loops.

Another difference was introduced by the energy contribution of mismatches
in stacks. Forming stacking regions mismatches inside a single sequence
causes by default a very high penalty energy and would decrease the number
of base pairs. That is a crucial problem, because a single mismatch in one
sequence can prevent that base pair, although all other sequences can pair.
A good solution to this problem is to reduce the penalty energy of single
mismatch to 0.1 kcal/mol.

A main problem of the algorithm Alifold and predicting conserved struc-
tures generally, is a bad sequence alignment. Too many gaps, gaps are con-
tributed to mismatching base pairs, can significantly change the predicted
secondary structure, because other base pair contacts can be preferred by
the energy model. In the worst case a completely different ground state
structure can be predicted, because the aligned sequences are different to the
starting sequences and a small amount of mutations (gaps) can change the
structure in its entirety.
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Table 4: Pseudocode for the Algorithm Alifold.

for(d=1...n)
for(i=1...d)
j=i+d

IsPaired(d,j)
if (IsPaired(i,j)) else base pair forbidden
for( s=1...Number_of_Sequences)
C[i,j] += HairpinEnergy
C[i,j] += Mutation_energy
for(p,j... i<p<qg<j) {
for( s=1...Number_of_Sequences)
ali_energy += LoopEnergy
ali_energy += Mutation_energy
C[i,j] = MIN2(ali_energy,ali_new_c)
ali_MLenergy = Multiloop_energy
C[i,j] = MIN(C ali_MLenergy,C[i,j])
for(j=5...n)
f5[j1=MIN2(£f5[j-1], C[1,jl+Dangling_energy) ;
Epseudo[n]=£f5[n]/100;

Remark. C[i,j] is the energy given that ¢ and j pair.  Function
IsPaired (i, j) checks whether a given base pair i-j is allowed over all aligned
sequences. The fraction of sequences having to pair can be set individually.
Mutation_energy is either a bonus energy for consistent or compensatory
mutation, or a penalty energy proportional to the number of sequences not
pairing ¢ - j. Multi loop energies are summed up over all sequences, but no
bonus energy for consistent and compensatory mutations is given. The array
£5[j] contribute to subsegment energies. The base pairs are calculated by
a backtracking procedure, after the pseudo minimum energy calculation.
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Table 5: Folding times of Alifold and Alidot to predicted conserved RNA
structures, performed on Dual Pentium IIT 450 MHz, 1024MByte. The symbol f
denote to the fraction of sequences having to pair, otherwise that base pair is not
predicted, default value f = 80%. Testing with identical sequences of sequence
length 1000 shows that Alifold is about 20% slower than the Vienna RNAfold
1.3. Using different sequences e.g. HCV virus genomes, the whole calculation of
Alifold took about 20% of Alidot.

Remark Number | length | t (min) Alifold | ¢ (min) Alidot
identical seq. 10 1000 3.43 2.82
HCV virus 10 9757 285.8 1396.4
HCV virus f = 70% 10 9757 364.9 1396.4
HIV1 virus 51 10678 1514.8 ~ 7038

That happens also if normal minimum free energy folding is used. In this
case we have to use a different sequence alignment to predict a correct set of
conserved elements. The output is a list of predicted base pairs, additional
information on different base pairs for a given i - j is printed to file, the base
pair type and the number of sequences not pairing ¢ - j.

Performance

The demand of computational resources folding RNA secondary structures
is sequence dependent and for large sequences as complete virus genomes
quite demanding both in terms of memory and CPU time, see section 2.3.
Although linux parallel clusters are nowadays easier available, the use of
single processor computers are still preferred by most scientists. Therefore
an algorithm speeding up conserved secondary structure predictions is still
desirable.

Secondary structure prediction is the most time and computational resource
consuming step in conserved structure prediction. Two different algorithms
are used McCaskill’s partition function or minimum free energy folding. A
more detailed prediction is done by McCaskill’s, but the need of computa-
tional memory is often to large to be performed on available computers.
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Often conserved RNA secondary structures are well presented in the ensem-
ble, so we can predict them using minimum free energy calculation. Although
minimum free energy calculation is fast and less resource consuming than the
partition function calculation, large samples of long sequences took a while,
a faster alternative is Alifold.

The calculation time of Alifold depends on the diversity of the used se-
quences and the fraction f, see table 5. Computation time increases with
sequence identity and decreases with the fraction of possible base pairs over
all sequences for a given 7 - j.

Examples

10.1 AliDot 10.2 Pfrali

10.3 Alifold

Figure 10: Comparison of three differently predicted consensus structures. A
set of 21 Halobacteriales 5sRNA sequences are taken. In the Alifold output 3
additional base pairs could be predicted. Two or more sequences are not consistent
with these base pairs, therefore they are not predicted in Alidot and Pfrali, see
figure Alifold white colored.
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Table 6: List of predicted conserved elements, performed by all three algorithms.
The mean pairwise homology of the aligned sequences is 70.7%. Commonly pre-
dicted elements are compared. Number of conserved bases (cons.) and the mean
pairwise homology (hom.) are listed. Note, length of predicted elements are dif-
ferent, see figures 11,13,14.

Position Alifold Alidot Pfrali
in Pfrali | cons. hom.(%) | cons. hom.(%) | cons. hom.(%)
141-255 93 94.1 91 94.0 91 94.0
390-429 28 89.8 29 89.8 28 89.8
609-654 52 83.9 02 83.9 28 84.3
680-739 29 90.5 29 90.5 45 89.1
788-818 18 75.6 18 75.6 14 72.4
8046-8095 | 28 83.8 28 82.5 28 83.8
8715-8749 | 20 85.2 22 83.5 22 83.5
9143-9216 | 36 77.5 36 77.5 36 77.5
9330-9373 | 9 72.2 19 65.8 18 67.9
9377-9424 | 30 85.8 30 82.4 30 84.5
9433-9467 | 23 88.7 23 87.3 23 87.3

Found RNA structure motifs are compared to the output of Pfrali and
Alidot. As a first example Alifold was tested on a set of 5sRNA of Halobac-
teriales. The output was compared to Alidot and Pfrali using the Vienna
RNA Package for secondary structure prediction. Alignment was produced
by Clustal W.

A second example was performed by folding complete Hepatitis C virus
(HCV) genomes, they are aligned by Clustal W and secondary structure
motifs are predicted using Pfrali, Alidot and Alifold for comparison.

The length of the aligned sequences is 9784 and the mean pairwise homology
is 70.7%. This sample of Hepatitis C Virus sequences is different to the
selected virus genomes in section 3.2.1. A more diverse set is used to test
the algorithm Alifold. The result of the test is that the algorithm Alifold
predicted all RNA motifs also found by Pfrali, four additional motifs can be
found not presented by Pfrali and Alidot predicted one additional structure
motif.
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Discussion

The algorithm Alifold is a practicable alternative to Alidot or Pfrali pro-
viding us with the same output of conserved secondary structure motifs, see
figure 11, 13, 14. The predicted conserved RNA elements are not discussed in
detail, because they are only listed to show the quality of this approach. All
secondary structure motifs predicted by Pfrali, Alidot are also predicted
by Alifold. Some additional structure motifs are found using Alifold,
that is a result of using aligned sequences with gaps. Introducing gaps to
the sequence can prefer different ground state structures. The selection of
conserved RNA structures is still a problem, at present it leave it up to the
viewer which elements to believe. An automated and fixed search criteria for
the selection is therefore desirable.

The algorithm Alifold allows a lot of parameter setting i.e. to set the frac-
tion of pairing sequences, or the values for mutation bonus or penalty energy
and is therefor more flexible than Alidot.

The performance of this algorithm is quite good, we observed a speed up
of the prediction of about 5 times to normal minimum free energy folding.
Folding large sequence numbers is also no problem and quite fast, see ta-
ble 5. The improved computational speed and the feasible small amount of
used memory for detecting conserved structure motifs put this tool into the
position to screen easily large numbers of long RNA sequences. The limi-
tation to this algorithm is computational memory than folding times. The
prediction of conserved RNA motifs of large RNA viruses up to 16000 nt
can be performed on present computers with computational memory up to
1GByte.
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11.13 9342-9361 * 11.14 9378-9423 * 11.15 9434-9466 *

Figure 11: Detected conserved secondary structures of HCV. Predicted by
Alifold, using default parameter settings (f = 80%). Alignment length 9757.
Structures labeled by (*) are also predicted by Pfrali.
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Figure 12: Detected conserved secondary structures of HCV. Predicted by
Alifold, using a different fraction of sequences having to pair (f = 70%). Align-
ment length 9757. Structures labeled by (*) are also predicted by Pfrali.
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Figure 13: Detected conserved secondary structures of HCV. Predicted by Alidot.
Alignment length 9757. Structures labeled by (*) are also predicted by Pfrali.
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Figure 14: Detected conserved secondary structures of selected HCV. Predicted
by Pfrali. Alignment length 9757.
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2.7 Vienna RNA Viewer

Searching long RNA virus genomes for conserved secondary structure motives
by hand is a quite laboriously work. A graphical viewing tool with options for
selection of probably conserved regions and a semi automatically generation
of detected structure motives is a demand.

The Vienna RNA Viewer, a RNA secondary structure viewing tool was devel-
oped by Martin Fekete and Ivo Hofacker in Perl and Perl1Tk at the Institute
for Theoretical Chemistry and Molecular Structural Biology. This viewing
tool is designed to accept the output formats produced by the Vienna RNA
Package and the algorithms Alidot Pfrali. The program detects automat-
ically the input file type, whether normal RNA dot_plot files, or the special
output file format of Alidot and Pfrali. Although several Viewing tools
are known for RNA secondary structures, e.g. RNAviz? XRNA3 our search
for conserved RNA secondary structure patterns made this new viewing tool
unavoidable.

RNAfold, Secondary Structure Output

The Vienna RNA Package produce a so called dot_plot file format, with the
information of the secondary structure of the folded RNA sequence, either
only minimum free energy or base pair probability, see figure 15. The main
window of the Vienna RNA Viewer shows a typical dot_plot file. The lower
triangle contains the minimum free energy, and the upper one the base pair-
ing matrix of phenylalanin tRNA sequence. Squares denote to base pairs
and its size to the probability in the ensemble of structures. Red colored
squares are minimum free energy (mfe) base pairs, blue one are base pairs in
the ensemble of all structures. Note, the minimum free energy is the ground
state structure, but not necessarily the most probable structure in ensem-
ble. Several additional information can be obtained by left-mouse click on
the colored squares, the base pair position, the pairing nucleotides and the
probability is displayed, minimum free energy base pairs are labeled “mfe”.
One can zoom in and out the dot_plot by pressing (+,—). Several func-
tional buttons are available, at top a GO, Save Screen-button, Redraw,
Help and Quit. The current courser position is shown top left side. The GO

’http://www-rrna.uia.ac.be/rnaviz
3ftp://fangio.ucsc.edu/pub/XRNA
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button centers the base pair position inserted right, Save Screen prints a
PostScript screen shot of the main window, Redraw deletes all labels and
redraws the main window, Help provides help on buttons and you can quit
the program by clicking the Quit button.

The buttons situated at the bottom of the main window provide special
functions. Left most button Basepair List creates a new window with a
list of all drawn base pairs. A left-mouse click on a list item centers the
selected base pair in the main window and draws a circle around the square.
The Mountain Plot is disabled for normal dot_plot input files.

The button Stack List allows a search for stacking regions inside the dot_plot.
You can set the minimal stack size and the minimum probability of stack-
ing base pairs, all stacks matching the search criteria are listed in the stack
list window. The sorted list of found stacking regions can be visited by a
left-mouse click, this centers the stack in the main window and mark the but-
ton red for already visited. Labeling with (+, ~, —) is useful for searching
for conserved stacks and the entry field allows to type in a remark for the
stack. The selected stack-list can be saved, by clicking button Save List
in the Stack List window, Draw Stacks draws only all selected stacks in
the main window, and New Stacklist allows to create a new list of stacking
base pairs.

Secondary Structure is a tool to write RNA secondary structure to PostScript
output files, or XRNA compatible structure files. One can select a region to
draw by a left-mouse click for the start position and a right-mouse click
for the end position, or by clicking on stacks in the stack list window. A
PostScript and a structure file of the selected region is drawn to file. For
phenylalanin tRNA the PostScript output is shown, see figure 16.
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Figure 15: Snap shot of main window of the Vienna RNA Viewer displays the sec-
ondary structure of phenyalanin tRNA, colored squares denote base pairs. Lower
left triangular matrix shows the minimum free energy, red colored, and the upper
right triangular matrix show the base probabilities of the ensemble, blue colored.

Buttons are explained in text.
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Figure 16: Snap shot of functional windows of the Vienna RNA Viewer. The
Base pair list shows all base pair contacts, minimum free energy and base pair
probability, see figure 16.1. A search for stacking regions can be selected the
window shown in figure 16.2. Matching stacks are listed in the Stack list-window
see figure 16.3. The window shown in figure 16.4 allows to select a region to print
the secondary structure to file, e.g. the secondary structure graph of phenylalanin
tRNA is shown in figure 16.5.
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Secondary Structure Output of Pfrali and Alidot

The algorithm Pfrali Alidot use a new output format for secondary struc-
tures. For searching conserved RNA secondary structures one can use five
main functions implemented to the Vienna RNA Viewer, see also figure 16.
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Figure 17: Display of a Pfrali output of 21 aligned sequences of 5sRNA of
Halobacteriales. The upper left triangle displays the base pair probabilities.
Consistent and compensatory base pairs are differently colored. The lower left
triangle shows the minimum free energy structure. Additional information on
base pairs are obtained by a left-mouse click on squares.
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Figure 18: Snap shot of functional windows. Figure 18.1 displays a sorted list of
stacks. Figure 18.2 shows the window to a draw secondary structure to file, the
selection of a region follows figure 16, additional the alignment file is needed. The
selected secondary structure is shown in figure 18.3. Consistent and compensatory
mutations are denoted by circles around the bases. The button Mountain Plot
draws a colored Hodgewed mountain plot of the Pfrali output. One can zoom
in the mountain plot by selecting a region by left-mouse and right-mouse click.
Figure 18.4 lists all base pairs by their credibility, a left-mouse click centers the
base pair in the main window of the Vienna RNA Viewer
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The button Mountain Plot is activated using Pfrali and Alidot output
files and draws a colored Hodgewed mountain plot, see figure 18. One can
zoom into the mountain plot by selecting a region by left-mouse and right-
mouse click. Draw Selection draws the mountain plot of the selected region.
Reset draws the entire mountain plot again and Save Screen prints out the
contents of the window to a PostScript file.

Discussion

The Vienna RNA Viewer was first designed to view only the dot_plot files
produced by either Pfrali or Alidot. This was the first attempt to visualize
the information produced by these algorithms. The analysis of complete virus
genomes with several thousand nucleotides, such as Hepatitis C virus or
Pestivirus could be hardly done in reasonable time without an investigation
tool, which help to filter useful information.

Conserved RNA secondary structures are always presented in stacking base
pairs and a sorted list of stacks is a useful tool to screen through a complete
virus genome for possibly conserved motives. A first overview of a large
virus genome is provided by the mountain plot, which allows a qualitative
analysis, whether conserved motives can be found or not. The result of
investigating these files is creating a list of structure files, either mountain
plots or structure graphs of possibly conserved RNA secondary structures.
This Vienna RNA Viewer is a fast and easy tool to screen through even large
data files, produced by Pfrali or Alidot. A first test was done to produce
the data files in 3.13.2.

This viewer allows to screen complete virus genomes in rather short time,
so a lot of different virus families can be studied. An increase of known
conserved RNA secondary structures can also lead to a better understanding
of the viral life-cycle of RNA viruses. A first attempt to classify RNA virus
species on basis of their conserved structural motives can be tempted and
can possibly improve the understanding of virus evolution over time.



3 Results

The procedure was first tested on two different virus families, to give an
example that there is no restriction to special RNA viruse genera. The
virus family Bunyaviriade are anti-sense single strand RNA viruses with a
tripartite genome. Flaviviridae are sense RNA viruses and beyond it the
genera Hepatitis C' virus and Pestivirus have a completely different coding
strategy to Bunyaviridae.

Numerous sequences were available for Hepatitis C virus and Pestivirus and
Hantavirus, but for our search sequences are preselected to improve the qual-
ity of the sequence alignment, also the number of used sequences has to be
restricted, because to many sequences would have decreased the number of
base pairs. Remember in the algorithm Pfrali and Alidot there is a fixed
number of three sequences for not pairing a given base pair otherwise the
base pair is forbidden. For the color code of predicted base pairs see figure 8.

The set of selected virus genomes should also represent all available se-
quences, and the lengths of the genomes were kept in a certain range, to
improve the multiple sequence alignment. In spite of this restriction the
virus genomes show sequence homologies from approximately 70-90%. Note
about 10% sequence diversity is enough to destroy consistent RNA secondary
structures, if mutations occur randomly. Detected RNA structures are in this
respect conserved.

Extensive testing of our parallel folding algorithms could be performed by
folding the entire Pestivirus genomes, that scales up to a total sequence length
of about 13000 nucleotides. For the first time entire secondary structure data
are available for such large virus genomes, that is an improvement to folding
only sequence segments, long range interactions are not neglected anymore.
Previous investigations focused mainly on the non coding regions. Only
sequence of rather short segments of the genome were analyzed. This work
extends the search to the entire genome.
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3.1 Structure Motifs, Bunyaviridae
Introduction

The virus family Bunyaviridae consists of five genera. Bunyavirus, Phle-
bovirus, Nairovirus, Hantavirus and Tospovirus. Virions are spherical or
pleomorphic, 80-120 nm in diameter, and have a lipid-containing envelope.
The genome is tripartite and terminal nucleotides of each viral RNA species
are base-paired forming non covalently closed, circular RNAs. Ribonucleo-
capsids , negative- or ambisense, are single-stranded RNAs, 11-21 kb in over-
all size. Terminal sequences of gene segments are conserved among different
viruses in each genus but are different among genera. The L-segment encodes
the viral transcriptase-replicase, the M-segment the envelope glycoproteins,
and the S-segment the nucleocapsid protein. Phlebovirus and Tospovirus
have an ambisense S-segment; they encode non structural proteins (NSS) in
the 5’-half of virion S-segment. The viruses have four structural proteins, two
external glycoproteins (G1 and G2), a nucleocapsid protein (N), and a large
transcriptase protein (L). Virions contain lipids that are derived from host cell
(Golgi) membranes. G1 and G2 proteins contain high mannose glycans. RNA
replication involves a primary transcription of mRNA from each segment of
the genomic RNA via a virion transcriptase; later using the protein products
of this transcription, there is production of full-length complementary RNA
for each segment, each of which in turn is used as template for the synthesis
of genomic RNA segments. Replication takes place in the cytoplasm, and
assembly occurs via budding usually upon Golgi membranes. Closely related
viruses can re-assort gene segments during mixed infections. The viruses
(except Hantavirus) replicate in vertebrates and arthropods. Transovarial
and venereal transmission occurs in some vector mosquito species and the
viruses are generally cytolytic in their vertebrate hosts, but not in their in-
vertebrate hosts. Hantavirus are transmitted by persistently infected rodents
via aerosolization of urine, saliva, and feces. Some viruses have narrow host
ranges, others have wide host ranges and occur worldwide. Adapted from
Fields Virology [12].

All members of the virus family show complementary sequences at the 3’
and 5 termini of each segment, which are postulated to form stable pan-
handle structures [47, 36]. The complementary ends also may play a role in
replication, possibly by serving as a transcriptase recognition structure.
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Within the family Bunyaviridae we have analyzed the genera Bunyavirus and
Hantavirus in detail. The number of complete genome sequences that are
available in Genbank of the remaining three genera ( Nairovirus, Phlebovirus,

and Tospovirus) is too small at present to allow a comparative analysis with
our methods.

3.1.1 Genus Bunyavirus
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Figure 19: Bunyavirus genome map. Translation and processing products of the
tripartite anti-sense genome. The L-segment encodes the specific viral transcrip-
tase, M-segment codes for glycoproteins and nucleocapsid proteins are encoded in

the S-segment. Replication takes place in cytoplasm via full length complementary
segment RNA

Introduction

Virions contain three segments of circular negative-sense and ambi-sense sin-
gle stranded RNA, which encode for RNA transcriptase, glycoproteins and
nucleocapsid proteins.

Total genome length is 12300-12450nt. The largest segment is 7000 nts and
labeled L-segment; the second largest 4450-4540nt (M-segment); the third
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850-990nt (S-segment). Genome sequences have terminal repeated sequences,
at both ends. Terminal repeats at the 5’-end about 11 nucleotides long are
well known, also the 3’-terminal sequences are complementary to similar
regions on the 5’ end, thus forming a panhandle structure.

For our analysis we searched sequence databases for all available complete
Bunyavirus sequences. For the L-segment too few complete genome se-
quences are available to use our methods, the tripartite genome is analyzed
separately, anti-sense and sense RNA.

Bunyavirus M-segment

Our analysis of Bunyavirus M-segment is based on 8 complete M-segment se-
quences which where found in sequence data banks, see table 15. No selection
of genomes was done to improve the alignment.
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Figure 20: Left most figure the SplitsTree plot of the aligned sequences of Bun-
yavirus M-segment, negative sense RNA. The panhandle structure in the middle is
from sense RNA and the right most panhandle structure predicted from anti-sense

RNA.
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Figure 21: Mountain plots of Bunyavirus M-segment, left figure shows the moun-
tain plot of anti-sense RNA and right side of sense RNA. The panhandle structure
is the best and only predicted conserved structure motif, see figure 20. The red
colored base pairs are conserved, no consistent or compensatory mutations are
detected inside the panhandle structure.

The length of alignment using Clustal W is 4537 bases long and the mean
pairwise homology is 74.8% for the anti-sense RNA. The same sequence files
are used to get the sense RNA sequences. Their alignment length was a little
bit different in length 4557 and the mean pairwise homology was 74.7%.

Bunyavirus S-segment

The Bunyavirus S-segment analysis is based on 9 complete S-segment se-
quences which where found in sequence data banks, see table 15, these seg-
ments are selected to improve the alignment and to represent all 49 sequences
available. Sequences with rather different length has be removed. The length
of alignment using Clustal W is for anti-sense RNA 1010 bases and the mean
pairwise homology 76.9%, using sense RNA alignment length is 1043 and
mean pairwise homology 76.9%.
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Figure 22: Left most figure the SplitsTree plot of the aligned sequences of Bun-
yavirus S-segment, negative sense RNA.The panhandle structure in the middle is

from anti-sense RNA and the right most panhandle structure predicted from sense
RNA.

23.1 Mountain plot anti-sense 23.2 Mountain plot sense RNA
RNA

Figure 23: Mountain plots of Bunyavirus S-segment. The left figure shows the
mountain plot of anti-sense RNA and left side of sense RNA. The panhandle
structure is the best and only predicted conserved structure motif in the S-segment.
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Discussion

It is well known that the complementary sequences of the 5’- and 3’-ends
of Bunyavirus can base pair to each other and form a so called panhandle
structure. This structural feature is presented in all 3 virus segments. The
panhandle structure, a stacking region of base pairs of different length form
a multi-loop over the entire segment RNA. Inside the multi-loop no other
conserved RNA structure motif is detected.

The sequences of Bunyavirus are rather diverse on the sequence level, approx-
imately 25% of the nucleotides are different inside the genus. Remarkably the
5" and 3’ ends of the viral segment RNAs are highly conserved. Formation
of the discussed panhandle structure could be essential in the viral life-cycle,
maybe the conserved sequence at the 5’ and 3’ ends play an important role.

Panhandle motifs are also described in Influenza virus and it has been exper-
imentally proven that they are functional important for replication, transla-
tion and packaging into the virion. Bunyavirus may also use such a strategy
to regulate replication, translation and packaging. The fact, Bunyavirus show
only the panhandle structure and no further structural important motifs, is
a hint that the panhandle structure possible has that functional importance.

3.1.2 Genus Hantavirus
Introduction

Hantavirus contain a single stranded RNA genome of negative polarity that
is divided into three segments. Total genome length is 11800-13800nt, the
largest segment 6500-8500nt (L-segment), the second largest 3600nt (M-
segment) and the third 1700nt (S-segment).

Hantavirus genome sequence has terminal repeated sequences. Terminal re-
peats are at the 5-end 8 nucleotides long and at the 3’-terminus, 11 nu-
cleotides, complementary to similar regions on the 5" end, thus forming a
panhandle structure. The tripartite Hantavirus genome was found in one
particle only.

Genomic segments from different viruses can re-assort when cell cultures are
coinfected with two viruses within a group or serocomplex. The L-segments



Results 65

0 1000 2000 3000 4000 5000 6000 7000
| | | | | | | |
Hantavirus RNA transcriptase
L protein L -Segment
5 3

Glycoproteine

Gl G2 M-Segment
5 3
Nucleocapsid
_N S-Segment
5 3

Figure 24: Hantavirus genome map. Translation and processing products of the
Hantavirus tripartite genome. The L-segment encodes the specific viral transcrip-
tase, M-segment codes for glycoproteins and nucleocapsid proteins are encoded in
the S-segment. Replication takes place in cytoplasm via full length complementary
segment RNA.

codes for a large L protein or polymerase, the M-segment codes for viral gly-
coproteins (G1, G2), and the S-segment for a nucleocapsid protein (N). Each
viral particle contains three internal nucleocapsids composed of genome as-
sociated with many copies of the N protein and a few copies of the L protein.
The negative single stranded genome follows an anti-sense coding strategy.

Hantavirus L-segment

For our analysis we searched sequence databases for all available complete
Hantavirus L-segment sequences, and found 8 complete L-segment sequences,
see table 12. The length of alignment using Clustal W is 6582 bases and the
mean pairwise homology 72.4%. Aligning the sense RNA sequences align-
ment length is 6584 with a pairwise homology of 73.0%.
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Figure 25: Left most figure the SplitsTree plot of the aligned sequences of Han-
tavirus L-segment, negative sense RNA. The panhandle structure in the middle
is from anti-sense RNA and the right most panhandle structure predicted from
sense RNA. A mismatch at position 9 is characteristic for the panhandle structure
of the virus family Bunyaviridae, the sense RNA panhandle shows an additional
unpaired position at 10.

Table 7: Detected conserved structures of Hantavirus L-segment, anti-sense and
sense RNA. Position denotes the outmost base pair in aligned genomes. An addi-
tional structure motif is found in the sense sequences. Only the panhandle motif
is found in anti-sense and sense RNA segment

anti-sense RNA

sense RNA

Position | Seq. homology (%) || Position | Seq. homology (%)
779-808 7.4 153-182 87.3
3014-3040 | 87.6 3743-3764 | 93.2

5166-5186 | 95.2
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26.1 Mountain plot, anti-sense RNA 26.2 Mountain plot, sense RNA

Figure 26: Mountain plot of Hantavirus L-segment, left side shows the anti-sense
mountain plot and right side the sense mountain plot. The panhandle structure is
the best predicted conserved structure motif, see figure 25. Other conserved RNA
secondary structures could be detected inside a multiloop formed by the panhandle
structure, see figure 27.

The mountain plots of sense and anti-sense RNA show the panhandle struc-
ture as the best conserved RNA motif, but there are other possible conserved
structures inside the coding region of the L-segment of Hantavirus, see fig-
ures 25,27.

Hantavirus M-segment

For this analysis 24 different sequences are selected from all available M-
segment sequences. This selection represents the total amount of Hantavirus
M-segments, see table 12. The aligned sequences are rather diverse on se-
quence level, the mean homology after multiple alignment was for anti-sense
RNA 65.3% and the alignment length 3754, and for sense RNA 3756 and
65.4%. For such a diverse group of sequences errors in the alignment proba-
bly destroys any conserved RNA secondary structure.

Four different groups are selected and aligned separately to improve the pre-
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Figure 27: Detected conserved structures motifs of Hantavirus L-segment. The
sense RNA shows an additional conserved motif to anti-sense RNA. All motifs are
quite well presented in the ensemble of structures and few consistent mutations
occur.

diction. All of them are analyzed separately first the anti-sense RNA than
the sense RNA, see table 14.

Four groups are formed with 6 sequences each. Group 1 contains mostly
Hantaan wviruses ,Thailand virus and Sin Nombre virus. Group 2 mostly
Puumala viruses, Prospect Hill virus and Tula virus. Group 3 viruses are
located mostly in Argentina. Group 4 located mostly in the USA.
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Figure 28: Left most figure the SplitsTree plot of the aligned sequences of Han-
tavirus M-segment, negative sense RNA. The panhandle structure in the middle

is from anti-sense RNA and the right most panhandle structure predicted from
sense RNA. A mismatch at position 9 is characteristic for the panhandle structure
of the virus family Bunyaviridae, the sense RNA panhandle shows an additional

mismatch at position 10.

Figure 29: Hantavirus M-segment mountain plots of all 24 selected sequences.
The left figure is the mountain plot of anti-sense RNA and left side sense RNA. A
panhandle structure is the only conserved RNA secondary structure, see figure 28.
The green colored base pairs symbolize mutations in base pairs, there are more in

the anti-sense RNA.
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Figure 30: Anti-sense and sense RNA mountain plots of Hantavirus M-segment.
Mountain plot of group 1 and group 2 are compared. In all groups the panhandle
structure is well predicted. Group 1 shows only a panhandle structure. A list of
other secondary structures is presented in figure 32.
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Figure 31: Anti-sense and sense RNA mountain plots of Hantavirus M-segment.
Mountain plot of group 3 and group 4 are compared. In all groups the panhandle
structure is well predicted. A list of secondary structures is presented in figure 32.
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Figure 32: Secondary structure graphs and mountain plots of possible conserved
Hantavirus M-segment structures, sorted by groups anti-sense and sense RNA. The
panhandle structure is a common structure motif and is presented in figure 28, only
group 2 shows another common RNA motifs (labeled *), predicted in anti-sense

and sense RNA.
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Table 8: List of detected conserved structures of four different groups of Hantavirus
M-segment. The start position and sequences diversity of the structural motifs are
listed. Position denotes to the start position of conserved elements. Remember
the panhandle motif is the best predicted structure motif, see figure 28. Except
of group 1 all other groups show at least one additional structure motif. In group
2 a stem-loop structure (labeled *) is predicted in anti-sense and sense RNA, see
figure 32.

Group RNA anti-sense RNA sense
Position Seq. homology (%) || Position | Seq. homology (%)

1 1-3663 75.6 1-3662 75.6
1-3714 75.3 1-3714 75.3
3179-3195* | 77.1 20-79%* 76.7
3637-3694 | 77.1

3 1-3718 74.7 1-3709 74.5
250-278 70.0 3441-3469 | 74.5

4 1-3696 82.5 1-3696 82.5
1338-1393 | 91.0 140-156 86.7
3165- 3199 | 87.0 429-484 85.7
3554-3594 | 89.0 2304-2359 | 91.0

Hanta virus S-segment

For the investigation of the shortest Hantavirus segment a total amount of
20 sequences is selected, representing all available sequences, see table 13.
The Clustal W multiple alignment shows 3 different groups on the sequence
level. The length of alignment of all 20 S-segments is 2049 bases and the
mean pairwise homology is 63.3% for the anti-sense RNA, for the sense RNA
the alignment length is 2045 and the mean pairwise homology 63.3%.

To improve the secondary structure prediction three groups are formed, see
table 14. The analysis is done separately and the results were compared.
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Figure 33: Left most figure shows the SplitsTree plot of the aligned sequences
of Hantavirus S-segment, negative sense RNA. The panhandle structure in the
middle is from anti-sense RNA and the right most panhandle structure predicted
from sense RNA. A mismatch at position 9 is characteristic for the panhandle
structure of the virus family Bunyaviridae, the sense RNA panhandle shows an
additional mismatch at position 10.

34.1 Mountain Plot anti- 34.2 Mountain plot sense
sense RNA RNA

Figure 34: Mountain plots of Hantavirus S-segment. Left figure shows the moun-
tain plot of anti-sense RNA and right side of sense RNA. Only the panhandle
structure can be predicted.
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35.1 Group 1, anti-sense RNA 35.2 Group 1, sense RNA

35.3 Group 2, anti-sense RNA 35.4 Group 2, sense RNA

Figure 35: Anti-sense and sense RNA mountain plots of Hantavirus S-segment.
Mountain plot of group 1 and group 2 are compared. In all groups the panhandle
structure is well predicted. Group 1 sequences show only a panhandle structure.
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36.1 Group 3, anti-sense RNA

36.2 Group 3, sense RNA

Figure 36: Anti-sense and sense RNA mountain plots of Hantavirus S-segment.
Mountain plot of group 3 and group 4 are compared. In all groups the panhandle
structure is well predicted. For other structure motifs, see figure 37

Table 9: List of the start position and the sequence homology of detected conserved

RNA structures of selected groups.
sequences is shown in figure 33.

The consensus panhandle structure of all
In group 2 and 3 additional RNA secondary

structures are found. Conserved RNA motifs labeled (*) are commonly predicted
in group 2, 3 and also in sense and anti-sense RNA, see figure 37.

Group RNA anti-sense RNA sense
Position | Seq. homology (%) || Position Seq. homology (%)
1 1-2020 67.7 1-2014 67.5
1-1871 69.9 1-1880 70.6
55-101 * | 88.7 1288-1317 * | 88.0
1782-1824 90.7
3 1-1895 81.6 1-1898 81.7
56-98 * | 98.4 58-75 93.3
1801-1843 * | 98.4
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OG-0 )

37.1 Group 2, anti- 37.2 Group 3, anti- 37.3 Group 2, sense
sense RNA 55-101* sense RNA 56-98* RNA 1288-1317

S 000))-

374 Group 2, sense 375 Group 3, sense 37.6 Group 3, sense
RNA 1782-1824* RNA 58-75 RNA 1801-1843*

Figure 37: List of Hantavirus S-segment conserved secondary structures. Anti-
sense and sense RNA structures of selected groups are shown. Remember in all
groups a panhandle structure is detected, see figure 33. RNA structures labeled
(*) are predicted in different groups and in the sense and anti-sense RNA.

Discussion

Hantavirus genomic sequences are rather diverse on the level of genus, that
could cause problems with the used procedure for detecting conserved RNA
secondary structure motifs. Aligning all available sequences either L-,M-
or S-segments allows only the prediction of the highly conserved panhandle
structure. This result is not very surprising, that the 5 and 3’ terminal
sequences are highly conserved among genus Hantavirus and complementary.
Both ends can base pair to each other, forming a panhandle structure.

The formation of groups decreases sequence diversity, and increases on one
hand the sequence alignment and on the other hand the number of possibly
conserved structures. Analysis of selected groups gives use a small number
of additional RNA motifs, see figures 32,37, but the panhandle is still the
best one.
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These RNA motifs are mostly presented in their groups, only one stem-
loop structure, at the 5’-end (anti-sense) or 3’-end (sense), can be commonly
predicted in M-segment. Inside the S-segment also such stem-loop structure
can be detected, even among different groups. This large stem loop structure
is identical among the selected groups and well predicted. It is located at the
border of the panhandle structure, inside the antisende RNA at the 5’end and
for sense RNA at the 3’end. Aligned sequences are rather diverse. Previous
only the panhandle structure is discussed in literature. Group 3 consists
mainly of Puumala virus genomes, and group 2 of Tula virus, Prospect Hill
virus, Prairie vole hantavirus and Khabarovsky hantavirus. This conserved
elements can lead mutation experiments to find out its function. Beside this
RNA motif each group forms its individual set of secondary structure motifs,
different to others.

Little is known about functional RNA secondary structures in Hantavirus
genomes at all. The conserved 5’ terminal nucleotide extension are already
examined, and the possible panhandle structure of Bunyavirus was already
discussed by Paradigon 1992 [50], but the functional importance was not
discussed either.

Viruses faces the problem of genome shortening by replication, the panhandle
structure maybe can play an important role to overcome this problem. All
of the viral RNA polymerase described to date initiate their chains with
triphosphates do so with either ATP or GTP. The overhang arrangements
of genomes ends is maintained because the 3’ A is presumably added in a
non templated manner by the viral replicase, in the act of terminating RNA
synthesis. The propensity of RNA polymerase to slip back on the template
during initiation while retaining the nascent chain, may cause repetitions at
the 5" end of the nascent RNA, may also be a more general property of these
enzymes [15].

The 5’end of Hantaan virus genome is exact the complement of its 3’ end.
A prime-and-realign (or slip-back or jump-back) mechanisms which initiate
viral genome synthesis require terminal sequence repetitions, and all Bun-
yaviridae genera contain such di- or trinucleotide repeats at their ends. There
is one other feature of this mechanism that require comment, its ability to
repair damaged genome ends by restoring small terminal deletions and mu-
tations. The regeneration of damaged ends by using pseudotemplated syn-
thesis and terminal sequence repetitions would, of course also apply to RNA
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viruses and may be important in maintaining virus infective when these ends
undergo limited damage. Genomes which lack a few nucleotides at the 3" end
can be repaired by simply extending these ends on an intact complementary
5 end require a different mechanism for repair, as conventional RNA syn-
thesis takes place only 5-to 3’ direction. The prime-and realign mechanism
allows growing of RNA 3’-to 5’ direction [15].

Analysis of other negative-strand RNA viruses has shown that 5’ and 3’ ter-
minal nucleotides sequences, as well as putative panhandle like structures
formed by 5 and 3’ termini of RNA molecules, are involved in the process
of initiation and regulation of viral transcription, replication, and encapsida-
tion [5].

Panhandle structures at least 17 bp are formed by highly conserved comple-
mentary regions of the 5" and 3’ termini of each segment. Complementarity
is incomplete in all cases, with a mismatch at position 9. Our investigation
also shows a bulge at position 9 of the panhandle structure. Position 10
is only unpaired in the coding RNA segments, different to anti-sense RNA.
The observation of incomplete complementarity of RNA termini is similar to
the situation seen in other negative-strand viruses. For instance, Influenza
virus has been shown to possess a mismatch bulge in the panhandle struc-
ture formed by genome segment termini. This mismatch region has been
determined to be the virus polymerase binding site [69)].

Conversion of the termini to exact complementarity destroys polymerase
binding. In Vesicular Stomatitis Virus RNA termini has been shown to
influence the balance between transcription and replication. By analogy, one
can speculate that this unpaired base pair is a binding site for polymerase.
Analysis of the role of various 3’ terminal regions of the Vesicular Stom-
atitis Virus genome RNA in the encapsidation and replication of defective
interferrring particles demonstrate that bases 1-12 were involved in the en-
capsidation process, whereas bases 13-18 were not. In addition, bases 19-24
were involved in replication and virus assembly.

By analogy, the highly conserved bases 1-14 found at the 3’ termini of Han-
tavirus sense and anti-sense RNA templates may be involved in initiation of
encapsidation and /or binding virus RNA polymerase, whereas the nucleotide
differences in positions 20-28 between different RNA segments could deter-
mine the differential rate of RNA segment transcription or replication.

The conservation and experimental analysis point out the importance of the
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panhandle structure, but do not imply, that other functional important RNA
secondary structure can not exist. Although all Hantavirus segments present
the panhandle as the best conserved motif, there are also few other RNA
motifs. The function of these RNA elements can not be determined by the-
oretical methods alone. We can only present them. Our selected elements
could guide further experiments to determine, whether they are functionally
important or not. At least the fact any other conserved RNA element can
be detected is a new discovery for Hantavirus genomes.
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3.2 Structure Motifs, Flaviviridae

Introduction

The virus family Flaviviridae contains the genera Flavivirus, Pestivirus and
Hepatitis C virus. In this section the genera Hepatitis C virus and Pestivirus
are examined.

The Hepatitis C virus is responsible for chronic liver infections in man and
was first identified in 1975 as a non Hepatitis A and Hepatitis B virus. The
viral infection is a leading cause of cirrhosis and liver cancer, and is now the
main reason for liver transplantation in the United States. Recovery from
infection is uncommon, and between 70 and 85 percent of infected persons
become chronic carriers of the virus. There is no cure or vaccine for Hepatitis
C' virus which is spread primarily by direct contact with blood.

The Pestivirus contain three different species Bovine diarrhea virus (BVDV)
infecting cattle, Hog cholera virus or Classical swine fever wvirus infecting
swine, the third one Border disease virus is infecting sheep. The different
species are closely related, both antigenically and structurally. The virus is
not restricted to a single host, for example BVDV can also infect sheep and
swine.

Virions contain one molecule of linear positive-sense single stranded RNA.
Total genome length is 9500-12500nt. Translation of the virus polyprotein
occurs cap independent. An internal ribosome entry side (IRES) inside the 5’
non coding region is responsible for ribosome binding and translation start.
Both non coding region 5’ and 3’ are supposed to have regulatory effects for
polyprotein translation.

The polyprotein encode for three to four structural virion proteins. Virion
structural proteins are usually glycosylated, or not glycosylated (in some
viruses). The non-structural proteins including protease, helicase and poly-
merase, are encode at the 3’ end of the coding region [12, 48].
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3.2.1 Genus Hepatitis C virus
Introduction

Hepatitis C virus (HCV) was first recognized as non-A, non-B Hepatitis in
1975. Disease was transmitted to chimpanzees in 1978. The genome of non-
A, non-B HCV was cloned and sequenced in 1989 and renamed the Hepatitis
C wvirus.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
| | | | | | | | | | ]
Hepatitis C
polyprotein
SNCR 3'NCR Xtail
poly UA
envelope
capsid  protein protease/helicase RNA-dependent RNA polymerase
core E1 E2 NS2 NS3 NS4A NS4AB NS5A NS5B [I
SNCR 3'NCR Xtail
poly UA

Figure 38: HCV genome map. Translation and processing of the HCV polypro-
tein. At the top is the viral genome with structural and non structural protein
coding regions. Boxes below indicate mature proteins generated by the proteolytic
processing cascade [12, 48].

HCV is a spherical, enveloped, single stranded, linear RNA virus which is
arranged in a positive sense configuration. The genome contains 9.5 Kb with
a 9Kb open reading frame which codes for a single 3K amino acid polypro-
tein. The open reading frame is flanked by 5" and 3’ non-coding regions of
approximately 340 and 100 nucleotides, respectively. The virus is bound to
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low density lipoproteins in vitro [12, 48].

RNA Structure Motifs

For the analysis 12 sequences were selected, see table 10. The Multiple
alignment is done by Ralign, its length is 9459 bases and the mean pairwise

homology is 90.9%.
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39.1 Mountain plot of HCV genome

39.2 Aligned HCV sequences

Figure 39: Mountain plot of genome and SplitsTree plot of aligned sequences
of HCV. Left side shows the colored mountain plot of the entire HCV genome.
Right side shows all aligned sequences and their alignment distance.

With the help of the Vienna RNA Viewer possible conserved secondary struc-
tures were selected form the data set. This resulted in a rather huge list of
RNA motifs, which could be functional important and could play a role in the
viral life cycle. Previously known motifs are discussed and examined later.
The RNA motifs which have been selected show a relative high number of
compensatory mutations and are well presented in the ensemble of structure.
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The non coding regions of a virus play an important role, see IRES function
and discussed hairpin loops at 3’ terminus of the HCV genome. A rather
huge number of structures are also found inside the coding region, which is a
hint, that possibly important regulatory regions can be situated also inside
the coding region of the virus genome.

CCCCCCCCCOCCC-000 DM

40.1 151-243 40.2 373-438 40.3 785-817
40.4 1070-1177 40.5 1374-1434 40.6 2839-2922

IR DN

40.7 3101-3186 40.8 3718-3753 40.9 4203-4270

Figure 40: A list of probably conserved secondary structures of HCV. The IRES,
see figure 40.1 was also proposed by Brown [4]. Numbers indicate starting position
of base pairs in the aligned sequences.
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CCCCCCCC L mMMIND)

41.1 4336-4402 41.2 5351-5386 41.3 6265-6348

41.5 7478-7577

41.7 8021-8173 41.8 8176-8321

41.10 8823-8927 41.11 9047-9110 41.12 9230-9271

TG 10977777

41.13 9333-9365

Figure 41: A list of probably conserved secondary structures of HCV. Numbers
indicate starting position of base pairs in the aligned sequences.
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5’ Non Coding Region (5’NCR) of Hepatitis C Virus

The RNA genomes of human Hepatitis C virus (HCV) have relatively lengthy
5" non-translated regions (5’NCR) sharing short segments of conserved pri-
mary nucleotide sequences. This 5’NCR region of HCV is responsible for
cap independent translation of the HCV genome. With the help of com-
parative sequence analysis and thermodynamic modeling Brown proposed a
secondary structure model [4]. In this model the detected internal ribosomal
entry site (IRES) mainly consists of 4 different domains, see figure 42. There
are conflicting views, which region of the viral sequence is responsible for
IRES activity. A lot of discrepancy could have resulted from the inclusion of
less than full-length 5’NCR in constructs studied for translation initiation.
Brown analyzed only the 5’NCR segment of the HCV genome, a full length
HCV genome was studied by Honda et al. [32].

In our study we folded the virus genome in its entirety, long range interaction
as the panhandle structure of Bunyaviridae play an important role in viral
life-cycle and can not be neglected. Our proposed secondary structure model
only shows part of the structure model of Brown, see figure 42. The stem
loop structure labeled I is not predicted in the aligned consensus structure.
The sequence alignment introduces several gaps at the very 5’ terminal end
of the virus genome. Investigations of secondary structures of the used virus
genomes show most of them have this stem-loop structure at the 5’ end of
the virus, this implies sequence alignment destroys domain I in the consensus
structure. Domain II is a multi-loop structure with two stacking regions.
One of the stems with the sequence (ACUACUGU) in the hairpin matches
the stem in our prediction from position 49-70 (ITa), Honda published two
alternatives for the domain II structure [31], one of them is presented in
figure 42. Honda labeled this stem-loop region Ila, which we detected in our
consensus structure.

Domain structure III shows a highly conserved secondary structure motif.
The hairpin structure labeled IIIb is representing a complementary sequence
to ribosomal RNA, this complementary sequences (CCUUUCUUGGA) is
highly conserved among HCV virus strains and is complementary to bases
461-471 of human 18S RNA. In our prediction domains I1Ia-ITIc match the
predicted structures of Brown and Honda, the rest of domain ITId-IIIf can
not be found in the consensus structure.
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Figure 42: Proposed secondary structure models of the HCV 5’NCR element
and stem-loop structure Ila. Figure 42.1 secondary structure model proposed
by Brown, four different domains are labeled [4]. Figure 42.2 structure model pro-
posed by Honda [32]. Figure 42.3 stem-loop structure ITa proposed by Honda [31].
Figure 42.4 consensus structure of our prediction of the 5" and 3’ NCR regions. A
multi-loop connects both ends, it is formed between nucleotides 87 and 9225 and
its length is 16. Consensus structure model predicts well domains Ila, IIIa-IIlc,
IIIe and IV. Polypyrimidine binding protein regions are labeled PTB, and circles
around base pairs denote to consistent mutations.
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In the 5’NCR region a pseudo-knot seems to be established, and our folding
algorithm do not contribute to such RNA interactions at all. In domain
IV, there are different structure models proposed by Brown and Honda, our
prediction favours a stem-loop structure with the starting codon of the open
reading frame in the unpaired hairpin region, see stem-loop 1V in figure 42.

The occurrence of domains IT and IV should play an important role in IRES
function. Deletion of nucleotides 28-69 of the 5" NCR (stem-loop Ila) sharply
reduced capsid translation both in vitro and vivo, and deletion mutants di-
rectly upstream the initiator AUG also resulted in a nearly complete inhibi-
tion of translation [32].

Honda reported that domains IT and III of the 5> NCR are both essential to
activity of the IRES while conservation of sequence downstream of the initia-
tor AUG is required for optimal IRES-directed translation. The 5 terminal
region may bind a polypyrimidine tract-binding protein (PTB). PTB binding
could be important for determining the higher-order structure of the 5 NCR
and might interact with other factors involved in RNA replication. Three
distinct PTB binding site has been detected within the 5° NCR of HCV [1],
see figure 42. PTB is believed to be a homo-dimer which, in theory, might
initiate or stabilize interactions between the HCV 5’NCR and 3’ NCR region.
Such interactions could be important for modulating translation versus repli-
cation of HCV genome RNA.

Little is known about the molecular interactions required for HCV viron
assembly. The highly basic core protein is rich in arginine and lysine residues
and can form specific interactions with the 5> NCR of HCV. This could be
important for virus encapsidation. Interactions with other virus proteins
could not be detected [8].

Our predictions show a different structural feature of HCV 5’NCR region,
where we found a multi-loop structure combining the 5’ with the 3’ terminus
of the virus genome.

3’ Non Coding Region (3’NCR) of Hepatitis C Virus

Following the long ORF, most reports suggests that HCV genome RNA con-
tains a short 3’ NCR followed by a poly(U) homo-polymer tract. In contrast,
the genome RNA of HCV-1 (genotype 1a) has been reported to contain a
3’-terminal poly(A) tract.
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The 5’- and 3’- terminal sequences and structures of positive stranded RNA
viruses often function as cis acting elements important for RNA replication
and/or packaging, such elements are typically highly conserved. Correct
terminal sequences can therefor be of critical importance for recovery of in-
fectious RNA transcripts. The function of the HCV 3’ NCR, including the
highly conserved 3’-terminal element, remains to be determined. For other
RNA viruses, conserved terminal sequences or structures play critical roles
in initiation of minus and plus strand RNA synthesis and in packaging of
viral RNAs. Such processes are mediated via interactions with trans acting
proteins encoded by the virus or host and, in some cases, other cis RNA
elements elsewhere in the genome. For instance, conserved tRNA-like struc-
tures at the 3’ termini of Bromowvirus RNAs are required for initiation of
minus-strand synthesis.

For negative-strand viruses, such as Influenza virus and Vesicular stomatitis
virus conserved sequences at the 5" and 3’ termini can base pair and consti-
tute the cis regulatory elements for transcription, replication, and packag-
ing [54, 55, 38]. Terminal cis RNA elements important for translation and
RNA replication have also been identified for positive-strand animal viruses,
including Alpha viruses, Flaviviruses and Picornaviruses. The 3’ terminal
region may also bind a polypyrimidine tract-binding protein (PTB). PTB
binding could be important for determining the higher-order structure of the
3" NCR [1]. PTB interaction with the variable region of HCV can cause
translation enhancement. Alternatively, other translation factors or primary
sequence or secondary structure RNA may also be involved in translation
enhancement.

Our consensus structure of 12 selected HCV genomes lacks a 3’ terminal
consensus sequence, see figure 43. The aligned sequences are about 100nt
shorter than the HCV H77C strain, see table 10, where the length of the
conserved element is 98 nt. This so called X-tail is not present in the pub-
lisched “complete” genomes with rare exceptions.

A comparison of the proposed model to the thermodynamically predicted
consensus structure of HCV strains H77C show alternatives structures, in
both regions conserved and variable, see figure 43.1. The used set of HCV
genomes present a three stem loop motif downstream the stop codon.
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Figure 43: Figure 43.1 shows the 3° NCR of HCV strain H77C, its length 225nt,
consisting of the open reading frame (ORF) stop codon, a short sequence of 40nt
(variable region), a poly(u-UC) region of 81nt, and a 3’ terminal sequence of 101nt
(conserved region). Sequences in the 3’ end of the NS5B protein coding frame
and in the variable region of the 3° UTR could potentially form two stem-loop
structures, and sequences of the conserved region of the 3> UTR could potentially
form three stem-loop structures [77].

Figure 43.2 consensus structure of the 3'NCR of HCV strain H77C. The conserved
region is different to H77C, and the variable region shows the same secondary
structure. The stop codon can be found in the hairpin loop.

Figure 43.3 Predicted consensus structure of 12 different HCV genomes, see ta-
ble 10. These genomes lack the X-tail sequence. Circles around base pairs denote
to mutations, either consistent or compensatory. A three stem loop motif can be

found at the 3’ end of the ORF.
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These stem-loops are well presented in the ensemble of structures and several
mutated base pairs are detected. The function of this region is not known,
maybe it has also regulatory function for virus replication, as proposed for

the X-tail by Yanagi 1999 [77].

Conserved RNA Element inside the Open Reading Frame

The non coding regions are known to contain several important structural
domains. Our investigations show a lot of interesting secondary structures
inside the open reading frame, not yet described. One of the possibly func-
tional structures is examined in detail.

A huge stem loop structure was found at position 6466 to 6714 inside the
coding HCV genome, its size is 249nt, nearly all nucleotides form base pairs
and the calculated minimum free energy is -90.2 kcal/mol (Vienna RNAfold
1.3). The mean pairwise homology of the structure is 92.3% and 179 bases
are conserved and 18 base pairs has either consistent or compensatory mu-
tations. A good example for a RNA element well conserved in our respect.

The function in HCV life-cycle is unknown, its location inside the ORF at the
beginning of the polymerase coding region (position 6364-9354). Maybe this
element is important for translation attenuation. The amount of translated
polymerase can be regulated by this RNA motif. This function is highly
speculative, and has to be proven by experimental data.

Discussion

The HCV genome gives a good example where RNA secondary structures
play an important role in the viral life-cycle, regulating virus replication and
protein translation. Non coding regions are best known for this kind of func-
tional RNA secondary structures. Cap independent translation is mainly
controlled by the 5’ non translated region, where an internal ribosome entry
site (IRES) allows docking of human ribosome subdomains. A complemen-
tary sequence in domain IIIb to 18S human ribosomal RNA gives a good
example.

Part of four well known functional domains can be detected by our methods.
Without knowledge of the HCV functional RNA secondary structures, part
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Figure 44: Stem-loop structure inside ORF of HCV genome. Its size is 250nt,
nearly all nucleotides are base paired. Circles around base pairs denote to
mutations.

of IRES domain III is predicted as conserved element. The stem-loops Illa to
[TIc show highly conserved structures, such important feature as complemen-
tary ribosomal sequence, or binding site for a PTB protein for translation
control are known. A pseudo-knot also plays an important role for IRES func-
tion, our secondary structure prediction programs do not contribute to such
RNA contacts. Stem-loop Ila, where the functional region of IRES starts,
is also well predicted, the same with stem-loop IV, this hairpin contains the
start codon of the open reading frame.

The predicted consensus structure of twelve selected HCV genomes also gives
an example of different RNA secondary structures as already described. HCV
3’ non coding region is well known for its importance of translation control.
A 98nt highly conserved sequence at the very end of the genome shows a
three stem-loop motif, which binds PTB. Mutational analysis shows transla-
tion enhancement of this so called X-tail. The same HCV sequences as used
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for this investigation fold into a different secondary structure as proposed.
Unfortunately most “complete” genomes lack this important region. There
are reports, that this structure is important for PTB binding and transla-
tion control, but there are also alternative binding possibilities. Maybe our
detected three stem loop motif inside the coding region can also bind PTB,
and can be responsible for translation control. Several compensatory muta-
tions inside the stem-loops are a hint for the functional importance for the
virus. Two of these stem-loops are also detected by our algorithm as possibly
important.

A structural completely new motif in our proposed 5’NCR region is repre-
sented by a multi-loop structure. This multi-loop consists of 13 base pairs and
three consistent mutations, it starts right in front of the ORF and ends be-
fore the predicted 3’ stem-loop motif begins. This functional feature of HCV
genome has not been detected before, and no function is known. Maybe the
multi-loop is responsible for interaction of the 3’ end with the 5" end of the
genome. It is proved, that PTB binds both termini of the genome and is
functional important for translation control. This translation factor is ho-
modimeric in its structure. The multi-loop can be important to get the virus
ends close together, to establish PTB’s translational control function. For
an open chain it would be rather difficult binding both ends at once.

The results of our algorithm shows a lot of possibly important RNA secondary
structure inside the coding region of HCV. The best motif is selected to give
an example for possible important regions inside the coding HCV genome.
The selected stem-loop motif is well predicted in the ensemble of structures
and a lot of compensatory mutations are detected. Its location inside the
start region of the polymerase gene is a hint, that its function could be
translation attenuation of the polymerase protein. The amount of polymerase
for virus replication is rather low to structural proteins, so it is useful to use
a regulatory element to decrease it’s translation. Large hairpin structures are
known being responsible for stopping protein translation. This RNA stem-
loop motif can also be a cis regulatory element for polymerase translation,
which have to be proved.

At present only little is known about functional elements in the coding region
of HCV. The HCV genome is rather complicatedly regulated, and several
reports underline the importance of functional RNA secondary structures.
Our analysis is the first attempt so search also inside the coding region for
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such elements, and several interesting RNA motifs have been detected. They
can guide mutation experiments to find functional RNA secondary structures.

3.2.2 Genus Pestivirus
Introduction

The genome RNA of prototype strains of Bovine viral diarrhea virus (BVDV),
Classical swine fever virus (CSFV) and Border disease virus are single stranded
RNAs 12.3 to 12.6 kb in length. Larger genome RNAs contain duplications
and rearrangements, have been found for some BVDV. Pestivirus genome
RNAs do not contain a 3’ poly (A) but appear to terminate with a short
poly (C) tract.
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Figure 45: Pestivirus genome map. Translation and processing of the Pestivirus
polyprotein. At the top is the viral genome with structural and non structural
protein coding regions. Boxes below indicate mature proteins generated by the
proteolytic processing cascade [12, 48]. Red and blue colored boxes denote to
structural proteins, yellow boxes protease and helicase proteins and green colored
virus specific polymerase.

The 5’ terminus has not been analyzed directly, but it has been suggested
that the genome RNAs lack a 5’ cap structure. As for the Flaviviruses, no
Pestivirus sub genomic RNAs have been detected. The long 5’ non coding
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region (NCR) contains several short ORF's of unknown function and has been
predicted to form a highly structured RNA element that may serve as an
internal ribosome entry site (IRES) to initiate cap-independent translation

of the long ORF [12, 48].

RNA Structure Motifs

Our analysis of Pestivirus RNA is based on 10 complete virus genomes, repre-
senting all available Pestivirus genomes in data banks, see table 11. Multiple
sequences alignment was performed by Ralign, the length of alignment is
12709 bases and the mean pairwise homology is 71.2%.

Title: ral.nex
Date: Tue Feb 15 14:50:21 2000

BDU70263
AF041040

AF037405
BVDCG

ToGHCVC BVU63479

HCVCG3PE

AF091507

BDAF2227

01

Fit=97.4 ntax=10 nchar=12748 gaps=660 const=5464 nonparsi=8001 -dsplits -hamming

Figure 46: Mountain and sequence distance plot of aligned Pestivirus genomes.
The Left side shows the mountain plot of all selected Pestivirus genomes. The
IRES motif can be detected as an peak at the utmost left side, no other conserved
motif is predicted. Right side, SplitsTree representation of the sequence
distances after the multiple alignment.

The entire Pestivirus genome show only a single conserved RNA motif. This
RNA motif is part of the already known IRES structure, situated at the 5’
NCR of the virus genome.
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Figure 47: Detected conserved secondary structures of all Pestivirus sequences.
Only one conserved RNA structure could be detected, the IRES motif situated in
the 5" NCR region of the virus genome [4].

5’ Non Coding Region (5’NCR) of Pestivirus

The 5’ terminal sequence of Classical swine fever virus (CSFV) Bowvine viral
diarrhea virus (BVDV) and Border disease virus (BDV) is about 374nt long.
Translation of the genome is cap independent, an IRES, located inside the
5 non coding region is responsible for RNA translation.

The pestiviral 5° NCR is highly conserved structurally, despite substantial
differences in the primary nucleotide sequence. A structure model of this
region was proposed by Brown [4]. Brown examined the phylogenetically-
related 5’NCR sequences of BVDV for the presence of covariant nucleotide
substitutions predictive of conserved, base paired helical RNA structures, the
model is based on thermodynamic and phylogenetic considerations.

Brown reported four structural motifs I-IV inside the 5’NCR region. He
detected a large complex structure consisting of a long irregular helix with
multiple branching stem-loops labeled domain III (nucleotides 142 -358), see
figure 48.

The IRES plays an important function in assembly of the ribosome. A specific
binding of a translation initiation factor to the 5’NCR of classical swine fever
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virus (CSVF) was reported by Sizova [61]. The translation factor e/F3 binds
strongly and specifically to the apical region of domain III of the CSFV IRES.
The binding site consists of a large clover-leaf-like structure composed of the
central helix of domain III and hairpins Illa-IIlc. These observations led
to propose a model for IRES function in which these large RNA contains a
specific binding site for incoming 40S subunits and factors associated with
them in 43S preinitiation complexes and structural elements that orient these
binding sites in such a way that their interaction with components of the 43S
complex correctly places the initiation codon of the mRNA at or in the
immediate vicinity of the ribosomal P site.

Our predicted consensus structure of 10 selected sequences contains only
part of these already described modules. Stem-loops at the very start of the
virus genome labeled I can not be detected at all. The sequence alignment
introduced a lot of gaps, so no base pairs are predicted at the very 5 terminus
of the sequences. Part of module II is found in the consensus structure.

The most structural conserved module is labeled III, a huge stem loop struc-
ture. The predicted consensus structure nearly match in its entirety. The
importance of the given secondary structure for Pestivirus is underlined by
numerous compensatory mutations inside module ITI. The mean sequence
homology of the 5’NCR region is 77.7% and a total amount of 165 conserved
bases is found.

The 5’NCR of Pestivirus gives a good example where very different sequences
fold nearly into the same secondary structure, which is a hint of functional
importance of this region. The hairpin loops of Illa, Illc, I1Id and Ille are
conserved compared to the proposed models of Brown and Sizova, but hair-
pin IIIb is different to the others, see figure 48. Specific nucleotides in this
hairpin loops are probably of importance and specific nucleotides in hairpin
ITIb are of less importance. A pseudo knot structure is shown in the model
of Sizova. Our thermodynamic folding algorithm do not contribute to such
base pair interaction, to complete our proposed model this interaction is also
shown. The secondary structure of stem-loop Ille is stabilized by a consis-
tent and compensatory mutation, which implies that this base pairs should
be established although the pseudo knot interaction. The thermodynamic
stability of the secondary structure model is (-60.99 kcal/mol).
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Figure 48: Proposed secondary structure models of Pestivirus IRES. The upper
left model is designed by Brown 1992 [4]. Upper right is a slightly different model
proposed by Sizova 1998 [61]. Arrows in the figure denote to cleavage sites for
RNase V1 (ds specific) and RNase ONE (ss specific). The model at the bottom is
the consensus structure of our thermodynamic prediction. The shown pseudo-knot
was not predicted by our algorithms. Circles around base pairs denote consistent
or compensatory mutations. The domain III is best conserved and also predicted
in the other models.
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Comparison of BVDV, CSFV and Border Disease Virus IRES

The genus Pestivirus includes 3 different subspecies infecting bovine (Bovine
diarrhea virus), sheep (Border disease virus) and swine ( Classical swine fever
virus). All of them translate their genome cap independently using an IRES
structure. Figure 49 compares the IRES region of all three subspecies.

The selected conserved secondary structure is module III. This module is
commonly predicted. Although pairing nucleotides are rather diverse un-
paired loop regions are highly conserved, see stem-loops Illa,Illc,ITId and
[ITe. The unpaired region of stem-loop IIIb is different in all different viruses,
also differences in part of stem-loop IIId occur. All three viruses show nearly
the same secondary structure, although sequences are not homolog at all.

Bovine diarrhea virus, 8 different sequences are selected, see table 11. The
mean pairwise homology of the selected region is -75.6% and 201nt are con-
served. The calculated minimum free energy of the consensus structure is

-77.16 kcal /mol.

For hog cholera virus 13 sequences, see table 11, are aligned the mean pairwise
homology is 94.9%. The number of consistent and compensatory mutations
is reduced to the other and the minimum free energy is -96.06 kcal/mol.
Border disease virus, three genomes are aligned , see table 11, and the mean
pairwise homology of the region is 87.3%, and the minimum free energy is
-78.09 kcal/mol, only three different sequences show a lot of consistent and
compensatory mutations.

The main structural differences among Pestivirus are located inside stem-loop
IT1d, where bovine diarrhea virus forms a shorter stem-loop to Hog cholera
and border disease virus, additionally Bovine diarrhea virus does not contain
a base paired region upstream to module III, which is well predicted in both
other viruses.
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Figure 49: Consensus structure models for all three Pestivirus species. Domain I11
is well predicted in all three species. Pestivirus in cattle show a slightly different
structure to sheep and swine at the the start position of the domain III. Circles
around bases denote consistent and compensatory mutations.
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Discussion

The results of our investigation of the Pestivirus genomes show one highly
conserved RNA motif at the 5’ end of the non coding region. This element
well known as an internal ribosomal entry site (IRES) show a common sec-
ondary structure over all three Pestivirus species. Sequences of the analyzed
genomes are rather diverse on the sequence level, the overall mean pairwise
homology was about 71% and about 78% for the consensus structure of the
selected IRES region, see figure 48. Note, that about 10% difference in the
nucleic acid sequence leads almost surely to unrelated structures if the mu-
tated sequence positions are chosen randomly.

Over the rest of the Pestivirus genome no further conserved RNA motifs can
be detected, that could be caused by the rather diverse sequences, note a bad
alignment with a lot of gaps reduce the amount of RNA motifs significantly.

Investigations by Pestova and Sizova show the function of ribosome assem-
bly initiated by the IRES and specific interaction of a translation factor to
the IRES region [61, 56]. The Stem-loops Illa,c,d,e, are important in this
respect. It is remarkable, that the unpaired hairpin loops of these stem-loops
contain the same nucleotides, see figure 48, although the stacking sequences
are rather diverse. Maybe the conservation of the bases is important for
ribosome assembly.

Pestivirus can either infect cattle, swine or sheep and cause severe diseases.
The comparison of the IRES region of single groups may cause different
RNA structures. The consensus structures are shown in figure 49 and at the
first glance they are nearly identical. Pestivirus in swine and sheep show
a difference at the beginning of the overall conserved structure where they
form an interior loop and a small stem-loop , which was not found in cattle.

The 5’NCR of the genus Pestivirus show identical IRES structure. Con-
served RNA secondary structures could be important to be compatible to
other hosts. Cross-infection can occur among Pestivirus, it was reported for
Bovine diarraeha this virus can also infect sheep and swine. The structural
similarities of IRES implies that viruses from sheep and swine could also use
other hosts.



4 Discussion

4.1 Conclusions

In this work, techniques for detecting conserved RNA secondary structures
have been improved and extended. Investigation of entire virus genomes
of the largest sequence lengths are now possible and only limited by avail-
able computer resources. The analyzed virus genera show conserved RNA
secondary structures, which are detected by our theoretical approach using
sequence data alone. Moreover it is fast and conserved RNA elements provide
a qualitative description of virus genomes.

The combination of alignment, structure prediction and comparative se-
quence alignment uses a parallel version of McCaskill’s partition function
algorithm. It allows us to search to viral genome lengths of some 13000nt.
We preferred the base pairing probability matrix, because it provides a better
description of RNA molecules, thus this approach can be preferred to pure
minimum free energy structure investigations.

In view of restricted computer resources an alternative algorithm to Alidot
was developed. Minimum free energy folding needs less computer resources
than McCaskill’s algorithm and structure prediction is faster. The new al-
gorithm Alifold computes common RNA secondary structures on a sample
of aligned sequences based on the minimum free energy algorithm. It is even
faster and more user friendly and common RNA structures are provided by
a one step process.

Analysis of rather short RNA molecules can not be done without a practicable
viewing tool. Especially large virus genomes of several thousand nucleotides
overwhelm the investigator with data. Therefore we decided to develop a
graphical viewing tool called Vienna RNA Viewer, that presents RNA sec-
ondary structure more user friendly. Even unskillful users can easily handle
our viewer, and are able to select conserved RNA elements by hand, or use a
lot of filter functions. A semi-automatically analysis of RNA sequences can
be done, and with the help of the viewer a list of conserved RNA elements
can be selected quickly.

First we applied our approach to analyzing the virus family Bunyaviridae.
For the genera Bunyavirus and Hantavirus we found enough sequences in
databanks. Bunyaviridae are well known to form a panhandle structure, be-
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cause terminal sequences of the tripartite genomes are complementary. This
structural element was the best detected in the virus family. Hantavirus
genomes show some additional RNA elements but they are predicted with
less quality than the panhandle. Moreover the panhandle seems to be the
most important structural feature in the family Bunyaviridae. The second
virus family we analyzed was Flaviviridae. Two genera are analyzed Hep-
atitis C virus and Pestivirus. Hepatitis C' virus shows a large number of
conserved RNA elements. Our results are compared to phylogenetically and
experimentally known RNA secondary structures. Especially the non coding
regions are compared to literature, and the well known internal ribosome
entry site (IRES) could be verified by other works. Differences could be de-
tected to proposed structure models of the non coding region, and the most
promising new element was discussed in detail. We detected this element
inside the coding region of the virus genome, besides many other interesting
RNA elements.

Pestivirus show only one conserved RNA element inside the non coding re-
gion. This RNA element is an IRES and it is similar to one found in Hepatitis
C virus. Numerous consistent and compensatory mutations are presented.
Pestivirus genomes are isolated form cattle, swine and sheep and aligned se-
quences are rather diverse, maybe this is a reason that no further elements
could be detected. A comparison of the IRES of cattle, swine and sheep
show no crucial structural differences. Pestivirus isolated from cattle can
also infect other hosts, a common conserved IRES structure could therefore
be critical for cross-infection to occur.

4.2 QOutlook

Conserved RNA secondary structures establish a new method for describing
functional important regions of viral genomes. As long the three-dimensional
structure is not available by theoretical approaches alone, they will be an
essential description. Improving this approach is therefore desirable.

A too diverse sample of sequences is still a major problem of our method.
Although sequence alignments have been improved, alignment errors often
significantly decrease the quality of our results. At present this problem
is solved by selecting sequences by hand. This method leaves it up to the
investigator which sequences to select. Often numerous virus genomes can
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be arranged in multiple groups, that makes the analysis more laborious, if
all groups are analyzed.

We used the sorting procedures called Alidot or Pfrali, which have been
optimized for a rather small sample of sequences. Therefor analysis of nu-
merous sequences is problematic. On the other hand it is desirable to use
many sequences, since the quality of predicted conserved elements increases.
We are confident of solving the problem if more different virus groups have
been analyzed.

Selecting conserved RNA elements by hand is laborious and subjective. At
present different researchers set individually the threshold, so different con-
served RNA elements are selected. However the best RNA elements are
selected commonly, but the quality of the other elements can differ substan-
tially. On this account results from different investigators could be hardly
compared, because they contain individually selected RNA elements. More
objective results are crucial for comparison and to extended our approach to
all available virus genera. Common search criteria are also essential to au-
tomate our method, though automation makes our method faster and more
user friendly. We plan two steps towards automation. First the development
of selection criteria for conserved RNA secondary structures, where sequence
selection is still done by hand. The second one is a fully automated approach,
so only a sample of related sequences is provided. Conserved RNA elements
are predicted fully automatic.

Automation is in many respects desirable, but analysis by hand will be im-
portant in some cases. Although a practical viewing tool has been developed
in this work, some additional filter functions are still desirable to improve
the search for conserved RNA elements.

The immediate objective of this approach is to analyze all available RNA
virus groups. At all a global overview of conserved RNA secondary structures
is necessary to improve our approach, beyond a qualitative description of viral
genomes is still a demand, because of improving our knowledge of viruses
generally. The analysis of all RNA virus genera should lead to a data bank
based on conserved RNA elements, which should be public. Such a data
bank will be a useful tool to guide deletion studies for research.

At present taxonomy for sequences of viral genomes is an unsolved problem.
There is no consensus on how to group different virus genomes and often
viruses with completely different coding strategies are grouped within one
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virus family. Family Flaviviridae include single stranded viral genomes with
either cap dependent translation (Flavivirus) and cap independent transla-
tion Hepatitis C virus or Pestivirus. Conserved RNA elements can help to
group different virus genomes, because common RNA secondary structures
can guide taxonomy for phylogenetically related virus genomes. Investiga-
tions of the viral phylogeny can be based on conserved RNA elements, and
unknown viruses can be assigned to virus families by comparing their sec-
ondary structures to already analyzed conserved RNA elements.

Our theoretical approach show that conserved elements are crucial for the
viral life-cycle by definition. Even the high mutation rate of virus genomes
can not destroy these elements, which makes them to ideal targets for new
anti-viral strategies.



Sequences

Table 10: Hepatitis C' Virus Sequences

Selected Sequences

REM | ID Accession No | length (nt) | organism
1 E08399 E08399 9413 Hepatitis C virus
2 E10035 E10035 9416 Hepatitis C virus
3 HCJRNA D14484 9427 Hepatitis C virus
4 HCU01214 U01214 9446 Hepatitis C virus
5 HCVIJK1G X61596 9408 Hepatitis C virus
6 HCVPOLYP AJ000009 9379 Hepatitis C virus
7 HPC1B4 D50484 9410 Hepatitis C virus
8 HPC1B5 D50485 9410 Hepatitis C virus
9 HPCCGENOM | L02836 9400 Hepatitis C virus
10 HPCGENANT | M84754 9425 Hepatitis C virus
11 HPCY1B6 D50480 9410 Hepatitis C virus
12 562220 562220 9440 Hepatitis C virus
Example Sequences for Alifold
REM | ID Accession No | length (nt) | organism
1 AF009606 AF009606 9646 Hepatitis C virus
2 AF054247 AF054247 9595 Hepatitis C virus
3 D84262 D84262 9449 Hepatitis C virus
4 D84263 D84263 9426 Hepatitis C virus
5 HC45476 U45476 9431 Hepatitis C virus
6 HCJK046E2 D63822 9461 Hepatitis C virus
7 HCV4APOLY | Y11604 9355 Hepatitis C virus type 4a
8 HCVIJK1G X61596 9408 Hepatitis C virus
9 HPCHKG6 D28917 9454 Hepatitis C virus
10 HPCPOLP D00944 9589 Hepatitis C virus
Hepatitis C virus strain H77C
REM | ID Accession No | length (nt) | organism
1 AF011751 AF011751 9599 Hepatitis C virus strain H77
2 AFO011752 AF011752 9599 Hepatitis C virus strain H77
3 AF011753 AF011753 9599 Hepatitis C virus strain H77




Table 11: Pestivirus Sequences

Selected Pestivirus Sequenes

REM | ID Accession No | length (nt) | organism

1 AF037405 AF037405 12333

2 AF041040 AF041040 12260 pestivirus type 1

3 AF091507 AF091507 12310 Hog cholera virus

4 BDAF2227 AF002227 12255

5 BDU70263 U70263 12268 pestivirus type 3

6 BVDCG M31182 12573 pestivirus type 1

7 BVU63479 U63479 12247 pestivirus type 1

8 HCVCG3PE M31768 12283 Hog cholera virus

9 PTU86600 U86600 12267 pestivirus type 1

10 TOGHCVCG J04358 12284 Hog cholera virus
Selected Pestivirus Sequenes for Comparison Cattle, Swine and Sheep

REM | ID Accession No | length (nt) | organism

cattle

1 AF041040 AF041040 12260 pestivirus type 1

2 AF091605 AF091605 12310 bovine viral diarrhea virus

3 BV18059 U18059 12513 pestivirus type 1

4 BVDCG M31182 12573 pestivirus type 1

5 BVDPOLYPR | M96751 12308 pestivirus type 1

6 BVDPP M96687 12480 pestivirus type 1

7 BVU63479 U63479 12247 pestivirus type 1

8 E01149 E01149 12492 pestivirus type 1

swine

1 A16790 A16790 12284 Hog cholera virus

2 AF091507 AF091507 12310 Hog cholera virus

3 AF091661 AF091661 12297 Hog cholera virus

4 HC45477 U45477 12298 Hog cholera virus

5 HC45478 U45478 12278 Hog cholera virus

6 HCSEQB 1.49347 12144 Hog cholera virus

7 HCVCG3PE M31768 12283 Hog cholera virus

8 HCVCOMGEN | X87939 12298 Hog cholera virus

9 HCVCOMSEQ | X96550 12297 Hog cholera virus

10 HCVPOLYP1 D49532 12298 Hog cholera virus

11 HCVPOLYP2 D49533 12298 Hog cholera virus

12 HCVPOLYPR | Z46258 12311 Hog cholera virus

13 TOGHCVCG J04358 12284 Hog cholera virus

sheep

1 AF037405 AF037405 12333 border disease virus

2 BDAF2227 AF002227 12255 border disease virus

3 BDU70263 U70263 12268 pestivirus type 3




Table 12: Hantavirus L,M-segment Sequences

REM 1D Accession No | length (nt) | organism

L-segment

1 BUHANL X55901 6533 Hantaan virus

2 HANRDRP1 D25528 6533 Hantaan virus

3 HANRDRP4 D25531 6533 Hantaan virus

4 HVSLSEG X56492 6530 Hantavirus

5 NEVLRNA M63194 6550 Puumala virus

6 PVLSOTKMO | Z66548 6550 Puumala virus

7 SNVRPL L37901 6562 Sin Nombre hantavirus
8 SNVRPLA 137902 6562 Sin Nombre hantavirus
M-segment

1 AF028022 AF028022 3653 Lechiguanas virus

2 AF028023 AF028023 3654 Hu39694 virus

3 AF028024 AF028024 3646 Oran virus

4 AF030551 AF030551 3664 Blue River virus

5 AF030552 AF030552 3662 Blue River virus

6 BUHANM Y00386 3616 Hantaan virus

7 HANG1G2A L08753 3616 Hantaan virus

8 HOJM D00376 3613 HoJo virus

9 HPSCC10™ L33474 3696 Pulmonary syndrome
10 HPSMSEG L25783 3696 Sin Nombre 0

11 HPSMSEGA 1L.33684 3696 Pulmonary syndrome
12 HPSMSEGB L33685 3644 Hantavirus

13 HVIGLYPRE | L36930 3677 Bayou hantavirus

14 LNAF5728 AF005728 3698 Laguna Negra virus
15 NEVMSEG M29979 3682 Puumala virus

16 NY36801 U36801 3668 New York hantavirus
17 PHVMSRNA X55129 3707 Prospect Hill virus
18 PUVMVINS&3 749214 3682 Puumala virus

19 PV22418 U22418 3681 Puumala virus

20 PVMZ84205 784205 3682 Puumala virus

21 S68035 S68035 3655 Hantavirus

22 SNGPGO L37903 3696 Sin Nombre hantavirus
23 TIDG1G2A L08756 3613 Thailand virus

24 TUVM5302 769993 3694 Tula virus




Table 13: Hantavirus S-segment Sequences

REM | ID Accession No | length (nt) | organism

1 AB010730 AB010730 1833 Puumala virus

2 AF004660 AF004660 1876 Andes virus

3 HANSNC M14626 1696 Hantaan virus

4 HSNPSS L41916 1670 Hantavirus sp.

5 HVINUCPRO | L36929 1958 Bayou hantavirus

6 KH35255 U35255 1845 Khabarovsk hantavirus
7 LNAF5727 AF005727 1904 Laguna Negra virus

8 PRHSRNA M34011 1675 Prospect Hill virus

9 PUUSNP X61035 1830 Puumala virus

10 PUVSVIRRT | 769985 1837 Puumala virus

11 PV22423 U22423 1847 Puumala virus

12 PVNICAS U14137 1828 Puumala virus

13 PVNPRO1 730702 1832 Puumala virus

14 RMU11427 U11427 1896 El Moro Canyon hantavirus
15 RS18100 U18100 1749 Mexicanus hantavirus
16 SRVAGSS M34881 1769 Sapporo rat virus

17 TUVS5302 769991 1831 Tula virus

18 TVSSEG1 730941 1847 Tula virus

19 U19303 U19303 1722 Prairie vole hantavirus
20 Ub2136 Ub2136 1975 Rio Mamore hantavirus




Table 14: Hantavirus M,S-segments of Groups

REM 1D Accession No | organism

M-segment

group 1 BUHANM Y00386 Hantaan virus

group 1 HANG1G2 M14627 Hantaan virus

group 1 HOJM D00376 HoJo virus

group 1 HPSMSEG L25783 Sin Nombre hantavirus
group 1 S68035 S68035 Hantavirus

group 1 TIDG1G2A L0O8756 Thailand virus

group 2 NEVMSEG M29979 Puumala virus

group 2 PHVMSRNA | X55129 Prospect Hill virus
group 2 PUVMVINS3 | Z49214 Puumala virus

group 2 PV22418 U22418 Puumala virus

group 2 PVMZ84205 784205 Puumala virus

group 2 TUVMb5H302 769993 Tula virus

group 3 AF028022 AF028022 Lechiguanas virus
group 3 AF028023 AF028023 Hu39694 virus

group 3 AF028024 AF028024 Oran virus

group 3 HVIGLYPRE | L36930 Bayou hantavirus
group 3 LNAF5728 AF005728 Laguna Negra virus
group 4 AF030551 AF030551 Blue River virus

group 4 AF030552 AF030552 Blue River virus

group 4 HPSCC107TM | L33474 Pulmonary syndrome
group 4 HPSMSEG L25783 Sin Nombre hantavirus
group 4 HPSMSEGA | L33684 Pulmonary syndrome
group 4 NY36801 U36801 New York hantavirus
S-segment

group 1 AF004660 AF004660 Andes virus

group 1 HVINUCPRO | L36929 Bayou hantavirus
group 1 LNAF5727 AF005727 Laguna Negra virus
group 1 RMU11427 U11427 El Moro Canyon hantavirus
group 1 RS18100 U18100 Reithrodontomys mexicanus hantavirus
group 1 UbH2136 Ub52136 Rio Mamore hantavirus
group 2 KH35255 U35255 Khabarovsk hantavirus
group 2 PRHSRNA M34011 Prospect Hill virus
group 2 TUVS5302 769991 Tula virus

group 2 TVSSEG1 730941 Tula virus

group 2 U19303 U19303 Prairie vole hantavirus
group 3 AB010730 AB010730 Puumala virus

group 3 PUUSNP X61035 Puumala virus

group 3 PUVSVIRRT | Z69985 Puumala virus

group 3 PV22423 U22423 Puumala virus

group 3 PVNICAS U14137 Puumala virus

group 3 PVNPRO1 730702 Puumala virus




Table 15: Bunyavirus Sequences

REM 1D Accession No | length (nt) | organism

M-segment

1 BUSSHMG | K02539 4527 Snowshoe hare virus

2 LACMRP D10370 4526 La Crosse virus

3 LC18979 U18979 4526 La Crosse virus

4 LCU70207 | U70207 4526 La Crosse virus

5 U8R8057 U88057 4501 Melao virus

6 U88058 U88058 4510 Jamestown Canyon virus
7 U88059 U88059 4506 Inkoo virus

8 U&8060 U&8060 4506 Inkoo virus

S-segment

1 BUNCNP K00108 981 La Crosse virus

2 BUSVR J02390 982 Snowshoe hare virus

3 CE12800 U12800 978 California encephalitis virus
4 MB31989 U31989 976 Morro Bay virus

5 SAU47139 | U47139 976 San Angelo virus

6 SDU47140 | U47140 967 Serra do Navio virus

7 SRU47141 | U47141 984 South River virus

8 TV12803 U12803 973 Trivittatus virus

9 TVU47142 | U47142 976 Tahyna virus
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