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Zusammenfassung

In der von Erd6és und Réyni begriindeten Zufallsgraphentheorie werden neue Modelle fiir Zu-
fallssubgraphen von Konfigurationsraumen vorgestellt. Diese Subgraphen formen Wahrschein-
lichkeitsraume, in denen die Eigenschaften Dichte und Zusammenhang der entsprechenden Graphen
0-1-Gesetze erfiillen. Genauer heifit dies, dafl in einem gewissen Limes ein Schwellenwert existiert,
unterhalb dessen Zusammenhang und Dichte fiir keinen Zufallsgraphen gegeben sind, aber ober-
halb dessen alle Zufallsgraphen dicht und zusammenhéngend sind. Es kann nachgewiesen werden,
daf} fiir jeden positiven Konstruktionsparameter in einem Zufallsgraphen eine einzige riesige Kom-
ponente existiert. Diese Resultate nutzen wir fiir das Studium der Sequenz-Struktur-Abbildungen,
wobei wir unter “Struktur” RNA-Sekundéarstrukturen verstehen. Einzelne Urbilder dieser Abbil-
dung, die neutralen Netze, werden als Zufallssubgraphen des Graphen der kompatiblen Sequenzen
konstruiert. Dichte und Zusammenhang der neutralen Netze, im Graphen der kompatiblen Se-
quenzen, werden mit Hilfe der zuvor erzielten Resultate analysiert. Wir werden nachweisen, dafl
in jedem Fall die neutralen Netze im Limes unendlicher Kettenldnge eine einzige grofie Kompo-
nente besitzen. Ferner besitzen je zwei neutrale Netze im Sequenzraum einen geringen Hamming—
Abstand und wir kénnen (im Rahmen des Modells) einen Beweis der shape space covering conjecture
erbringen. Im Anschlufl untersuchen wir die Dynamik des Replikationsprozesses einer endlichen
Population von RNA-Molekiilen (auf limitierten Ressourcen) in einer von einem neutralen Netz-
werk induzierten Landschaft. Es stellt sich heraus, dal das grundlegende Fehlerschwellenkonzept
von Eigen et al. auf diese Typen von Landschaften erweitert werden kann. Alle Resultate werden
konsequent fiir endliche Populationen formuliert. Weiter wird ein Kriterium fiir die Lokalisierung
der Fehlerschwelle erarbeitet und es erweist sich eine gute Ubereinstimmung mit den parallel
durchgefiihrten Gillespie-Simulationen. Die Population auf dem neutralen Netzwerk bewegt sich
gemaf einer Diffusionsgleichung und wir konnen die Verteilung der Paarabstinde in Abh&ngigkeit
von der Replikationsgenauigkeit einzelner Positionen bestimmen. Schliefllich beschéftigen wir uns
mit der algebraischen Darstellung von RNA Sekundérstrukturen. Wir fassen die Biopolymer-
strukturen als Kontakt-Strukturen auf und betten diese in Involutionen bzw. Untergruppen der S,
ein. Aus diesen Darstellungen ergeben sich dann verschiedene Metriken, mit deren Hilfe sich das

Konzept der Quasispezies von Sekunddrstrukturen formulieren 1a83t.
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1. Introduction

1.1. Theoretical Biology

Theoretical biology is one of the scientific fields that has experienced an enormous development
in the last decades. Computers have become an important scientific tool and have produced a
wealth of data based on simulations. Except for the field of population genetics [16, 67] we are,
however, far away from having a sound mathematical foundation of theoretical biology comparable
to that of physics or chemistry. To cope with this lack of mathematical theories is precisely what

mathematical biology is committed to.

Theoretical biology — even at the molecular level only — attempts to describe and analyze phenom-
ena of particular complexity. The important contribution that mathematics is able to make is that
of providing underlying models based on adequate and inherently drastic reductions. Mathemati-
cal modeling has often proved to highlight the essential features of complex processes. It turns out
that many phenomena can be described by surprisingly simple rules. In this context we mention,
for example

e the theory of cellular automata founded by John. v. Neumann

e the concept of molecular quasispecies of Manfred Eigen, John McCaskill and Peter Schuster

[12].

e the concept of evolutionary stable states of J. Maynard Smith and G. R. Price [45, 44].

All three concepts are famous examples of how mathematical theory and biosciences interact

synergetically.

Leaving those fundamental results we observe that for most other areas of theoretical biology,
however, there are well defined abstract models but no developed mathematical theory. One
example are the Random Boolean networks, introduced by Stuart Kauffmann, which have been
studied extensively by computer simulations. [35, 34, 33]. At present there is no mathematical
theory of those networks which would give us information on, say, the distribution of cycle lengths,

or the number of basins of attraction. A first attempt in this direction is the work of Jim Lynch [41,
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42] who recently proved a beautiful theorem! on the chaotic behavior of random Boolean networks

with exactly two inputs.

Another interesting example is the field of artificial life [36, 53], or “Alife”, founded by Chris
Langton [40]. “Alife” is an example of a field without a well defined methodology. It shows
beautifully how purely theoretical biological research can be. Instead of restricting their attention
to the description of existing biological processes, theoreticians began to study completely artificial
scenarios in the hope of being able to distinguish the generic features of “life” from the historical
contingencies of the evolution on our planet. Here again, the research is done almost exclusively
in form of computer experiments and simulations. As yet, “Alife” is completely lacking a unifying

mathematical description.

1.2. Sequence to Structure Maps

Conventional biophysics is concerned with structure predictions of biopolymers that relate a struc-
ture to a given sequence. Structure is defined in the context of some physically defined conditions
like, for example, minimum free energy structures fulfilling the common thermodynamic condition
of a molecular ground state, or kinetic structures that are understood as the well defined outcome

of a controlled process of biopolymer formation.

In an abstract sense this means that one is interested in a (local) point to point assignment of

sequence space and shape space. The sequence space is a metric space of all sequences where the

metric is given by the Hamming distance [25] (counting the number of positions in which two

aligned sequences differ). It has a natural graph structure by

e the vertex set given by all tuples a = (a1, ...,a,) of length n where a; € A and A is a finite
alphabet

e the edge set consisting of all pairs {a,a’'} such that for exactly one index holds a; # af.

The shape space is a metric space whose points are abstract structures. In general such a mapping
will not be one-to-one: many sequences will be mapped onto the same structure. The degree
of this redundancy will strongly depend on the notion of structure. In X-ray crystallography,

structure is tantamount to a set of atomic coordinates and at sufficiently high resolution structures

THis proof was formulated in the language of random graph theory [14, 3].
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are unique in the sense that structures from different sequences will never coincide. Molecular
biologists, however, commonly apply another, more coarse-grained notion of structure when they
say intuitively that two proteins have the same structure. The appropriate notion of structure is

clearly context dependent and therefore anything but trivial.

Coarse-grained protein structures are usually expressed in terms of secondary structure elements,
for example a-helices, 3-sheets and reverse turns, and their arrangements in three-dimensional
space. This is illustrated best by the popular “ribbon-models”. RNA secondary structures are rep-
resentative for another type of coarse-graining: they are commonly understood as lists of Watson-
Crick (AU and GC) and GU base pairs. Base pairing and base pair stacking constitute the major
contributions to the free energy of RNA structure formation and consequently the base pairs of
secondary structures are conserved in the three-dimensional structures of the RNA molecules (see
figure 1). The figure also illustrates the relation of secondary and tertiary structure-only few fur-
ther contacts induce the “L”-shape of the tRNA. In addition, biochemists and molecular biologists

have successfully used RNA secondary structures for molecular interpretations of RNA function.
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Figure 1: a) Three dimensional structure of phenylalanin tRNA from yeast.
b) Contact map of tRNA-phe.
The upper triangle shows the contact of the three-dimensional structure: ® Watson-Crick base pairs, 0
GU base pairs, ¢ other non-Watson-Crick base pairs in double helical regions, and * tertiary contacts
between bases.
The lower triangle shows the secondary structure consisting of both Watson-Crick and GU base pairs,



INTRODUCTION

In this thesis we are mostly dealing with RNA molecules. Secondary structures are used as ap-
propriate examples for structural coarse-graining. They are sufficiently simple to allow statistical
analysis by means of conventional combinatorics [28]. Straightforward estimates on the numbers of
possible secondary structures for a given chain length n show a high degree of redundancy: there
are many more sequences than structures and hence many sequences have to fold into the same

structure.

The relation between RNA sequences and secondary structures is understood as a (non invertible)
mapping from sequence space into shape space [21]. In the case of point mutations the Hamming
metric is a measure of relatedness in the sense that close by sequences are closely related since
they can be interconverted by a small number of mutations. The other metric space is an abstract
space of all structures with some metric defined according to a concept of relatedness between
structures. The concept applied here is based on the idea of converting two structures into each
other by means of a set of weighted operations that are illustrated best in a tree representation of
secondary structures [21]. For the purposes pursued here the particular representation of secondary
structures is not important: the general conclusions drawn here, in essence, depend much more on
other factors such as the degree of redundancy, the base pairing alphabet (two letters, e.g. GC,

or four letters), or the chain length n of the polynucleotide.

The concept of sequence space to shape space mapping allows to study global properties of
sequence-structure-relations that are otherwise inaccessible. (An illustrative example is the idea of
shape space covering described in [54].) An understanding of sequence-structure relations, however,
is of central importance in biophysics of biopolymer structure. The mapping inherits essential fea-
tures of fitness landscapes and is fundamental for conventional biotechnology since it represents the
basis of rational design of biopolymers. Further it is required for conceiving efficient optimization

experiments in applied molecular evolution.

RNA secondary structures distinguish only paired and unpaired regions irrespective of the particu-
lar bases at the individual positions (G, C, A, or U). We can expect therefore that many different
sequences can meet the base pairing conditions as determined by a given secondary structure.
Indeed if two bases capable of forming a base pair (GC, GU, CG, AU, UA, or UG) oppose
each other at all positions in base paired regions we are dealing with a compatible sequence of the
structure under consideration. The number of compatible sequences is readily computed for any

given secondary structure s, with n, unpaired bases and n, base pairs is 4™ - 6™». Clearly, the
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chain length of the biopolymer molecule is simply given by n = n, + 2n,. The number of com-
patible sequences is certainly substantially larger than the number of sequences that actually form
the given structure as their minimum free energy conformation or, for example, as their kinetically

determined structure [61].

In contrast to counting compatible sequences being able to fold into a given structure by fairly
straightforward combinatorics, estimates on the numbers of sequences that form the target struc-
ture under given conditions is a particularly hard problem. Two strategies were followed, one
consisting in folding all sequences of a given chain length into secondary structures and evaluating
the data by enumeration [24], the other using some abstract model for sequence to structure map-
ping and performing rigorous mathematical analysis. In this thesis we pursue the latter approach
and make the assumption that apart from biophysical pairing rules the mapping of sequences into
structures is essentially random. Connecting neighboring neutral sequences in sequence space, i. € .,
sequences that are mapped into the same point in shape space and which are interconverted by a
single move consisting of a base or a base pair exchange, yields neutral networks whose properties

are studied by the analytical techniques of random graph theory [3].

1.3. Basic Questions of Evolutionary Optimization

The first successful theory of biological evolution was presented last century by Charles Darwin
(1859) in his famous book The Origin of Species. It is based on two fundamental principles, genetic
variability caused by mutation and natural selection. The first principle leads to diversity and the
second one to the concept survival of the fittest, where fitness is an inherited characteristic property
of an individual and can basically be identified with its reproduction rate. In particular in his book

Darwin presents also the most essential features of neutral evolution.

In extension of Darwin’s theory of evolution the role of stochastic processes has been stated. Wright
[68, 69] saw the importance of the genetic drift in evolution in improving the “evolutionary search
capacity” of the whole population. He saw genetic drift merely as a process that could improve
evolutionary search whereas Kimura proposed that the majority of changes that are observed in
evolution at the molecular level were the results of random drift of genotypes [38, 39]. Paraphrasing

the situation the “selectionist” considers the differences in fitness values to be responsible for the
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fixation of new genotypes whereas the “neutralist” assumes that most mutants are neutral and the
fixation of new genotypes is the outcome of a stochastic process. The neutral theory of Kimura
does not assume that selection plays no role but denies that any appreciable fraction of observable
molecular change is caused by selective forces: Mutations, in this view, are either a disadvantage or
at best neutral in present day organisms. A “negative selection” plays a major role in the neutral

evolution that is deleterious mutants die out caused by their lower fitness.

Over the last few decades, however, there has been a shift of emphasis in the study of evolution.
Instead of focusing on the differences in the selective value of mutants and on population genet-
ics, interest has moved to evolution through natural selection as an optimization problem whose
fundamental three ingredients are

. the configuration space, i.e., the graph formed by all possible genotypes,

e  the set of elementary moves by which the search for better shapes is performed and

e the structure of the fitness landscape itself.

Fisher [16, 29] stated a fundamental theorem on optimization processes by specifying macroscopic
parameters (e. g. the mean-fitness) that measure the optimization process. A further aspect in the-
ory of optimization is to relate and analyze the above three ingredients. Apparently, in evolution
the move sets are rather simple and inherently random. Here we have point mutations, inser-
tions, deletions and possibly recombinations. Consequently in evolutionary theory much research
is concentrated on the analysis of the landscapes in which evolutionary adaption takes place?.
Evolutionary dynamics studies basically how the search for the best configurations is organized for
a given landscape and configuration space. In this context a fundamental result is the concept of

the molecular quasispecies introduced by Eigen and coworkers [12].

Let us return for a short moment to Darwin and have a look at his minimum requirements for
adaption:

e a population of objects that are capable of replication,

e occasional variations which are inheritable, and

e restricted proliferation which is constrained by limited resources.

We first introduce a new type of landscape that is based on the concept of neutral networks
associated to RNA secondary structures. For the moment it suffices to consider neutral networks

simply as certain subsets of sequences. The main idea is then to assign to each sequence contained in

2This question is closely related to the study of sequence to structure maps as pointed out in the previous section
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the neutral network a superior fitness whereas all other sequences have an inferior fitness. Thereby
we obtain the landscape. Those landscapes combine in a natural way both the selectionists’ and
the neutralists’ view of biological evolution namely Darwin’s survival of the fittest and Kimura’s
neutral random drift. (In literature there are convincing evidences that RNA landscapes are as
simple as they can be for evolutionary adaption [55].) Assuming this landscape to be given we

proceed by studying the dynamics along the lines of Eigen and coworkers [10, 12, 52, 56, 60].

On the one hand we investigate the dynamics from the point of view of a selectionist: For a
finite population of strings that replicate on the neutral networks we consider their number of
master-strings i.e. those that are located on the neutral network. We can show that, as in Eigen’s
mean field approach the single peak landscape, there exists a critical mutation rate above which
the populations drift randomly through sequence space.

On the other hand we investigate neutral evolution by computing the spatial distribution of the
fraction of masters. We can prove that the master-fraction diffuses on the neutral network and we

evaluate its diffusion-coefficient.

The dynamics of the replication-deletion process on a neutral network gives further theoretical
insight into the search for better shapes is organized. This model is on the one hand sufficiently
simple to deduce analytical expressions for basic parameters and allows on the other hand to

investigate the influence of the structure of the neutral network on the dynamics.

1.4.Organization of this Thesis

This thesis is devoted to the following two fields:
e the mathematical modeling of sequence to structure maps in RNA and in particular the analysis
of neutral networks of RNA secondary structures and

e the dynamics of finite populations replicating erroneously on neutral networks.

In chapter 2 we introduce so called configuration spaces. We show that pure random maps contra-
dict the essential features of known sequence to structure maps in RNA.

In chapter 3 we present our random graph models and among some basic results we prove the
existence of threshold values in the probability spaces formed by random subgraphs of a configu-

ration space. Our approach is formulated in the language of random graph theory developed by
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Paul Erdos, Alfred Réyni, and Béla Bollobas [3]. The mathematical core consists in proving the
existence of the threshold value for the connectivity property of the above random graphs. The
proof of this theorem is completely constructive and gives also further insight into k-connectivity
properties of the graphs. Having introduced the theory of random subgraphs of configuration
spaces we proceed in chapter 4 by applying it to the problem of the sequence to structure mapping
in RNA. This is done by constructing single preimages of RN A secondary structures, called neutral
networks, as random graphs. We can derive a sufficient condition for density and connectivity
properties of neutral networks which have already been proven to be valid for a chain length up
to 30 [24]. We furthermore prove the shape space covering conjecture of Schuster [54] within the
random graph model and present a method for obtaining the complete sequence to structure map
recursively from the random graph approach.

Chapter 5 is dealing with evolutionary dynamics on neutral networks constructed by the random
graph models as described in chapter 4. We consider a finite population of erroneously replicating
strings (of constant length) in a landscape induced by a single neutral network. Here we combine
the concept of neutral networks and the molecular quasispecies of Eigen and coworkers [10]. We
can extend the error-threshold concept to single shape-landscapes by applying a stochastic ansatz
analogous to Nowak and Schuster [47]. We investigate some aspects of neutral evolution by study-
ing the distribution of the fraction of the population that is located on the neutral network. This
is done by studying random walks on neutral networks, extending the work of Derrida & Peliti [9].
The random walks together with sequence genealogies [7] allow to compute the distribution of pair
distances in the population. Towards a theoretical understanding of evolutionary optimization we
prove that the population diffuses on the neutral network.

In chapter 7 we discuss two algebraic representations of RNA secondary structures. The first one
interprets a structure as an involution in a corresponding permutation group S, and the second
one maps a secondary structure to a subgroup of the S,,. Both approaches lead to metrics on RNA
secondary structures.

Finally we present in chapter 8 a detailed discussion of the results derived so far and chapter 9

contains among conclusions an outlook on future projects.
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2. Configuration Spaces and Random Maps

2.1. Configuration Spaces

In molecular evolution (and, apart from recombination, in all biology) the basis of variation is
simply the limited accuracy of replication. Replication errors or mutations produce RNA sequences
which differ from the parental template sequence. Mutation, thus, acts on the nucl of variation is
simply the limited accuracy of replication. Replication errors or mutations produce RNA sequences
which differ from the parental template sequence. Mutation, thus, acts on the nucleotides of DNA

(or RNA in case of viroids and viruses).

At the level of individual nucleotides we can distinguish point mutations, insertions, and deletions,
see figure 2. While insertions and deletions alter the size of the genome, the chain length is kept

constant under point mutations.

ACGAUGGGUUACC|G|AGGCAAGUCGUAG
Point mutation l
ACGAUGGGUUACC|A|AGGCAAGUCGUAG

ACGAUG|GGUUACCG|AGGCAAGUCGUAG
Insertion l

ACGAUG|GGUUACCG|GGUUACCG|AGGCAAGUCGUAG

ACGAUGGG|UUACCGAGGC|AAGUCGUAG
Deletion l
ACGAUGGG|AAGUCGUAG

Figure 2: Three classes of mutations. Point mutations are copying errors with single base exchanges; they leave
the chain lengths constant. In case of insertions part of the template sequence is duplicated during

replication. A deletion leads to an error copy which is shorter than the original.
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Other types of mutations occur at the level of genomes. Entire genes can be inserted or deleted,
and the genome can be rearranged. Again, insertions and deletions change the size of the genome
— now in terms of the number of genes, while point mutations and recombinations conserve their

number. They lead to a permutation of the genome, see [51].

Mutations can be viewed as “moves” in an abstract space of configurations. This suggests a natural
“geometrical” arrangement of the configurations (be they polynucleotides, arrangements of genes
on a mitochondrial genome or something else): configurations that can be interconverted by a
single move (mutation) may be viewed as neighbors. Consequently, the smallest number of moves
which is necessary to interconvert two arbitrary configurations u and v can be interpreted as a
distance d(u,v). (Of course we shall assume that the neighborhood relation is symmetric: if 4 can
be obtained by a single mutation from v, then it is also possible to produce v as a direct mutant
of u.) The neighborhood relation allows us to view the set of all configurations as an undirected
graph: Each configuration is represented by a vertex, and neighboring configurations are connected
by an edge. It is trivial to check that the distance measure d( , ) is a metric — in fact, it coincides
with the canonical metric on the graph [5]. In evolution the existence of phylogenies guarantees
that the mutation operators lead to a connected graph: every configuration can be reached from

any other configuration by a sequence of mutations.

2.2. Random Maps

Let X,Y be sets. Then we can obtain a map f : X — Y by selecting each y € Y with the same
probability to be the image for a given x € X. We thereby consider random maps on finite sets,
f:X — Y and shall use the abbreviations x = | X | and y = | Y |. We denote further the set of all
maps f: X — Y by

Map(X,Y):={f|f: X —Y}.

Using the uniform measure p{ f } = 1/y” we obtain the probability space (Map(X,Y),n).

An interesting quantity is the distribution of preimage sizes. To this end we introduce the random

variable

Zu(f) =z €Y | F7(2) | = K},

— 10 —
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which counts the number of images of given size | f1(s) | = k. We next set

E[Z,] = yi S CH{F 1 Zu(h) = 6.
£=0

Claim: For k € IN, E[Z}] is given by E[Z}] = B(k,x,1/y) - y.

To prove the claim we first observe

0] =0 A 2=} = (1) dis(on,mo)|

where | dis(z,m, x) | is the number of different distributions of z elements in m different cells with

x, cells containing k elements and no cell empty. Then we express E[Zk] by

. 1 < m )
E[Zy] = " (TZ’{L) Z xy | dis(zr, m, ) | .
m=1 =1

The values | dis(zx, m, z) | fulfill the functional equation [49]

Pl 2"

> | dis(zx, m, ) |i_j - (m) ()™ (e =1 =)™ (1)

z=0 Lk

The above equation implies the following recursion formula for | dis(zx, m, z) |:

m (93) |dis(zr, —1,m — 1,2 — k)| = | dis(z, m, z) |
T k
and obtain
- S 1 z" zk z m—1
Z Z zg |dis(zr, m, @) || — = m 5 [e” —1] . (2)
=0 Lzp=1 € k

Then we proceed by computing

o0 Y m z k y

} : } : Y . z z Y R S
d _— = J— — 1

== (m) ;k:l x| dis(z, m, z) | = [k!] 2 (m) m e ]

Setting
y

Qk,y,z = Z (i) Z xy | dis(zr, m, ) |

m=1 =1

we can write E[Zk] = y% Qk,y,z- By comparison of coefficients of the above identity we derive

Bl = = (7)1 = Bl /i)y

- 11 -
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proving the claim. Using the recursion formula for | dis(zy,m,x) | it follows

i li (i) i (x3 — zx)| dis(zx, m, x) |‘| i—f = [Z_Tr y(y—1)ev=—2=

=0 [Lm=2 =1

and by comparison of coefficients:

. S 2 . —1)z! z—2
mZ:? (g»b) Z:l (22 — i) | dis(zy,m, 2) | = % (y — 2)7=2F

This implies for V[Zy] := E[Z2] — E[Z]?

viz = (1) (7 F) G - 2y - 0 + Bk /)y - (B 1)

The value E[?k] can be interpreted as the frequency of the preimage size k in the set Map(X,Y).
It is immediately checked that E[Z}] is a unimodal curve in k that has at k = [$] its point
of maximum. Moreover if (XmYn)ne]N is a family of finite sets such that z, = | X, | / oo,

A~

Yn =|Yn| /00 and lim, o z—: =0, E[Z}] becomes a delta function localized at [Z—:]

This fact contradicts observations, made for RNA sequence-to-secondary structure maps. For this
purpose let Q7 be the (Hamming) graph of all sequences over the alphabet A of length « with
chain length n. Then we set

[fn ' (s)]

p(s) :== “on

for the frequency of s. Then the rank «(s) is obtained by sorting the structures with respect to
their frequencies. The rank order function ¢ : N — IR of the combinatory map f is then given
by ¥(2(s)) := g(s). The rank order function is well known for the case of folding RNA into its
secondary structure—-RNA sequence to secondary structure mappings exhibit a characteristic rank

order function known as a generalized Zipf’s Law:

P() = a(l+1/b)"°,

as shown by extensive numerical calculations [54, 61]. The above parameters have the following
interpretation: a is a normalization constant, b is the number of frequent structures and c¢ describes
the power-law decay for rare structures. Figure 3 shows the dependence of b on the chain length n.

For large n we find a = (c—1)/b using the continuous approximation [;° ¢ (:)ds = 1. Consequently

S22 ()de = [(¢ — 1)%/(2¢ — D))o

- 12 —
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100

Frequent Structures b
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. . . .
20 40 60 80 100
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Figure 3: Dependence of the number of “frequent” structures b on the chain length n for RNA secondary structures
(biophysical alphabet). These data have been obtained for so-called loop-structures, a coarse grained
version of the full secondary structure graphs. For details see [18, 54, 28].

Extending the above result on E[?k] by introducing a a priori probability p(s) for mapping a z
to y € Y we obtain an inhomogeneous spectrum of preimage sizes. We shall now show that even
this more general ansatz is not sufficient to describe the features observed for RNA-folding maps.
Let us suppose that the set of definition X is a generalized hypercube Q7 and Y the set of RNA
secondary structures S,. We consider the average number of neutral neighbors with respect to
the structure s for a mapping that assigns each z € X with the probability p(s) to s. Clearly
this number is a random variable that is expected to have the mean (o — 1) np(s). But compu-
tational data on RNA sequence to structure maps exhibit that for all “frequent” structures their
corresponding fraction of neutral neighbors is asymptotical (that is for n — 0o) constant. Further
those data show (see figure 3) that there are exponentially many “frequent” structures. The lat-
ter observation contradicts the implications of the above model. If there are exponentially many
constant probabilities p(s;) the expected number of “neutral neighbors” tends to zero in the limit

of infinite chain length (n — o) since each sequence has only (o — 1) n adjacent sequences.

We therefore conclude that random maps — even with a non-uniform @ priori probability for
different structures — cannot explain one prominent feature of RN A sequence to structure relations:
The existence of so called “neutral networks” [54] i.e. extended networks in sequence space that
consist of sequences folding into a fixed secondary structure. For this reason we shall have to take
into account the “correla” structures obtained from nearby configurations. We shall proceed by

introducing general models for random induced subgraphs of configuration spaces.
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RANDOM INDUCED SUBGRAPHS

3. Random Induced Subgraphs

3.1.Basic Random Graph Models

3.1.1. Basics of Graph and Probability Theory

Before we introduce the basic models we recall some facts of graph theory.

Notation. A graph G is a pair (v[G],e[G]), together with two incidence maps 7 : €[G] — v[G]

and 7 : e[G] — v[G]. v[G] is called the verter set and e[G] the edge set. We can interpret i(e) and

7(e) as the two vertices defining a (directed) edge. For our purposes it shall be more convenient

to consider an edge e as the unordered set of vertices e = {z,y}, z,y € v[G]. We say z is incident

to e if x = i(e) or x = 7(e). Further two vertices z,y € v[G] are called adjacent if and only if

{z,y} € e[G].

G’ is a subgraph of G, G’ < G, if v[G'] C v|G] and e[G'] C €[G].

Let H C v[G]. The induced subgraph or spanned subgraph of H in G, G[H], has the vertex set
v[G[H]] = H and the edge set e[G[H]] is the subset of all edges in e[G] where both incident
vertices belong to H.

The degree d, of a vertex v is the number of edges e € €[G] of the form e = {v,v'}.

G is v-regular if for each vertex v € v[G] holds §, = .

The order of a graph G, |G| is the cardinality of its vertex set i.e. | v[G]|.

A path 7 in G is a tuple of the form (v = v1,€1,v2, ...6m—1,Vm = V') where e, = {vg, Vg1 } for
1 < k < m. Since 7 is already characterized by its vertices we use the notation 7 = (v;)1<i<m.
We say that the v; and e; occurin w. The path 7 connects the vertices v and v’, if both occur
m 7.

The support of a path 7 is the set

Supp(n) := {v € v[G]|voccurs in7 } .

The length of a path m = (v1,e1,v2, ..., €m—1,Vm) is £(7) := m — 1, i.e., the number of edges

that occur in .
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RANDOM INDUCED SUBGRAPHS

The set of all paths in G shall be denoted by II(G).

Two vertices v,v’ € v[G] are called connected if there exists a path in G in which both vertices
occur. A graph G connected if for any two vertices v, v’ € v[G] are connected.

The distance dg(v,v") of two vertices in G is the minimum length of a path connecting v and
v'. If there is no path connecting v and v' we set dg(v.v") = 0co. We shall drop the index G
when no confusion is possible.

The diameter of a graph G is the maximum of all distances of pairs of vertices v, v’ € v[G].

The ball centered at v € v[G] with radius r is the set
B, (v) := {v' € v[G] |dg(v,0v") =7} .
The boundary 8¢V in G of a set V C v[G] is

AV :={v ev[GI\V | eV :dg(v,v)=1}.

The closure in G of V C v[G], V, is given by V := VU39V .

Notation. In the sequel we write 0 instead of J5.

Definition 1. A sequence of graphs (Cn), v is called a sequence of configuration spaces if the

following assertions hold

(0)

FEach graph C, is a yn-regular, connected graph such that
(i) yn S0
(ii) For £ € IN it holds |Cp | ;¢ /* .
For v,v' € v[C,] with v # v' it holds lim,,_,, | 9¢, {v} N dc, {v'} |7, = 0.
For all vy € v[C,] and h € IN there exists a constant c(h) > 0 such that
lim,, 0 | {v € V[Cp]|d(vo,v) = h} |7, = c(h).
Let k be a fized natural number and v,v" € v[C,] such that 1 < d(v,v") = k.
Then there exists a m € IN and a set of paths Pg’:’l’m C II(Cy,) with the following properties
(1) limpyoo | PE”™ | = limnso0 Ya-
(i) Form e PZ;UI’m we have Supp(m) N d{v} # 0 and Supp(w) N O{v'} # 0.

(iii) For m,n' € Pe¥"™ holds

m#7 = Supp(w) N Supp(r’) =0 and  d(v,v") < () <d(v,v')+m.

— 15—
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(iv) Let ¢ be a fized natural number, ®, C d{v} and @, C d{v'} such that for all m; € IN
we have limy, o0 | @y | > mq, limy, oo | Do | > m1. Then there exist £ pairs of vertices
((vy),vi(i)))lgig, v@ €d,, v'l(i) € ., with the following property: V1 <i#j </l :

(i)  1(3) (7)

[{(m, @) e P "™ "™ x P " " [Supp(w) N Supp(n') # 0} = Onyn

where lim,, o 6, = 0.

Example: Let A be a finite set with | A| := a and Q7 be the graph with following vertex and
edge set:

v[O%] :={(z1, ..y Zn) |z €A 1<i<n}
e[Q7] := {{(z1,...,xn), (2], ..., 2})} | for exactly one index1 <4 <n holds z; # z} }

Then we call Q) a generalized hypercube over the “alphabet” A with “sequence-length” n. We

write for short v = (x1,...,2,) and proceed by verifying that the sequence of graphs (Q") is in

fact a sequence of configuration spaces as introduced in definition 1. We have first | 9{v}| =4, =

(e —1)n, hence Qm is a (o — 1) n regular graph. Furthermore Q7 is obviously connected—for given

v,v" € v[QF] one only has to substitute “step by step” (in arbitrary order) the coordinates in which

the vertices differ.

e (O) Clearly we have lim, ,oo(a — 1)n 0o and since | Q7 | = a™ we inspect for any fixed
natural number 4 lim, s [(a — 1)n] *a™ /' .

e (P) For v # v' we have |9{v} N d{v'}| < a since being adjacent to the two vertices v,v’
implies that there are exactly a possible choices for the corresponding coordinate left.

e (Q) For arbitrary r € IN,, and v € v[Q%] we have | B,(v)| = (7) (o — 1)" and therefore
lim, oo | Br(v) |[n(a—1)]"" =¢(r) =1.

e (R) For v,v' € v[Q7] with d(v,v") = k we write v,v’ as
v=(21,..Tn) and v = (2, .., Tk, Thit, -, Tn).
Let vy € 8{v} N Bi4x(v") then we set
gj(v1) := (xh...7xj7x;+1,...,x§€,a:k+1,..,aﬁ"T,...,xn) 0<j<k &, #x, (3)

and inspect grp(v1) = v1 and go(v1) € B1(v') N Biyi(v). We shall show that we can choose

m = 0 and Pgﬁl’o to be the following set of paths

m(v1) = (gx(v1), gx—1(v1), -, 91(v1), 9o(v1)), w1 € By(v) N Byyp(v').
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First lim, 0 | B1(v) N Big1 (V") | = (@ — 1) lim,, oo n implies (R) (i) and (R) (ii) is trivial.

For vy,71 € By(v) N B1yx(v') we observe immediately

v1 Z91 = Supp(w(v1)) N Supp(n(41)) =0,

proving (R) (iii). Further we have for all v; € By (v) N By (v") €(7(v1)) = k verifying that all
paths have equal length i.e. m = 0.

To verify R (iv) we first inspect |9{v} N 9{v'}| < a where v,v' € v[Q]. Let us assume
o, C {v}, @y C O{v'} and limy,_yo0 | Py | > My, lim, o0 | Bor | > my for arbitrary m; € IN.
Then there are 2 /¢ vertices vg) € 9{v} v, A= o{v'}, 1 < i < ¢ that differ from v and o
respectively in exactly 2/ dzﬁerent coordinates.

1)
The corresponding paths PU1 0 1 <4 < ¢ have all equal length k£ + 2 and fulfill (R) (iv):

MORION ol !9
Rori#j: |[{(ma) € P, x P, [Supp(r) N Supp(r’) £0}] < (k+2) (a=1).

The above example implies that the following sequences of graphs are sequences of configuration
spaces:

(1) the family of Boolean hypercubes (9%), .IN;

(2) the family of generalized hypercubes (Q3), .IN;

(3) the family of the canonical configuration spaces for the graph bipartitioning problem [58].

Next, for the convenience of the reader we recall some basic terminology from probability theory.

Notation. A probability space (A, A,m) is a triple consisting of a point set A, a Borel-algebra A
and a (probability) measure w. In our situation A is a finite set and the Borel-algebra is simply the
power set P(A) of A. The measure of an arbitrary set M € P(A) is then given as the sum over
the point measures: p{ M } =3, m{a}.
A random variable X is a p—measurable function on A. The distribution of the random variable X
is determined by the (cumulative) distribution function F(z) = p{ X < z }, where —oco < z < cc.
In the case of integer-valued random variables, we can specify them as well by the probability
density function f(z) = p{ X =z }.
The ezpectation value of X is given by E[X] = [ zdF(z), which reduces to E[X] = 3_« f(z) on
finite sets A. The variance of X is defined by V[X] = E[(X' —E[X])?].
We furthermore introduce the r—th factorial moment of a positive, integer valued random variable
Y by: -

EY], =) [lL.s{¥=j}

j=r

where [jl, =j-(j—1)-...-(j — (r = 1)).
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3.1.2. Models

Let us begin by considering the set of all subgraphs of a finite graph H i.e. G(H). For each pair
of subgraphs G,G' < H the relation G ~ G’ <= €[G] = €[G’] is an equivalence relation. In each
equivalence class [G] := {G" < H |G ~ G" } with €[G] > 0 there is a unique element G* such that
| v[G*]| = min{|v[G"]| < H|G ~ G" }, given by

G = ({ile[G)) U F(e[G])}, elG)) (4)
For 0 < p <1 we obtain setting

3, {[G]} = plel9 (1 — p)lelm 1G]]

a probability measure on the set of equivalence classes G(H)/ ~ since 3 i m,{[G]} = 1 and
([6(H)/ ~],P(G(H)), m, ) becomes a probability space. We shall write p,{G*} := p,{[G]}.

Remark. We can construct the subgraph G* for 0 < p < 1 as follows: we select each edge e € e[H]
with the probability p and thereby obtain the set Y C e[H]. In order to construct the graph G*
we define v[G*] := {v € v[H]| Je € Y : v incident to e } and set e[G*] :=Y.

Model I Let H be a finite graph and G* with v[G*] # 0 be given by equation (4). Then H[v[G*]] is
an induced subgraph of H and we have a one-to-one correspondence between v[G*] and H[v[G*]].
Let GY(H) be the set of all induced subgraphs T of the finite graph H for which there erists a
G* < H with v[G*] # 0 and T'' = H[v[G*]]. For T € GY(H) we set

1
I 1 *
pA{l}:= 1= (= p)eA E n,{G"} .
{G*:TT=H[v[G*]]}

Plainly Yri_gpyg-yw AT} = 1 and we have the probability space

a':= (G'(H), P(G'(H)), ') .

Next we introduce a second model that has “better” independence properties and builds the basis
for the mathematical modeling of “neutral networks” of RNA secondary structures as random

graphs.

Model II Let H be a finite graph. Fach subset X C v[H] induces the subgraph H[X] and more

precisely we have a one-to-one correspondence between X C v[H] and H[X]. Let us denote the set
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of all induced subgraphs of H by G"(H). Further we suppose 0 < X\ < 1 to be given and set for
I e G"(H)
o {T} = AV — ) IVIETI=IVITT

Obviously py fulfills 3" p\{T'} = 1 and we thereby obtain the probability space

Q= (GN(H), P(GY(H)),my ) -

Remark. We can construct each I' € G''(H) by selecting each vertex v € H with the independent
probability 0 < A < 1. This leads to the set V). Then I is the induced subgraph of V) in H i.e.

I =H[V,].

Remark. In the sequel we shall consider a sequence of graphs, more precisely a sequence of

configuration spaces (C")nE]N as introduced in definition 1. This leads to a family of corresponding

1

I QU If we want to emphasize that we are working with random subgraphs

probability spaces
of a graph C,, (according to model I or model II) we shall write I'} ,T}l. Accordingly, we shall refer

to the underlying probability measures as p™! for model I and B, for model II.

Remark. For model I we can further establish a connection between the basic parameter p and
the probability A of selecting a vertex v € v[H] to be contained in a random graph.
For a sequence of configuration spaces (C,) we assume p,7y, = ¢, with constant ¢ > 0. The

probability that a v € v[H] is selected is then
p,{v€V[G']} =1—(1—-p)"™ hence lim p {veV[G]}=1—-e€".
n—oo
Consequently to each p,, = ¢/~, there corresponds a

/\I(pn) =1- (1 _pn’)/n/’)/n)’yn . (5)

In order to compare both models it is sometimes convenient to use A' as the underlying parameter.
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3.2.0rders and Vertex Degrees

Suppose a sequence of configuration spaces (C,) is given. In this section we state some simple
properties of the random graphs T'L TII. We observe that vertices v, v’ € v[C,] are chosen asymp-
totically independently if p,v, is a positive constant ¢ independent of n. For this purpose we

introduce the random variables X’v, Xy given by

% = 1 if v is selected
Y710  otherwise.

The induced o-algebra of a random variable X, for v € v[C,] is {0, {X, = 1v0},{X, = 1},{X, =

0}} and by symmetry it remains to show

p{{X, = 1}n {Xy =1} } = p{{X, = 1} } p{{Xv = 1}}

p{{X, = 1}n {Xy = 0}} = p{{X, = 1} } p{{X, = 0} }

p{{X, = 0}n {X, =0} } = p{{X, = 0} } w{{Xw = 0} }.
We have p{ {X, =0} N {X, =0}}} = (1 —p)?*™ ¥ where lim,_ o0 (¢n 7, ') = 0 (see def 1) and
p{{X, =0} }p{{Xy =0}}} = (1 —p)*™. Then

lim (1—p) % = e ¢limmom(enai) =1
n—oo

implies lim,, oo p{ {X, =0} N {Xy = 0} } = lim, 0o p{ {X, = 0} } w{ {X,» = 0} }. Along these
lines one immediately verifies the other equalities. Therefore for each finite family (Xv,-hgigr
the random variables are asymptotical independent i.e. (Xv)vev[cn] is a family of asymptotical
independent random variables. Further we shall make use of the following argument in the main
body of the thesis. Let X,, be an (integer valued) random variable such that lim, E[X'n] =00

and V[X'n] =0, E[Xn] 2 where lim,,_, o, 8, = 0. Then we obtain from the Markovian inequality
Ye>0: lim p,{| X./E[X,] —1] >e}=0,
ie. ()2'” /E[X’n] ) converges stochastically to the constant random variable 1. This implies in

particular convergence in distribution.

We next introduce

k+1/2 _ 2
B,.(k,p) eXP( de) 7

1
= V2rp(1 —p)n /Icl/2 “2p(L—p)n

that is the discretized version of the Gaussian distribution with mean pn and standard deviation
Vp(1l—p)n. Let &, : O3, — R j = LII the following random variables: @i (T¥,) := |T¥ | j = LII

i.e. the order of T,.
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Lemma 1. Let (C,)n be a sequence of configuration spaces such that ¢ := p, v, is a positive

constant. Then for the random graphs T, holds

iy w0k = ) =l B (5 o)

n—oo 1—e—c

and in particular lim,_, . E[@] /lim, 4o (1 —e™°)|Cn| = 1.

For random graphs T'I € Q' we have
"’n,)\{wg = k} = B(k7|C" |7)\) ’
lim, o E[@Y] /lim, o0 M| Cp | =1 and lim,, o1 TE| =k} =lim,_,o B, (K, A).

Proof. Model I: First we observe p™'{&, = k} = p, {G*||G*| = k}; thus it suffices to
determine the distribution of orders of the graphs G* (equ. 4).
For v € v[G*], let d; be its vertex degree. Next we have >3, jpu{d; = j} ~ p, v, implying

lim E[§}] =

n—oo 1—ec’

(6)
X, and X, are asymptotically independent random variables and therefore the vertex degrees

0y = 0, and 0,y = &7, are pairwise asymptotically uncorrelated (and equally distributed) random

variables.

Cov(b, b,) = E[5, — E[6,]] E[b,» — E[6,]] = E[,,/] — E[6,] E[6] =6,; lim 6, =

n—oo

The variance of X (G*) := \Gl—*| Y vev(Gy] b, fulfills

lim V[X] = lim VI[§] + hm

n— oo —>oo|G |

WOG* | ¥n 65)

and we inspect for arbitrary natural number k:
Jim gy, {IVG"][ 7 30 < 1Yk} =1

Using the basic relation ) |

vevige) 0w = 2e[G*] we obtain limy, o | V[G*] | E[,] / limp, 00 2| e[G*] | =

1 whence

lim p™ o, =k} = lim p,, {|e[G"]| = k—} = lim B, (k /\,pn)-

n—oo

Model IT: The proof for model II is a simple application of the Moivre-Laplace Theorem, see

appendix A. g
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Lemma 2. Let (Cp)n be a sequence of configuration spaces such that p, v, = c¢ s a positive
constant and let v,v' € v[Cp] with d(v,v') = 1. Then for v € v[['}] the verter degrees 8, fulfilling
liminf 6, | 8{v} N 3{v'}|~! = 0o are asymptotically Gaussian distributed:

Model I lim p™'{3, = ¢} = lim B, (e ﬁ pn) :
For the verter degrees by of a random graph T we obtain
Model II: g,y 3 {05 = £} = B((, 75, \)
and in particular lim,,_ un,A{SU =L} = limy—00 Ba(f, A).
Proof. Model I: For a vertex v € v[C,] we consider
Y, :={e€e[C,]|ie) € O{v} V 7(e) € O{v} }.

We select each edge of Y, with the probability p, = ¢/v,. For a vertex v’ € 8{v} incident to a
selected edge the number of all incident selected edges is a random variable with expectation value
¢/[1 — (1 — p,)"]. As shown in lemma 1 the random variables corresponding to pairs of vertices

v',v" € 8{v} are pairwise asymptotically uncorrelated. By assumption on
Vp :={v" € &{v}| v’ is incident to a selected edge }

we have lim,, o |V, || 0{v} N d{v'} |71 = co. We consider the induced subgraph of V,, in G* and
obtain in complete analogy to the argument in lemma 1 that the average number of incident edges
becomes asymptotical constant for G*[V,]. Then lim, o |V, | m [lim, 0 2|Y, | =1
implies

. R . c . c
lim g™ 5= () = Tim g, {6V =£or} = lim Ba(Co,pn)

n—o0 n—00
and the first statement follows.

Model II: The proof is obvious. g

Next we show that for the random graphs I',, the distribution of vertex degrees is asymptotically
invariant. In the language of statistical physics this means that the vertex degree is a self-averaging

quantity. Let k = k(n) > 0 be an integer valued function. We introduce the random variables
X ={vevlh]d =k} j=11L (7)

counting the number of vertices with degree k in a random graph T3,.
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Proposition 1. Let (C,). be a sequence of configuration spaces such that ¢ := pn Vn i a positive
constant and v,v" € v[C,] with d(v,v") = 1. For k = k,, such that lim infk|8{v} N o{v'}|™! = 00
and lim inf B,,(k m,pn) E[®}] = co we obtain

lim p™{X! , = B.(k <

s = Bulb g gy ) Al 1} = 1

For the random graphs T < C,, and arbitrary k holds

ll_)m "’n,A{XELI,k = B(kv’)/na/\) /\lcn |} =1.

Proof. The previous lemma provides under the above assumption on k for model I:

lim, 00 p”’I{Sv =k} = lim, 00 Bn(k m,pn) and a corresponding expression for model II.
We shall prove the statement only for model I remarking that the proof for model IT is completely
analogous and shall omit the index “I” for the corresponding random variables.

We first observe B[X,, ] = 3,5 ' p{ 8, = k } €u™1{G,, = £} whence

-1

c N

lim E[X, ] | lim B,(k

n—oco n—oco 2(1 — e—c)

We next compute the variance of X,, x by evaluating the second factorial moment E[X}] . Property
(P) of definition 1 implies that the probability for selecting a pair of vertices with degree k is
asymptotically given by B, (k m, pn)?, therefore

-1

Ca |
. % . _ C 2 nlp~ _
lim E[X,,4]2 | lim ;:; ((t—1)B,(k 72(1_6%)’1’") prHo, =0 =1,

since there are ¢ ({—1) ordered pairs of vertices of degree k in a graph I',, with |T',, | = £. Rewriting
this as lim, e E[X'n’k] o/ limp s oo (B (k ﬁ,pn) E[@,])? =1 and since
E[X'fl’k] =E[X, ]2 + E[X,.x] we end up with
. > . > > 2\ . _
nlglgo V[Xn,k]/nh_)n;o(E[Xn,k] + [0, E[X,k]]°) =1 where nh_}rrolo 0, =0.
By assumption we have lim inf E[X, ;] = co whence for € > 0 holds

lim p™'{ | Xk /E[Xn] —1] > €} =0,

thus the proposition. g
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3.3. Density

In this section we shall suppose that a family of configuration spaces (C,) is given. We restrict
ourselves to the sequence of probability spaces (21). In other words for each graph C, we consider

the set of all induced subgraphs I',, of C,, and the probability measure
B, )\{Fn} = )\l vila]| (]_ — )\)| v[Ca]|—|v[[a]| )

Assuming that p,, , and C, are fixed we speak of random graphs I, and write for short €2, = ol

and p, = p,, 5.

Definition 2. Let H be a finite graph. A subgraph G < H is called dense in H if and only if
v[G] = v[H].

We shall discuss in this section the density property of random graphs I';, < C,, where 0 < A < 1
and establish the existence of a “critical” A-value, A* that has the following property:
. for A < A* a.a.s. no random graph T',, is dense and

° for A > A\* a.a.s. every random graph I',, is dense.

We shall call \* the threshold value for the density property. For this purpose we consider the

random variable

Zn(Tn) := [ {v € v[Cu] |0 & VITu} (8)
that is defined on €, and counts the number of vertices having no adjacent vertex v € v[[',]. We
first compute the asymptotical distribution of the following sequence of random variables (Zn)

associated to the sequence of probability spaces (2y,).
Lemma 3. Let (Cn)n be a family of configuration spaces. Suppose that
pe= lim (|Cy| (1= X)"*) € Ry U{0} U {oo}

erists. Then for p < oo the random variables Zn converge in distribution to a Poisson distributed

random variable, i.e. ,
¢

. 5 _ B
Jim p{Zn =0} = e (9)
In particular we have
lim p,{Z,=0=e* and lim E[Z,] =|Cn| (1= M)t
Finally, for p =00 and ¢ € IN holds

Jim p,{Z, >0} =1.
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Proof. We first consider the case u € R4 U {0}. According to corollary 11 in the appendix it
suffices to show that lim,,_, .o E[Zn] » = u” holds for all » € IN.

For each ordered r-tuple (vi,...,v,) of vertices the number N(r) of adjacent vertices in v[C,],
fulfills 7 (y — ) < N(r) < rv. There are at most () r+ sets of r-vertices with less than r
adjacent vertices in v[C,]: In fact, we may choose r — 1 vertices arbitrarily and the last one has
to be adjacent to at least one of the others. Since each vertex v € v[C,] fulfills v € v[I',] with

independent probability A and r is fixed we obtain
|Cn |

(=" > Cal = ITull ] m{I Tl = €} <E[Z.], <
£=0

[Ca |

S [0Cal = 1Tall (L= A7 4 {(1C | = [T )™ } (1= )= e (| T] = £}
=0
According to lemma 2 we have E[©,] = A|C, | and V[w,] = A(1 — X) |C,, | whence

im0 o, {| On/A|Cn| — 1| > €} =0 and the above inequality reads
dn 1= | =W ie @ -eT < i Bz,
< lim [(1=X)[Cal (L= AT [L+ €T rym(l =27
using [(1—=A) [Cn []" = 7 [(1=A) |Cn ] 7 < [(1 = A) [Cn| = 7]" < [(1 = A) |Cr|]r- This proves the
first statement:
lim E[Z:], = lim [|C0|(1—=2)"*]".

For 1 = oo the above argument shows that

E[Z,] /o0 and JLIEOE[ZH]Q/JEEOE[ZH]Z’ =1.
Since E[Z,] 2 + E[Z,] —E[Z,]? = V[Z,] we obtain lim,,_ ;s V[Zn] /lim, 00 0r, B[Z,]? = 1 where
lim, yo 0, = 0. Therefore for every £ € IN holds lim,,_, pn{Zn > {} = 1 and the lemma is
proved. g

Theorem 1. Let (C,)n be a sequence of configuration spaces such that lim,_ oo 1—|Cp |_# exists
and
0< lim 1—[C,| 5 <1.
n— oo

Let X* :=limp 001 — | Cn |77 then for XA > A\* holds

lim p,{T, is dense inCp, } =1

n—oo
and for A < \* we have

lim p,{T,, is dense inCp, } =0.

n— oo

In the basic terminology of random graph theory \* is called threshold value for the density prop-
erty. For A > \* almost every random graph T, is dense in C,, and almost no T, is dense in C,, for
A< AR
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Proof. According to lemma 3 we have lim, E[Zn] = limy 00 | Cn | (1 — N\)YTL. We further
inspect from the lemma that

lim E[Z,] =

n— oo

0 for A > \*
00 for A < \*.

Therefore for A > A* we have the case u = 0 of lemma 3 and thus lim, o, p,,{Z, = 0} = 1 since
Zn is Poisson.
For A < X\* we have 4 = oo of lemma 3 and obtain for £ € IN limn_,oopn{ZAn >(} =1. By

definition of Z, holds {Z, = 0} = {I', is dense } and the theorem is proved. .

Remark. Suppose C, is a generalized hypercube i.e. C, = QF, the formula for the density

threshold reads

a—1

A=1- a1,

3.4. Connectivity and the Sequence of Components

3.4.1. Definitions and two Auxiliary Lemmata

We assume in this section that for each C, the limes lim, , 1 —|Cp |_# exists and fulfills 0 <
lim, 4001 —|Cp |7# < 1. Further we set A* := limy, ,00 1 — |Cy |7#. Let G be a finite graph.
Recall that two vertices v,v' € v[G] are connected if there exists a path in G in which v and o'
occur. G is connected, if for all pairs of vertices v,v’ € v[G], there exists a path in G in which
v,v" occur and it is disconnected otherwise. Being connected is an equivalence relation on v[G]
and there exist maximal subsets V' C v[G] consisting of connected vertices. A component of G is
then the induced subgraph G’ = G[V] of such a maximal connected subset of vertices. If V = @,
GI[0] is called a trivial component. If G is disconnected we shall investigate the so called sequence
of components, i.e., the list of orders of the maximal connected subgraphs of G into which G can

be decomposed.
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Definition 3. Given a graph G, the sequence of components of G is the ordered tuple
(| X Di<i<| @ |, where each X; is a component of G and | X;| > |Xiy1|. We call a component

X < G a giant component if and only if | X | > 2/3|G|.

For a random graph I',, an isolated vertex v € v[['y] is a vertex with the property d{v} Nv[l,] = 0.
We consider the random variable U 1 defined on ,, that counts the total number of components
X in a random graph I',, that have orders in the interval I C IN. Analogously we make use of the

notation U, for the number of components of order .

Lemma 4. Suppose k € IN, v € v[C,] and 0 < XA < 1. Then we have for A > \*

lim p,{T, contains no components with 1 < |X | <y} =1

n—oo

and for A < \*:

Vie N: lim m,{T, contains at least £ components with 1 < |X | <y} =1.
n— oo

Proof. Obviously the smallest nontrivial component is an isolated vertex. For v € v[I',] the

probability of 8{v} Nv[[,] = @ is (1 — A)™. Let I, be the random variable defined by
I.(Tw) = |{v € v[Ta] [ 0{v} NV[TW] = 0}

Then lim,, 00 E[fn] = lim, 00 E[@,] (1 —A)™ and in complete analogy to the proof of theorem 1
it can be shown that

lim E[l,] =

n—oo

0 for A>\*
oo for A < A*.

Further we inspect for A < A*: lim, .o E[fn] o/ limy, 0o E[fn] 2 =1 and thus
lim,,—s o0 V[fn] /im0 0 E[fn] 2 = 1 where lim,,_,o 8,, = 0. Therefore we end up with

lim, o0 1, {| I, /E[I,] —1| > €} = 0 and obtain for A < \* and £ € N

lim g, {T', has more than ¢ isolated vertices} = 1.

n— oo

What remains to be proven is the nonexistence of components smaller than -y, in the case A > \*.
Clearly, there are (| C; |) different subsets of vertices X with | X | = ¢ to select. To each X C v[C,]
there corresponds the induced subgraph in C,: C,[X]. We now proceed by evaluating an upper

bound on the number of different subgraphs C,[X] that are connected. For the first vertex we can
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choose every v € v[C,] and for each subsequent vertex there are at most v, possible choices.
Therefore

| {X | Cn[X] is connected }| < |Cp |~ CnIXTI—1

and there exists a b € R, such that | {X |C,[X] is connected }| < ebIn() [CnlX]1,

Suppose now | X | < v, and that C,[X] is connected. The probability that C,[X] is a component
of a random graph T',, is bounded from above by (1 — )/ X! since for a component necessarily
holds X Nv[l',] = X. In other words no vertex v € v[[',] can be contained in its C,-boundary

90X . Suppose | X | < «, then we inspect using property (Q) of definition 1
da€e R, : av| X | < |0X]|.

Accordingly, (1 — A)®7 € [X]l serves as an upper bound on the probability for the existence of a
component of order |C,[X]]| in a random graph I',,. We obtain

Yn

lim E[Up,,)] < lim Y "™ (1-0)*" =0 abeRy
=1
and the proof of the lemma is complete. g

We proceed investigating the connectivity property of the random graphs I'), < Q7. Basically we
shall establish that the parameter \* = lim, ,.,1—|C, |_%n is not only a “critical” parameter for
the density but also a “critical” parameter for the connectivity property. In other words we shall

show that A\* is also a threshold value for connectivity.

According to lemma 4 we can restrict ourselves to the case A > A* since for A < A* holds
Vle NN : nhﬁngo p,{T'» has more than ¢ nontrivial components} =1.

Thus it remains to be proven that A > A* implies

lim p,{T, is connected}=1.
n—oo

The first step is
Lemma 5. LetT',, < C, be a random graph T',, € Q,, and lim,_,oc 1 —|C, |_1 e < \. Then

Vie N i r, in 0, >0}=1.
nl{lgo”n{ | vgfl{ln] - }
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Proof. For k € IN we consider again the random variable Xn,k on , the states of which
are the numbers of vertices v € v[[',] with 6, = k. An upper bound for E[X,, 4] is given by
[Cr| () A® (1= X\)™~* since there are at most | C, | vertices to select. We further inspect that A*
solves for z:

Vk e N : 11_>m |:|Cn| (’ZL) xk (1—:1;)'7"_kj| = ag ak€R+.

For A > A* the above equation implies

4
. ; T\ Nk _ \ym—k| —
VlieN: n1L%[I;0|cn|<k>A (1-2) ]_o,

proving

VeN i T,: min §,>¢(}}=1
Jim g, { ,in H}

and the lemma follows. x

Using precisely the same argument we further obtain

Corollary 1. Let T, < C, be a random graph T, € Q,, and lim, _,0c 1 —|Cp |_1 e < X. Then

Ve N lim g, {T,| min |[d{v}nv[[]|>£}=1.
n—00 va[Cn]

In order to make the following discussion more transparent, we first analyze connectedness for a
special class of configuration spaces namely the class of general hypercubes (Hamming graphs) (see

p. 16).

3.4.2. Connectedness in Generalized Hypercubes

In this subsection we shall assume that the sequence of configuration spaces (C,) is given by
(Q%).,cIN)- Then according to model II the corresponding probability spaces (1 are formed by
all subgraphs I',, of Q7 that are of the form I',, = Q7[V] where V C v[Q”] and the probability

measure p,, = @,  is given by

B () = AR =y =T

)

Assuming that p,, , and Qp, are given we speak of random graphs I',, and (as usual) we write for

short Q, = Qlf and p,, = p,, .
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We recall that a generalized hypercube Q7 is a 7, := [(a — 1) n]-regular graph and observe

. 1L 1L
A= lim 1—|Cp| '3 =1—a o1,
n—oo

(see the example p. 16).

We restate that for v € v[Q2] B,(v) is the ball centered at v with radius r i.e.

B, (v) := {v'|v € v[Q2] Ad(v,v") =1} .

First we estimate loosely speaking “how many independent paths exists in Q7 that connect the

balls Ba(v), B2(v'") where v,v' are assumed to have finite distance k”.

Let v and v' be two vertices of v[Q7] with d(v,v') = k where k is a fixed natural number. By

renumbering of the coordinates we can write
! ! ! !
v=(21,%2,...,%,) and v = (x],%h,...,Tp, Thtl,-r Tn) - (10)
We shall write vertices vo € Ba(v) N Bayr(v') and v € Ba(v') N Bayy(v) as
V2 = (L1, ey Thy Ll 1y eeey L1y By Ll y ey L5 1y Lsy L1y -y Trn)

! ! ! A A
V) = (T, ey Ty Tl 1y «oey Tt—1y Bty Tt 1y oeey L1y Lagy L1y -ovy Ty )

with Z, # ., Ts # s, Tt # ¢ and Ty, F# Ty
For 0 < j <k and vy € Ba(v) N Bayi(v') we set:

F5(V2) 1= (@1, ey 5, Ty gy ooy Ty Tl Ly ooy T 1y By Ty 1y ooy T 15 Bsy Ty o) - (11)
Clearly fi(v2) = v2, fo(v2) € By(v') N Bagi(v) and each family (f;(v2))o<j<r can be identified

with a path of length k in Q7, w(v2). By definition m(v2) has a nonempty intersection with
By (v) N Bayx(v') and Ba(v') N Bayr(v). Let vs,¥a € Ba(v) N Bayk(v') then we have

vz # By = Supp(f;(v2)) N Supp(f;(v2)) =0,

in other words for different vy,02 € Ba(v) N Batk(v') the corresponding paths 7 (vs), w(02) are
pairwise disjoint. In fact we have a mapping
Uk Ba0) N Bai) — TG
Vo — 1&:’%2 = 7(v2) .
Next we introduce the random variable ZA:i’Z’ for v,v" € Q" with d(v,v') = k for fixed k € IN.

G (T,) == [ {7(v2) |7 € II(T'), v2 € Ba(v) N Bagi(v') }| for v,v" € v[I'y]
nok A nS 0 otherwise .

The result is that a.a.s a random graph I',, has the property that for each pair of vertices v,v’ €
v[[,] with d(v,v") = k, k € IN there exists an order of n? pairwise disjoint paths in T, “connecting”
Bs(v) and Bs(v').
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Lemma 6. Let Q7 be a generalized hypercube and I',, < Q0 a random graph with underlying

probability measure p,, = p,, \ and 0 < XA < 1. Then for arbitrary x € R4 holds

lim p, {T,|Yv,v" € v[Q0] :d(v,v") =k, k € N : |ZAsz, - E[Z:ZI] | < xn?}=1.
n—oo ) )

Proof. We consider the random variable ZAZ’ZI For each vy € Ba(v) N Bayi(v') there corresponds
the path m(vy) obtained according to equation (11) in Q. By definition m(v2) has a nonempty
intersection with Ba(v') N Bayr(v) and By(v) N Bayr(v'). m(ve) is already a path in a random
graph T, with probability A\*+1.

For different vertices vy, 72 € Ba(v) N Bayr(v') the paths m(vy) and w(d2) fulfill Supp(w(v2)) N
Supp(m(¥2)) = 0. Accordingly, the random variable ZZ:ZI, counting the number of those paths is

binomial distributed with expectation value
5v,0" ki1 (=K 2
E[Zn:k] =A 5 (@ —1)=.
By applying corollary 11 in the appendix we obtain
Vx€RyIbERy: m {20} —EIZy ]| > xn?} <e b

On the other hand there are at most (}) (o — 1)* @™ different pairs of vertices in v[Q%] with

d(v,v") = k. We immediately inspect
dn | (1) (@1t a1 22 - BIZE | 2 0] =0
and consequently for arbitrary x € R4 holds
Jim p (T | Vo, 0" € v[QG], d(v,0') =k |20y —BZo | < xn?y=1

proving the lemma. g

We now proceed by showing that a.a.s. each pair of vertices v,v" € v[I',] with d(v,v") = k, for
fixed natural number £ is connected by a path in T',,. For this purpose we make use of special

paths in Q7 which we introduce now:

For v,v' € v[Q"] with d(v,v') = k we assume v,v' to be given by equation (10). For v; €

O{v} N By (v') we set

g;(v1) := (xh...,wj,x;+1,...,x§c,xk+1,..,gﬁr,...,xn) 0<j<k & #=x, (12)
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and inspect gx(v1) = v1, go(v1) € B1(v') N Biyx(v). In fact we have a mapping

o{v} N By (v') — I(Qz)
v1 = (1) = (gr(v1), gr—1(v1), -, 91(v1), go(v1)) -

Let Mz,zl (T',) be the set of paths
M2Y(Dn) = {m(v1) | m(v1) € TI(Tn) }.
Then for vy,9; € By(v) N Byyx(v') we have
vr #0 = Supp(m(vy)) N Supp(m (7)) =0

and further for all v; € By (v) N B144(v') we have {(m(v1)) = k.
We now introduce the random variable
goo [ IMZY (0] for v,v' € v[T,]
nk 0 otherwise .
The paths 7(v1) in Q7 are pairwise disjoint and each of them is a path in I',, with probability \**+1.
Therefore for v,v' € v[I',] Y:,’,:’ is binomially distributed and | By (v) N Bi4x(v') | = (@ —1) (n — k)
implies

!

EY, ] =X (a=1)(n—k).

Remark. The following lemma is not simply implied by corollar 11 of appendix A as for example
the previous lemma. Here we shall make use of lemma 5 in order to be able to apply our main

argument “independently finitely many times”.

Lemma 7. Let k be a natural number, QF a generalized hypercube and I',, < Q% a random graph

with A\>1— “Va~'. Then

lim po AT | Yo, 0" € v[QF], d(v,v") = k : Fvy € O{v}, vi € B{v'}: ?Uld’(”jwi) >0}=1.

n,
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Proof. Corollary 1 implies that for arbitrary ¢ € IN holds:

Tim g, {T|¥0, 0" € v[QZ], 3ol e afuy nviTa] A 3, LD e df' VDLl = 1.
(13)
For w,w’ € v[[,,] ?an,’cw’ is binomially distributed (with expectation value E[Y:”,’cwl] =\ (@

1) (n — k)) we can apply corollary 11 (see appendix A) and obtain
Vb € Ry 3be Ry : lim p,,{ | v B > ey <e (14)

Let £ € IN be fixed and P be the probability for the existence of a pair of vertices v,v’ € v[C,] such
that there are £ pairs of vertices (v{”, /")), v € By(v) Nv[T,], v)'? € Bi(v') Nv[Tn], 1 < i < ¢
with the property:

For 1<i</ b €Ry Yn " gy =0

Claim: There ezists a t € Ry such that

lim P < lim e *t"™.

n— oo n— oo

To prove the claim we first observe that according to equation (13) a.a.s. for each pair v,v' € v[Q7]

and arbitrary £ € IN there are a. s. ¢ pairs of vertices v§ )7 ' where 1 < 4 < ¢ such that
vy) € By (v) Nv[l,] and v1 ) e By (v") Nv[ly,]. 1. e. there exists a.a.s. nontrivial random variables
(i) (i)

YoM for 1< <L
The above 2 ¢ vertices vy), v'l(z) 1 < i < ¢ differ by definition from v, v’ in exactly one coordinate.
Hence there is a mapping that assigns to each vertex the index of the coordinate in which it differs
from v or v’ respectively. Since £ is finite and for any v € v[Q7] holds d{v} oo and we can
assume that the 2 /¢ vertices yield exactly to 2¢ different coordinates. In particular we observe
d(v(i), v'(i)) =k+2.
For all pairs v, w € v[QZ] holds

|0{v}nd{w}| <« (15)

and for each pair (v§ ),vl(l)) there are (o — 1) (n — (k + 2)) vertices w'? € By (v, (@ )) N Byyk(v (,))

with corresponding paths 7(w®) in Q7 of length {(r(w?)) = k + 2.
O = (" .. ,(:),a:(k?rl,x&)&,. Loy and o[ = (2 1('),...,x;(i),x;(fal,x;@wa:(,ﬂry. L),

Then to each pair (v§ ),vl( ))

Writing v;
there corresponds the path

(950MNocicrra), g @) == (@, .., 2l 2’ P, 2. (16)
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Clearly, for different pairs (vii),vi(i)), (v§j ) , vi(j )) the above paths are pairwise disjoint. We further

inspect that there exist at most 2 £ (k + 2) [« — 1] vertices such that

1S U Supp(r(w™)) N | ) Supp(r(w?))
w(@ €By (v]")NByir(vy?) 7
Therefore each pair (v@,vi(i)) leads to at least [(a — 1) (n — (k +2))] — [2¢(k + 2) [a — 1]] paths
m(w®) € M(Qr), w € By (vy)) n B1+k(v1(i)) that are completely disjoint to each path of the
form w(w®), w® € By (") N Biyr (W), i # j (see figure 4).
Thus the probability that none of the remaining pairwise disjoint paths of length k+ 2 is contained

in II(T,,) is given by
(1 — AFF2)[(o=1) (n=(k+2))]=[2 £ (k+2) [o—1]]

We therefore obtain

) )

NG
It e Ry : lim p, {Tn ||V, % =0, 1<i<{}= lim e **™.
n— oo ’
We make use of equation (14) and choose ¢ sufficiently large such that

lim [y*'a"e ] =0 beR;.

n— oo
From the above equation we deduce that a.a.s. at least one pair (vf)m'l(i)) fulfills
NG
Yn,1k:+21 >0

Figure 4: An illustration for the proof of lemma 7. For given v,v’ € v[QR] each pair of vertices (vgi),vll(i)) leads
to “sufficiently many” independent pairwise disjoint paths in II(Q7).

— 34 -



RANDOM INDUCED SUBGRAPHS

Corollary 2. Let k be a fized natural number and An,k the random variable:

)

Ao 1 if all pairs v,v" € v[I',)] with d(v,v") < k occur in a path of T',,
~E 0 otherwise .

Then under the assumptions of lemma 7 holds limy, oo pr,,{ T'n | /A\n,k =1}=1.

Proof. According to equation (13) we observe
lim p, {T : V0,0 € v[QR] : 30l e afuynvTa] A F0i, 0l e 0w} nv[Ta] } = 1,

and consequently in the a.a.s. for each pair v,v € v[[',] there exist v; € 9{v} N v[[',],v] €
O{v'} Nv[I['] with the property
Y, s > 0.

!
V1,V

Clearly, {v,v1},{v",v1} € e[lI';] and hence by definition of Y, ’'\} there is at least one path in

I(I"») in which v and v occur. g

Now we are prepared to state the main result of this subsection:

Theorem 2. Let (Q7) be a sequence of generalized hypercubes and I',, < Q& random induced
subgraphs. Then

lim g, {T, is connected} =
n—oo

1 for A>1— “Val (17)
0 for A<1— “Val.

1. e. X* is a threshold value for the connectivity property.

Proof. The existence of components X with | X | < v, with has been investigated in lemma 4,
where we proved that A\* =1 — “/a~1 is a threshold value in Q,, for the existence of nontrivial
components whose orders are smaller than .

We choose k € IN. Then to each pair v,v" € v[QF] the connectivity of Q" guarantees that there
exists a path (in II(Q7)) say (v:i)o<i<d(v,») in Which v,v" occur. We can assume that v = vg,v" =
Vi(v,v) and d(vs,vip1) < k. We now consider the sets By (v;) for 0 <4 < d(v,v’) and introduce

22U (T,) = | v[Tn] N Ba(v;) |-

n’j

Claim:

n—oo sJ

A ' ~ 1 1 A !
lim g, {T,|Vv,v" €v[Qy], j <d(v,v"):|Z)] —E[Z)]]]< 5E[Z£”f] }=1.
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We only have to observe that ZAZ:;JI is binomially distributed and E[ZA';’L:;’I] = () (¢ = 1)2X. Then
we apply corollary 11 and the claim follows from

lim (a2”e_b”2) =0 beRy.

n—oo

Therefore in all balls Bs(v;), 0 < ¢ < d(v,v") we simultaneously find vertices of a random graph
with probability one. The elements of Ba(v;) N v[[',] and Ba(vjtx) N v[[',] have in the a.a.s.
pairwise finite distance (in Q") and are according to corollary 2 a. s. connected by a path in T',,.

Therefore a.a.s. in a random graph 'y, for all v,v" € v[I',] there exists a kg € IN and a sequence
of vertices (v;)osjgd(yﬂv/) such that v; € v[[L], d(v,vi ;) < k and vo = v, V4(v,ry = v'. This

sequence corresponds to a path in II(I',) in which v and v occur proving the theorem. g

Remark. A related result in the special case of the Boolean hypercube can be found in [3]. The
corresponding subgraphs A, are constructed as follows: We set v[A,] := v[Q5] as vertex set and
the edge set e[A4,] is obtained by independent random choices with probability p in the edge set
e[Q"]. Then the idea of the proof is to establish an edge boundary of possible components using
an isoperimetric inequality due to Harper, Bernstein, and Row [26, 3]. For Boolean hypercubes
Ajtai, Komlés and Szemerédi 1982 proved the following related result: for random subgraphs A,
of Q% obtained by edge selections, there exists a component of order g 2™ with constant g € R if
p=c/n and ¢ > 1 [1]. We shall discuss the sequence of components in the next subsection in the

general case of configuration spaces.

3.4.3. Connectivity and Giant Components in Configuration Spaces

We shall now generalize theorem 2 to general configuration spaces and investigate the emergence
of giant components in the random graphs I',, < C,,. For any 0 < A < 1 there exists a.a.s. a giant
component in arandom graph I';,. As in the previous subsections we assume that for the sequence of

configuration spaces holds that lim, ., 1—|C, |7ﬁ exists and 0 < A* =limp 00 1—|Cp <1

For convenience of the reader we first recall property (R) from definition 1:

(R) Let k be a fixed natural number and v,v" € v[C,,] such that 1 < d(v,v") = k.
Then there exists a m € IN and a set of paths Pg;”l’m C TI(C,) with the following properties
() limpoo [PE”™ | =l o0 Y-

(ii) For 7 € Pg’nvl’m we have Supp(w) N {v} # 0 and Supp(w) N{v'} # 0.
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(iii) For m, 7' € Pg’nvl’m holds
m#n = Supp(m)N Supp(r’) =0 and  d(v,v") <l(r) <d(v,v") +m.

(iv) Let £ be a fixed natural number, ®, C 8{v} and ®,» C 9{v'} such that for all m; € IN we
have lim, oo | ®, | > my and lim, o | ®,r | > my. Then there exist £ pairs of vertices
((vfi),vi(i)))lgig, vy) €o,, vi(i) € &,/ with the following property: V1 <i# j < /¢ :

L) 1) L@ 1) .
[{(m,7") € Pt 7t T x Pt | Supp(m) N Supp(n') # 0} | = Onyn

where lim,,_,, 6, = 0.

Remark. We remark that according to property (R) (ii) that each path 7 € Péfl’m leads to a

paths in C,, in which v and v’ occur.

We introduce, generalizing our proceeding in the special case of generalized hypercubes, for v, v’ €
v[C,] with d(v,v") = k, k € IN the random variable

yo’ (T,) = |{m € PZ;”,’m |TeI(T,)}| for w,v" € v[[,]
mh AR 0 otherwise .

)

Note that there are two fact implying that )A’:,’,: = 0, namely (i) that v V v’ & v[[',,] or (ii) that

there exists no path = € II(T",,) in which both vertices occur.

Property (R) (iii) guarantees that for v,v’ € v[[',] ¥;**" is in the limit Gaussian (using the Moivre
v, ,m

Laplace theorem) [2] since each path 7 € Pg” is a path in a random graph I',, with the

independent probability p such that

)\d(v,v')+m+2 <p< /\d(v,v')+2 .

In complete analogy to lemma 7 we state:

Lemma 8. Let k be a natural number, (C,) be a sequence of configuration spaces and T'p < Cp, a

random graph with underlying A > lim, o1 —|C, |_%n Then we have

lim g, {Tn| V0,0 € V[C,], d(v,0) = = Foy € O{v},0] € o'} Vo >0} =1.

n,d(v1,v
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Proof. The proof is completely analogous to that of lemma 7. We first observe that corollary 1

implies for arbitrary ¢ € IN

lim g, {Tn|¥0,v' € v[Ca] M, ol e afurnviTa] A 3D, 0O e a{u nvITL] T =1.
(18)

Suppose w,w’ € v[['] then }A’n“j,’cwl is asymptotically Gaussian and we have according to corollary 11:
Ibe Ry : lim p,{ )A/:;cwl =0} <e . (19)
n— o0 ’

Now let £ € IN and P be the probability for the existence of a pair of vertices v,v' € v[C,] with
the following property:

all £ pairs of vertices (vy),vi(i)) where v ) € H{v}nv[ly],v '(1 € o{v'} Nv[Ty], 1 <4 < £ fulfill

) ) 1 ()
for 1<i<?{: e )y =
n,d(’U1 ’UI1 )

Then we claim that there exists a b € Ry such that

lim P < lim e %™ .
n—oo n—oo

Equation (19) implies that a.a.s. for each pair v,v' € v[C,] there exist any finite number of vertices
of v[[',] that are adjacent to v and v’ respectively. In other words there exist sets ®, and &, that

fulfill condition (R) (iv).

According to (R) (i)-(iv) there exist £ pairs of vertices (U§ ),Ul(l)) such that:

(z) Ul(1,
— the random variables Y 1ol are all nontrivial.
( (i) /( ))
vy,

—  the pairs (vg )71;'9)),. ( § ) 'g“) induce paths

o) 16
J pe ™ " cI(c,)

1<i<e

fulfilling (R) (iii) and in particular k — 2 < {(7) < k+ 2+ m.

— for each pair (U{i),vi(i)) we have

)
’U v m
11m|P1’1 ’ |—11mfyn.
n— o0 n—

(7)) (2) ,1(2)
,UlJ J

—  there are at most 2£6, v, paths 7' in ;< <, Pcl 1™ such that for 7 € Pv1 ™ e

have Supp(w) N Supp(n’) # 0.
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Form the above properties follows that to each pair (vy),vl(z)) there corresponds asymptotically

at least v, — 2£0,Yn, lim,_, o 0, = 0, paths that are (see (R) (iii)) pairwise disjoint. Then the
probability that none of these is a path in I';, has the upper bound

(1 _ )\k+2+m)[7n—219n Y] ,

since d(vfi),vll(i)) < k + 2. We therefore obtain

ol )

dJbeRy hmpn{l" ||Y =0,1<i</(}= lim e .

d(v(” 1(1)) g

The fact lim, ., 0 < 1 —|C, |_~%n < 1 and equation (18) guarantees that we can choose ¢ such
that

lim [fyf;’l |Cple bt =0 beR,.

n— oo

From the above equation we obtain that a.a.s. at least one pair (v§’), (’)) fulfills

(@) 1(i)

Uy LU

and the proof of the lemma is complete. g

Corollary 3. Let k be a natural number and /A\n,k the random variable:

An,kz =

1 if all pairs v,v" € v[[',] with d(v,v’) < k occur in a path of T,
0 otherwise .

Then under the assumptions of lemma 8 we have lim,,_ oo p,{ Tn | An,k =1}=1.

Proof. According to equation (18) we observe

lim g, {Tn: Vo,0’ € v[Q7]: iV, .0l € a{w} nvTa] A i, 0P € v’} nv[TL]} =1

n— oo

and consequently a.a.s. for each pair v,v € v[[',] there exist

v € O{v}Nv[l,],v; € 8{v'} Nv[[',] with the property

yUiu >0,

nyd(")l sV

’U1,’U1

Clearly, {v,v1},{v',v|} € €[] and there exists by definition of V. nyd(v1,0)

at least one path in

II(T'») in which v and v occur. g

The following corollary shall be used in the proof of theorem 4 that is concerned with the existence

of a giant component in random induced subgraphs I
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Corollary 4. Let (C,,) be a sequence of configuration spaces and 0 < X\ < 1. For k € IN we set
Un(Ty) :=={v € v[['W] |0y > In(yn) } - (20)

Then we have

lim p,{Ty | Th[Un(Ty)] is a component of T, } = 1.
n— oo

Theorem 3. Let (C,,) be a sequence of configuration spaces such that 0 < lim,_,00 1—|Cp e <1.

Then
1 for A>lim,,1—|Cp |_%n

21
0 for A<limpyyool—]|Cn| 5 . 21)

lim g, {T), is connected} = {

n— oo

Therefore A* is a threshold value for the connectivity property.

Proof. We essentially reorganize the proof of theorem 2. The case of small components follows
from lemma 4 whence it remains to prove connectedness under the assumption A > \*.
According to corollary 3 a.a.s. the random graphs have the property that each pair of vertices
(v,0"), v,v" € v[I',] with lim, _, d(v,v") < k where k € IN occurs in a path in II(T',,).

For arbitrary v,v’ € v[C,] the connectivity of C,, guarantees that there exists a path 7, . € II(C,)
in which v and v" occur. Let 7, be given by (v;)o<;<d(v,) We consider the sets Ba(v;) C v[Cp]

for 1 < j < d(v,v') and show in complete analogy to the proof of theorem 2 that
lim 2,{Tn|V0<j<d(v,0), Bo(v;)Nv[[] #0}=1. (22)

Clearly, the probability that for one index 0 < j < d(v,v") holds Bz(v;) N v[[',] = @ is given by
(1 — \)!B2(v) | and according to property (Q) of definition 1 we have lim, o0 | B2(v;) | = c72,

c € R;. Since d(v,v') < |Cpland 0 <1 —|Cp |_ﬁ < 1 we obtain
: 3 _ c’yﬁ —
Jim G (1-2) 0,

proving that equation (22) holds.
For k € IN all elements of By(v;) and Ba(v;4+k) have pairwise finite distance in C, and according
to corollary 3 a. s. to given k € IN there exists a sequence of vertices (v;) where v; € v[[',],

d(vi,vit1) < ko, vo = v and vg(y ) = V', g
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Theorem 4. Let (C,,) be a sequence of configuration spaces such that 0 < lim, . 1—|C, |7%w <1

and 0 < A < 1. Then we have

lim p,{T,, has a giant component} =1.

n— o0

Proof. It remains to consider the case A < A* since for A > A* the statement is implied by
theorem 3 i. e. :

lim p,{T, is connected} =1.

n— o0

Let A < A* and k = k(n). We consider Vj, := {v € v[I',]| 0, < k } and inspect for k(n) < In(v,)

A
Vil <[ = AP" [1+ 2255 ok k] Cal.

We choose k = In(y,) and obtain setting &, := (1 — A\)7" [1 + 25]"0) () 10 ()
VieN: lim V& =0. (23)

We shall show that T',,[U, (T,,)] (see equation (20)) forms a giant component in I',,. For this purpose
we first consider the case v,v’ € U, (I',) and lim,,_, d(v,v") < k, k € IN.

We can apply corollary 4 and obtain that a.a.s. in the random graphs I',, pairs of vertices v,v’ €
U,(T',) having finite distances occur in a path in T',,.

For arbitrary v,v" € Un(T',) the connectivity of C,, implies that there exists a path (v;)o<;j<da(v,0’)

in C,, in which v and v’ occur. It remains to show that
le l"n{rn |V0 S] < d('l},'l}l), BQ(U]') N UH(FH) 75 @} =1.

Then the theorem follows by application of corollary 4 since the vertices of By(v;) and B (vj4)
have pairwise finite distance. The probability that for one index 0 < j < d(v,v’) holds Ba(v;) N
U,(T,) =0 is given by (1 — X+ &,) B2(¥) | and taking the limit we compute

[B2(vj) | &n
lim (1= A+ &) 820D = lim (1 — ) B2 | e =325

n—oo n—oo

According to equation (23) and property (Q) of definition 1 we have lim,, o, | Bs (v;) &, =0 and
finally end up with
lim | Cpl® (1= A+&) 207 = 0.

Therefore the induced subgraph of
U, ={v e v[ly]|0, > In(vs) }

in Cy, i. e. Cy[Uy] is a giant component that fulfills C,[U] < A1 and the theorem follows. g
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4. Neutral Networks of RNA Secondary Structures

4.1.RNA Secondary Structures and Compatible Sequences

In this chapter we assume a generalized hypercube Q7 to be fixed. The elements of its vertex set
v[QZ] can be interpreted as RNA molecules or sequences of length n. The mapping defined by the
“folding” of RNA molecules into their (spatial) shapes has received special attention during the last
few years. While a prediction of true 3D structures is far beyond the possibilities of present-day
computers, secondary structures, which are defined as the list of base pairs in the molecules, are
readily accessible. A large body of computational data has been published [17, 21, 18, 54, 4, 61]

on this example of a sequence-structure mapping, allowing for a check of our theory.

The shape space consists of all secondary structure graphs as defined below. A variety of different
algorithms [48, 71, 70, 46, 43], and different sets of thermodynamic parameters [50, 22, 63] have
been used for the prediction of RNA secondary structures. Fortunately, it has been shown recently
[62] that the qualitative features of the sequence-structure mappings are independent of algorithm

and parameter set.

Definition 4. [64] A secondary structure is a vertez-labeled graph on n vertices with an adjacency
matriz A = (aik)1<i,k<n fulfilling

(1) aijiz1=1forl1<i<n-—1;

(2) For each i there is at most a single k #i— 1,7+ 1 such that a;r = 1;

(3) Ifaij=arg=1andi<k<jtheni<l<yjy.

We call an edge (i,k), |i — k| # 1 a bond or base pair and write [i,k] € s. A verter i connected
only to i — 1 and i + 1 shall be called unpaired. We shall denote the number of base pairs and the
number of unpaired bases in a secondary structure s by ny(s) and n,(s) respectively. The stickiness
of the pair-alphabet is p := (3/a?, which is the probability that two arbitrarily chosen letters shall
be capable of forming a base pair. (We denote the size of the alphabet by o and the number of
distinct base pairs by 3).

Note that ny(s) + 2n,(s) = n i. e. the chain length of the molecule and that (3) implies that a

secondary structure is a knotfree planar graph. Let A be an arbitrary alphabet. A pairing rule
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IT on A is a set of pairs [z,y] € A x A, such that [z,y] € II implies [y,z] € II i.e. a symmetric
relation. In the following we shall consider secondary structures over arbitrary alphabets with

arbitrary pairing rules.
Definition 5. Let s be a secondary structure (see def. 4 above) and
I(s) :== {[é, k] |aix =1,k #i—1,i+ 1}

its set of contacts. A vertex x € v[QF] is said to be compatible to s if and only if V[i,j] € II(s) :
[%:,2;] € II 4. e. the coordinates x; and z; are in II for all pairs [i, 5] € II(s). We denote the set

of all compatible sequences by C]s].
Remark. For the size of a compatible set we obtain | C[s] | = o™ " = a™p™».
In fact we have the embedding C : S,, = {U C v[C,]}, s — CJs] (see also section 4.3).

In order to investigate the structure of compatible sets the following algebraic framework shall be

useful:

Definition 6. Let S, be the symmetric group in n letters. We write a transposition 7 € Sy as

7= (i,k). Then
1: S,
s

Sn

%
= 7/(8) = H[i,k]el‘[(s) (l,k) .

The map 1 is clearly an embedding and we have 1(s)? = 1, i.e., the images are involutions. A dihedral

group, D,,, is a group generated by two involutions [57]. ¢+ naturally gives rise to the mapping

70 SaxSn — {Dp < Sy}
(8,8) = a(s,8) = (a(s),u(s")) -

The structure of {1(s),2(s")) is easily seen to be a semi-direct product of the form

Theorem 5. [Intersection-Theorem] Let II be a nonempty pairing rule on A and s and s’ be

arbitrary (nonempty) secondary structures. Then we have w.r.t. II

Cls] N C[s'] #0.
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Proof. If the alphabet allows a symmetric base pair [X X] there is nothing to prove: poly-X is
compatible with all structures. Suppose therefore that the alphabet admits only the complemen-
tary base pair [XY] and we ask for a sequence z compatible to both, s and s’. Then y(s,s’) = D,,
operates on the set of all positions {z1,..,2,}. Since we have the operation of a dihedral group
the orbits are either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not indepen-
dent. It remains to be shown that there is a valid choice of bases for each cycle, which is obvious
since these have even order. Therefore it suffices to choose an alternating sequence of the pairing

partners X and Y. Thus there are at least 2 different choices for the first base in the orbit. g

Remark. The statement of theorem 5 does not hold true for 3 different structures.

Corollary 5. Suppose the alphabet A of length o admits at least one type of complementary

base pair. Then | C[s1] N C[sa]| > al ®| where ® is the set of orbits induced by the operation of

((s),2(s)).

Consider a combinatory map f, : Q% — S,,. We know a priori that the vertex set of the preimage
f,71(s) which consists of all sequences folding into the secondary structure s is contained in the set
of compatible sequences. In particular, all neutral neighbors of a sequence z are located in the set
C[fn(x)]. Unfortunately, the induced subgraph Q2[C[f,(z)]] is not connected — it decomposes
into “hyper-planes” defined by a particular choice of the base pairs.> Therefore we introduce the

graph C[s]:

Definition 7. Let s be a secondary structure, then the graph of compatible sequences is

Cls] = Q) x Q).

Remark. Obviously C[s] has the vertex set C[s] and by definition of the product of graphs, two
sequences z,y € CJ[s] are neighbors, if they differ either
e in a single position ¢ which is unpaired in s, or

e in two positions ¢ and j which form a base pair [i, j] € s.

3Even with [GU] pairs the corresponding graphs are still not connected: there is no path of (subsequent point
mutations) that would, for instance, convert a [GC] pair into a [CG] pair.)
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Remark. Note that two graphs C[s],C[s] are isomorphic as graphs iff both have the same number
of unpaired and paired bases. Accordingly, two different secondary structures s,s’ € S, can lead

to isomorphic graphs of compatible sequences i. e. C[s] = C[s'].

4.2.Neutral Networks as Random Induced Subgraphs

Definition 8. Suppose f, : Q) — S, is a mapping and s € S,, a fivted RNA secondary structure.

Then the neutral network with respect to s, T's[s], is the induced subgraph of f;'(s) in C[s], i.e.,

We shall now construct neutral networks as random graphs by means of a simple random process.
More precisely we consider random induced subgraphs of the graph product Q2+ X QZ” that are
induced by certain subsets of vertices (as in model IT of chapter 3). The fact that a priori there is
no reason why the probability of being neutral neighbor should be the same for both single base

and base pair mutations motivates:

Model III: Let s be a secondary structure with corresponding graph of compatible sequences C[s] =
Qnw x QZ”. We consider the set of all subgraphs G < C[s] that can be written as G = C[s][V'] where
V C v[C[s]]. In other words the graphs G are induced subgraphs of vertex sets (see model II).

Writing Xu,p = A + Ap — Ay Ap we set

by (G) = X (1 =y )87 1

Since EG”n,Au,Ap G@)=1 By, ., i o probability measure. Then we define a neutral network to

be an induced random subgraph of C[s] where By, n, 0 the underlying measure 4. e. :

s < C[s].
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Remark. We can intuitively construct a neutral network I'[s] as follows:

writing each v € v[C[s]] as v = (v, vp) We select each v € v[C[s]] with the independent probability
Au + Ap — Ay Ap. Or equally-we select each coordinate v, with the probability A, v, with cor-
responding probability A, and finally select a v = (vy,v,) € V[C[s]] if either v, or v, have been

chosen.
Before we proceed with the analysis of model IIT we introduce some terminology.

Definition 9. Let G1,G> be graphs, I' a subgraph of G1 x G2 and (x,y) € v[I']. The fibers of T

oL, <I>£ in Gy X Gy are the following induced subgraphs in Go and Gy :

T = Gy x Gal{y € v[Ga] | (z,9) € v[T]] and
ol .= Gy x Gz[{.%' € V[Gl] | (x,y) € V[F]}] .

Y

We now deduce, by application of the theory developed in chapter 3 a sufficient criterion for the

density and the connectivity property of random subgraphs TII[s] < Qmu x QZ”.

The connection to the theory in chapter 3 is established as follows: For (z,y) € v[['[I![s]] either z

III III
or y have been chosen. Then for o has not been chosen we have &5 ) = T, ( pon [ = Qy" else)

I1[s] sl
K

and for y has not been chosen @1;" ~T,, (@ = Qmu else) where the underlying probability

measures are given by

B,y (Do) = A0l b =)o =T | ang
| V[T ] | S
B, 5, (o) = A, (1= Ap)P"" =¥y |

Theorem 6. Let I}'[s] < Qi* x Qg be a random graph constructed according to model III.

Suppose that for all (v1,v2) € v[['H[s]] holds:
li_)m B { T s] | V(ve,v2) € V[T [s]] - <I>£1£"H[S], égzil[s]are dense and connected } = 1.

Np

Then T}\'[s] is a.a.s. dense and connected in Q7 x Q"

— 46 —



NEUTRAL NETWORKS OF RNA SECONDARY STRUCTURES

Proof. We write for short I' := I'!!![s]. The statement concerning the density-property is obvious.
Let k be a natural number we first show that for each pair (vi,v2), (v],v}) € v[['] with distance*

d((v1,v2), (v],vh)) < k, there exists a path in I" in which both vertices occur.
r

vy

For this purpose we consider ® <I>£, which are by assumption connected for arbitrary vy, v].
1

Np

The probability for selecting a pair (v1,),(v{,) is A, for each z € v[Q"] by definition. Let

X(Ul,vz),(v’l,vé) be the random variable

b N | {z € v[Qy"]] (v1,2), (vi,2) € V[T]}|  for (vi,v2), (v],v5) € V[T]
(v1,02),(v3,03) A0 ) == 0 otherwise.
Then X(vl,vg),(u’l,u;) is binomially distributed and E[X(vl,w),(ug,u;)] =ce*” witha € Ry. Applying
corollary 11 of the appendix we observe that a.a.s. for all pairs (vi,vs), (v}, v}) there exits an z

such that (v, z), (v],z) € v[I'] are connected by a path of finite length of the form

(v1,2), (w1,2), ..., (W}, ), (v],x)

since all fibers ®L =T, are by assumption connected. Along these lines we further inspect that

a.a.s. for all pairs (v1,vs), (v],vh) there exists a path of finite length of the form
1> V2

(v1,2), (v1,9), -y (V1 2), (V] 03)

since <I>£,1 =T, is also connected.

In the general case we repeat the argument used in the proofs of the theorems 3 and 4 respec-
tively. We choose a path (¢;) in the connected graph C[s] such that d(&;,&i+1) < k and in which
(v1,v2), (v}, vh) occur. Then we show that a.a.s. in each ball By(&;) there is a vertex of T'. Finally
we apply the first part implying that there exists a.a.s. path m € II(T') in which both vertices

occur. B

Remark. Note that the density and connectivity of T'I'[s] does not allow the general conclusion

that the corresponding fibers are dense and connected.

Corollary 6. Let I')'[s] < Qn» x QpF be a random subgraph obtained from model IIT such that
A >1= "Valand ), >1— /31 Then

lim g, {TM[s] is dense and connected } =1.
n— o0

4The distance in a direct product of two graphs G and G is given by d((u1,u2), (v1,v2)) = d1(u1,v1) + d2(uz,v2),
where d; and dy are the distances on G1 and G2, respectively.
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Proof. It remains to verify the condition
I T[] |V TS @by, @l 1 are d d d} =1
nl—{go""{ n 18] V(v1,v2) € V[T, [8]] : ®up 7, ®og ' are dense and connected } = 1.

From the proof of lemma 7 we inspect immediately that the probability for the existence of a

disconnected random subgraph for A > \* has the upper bound e~*¢™ with arbitrary ¢ € IN and

b € R,. Since we can only have o™ different fibers of the form @E?I[S]

sl
L3295

and accordingly 8™ fibers

, we can choose ¢ sufficiently large such that

lim o™ e %™ =0 and lim gmr e bt = 0.
n—oo n—oo

Consequently the above equation holds if A, > 1 — “Va=1, A\, > 1 — "7/3-1 and the corollary

follows. x

Before we proceed with the analysis of model III we consider the following situation: Suppose for
a (combinatory) map f, : Q7 — S, holds f(u) = f(v) = f(w) where v differs from u by a point
mutation, while w differs from u by a pair mutation. Then there is a unique sequence z which

differs from u by both the point mutation and the pair mutation:

pair mutation

Uu—
\Koint mutation \\

w—-m=

In model IIT we have assumed that there is asymptotically no correlation between point mutations

III
and pair mutations. FEach fiber @52" =] g isomorphic to a random graph I',,, and accordingly

T
o e,

The other extreme is to consider these two types of mutations as completely correlated in the
following sense:
If any three vertices in the parallelogram above are chosen, the fourth vertex has to be chosen as

well.

Model IV Let 'y, < Q3 and 'y, < QZ” be random subgraphs as introduced in model II. We

set TV[s] =T, x Ty, and

By, (T [s]) = B, n, (Tn,) X By, (T'n,) -

Then m,, », s a probability measure and TV[s] < C[s].
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Remark. We can construct the above random induced subgraphs of C[s], T'.V[s], by selecting the
coordinates vy, vs of the vertex (vi,v2) € v[C[s]] with the probabilities A, and A,. This process

leads to the vertex set Vy, x, C C[s]. Then I'Y[s] is the induced subgraph C[s][Vi, »,] i-e. ,

TV[s] = Ty, x T, .

(=3

v v
We have <I>£1" o] Iy, and <I>£2" (] I'n, where we assume p, M, », to be the underlying

probability measures. The situation can be reported by the following diagram:

Qu x Qp

]

[, x Ty,

N

u

L,
Theorem 6 has the following analogue for model IV:
Theorem 7. Let TYV[s] < C[s] be a random subgraph such that the following holds:
li_>m p,{Tr, is dense and connected } =1 and 1i_>m #,{T'rn, is dense and connected } =1.

Then we have

lim g, {TV[s] is dense and connected } =1.
n— oo

Proof. The proof is completely analogous to the proof of theorem 6. g

v v
Since &L o] Ty, <I>£" [f] & T, we derive the following criterion for density and connectivity of

neutral networks that are random induced subgraphs I''V[s].

Corollary 7. Suppose Ay, >1— "Va=1 and A\, > 1 — #=/B3~1, then we have

lim g, {T.V[s] is dense and connected } =1.
n—oo
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Lemma 9. For the orders of the random graphs T'![s], T}V [s] we have for N, N,, N, € IN:
BT [s] = N} = BON,a™ 5", [+ Ap = Au X))
nATY[s| =N} =3 B(Nu,a™, \) BNy, "7, )p)
Nu Np=N

In particular the distributions of the orders become asymptotically Gaussian.

4.3.Shape Space Covering

The combination of a variety of computer simulations [21, 18, 54] provides strong evidence for the
existence of a relatively “small” set of the form B,(v) in a generalized hypercube Q" (where v is
an arbitrary sequence v € v[Q]7?) that has the following property:

B, (v) contains sequences whose corresponding secondary structures cover almost all “common”
secondary structures.

This statement has been termed shape space covering conjecture.

Let T',[s1],Tn[s2] be two neutral networks. Then the minimal Hamming distance between the

T'n[s1] and Ty [s2] is
dist(T',[s1], Tn[s2]) := min {d(v1,v2) |v1 € V[['n[s1]], v2 € v[Tn[s2]] } -

The theory presented above provides a proof (within the limits of the models) for this conjecture

in the following form:

Theorem 8. [Shape Space Covering] Let s1 and sy be two secondary structures and X = III,IV.
Suppose the corresponding neutral networks TX[s1] and T'X[ss] are dense and connected. Then the
following assertions hold

(i) The minimum distance between the neutral networks TX[s1] and TX[sa] of any two secondary

structures s1,89 € S,, is a.a.s. at most
dist(TX[s1], TX[s2]) < 4 (24)

(i) The expected minimal radius rs, := E[min.{r'| B, (v) N v[[X[s1]] # 0}], i.e. the expected
Hamming distance from a randomly chosen sequence v € v[Q"] to a neutral network T'X[s], is
given by

B .
re =[1— E]np(sl) +6,, limé§,=0.

n— oo
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Proof. (i) is an obvious consequence of theorem 5 and theorem 6.
(ii) The expected number of incompatible base pairs with respect to s is (1 — %) np(s1). Since
there are at least 2"»(s1) different paths connecting v to I'*[s;] and the probability of not selecting

a vertex in v[['(s1)] is a constant less than 1 whence the theorem follows. g

4.4.Outlook: C*-Random Maps on Generalized Hypercubes

In this section we present a method to construct mappings f : Q7 — S,, using the random graph
approach for neutral networks. Let M be a finite set. In the following we write P (M) for its power

set.

Definition 10. Let C* : S, — P(v[Q%]) and r : S, = IN be two mappings such that j <i =
r(s;) = r(si).

A mapping f: QF — S, is called C*-map if and only if
(¥): flv)=s = wveCs
A mapping f,: QF = S, is called C*-random-map if and only if f. is given by

£ (s0) :=Thlso] £ (s:) :=Tlsi]\ | [Mnlsi] N Tls;]] -

j<i

Remark. Clearly any RNA folding map is a C*-map if we set C*[s] := C|[s] since the neutral
networks are constructed a priori in the set of compatible sequences. In the sequel we shall assume

that C* = C.

We now restrict ourselves to the case I',[s] = C[s] for s € §,, and compute the distribution of the

corresponding preimage sizes. In this situation the recursion formula reads

F () := Clso] " (srs) := C[si] \ [ J [Cls:] N C[s;]]

j<i
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Log[ Si ze]
10

Log[ Rank]

1 2 3 4 l

Figure 5: We report here the logarithm of the sizes of the neutral networks f~1(s) obtained by a C*-random map
where the preimage are obtained from model IV (see section 2) with underlying A parameter (A, = Ap)
equals 0.8 (see p. 48). The corresponding neutral networks are ordered on the x-axis by the logarithm
of their orders. Note that the rank of the secondary structure s does not necessarily coincidence with
the size of the corresponding preimage | f~1(s)|.

We first set for fixed ¢ and j < i
X; :=Cl[s,]NnC[s,,].

According to the inclusion exclusion principle, observe immediately

|UXj|:Z|Xj|_2 Z |Xanjl|+6 Z |XjﬂleﬂXj//|—.... (25)

J<i i<t J<j'<a J<g <<
For alphabets A of length a having exactly complementary base pairs and j < ¢ we inspect from
corollary 3 that | X; | = a®, where ® is the number of orbits obtained from the action of (1(s;),(s;))
on {1,...,n}. By use of the pairing

7: S XS, — {Dm < Sn}
(s, — (s, 8") = (a(s),4(s")),

we can view ® as the outcome of an integer valued random variable 3, assigning to each pair of
involutions the number of orbits of the corresponding dihedral group. Therefore the first step is to
determine the distribution of this random variable in order to obtain, using the inclusion-exclusion
principle above, an analytical solution for the distribution of the sizes of the preimage | f~1(s)|.
Here we only report that our numerical calculations confirm that for any rank order function and

any A parameter the distribution of preimage sizes is given as in figure 5.
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5. Error Thresholds of RNA Secondary Structures

5.1. The Mathematical Model

In this chapter we apply the mathematical modeling of neutral networks in order to verify one
fundamental concept of theoretical biology, namely the existence of an error threshold and the
formation of a molecular quasispecies. We shall study a finite population (this term shall be
defined later) V of asexually replicating strings in a landscape induced by a neutral network T',,[s]
(see definition 11 below).

On the one hand we apply a birth-death process in order to create a mathematical model for
the dynamics and on the other hand we simultaneously analyze the dynamics of V by computer
simulations basing on the Gillespie algorithm [23].

In the sequel we shall restrict ourselves to the mathematical modeling and use the simulations
without further discussion for comparisons. We remark that the validity of those comparisons is a
standard assumption [47]. Omitting a detailed discussion of the simulations® we refer to appendix

B. Let us begin by discussing the underlying landscape:

Suppose now that a neutral network I',,[s], associated to a fixed RNA secondary structure s € S,
in a graph Q7 is given. We assume the latter to be obtained along the lines of Model IV of chapter 4

section 2 and illustrate the scenario by the following diagram

o

In the sequel we shall use the short-hand notation T for the neutral network I''Y[s]. Any neutral

network induces a fitness landscape i.e. a mapping fr, s : Qo — R4, as follows:

5Tn this context we give [20, 24, 47] as further references. For detailed descriptions of Gillespie algorithm see [23].
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Definition 11. Suppose a neutral network T',[s] with respect to the RNA secondary structure s is
given and o € Ry with o > 1. Then T'y[s] induces a fitness landscape by setting:

1 iff v € v[Q7]\ v[['s[s]]
o >1 otherwise

an[s](U) = {
We call fr,[s) a single shape landscape.

We shall describe now a mechanism for the time evolution of a population in a single shape
landscape. This landscape is on the level of secondary structures an analogue to the single peak
landscape analyzed by Eigen and others. In particular we shall be interested to study the dynamics
for increasing probabilities of making errorneous copies. For this purpose let us first introduce the

so called “replication-deletion process”.

5.1.1. Replication Deletion Processes

Let N be a natural number such that N > 2 and let V be a (finite) family of vertices (v; |i € Ny)
where {v; |i € Ny } C v[Q]2. We shall call V a population in Q7. The theory of point processes
provides a powerful tool by identifying such a family (v; |¢ € INy) with an integer valued measure.

N
V= (v|ie Ny) +— ¢:= ngi, where g,,, (v) := {

=1

1 forv #wv;

0 otherwise . (26)

We now establish a mapping from (v; |¢ € INy) to the family (v} |i € Ny) as follows:

We select an ordered pair (v;,vr) where v;, v € {v;|i € Ny }. For

0= resyr, 1s0(V[Tn[s]])

the first coordinate v; is chosen with probability o £/[(N — £) + o] from the elements of V located
on the neutral network with uniform probability and from the remaining elements with uniform
probability otherwise. The second coordinate of the above pair is selected with uniform probability
on (v; # v |i € Ny) ie. 1/(N —1). We assume the times T between these mappings to be
exponentially distributed (scaled by the mean fittness)

Next we map v; = (21, ..., Zn) randomly into the vertex v* = (z},...,2.). This is performed

EEPR Oy

by assigning to each coordinate z; a x, # x; with probability p where all 2} # x; are equally
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distributed and leave the coordinate fixed otherwise. This random mapping v; — v* is called
“replication”. Finally, we delete the second coordinate of the pair (v;,vx), that is vy and have a
mapping (v;,vr) — (v, v*). Thereby we obtain a “new” family by substituting the v, by the v*.

The complete mapping is called the “replication-deletion process”.

Accordingly, we obtain a stochastic process ()A’t)t in continuous time with values in
My (v[Q5]) := {#| ¢ is an integer valued measure onv[Q%]and ¢(v[QL]) = N }.
From this stochastic process we derive a further process that is defined on the natural numbers
(Xo)e = (1 Ya(v[Tals]]) e

that is also formulated in continuous time.

5.1.2. Some Conditional Probabilities

Jr..[s) induces a bipartition of the population V in QF, in the following form:
For each measure ¢ € My (v[Qn]) we consider the restrictions resyr, (5] @, r€Sy[@n]\v[r,[s]]P- These
correspond according to equation (26)

Vy:={veV|vev[lys]]} +— resyr,¢

Vyi={veV[vgv[[u[s]]} = resyonp\vir.(s)?-
whence V.= V,UV,. We call call the elements of V, masters (because they have a superior

fitness) and those of V,, non masters.

Let (v;,vx) be a pair of vertices selected as follows:

The first coordinate of the above pair is a master vertex with probability o £/[(N — £) 4+ of] and a
non master vertex otherwise.

The second coordinate of the above pair is selected with uniform probability on (v; # v |i € Ny)
ie. 1/N —1.

Let now P, , and P, , be the probabilities that (v;, vy) fulfills v; € V,,v, € V, and v, € V,, v, €
V, respectively. We obtain:

P ol {—
mor (N—-0+0ol N-1
The probabilities P, , and P, , are defined analogously.

1 (N—0) (N—1-10)
P,,= .
and - P = N 1ol N-1

A~

In order to study the stochastic process (X;): we have to restrict ourselves to regular neutral

networks:
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Definition 12. A regular neutral network, fnu,n,,, 18 the graph product of the two reqular graphs
T, < Q™ and f‘np < QZ” : f‘n,,,,nz, =T,, x f‘np. T, is a [Ny - | -regular subgraph of QM

Np

and f‘np a [Ap - np|-regular subgraph of Q5" such that
lim [T, |/ lim \y,a™ =1 and lim |f‘np [/ im X\, ™ =1.
n—oo n—oo n—oo n—oo

We shall write for short r:= f‘nu,np.

Regular neutral networks shall turn out to allow to apply a birth-death model ansatz and moreover
the derivation of further analytical results (see also chapter 6). The regularity assumption is in
fact only a technical constraint-the neutral networks are, see lemma 3, almost regular graphs.
Therefore it is not surprising that the results remain to be valid for the neutral networks obtained

from Model IV (where the simulations are based on).

Now we are prepared to introduce the probabilities WE,H and WE e WE,H is defined to be the
probability to derive from a master vertex v; by replication (as introduced as the mapping (v;, vg) —
(v, v*)) v* as a master vertex again and W,EV the probability that a master vertex v; is mapped
into a non master vertex. The regularity assumption on the neutral network guarantees that W}: u
and W}:V do by definition not depend on the particular vertex and are hence well defined. However

both probabilities do only depend on the neutral network.

Next we want to introduce the probabilities W,,f , and W,,f , (the backflow-mutations). These shall
be of particular interest when almost all elements of the population are non masters. In this case

we make use of the following hypothesis (++) [10, 12]:

(++) For 0<k<N p{o(v) =k} isindependent of v € v[QL]\ v[['s[s]]-

This hypothesis shall enable us to compute Wf w Wf . as the probabilities that a non master

vertex is mapped into a master vertex. In order to compute W,E v W,E ., under hypothesis (++) we
proceed by introducing a partition of the non master vertices with respect to the neutral network.
Since the neutral network is a subgraph of the graph of compatible sequences, C[s], (see chapter 4
section 1) all v € V, are in particular compatible, (i.e. sequences that could fold into the secondary

structure s). We now arrange the vertices of v[Q7] \ v[['] in classes
&; := {v € V |vhas exactly 7 incompatible base pairs }.

Then the “densities of non masters” in the class &; is A; := % The (A;)o<i<n, are a formal
analogue to the different Hamming classes studied in the case of a single peak landscapes [47].

This leads to following definition:
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Definition 13. Let T',,[s] be a neutral network with respect to the secondary structure s and let

v = (v1,...,0,) be a sequence. Then we define the incompatible distance d(T',,[s],v) by
d(Tn[s], v) == [ {[vi, v] | [vi, ve] ¢ TLA[i, k] € TI(s)} |,

where I1 is the pairing rule of the underlying alphabet and I1[s] the set of contacts of s (see chapter 4

section 1).
Further we introduce the i-th incompatible class C;[s] with respect to s:

Definition 14. Let T',[s] be a neutral network corresponding to a secondary structure s and let v

be a sequence. Then the i-th incompatible class, C;[s], is defined by

Cils] := {v € v[Q"] \ V[Tu[s]) | d(Tuls],v) =} ¥i=0,...,n,.

In order to compute the transition probabilities WE w W,,f w WE , and Wf , we introduce some

terminology. An alphabet A is a x-alphabet iff

e A consists of complementary bases i.e A can be written as A = {A;, AS, As, AS, ..., A, AS}
(whence in particular | A| = a = 2m)

e The induced pair-alphabet B (of length () is of the form

B = {(A1, AS); (A5, A1); s (Am, AS)); (AS,, Am)}, whence 8 = a.
Some examples for x-alphabets are {G, C}, {A, U} and {G, C,X,K}.
For binary x-alphabets of length 2 we obtain

(") 2nrtmn for 1 <i<ny,
| Cils] | = { 9mutmy | T [s] | fori =0

np) gnptnu

e for1<i<n
and consequently we obtain assuming (++) A; = 2nf +;p| ETI["S] [‘S]I - =
W otherwise .

Finally we conclude this section with the following lemma
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Lemma 10. Suppose I < Q" is a fized reqular neutral network and A is a x-alphabet. Suppose
that we have a random mapping v = (z1,...,x,) — v' = (2, ..., 2L), v,v' € v[Q] that is defined as
follows: We set x; = x} with probability 1 — p and x; # x} with uniform probability p. If hypothesis
(++) is fulfilled, then

Wf,p =1 =1 =p)™ M@ =p)" + 1 =p)" X &(p) +[1 = (1 = p)™AuXp &(p) + (1~ p)"

with ®(p) := [(ap—_z1 + (1 =p)?)™ — (1 — p)*™] and furthermore

n h £ .
T _}:E:Z o Nu o 2 \ifnp—1t o\l By . \n—h

h=1 ¢=0 =0

0 ifh—0=0
with x =

1 otherwise.
Proof. (i) Denoting an error at the unpaired positions with (—, ) and at the paired positions
with ( ,—), we can distinguish the following four types: (+,+),(—,+),(+,—) and (—,—). The
probability for (4, +) is obvious. For (—,+), we have

(1—mn’“§é(zﬁpﬂl—pW"kAuIU-%l—pVﬂAdl—pV%~

k=1

An error at the paired positions implies for alphabets with unequivocal complementary base pairs
that both positions have to be changed in order to obtain a compatible pair again. With this
information the cases (+,—) and (—, —) are straightforwardly to compute.

For other alphabets it suffices to observe that the probability to obtain a vertex v € v[f] by a

mutation event at the paired positions is given by

2 np

> () [Z] a-pre = [0 -

PN a—1 a—1

(ii) For an incompatible configuration with exactly ¢ incompatible positions we now assume an
mutation at exactly h positions. There can be 0 < ¢ < n,, errors on the paired positions. In order
to obtain a compatible configuration, it is necessary to make an appropriate mutation in each of
the i incompatible pairs. There are 2¢ different choices to do so with corresponding probability

1

——7- The remaining ¢ — i errors have to occur pairwise in the other pairs which can be done in

("r7") (a — 1)*~* different ways. This completes the proof of the lemma. g
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5.2.Birth-Death Models

In this section we intend to study the random variable Xt that counts the number of strings of
X; = | Vi(v[Ta[s]]) |- We shall approximate the above stochastic process by a birth-death process
in continuous time [31, 32, 6]. Our ansatz for the birth and death rates in the next two subsection
is completely analogous to that of Nowak and Schuster [47]. Let Py (t) = pu{Xeys =0 | Xs = £}
be independent of s i.e. the process X is homogeneous. We first state an ergodic theorem that

implies the existence of a stationary distribution for our birth-death process.

Theorem 9. Let X; be a homogeneous Markov process with finitely many states 0, ..., N. If there

erists a 0 < t* < 0o such that
P,',k(t*)>0 fO’f’ OSZ,kSN
Then there exists the limits

tlim Pi,k(t) = Pk fO'I‘ 0 S Z,k S N.
— 00

Now for lim,_,0 ¥ (h) = 0 by definition of a birth-death process the following situation is given:

Ppeyi(h) =Peey1 h+1(h) forh \,0,£2>0

Pror(h) = Poor h+b(h) forh N\, 0, £> 1
Pro(h) =1=(Peer1+Poe_1)h+1p(h) forh \0,£>0
Prer(0) = g0, Po,1 =0, Pgry1, Prp 1 >0 for ¢ > 0.

For ¢ > k we have Pi,k(h (Z — k)) = Zé R,z(h) Pg,k(h ('l — (k+ 1))) > H’,‘,l (h) Pifl’k(h (’l — (k+ 1)))
Further for any birth-death process we immediately verify by induction on i — k that

i—k—1
Piu(h(i—k) > H Pi_gi—1—4(h)>0.
£=0

Along these lines we further obtain for k > ¢ P, (h (k—1) > Hf:_é_l 5+2,i+1+¢(h) > 0 whence the

above theorem applies. The corresponding Py, can be computed by use of the Chapman-Kolmogorov

backward equation and we determine the distribution in the next section.
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Next we introduce the transition rates Py oy1,Pee 1.

(N -0
[o0+ (N — 0)](N —
0
[o0+ (N = 0)](N -

— P P
For 0<(<N—1 Pppyqdt:= U[MW%#+UV—1—©WﬁJm

For 1<(<N Py ydt:= l)pw—nwﬁ,HN—awiJﬁ

It can be appropriate to consider a time scale depending on the mean fitness of the population
[23]. This ansatz takes into account that a population with higher mean fitness is expected to
replicate faster in time than populations with lower average fitness values. This is expressed
by reaction rates in the reactor time f, where t, and £ can be transformed into each other by

= [1/N][(c — 1) £+ N]dt. In other words dt/dt = [1/N][(c — 1) £ + N]. The above birth and

death rates then imply corresponding birth and death rates with respect to the reactor time f as

follows
%rOSESN—lPwﬂzﬁ%ﬁ%ipﬂﬂpﬂN—L%m{A
For 1<(<N P, = ﬁ [a(ﬁ ~)WE, + (N -0 Wuf,u]

5.2.1. Stationary Distribution

Now we compute the stationary distribution of a birth-death process whose birth and death rates

can be written as

%rmggN—lPqurgﬁ%]MH+%]
For 1<(<N Pgyq= [ Egﬁ x;] A2[1+%].
We call birth-death processes with this property P-processes.
According to [15, 32] the stationary distribution m, is for 1 <k < N: p, (k) = mp(k)/ >_, mp(k),

where

where

In the following proposition we shall make use of the relation B(z — y,y) = w

B(z,y) is the Beta and I'(z) the Gamma function. The above relation is a classical result and was

proved by Dirichlet.
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Proposition 2. Suppose a birth-death process is a P-process. Then for 1 < k < N its stationary

distribution is determined by

Po, B(N, () ﬂ]kA

mp(k) = Pirr—1 (k+C1)B(1+Ci,k) B(N — (k—1),C2) [A2

Proof. By assumption we can write

fl(a, 6, N) Cl
= A1+ —
Pe’e"‘l |:f2(0', Z, N) 1 [ + 6 ]
fl(av ev N) C2
Py, Aaf1
= [ hem| M g
whence .
1
o) = T | o | (2t P
P =1 1 + (]\TC’EZ) A2 Pk,kfl
This can be rewritten as
B(N+Cy— (k—1),k—1) A1 _Poa

W S o) BA+ 0Lk BN - -1k —1) Ay P

)

With B(z,y)B(x +vy,2) = B(y,z)B(y + z,z) we conclude
B(N+Cy = (k—=1),k=1)/B(N = (k-1),k—1) = B(N,C2)/B(N — (k—1),C3)
and the proposition is proved. g

Remark. In order to apply the above proposition we introduce

Al = [J W}zp - W;H] Ay = [Wf,, - UWE,V]

_(Nn-ywlk, _(N-1Dewl,
01 = T 5 and 02 = T .

(27)

With this notation we are prepared to compute the stationary distribution of Zt,p. We shall write

Z, for the stationary distribution and we further rewrite the transition probabilities as

- (N—0)¢ a

P = v —gir—y] M 0+F e
~ (N—0)¢ G

Prer = [[ou(zv—f)] <N—1>] Aol 4 )



ERROR THRESHOLDS OF RNA SECONDARY STRUCTURES

Corollary 8. Suppose C1,Cs, Ayand Ay are defined as in the above remark and 1 < k < N. Then

the stationary distribution of the above birth-death process ZAt,p is determined by

(k’) — WE:P« B(NacQ)
P T Pyt (k+C1)B(1+C1,k) B(N — (k—1),Cb)

- ~ 1 k—1
r _ yt
oW, ,—W,,
T r ’
W,,—oW,,

where for reactor time t we have

) I
Whw _ W, (N —1)

Pre1  klo(k— D)WL, + (N -k)WE,]

5.3.Numerical Localization of the Error Threshold
In this section we shall apply proposition 2 to study the stationary distribution of the random
variable Z, as a function in p.

Let us recall (see corollary 8) that the stationary distribution of Zp can (up to the factor (3, 7[k]) ')

be written as

B

r r
Wi, —oW,,

wr B(N
Wp(k)_ H ( 702)

. e o ke
_ oWt —wi, 1"
Pk,k—l (k+Cl)B(1+Cl,k) B(N—(k—l),CQ) ’

where Cy, Cy, A1, Ay have been defined in equation (27). We shall discuss the following two extreme
cases. On the one hand we can assume that the population size N is infinite and on the other hand
that N <« | Q% |. In the first case, since n is assumed to be fixed, the concentrations of masters
¢ is monzero for all error probabilities p. In particular for any finite & holds limy_, up(k) =0.
This fact can easily be obtained from the following discussion. We proceed by analyzing the 7 (k).

First we observe

owl —wl
Vp>0,NeIN: | _BE| 51,
WL, —oWi,

Further, for k, N large enough, we can approximate the Beta functions B(N, Cs), B(N —(k—1),Cs)
and B(k,1+ C) by use of T(z) = 2>~ /2¢~% (2r)'/? + O(1/2). Introducing

P 7
S R L I

R L R R S ol
vy ~ O W OWpw = W
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we compute immediately

(2 ) 1/2 ~ Ne
BV = | B e 14677V o)
(9 712 N _N&
"o B X 1/2 . _ kE—N . —N¢&2
B(N+1—Fk Cy) = | ((A([N f)k/)z” )] [1+W] [1+A§V€2k] +O0(1/N).

The above approximations allow to compute the stationary distribution of Zp in the limes of

infinite population size (since imy_,o0 p(Z, = k) > 0 implies k£  00). Clearly, if p increases to

p = 1/2, the concentration of masters decreases up to ‘;—n' We monitor the stationary distribution

in figure 6.

o
\\\\\\\‘k\\\ 0
\\\ ‘

'\' |. 3
\\\:\\\\\\‘\:‘:.\'.:} 005

\\\\\\\\\

\\\ l

|
/

Number of Masters

Number of
Masters

Figure 6: a) For a regular neutral network I" with parameters Ay, = 0.5, A, = 0.5 and ¢ = 10 we plot the stationary
distribution of Zp. This means we show the density of the number of masters V, in the population on
the z-axis.

b) A contour plot of the stationary distribution of Zp as in case a).

Let us consider next the case N « | Q" | = a™ i.e the population size is small compared to the
number of all sequences. Since for any RNA secondary structures holds n, = O(n) and n, = O(n)
we observe (for sufficiently large n) |T'| = a™ ™ << a™ or equivalently % << 1. Consequently
for p 7 1/2 p(Z, = 0) is expected to become the maximum of the distribution function (although

0 is not an absorbing state). We now propose
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Definition 15. Suppose a population V C v[Q"] of N strings replicates on a regular neutral

network T'[s]. Then

piv = max p | VIZ,] = |B(Z,] —'Faﬂ] (28)

is the error threshold of V with respect to the secondary structure s € Sn. We call p%, the error

threshold of the secondary structure s.

Remark. We immediately inspect that the above mentioned criterion generalizes the one used in
the case of infinite population size in the ansatz of Eigen [10] (see also [60]) that is a mean field
approximation for all sequences except the master sequence. In this situation p}_ is the solution

of ¢, (p*) =1/a™.

Let us discuss now the case of infinite population size. In this situation we can apply a completely
deterministic ansatz solving a (well-known) rate equation for the corresponding concentrations of

master ¢, and non master vertices c,, respectively.

Lemma 11. Let Wuf,u and Wyf,# be the probabilities as stated in lemma 10. Then

1/2

~ ~ ~ ~ 2 ~
T T T
oW, -1+ W) . (oWM -1+ Ww)> N W,

= 20 — 1) 20— 1) o1

Proof. In the long time limes t oo holds
Cu JW;E;L + [1 - CM] WIE;L =Cpu [(0 - I)CM + 1]7
and the lemma follows. g

Remark. Assuming W,jf, . = 0, i.e. neglecting back-flow mutations [10] and @ ~ 0, we derive

lOWE’H ~ 1+ wWE)
C” ~

1 ] , Wfﬂzl/aiz) ¢, =0.
o — 3

Using the above remark we can approximate (without taking into account back-flow mutations)

the error thresholds in the case of infinite population size, see figure 7.

Table 1.1
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Theoretical and numerical Error Thresholds (for o = 10)

Ay Ap Theory Gillespie Simulation
N = N =1000 N =1000
0.1 0.1 0.079 0.071 0.065
0.27 0.5 0.081 0.08 0.0854
0.5 0.5 0.105 0.095 0.095
0.8 0.8 0.118 0.116 0.11
0.160
0.140 | .
i 0.120 - B
g 0.100 | .
0.080 - B
0.060 : : : :
0.0 02 0.4 0.6 0.8 1.0

A

Figure 7: a) The error thresholds p* of a secondary structure s with n, = 12 and np = 9 for chain length 30. p* is
written as surface in the parameters Ay, Ap. The curve is computed with Mathematica [66] by numerical

solution of WI

o

= 1/0, where o = 10.

b) The error thresholds p* of a secondary structure s as described in figure 7 a). Here p* is plotted as
function of X := Ay = Ap.

Using the threshold criterion of definition 15 we can localize the error thresholds numerically for

some population sizes and different single shape landscapes® with ¢ = 10 as superiority. The

deterministic threshold values are obtained by solving WE’ . = 1/o for p (table 1). However, we

have so far no analytical expression for pj and the expressions derived so far don’t raise hopes in

finding one’.

6The calculations were done with Mathematica [66].

"The known formula published in [47] in the case of Eigens single peak landscape has been derived from a different
criterion, namely the vanishing of a certain local maximum in the stationary distribution of Z,. Unfortunately, this
criterion is only valid for a very restricted parameter region.
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Finally we end this section by plotting the densities of the i-th incompatible classes C;[s] (see
section 2 definition 14) of the population obtained from our simulations®. We observe that at
the error threshold there is a sharp transition from a population that is localized on the neutral

network to a population that is uniformly distributed in sequence space.

Compatible Classes

1.0 ‘ ‘ ‘ ‘ — T 1.0
AU=01 | I AU=0.27 |
0.8 - Ap=0.1 | 0.8 - Ap=05 |
r Master Class : H Master Class i
So06 - \ to6 -\ ]
g
8 0 0
T 04 / 4104 - / il

I 2 ] I )
02 F /1 i - 02 - . i
S s

0.0 £= R 9 L ‘
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12

1.0 ‘ ‘ ‘ ‘ ‘ ‘ 1.0
Au=05 | | Au=038
0.8 Ap=05 0.8 - Ap=0.8 |
| Master Class | | Master Class |
>
S 0.6 - / 406 / .
(]
g 1 L
) B 0 | i 0 i
L ) 1 L ) 1
0.2 - 1 0.2 r n
/L ] s A 2
3 4
0.0 : 0.0 '
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10 0.12
p Y
Figure 8: In this figure we plot the frequencies of masters and non masters with respect to the error-classes
in incompatible distances C;[s] for different single shape landscapes. 0,1,... represent the classes of
incompatible sequences Cp[s], C1[s],.... The masters coincide with the strings that are localized on the

neutral network. The underlying population size for the Gillespie simulation is N = 1000 and the chain
length is n = 30.

81n difference to the ansatz of constant population size, (the basic assumption for the birth-death model), the
simulations are obtained by use of the Gillespie algorithm [23].
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6. Distribution on the Neutral Network

This chapter shall be a further application of the concept of neutral networks as random graphs.
We study the population structure on the neutral network and put the results reported by Huynen
and coworkers [30] on a solid mathematical basis.

Let us assume again that a secondary structure s € S,, and its corresponding neutral network
T,[s] are fixed. We assume I',,[s] to be obtained from Model IV. In this chapter we shall study the
distribution of the strings on the neutral network i.e. the distribution of V. Here we understand
distribution as distribution in Hamming distances. For this purpose we introduce the random
variable

dt:V, xV, — R ,where dr(v,0') := h(v,v'), (29)

and h(., .) denotes the Hamming distance. The shape of the distribution is basically determined
by the following factors:
e the distribution of the random variable ZA# whose states are the number of offspring (that we
shall assume to be independent of the particular master-vertex).
e the structure of the neutral network T',,[s], given by the basic parameters for the construction
of the random graph, {Ay, Ay, 7y, 1p}-
o the single digit error rate p for the replication-deletion process.
We shall assume in the sequel that |V, | i. e. the number of strings located on the neutral network
is constant. Using the results of the previous chapter we set | V,, | := E[X,].
Our analysis can be decomposed as follows:
(i) we study abstract genealogies following [7, 9] in order to compute the probability for two
individuals of having a common ancestor in the i-th generation.
(ii) we correlate the genealogies with random walks on neutral networks. Thereby we transform
the information from the genealogies in Hamming distances.
(iii) combining (i) and (ii) we derive an analytical density function for the probability of pairs of
elements of the population having a given Hamming distance.

(iv) we apply our results to the case of binary alphabets having complementary base pairs.

6.1.Step I: Reproduction Schemes and Genealogies
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6.1.1. Reproduction Schemes
We shall assume that replication-deletion events to happen at discrete times to, .. .,¢; as follows:
For subsequent times tp, t; we remove the complete population V(o) at ¢; and generate the
offspring of each element with the single digit error probability p. For reproduction we first use
the integer valued random variable Z,,, which counts the offspring of each v € V,,(to). Z,, has the
following two characteristics:

. E[Z#] = 1 resulting from the constraint of constant population size.

. ZA,L does not depend on the particular vertex v € V.
Accordingly, we introduce the random variable Z, defined on V.. Resulting from the inferior non
master-fitness we observe E[Z,] < E[Z,]. The complete random process is called the reproduction
scheme R of V. For a reproduction scheme R in general V,(t1) has been produced by V(o)
and V,(to). Nevertheless it is possible to introduce a particular type of reproduction scheme R*,
that decouples master and non master vertices by increase of the offspring-production of V,(to)
while defining Z, = 0. The use of the reproduction scheme R* does not lead to an essentially
different distribution of V, on I', as long as the individuals of V,, C V are located mainly in

small Hamming classes relative to the network. Moreover lemma 10 shows that the V, offspring

is completely produced by V, itself, as long as the superiority of V,, is high enough.’

6.1.2. Genealogies

We shall now study genealogies [8] resulting from a reproduction scheme R*in complete analogy to
[9]. As already mentioned the number of masters N, is assumed to be constant i.e. N, := |V, ]|.
Let us compute the probability p; that two elements v,v' € V, have a common ancestor in

the previous generation. Suppose v € V, has an offspring of ¥ > 2 elements. Then we can

k

choose (;

) different sets {v’,v"} having v as common ancestor. The expected number of those
sets is consequently N, (5) p{ Z, = k} and summing over k we obtain 1 N, E[Z,], whence p; =
E[ZH] of/ (N, — 1) = V[ZAu] /(N, —1). Accordingly w; = 1 — g is the corresponding probability
to have different ancestors one generation ago. (The probability that r vertices have a common
ancestor in the previous generation is goY) =E[Z,],/(N, — (r —1)).) Using the result on g, we
can express the probability of having different ancestors in all ¢ previous generations:

w; = [1 _ V2 | e viza i) (30)

(Nu - 1)

9This means that in most scenarios there is in fact no need for rescaling the V,—offspring.
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since the production of offspring are independent random events. Introducing the variable
T:=1t/[N, -1], (31)
we can write w, ~ e~ VIZu T and
i{1 —wy} = V[Z,] e VIZlT
dr # ’

which corresponds to the probability of finding a common ancestor in the interval (7,7 + dr). We

finally summarize before proceeding the different time scales that are involved:

. 7, the discrete time in the scaling of an elementary reaction-step
. t, the discrete time in the scaling of generations
. t, the reactor time in the scaling of generations
. 7, the reactor time in the scaling of an elementary reaction-step.

Remark. Introducing an extended formalism for a reproduction scheme that involves offspring
of masters and non masters, we can compute the probabilities of emerging {v,,v],},{v,, v, } and
{vy, v} } as offspring. In order to express the probability for two elements having different ancestors
in all i previous generations (c.f. equation (30)), this probability depends on the pairs of ancestors
and not only on the number of generations we trace backwards. In other words, we need to know
the complete genealogy of the elements. Although all probabilities can be expressed explicitly, the

formalism becomes too difficult.

6.2. Step II: Random Walks on Neutral Networks

This section is devoted to random walks on the neutral network I',,[s]. For this purpose we introduce
the probability ¢r, [5(t, k) of traveling a Hamming distance h on T',[s] by a random walk lasting
t generations. We recall that I'y,[s] < C[s] and C[s] = Q7+ x QZ” and introduce the projection

mappings
Ty : Dnls] —Tp,

Tp 1 Dpls] — T,
Since the errors occur independently in each digit we can decompose the random walk in I',[s] in
two independent walks: one in m,(I',[s]) and the other one in 7, (L', [s]).
Clearly, 7, (I's[s]), mu (I's[s]) are random graphs and the vertex degrees 5vu , (i,p are random variables

that are Gaussian (see chapter 3 section 2). Accordingly, in order to study random walks on neutral
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networks we have to restrict ourselves again to regular neutral networks, f‘nu,np c.f. definition 12
in section 1. Then, writing again ' = fnmnp, for each vertex v € v[['] each adjacent vertex
v is contained in v[I'] with probability ), (for the unpaired projection) and ), (for the paired
projection) respectively. Further we restrict ourselves in this section to x-alphabets (i.e alphabets
consisting of complementary bases that admit only complementary base pairs; for example {G, C}
or {G,C,X,K}). We shall write for short ¢, = P () Pro = P ()

Lemma 12. Suppose Q0 QZ” are generalized hypercubes where A (the alphabet of the unpaired
digits) is a x-alphabet (see definition 11) and B is the corresponding pair alphabet. Let ¢ (t, h) be
the probability to travel a Hamming distance h by a random walk in T lasting t generations. Further
suppose that o, , @», are the corresponding probabilities for random walks in 7 (), mp(T). Then

ep(t,h) = D on(thu) o, (thy) .

B+2hp=h

We consider the reproduction-deletions as point-events, i.e. we consider the random walks in contin-
uous time. Making use of the regularity assumption on the neutral network, we obtain infinitesimal
error rates (for unpaired and paired digits), A, pdt and X, p® dt.

Next we derive an ODE for the measures ¢y, and ¢,,,.

Lemma 13. Suppose A is a x-alphabet with pair alphabet B. For a random walk in ﬂu( ) < Qnu
and 7rp( ) < Qﬁ” the corresponding probabilities @y, ,@x, fulfill the equations

Zlon (tha)} = /\up[h“_*f Ox, (b by + 1) + (M — hu +1) o, (¢, by — 1)
~(1a = (1= Z50)h) oa, (8 )]

E40r, (6 1)} = A 2 [ S5 o, (6 oy 1) + (0 = iy + 1) o2, (8 — 1)
—(np = (1= 50)h) 03, (8 )|

Proof. Obviously,

Ny — (hy — 1) h, +1
_ t,hy +1) ——m——
T +(p/\u(7 + )(a—l)nu

] X [ Aupdt (1 = Aypdt)™ 1]

o, (t + dt, hy) = [m“ (t, hy — 1)

hy 0 —
TNy o — 1
+ o (E ha) (1 = Aypdt)™

+ o, [t hu) —

This is equivalent to

Ny — (hy — 1) hy +1
) = yhy — 1) ——MmM8 —= shy +1) 7
@, (t+ dt, hy) [@A,,(t h ) oy + (b hu + )(a—l)nu
+ox, (Eh )h—a—_l] X T Aw pilt

+ @, (8, h) (1 = nypdt) + O(dt?) .
Taking the limes dt — 0 we obtain the first claim. The corresponding equation for a random walk

in 7,(T) is derived analogously and the proof of the lemma is complete. x
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Lemma 14. Suppose A is a x-alphabet with pair alphabet B. We set

- 1 o - 1 2
@u(t) = aT (1 — e_mkupt) and @p(t) . ﬁT (1 _ e—%)\pp t) )

Then @y, (t, hy) and @z, (t, hy) are given by

Ty

hu

Np

or. 1) = ( ;
P

) 9 (0= o)™ o, 11 = () 00071 = ().

We can view hy, hp as random variables with expectation values

B—1
B

Bl () = & n, [1- 752 Blh) (1) =

Ap pzt

__s_
Np [1 —e BT

Proof. We first separate the variables h,t by the ansatz:

ot 1) = (’,j) (1) (1 — GO "

Thereby we obtain equivalent ordinary differential equations (parameterized by h) in ¢.

d a 5
< < M —_ . —_ = - | — _—_— -
Vi<h<n dtG [h—nG]=A [h—l—G [-n a—lh]+G

e | | (32)

where A = A, p (in the projection to the unpaired cube) or A = X, p? (in the projection to the

paired cube), respectively. Equation (32) is obviously equivalent to

dG a
—=A|l-— .
dt [ a—lG]

1 dG
——— "dt= [ Adt+C
/1—ﬁG dt / -

In [1+LG] —At+C,
a-—1

We write

o
e —

with C € IR. Using the above equation we finally end up with

Glt) = 2= (1 — e AY)

proving the lemma. g
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6.3. Synthesis: Distribution of Pair Distances

A

The results of the two previous sections allow to compute the distribution of d-

7. For every randomly

chosen pair of elements (v,v') we define
p{7}) = V(Z,] VP ar,

i.e. the probability for a pair of vertices to have a common ancestor in the interval (7,7 + d7)
(see section 1). We observe that v and v’ are connected by a random walk lasting the time
t = 2[N,—1]7. We study the random variable ¢ (2 [N, —1] 7, h), defined on the probability space
({7|7 €[0,00) },m{7}*) in order to compute the distribution of possible Hamming distances
for a given time 2[N, — 1] 7. In the limes of infinite chain length i.e. n 7 co lemma 14 shows
that there is a mapping between times and corresponding Hamming distances. This can easily be
deduced from the fact that ¢ (t, h) becomes localized at E[h.] + 2E[h,], explicitly
JE;@“an{é ﬁh:%gnuu—afjgfz%gnAl—ﬁ%Qq

Accordingly, we obtain d; for x-alphabets.!?. The main result of this section is

Theorem 10. Suppose A is an arbitrary alphabet. Let T (see definition 11) be the regular neutral

network with respect to the fized secondary structure s. We further assume that |V, | = N,. Then

wldi=n}=VIZ,] [ er@IN, - 1)nh) eV ar. (33)
0

The theorem implies expressing ¢ (2[N, — 1] 7, h) and using lemma, 14:

Corollary 9. Suppose A is a *-alphabet with pair alphabet B. Then we have

p{di=h}=
vizl S / B, 9u (2N, — 17), ha) B(ny, 9p(2[N,, — 1]7),hy) e VIZ)7 g
hay+2hp=h V0

where pu((2[Ny —1]7), ha), 9p((2[Ny — 1] 7), hp) are defined in the previous lemma.
Using corollary 9 we can now compare the analytical distributions of cig with our simulations done

in the case of binary alphabets (see figure 9).

10Note that this restriction results from lemma 10 and the assumption that any two pairs have corresponding
Hamming distance two.
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Pair Distances

Theory and Experiment

0.15 ‘
Au=0.27 Au=0.5 AL=0.8
Ap=0.5 Ap=0.5 Ap=0.8
0.10 - T+ 4 :
>
(&)
c
(O]
>
(o | L
o
L
0.05 - T I - | 8
0.00 . "_h_’k . .
0 10 20 30 10 20 30 10 20 30

Hamming Distance

Figure 9: The distribution of d* in comparison to computer simulations that base on the Gillespie algorithm [23].
The simulation data are an time average for 200 generations with an underlying chain length of n = 30.
The solid lines denote the analytical values, the histograms show the numerical data.

Remark. The difference between the experimental and theoretical density curves is due to an
effect known as buffering [30]. We recall the following situation to be given: I',[s] — O and
T,[s] is a random graph whose vertex degrees are random variables (see p. 53). One observes in
corresponding Gillespie simulations that on neutral networks a population is located preferably at

vertices with higher degrees i.e.
v EV[LL]: §u > Aunu +Apn,.

For binary alphabets in particular the expected distance of pairs (v, v') with 0y, 0 > Au a4+ Ap iy
is n/2, since the distance sequence of the Boolean hypercube is given by (Z) Therefore we observe
a shift to higher pair distances in the population than the theory predicts for regular neutral

networks.
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6.4. Application: Binary Alphabets with Complementary Base Pairs

We now apply corollary 9 to describe Jg for the replication-deletion process on I'. All results
derived in this section can be formulated analogously for arbitrary alphabets lengths as long as
alphabets with strict complementary base pairs (i.e. & = ) are used. The first result is an
immediate consequence of corollary 9.

Proposition 3. Suppose the conditions of corollary 9 are given and furthermore n /' 00, Ny, =

O(n) and n, = O(n). Then E[dAg] and V[Jg] are given by

2 Ny Xu Xp
Bt~ | X | X
T2 hat vzl T Do+ VIZ

(Otu + VIZu))2@2xu + VIZW])  (xp + VIZ])2(2xp + VIZ4])
+ i Ny Np V[Z:H] Xu Xp i}
(Xu + VI[Z.])(xp + VIZu]) (Xp + Xu + V[Z4])

where X = 4[N, — 1] Ay p and xp := 4[N, — 1]\, p*.

Proof. The assumption implies (c.f. [15]) that the binomial measures are localized at their expec-

tation value. Therefore we obtain the Hamming distance
H(2[N,, - 1]r) = Elh] (2[N, — 1)r) + 2E[h,] (2[N,, — 1]7)

iff the chosen pair had a common ancestor in the interval (7,7 + dr). Consequently,

A~ A~

Eldf) ~VIZ,) [ HEN, -1 n{r)dr
0
and the first claim follows. Next we observe
V[ZH] / H?p @ dr =2 / H in(“)dT
0 0 d’r

and putting x. := 4[N, — 1] A\up, xp := 4[N, — 1] \,p* we derive

oo oo 2
V[di] =2 / H iHu(”)dT - [V[ZAM] / Hu(“)dT] .
0 dr 0
After a lengthy computation we derive:
(/2 X2 VIZ,] n3 X VIZu)
(Xu + VI[Z,])22xu + V[Z,])  (Xp + VI[Z])?(2xp + V[Z,])

+ i Ny Np V[Z:u] Xu Xp i
(Xu + VI[Z.])(Xp + V[Z,] ) (Xp + Xu + V[Z,])

and the proof of the proposition is complete. g

V[d:] =

Suppose A, = Ap, i.e. the fraction of neutral unpaired and paired bases coincides, then proposition 3

allows to compute the surface F(p, ) := E[Jg] (see figure 10).
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average Distance

av_dist

Figure 10: The average pair distance E[dA?} of master fraction of the population V on the neutral network I'in
the long time limes. We assume that A = Ay = Ap. The distance is plotted as function of the single digit
error rate p and the fraction of neutral neighbors for the paired and unpaired digits, A. We observe that
for wide parameter ranges the average pair distance of V, is plateau-like. In particular the average pair
distance becomes 0 at the shape-error threshold.

Definition 16. Lett > tg be two times. Then

dist(V(2), V(to)) ::% S d(v,v) and

B vevy(t)
vl eV (tg)

avdist(V(t), At) := (dist(V(t'), V(t' + At)))s .
where ( )y denotes the time average.
Proposition 4. Under the conditions of corollary 9 and for binary x-alphabets with complementary
base pairs we obtain for a fixed time t in the limes of infinite chain length:
avdist[V,(¢), At] ~

Xu —2)\, p At Xp —2), p2 At
wf2 | —F——=—| [L—e 2P 4 n, | —————| [l —e *»P 2.
Xu + V[ZH] : Xp + V[Zu]

Proof. We first observe that in the limes n oo the Gaussian distributions ¢, and ¢y, become
delta distributions [15]. Hence

/0 " (Bl @IV, ~ 117) + (fo — )] + 2B [y 2N, — 1]7) + (to — )] } {7} ar

=Du | Xu b em2hepltomto)] oy | X2 | [ o2 p” (t—t)]

2 | xu+t V[Zu] Xp + V[Zu]

- 75—



DISTRIBUTION ON THE NEUTRAL NETWORK

where x. = 4[N, —1] Ay p and x, = 4[N, — 1] A\, p? (as introduced in proposition 3) and the proof
of the proposition is complete. g

Next we turn to the displacement of the barycenter of the population V,. For this purpose it
is convenient to write the complementary digits v; of the sequence v = (v1,...,v,) as —1 and 1
respectively. We write shall v -v' :== > | v;v;.

Definition 17. The barycenter of the fraction of masters V,, C'V where |V, | = N,, denoted by
M#(¢), is

MM (t) = Ni > w.

H veEV,

Remark. M*(t) is an element of the n-dimensional simplex.

In the next theorem we compute the so called diffusion-coefficient of the barycenter M*(t) in the
long time limes.

Theorem 11. Suppose a population V replicates on the reqular neutral network T with superior
fitness o > 1. We assume that V, C 'V fulfills |V, | = N, implying a constant mean fitness

_ —1)Nu+N
T = % Then we have

1
Iz Vi 2\,
At ([M*(t + At) — M*(8)]*):
Xu 2 Xp
2 nyp | —F——| +4 A n,p° | ————1| .
Xu+V[Z/A] o XP+V[ZH]

and
1
A_E<
where xu = 4 Xy p (N, — 1) and xp, =42, p* (N, — 1).
Proof. We first write g = ¢t — At then

DrHE+ 8D = MDY = | O+ A0 = 0P|

([MP(t) = M*(t0)*)e = (M*()*)e + (M" (t0)*)e — 2(M" () M* (to)):

noting that in the limes of long times (M*(t)?); = (M*(to)?):. Then we inspect
1

AV, Vito) = g D D=l
VEV () 1
v eV (tg)

1
ZZ[M”(t)2+M”(to)2]+ > [20-v].
vEV (1)

v’ eV, (tg)

4N2
Taking the time average we obtain

(M*(t)* + M*(to)? — 2M*(t) M*(to)): = 4 avdist(V ,(t),t — to) -
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Consequently it remains to compute ; avdist(V,(t), At). For this purpose we can approximate

this expression assuming that At is small by differentiating with respect to t and ¢ (note At/At =

7).
Xp

Xu
Xp + V[Z#]

— 2 | + 4 ,n,p°
Xu+V[Z#] e

%avdist(V(to), dt)y =2 Aynyp

This completes the proof of the theorem. g
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7. Algebraic Representation of RNA Secondary Structures

For the investigation of the structure of the set of compatible sequences we used in chapter 4
section 1 the following algebraic framework:
Let S,, be the symmetric group in n letters and write a transposition 7 € S,, as 7 = (x;,xx). Then

Sn

1 § =
s = us) = mens) (k) -

We further recall that ¢« naturally induced the mapping

7: §x8 — {Dm < Sp}
(s,8) = g(s,8") := (u(s),(s")) -

7.1. Representation of RNA Secondary Structures as Involutions

The dihedral group representation will be used to obtain a new metric on the set of secondary
structures that is related to the transition probability between two neutral networks [65]. For this
purpose we introduce

Definition 18. Let G be a group. A function |.|: G — Roy is called o length function on G if
(1) 2] =0 <= <z=e.

(i) |z| = |27 for all z € G.

(i)  |xy| < |z|+|y| for all z,y € G.

Remark. Obviously, |.| is a length function on G if and only if d(z,y) = |ry~!| is a metric.
Equivalently for a given metric on G, |z| = d(z,e) is a length function. The following lemma is
wellknown and stated for convenience of the reader.

Lemma 15. Suppose T is the set of all transpositions of the symmetric group in n letters, Sy.

Then

m) =n —O(m), T € Sh,

is a length function on S,, where O(r) is the number of cycles into which © decomposes.
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Proof. This result is well known. We give a proof here for illustrative purposes.

(i) We show first that the minimum number of transpositions is in fact a length function on S,,. We
proceed by induction on £(y). Assume y is a transposition then we have £(z)—1 < {(zy) < £(x)+1.
{(xy) < {(x)+ 1 holds by definition and the assumption £(zy) < ¢(x) — 1 leads together with the
first inequality to the contradiction £(z) < ¢(zy) +1 < £(x). Finally we assume the inequality
holds for £(y) = k — 1. Then for any element y' with £(y") = k there exists a transposition 7' such
that £(y’'t") = k — 1. Applying the induction hypothesis we obtain £(zy'r") < £(z) + £(y') — 1
whence {(zy'7) +1 < l(x) + £(y"). Tt remains to observe £(zy') < £(zxy'r’) + 1 and the claim
follows by the induction principle.

(ii) Each permutation can be written uniquely in a product of pairwise disjoint cycles i.e. 7 =
H;Zl Z]]-c" where k; is the number of cycles of length j. This representation results from the action
of the cyclic group (m) on the set of all positions of the string. Each cycle Z; of length j can be

written uniquely as a product of j — 1 transpositions. Therefore we obtain
Um) <D ki =D ks
J J

and it remains to show equality since > . k;jj — > ;k; = n — O(m). It is straightforward to
prove by induction on j that every cycle Z; requires at least j — 1 different transpositions for its

representation and the lemma is proved. g

Proposition 5. Let s and s’ be two secondary structures of length n, and let +(s) and 1(s") be

their representations as involutions. Then
dD(s,s") = L(s) o1(s") ) :i=n — O@(s)(s) )

s a metric distance.
Proof. We know that the mapping 2 : S — S, is injective and that, according to the previous
lemma, ¢ is a length function on S,,. x
Further d® induces in a natural way a graph structure on the set of secondary structures by
defining the edge set e[S] as

e[S] := {{s,s'} | dD(s,s') =1}.
Obviously (S,,,e[S,]) is connected and d®* coincides with the canonical metric of (S,,e[S,]). This
follows from the fact that 7" is a proper set of generators of S, ie.id € T and t € T <+—
t~! € T and that for all t € T we have £(t) = 1. This implies immediately £(2(s) o 1(s')) =

d(s,, es.7) (1(8),2(s"))-
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ALGEBRAIC REPRESENTATION OF RNA SECONDARY STRUCTURES

7.2.Subgroup Representation of RNA Secondary Structures

Next we introduce another possibility of representing the base pairing information of a RNA
secondary structure.

Definition 19. Let s be a secondary structure with associated set of contacts II(s) = {[i, k] | asx =
1,k#i—-1,i+1} and T(s) := {(i,k) € Snlair =1,k #i—1,i+ 1} the set of transpositions
corresponding to the contacts of s. Then S(s) := (T'(s)) i.e. the subgroup generated by T(s) in Sy,
is the permutation group of the the secondary structure s.

For a finite group G we denote by X(G) the set of all subgroups.

Lemma 16. The mapping T : S — X(S,.) an embedding.

Proof. Since each base is contained in at most one base pair, the transpositions belonging to one
structure are disjoint, and hence commute. Obviously now, two different structures have different

base pairs and hence induce different permutation groups. g

Definition 20. Let G be a finite group. For any two subgroups S and S’ of G we define
»(S,8"):=In[SS" : SNS'].

The following proposition shows that v(, ) serves as a metric on the set of subgroups in general.
In particular we have then a new matrix on the set of secondary structures.

Theorem 12. Let G be a finite group. Then ¢ : ©(G) X T(G) = R is a metric on L(G).
Proof. (i) Symmetry is trivial. (ii) Clearly [SS’ : SN .S’] > 1, and this expression can be 1 only
if S =5". (iii) We will show that

[SS" : SNS"] [S"S :8"nS'] > [SS :SnS'] .

This is equivalent to
IS|1S"] IS"]1S"| 1S'|[S]
>
|SﬂS”|2 |S'ﬂS"|2 — |S’ﬁS|2
= [S"[1SN S| >|S"nS||S"nS.

Since SN S’ NS" is a subgroup of S, S’, and S”, we may rewrite this as
[ISNS'NnS"[1S"(S'NnS)| > [(SNS") S NnSH(SNS)N (S NS
= [S"(S"NS)| > [(SNS")(S"NnS")|.

The latter inequality is always true since both SN S” and S’ N S” are subgroups of S” and hence

their product is still contained in S”. g
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8. Discussion

8.1.Neutral Neighbors of RNA Secondary Structures

In order to connect the above random graph theory with the combinatory map arising from the
folding of RNA sequences into their secondary structures we need to estimate the fraction of neutral
neighbors in this map. Random samples of sequences for different chain lengths have been chosen,
and the distribution of neutral neighbors has been computed separately for unpaired and the paired
bases. We denote the average values \, and Xp respectively. For the above theory to be applicable
we require that A, and ), have the following two properties:

(1) Sequences folding into a given structure s are distributed approximately uniformly in the
graph of compatible sequences C[s]. This is the assumption on which our models are based
in the first place.

(2) The fractions of neutral neighbors, A, and \,, become independent of the chain length n for
long chains. This condition is necessary in order to ensure a finite A for long sequences.

(3) The variance of the fraction of both the unpaired and the paired neutral neighbors vanishes
for long chains, i.e., the relative vertex degree 6, /v becomes constant for large chains. This
is a prediction of lemma 2 (p. 22).

An inverse folding algorithm [28] has been used to produce large independent samples of sequences

folding, e.g., into the secondary structure of a tRNA. The distribution of these structures is in-

distinguishable from a sample of random sequences as far as the statistics of the pair distances is

concerned [54].

Table 2. Asymptotic values for A, and A,

a | Model IT | Alphabet Experimental
A* unpaired paired
0.5 GC 0.2706  0.4363
4 0.3700 GCXK 0.4789  0.5088
GCAU 0.4949

6 0.3011 GCAU 0.4545

[\

In figure 11a we present the dependence of A, and A, on the chain length n of the RNA molecules.
The data clearly indicate that the probability of finding neutral neighbors approaches a constant

in the limit of large molecules. The asymptotic values are tabulated in table 2 where those are also

— &1 —



DISCUSSION

0.8 0.07
® *
i OGCAU.1
@GCAU.2
OJGCXK.1
‘_' BGCXK.2 0.06 - * B
0.7 + OGC1 T
#GC2
*
[
0.05 | 3 -
N 0.6 B @ PS :
5 ey 8 *
g e . 5 004 | ¢ . ]
e [}
= R ® z L] o
205, H . & gy 4 g . .
3 H - ®-g 2 L] o
Z | p—1 Z 003 ° ] IS 7
8 = g *
o i o - <&
04 O — > N ° o9
0 0.02 L] q
o) s
u] [m] [m]
O °t o 5 50 8 o ©
(ER— [ J Oo O
03 - R = 4 <& [SXQ)
. s O
001 ®-0 0 1
8|
My
0.2 . L L 0.00 I .
0 100 200 300 400 0.00 0.01 0.02
Chain length 1/Chain Length

Figure 11: a) Frequency of neutral mutations, counted separately for single base exchanges in unpaired regions
(open symbols) and base pair exchanges (full symbols) for different alphabets.

b) Variances in frequency for neutral mutations as a function of the inverse chain length.

compared with the theoretical threshold values for A;, and A} respectively according to theorem 6
(p. 46) and theorem 7 (p. 49). In figure 11b we present the variance in the average frequencies of
neutral neighbors for both the paired and the unpaired positions.
The variance obtained for the complete random sample is greater than (or, at best, equal to) the
average variance of the fractions of neutral neighbors in a single neutral network, because different
networks lead to different, (s specific) values of A, (s) and \,(s), and every random variable Y on
a finite set X fulfills

VY] =E[V[Y|x,]] + VIE[Y|x,]]

where { X} is a partition of X and Y|x, denotes the restriction of the random variable to the subset
X;. In our situation the states of ¥ are the fractions of neutral neighbors of the unpaired and
paired base pairs, respectively, and the partition of the sequence space consists of the preimages of
the secondary structures. The empirical data in table 2 are consistent with the vanishing variance
in the limes n ' 00, as implied by lemma, 2.

The computational data presented above show that our model is in fact applicable to the combi-
natory map of RNA folding, as far as the a priori requirements of our approach are concerned. In
the following sections we will discuss to what extent the properties of RNA are matched by the

properties of our random graph models.
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8.2.Shape Space Covering

The shape space covering theorem 8 (p. 50) predicts that the expected Hamming distance of a
neutral network from a randomly chosen starting point is (up to a constant of order o(1)) given by
the distance rq of the set of compatible sequences C[s]. Hofacker [27] has computed upper bounds,

rupper ON these distances, see table 3.

Table 3. Shape Space Covering Radius.

Tupper To Tupper To Tupper To
n GC AU AUGC
50 10.7 8.5 7.0 6.0 9.2 6.5

70 15.6 125 11.5 9.3 13.7 10.0
100 229 18.6 17.3  14.6 205 15.2

The estimates T"ypper are expected to become worse with increasing alphabet size and increasing chain length
because of the increasing size of the search space. Data are taken from reference [27]. The value g = (1 -
ﬁ/az)np (8) is lower bound on the shape space covering radius.

The data in table 3 show that we have in fact at least an approximate shape space covering for
all alphabets investigated so far. It is somewhat surprising to find near covering in the case of the
GC alphabet, since both A, and A, are significantly below the threshold values for both model III
and model IV. On the other hand, we expect the covering radius to increase only slowly when A
falls below its critical value. All we can say at this point is, that our model is consistent with the

available data related to shape space covering.

Table 4. Upper Bounds on the Closest Approach of Neutral Networks.

n |GC |AU | AUGC
50 5.6 2.6 2.1
70 9.3 4.6 3.4

100 | 13.0 7.8 5.6

Data are taken from reference [27].

The first part of theorem 8 can also be compared to computational data for RNA secondary
structures. An bound on the distance between the networks of two different structures, the “closest
approach” between the two networks are given in table 4. The data, produced by Hofacker [27],
are expected to become less accurate with increasing chain length n. As expected, the closest
approach distances are much larger for the sub critical GC landscapes. The numerical method is
not accurate enough to decide whether the distance of closest approach in fact obeys theorem 8.

Again our theory is consistent with the available numerical data within the statistical error bounds.
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8.3. Percolating Neutral Networks

The extent of neutral networks has been explored in computer simulations mostly be means of

so-called neutral paths. Starting from a (randomly chosen) sequence vy a path is constructed by

iteratively selecting neutral neighbor such that the distance in Q7 from vy increases with each step.

The simulation stops when no neutral neighbor can be found which increases the distance from vy.

In order to facilitate the interpretation of the data, the length £ of a neutral path is conveniently

defined as the Hamming distance (instead of the canonical distance in C[s]) between the starting

point and the end point of the path.
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The frequency distribution of £ shows a characteristic pattern which depends qualitatively only
on the alphabet but not on the length of the sequence [54], see figures 12 and 13. More than 20%
of all path have length £ = n for AUGC or GCXK sequences of length n = 100.

Neutral paths on the 2-letter alphabets terminate almost always at distances smaller than the
chain length. This is due to the fact that the number of sequences contained in these distance
classes is very small, while for larger alphabets these classes contain exponentially many sequences,
namely (a—1)"(7}). For the GC alphabet one finds that £ is approximately uniformly distributed,
i.e., there are lots of short neutral walks terminating after just a few steps. For AU alphabets
one inspects that the probability of having longer paths increases up to a length of 90. This
observation can be explained by the fact that neutral networks with respect to frequent structures
are supposed to be larger than those in the GC alphabet case. Over the AU alphabet one expects
a lower number of secondary structures to be realized as minimum free energy structures since the
A-U bond is characteristically weaker than the G-C bond.

These data indicate that neutral networks of the AUGC sequences percolate in general, while for

GC this is not the case in most cases.

30

29t o . 1

28 - q

27 - q

<Walk Length>

26 q

25 | q

24.0 L L
1le-05 le-04 1e-03 1le-02

Prob(Structure)

Figure 14: Average length of a neutral path for the AUGC alphabet as function of the abundance of the cor-
responding secondary structure. This is (good) lower bound on the diameter of the neutral network

containing the path. Data are for AUGC-alphabet and chain length 30.

A more detailed analysis has been performed for the neutral networks of the AUGC alphabet [62],
see figure 14. It shows very clearly that only the more frequent structures percolate, while neutral
networks of rare sequences exhibit significantly shorter neutral paths. Again this is consistent
with the predictions of our random graph models. A quantitative comparison is impossible at the

moment since the values of A\, and A, for the neutral networks used in figure 14 are not known.
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Connectedness of the neutral networks is a property closely related to percolation. A sensible
definition of percolation on configuration spaces which comes as close as possible to the usual
definition of percolation on regular, low-dimensional lattices [37, 59] is:

Definition 21. A subgraph G < C,, percolates if there exist two vertices v,v' € v[G] with d(v,v') =
diam[C,] that are connected by a path in G.

Note that percolation neither implies nor is implied by connectedness. However, percolation is

closely related to density and connectedness (apart from pathological cases).

8.4. The Sequence of Components

Computing the sequence of components of a neutral network, as defined in section 3.3, is a
formidable task. It requires the knowledge of all sequences folding into the target structure and
the subsequent sorting of these sequences into the components. Since no algorithm for complete
inverse folding is known, i. e. that efficiently generates all sequences folding into a target structure,
one has to resort to the brute force approach of folding at least the complete set of compatible
sequences. It is no wonder therefore, that at present there is only a single source for this kind of

data, namely a complete listing of the combinatory map
{G,C}** — 830

for RNA secondary structures, [24].

Table 5. Selected Sequences of Components in GCgzq

Rank | Structure Ay )y | Sequence of components’

) CCCCCCCCCee e DNMNNN 0.860 0.895| 1568485

520 CCCCCCCCea e INNN 0.614 0.747| 1328606

6| CCCCCCCCaae NN e 0.611 0.742]| 1314205, [2]

(4 I CCCCCCCCannnnn 1IN 0.666 0.748| 637048, 603435

10 | e NI e 0.652 0.751| 622112, 583934
1974 | ...... CCa CCCCCCCe-0)-» 0.562 0.576| 118307
1975 | . (CCCCCennnn.. 1NN ... 0.367 0.459| 33824, 31163, 30751, 22388, [173]
1976 | (CCC . CCCCae eI NN et 0.420 0.312| 117782, [514]
1983 | ....... G CeCeCC. ... )))))) ) 0.360 0.420| 53691, 34137, 17123, 12379, 225, 215, [245]
1984 | ... (CCCCC.nn.. D)D) NN 0.323 0.499| | f~1| = 117971 in 455 components*
3030 | .. (CCCCCannnnnnnn )03 DD NN 0.305 0.336| | f~1| = 88811 in 804 components*
4723 | L (CCCCCaennenntn N e 0.286 0.373| | f~'| = 58580 in 649 components*
13135 | ((((...... 0))) . (... )))). 0.214 0.246| | f~'| = 13737 in 503 components*

* See figure 15.
Very small components are not shown in detail here. A number in square brackets gives the total number of
sequences in them.
Data are taken from reference [24].
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Figure 15: Sequence of Components for a few selected structures, see table 5. ®: structure #1984, o: #3030, {:
#4723, and /\: #13135. The numbers refer to the rank of the structure.

Here one finds significant deviations between the predictions of the random graph models dis-

cussed here and the behavior of the RNA secondary structure. Three classes of neutral networks

with values of A(s) significantly above the threshold values for density and connectivity can be
distinguished:

(1) Connected neutral networks are predicted by theorem 6 (p. 46) and theorem 7 (p. 49). In fact,
the five most frequent secondary structures have connected networks, see table 5.

(2) Neutral networks consisting of a small number of components of almost equal size are ruled out
by our random graph theory in the limes n  oco. Nevertheless, they are found frequently in
the GCj3p case. There are the following possible explanations:

(i) The observations are simply a finite size effect

(ii) There exists a systematic “anisotropy” in the sequence to structure map favoring a particular
ration of G/C content which depends on the structure or structural elements as e. g. loops.
Clearly, in a large loop we expect a bias in the G/C content since further base pairs are
forbidden. The approximate symmetry of the energy parameters implies then that one has
to expect (at least) two components, see figure 16 for details.
We expect that this second effect is mainly responsible for the deviations from our random
graphs models. Therefore the occurrence of several large components (of similar size) is due

to structural elements and not ruled out in the long chain limit.
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(3) Neutral networks consisting of one large component or a small number of large components
of almost equal size plus a number of very small components (mostly isolated vertices) which
together contain only negligible small fraction of the neutral network. We suspect that the small

components are a finite size effect, and that therefore only the large components are relevant.
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Figure 16: histogram of GC dependence of two large components in which the neutral network decomposes.

For structures with A, and A, way below the critical values we find many components and a

characteristically decreasing size distribution of these components, see figure 15.

8.5. The Quasispecies of RNA Secondary Structures and Error Thresholds

Eigen and Schuster’s theory of the molecular quasispecies [10, 13, 12] describes the evolution of
a population of haploid individuals in sequence space. Each string x replicates independently
from all other members of the population with a sequence dependent replication rate A, and a
single digit replication accuracy ¢ = 1 — p (implying a probability for correctly replicating the
entire sequence given by ¢™, n being the sequence length). Analytical results for example for the
frequency of certain mutants are available only for a few fitness landscapes. In particular the so
called single peak landscape'! has been studied in detail by many authors [60, 52, 56, 47, 12]. The

main observation is here the existence of an error threshold p' in terms of the single digit error

11. . . .
i.e. a fitness assignment where one particular sequence the so called master sequence has superior fitness compared

to all other sequences which have—using a mean field approach —all the same fitness
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probability above which the population is essentially randomly distributed in sequence space. We
show that single shape landscapes (p. 54) exhibit also error thresholds. This phenomenon has
already been observed and intuitively interpreted by Fontana and Schuster [20, 19]. For single
shape landscapes we observe a sharp transition from a population localized on the neutral network
to a population that drifts randomly in sequence space. Above this threshold the information,
manifested by the secondary structure, is destroyed. In fact p* is a phenotypic error threshold
as observed by computer simulations in [30] in difference to the genotypic threshold studied by
Eigen and coworkers. In the following table we compare and summarize the main features of the

genotypic and phenotypic error threshold:

Table 6. Comparison of Single Peak and Single Shape Landscape

Single Peak Landscape Single Shape Landscape®
Basic parameters p,n, o D, 0, nu(8),np(s), Au(s), Ap(s)
Partition for Quasispecies | Hamming classes with respect | Incompatible classes with respect
to the master sequence to the neutral network
Threshold genotypic threshold phenotypic threshold
Threshold criterion* Wy = 1/0 Wy =1/o
Wi (1—p)" [1—(1—p)"u(l —p)*rr+
(1—p)™=xp @7 (p)+
[1— (1 = p)™ Ay D(p)+
d-—pm

¢ with respect to a given RNA secondary structure .

* neglecting back flow mutations and for infinite population size

T ®is given by (P(p) = [(% + (]_ _p)Q)np _ (1 —p)znf’].

The value of p* depends crucially on the structure of the landscape and of the replication rate (or
fitness) 0. We can localize the thresholds by mathematical modeling of the underlying stochastic
process. The above results further give rise to interpreting a sequence to structure map as an
abstract coding. Accordingly a biopolymer-structure is then an abstract “word” in this code
(containing a certain information). Plainly, there is need for a variety of different “words” and
our biological “words” have to be stable under the random action of the mutation group. The
latter is observed in the constant fractions of neutral neighbors (see chapter 4). In this context it
is interesting to study the dependence of the threshold of the basic parameters A, Ap,n, and n,.
These characterize “variability” and “stability” of the code.

However, the classical single peak landscape can be seen as a limiting case of our approach. One has
a formal equivalence to Hamming classes: the incompatible classes'?. Moreover the single shape
landscape exhibits further phenomena (see the next section) like e. g. diffusion of the barycenter

of the population.

12{ e. the classes of sequences with a certain number of incompatible base pairs (with respect to s)
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Furthermore, fixing a sequence to structure map say, f : Q% — S, we can map the population
V to a corresponding population of secondary structures, f(V). Additionally choosing a metric d
on the set of RNA secondary structures we obtain the metric space (S,,,d). Here, f(V) forms the
quasispecies of RNA secondary structures. Obviously the choice of the metric on RNA secondary
structures is of central importance and we introduced in chapter 7 the metric d¥) that was defined
on the corresponding involutions #(s). This metrics focuses on the “contacts” induced by the
structure and is free of any edit or cost function. In any case a metric on structures has to be seen

context dependent.

8.6. Diffusion on Neutral Networks

Derrida and Peliti [9] have investigated the case of a “flat landscape” i.e A, = A. Let N be
the population size and denote by z; . the frequency of nucleotide x at sequence position ¢. The
vector (;,;) is called the barycenter of the population. The time average A%(7) of the mean square

displacement of the barycenter,
2
A(t,7)” =D (@in(t+7) = 2i(t))
increases linearly with 7 for sufficiently small time steps 7 on the flat landscape. This indicates

that the population diffuses in sequence space with a diffusion coefficient

D = lim 220
=0 OT

Extensive computer simulations of this model have been performed by Fontana and coworkers [20,
19]. Recently Huynen and coworkers [30] considered the evolution of a quasispecies on a landscape
that is closely related to the combinatory map of secondary structure formation. They have chosen
the structure of a tRNA as a “target” and defined the replication rate constants as a decreasing
function of the (tree edit) distance to this target. On this landscape the genotypic error threshold pf
is indistinguishable from 0. Nevertheless, the phenotype, that is the target structure, is conserved
for moderate mutation rates. They are only lost in the simulations if the p exceeds the phenotypic
error threshold p*. Even below this critical value the population behaves similar to a population

on a flat landscape. One can observe for example diffusion with a diffusion coefficient given by

D= Atargetpn )\I/N
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where )’ is the average fraction of neutral neighbors of a sequence in the population.

In chapter 6 we have considered a related system in which the fitness landscape is a single shape-
landscape. Being neutral on the level of shapes and considering the long time limes for various
A-parameters the master-fraction of the population distributes nearly homogeneously. This has
been observed even for small error-rates p. It has been proven that the population behaves like
a fluid that diffuses on the neutral network. These observations support the neutral theory of
Kimura: a negative selection [39]'® conserves a certain fraction of masters in the population. The
latter searches by its non master offspring in the sequence space for better shapes. Evolutionary
optimization is mainly obtained by the random walks of the master-fraction — positive selection
occurs when an individual of the population has “found” a fitter shape. The results derived from
the special case of binary alphabets with complementary base pairs as discussed in section 4 can
easily be extended to alphabets with complementary base pairs of arbitrary length.

The distribution of pair distances obtained analytically for regular neutral networks has to be
corrected to longer distances. This fact can be understood taking into account the localization
effect described in [30]: The individuals of the population accumulate at vertices with higher
degrees. Nevertheless the random walk ansatz is a good approximation for the density function of
ci# It may surprise that there is no strong dependence of the average pair distances in the limes of
infinite chain length on the error rate p. But in this context one has also to take into consideration
the time scale in which the population reaches its stationary distribution. The time dependence
can be observed in the diffusion-coefficient of the barycenter. It depends linearly on p and on the
mean “fitness” o. Therefore the spread-out of the population occurs on an extremely short time
scale, which is important since evolutionary progress takes place far from equilibrium [60]. It is
known for example [11] that viruses replicate with an error-rate near their error threshold.

For moderate p values the population conserves the shape-information (guaranteed by E[X'p] -
E—"‘ > \/V[X’p] ). By the non master offspring it is searched in sequence space for fitter shapes.
In this context one can ask for the error rate p* (i.e. the value with maximum number of non
master-offspring in the long time limes). Surprisingly p* does not depend strongly on the network
parameters A, A, (see fig. 16).

In other words during an evolutionary search in sequence space a population will replicate on dif-
ferent neutral networks (i.e. different shapes with different underlying neutral network-structures).
The result reads that one error-rate p* proves to maximize the non-master offspring in the long

time limes for practically all those networks — a fundamental necessity for evolutionary adaption.

13 recall that all sequences not located on the network have the fitness 1.
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Figure 17: The surface E[X,] W};V as a function of p and A = A, = A, which expresses the order of the non

master offspring of V. For fixed Ay = Ap these are unimodal curves. Their maximum is practically
not affected by the A parameter.
However, p* may be far away from being “optimal” since we have to take into account the time
behavior of the optimization process.
It seems hence, that the random graph approach to neutral networks is sufficiently powerful to
explain essential features of the dynamics of a quasispecies on a landscape which can be decomposed

as follows:

sequence to structure map fittness assignment
Genotypes —_— Phenotypes —_— R.

8.7.Metrics on RNA Secondary Structures

In the previous section we already applied the metric d¥(s,s') =n — O(u(s) 0 1(s')) to obtain the
quasispecies of RNA secondary structures. d® can also be used to describe the transition proba-
bility between two neutral networks (corresponding to the secondary structures s, s’) in sequence
space. By this we mean the probability that a finite population (as introduced in chapter 5) reaches
a new network [65] — a central question of evolutionary optimization. However, the structure of
the intersection C[s] N C[s'] as introduced in chapter 4 is closely related to d(¥). Moreover a natu-
ral metric on secondary structures allows to view a sequence to structure map as a map between
graphs. From this point of view properties similar to continuity can be discussed and may give
new perspectives in the study of sequence to structure maps. We finally remark that in chapter 7

we searched for metrics that can be obtained by considering the correla structure of the shapes.
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9. Conclusions and Outlook

Let us summarize the main results shown in this thesis:

- For random induced subgraphs of configuration spaces there holds a density and a connectivity
theorem. The corresponding threshold values for the above properties coincide.

- A.as. (asymptotically almost surely) the random induced subgraphs have a giant component.

- Neutral networks with respect to RNA secondary structures can be modeled as random induced
subgraphs of configuration spaces. Here the above (abstract) results describe the structure of
neutral networks.

- It holds an intersection theorem for each two sets of compatible sequences.

- Neutral networks induce single shape landscapes that exhibit phenotypic error thresholds ex-
tending the concepts of Eigen and Schuster.

- Finite populations diffuse on neutral networks with an error probability below the phenotypic
error threshold.

- We present an algebraic representation of RNA secondary structures that can easily be extended
to 3D-RNA or Proteins.

It turned out that the number of sequences, the number of shapes and the distribution of preimage

sizes alone are not sufficient to construct a realistic model of a sequence to structure mapping. The

missing ingredient is the correlation between structures of related sequences which is captured by

the frequencies of neutral neighbors with respect to the base pairs and unpaired bases, A, and A,

respectively. Studying sequence to structure mappings means to adopt a “new” viewpoint: instead

of attacking the problem to fold a single sequence into a structure we consider the statistical

properties of the complete mapping.

Random induced subgraphs of configuration spaces, obtained by independent edge and point se-

lections, have been proven to be appropriate models for neutral networks of sequence to structure

mappings. These random subgraphs exhibit threshold values for the density and connectivity prop-

erty (which is closely related to a percolation phenomenon). RNA secondary structures require

a refinement of the above models explicitly taking into account that unpaired and paired regions

of the molecule have very different probabilities for neutral mutations. These refined models are

consistent with most of the computational data obtained from minimum energy folding, including

the feasibility of inverse folding, the existence of neutral paths, the shape space covering, neutral

evolution on RNA landscapes and the existence of a phenotypic error threshold. The deviations ob-

served in the sequence of components is a consequence of “biochemistry” i. e. caused by structural
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elements. Properties like density and connectivity are crucial for evolutionary optimization: by
density one comes “close” to sequences folding into a particular structure and connectivity or giant
components respectively guarantee that one can move through sequence space without loosing a
given structure (i. e. conserving an eventually superior fitness). The sets of compatible sequences
of any two secondary structures have a non-empty intersection implying that the neutral networks
of any two secondary structures come close to each other. This allows in turn transitions between
both networks and indicates how well secondary structures enable evolutionary optimization.
Our results indicate that optimization of structures by evolutionary trial and error strategies is
much more effective than often suspected. In fact whole classes of sequence to secondary structure
mappings, for example constructed by the random graph ansatz, are ideally suited for evolutionary
adaption. Exploration of sequence space is easy because of vast neutral networks and shape space
covering. Optimization is feasible since a sequence with the desired secondary structure is typically
only a few point mutations away and a whole spectrum of neutral mutants searches for a better
shape.

The random subgraph models provide moreover a tool for fast and yet realistic simulations of
evolutionary adaptation since they give rise to realistic landscapes without requiring the time-
consuming task of explicitly computing the sequence to structure mapping. We argue that esti-
mating the frequency of neutral mutations, and even considering anisotropies related to the amino
acid composition is a feasible task, while an ab-initio structure prediction will remain beyond our
computational abilities in the near future. Consequently, the random graph models described here
provide an indispensable tool for any simulations involving proteins.

At present we investigate the induced neutral networks of C* random maps. We investigate here
also properties “density” , “connectivity” and in particular study the sequence of components.
Further the random graph approach and the representation of secondary structures as involutions
have initiated the study of transitions between two neutral networks. The latter shall give further
inside into aspects of the so called “neutral theory” of Kimura. Our theory makes feasible the
study of “neutral evolution” basing on model landscapes on which we can formulate a rigorous
stochastic formalism. New concepts, for example random group theory, could arise from this
biological motivation namely viewing structures a abstract contact-matrices that can be embedded
in permutation groups. However, a particular challenge for us is to prove the above results in
the case of RNA-3D structures and we finally hope to be able to extend our approach to protein

folding.
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Appendix A: Integer Valued Random Variables

The sieve formula [3] (p.17) implies a number of results about the convergence in distribution for
a sequence of integer valued random variables (X'n) The first theorem and its corollary indicate
how the distributions of a sequence of random variables (Xn) are asymptotically determined by
their factorial moments.

Theorem 13. Let (Xi)ieﬂv be a sequence of non-negative integer valued random variables such
that

vre IN: lim E[X,], = E[X],

n—oo
and

VYm e IN: lim E[X],r™/rl =0

T—00
Then we have the following convergence in distribution: X, — X.

Proof. [3, p. 23] ¢

The following corollary will be used frequently in the paper:

Corollary 10. Let = u(n) be a bounded, non—negative function on IN and assume a sequence
of mon—negative integer valued random variables (Xi)ie IV to be given. Suppose we have for arbi-
trary natural number r lim, o E[X'n] »— u" = 0. Then there holds the following convergence in
distribution:

d(X,,P,) =0,

where P, is the Poisson measure.
The following classical results is also used in the main text. A proof can be found, e.g., in [15].

Theorem 14. [Moivre-Laplace] Let X be a binomially distributed random variable, i.e.,

p{X =k} = (7)p" - (L= p)"*, then

”{X:k}N;/kkJrl/Qexp( M) )

2 p(1 —p)m Jr—1/2 2p(1 - p)m

In this contribution we frequently make use of the following

Corollary 11. Ifz:=A/\/p(1 —p)m — oo for m — oo, then

p{X>pm+A} ~ exp(—22/2).

1
\/2-—7m:
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Appendix B: Simulation of finite Populations on Neutral Networks

“ansatz of Gillespie”

The time evolution of a spatially homogeneous mixture of chemically reacting molecules is usually
calculated by solving a set of coupled ordinary differential equations. If there are N chemically

active molecular species present, there will be N differential equations in the set.

The justification for using the stochastic approach, as opposed to the mathematically more simple
deterministic approach, is that it takes fluctuations and correlations into account. It was demon-
strated by Oppenheim et al. and proved by Kurtz that the stochastic formulation reduces to the

deterministic formulation in the thermodynamic limit.

In the stochastic formulation reaction constants are not viewed as reaction rates but as reaction
probabilities per unit time. The temporal behavior of a chemically reacting system takes the form
of a Markovian random walk in the N-dimensional state space of the molecular populations of
the N species. In the stochastic formulation of chemical kinetics the time evolution is analytically
described by a single differential-difference equation for a grand probability function in which
time and the N species’ populations all appear as independent variables. The problem may be
formulated as follows:

- There is given a volume V' containing molecules of N chemically active species S; (i =

1,...,N) and possibly molecules of several inert species.
- Let X; be the current number of molecules of the species S; in V with ¢ =1,..., N.
- The N species S; can participate in M chemical reactions R, (u = 1,..., M), each charac-

terized by a numerical reaction parameter c, which will be defined momentarily.

- A haploid replication process on a neutral network can be written as {R,, }: S; = S; + S;
and the deletion process as {R,,}: S; = *.

- The fundamental hypothesis of the stochastic formulation of chemical kinetics states that the
reaction parameter c, can be defined as follows:
cu 0t = average probability, to first order in ¢, that a particular reaction R, appears in the
next time interval d¢.

- The principle task now is to develop a method for simulating the time evolution of the N
quantities {X;}, knowing only their initial values {X i(o)}’ the forms of the M reactions {R,}

and the values of the associated reaction parameters {c,}.
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Let P(Xy,Xa,...,Xn;t) be the probability that there will be X; molecules of Specie Si, X

molecules of Specie S, ..., Xy molecules of Specie Sy in the Volume V at time t.

The number X; of S; molecules found at time ¢ will vary from run to run. But one may assume
that in the limit for infinity many runs the values X;(t) approach to the average value and the

variance of the values X;(t) is finite too.

The so-called master equation is the time evolution equation for the function P(Xy,..., Xn;t).
Often it turns out to be very fruitless to solve the master equation both analytically and numeri-
cally. That is why there is defined another quantity called the reaction probability density function,
P(r, ).

Definition 22. P(7, u)dr = probability at time t that the next reaction in the volume V will occur
in the differential time interval (¢t + 7, + 7+ dr) and will be o R, reaction.

Using the notations

- c, as reaction parameter characterizing the reaction I,. It is known by analytical calculation

*
—u,

—v-1l._ g2 8kT :
[Cu =V~ 'wdiy exp ( P ) or experiments.

T™mia

- h, as the number of distinct molecular reactant combinations for reactionR, found to be
present in V at time ¢

it was shown in Gillespie [23] that there exists an exact expression for P(7, u):

M
P(1,p) = hycy - exp <— Z hl,C,,T>
v=1

where 0 <7< 00, TER,1<u<M, pueNNand P(r,u) =0 for all other 7, u.

The simulation is done as follows:

Step 0: Initialization: Set ¢ = 0, specify and store initial values for the N variables X1,...,Xxy.
Specify and store the values ¢y, ..., cp for the set of M chemical reactions {R,, }.
Calculate and store the M quantities hicy,...,hycp. Specify and store a series of

"sampling times”t; < to < ... and a ”"stopping time”ts;op.

Step 1: Generate by suitable Monte Carlo techniques one random pair (7, ). (How to do this is
shown below.)

Step 2: Using the numbers 7 and p generated in Step 1, advance ¢ by 7 and change the {X;}
values of those species involved in reaction R,. Then recalculate the h,c, quantities for
those reactions R, whose reactants X;-values have just been changed.

Step 3: If ¢ has just been advanced through one of the sampling times ¢;, read out the current
molecular population values Xi,...,Xn. If ¢ > ts0p or hy = 0 for all 4 terminate the

calculation, otherwise return to Step 1.
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By carrying out the above procedure from time 0 to time t, there is only obtained one possible
realization of the stochastic process. In order to get a statistically complete picture of the temporal
evolution of the system, there have to carry out several independent realizations, each starting with
the same initial set of molecules and proceeding to the same time t.

We make use of the following procedure in order to carry out step 1 in the simulations.

Let P(r,u)dr be the probability at time ¢ that the next reaction in the fixed volume V will occur
in the differential time interval (¢ +7,t+ 7+ d7) and will be a R, reaction. In terms of probability
theory P(7, 1) is a joint probability density function on the space of the continuous variable 7 and
the discrete variable . Now P(7, u) is written in the form P(7,pu) = Pi(7) - Po(u| 7). Pi(7)d7 is
the probability that the next reaction will occur between times ¢ + 7 and ¢ 4+ 7 + dr, irrespective
of which reaction it might be. Further Ps(u|7) is the probability that the next reaction will be a

R, reaction, given that the next reaction occurs at time ¢ + 7.

M
By applying the addition theorem for probabilities we obtain Py(7) = Y P(r,pu). Therefore it
=1
M : M
follows for Po(u|7) Po(u|r) = P(1,1)/ > P(7,v). Setting a, = h,c, and a = Y a, one finally
v=1 p=1

gets P (1) =a-e 7, Py(u|7) = ay/a. Po(u|7) is independent of 7. The idea is therefore

—aT

- to generate a random value 7 according to P (1) =a- e and

- then to generate a random integer u according to Py(u|7) = a,/a.

In other words, a random value 7 can be generated according to P;(7) by simply taking a random
number r; from the uniform distribution in the unit interval and setting 7 = (1/a) In(1/r1). Further
a random integer p can be obtained evaluating a number r5 form the uniform distribution in the

unit interval and taking p as the integer fulfilling

p—1 Iz
E a, <rsa< E a,
v=1 v=1
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NOTATION

Map(X,Y)
Zu(f)
B(k,n, p)

dis(zx, m, )

gII(H)
e {T'}
B, (k,p)

CJ[s]
| X

(Q2,A,p)

Notation

Set of all maps f: X =Y (p.10)

Random variable that counts all preimages of f having size k (p.10)

Binomial distribution: (}) p* (1 — p)"=* (p.11)

Set of all different distributions of x elements over m different cells with zj, cells
containing k elements and no cell empty (p.11)

The (Hamming) graph of all sequences over the alphabet A of length o with chain
length n (p.12)

The set of all secondary structures of sequences of chain length n (p.13, see def.4
p-42)

rank of a structure s

Parameter of system size, in particular chain length

Configuration space (see def.1 p.15-16)

Graph of compatible sequences with respect to s (p.45)

Vertex set of the graph G (p.14)

Edge set of the graph G (p.14)

Incidence maps w.r.t. an edge e (p.14)

plelCGll (1 — p)lelH]I=lelC]]

B, {G"} = p,{[G]}

Induced subgraph of the vertex set V' in the finite graph H

The set of all induced subgraphs T'! of the finite graph H for which there exists a
nonempty graph G* < H such that 'l = H[v[G*]] (p.18)

The set of all induced subgraphs of the finite graph H (p.19)

AVIOH (1 — x)IVEHT=IVITTT (p.19)

Discretized version of the Gaussian distribution with mean pn and variance p (1 —
p)n (p.20)

Random variable that counts the order of a random graph

v[Cls]] (p-20)

Cardinality of X as a set.

number of adjacent vertices (with respect to the graph G) of v € v[G] (p.14)
Probability space consisting of point set, o-field and (probability) measure (p.17)

X is a random variable
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B,.(v)
d(T'1,T2)

Ny, Np
Ny My, Np

Ny Np
Qn, Qn

Random variable on random graphs I'J that counts the number of vertices with
degree k (p.23)

The set of all vertices that are either adjacent or contained in v[['),]

Random variable for random graphs of model II that counts the number of vertices
in v[Ca] \ V[T (p-24)

Expectation value of the random variable X.

The variance of X

The r-the factorial moment of X.

E[X Y] — E[X] E[Y]

Components of a random graph I,

The adjacent vertices in the graph I',, to a subset V' C v[I',,].

v[XYJuox

{v' € v[C] | d(v',v) < r}, the ball with radius r and center v.

The minimum distance between the graphs I'y and I'y considered as subgraphs of
Q7 (p-50)

The number of unpaired and paired bases of a certain secondary structure.
Chain length, number of unpaired bases and number of paired bases

The projections on the unpaired and paired bases

A pairing rule of an alphabet

The set of contacts of a RNA secondary structure s (p.43)

The population

The master-fraction and the non master-fraction of V

The critical mutation rate of a finite population of N strings replicating on a
regular neutral network T’

The error threshold of a secondary structure

The genotypic error threshold

The random variable counting the distance of pairs in V,

The random variables that count the number of master-offspring and nonmaster-
offspring

The fittness landscape induced by the neutral network T',,

The barycenter of the master-fraction of the population

Symmetric group in n letters (p.44)

A dihedral group of order 2m
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The transpositions corresponding to the base pairs of a RNA secondary structures
The metric d(s,s') = n — 0(u(s) 0 4(s"))

The class of sequences in i-th incompatibel distance

The uniform nonmaster density with respect to classes of incompatible base pairs
of a given secondary structure s

(T'(s)), the generated group of T'(s)
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