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Abstract

RNA can serve as an ideal model for evolution. In a simple way it combines
genotype and phenotype in a single molecule. The minimum free energy (mfe)
structure of a RNA molecule is directly derivable from its sequence. Neutral-
ity in terms of constant fitness plays a major role in evolution to overcome
local maxima in the fitness landscape and can again be realised in the RNA
model. Many sequences fold into the same secondary structure. As fitness
can be derived directly from structure a population drifting on such a set of
equally fit sequences undergoes neutral evolution. Random drift on the other
hand is only possible if there exists a net of neutral neighbours that are acces-
sible by single mutations which are chosen from a set of mutation operators.
Those components can be derived by breadth-first-traversal algorithms from
the larger neutral net of all sequences that fold into the same secondary struc-
ture. Sequence to structure mappings can be derived by folding all sequences
of a certain chain length and over a given alphabet into their mfe secondary
structure. In this work this was done for the sequence spaces of the alphabets
GC and AU for chain length up to 30, for AUG and UGC alphabets up to
chain lengths of 20 and for the natural alphabet of AUGC for chain lengths up
to 16. Sequence to structure maps were computed for different folding param-
eters, compared and partitioned into components. The generic features are
comparable to those obtained in previous less extensive calculations using an
older set of folding parameters. The total number of structures formed increase
exponentially with the chain length. There is a small number of common and
many rare structures roughly following a generalised Zipf’s law. The fraction
of sequences that do not form a stable mfe structure other than the open chain
decreases with an increasing chain length. The fraction of common structures
also decreases whereas the fraction of sequences folding into common structures
increases with a growing chain length so that at large chain lengths nearly all
sequences fold into a small number of stable secondary structures. As far as the
relatively small number of cases studied allows for general conclusions, these

features are not bound to certain alphabets or folding parameter sets. We find



the neutral networks of the higher ranked and rarer structures to be more often
split into a large number of components. Neutral nets were ranked by their
size starting at rank one for the largest network. Common structures tend to
show a single giant component or up to four large components. If a structure
decomposes into two to four almost equal sized components they often differ
clearly in their base composition which can be explained by structural features.
Such structural elements, that would allow the formation of additional base
pairs whenever the sequences carry complementary bases at the correspond-
ing positions, lead to systematic biases from an even distribution of sequences
folding into the same structure in the space of compatible sequences. The sec-
ond part of the work examined the kinetics of RNA folding using an already
established algorithm. The components of the small tested neutral networks
did not show a clear difference in their overall mean folding time according to
their size but statistics of data obtained from kinetic folding of a large number
of sequences of different length and secondary structure and from analysing
their energy landscapes showed some clear results. The wide-spread prejudice
that a sequence’s mfe determines its folding kinetics could be disproved. The
mean folding time does not correlate with the minimum free energy. It rather
strongly depends on the height of the energy barrier that separates the most
important local minimum which often is associated with the highest barrier,
from the mfe structure on the folding path. An analysis of the distribution
of folding times suggests a logarithmic normal distribution. Depending on the
energy landscape and the occurrence of important local minima several of such
log-normal distributions can overlap, one for each major barrier to all other
important local minima visited on the folding path. Whereas the resulting
overall distribution often differs from a log-normal distribution, but in simple

cases it is well described by this distribution.



Zusammenfassung

Ribonukleinsdure (RNA) ist ein ideales Modell der Evolution. Sie kombiniert
auf eine einfache Art und Weise Genotyp und Phénotyp in einem einzigen
Molekiil. Die Sekundérstruktur mit minimaler freier Energie (mfe) ist direkt
aus ihrer Sequenz ableitbar. Neutralitdt in Bezug auf konstante Fitness spielt
eine wichtige Rolle in der Evolution um lokale Maxima in der Fitnesslanschaft
zu liberwinden und kann ebenfalls im RNA-Modell realisiert werden. Viele
Sequenzen falten in die selbe Sekundarstruktur. Da die Fitness direkt aus der
Struktur abgeleitet werden kann, unterzieht sich eine Population, die auf dieser
Menge von Sequenzen gleicher Fitness umherdriftet neutraler Evolution. Zu-
fallsdrift ist wiederum nur moglich, wenn es ein Netz von neutralen Nachbarn
gibt, die in Einzelmutationen, die aus einer Menge von Mutationsoperatoren
gewahlt werden konnen, erreichbar sind. Diese Komponenten kann man durch
einen Breitensuchalgorithmus aus dem grofieren neutralen Netz der Sequenzen,
die in die selbe Struktur falten extrahieren. Sequenz-Struktur-Abbildungen
kann man dadurch erreichen, dal man alle Sequenzen einer konstanten Ket-
tenldnge und eines bestimmten Alphabets in ihre mfe-Sekundarstruktur faltet.
In dieser Arbeit wurde das fiir die Sequenzraume der Alphabete GC und AU
bis zu einer Kettenldnge von 30, fiir das AUG und das UGC Alphabet fiir
Kettenlangen bis zu 20 und fiir das natiirliche Alphabet von AUGC fiir bis zu
16 Nukleotid lange Ketten durchgefiihrt. Die Sequenz-Struktur-Abbildungen
wurden mit unterschiedlichen Parametern berechnet, verglichen und ihre Kom-
ponenten bestimmt. Ihre allgemeinen Eigenschaften sind mit fritheren weniger
ausfithrlichen Berechnungen vergleichbar, bei denen altere Parameter verwen-
det wurden. Die Gesamtzahl der gebildeten Strukturen steigt exponentiell mit
steigender Kettenlange an. Es gibt eine kleine Anzahl an haufigen und viele sel-
tene Strukturen die grob einem verallgemeinerten Zipf-Gesetz folgen. Der An-
teil der Sequenzen, die keine mfe-Struktur aufler der offenen Kette bilden, sinkt
mit der Kettenlange genauso wie der Anteil an haufigen Strukturen, wahrend
der Anteil von Strukturen die in haufige Strukturen falten steigt, sodafl bei

groflen Kettenldngen nahezu alle Sequenzen in eine kleine Anzahl von stabilen



Sekundarstrukturen falten. Soweit die relativ geringe Anzahl an untersuchten
Fallen allgemeine Schlulforderungen zulassen, sind diese Eigenschaften nicht
an bestimmte Alphabete oder Faltungsparameter gebunden. Wir finden, dafl
sich neutrale Netzwerke der hoheren Range ofters in eine Vielzahl von Kom-
ponenten aufspalten. Neutrale Netze wurden beginnend mit Rang eins fiir das
grofite Netzwerk der Grofie nach gereiht. Haufige Strukturen zeigen eher eine
einzige Riesenkomponente oder bis zu vier grofle Komponenten, die sich dann
deutlich in ihrer Basenzusammensetzung unterscheiden, was man auf struk-
turelle Eigenschaften zuriickfithren kann. Solche strukturellen Elemente, die
die Bildung eines weiteren Basenpaares ermoglichen wiirden wann immer sich
komplementire Basen an den entsprechenden Positionen befinden, fiihren zu
systematischen Abweichungen von einer gleichmaflig Verteilung der Sequenzen,
die in die gleiche Struktur falten, im Raum der kompatiblen Sequenzen.

Im zweiten Teil der Arbeit wurde die Faltungskinetik von RNA mit bereits
bestehenden Algorithmen untersucht. Die Komponenten der untersuchten
kleinen neutralen Netzwerke zeigten keinen deutlichen Unterschied in ihrer
gesamten mittleren Faltungszeit in Abhangigkeit von ihrer Grofle aber die
Statistik von kinetischen Faltungsdaten einer grofien Menge von Sequenzen
verschiedener Lange und Sekundarstruktur und die Analyse ihrer Energieland-
schaften ergab eindeutige Ergebnisse. Das weit verbreitetes Vorurteil, daf
die minimale freie Energie einer Sequenz ihre Faltungskinetik festlegt, kon-
nte widerlegt werden. Die mittlere Faltungszeit ist von der minimalen freien
Energie unabhingig. Vielmehr hingt sie hauptsachlich von der Hohe der En-
ergiebarriere ab, die das wichtigste lokale Minimum, das oft zu der hochsten
Barriere gehort, von der mfe-Struktur am Faltungsweg trennt. Die Analyse der
Faltungszeiten legt eine logarithmische Normalverteilung nahe. Abhingig von
der Energielandschaft und dem Auftreten wichtiger lokaler Minima koénnen
mehrere solche Verteilungen tiberlappen. Wohingegen sich die resultierende
Gesamtverteilung oft von einer logarithmischen Normalverteilung unterschei-
det, aber in weniger komplizierten Fallen wird sie gut von dieser Verteilung

beschrieben.
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1 Introduction

1.1 General Context

Evolution of RNA is especially important as it plays a major role at an very
early stage of life. Cells contain batteries of protein based enzymes for ma-
nipulating DNA but few for processing RNA, however in contrast to proteins
nucleic acids can direct their own synthesis and many coenzymes are ribonu-
cleotides. There exists a broad range of catalytic RNAs that are also known
as ribozymes [70]. In the same manner DNAs called deoxyribozymes show
catalytic function, for example in site specific cleaving of single stranded DNA
similar to restriction enzymes [6]. On the other hand RNA is an essential con-
tributor in protein expression. Messenger RNA (mRNA) carries the genetic
information stored in DNA to the ribosomes that also contain RNA where
transfer RNA (tRNA) enables the translation into proteins. In other words
RNA serves as information carrier and as catalyst. These observations led to
the RNA-world hypothesis [20,75]. Another hint supporting this hypothesis is
that ribosomes the places of protein synthesis are made of 2/3 RNA and only
1/3 protein which makes it imaginable that protoribosomes were self repli-
cating molecules entirely made of RNA that evolved the ability to influence
the synthesis of proteins. The RNA-world hypothesis proposes that in the
beginning before the occurrence of cells life was based on RNA.

Both key functions: catalysis and the storage of genetic information were
fulfilled by RNA before the occurrence of proteins and DNA that mainly serve
this function nowadays. The role of RNA is reduced to an intermediate at
protein synthesis and some minor functions in modern eucaryotes but it is
still the most important component of some viruses today. Nowadays RNA
serves as the hereditary material of many viruses and was found to be the
only substance viroids are made of. Viroids are single stranded circular RNAs
that cause infectious diseases [14]. They are supposed to be molecular fos-
sils of precellular self-replicating RNAs. An alternative hypothesis suggests

that because of the similarities to self-splicing group I introns that occur in
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mitochondrial and ribosomal RNA genes, viroids are ’escaped introns’.
Compared to proteins or double stranded DNA that stores genetic infor-
mation in organisms, RNA which occurs mainly single stranded is chemically
less stable but more active and can form a huge range of structures. Because
of its instability RNA proved to be less useful to act as a storage molecule for
genetic information than DNA. On the other hand the same instability led to
an increased error rate at the process of reduplication. This disadvantage at
the storage function can also be considered as an increased variation which is
the motor of evolution. In living organisms of today the shortest generation
time is about 30 minutes in some bacteria whereas RNA can have generation
times of less than one second. This makes RNA a perfect target for evolution-
ary studies which were first experimentally performed by Sol Spiegelman [67]
in his serial transfer tests and later in SELEX (systematic evolution of lig-
ands by exponential enrichment) [40, 71, 84] experiments where evolutionary
trends can be observed in a short time range which would take at least some
thousand times longer in organisms living today. SELEX is an in vitro selec-
tion of functional nucleic acids and makes use of large populations of random
RNA or DNA sequences as the raw material for the selection of rare functional
molecules. For example RNAs can be evolved to bind a protein. This would

involve the following steps:

e RNA transcripts with a sequence which confers binding specificity for
a target protein are selected for by incubating a RNA library with the

target protein which has been immobilised on nitrocellulose filters.
e The filters are washed to remove non-specifically bound RNA molecules.

e Specific binding RNA molecules are eluted from the target protein and

are collected.

e The eluted RNA molecules are converted to single strand cDNA. Duplex
DNA is produced from the single strand cDNA by PCR.

e In vitro transcription produces a library of RNA molecules enriched for

sequences with binding affinity for the target protein.
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e The process of selection and enrichment is continued until a collection of

high affinity binding sequences has been produced.

Small interfering RNA (siRNA) is a tool that is used for systematically
deciphering the function and interactions of genes [45]. It is a promising and
already widely used technology to knock down the expression of any gene in
vertebrate cells using double stranded RNA (dsRNA) which is called post-
transcriptional gene silencing. This makes it important to explore properties
of such small RNAs. A siRNA typically consists of two 21 nucleotides single
stranded RNAs that are complementary to both strands of the silenced gene
and form a 19 base pair duplex. This is a length that falls in the range of
small RNA molecules whose properties are studied in this work. The anti-sense
strand of the siRNA guides mRNA cleavage and degradation of the mRNA of
the gene to be silenced. In promising studies virus infections of mammalian
cells could be inhibited by directing siRNAs against viral mRNA.

Structural information and insight into RNA catalysis came from the first
crystal structure of a hammerhead ribozyme [54]. This is the first known
structure of a complex RNA besides those of tRNAs. Hammerhead ribozymes
are embedded in the RNAs of certain plant viruses and are named due to the

shape of their secondary structures.

1.2 RNA Secondary Structures

The possible conformations of RNA are delimited by a random coil or open
chain on one hand and by the thermodynamically most stable or minimum
free energy structure on the other hand. This minimum free energy (mfe)
structure often but not always is also the native structure. Compared to the
open chain structure a molecule folded into another structure is more resistant
to degradation and often this defined structure is important for a biochemical
function. In three dimensional structures there are several types of contacts
that are not well understood or studied. An example are pseudo-knots [28, 53]
where some data is already available. On the other hand there are algorithms to

calculate the two dimensional minimum free energy structure of single stranded
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RNA [31,44,50,81,89]. This secondary structure is a coarse grained model of
the real tertiary structure. It shows the contacts which occur by specific base
pairing. These base pairs are the result of hydrogen bonding interactions
between complementary bases. Like DNA, RNA contains four different bases.
Guanine (G) and cytosine (C) and adenine (A) are also found in DNA but
instead of thymine RNA contains uracil (U). The possible base pairs in RNA
are the Watson-Crick pairs namely A-U and G—C that are also found in DNA
but also G-U pairs which do not occur in DNA.

This secondary structure model only gives information of pairing and non
pairing regions but not about distances. Stacking is the force that drives
the folding into secondary structures, but the formation of an energetically
favourable double stranded region implies the formation of a energetically un-
favourable loop at the same time. There is progress in including some frequent
types of pseudo-knots into the folding algorithm [29] and the co-folding of two
RNA strands. The secondary structure of RNA can be seen as an intermedi-
ate state in the folding process from random coil to tertiary structure. This
can be shown by increasing temperature: tertiary interactions disappear fist,

secondary structure elements dissociate later [3].

1.3 Sequence Space

A sequence space is a discrete point space that has as many points as there
are different possible sequences. There is one and only one point for each
sequence and all points are ordered by the Hamming distance. The term
Hamming distance [27] named after Richard W. Hamming was first introduced
in information theory and equals the number of positions that differ in two
aligned sequences. This Hamming distance dy satisfies the properties of a

metric:
e dy(X,Y)=0ifand only if X =Y

o dy(X,Z2) <dy(X,Y)+du(Y, Z) for any strings X,Y, Z
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CGG CGC

GGG GGC

CCG CcC

GCG GCC

Figure 1: Sequence space over the alphabet GC and sequence length 3. A binary sequence
space is a hypercube, each corner representing one of the 2™ possible binary sequences of
length n [9]. The lines connect nearest neighbours, i.e. mutants that differ in only one

position.

Figures 1, 3 and 4 give illustrations of sequence spaces over different alpha-
bets. The term landscape was introduced by Sewall Wright [85,86]. Similar
to a natural landscape a fitness landscape consists of many local suboptimal
maxima. An evolving system may reach the global maximum and escape the
local maximum if there exits a ridge of points having the same fitness by ran-
domly travelling across this neutral ridge until a point of higher fitness is found
(see figure 5). Landscapes are often constructed in two steps. In our case this
is obtained by a first mapping from sequence space, which is formed by all
possible sequences of a certain chain length and alphabet, into (secondary)
structures and a second mapping from the space of structures (i. e. phenotype
space) into real numbers representing the fitness of those structures. There
are more RNA sequences than secondary structures and many RNA sequences
form the same secondary structure which is called neutrality.

In general there are four different approaches to study sequence-structure
maps of RNA. Those methods and their limits are shortly described in the

following:
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e Random graph theory [56] which uses a mathematical model. In gen-
eral the random graph approach works rather well. Exceptions are for
example directly related to structure. See figure 2 for examples of such

structural elements.

e Statistical evaluation of random walks in sequence space or by means of
inverse folding [15,63]. This allows the examination of longer sequences

but statistics also means limited accuracy.

e Simulation of evolutionary dynamics [16,17,36,74] making use of chemi-
cal kinetics of replication and mutation which is restricted to small parts

of sequence space.

e Exhaustive folding and enumeration [23,24,64] using a folding algorithm
that brings about exact results. As a disadvantage this method can only

be applied to short chain lengths.

The strategy used in this work is complete enumeration. It is a possible
way to find properties of neutral networks of RNA in respect to neutral evo-
lution. Neutrality in evolution means that mutations occur that do not affect
the fitness. Kimura [39] assumed that most mutants are selectively neutral and
adaptive mutations are rare. His theory is supported by recent experimental
data [52] from bacteria. The structure of a RNA molecule is often linked to a
biological function therefore sequences folding into the same (secondary) struc-
ture are assumed to have the same fitness. In the same manner as in neutral

evolution of whole organisms a neutral mutation in respect to RNA secondary

L L L
\ 2 N
Class | Class Il Class llI

Figure 2: Structures can be classified according to their ability of forming additional base
pairs. Class IT and III structures can lead to deviations from predictions of random graph

theory. Figure 33 gives more details.
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structure leads to a different sequence that has still the same phenotype (i.e
the same minimum free energy structure) as before the mutation occurred.
This of course implies the new sequence to be compatible to the structure i.e.

it consists of two bases that are capable of forming a pair at any two positions

GGG

Figure 3: Sequence space over the alphabet UGC and sequence length 3. In contrast to
the sequence space of a binary alphabet which can be constructed as a line for sequence
length n = 1, a quadrat for n = 2 and a cube for n = 3, the sequence space of a three letter
alphabet is iteratively constructed as a triangle (large dotted triangle above) for n = 1, three
connected triangles (small dotted triangles above) for n = 2 and nine triangles for n = 3.

The corners represent the sequences and solid lines and arcs connect nearest neighbours.
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that are paired in the target structure. All sequences that fold into the same

secondary structure spread out a neutral network.

Computer simulations of neutral evolution were extensively performed [16,

36,72,73]. It could be shown that neutral changes can set the stage for a mu-

tation that leads to a better adapted structure [36]. Neutral evolution gives

uuu

uuc

UUA

uuG

Cuu

GUU

GCU

GAU

cuc

7' ucu

CUA

ucc

CcuG

YR

—{ UCA

AW Acu AU AGU
RYY . RRY
aUC - ace GAC
AUC AcC AAC AGC
—fccu cAU tau
VAU ~(UGu
rrrrr YRY
cce CAC cac
UAC Uae
GUA GCA GAA
AUA ACA AAA AGA
RYR .o - o e - RRR
GUG - aca GAG
cca ACG iy AGG
Cea CAA Ao
UAA —(lGa
""" YRR

ucGg

CCG

UAG

UGG

CGG

GGU

GGC

GGA

GGG

Figure 4: Sequence space over the alphabet AUGC and sequence length 3. In analogy

to figure 1 a hypercube builds the sequence space of a two letter alphabet consisting of

purines (R) and pyrimidines (Y) [9]. The purines consist of either adenine (A) or guanine

(G), and the pyrimidines can be either uracil (U) or cytosine (C) leading to additional eight

hypercubes as subspaces at each corner of the binary purine pyrimidine hypercube.
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access to a virtually unlimited number of structures and can thus play an im-
portant role in adaptive evolution. A scenario of adaptive evolution, where
a population evolves over a suboptimal neutral net until it encounters an-
other net with a better secondary structure after which it relocalises to this
new net, was observed in simulations on a fitness landscape that was based
on RNA secondary structure [35]. Simulations of replicating and mutating
RNA populations under selection show that sudden adaptive progress coin-
cides mostly, but not always, with discontinuous shape transformations [16]
and confirm the importance of neutral genetic drift periods between steps of
sudden increases of fitness. Eric van Nimwegen et. al. analysed a model of a
population evolving over neutral networks of RNA secondary structures and
showed that the tendency to evolve toward highly connected parts of the net-
work is solely determined by the network topology [73]. A population must
explore large portions of neutral networks before it discovers a rare connection
to fitter phenotypes [72].

All possible RNA sequences of a certain chain length form the correspond-
ing sequence space of this chain length and the used alphabet. By exhaustive
folding of all its sequences all minimum free energy structures of this sequence
space can be achieved. The neutral network of all sequences folding into a cer-
tain structure decompose into components according to given rules of possible
mutations (e.g. only point mutations are allowed). All components of a given
structure form the sequence of components.

The sequence spaces of two letter alphabets (AU and GC) and the four
letter alphabet (AUGC) where studied previously by Walter Griiner et al. [23,
24] and Ulrike Gé&bel [22], respectively (see figures sequencespaceGC and se-
quencespaceAUGC for illustrations). The four letter alphabet because it is
the most important one as it occurs naturally, the two letter alphabets mainly
because they are easier to study because of the smaller sequence space at a
given chain length. But there is not only this practical aspect why to explore
sequence spaces of reduced alphabets. In the early days of life the original
genetic material probably contained less than four different subunits. Even a

system involving only adenine and inosine has been proposed [7]. Cytidine is
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the least stable of the four nucleosides occurring in RNA because it tends to
spontaneously deaminate to uridine and there are examples of natural RNAs
that have a very low cytidine content. For these reasons RNAs consisting of
three different kinds of nucleotides, especially those made of AUG could play
a role in vivo. It was shown that the folding of RNA into a catalytic active
structure is possible in a three nucleotide system [58]. An RNA ligase ribozyme
that lacked cytidine was achieved through in vitro evolution and still showed
activity. This class I ligase has a chain length of about 140 nucleotides and
catalyses the joining of the 3’-hydroxyl of a template-bound oligonucleotide
substrate to the 5’-triphosphate of the ribozyme.

1.4 Sequence of Components

Neutrality in evolution is important to overcome local maxima of fitness. Fit-
ness increases until a local maximum is reached. The ’valley’ between this local
maximum and the next higher state of fitness can be overcome by a random
drift within a neutral network bridging this valley (figure 5).

In respect to RNA a sequence which has a minimum structural distance to
a target secondary structure can be seen as a sequence of maximum fitness.
Computer simulations of such an evolutionary process from sequences folding
into random structures to sequences folding into a target structure performed
in a flow reactor showed a discontinuous increase of fitness [16]. The alternation
between adaptive walks that bring about a considerable increase of fitness and
periods of unselected random drift within neutral networks where no noticeable
change in fitness can be seen allow the escape from evolutionary traps in rugged
fitness landscapes [62]. The widths of the valleys crossed rather than its depths
influence the escape from local optima [73].

This means that the crossing of valleys of local minima is only possible
if there exists a connected neutral network which is a network where every
member can be reached by stepwise mutations chosen from the allowed set of

mutational operators.
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Adaptive Walks without Selective Neutrality

End of Walk
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Figure 5: A schematic representation illustrating the importance of neutral nets to over-
come local minima [61,62]. Optimisation occurs through adaptive walks and random drift.
Adaptive walks allow to choose the next step arbitrarily from all directions where fitness
is non-decreasing. Populations can bridge over narrow valleys with widths of a few point
mutations. In the absence of selective neutrality (upper picture) they are, however, unable
to span larger Hamming distances and thus will approach only the next major fitness peak.
Populations on rugged landscapes with extended neutral networks evolve along the networks
by a combination of adaptive walks and random drift at constant fitness (lower picture).

In this manner, populations bridge over large valleys and may eventually reach the global

maximum of the fitness landscape.
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A possible set of operators would consist of only point mutations leading
to a Hamming distance dy = 1 between the mutated and the original se-
quence. An extended set of mutational operators could also include base pair
exchanges resulting in possible Hamming distances of dg = 1 and dyg = 2.
A point mutation at a pairing base that would break this base pair because
the new base and remaining unchanged base cannot form one of the known
base pairs, often brings about a compensatory mutation at the corresponding
former pairing partner to reestablish the compatibility of the sequence to the
original structure [30,59]. This consecutive mutation is driven by selection
pressure because the structure is often linked to an essential function or at

least a selection advantage of the molecule.
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Figure 6: Neutral networks in sequence space. Neutral networks may be totally connected

or they may consist of several components (blue networks).
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Using such a set of mutation operators a neutral network can be parted
into subsets of this network leading to components which are connected net-
works (see figure 6 for an illustration). A random drift is possible within such
a component. For this reason the components were calculated for complete
sequence spaces in this work. All components belonging to a neutral network
are called the sequence of components.

The components were achieved by finding all sequences that can be reached
by stepwise (neutral) mutation of one base or one base pair within the com-

ponent.
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1.5 Energy Landscapes and Kinetics of RNA Folding

The topology of an energy landscape greatly influences the folding kinetics and
the possible folding paths. By calculating all suboptimal conformations of a
certain energy range above the minimum free energy it is possible to reveal
the underlying energy landscape and identify local minima and saddle points
resulting in the energy barriers to the thermodynamic ground state (8,12, 87].
RNA molecules are believed to exhibit rugged energy landscapes of many deep
local minima. Those local minima can be mis-folded structures that consist of
helices that are difficult to open once they are formed. It is believed that they
play a major role in the kinetics of RNA folding [47].

The kinetics of energy folding can be simulated by random walk algorithms

making use of a selected set of possible moves [12].

1.6 Organisation of this Work

First we will discuss some basic aspects of RNA and its folding into minimal
free energy structures in chapter 2. The algorithms some of the used programs
are based on and their background are discussed in chapter 3. In chapter 4
first the results obtained from numerous calculations of minimum free energy
structures of whole sequence spaces and their neutral nets are presented. Then
we will show the results of a great number of simulations of kinetic foldings of
different RNA sequences and compare them to their analysed energy landscape.
Finally the outcome of this work and further investigations that are to be done

in future are discussed in chapter 5.
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2 Basics: The Structure of RNA

In contrast to the primary structure which is simply the 5’ to 3’ list (or se-
quence) of covalently linked nucleotides, named by the attached base, the
tertiary structure describes the positions of every atom in a RNA molecule
in three dimensional space. An intermediate is the secondary structure that

reveals the base pairings in a RNA sequence in two dimensions.

2.1 RNA Secondary Structure

A RNA secondary structure can be represented as an outer-planar graph i.e.
a graph in which all vertices are arranged on a circle and all edges lie inside
the circle and do not intersect. The nucleotides are represented by the vertices
while the edges represent the backbone and the base pairing interactions. A

formal definition of a secondary structure follows [80]:

A secondary structure consists of a set of vertices
V =A1,2,...,4,..,N} and a set of edges E = {i-j,1 <i < j < N}
fulfilling

(1) For1<i<mn,i-(i+1)€E.
(2) For each i there is at most one h # 4 — 1,7+ 1 such that i- h € E.
3) fi-je Fandh-l€ Fandi<h < j,theni<l<j.

The first condition simply means that RNA is a linear polymer, the second
condition states that each base can be bonded to at most one other pairing
partner, and the third forbids the formation of a three-dimensional or tertiary
structure as it does not allow pseudo-knots and knots. While pseudo-knots
are important structural elements in many RNA molecules [83], they are ex-
cluded from many studies mostly for a technical reason [80]. In the absence of
pseudo-knots the folding problem for RNA can be solved efficiently by dynamic
programming [80,90]. Some efforts are taken to include pseudo-knots [1,25]

and in many cases they can be “added” to a predicted secondary structure
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graph during a post-processing step. A current algorithm by Rivas [57] is
able to deal with a large class of pseudo-knotted structures, but is extremely
costly. In addition information about the energetics of pseudo-knots is still
very limited [26].

A number of distinct structural motifs build the bases of secondary struc-
tures. Each secondary structure is composed of stacked base pairs, loops, and
external elements which are neither part of a stack nor of a loop. Two stacked
base pairs can be viewed as a special type of loop consisting of exactly four
nucleotides. Five different types of loops can be distinguished. Hairpin loops
and stacked base pairs have one and two base pairs, respectively. Bulges con-
sist of two base pairs adjacent to each other and at least one unpaired base,
interior loops have two base pairs which are not adjacent to each other and
finally multi-loops which consist of three base pairs (see figure 7). The sum of
energy contributions of all loops in a structure form the energy of a secondary
structure. The energy contributions depend on the loop type, the composition

of closing base pairs and interior base pairs as well as on the size of the loops.

hairpin loop
hairpin
% loop
hairpin % ')?,
N stack loop % g
) © q
% g qr
’)-"5 bulge
stack
internal loop
stack
stack
free free
end end

Figure 7: Secondary structures are composed of five distinct loop types namely stack,
hairpin loop, interior loop, bulge and multi-loop. They build the basis of the additive energy
model to calculate the energy of secondary structures. This calculation treats stacked pairs
and bulges as special cases of interior loops. The contributed energies depend on the loop
types, the composition of closing base pairs and interior base pairs as well as on the size of

the loops.
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2.2 Representations of Secondary Structures

Some commonly used graphical representations to visualise different properties

of RNA secondary structures are discussed in the following.

e The graph representation shows the list of base pairs as a planar
graph. It is the conventional representation in biochemistry. An example

is given in figure 8.

e The dot bracket notation is more formalised. The nucleotides are
symbolised by “.”, “(” or “)”. Where “.” means an unpaired nucleotide,
“(” a nucleotide that is paired with a base on its right side (opening of a
base pair) and “)” a nucleotide that is paired with a base located on its
left side (closing of a base pair). See figure 9 for an example of the dot

bracket notation.

e The circle representation: [51] All bases are represented by a dot
located on a circle. A chord connecting to dots denotes the pairing of
the corresponding bases. If pseudo-knots are excluded none of the chords
may cross another chord. Stacking regions are symbolised by groups of

parallel chords as one can see in figure 10.

e The tree representation: permits a useful classification of structures
according to their complexity [65,66,78,90]. Starting with a virtual root
at the 5’ end every node represents a unpaired nucleotide or a base pair.
Every base pair leads to a lower level. Therefor a stack is represented by

a vertical segment. Figure 11 shows an example tree.

e The mountain representation is directly derived from the dot bracket
notation [34,41]. Every opening of a base pair (or () increases the height
of the mountain whereas a unpaired base (or .) results in keeping the
current height constant and the closing of a base pair (or )) decreases
the height. An example of the mountain representation can be found in
figure 12. This representation is specially suitable to compare large RNA
molecules [34,41].
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Figure 8: Secondary structure graph of the tRNA"¢ clover leaf structure. The stacks are

marked with the same colour in every representation.

Figure 9: Dot bracket notation of the secondary structure of tRNAF ¢, The stacks are

marked with the same color in every representation.

Figure 10: Circle representation of the secondary structure of tRNAF"¢. The stacks are

marked with the same color in every representation.
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Figure 11: Tree representation of the secondary structure of tRNAF"¢. The stacks are

marked with the same color in every representation.

CCCCCCCE (O M M) G DN -

Figure 12: Mountain representation of the secondary structure of tRNAF"¢. The stacks

are marked with the same color in every representation.
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3 Algorithms

3.1 RNA secondary structure folding

The first efforts to find the secondary structure of a RNA strand by examining
its sequence (primary structure) using dynamic programming were made by
Ruth Nussinov [50,51] in realising an algorithm to solve the maximum match
problem. The output of this algorithm is the secondary structure that shows
the maximum number of base pairs. The now standard energy model was
formulated by Michael Zuker [90,91] in his algorithm to find solutions to the
minimum energy problem. The Vienna RNA package is an implementation of
Zuker’s algorithm plus many enhancements. MacCaskill’s partition function
algorithm and algorithms for inverse folding that suggest sequences folding into
a given structure, calculating the specific heat of RNA sequences, calculating
distances of RNA secondary structures and thermodynamic RNA secondary
structure ensembles, calculating the energy of a RNA sequence on a given
secondary structure, calculating suboptimal secondary structures of RNAs,
and drawing RNA secondary structure graphs, make the Vienna RNA package
a mighty tool for researchers working on the field of RNA. Each secondary
structure can be uniquely decomposed into loops as discussed previously (see
figure 7). A stacked base pair is considered a loop of size zero. The sum of the
energy contributions of all loops is assumed to be the energy of a secondary
structure. The minimum free energy (mfe) can be calculated recursively by
dynamic programming [78, 80, 90,91]. The structure leading to the mfe is
retrieved later on by backtracking through the energy arrays. For individual
loops the energy parameters have been determined in experiments [18,37,77]
and were usually measured for T = 37°C and 1M sodium chloride solutions.
They depend on the loop type, loop size, and partly on its sequence. Only
Watson-Crick pairs and GU and UG pairs are allowed since non-standard
base pairs normally have context-dependent energy contributions. Those base
pairs would not fit into the nearest neighbour model that states the energy

contribution of a base pair in the interior of a helix to depend only on the
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previous and the following pair.
Later John McCaskill [44] formulated an dynamic programming algorithm
to calculate the partition function (see equation 1) and equilibrium probabili-

ties over all possible base pairs.

RS —AG(S))
Q= ;exp - (1)

The probability P; of each base pair £, in the Boltzmann weighted en-

semble of all structures can be calculated by this algorithm (see equation 2).
Py = Py + Py + P} (2)
It is the sum of three independent terms:
e it closes a component with probability P

e it is an interior base pair of an interior-loop, bulge, or stack with proba-
bility Py,

e it is immediately interior to a multi-loop with probability P} .

The results are commonly visualised in a “dot plot” as shown in figure 13
where a square of the area Py, represents the equilibrium frequency P for each
base pair (k,1).

This square is plotted on position £,/ in a two dimensional grid. The
lower left triangular matrix shows the optimal fold whereas the upper right
matrix shows the base pair frequencies within the structure ensemble at the
thermodynamic equilibrium obtained by the partition function algorithm. This
gives an impression of possible alternative foldings.

Memory becomes the bottleneck when folding larger molecules. A new im-
plementation of the folding algorithm using parallel computers [10] can over-
come this problem and allows the folding of a wider range of RNAs that where
not accessible by the serial algorithm.

Both the standard energy model for calculating the minimum free energy

structure and the partition function algorithm are implemented in the Vienna
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RNA package [31,32]. Other programs distributed with the package include
RNAsubopt which is shortly described in chapter 3.4 and RNAinverse that de-
rives its name from the inversion of the folding algorithm. It is a useful tool to
find sequences folding into a specified structure starting from a given sequence
or a random sequence. For each sequence found the Hamming distance [27]
to the starting sequence is calculated which is the minimal number of point
mutations required to convert two sequences into each other. The Hamming
distance which is term that was originally introduced in information theory, is
a important metric in the abstract sequence space.

If not stated differently, the Vienna RNA Package version 1.3 [31], which is
freely available from http://www.tbi.univie.ac.at/ was used to calculate

mfe structures. This version uses the energy parameters taken from A. Walter

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

,,,,,,,,,,

77777777777777777777

ACCACGCUUAAGACACCUAGCUUGUGUCCUGGAGGUCUAGAAGUCAGACCGCGAGAGGGUUGACUCGAUUUAGGCG

¥0OV090NNVYVYOVYOVOONY9OONNONONIONOOYOONINYOVYONOVYOVYIDOD9VYOVYOOONNOYINIOVNNNYOODD

'GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUC'CACAGAAUUCGCACCA

Figure 13: An example of a “dot plot” as generated by the partition function algorithm
of the Vienna RNA package.
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et al. [77]. To compare the results to the new parameters that were available
only when this work was already ongoing, version 1.4 of the Vienna RNA
Package was used. This new version implemented the most recent compilation

of the energy parameters that can be found in Mathews et al. [43].
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3.2 Components of a Neutral Net

The neutral net of a structure may be composed of several components. We
are interested to obtain information about the number of the components and
their sizes and composition.

First of all a suitable data structure is needed to store the sequences effi-
ciently in terms of memory space and to perform fast searches. Different types

and their advantages and disadvantages are discussed in the following.
3.2.1 Search Trees

Binary search trees

Binary search trees [5] use the following rules to store strings. For every node,
all nodes down the left child have smaller values, while all nodes down the right
child have greater values. To facilitate the imagination of a binary search tree

an example is given in figure 14.
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Figure 14: Example of a binary search tree. Every strings stored in the tree can be found

below its last node in italic letters.
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Digital search trees

Digital search trees or tries [5,46] store data not at the nodes like binary
trees but along the paths in the tree. In trees representing words of lowercase
letters, each node has 26-way branching, with most branches are empty. To
find a string, at every node we access one out of 26 array elements, test for

null, and take a branch. An example is given in figure 15.

NIN LN N

Figure 15: Example of a digital search tree. Only the relevant branches are shown here.

Ternary search trees

To find all neighbours ternary search trees [4,5] were used. As digital search
trees (or tries) they store strings character by character in contrast to binary
search trees which store whole strings in each node. See figure 16 for an
example of a ternary search tree.

They are space efficient, fast and capable to perform a near neighbour
search on them which makes them a superior candidate for a sequence of
components algorithm. They proceed character by character like tries and are
space efficient like binary search trees but in contrast to binary search trees
every node has 3 children (in binary search trees every node has 2 children). A
search compares the current character in the search string with the character
at the node. If the search character is less, the search goes to the left child;

if the search character is greater, the search goes to the right child. when the
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search character is equal, though, the search goes to the middle child, and
proceeds to the next character in the search string. When searching for near
neighbours of a given Hamming distance, all branches are searched until the

given distance is reached or the node is null.

e
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Figure 16: Example of a ternary search tree.
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3.2.2 Algorithm to Obtain Components

When a convenient data structure is chosen the remaining part of the al-
gorithm can be implemented. Earlier implementations used AVL trees and
Btries which are tries over a binary alphabet and stored the sequences in a
binary data or data base format respectively on disk [22-24]. For the reasons
discussed previously the choice was made on ternary search trees. This new
implementation utilises the near neighbour search of ternary trees and stores
the sequences in a readable number format on disk. The reduced sequences
are stored in files named of the structures they are folding into and before
the search is performed in search trees. Reduced sequences are yielded by the
function reduce that introduces new symbols for all possible base pairs. Each
opening base or ( in dot bracket notation is replaced by one of the new sym-
bols according to the base pair they are affiliated with while bases at closing
positions or ) in dot bracket notation are not stored at all. This allows a re-
duction in disk space as well as in working memory space. On the other hand
it enables a near neighbour search on the reduced sequences which yields not
only the neighbouring sequences that differ by one base (Hamming distance
dg = 1) but also those that differ by on base pair (dg = 2). Knowing the
structure which is stored in the file name enables the algorithm to reconstruct
the original sequences when they are need later.

Further space reduction is achieved by compressing the structure files with
the gzip algorithm while they are saved to disk. Because of huge similarities
of the sequences a reasonable compression ratio can be reached. The actions
to reduce space are necessary because of the huge amount of sequences that
has to be stored. The algorithm used to determine the sequence of compo-
nents processes all immediate neighbours of a sequence before any remaining
sequences are processed which is also called breadth first traversal. During a
traversal the essential step involves finding all neighbours of the current node,
which is implemented as a near neighbour search on a ternary search tree as
already mentioned. The following iterative sequence of instructions describes

this algorithm and shows how the neutral net of a structure is examined:
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We use algorithm 1 for nets that fit into memory as a whole (see also

figure 17 for a graphical representation).

Algorithm 1:

1. Fold all sequences of a sequence space into the minimum energy structure.
For each new structure found, create a file and store all the following

sequences folding into this structure in this file.

To save memory and search time, all pairing bases are substituted by

one symbol representing this base pair.

LIST is a list of all sequences folding into one structure.
2. Move a sequence TEMPSEQ from LIST into the current COMPONENTLIST.

3. Find all neighbours of the sequence TEMPSEQ in LIST and move them
from LIST into the list of temporary sequences TEMPLIST.

4. Move a sequence TEMPSEQ from TEMPLIST into the current COM-
PONENTLIST.

5. Find all neighbours of the sequence TEMPSEQ in LIST and move them
from LIST into the list of temporary sequences TEMPLIST.

6. Go back to 4 until TEMPLIST is empty.

7. The sequences stored in COMPONENTLIST now form the current com-

ponent.

Create a new COMPONENTLIST and make it the current one.
8. Go back to 2 until LIST is empty.

9. The complete sequence of components is obtained by enumeration of the

sizes of all components.
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Figure 17: Algorithm 1 for calculating the sequence of components shown graphically:
A: shows the initial state: the list (LIST) is filled with all sequences of an investigated
neutral network, whereas the temporary list of sequences (TEMPSEQ) and of course the
list of sequences belonging to the first component (COMPONENTLIST) are empty. B:
a sequence (TEMPSEQ) is removed from LIST, all its neighbours are looked up in LIST
and moved to TEMPLIST, and TEMPSEQ itself is pushed into COMPONENTLIST. LIST
is shrinking whereas TEMPLIST and COMPONENTLIST are growing. C: a sequence
(TEMPSEQ) is removed from TEMPLIST, all its neighbours are looked up in LIST and
moved to TEMPLIST, and TEMPSEQ is pushed into COMPONENTLIST. This step is
repeated and LIST keeps shrinking, whereas TEMPLIST and COMPONENTLIST keep
growing until no neighbour of TEMPSEQ is found in LIST. D: if no neighbour of TEMPSEQ
is found in LIST it is moved into COMPONENTLIST. This time TEMPSEQ is shrinking.
E: if it happens that TEMPLIST is empty an new COMPONENTLIST is created and made

the current one and the algorithm jumps to step B.
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(((( ...... )))) structure =0
U=1
AUCGGGECCCUUUCCCG original sequence G=2
CG3
reduce base pairs
AU=0
UA=1
AU5444CCCUUU__ UG=2
GU=3
GC=4
reduce unpaired bases CG=5

015444333111

remove gaps

015444333111 reduced sequence

Figure 18: An example on how the reduce function processes sequences.

For large structure files not fitting into memory as a whole, a modified
algorithm (algorithm 2) is used which processes the those files slice by slice.
The size of the slices can be adapted according to the memory available on the
computer in use. The modified algorithm works in two steps. First, one slice
is read into memory and decomposed in the standard manner of algorithm 1.
This is performed on all slices. As a matter of fact two components belonging to
different slices may be connected in the whole network (figure 19). To find these
connections a similar method to algorithm 1 is used in a second step. All slices
are searched for connections of their components to components of different
slices. Practically these means if two sequences of different components are
found to be neighbours, the two components are connected and the search can
be aborted. By joining the connected components this second stage yields the
component structure of the complete network. This algorithm by-passes the
problem of limited memory but the size of the slices has still to be adjusted to

fit two slices into memory at the same time.
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Figure 19: Graphical representation of algorithm 2 for an example neutral network. Each
sequence is represented by a filled circle. Sequences belonging to one component are con-
nected by a line of the same colour. First the components of the slices are determined.
In a second step the components of the complete network are found by joining connected
components belonging to different slices. Each sequence of components is shown below the

corresponding network listing the size of each component in the respective colour.
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Algorithm 2:

1. Push the maximum allowed number of sequences into LIST.
2. Calculate the sequence of components of LIST using algorithm 1.

3. Write each component of this slice into an own file.
4. Push all file names of the currently created files into FILENAMELIST.

5. Move a file name TEMPFILENAME from FILENAMELIST into the
current COMPONENTLIST.

6. Find all neighbouring files of the file TEMPFILENAME in FILENAMELIST
and move them from FILENAMELIST into the list of temporary file
names TEMPFILENAMELIST.

Finding all neighbouring files in FILENAMELIST means:

(a) Load a file CURRENTFILENAME of FILENAMELIST into mem-

ory.

(b) Test each sequence in TEMPFILENAME file for neighbouring se-
quences in CURRENTFILENAME. The two files are known to be
neighbours after the first pair of neighbouring sequences is found.

The rest of the sequences in both files need not be looked at.
(c) Go back to 6a until all files in FILENAMELIST are tested.

7. Move a file name TEMPFILENAME from TEMPFILENAMELIST into
the current COMPONENTLIST.

8. Find all neighbours of the file TEMPFILENAME in FILENAMELIST
and move them from FILENAMELIST into the list of temporary file
names TEMPFILENAMELIST.

9. Go back to 7 until TEMPFILENAMELIST is empty.
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10. The sequences stored in the files of COMPONENTLIST now form the

current component.

Create a new COMPONENTLIST and make it the current one.
11. Go back to 5 until FILENAMELIST is empty.

12. The complete sequence of components is obtained by enumeration of all

components.

The main difference between the two algorithms is that FILENAMELIST
and TEMPFILENAMELIST in algorithm 2 contain file names instead of se-
quences which were stored in LIST and TEMPLIST in algorithm 1. Step 5
to 11 in algorithm 2 are essentially the same as step 2 to 8 in algorithm 1.
For the lists in both algorithms a ternary search tree structure was used and a
near neighbour search was performed on them to find neighbouring sequences.
Without the possibility of the near neighbour search it would be necessary
to create all mutants of the current sequence which are compatible with the
structure under investigation in a first step. In a second step each of those
candidate neighbours would have to be looked up in the set of sequences of the
investigated network in order to find all neighbours. These two steps are obso-
lete when you are using ternary search trees which are competent in performing
near neighbour searches.

The algorithms to obtain the sequence of components was implemented

using the mighty Perl [76] programming language.
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3.3 Kinetic Folding of RNA

RNA folding is modelled as a Markow process in conformation space using a
given microscopic move set. Built up on these fundamentals Christoph Flamm
implemented his kinfold [12] program to simulate the kinetic folding of RNAs
into their minimum free energy secondary structures. This section describes
the background and algorithm the program is based on.

To control the movement in the multidimensional conformation space C
a set of rules is needed that defines the allowed moves. This set of rules is
called move set. It is a number of operations that is needed to transform
one element of C into another one. A move set defines the possible conforma-
tional changes that are allowed in a single step during the simulation of kinetic
folding. Therefore it defines the conformational space.

A trajectory is a sequence of consecutive states of the state space that is
generated by a series of legal operations from some initial state. Whereas a
folding path is a cycle free trajectory, which means that each state occurs only
once in the sequence of consecutive states.

Insertion and deletion of a single base pair form the most simple move
set. Using these operations it is always possible to construct a path from any
element S; of the conformation space C to another element Sy of C. The path
of minimum length between S; and Sy is found by removing all base pairs in
S; that do not occur in Sy followed by the insertion of all base pairs of Sy
that do not occur in S;. This move set can describe a frequent mechanism in
helix formation called zipper mechanism [55]. New base pairs are stacked to
a nucleus which is associated with favourable negative energy contributions.
This leads to a spontaneous gradual growth of the helix that can be compared
to the process of closing a zipper.

Another important mechanism is a called defect diffusion. Defect diffusion
is much faster than zippering [55]. It can anneal mismatched helices that are
the result of incomplete base pairing by a fast chain slide mechanism. As a
result a bulge loop can rapidly move from one end of a helix to its opposite end

leading to a shift of the two strands of the helix by one nucleotide. To reflect
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this mechanism a further move called shift is introduced. The outcome of this
move is a transformation from one base pair to a new one in a single step. The
shift move also is conductive to the conversion of overlapping helices into each
other. This is especially true for two helices within a multi-loop which would
be energetically unfavourable using only insertions and deletions.

By adding the shift move to our basic move set we have determined the
fundamentals of a realistic kinetic folding algorithm. See figure 20 for the

complete move set.

Deletion Addition

@uuiiily R

Shift

Figure 20: The moves allowed by the kinfold program. Starting at the upper structure in
a clockwise order we first introduce a base pair by insertion followed by a shift move which
reduces one stacking area while elongating another by one base pair in a single step. The
next steps reveals the original structure by deleting one base pair. The changes made by

each move are marked in red.
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3.3.1 The Model and Algorithm of Kinetic Folding

The physical model of the folding process can be described in the form of a
Markow chain which is a random walk in an N-dimensional state space with
a very short memory of only one step. The following items underlie such a
Markow chain:

Some conformational changes are more likely and therefore happen more
frequently than others. A transition probability law controls the moves be-
tween states of the RNA chain in the conformation space.

The selected move sets determine the resolution of a folding trajectory. A
higher resolution can be obtained by choosing a move set that produces only
small conformational changes when applied. The higher resolution also leads
to more detailed and longer trajectories.

Conformational changes lying “far” apart on the trajectory seem to happen
independently. The apparently molecule does not memorise what happened
earlier.

On a large time scale the movement of the chain within conformation space
seems to be arbitrary.

According to conventional stochastic kinetics of chemical reactions [19] the
probability P(i,t) that a given RNA molecule will have the secondary structure

1 at time ¢ is given by the master equation

aP(it) _ Z[P(j, t)kji — P (i, t)kij] (3)

dt

where k;; is the rate constant.

situation described by equation 3 is numerically simulated in kinfold.
The algorithm used in kinfold is based on a continuous time Monte Carlo
method proposed by Daniel Gillespie [21]. It calculates the distribution of first
passage times which represent the folding times from an initial state to the
thermodynamic ground state.

The Gillespie method is an efficient procedure at high rejection rates. In-
stead of rejections this method uses an internal clock. At each step the rate

constants to all neighbours are computed and the time is advanced by a time
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increment which is adjusted to the sum of the rate constants. At the bottom
of a deep local minimum a higher rejection rate is found and the internal clock
is advanced further than at a saddle point of the energy landscape.

A symmetric rule introduced by Kyozi Kawasaki [38] is used to calculate
the rate constant £;;, which characterises the transition between the two con-

formations 7 and j. This transition probability is formulated as:
kij = exp —— (4)

To simulate the stochastic process of folding not only the rate constants
but also random numbers are involved at each step to choose the structure for
the next step.

At the simulation each step involves the following phases:

e Generation of the set of legal neighbour structures according to the used

move set

e Calculation of the rate constants from the current state to all its neigh-

bours
e Drawing of random numbers and selection of a move
e Calculation of the time increment and advancing the clock

The simulation is a stochastic process. Therefore several simulations using
the same initial conditions have to be carried out to show a realistic picture of

the distribution of folding times.
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3.4 Energy Barriers

The complex surface of the free energy versus the conformational degrees of
freedom is called the energy landscape of a RNA molecule. The degrees of
freedom are fixed by the allowed transformations of a move set whereas the
allowed conformations are the secondary structures compatible to a particular
sequence. An energy landscape can be represented by plotting the energy of a
conformation according to the standard energy model over conformation space.
To describe the shape of such an energy landscape we need to know all possible
secondary structures within a certain energy range which can be generated by
suboptimal folding techniques.

Stefan Wuchty’s RNAsubopt [87] is a program that calculates all subopti-
mal secondary structures within a chosen energy range. It is based on the
Waterman-Byers scheme [79] which was originally developed to find subopti-
mal solutions to the shortest path problem in networks.

Using all suboptimal structures within a given energy range and a move set
it possible to explore topological details like local optima and saddle points.

A local minimum is a structure that has a lower energy than all legal
neighbouring structures whereas a structure that has a higher energy than
all legal neighbouring structures is called local maximum. Besides these local
optima another characteristic describes a topology: saddle point.

A saddle point in a narrow sense is defined as a secondary structure that if
used as a starting point allows to reach two local minima by downhill walks.
Of special interest is the saddle point with the lowest energy that separates
the basins of two local minima.

Using a flooding algorithm on the energy landscape reveals those saddle
points. Together with the local minima they connect they can be presented in
a tree representation. The resulting trees of local minima also show the barrier
heights between two local minima and give an impression of the ruggedness of
the energy landscape. A simple example of such a tree of local minima is given
in figure 21. The key criterion that forms the topology of an energy landscape

is the choice of the move set. A different move set changes the connectivity of
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Figure 21: Example of a barrier tree produced by the program barriers. The structures
of the local minima are drawn below the corresponding leafs of the tree. On the bottom the
text output of barriers is shown. The first line lists the sequence. The following lines print
the number of the local minimum, the structure, the energy, the local minimum it merges
with, the barrier hight to the local minimum it merges with and the saddle structure. The
number of the local minimum equals the rank when sorted by the energy. The minimum

free energy structure is always number 1.

local optima and herewith the barrier heights, too.
A program that uses the flooding algorithm to calculate energy barriers
and the resulting barrier trees is barriers [12,13] implemented by Christoph

Flamm. This program is available upon request from its author and was used
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to create the barrier trees in this work. An example output of barriers is
given in figure 21 while figures 22 to 24 visualise the flooding algorithm in a
time series. To illustrate the connection between the branch lengths and the
free energy according to figure 22 the barrier trees shown in this work were

rotated to view the free energy at the ordinate.

Figure 22: A visualisation of an energy landscape and its connection to the corresponding
barrier tree using the same simple example found in figure 21. The barrier tree shown in
black reveals four local minima and three saddle points between them. The local minima can
be imagined as the deepest points of their basins. Those basins form the energy landscape

shown as the brown contour of valleys and saddles.
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Figure 23: The landscape is flooded starting at the lowest energy level by continuously

increasing the energy level.

Figure 24: The two basins on the right side have merged while the landscape is continuously
flooded until the given upper energy limit is reached where ideally all basins should have

merged.
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4 Computational Results

4.1 Sequence of Components

If not stated differently, the Vienna RNA Package version 1.3 [31], which is
freely available from http://www.tbi.univie.ac.at/ was used to calculate
mfe structures. This version uses the energy parameters taken from A. Walter
et al. [77].

To compare the results to the new parameters that were available only when
this work was already ongoing, version 1.4 of the Vienna RNA Package was
used. This version uses the parameters taken from Mathews et al. [43]. Only
selected smaller sized sequence spaces were additionally folded using the newer
version 1.4 of the Vienna RNA Package and its updated parameters because
of the extremely time intensive folding and decomposition into components of
whole sequence spaces of higher chain lengths.

The results from exhaustive folding of complete sequence spaces are dis-
cussed in the following. Different alphabets and chain lengths were examined.
The feasible limits for the time consuming process of exhaustive folding were
chain length 30 for two letter alphabets (AU and GC), chain length 20 for
three letter alphabets (AUG and UGC) and chain length 16 for the complete
four letter alphabet. Version 1.3 of RNAfold was used as this was the latest
version available at the beginning of this work. Only for reasons of comparison
selected smaller sized sequence spaces of the same alphabets were additionally
folded using version 1.4 of RNAfold and its updated parameters.

Looking at figure 26 we find the fraction of sequences that fold into the
open chain decreasing with the chain length so that at large chain lengths

nearly all structures fold into a stable non-open-chain mfe structure.
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Figure 25: The percentage of sequences folding into the open chain structure for the
complete sequence spaces of different alphabets and chain lengths computed using version
1.3 of RNAfold drawn in continuous lines. Only for reasons of comparison selected smaller
sized sequence spaces of the same alphabets were additionally folded using version 1.4 of
RNAfold and its updated parameters. They are marked as ‘'new parameters’ in the legend

and drawn in dashed lines.
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Figure 26: The number of structures as functions of the chain length. As in figure 25 The
different alphabet sequence spaces were folded using version 1.3 of RNAfold. Again some

examples were folded using version 1.4 of RNAfold and are label as 'new parameters’.

An upper bound to the number of folded structure was derived for a mini-
mum number of three unpaired digits and a minimum stem length of two, i.e.
counting only structures that do not contain isolated base pairs [33].

S, ~ 1.4848 x n~3/2(1.8488)"

The number of minimum free energy structures obtained from exhaustive folds
can be extrapolated to estimate the expected number of structures for higher
chain lengths. The estimates were obtained by a fit to the data shown in
figure 26. The exact numbers can be found in tables 1-2 and tables 3-4 for
parameters of version 1.3 and version 1.4 of RNAfold respectively. Version 1.3
foldings gave the following estimates where S,, is the number of structures for

chain length n:
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AU GC
n S Te Ne S Te Ne
7 1 1 128 1 1 128
8 1 1 256 3 1 220
9 1 1 512 7 1 284
10 3 1 1019 13 4 635
11 ) 1 2003 21 7 1293
12 8 1 3942 35 14 3115
13 12 1 7751 54 22 6773
14 20 1 14621 88 33 14276
15 31 1 26535 145 47 28653
16 47 1 47309 238 65 56370
17 68 4 89636 390 98 113111
18 109 19 198891 652 155 231406
19 173 44 436896 1104 231 463297
20 275 85 961700 1833 347 923722
21 447 | 114 1901674 3013 551 1861908
22 713 | 151 3725409 4963 855 3735008
23 || 1150 | 228 7538434 8169 | 1309 7469062
24 || 1852 | 332 | 15111655 | 13516 | 2079 | 15054472
25 || 2965 | 472 | 30223549 | 22351 | 3336 | 30493674
26 || 4713 | 668 | 60224307 | 36947 | 5134 | 61366034
27 || 7528 | 903 | 118957582 || 60894 | 7808 | 123090782
28 || 11900 | 1331 | 236869036 || 100634 | 12118 | 247327396
29 || 18898 | 2124 | 476408741 || 166804 | 18960 | 497464140
30 || 29950 | 3505 | 964766482 || 276569 | 29369 | 998818207

93

Table 1: The number of structures S including the open chain structure, the rank of the

rarest common structure 7. and the number of sequences that fold into common structures

n. for different chain lengths n calculated by using the parameters of Vienna RNA Package

version 1.3 .
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AUG UGC AUGC
n S ‘ Te Ne S ‘ Te Ne S ‘ Te Ne
6 1 4096
7 1 1 2187 1 2187 1 16338
8 3 1 6526 1 6397 1 64442
9 5 1 19312 1 17833 10 1 247921
10 8 1 57116 13 1 47099 18 1 916038
11 11 1 168481 22 1 120233 33 1 3285249
12 19 1 493799 42 5 361683 62 4 12420860
13 34 1 1430221 82 | 22 1332692 || 114 | 25 58585513
14 60 1 4068148 145 | 39 4209228 || 215 | 46 | 245890150
15 101 2 11535339 264 | 67 13360447 || 396 | 74 | 1005111947
16 162 | 12 34885205 480 | 94 39877953 || 741 | 114 | 4075143785
17 264 | 40 | 114167811 891 | 140 | 119620338
18 451 | 75| 358073568 || 1669 | 208 | 355954349
19 770 | 116 | 1096399800 || 3089 | 307 | 1050754221
20 || 1291 | 156 | 3270115077 || 5668 | 558 | 3162248955

Table 2: The number of structures S including the open chain structure, the rank of the
rarest common structure 7. and the number of sequences that fold into common structures
n. for different chain lengths n calculated by using the parameters of Vienna RNA Package

version 1.3 .

SAU ~, 0.949778 x n~3/2(1.67431)"
SGC ~ 2.48359 x n~3/2(1.74616)"
SAUG  0.656429 x n~3/2(1.82938)"
SUGC ~ 0.483069 x n~%/2(2.00026)"
SAUGE -, (0.434356 x n~3/2(2.06493)"
Version 1.4 foldings gave less reliable results because of the smaller number of
sequence spaces that were available:
SAU ~, 0.192778 x n~3/2(1.66434)"
SSC ~ 1.32702 x n~3/2(1.82288)"
SAUG  0.042775 x n~3/2(2.03991)"
SUGC ~ 0.249861 x n~3/2(2.13299)"
SAVGC , 0.242539 x n~3/2(2.1529)"

Due to the different valuation of the energy contributions, the two examined
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AU GC

ni S|r. Ne S| re Ne

7 1 1 128

8 2 1 240

9 4 1 360
10 8 3 697
11 17 ) 1311
12 34| 15 3491
13 1] 1 8192 63| 23 7027
14 1] 1 16384 107 | 31| 13376
15 3] 1 32720 175 | 44 | 26253
6] 8] 1 65036 296 | 76 | 54875
1716 1 127229 517 | 133 | 114578
18 |26 | 1| 244953 870 | 201 | 229413
19 || 41| 1| 467867 || 1453 | 311 | 461874
20 || 58 | 1| 888362 || 2427 | 457 | 917432
21 || 87| 1| 1674658

95

Table 3: The number of structures S including the open chain structure, the rank of the

rarest common structure r. and the number of sequences that fold into common structures

n. for different chain lengths n calculated by using the parameters of Vienna RNA Package

version 1.4 .

parameter sets lead to a different number of structures formed. For example

the unfavoured A-U pairs at the ends of a stack are often missing when using

the new parameters leading in many cases to less but more realistic and stable

structures for a given chain length. Moreover the first structure other than the

open chain occurs at a longer chain length.

To compare these estimates to earlier calculations the results from Walter

Griiner et al. [23] which were calculated using an older parameter set are given:

SAU . (0.0097 & 0.0038) x (1.489 = 0.0029)"

SGC ~ (0.0853 £ 0.0009) x (1.6360 & 0.0007)"
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AUG UGC AUGC
ni S|re Ne S| re ne |l S| re e
6 1] 1 729 1| 1 4096
7 21 1 2186 || 3| 1 16340
8 41 1 6516 || 5| 1 65067
9 7|1 18861 || 9 1 256497
100 111 59049 || 15| 1 52762 || 17 | 1 995920
1| 3] 1 177105 || 29| 1| 143228 || 30| 1| 3806358
12 5] 1 531020 || 53 | 6| 440750 || 58 | 1| 14325304
13 9] 1| 1591635 || 102 | 15 | 1350733
14 (19| 1| 4770376 || 192 | 35 | 4257662
15 || 32 | 1| 14287329

Table 4: The number of structures S including the open chain structure, the rank of the
rarest common structure 7. and the number of sequences that fold into common structures
n. for different chain lengths n calculated by using the parameters of Vienna RNA Package

version 1.4 .

A structure is said to be common if its preimage is not smaller than the
average size of a neutral network [60]. The average size of a neutral network is
calculated by the number of sequences of a sequence space over the number of
structures S of a sequence space. The number of sequences o” is determined
by the chain length n and the size of the alphabet « of a sequence space. Hence
we can determine the rank of the rarest common structure r. which means that
the structure of rank r. is still common, while the structure of rank r. + 1 is
already rare.

The number of structures S the rank of the rarest common structure r,
and the number of sequences that fold into common structures n,. are listed
in tables 1-2 and 3-4 for the parameters of version 1.3 and 1.4 of RNAfold,
respectively.

The fraction of common structures 7./S decreases with an increasing chain
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length. Looking at figure 27 we can see a short but abrupt decrease followed by
a short increase ending in a constant decrease at longer chain lengths especially
clear for the AU and the GC alphabet. This cannot be said for sure for all
alphabets as some of them were only examined on shorter chain lengths but

they all seem to follow this trend.

100 — T T T T\‘

10
= AU
= GC
= AUG
— UGC
o = AUGC
AU new parameters
GC new parameters
AUG new parameters
UGC new parameters
AUGC new parameters

fraction of common structures
=

0 5 10 15 20 25 30
chain length

Figure 27: The fraction of common structures r./S versus the chain length n for the
complete sequence spaces of different alphabets computed using version 1.3 of RNAfold
drawn in continuous lines. Only for reasons of comparison selected smaller sized sequence
spaces of the same alphabets were additionally folded using version 1.4 of RNAfold and
its updated parameters. They are marked as 'new parameters’ in the legend and drawn in

dashed lines.
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On the other hand the fraction of sequences that fold into common struc-
tures n./a™ increases with the chain length n. Figure 28 shows and strong
decrease followed by a abrupt increase ending in a constant increase with in-
creasing chain lengths clearly for the AU and the GC alphabets. Again data
for large ns are missing for some other alphabets but as far as we can see we
can assume a similar behaviour. At large chain length almost all sequences fold
into common structures. Neither the used alphabet nor the folding parameter

set seems to influence these general properties.
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Figure 28: The fraction of sequences that fold into common structures n./a™ versus
the chain length n for the complete sequence spaces of different alphabets computed using
version 1.3 of RNAfold drawn in continuous lines. Only for reasons of comparison selected
smaller sized sequence spaces of the same alphabets were additionally folded using version
1.4 of RNAfold and its updated parameters. They are marked as 'new parameters’ in the

legend and drawn in dashed lines.



4 COMPUTATIONAL RESULTS 29

RNA secondary structures behave like words in a natural language. There
are a few common and may rare ones [23,68] which is known as Zipf’s law [88].

In its simplest form
F(r)y=¢

-
it says that the frequency F' of a word times its rank r is equal to a constant.
A more generalised version of the law was proposed by Mandelbrot [42]:

__C
Fr) = mioe-
The structures obtained by exhaustive folding are ranked according to their
frequencies. The ranking yields a distribution which follows a generalised Zipf’s

law
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Figure 29: A fit to rank ordered network sizes of AUGC16. A generalised Zipf’s law
was formulated as y = a * (1 + 2/b) ¢ as the fit function and the variables were fitted to
a = 5.26756 x 107, b = 4.45264 x 10® and ¢ = 7.54683 x 10° using xmgrace’s non-linear fit

function. The open chain (rank 1) is not shown in this figure.
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where 7 and F'(r) are the rank and the frequency of the corresponding struc-
ture, respectively [69]. The constant C' is a normalisation factor, b can be
interpreted as the number of “very frequent” structures. The constant a de-
termines the slope of the tail of the distribution. Distributions following this
form of a generalised Zipf’s law were found for all algorithms, parameter sets,
and alphabets.

To give an overview on the number of components of whole sequence spaces,

size of metwork
number of components

the mean component size = was calculated. This does not
say much about the size of a component we are expecting, as there are often
a few giant and many tiny components. The tiny components often consist of
less than 0.1% of the neutral net and sometimes networks can be as small as

only a single sequence. But we can see how split the networks are (see figure 30)
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Figure 30: The mean component size of sequence spaces of chain length 16 folded using
version 1.3 of RNAfold. We can see how split the networks are as networks of the same

number of components form a graph as indicated by the arrows similar to figure 29.
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Figure 31: The mean component size of some large sequence spaces folded using version
1.3 of RNAfold. AU and AUG networks are more split into components than GC and AUG

(rank scales differ for different chain lengths in this figure).

because networks of the same number of components form graphs similar to
figure 29. Sequence spaces of chain length 16 (RNAfold version 1.3) are shown
in figure 30, figure 31 gives and impression about the disunion of large sequence
spaces calculated with RNAfold 1.3 and figure 32 shows some sequence spaces
that were folded by RNAfold 1.4. While we find the first ranks to form a
single giant or up to four components the number of components increases with
decreasing network sizes. Of course there are less components on the last ranks
as networks become smaller and the number of components cannot exceed their

size. AU and AUG networks split into different components at smaller ranks
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Figure 32: The mean component size of the largest sequence spaces examined using version
1.4 of RNAfold. Again we find AU and AUG networks to be more split than others.

and exhibit a larger number of components than UGC and AUGC networks
with GC networks being in-between. This is comparable to the number of
structures (see figure 26 and tables 1 to 4) that increases at the same chain
length in the following order:

#AU < #AUG < #GC < #UGC < #AUGC

independently to the used folding parameters.



4 COMPUTATIONAL RESULTS 63

Looking at the number of components three classes of RNA secondary
structures can be observed [24,56,61]. Corresponding to those classes sec-
ondary structures form one two or four components of almost equal size if
they consist of none one or two structural elements respectively that allow the
formation of additional base pairs. Examples for those elements are hairpin
loops with five or more members, sufficiently large bulges, internal loops, multi-
loop or stacking regions with two dangling ends. The three classes are shown
in figure 33. For an example GC sequence space a G/C ration significantly
different from one increases the probability to avoid the possible formation of
an additional generally possible base pair. This means there is an excess of
G or C in the base composition of the sequence. One structural element that
allows the formation of an additional base pair changes the average sequence
composition to larger C or a larger G content than the normal G:C = 1:1.

This can be clearly seen in the example shown in figure 34.

L L L
L 2N
I I I
N
I I I
I
Class | Class Il Class Il

Figure 33: The 3 classes of RNA secondary structures according to the availability of

structural elements that can form additional base pairs.

Class II structures consist of two independent structural elements that
allow the formation of additional base pairs. In that case we see a distribution
consisting of two sub-distributions. Each of the two structural elements leads

to an excess of G or C in the first (G; or C;) or the second structural element(Gq
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or Cy). That means we see four combination: G;Gs, G1Cs, GoC; and C;Cs.
The second and the third combination compensate the excesses to produce an
average G:C ratio of 1:1 whereas the first and the last combination show a clear
excess in G and C, respectively. This is mirrored in number of components
and their base composition as one can see in the example of figure 35.

In the more sophisticate case of a larger alphabet those structural elements
can only be investigated by looking at the base composition of the components,
for example the roughly equal sized two components of rank 201 of the sequence
space AUGC16. In figure 36 the appearance of each base A, U, G and C was
counted at every position and their fraction plotted versus the position. The

two base pairs of the hair pin are formed solely by G-C for the outer and
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Figure 34: The C content in the two components of rank 17 of GC30 calculated using
parameters of version 1.3. The structure graph shows the additional base pair in blue colour
that could be formed assuming there are compatible bases in place. See table 5 for the

sequence of components.
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C-G for the inner pair of the larger component. To avoid the formation of
an additional base pair, positions 3 and 13 consist of A-G and A-C in about
equal parts. On the other hand the outer base pair of the smaller component 2
is composed of G-C and a smaller number of C-G, while the inner base pair is
made of mainly C—G and some G—C pairs. The positions 3 and 13 that would
allow to elongate the stack are solely set with G and A, respectively, that do
not form base pairs. At both components the other unpaired positions consist

of all four bases in about the same frequency of roughly 25% each.
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Figure 35: The C content in the four components of rank 31 of GC30 calculated using
parameters of version 1.3. The structure graph shows the additional base pairs in blue
colour that could be formed assuming there are compatible bases in place. See table 5 for

the sequence of components.
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Rank Structure No. of No. of Sequence of
sequence | components | components

1| CCCCCCCCa e dINNIN) eeeean e 1840277 1 | 1840277

P2 CCCCCCCCC.22300002))) | 1495055 1 | 1495055

3| CCCCCCCCCeeININM) et 1404647 1 | 1404647

4 | CCCCCCCCa. ... )DDDDID) . 1377207 2 | 717214 659993

5 | (e, )DDDDD DD I 1178339 2 | 647053 531286

6 | CCCCCCCCee e INNN et 1154181 1 | 1154181

7 CCCeCeCC. ... I et 1136230 2 | 587540 548690

8 . CCCCCCCCaeedNINN) et 1102317 2 | 555258 547059

9 | CCCCCCCCCeeeINNINN oo, 1019189 1| 1019189

10 | CCCCCCCCCe e INNINN et 1012695 1 | 1012695

11| ........ et )))))))) | 1003459 2 | 521678 481781

12| ...... CCCCCCCCCC...22332232))) | 1001489 1 | 1001489

13 ....... CCCCCECCCenN»N”N 991964 1 | 991964

14| ....... e, NN 970872 2 | 532637 438235

15 | CCCCCCCCC. . ... DIV 952702 2 | 482438 470264

16| ........ CCCCCCCea eI - 946925 2 | 536182 410743

17 | . CCCCCCCCCeeedINNINND et 941082 2 | 471354 469728

18 | (CCCCCCC(a .. ... )DDDDDDDD I 938924 2 | 474897 464027

19| ....... CCCCCCCCCee e ININN. 934279 2 | 476172 458107

20 | L CCCCCCCCae e IDINN eeenn 921234 2 | 523675 397559

21 | L CCCCCCCCeadMININ) e 920508 2 | 462406 458102

22 | ..., e ... )))INN) 904162 2 | 458048 446114

23| ... CCCCCCCCCann .t 2)))))))) 882348 2 | 449422 432926

24| ool CCCCCCCCC-INNNN 877159 1| 877159

25 | Q. DN ... 818050 2 | 441068 376982

26| ... CCCCCCCCw o ”. 809568 2 | 421968 387600

27 | CCCCCCCannnnn MDIN) oo 794802 167 | 436832 357778
5333221 . ]

28 | ..ol CCCCCCCCea eI 781780 2 | 394202 387578

29 | ..... e ... ))))))))) 764465 2 | 415150 349315

30 | . CCCCCCCC. ... )DDDDID) 756850 4 | 203084 189651
187708 176407

31 | . (... )DDDD DD D I 719041 4 | 192975 180078
179185 166803

Table 5: The first ranks of the sequence of components of GC30 (partly shortened). See
figures 34 and 35 for the distribution of C in the different components of rank 17 and 31,

respectively.
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Figure 36: The histogram of the base composition of rank 201 of the sequence space
AUGC16. The structure is shown between the histograms of the two components, that are
roughly equally sized (289687 and 263865 sequences for components 1 and 2, respectively).
Red circles mark the positions that could form an additional base pair if they are set with

compatible bases.
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4.2 Kinetics of RNA Folding

4.2.1 Influences to Folding Times

To test the influence of the minimal free energy of a RNA sequence on the
kinetic folding behaviour about 1500 sequences folding into three different
minimal free energy structures were tested. To achieve an adequate sample
that incorporate the influence of size and structural differences the examined
structures were selected from different classes and different complexity. A
hairpin structure as a very simple example, the more sophisticated Y-shape
structure containing already one multi-loop but being still equal in size to the
hairpin, and a clover leaf structure as a more realistic bigger sized example
that occurs in tRNAs. See figure 37 for details of those structures. The
time dependent folding of the sequences was simulated using the program
kinfold [12] using 1000 simulations per sequence. The complete flowchart is

shown in figure 38.

Figure 37: The three analysed structures. From left to right: hairpin structure: 39
bases (1000 sequences), Y-shape structure: 39 bases (788 sequences), tRNAT?¢ clover leaf

structure: 76 bases (523 sequences).
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kinfold
1000 kinetic folding simulations per sequence
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RNAsubopt & barriers
for every sequence

‘ mean folding time ‘

‘ largest barrier ‘

Figure 38: Flowchart of the steps involved to obtain statistically relevant data to analyse
the kinetics of RNA folding.
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This procedure resulted in enough data to allow a statistically relevant
examination. In addition the barrier trees of local minima were calculated
using barriers [12,13] and RNAsubopt. To calculate all suboptimal structures
necessary to construct a complete barrier tree of a reasonable region it was
necessary to choose a stepwise proceeding. This involved an increase of the
energy range above the minimum free energy when using RNAsubopt at each
step. This is done after the barrier tree calculated with barriers which uses
RNAsubopt output as input was analysed in terms of enough local minima
and missing saddles. The stepwise approach is necessary because of the time

costly calculations of RNAsubopt at higher energy ranges.
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Figure 39: Minimum free energy versus mean folding time of sequences folding into three

different structures showing no correlation. The structures are shown in figure 37.
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The results of our simulations are presented in the following. The often
accepted hypothesis that the main factor in folding kinetics of an RNA se-
quence is its minimum free energy can be clearly defeated. Figure 39 shows
the minimum free energy plotted versus the mean folding time. The result is
unmistakable: no correlation at all can be found between them. The mean
folding time definitely does not depend on the minimum free energy. In this
plot we can only see the tendency of larger RNAs (tRNAf"¢ shown in black
colour which has a size of 76 bases) to be slower folders than shorter ones
(hairpin and Y-shape shown in orange and green colour respectively with a

size of 39 bases).

14.0 - . i
- tRNA™ ) °
Hairpin .
12.0 - Y-shape B 1
- tRNAs R L
— 10.0 - i . :O: 91S’E"D”f" o ’ n
o " % o
£ ,
8 80 - |
X,
k3
= 6.0 - .
m
4.0 - b b Y ’ ]
20 - .
0.0 | | | | | | | | |
10° 10 10° 10° 10° 10° 10° 10" 10° 10° 10“

Time [arbitrary units]

Figure 40: Highest barrier versus mean folding time of kinetic simulations starting at the
open chain and ending at the mfe structure. Additional kinetic data of different tRNAs were

provided by Dagmar Friede and are shown in blue colour.
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First we examine the folding process from the open chain to the minimum
free energy structure. Plotting the barrier height of the greatest barrier versus
the mean folding times shows positive correlation (see figure 40). Starting
at the open chain structure many local minima are visited and the barriers
between them have to be overcome. The higher a barrier the longer it takes
to escape from its basin. In general the time needed to overcome the greatest
barrier is the main factor that determines the overall folding time. Smaller
barriers are taken quickly and do not count a lot in terms of the overall mean
folding time. These facts express themselves well in figure 40. Kinetic foldings
of additional different tRNAs were performed by Dagmar Friede. Her data are

shown in figure 40 in blue colour and fit well into the picture drawn by kinetic
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0-0100 1 v 163

7

Figure 41: The highest barrier versus the mean folding time for a folding path starting at

the local minimum associated with the highest barrier and ending at the mfe structure.
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foldings of hairpin Y-shape and tRNAP”¢ structures. Looking at this plot
we also find that longer RNAs (tRNAF"¢ and tRNAs) have higher maximum
barriers and longer folding times than shorter RNAs (Hairpin and Y-shape).

In contrast to figure 40 figure 41 shows the refolding from a local minimum
to the minimum free energy structure. We see a similar picture with a positive
correlation between mean folding time and height of the greatest barrier. The
folding process in these simulations did not start at the open chain structure
but at the bottom of the basin of the highest barrier. This normally involves
only a single barrier (the highest one) and excludes the influence of all smaller
local minima and their barriers to the mean folding time. In fact their influence
is only small as discussed previously that is why figures 40 and 41 are quite
similar. The main statement of this experiment is that a higher (maximum)
barrier results in a longer mean folding time.

The same simulations were performed on the hairpin and the Y-shape struc-
ture using a reduced alphabet that allowed only Gs and Cs in the sequences.
For time efficiency reasons only some fast folding sequences were used. Fig-
ure 42 compares the barrier height in dependence to the mean folding time for
the two structures in different alphabets. In spite of the small number of tested
sequences using the GC alphabet we find that they fit well into the picture of
sequences using the AUGC alphabet. The chosen alphabet does not seem to
influence the general features of folding kinetics.

In the following we will discuss some example sequences and their kinet-
ics. The most frequent trap and the mfe structure are shown and the barrier
between them discussed as it strongly influences the mean folding time. The
most important stop structures were obtained by selecting them by the follow-
ing properties: the 30 greatest barriers to the mfe structure and the 30 largest
basin sizes. Not all sequences showed 30 local minimum structures that merge
with the mfe structure, and doubles were of course expunged. This procedure
most times left less than 60 stop structures. After 1000 kinfold simulations
the frequency each stop structure was reached could be counted.

Figure 43 gives an example of a hairpin structure that is an average folder

in terms of kinetics. There is one major trap with a barrier of 12.90 kcal/mol
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Figure 42: Barrier (of open chain to mfe structure) versus mean folding time. A hairpin

and a Y-shape structure in two different alphabets (AUGC and GC) are compared.

to the minimum free energy structure which correlates well with the mean
folding time of 1.25 - 10® arbitrary units.

Another average folding RNA is examined in figure 44. It folds into a
clover leaf structure of tRNAF"¢. There is one major trap that is visited in
81.9 percent of the folding paths simulated. It has a barrier of 7.82 kcal /mol to
the minimum free energy structure which correlates well with the mean folding
time of 1.9 - 10* arbitrary units.

An example of a sequence that can be found below the regression curve of
figure 40 is shown in figure 45. It folds into a hairpin structure. The most
important trap is still not visited frequently and has a rather small barrier of
2.60 kcal/mol to the minimum free energy structure. It has neither the highest

barrier nor the largest basin size. There are many local minima with similar
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small barriers. The local minimum with the largest barrier of 4.10 does not
have much influence on the mean folding time because it is only visited in
9.1%. This local minimum cannot be stated as a major trap. That is why the
mean folding time of 2.3 - 10* arbitrary units is longer than expected from the
height of the largest barrier.

A clover leaf structure example of a sequence that is located below the
regression curve of figure 40 is shown in figure 46. The most important trap is
still not visited frequently and has a rather small barrier of 3.41 kcal/mol to
the minimum free energy structure. It has neither the highest barrier nor the
largest basin size. There are many local minima with similar small barriers.
The local minimum with the largest barrier of 4.99 does not have much influ-
ence on the mean folding time because it is only visited in 1.9%. This local
minimum cannot be stated as a major trap. The long folding time of 1.9 - 10*
arbitrary units is longer than expected from the height of the largest barrier
and is in this case rather influenced by the large number of minor traps that
are visited on the folding path.

Figure 47 shows a sequence that folds into a Y-shape structure and can be
found above the regression curve in figure 40. The most important trap has
not the highest barrier which is 9.20 kcal/mol but a rather small barrier of
4.14 kcal/mol to the minimum free energy structure. It also does not have the
largest basin size. Still it is visited most often and therefore it’s barrier has
much more influence to the mean folding time than the largest barrier which
cannot be stated as a major trap. That is why the mean folding time of 3.3-10%

arbitrary units is shorter than expected from the height of the largest barrier.
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24.3%
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Figure 43: An example of a sequence (GGGAAUUCGGCAUAGCCGAAUCGUUGGUUGUGCCGAGUC)
that folds into a hairpin structure. Selected structures are labeled by their number. This
is the rank in the list of all suboptimal structures sorted by their free energy. The trap
structure (number 8) and the minimum free energy structure (number 1) are drawn below
their corresponding branch of the barrier tree. The frequency each of the structures is visited
and in italic letters their free energy can be found next to the structures. This example shows

an average folder with only one major tarp.
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Figure 44: An example of a sequence (GAGACUUUAGAGCAGNNGGGAGCUCGCAUGACUGAANAUUAU
GAGNUCGCGGGNUCGNUCUCCGUAGGUCUCACCA) that folds into a clover leaf structure of tRNAP”e,
This average folding RNA shows one major trap (number 10) that was visited 819 times in

thousand simulations.
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Figure 45: An example of a sequence (GGGAAGCUUGGGCUCCCGUAUCGACGGGAGCUCAAGCUC)
that folds into a hairpin structure. The most important trap (number 127) is still not
visited frequently and has a rather small barrier of 2.60 kcal/mol to the minimum free
energy structure. It has not the highest barrier and there are many similar local minima.
Many different ones are visited on the folding path, that is why the mean folding time is

longer than expected from the highest barrier.
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Figure 46: An example of a sequence (GCGCGGUUAGUGUAGNNGGGAACACGGGUAGCUGAANACUAUU
AGNUCGAUUUNUCGNUCAAAUCAUCGCGCACCA) that folds into a clover leaf structure. The most
frequent local minimum (number 5) still was only visited in 18.3 percent of the simulated
foldings. The local minimum of the highest barrier is visited even rarer. They both cannot
be stated as major traps. The long folding time in this case is rather influenced by the large

number of minor traps that are visited on the folding path.
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Figure 47: An example of a sequence (GCUCAAGGGGUUUUACCCCAGUUGUAAAACGAUAAGAGC)
that folds into a Y-shape structure. The folding time is more influenced by the most fre-
quently visited trap (number 3), than by the one with the highest barrier that is rarely
found on the folding path. This results in a faster folding sequence than suggested by the

size of the maximum barrier.
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Not only the highest barriers but also the barriers of the most frequently
visited trap structures influence the mean folding time. In figure 48 those
barrier heights are plotted versus the mean folding times and again we find
positive correlation between them. There are no more extremes at the upper
left corner because local minima with high barriers that are seldom visited
disappear. On the other hand at the lower right corner the values are more
scattered because less frequently visited local minima of much higher barriers
seem to have more influence on the total folding time. This is due to a large
difference between the barrier of the most frequent local minimum and the
highest barrier. To overcome a really high barrier takes proportionally more

time than crawling over a much smaller barrier many times.
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Figure 48: Barrier height of most frequent trap vs. mean folding time.
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Some properties related to barrier trees are presented in the following.
Parts of the data of different sized RNA sequences were kindly provided by
Ivo Hofacker (unpublished). The barrier trees of the randomly generated RNA
sequences were calculated using the barriers program and analysed. The
maximum barrier height grows with the size of RNA (see figure 50). As larger
RNA molecules can form more suboptimal structures there is also a larger
number of possible local minima, saddle points and their corresponding energy
barriers. Very often the local minimum located at the bottom of the largest
basin also has the largest barrier, but this does not always have to be true.
Nevertheless a larger basin has in general a higher barrier as shown in figure 49.
The barrier height also grows with an increasing structure distance calculated
as the base pair distance (figure 51).
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Figure 49: The barrier height in dependence on the basin size.



4 COMPUTATIONAL RESULTS 83

15

10 —

highest barrier [kcal/mol]

\ \ \ \
O20 40 60 80 100 120

chain length

Figure 50: The maximum barrier height between the lowest 100 local minima in depen-
dence on the size of RNA shown on randomly generated sequences (data provided by Ivo
Hofacker is plotted in blue).

20

barrier [kcal/mol]

80

structure distance

Figure 51: The structure distance calculated as base pair distance in dependence on the

size of RNA shown on randomly generated sequences (data provided by Ivo Hofacker).
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4.2.2 Kinetics of a Complete Sequence Space

The sequences of AUGC12 (new parameters version 1.4) folding into multi
component structures were kinetically analysed. The largest components were
expected to be the neutral nets that are mainly used in neutral evolution and
therefor we would expect a shorter mean folding time for the larger component.
The two component structures can be found in figure 52. Only at three out of
13 structures the larger component, which has rank one, folded more quickly
than the smaller component (of rank two). Table 6 lists the components in
detail.

30

—= rank 19
»— rank 29
25 rank 46 ]
»—= rank 32
- rank 28 —

rank 42
»— rank 16 ]

rank 43
»—= rank 25

rank 51
—= rank 47
—= rank 12

N
o
[

-_ 00

time [arbitrary units]
H
a1
[
|

rank of the component

Figure 52: Kinetics of the two component structures of the sequence space AUGC12
calculated using the new parameters (version 1.4). The mean folding time of all sequences
belonging to a component is plotted versus the rank (sorted by size) of that component.

The legend gives the rank of the structure each component pair belongs to.



4 COMPUTATIONAL RESULTS

85

Rank Structure No. of No. of Sequence of
sequence | components | components
I 14325304 1 | 14325304
2 (G M. 218567 1 | 218567
3 .CCC.oON. 183335 1| 183335
4| ((C.... N). 161765 1| 161765
51 (C....). ... 152393 1| 152393
6| ..0CC....))) 152221 1| 152221
[ GRS b I 121861 1| 121861
8 (CCC.... 0N 117253 1| 117253
9| .(C....)0... 113896 1| 113896
10 | .CCConn ))) 110842 1 | 110842
11 NAGTAN)) 105538 1| 105538
12 | ((..... ... 93866 2 | 92066 1800
13 ] ..(C..... )). 76439 2 | 74879 1560
14 | ((C...... »N) 74626 1| 74626
15 | (C...... N.. 71904 1| 71904
16 | .(C..... .. 70375 2 | 68671 1704
17 | .(Co...n. )). 61792 1| 61792
18 | (CCC...00M. 61613 1| 61613
19| ... (... 46510 2 | 45629 881
20 | - CCCCo N 45288 1| 45288
21 | . 0G0 41618 1| 41618
22 | (CC..OM .. 41092 1| 41092
23 | . CCCOM .. 39740 1| 39740
24| (Connnt n. 37472 1| 37472
25| Con) et 31848 2 | 30010 1838
26 | ..... ... 31498 2 | 28839 2659
P IR (RN I 27522 2 | 25365 2157
28 | (..o )l 27312 2 | 24933 2379
29| .Gl 25053 2 | 22782 2271
30| ...C..0... 24366 2 | 22365 2001
31| ... (..M 23260 1| 23260
32 (Connn. )) 15350 2 | 10700 4650
33 C..... )) 11365 5 | 7109 1584 904 902 866
34| ...... ... 6940 3 | 3407 2632 901
35| (C.C....0)) 3638 1| 3638
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3455 32 32
2943 16 4
2244

2208

145248 13 7
629 569 100 54 19 8
905 463

1284 24
902146412715988766432221
1111 29

799 61

745 55

645 68

665
305514774
192 122

240

220

211
83472213
7343 24 13
7429 4

54

Table 6: The sequence of components of AUGC12 calculated using

the new parameters (version 1.4).

The picture of more split neutral nets looks differently (see figure 53).

Only in one structure (rank 57) the largest component showed the slowest

mean folding time. In the rest (8 structures) the largest component was not

the slowest and in 4 cases (ranks 50, 55, 56 and 41) the largest component

had even the fastest mean folding time. Nevertheless no clear statement can

be made on a difference in the fold-ability of components also because of the

extreme variation in mean folding times of the sequences belonging to a single

component.
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Figure 53: Kinetics of the multi (more than 2) component structures of the sequence
space AUGC12 calculated using the new parameters (version 1.4). The mean folding time
of all sequences belonging to a component is plotted versus the rank (sorted by size) of that

component. The legend gives the rank of the structure each component pair belongs to.
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4.2.3 Distribution of Folding Times

An interesting question when investigating the kinetics of RNA secondary
structure folding is which underlying distribution the folding times follow.
When plotting the classified folding times versus their frequencies obviously
nothing looking like a normal distribution can be seen. But if a logarithmic
time scale is used the picture changes. It could be shown that the folding
times from the open chain to the mfe structure follow a logarithmic normal
distribution (in our example the logarithmic normal distribution is simply the
result of logarithmising all time values). The following approach is taken to
graphically superpose a fitted logarithmic normal distribution over the dis-
tribution of folding times derived from simulations. The folding times were
classified first. When plotted on a logarithmic time scale the shape of a usual
(non-logarithmic) normal distribution reappears. A logarithmic normal distri-
bution can be fitted to the curve by transforming the time values into their log-
arithms. One can now fit a non-logarithmic normal distribution to the results.
This is done by calculating the mean and the variance of the data to obtain
estimators for location and variation parameters. Using those parameters, a
normal distribution is calculated which can be scaled using a normalisation
factor. This normalisation factor is the ratio of the area delimited by the nor-
mal distribution curve to the area delimited by the data curve. The latter is
estimated by summing the area of the histogram bars of all the classes.

The folding times were created using the program kinfold [12]. The fold-
ing of every sequence was simulated 1000 times as described previously (see
figure 38).

Figure 54: (next page) The sequence having the lowest maximum barrier and the lowest
standard deviation of the tested sequences folding into the tested Y-shape structure. There
is no major trap that obstructs a direct folding path from the open chain (oc) into the
minimum free energy (mfe) structure. The mfe structure is shown below the corresponding
leaf of the barrier tree on the right hand side. The distribution of folding times and its
log-normal fit distribution is plotted as a histogram on the left hand side in black and red

colour, respectively.
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The logarithm of the folding times was calculated, the resulting values were
classified and the frequency of each class was plotted against the upper class
limit. A normal distribution was fitted to this distribution of logarithmic fold-
ing times. In the simple case this works perfectly for sequences whose barrier
tree shows no major local minimum that could act as a trap. If other major
local minima than the mfe structure exist on the barrier tree of a sequence,
one can detect each of these local minima as separate peaks in the frequency
distribution plot of logarithmic folding times. Each of these peaks follows its
own normal distribution.

The simple case shown in figure 54 examined the sequence having the lowest
maximum barrier and the lowest standard deviation of the tested sequences
folding into the tested Y-shape structure. The barrier tree shows no major
local minimum that could act as a trap. The maximum barrier is 3.60 kcal/mol
which can be easily overcome.

An example where two separate peaks can clearly be distinguished can be
seen in figure 55. This sequence folds into the tested Y-shape structure as the
mfe structure but there is another local minimum structure that acts as a trap.
This trap can be seen in the barrier tree and has a barrier of 7.50 kcal/mol
to the mfe structure. The trap structure is located under its corresponding
branch of the barrier tree. The representation of the mfe structure is located

on the far right.

Figure 55: (next page) This sequence GACGAAGAGGAUUUUCCUUAGGGGCAAAGCCCUAACGUC
folds into the tested Y-shape structure as the mfe structure but there is another local
minimum structure that acts as a trap. The barrier tree on the right hand side clearly
reveals two different folding funnels. The structures on the bottom of these funnels are
shown below the corresponding leafs, the trap structure on the left and the mfe structure on
the right hand side. Two separate distributions of folding times can clearly be distinguished
in the plot on the left hand side (shown in black colour). The distributions obtained from
folding simulations without visiting the trap structure and simulations where the structure is
always visited are plotted in cyan and orange, respectively. Fitted log-normal distributions

are plotted in blue and red, respectively.
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The black line connects the upper right limits of the histogram bars repre-
senting a histogram of folding times from the open chain to the mfe structure.
The cyan line represents the folding time distribution of another simulation of
foldings from open chain to mfe directly without visiting the trap structure.
The blue line shows a logarithmic normal distribution fitted to the cyan his-
togram. A simulation where the trap structure is always visited is represented
by the orange histogram and its red fitted log-normal distribution. It is actu-
ally a combination of two separate simulations. A first one from open chain
to the trap structure and a second one from the trap to the mfe structure.
The mean folding time of the first simulation is then added to each time value
of the second one to obtain the histogram shown in orange. The first peak
represents the folding simulations of sequences that directly fold into the mfe
structure without reaching a structure of the trap’s folding funnel. The second
peak represents the folding simulations of sequences that first fold into the
trap structure and afterwards have to overcome the barrier to reach the mfe
structure.

Another approach was tried to bring more evidence that we are looking at
an logarithmic normal distribution by using a statistical test. A chi squared
test should show if the distribution of the data from kinetic folding simulations
and a chosen distribution (a normal logarithmic distribution in our case) differ
significantly from each other or not. The test was carried out using data pre-
sented in figures 54 and 55. A perl module was written to calculate the critical
values for the chi squared test. It is called Statistics: :Distributions and
is freely available at
http://www.tbi.univie.ac.at/"michael/distributions.html , or
http://www.cpan.org or upon request from the author. The test could not
prove that there is no difference between the distribution of our example data
and a logarithmic normal distribution. Obviously the influence of small local
minima for the simple examples investigated were still too strong which re-
sulted in a too large deviation form a logarithmic normal distribution to give
a statistical insignificant difference between the two distributions.

Sequences that follow a more complicated folding kinetic often visit a large
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number of different minor local minima. The barrier associated with these
local minima are often only of an average height but they still show their own
distribution of folding times. Looking at the overall distribution of the folding
times over the complete folding path we are not able to distinguish single peaks
of smaller local minima from each other. The distributions are overlapping
and result in a smeared overall distribution that makes it impossible to clearly
relate a single local minimum to a peak or even find a clear peak at the diagram
of the folding time distribution. Still we can proceed on the assumption that
kinetics of RNA secondary structure folding is based on the logarithmic normal

distribution of the folding times.
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5 Conclusion and Outlook

The goal of this work was to investigate neutral nets and their components
by folding of complete sequence spaces and exhaustive enumeration. Using
newer parameters and a broad range of sequence spaces differing in nucleotide
alphabet and chain length, results similar to those of earlier simulations for a
smaller range of sequence spaces and older parameter sets were obtained.

The limits of this work, set by available computer time and memory re-
sources for exhaustive folding, are chain length up to 30 for two letter alphabets
(AU and GC), chain length up to 20 for three letter alphabets (AUG and UGC)
and chain length up to 16 for the complete natural four letter alphabet.

A small number of common and many rare structures are formed. The
distribution of ranks roughly follows a generalised Zipt’s law. The number
of structures found increases for different alphabets at the same chain length
in the following order: #AU < #AUG < #GC < #UGC < #AUGC inde-
pendently to the folding parameters used. The fraction of sequences that do
not form stable mfe structures other than the open chain decreases with an
increasing chain length. Common structures are formed by a small fraction
of all structures. With increasing chain length this fraction decreases further
whereas the fraction of sequences folding into common structures increases
with chain length. Extrapolation to large chain lengths suggests that almost
all sequences fold into a relatively small number of stable secondary structures.
As far as it can be seen from the sequence spaces examined these features are
not bound to certain alphabets or parameter sets. We find the neutral net-
works of the higher ranked (ranked by the size starting at rank one for the
largest network) and rarer structures to be more often split into a large num-
ber of components especially if very small components are ignored. Common
structures tend to show a single giant component or a number of up to four
components and sometimes some very small additional ones. If a structure
decomposes into two to four almost equal sized components they often differ
clearly in their base composition which can be explained by structural elements

that can form additional base pairs.
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Neutral evolution is possible on neutral nets of RNA sequences that fold
into the same secondary structure especially on components of such neutral
nets where random drift is possible. The set of compatible sequences includes
such sets of neutral nets and their components as subsets. Single molecules can
form two or more structures if they are elements of intersections of such sets
of compatible sequences. Those molecules can fold into their minimum free
energy structure and into suboptimal structures their sequence is compatible
with. A population can on the other hand drift by mutation and selection on
the component of its neutral net and become (additionally) an element of a set
of sequences that is compatible to another structure. This structure may have
a higher fitness which would make it likely that the population will switch to
the corresponding neutral net (of sequences that have this mfe structure) if it
can be achieved by an existing mutational operator. Therefore intersections
of sets of compatible sequences are the places where steps of increasing fitness
occur after periods of random drift on neutral nets. Building up on the neutral
nets and their components obtained in this work those intersections can be
identified and further investigated.

Another interesting topic to look at are generic properties of neutral net-
works. For example, one could test whether the nets resemble random, small
world, or scale free features [2,82]. Work on this subject [49] is already in
progress.

In contrast to an often stated hypothesis efficiency of RNA folding, meaning
mean folding times and fraction of successful trajectories, is not influenced by
the minimum free energy of the examined RNA sequence. This could be clearly
shown on 2311 different RNA sequences. The mean folding time depends
largely on the maximum energy barrier on the folding path. A larger barrier
takes more time to be overcome and therefore results in a longer folding time.
The largest barrier itself depends on the size of a RNA. A longer RNA sequence
results in a higher maximum barrier which has already been shown earlier [48].
This is compatible to the observation that longer RNAs have longer folding
times. Another property, the barrier height, correlates with the basin size of

the corresponding local minimum. A larger basin brings about a larger barrier.
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This does not mean that the largest basin always has to be the one with the
largest barrier but very often this is true. The choice of a particular alphabet
used has no influence on the relation between the size of the largest barrier
and the mean folding time. A reduced (two letter) alphabet shows the same
behaviour compared to the complete four letter alphabet (AUGC).

The height of the largest barrier was found to be a reasonable measure
for estimating mean folding times. This measure, however, ignores the fact
that the local minimum associated with the highest barrier often is not visited
at all. Some other trap structures may play a more important role on the
folding path. Therefore the barrier height of the most frequently visited local
minimum sometimes seems to be a better measure to describe the mean folding
time. This of course requires knowledge of this local minimum which, with the
current algorithm, involves costly kinetic simulations using selected candidate
stop structures.

Further investigations should be made to find a more precise way to derive
the distribution of folding times from the corresponding barrier trees. The
maximum barrier is a starting point for estimates as it correlates well with the
mean folding time. A way to estimate the variance is still to be developed.
Maybe a heuristic can be found to improve the guesses of the two parame-
ters. The distribution of folding times was fit to a log-normal distribution.
Statistical tests however were not sufficiently certain to allow for a reliable
identification of this fit because the influence of overlapping distributions lead
to deviations from the expected overall distribution. Even in cases were only
one major local minimum is reflected by a distribution with a single peak, the
distributions may be overlay by effects resulting from a large number of small
local minima. As a result the shape of the log-normal distribution is obscured.
Analyses of folding dynamics on entire barrier trees by proper statistical treat-

ments was recently shown to improve results [11].
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6 Appendix

To give an impression of which mfe structures occur and their sizes as well as
the number and sizes of their components the data obtained by complete enu-
meration of the sequence spaces of the chain length 12 of different alphabets
are given in the following. The complete data of all calculated sequence spaces

are available at http://www.tbi.univie.ac.at/ michael/S0Cdata.html.

Rank Structure No. of No. of Sequence of
sequence | components | components
I 3942 1| 3942
2 .G, 43 212419
3| ..M. 39 22514
4 ..CC..0N 36 22610
5 | (CCC...2)))) 16 288
6 .CC....0... 2144
(I (G D 242
81 ..CC.... .. 2142

Table 7: The sequence of components of AU12.
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Rank Structure No. of No. of Sequence of
sequence | components | components
1 ... 332 1| 332
2 (CC.aN... 308 1| 308
3| ceeiiea 294 1294
41 ... 252 1| 252
5 CCCC.. M. 252 1| 252
6| .CCC....0). 250 1| 250
7 .. 230 1230
8 C(C..... N). 204 2 | 102 102
91 ...¢CC...))) 192 1192
10 | .. (.0 178 2192 86
15 N I R )D)) 172 219280
12 | (.. 172 1172
13 | . (... 157 2| 8275
14 ] (C..)).... 122 1| 122
15 | ..(C....00).. 100 2| 7030
16 | (CCo..... D)) 98 2 | 56 42
17 | (C.ae ) 91 414426147
18 (. )) 81 4| 38171412
19 | .((C..... ) 76 41242416 12
20 | . CC.20)) 66 2 | 46 20
21 | .. (Gl 64 2 | 48 16
22 | (C...))ennn 62 3|31274
23 | (G )) 61 213130
24 | (...l ) 51 313786
25 G ))] 36 21315
26 L. 34 21816
27 | . (C..0)) 31 21247
28 | (Connett ) 30 211911
29 (G )) 29 4119541
30 LGN 28 21208
31 LG 18 21153
32 N I )) 17 21134
33| .ot )) 6 116
34 | (C.(C...00N 1 1|1
35 | ((CC...)).)) 1 1|1

Table 8: The sequence of components of GC12.
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Rank Structure No. of No. of Sequence of
sequence | components | components
) 493799 1 | 493799
2] (Ceevd))ene 4562 4 | 4276 133 99 54
3 ...0C... 0. 4259 3 | 3849 283 127
41 ... ... 3691 4133372251209
5 ..(C....)0).. 3599 4132532261119
6| .CCC...ON. 3376 2 | 2460 916
71 ..M. 3090 2 | 2497 593
8| (CC..... N). 2206 1 | 2206
9 ..... ¢....) 1949 1| 1949
10 (CC...0N 1877 3 | 1575 210 92
11 QD R 1715 1| 1715
12 C....) 1581 1| 1581
13 ..C..0). ... 1556 1| 1556
4] ....0..0.. 1548 1| 1548
15 ...C..0... 1528 1| 1528
16 | (CCC....0))N 638 2 | 505133
17 | .. 0N 429 1] 429
18 | (..(C....).). 20 211010
19 | .C...).0). 18 21108

Table 9: The sequence of components of AUG12.

Rank Structure No. of No. of Sequence of
sequence | components | components
) 299786 1| 299786
20 CCCooN .. 17063 1| 17063
3] ..M. 15200 1] 15200
4 (CC..... ). 14999 1| 14999
5 (CC..0N... 14635 1| 14635
6| ..0CC...0)). 11253 1| 11253
71 .G DN 10544 1| 10544
8 .CCC..ON.. 9957 1| 9957
9| .(C.... ) 9750 1| 9750
10 | CCCC..o 0N 9663 1| 9663
11| (C..... )) 9616 1| 9616
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Rank Structure No. of No. of Sequence of
sequence | components | components
12 | (C...0)). ... 9281 1| 9281
13| ...0C...0N 8917 1| 8917
14 LG )) 7848 1| 7848
15 | . CCCC..00)) 7380 1| 7380
16 | ...CC....0. 7016 1| 7016
17 | . (Gt )) 6743 1| 6743
18 | (CCC...)))) 6242 1| 6242
19 | .CC..00) ... 6076 1| 6076
20| .. (G 5750 1| 5750
21 | (CCoannt )D)) 5503 1| 5503
22 | (G )) 5477 2 | 5423 54
23 | (Co.... ) 5145 1| 5145
24 | (o))l 5027 1| 5027
25 (L)) 3684 1| 3684
26 LG ) 3493 1| 3493
27 NCEED)) 2945 2 | 2612 333
28 | .(C..0)) 2866 3 | 2624 192 50
29 L)) 2819 2 | 2319 500
30 | ... CC.00)) 2570 1| 2570
31| (Covnns ) 2297 2 | 1990 307
32 G ) 1521 1] 1521
33 ...t )) 197 2| 111 86
34 | (CC....)0). 44 7126842221
35 | (CCC...0). ) 36 22214
36 | (.CC...0).). 24 1|24
37 | (... 20 1] 20
38 | (C.(....0. 0N 19 8183221111
39 | LGN, 18 1|18
40 | . CCC.o) W) 9 2|81
41 | . (... 6 1|6
42 | (GG 2 12

Table 10: The sequence of components of UGC12.
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Rank Structure No. of No. of Sequence of
sequence | components | components
N 11477941 1| 11477941
2 CCC.oN .. 339220 1| 339220
3 (..., ). 303966 1| 303966
4 .CCC.oON. 299733 1| 299733
51 (..M ... 246489 1 | 246489
6| (C..... )) 239405 1| 239405
71 o)) 226298 1 | 226298
81 .. C(C....0)) 217133 1| 217133
9 (G ) 211976 1| 211976
10| .. CCC.0)). 209046 1 | 209046
11 ... )D)) 202749 1| 202749
12 ) .. G 199122 1| 199122
13 | ... .. 195295 1| 195295
14 | .(C.... ) 194965 1 | 194965
15 .(C...)) 187071 1| 187071
16 LG 179793 1| 179793
17 | (..M. 174009 1| 174009
18 | ... (CC...))) 155100 1 | 155100
19 | .(C...t. )) 152020 1| 152020
20 | (Gt ) 148586 1 | 148586
21 | LGN 130752 1| 130752
22 | (CCCoee N 123341 1| 123341
23 | (CCovnnt ) 114691 1| 114691
24| ..o (Clo)) 88118 1| 88118
25| (Coonnn ) 84118 1| 84118
26 | ...(C..... )) 72335 1] 72335
27 | (C.o)) o 70709 1| 70709
28 | .(C...)) 66657 1| 66657
29 G 66605 1| 66605
30 LGN 64633 1| 64633
31 LGN 63278 1| 63278
32| ..... ... 38659 4 | 34888 2457 858 456
33 NG ) 37196 1| 37196
K7 8 R U I 34091 4 | 30526 2062 1043 460
35 ...G.00) 31069 4 | 27533 2018 1079 439
36| C...)eene 30463 2 | 26719 3744
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Rank Structure No. of No. of Sequence of
sequence | components | components

37| ..C.00) 30218 4 | 26564 2100 1140 414
38| ... ... 29908 4 | 26150 2228 1096 434
39| (Gl )) 19443 1| 19443
40 | (Coovnnnn )) 8147 2 | 4574 3573
41 | (.. 2631 12 | 2326158 6136287543111
42 | CC..)n. 2085 5120689332
43 | (... 1653 81 1393116115148 322
44 | (CCC..0).)) 758 2| 73226
45 | (. CC..0)). 755 1| 755
46 | . CCCo.o) ) 754 8 154971673521911
47 | (GGl 674 656452351751
48 | (. (... 555 1] 555
49 | ... 412 2 | 396 16
50 | .. C.Coea ). 384 2 | 340 44
o1 C.CC..N. 366 2 | 238 128
52 | .C.C...0).. 356 2 | 314 42
31 (.G 337 2 | 288 49
54 | (... D). 244 1| 244
55 | ((C..... ).)) 182 2 | 127 55
56 | (..( D). 159 8154514242222
57 | (.C...). ) 140 9(14443251264222
58 | (C.(C..n.n ) 96 2 | 56 40
59 C....)). 94 2| 8212
60 | (.CC...0).). 90 1190
61 | .(C....)0).. 75 216411
62| (.(C....)0).. 68 1168

Table 11: The sequence of components of AUGC12.
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