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Abstract

Replicators are entities that are copied during interactions with other entities. Replica-
tor equations, or Lotka-Volterra equations are commonly used to describe the population
dynamics of replicators. In these models, replicators are usually assumed to be objects
without internal structure, and the copying process is subsumed into a single reaction
event. Because it is not at all clear that such a simplified mechanism can cover the
qualitative behavior of the highly complicated interactions of replication, structural per-

turbations of the replicator equation are investigated.

Because of the rapidly increasing complexity of differential equations that result from
more complicated mechanisms, singular perturbation theory is used to investigate the
limits of fast intermediate steps. So two different models of replication with intermediates
are used in order to avoid the highly improbable third order step which is needed to
describe a catalyzed replication of a macromolecule. (i) A model that reduces to a
replicator model with inhomogeneous response function, and a (ii) Michealis Menten
mechanism that accounts for the stepwise incorporation of the monomers in the course
of replication. Replication however, as it is known today, requires the aid of highly
specialized proteins that not only account for the necessary speed, but particularly for
the accuracy of the duplication. Thus a simple model of replication with translation is

investigated.

The experimental setup that leads to constant organization is very trying, whereas the
much simpler CSTR. does not allow for a successful mathematical treatment. So the close
relationship of the CSTR and Constant Organization is analyzed in the limit of small

flux rates.

Since ODEs are deterministic by default, an attempt is made to introduce new species
by assigning random interaction constants. Thus, a stochastic mutation model is set up
and treated both analytically and numerically. It is demonstrated that permanence is a
rare phenomena for newly introduced species, but arises from the long—time evolution of

catalytic networks.



Zusammenfassung

Replikatoren werden im Verlauf von Wechselwirkungen mit anderen Einheiten kopiert.
Zur Beschreibung dieser Vorgange werden Replikatorgleichungen bzw. Lotka-Volterra
Gleichungen beniitzt. In diesen Modellen werden die Replikatoren meist ohne interne
Strukturen angenommen. Ob aber diese Annahmen tatsachlich den komplizierten Prozessen
gerecht werden konnen, ist unklar. Aus diesem Grund werden strukturelle Storungen der

Replikatorgleichung untersucht.

Da die aus detaillierteren Mechanismen abgeleiteten Differntialgleichungen sehr rasch
an Komplexitat zunehmen, wurde singuldre Stohrungstheorie zur Untersuchung dieser

Modelle herangezogen.

Zwei verschiedene Modelle von Replikation mit Zwischenprodukten, die zur Auflésung der
Reaktionen dritter Ordnung eingefithrt worden sind, wurden analysiert. (i) Ein Beispiel,
dessen singularer Limit zu einer Replikatorgleichung mit inhomogener Responsefunktion
fithrt, und (ii) ein Michaelis-Menten-artiges Modell. Dieses is gut geeignet, um den
schrittweisen Verbrauch an Monomeren zu beschreiben. Ebenso wurde ein vereinfachtes

Modell von Replikation mit Translation untersucht.

Um eine Replikatorgleichung experimentell umzusetzen, muf} ein enormer, fast unmoglicher
Aufwand an Regel- und Mefeinrichtungen gemacht werden, wahrend der experimentell
sehr einfache Flufireaktor mathematisch schwierigere Gleichungen liefert. Daher wurde
eine Untersuchung iiber den Zusmmenhang von Evolutions- und Flufireaktor im Limit

kleiner Flisse durchgefiihrt.

Da es im Rahmen der Replikatorgleichung nicht méglich ist, neue Species einzufiihren,
wurde ein stochastisches Modell von Mutation und Immigration untersucht, wobei sich
herausstellte, dal Permanenz fiir neueingefithrte Spezies sehr unwahrscheinlich ist, wa-

hrend sie nach geniigend langer Relaxationszeit sehr haufig wird.
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INTRODUCTION

1. Introduction

|| nce upon a time, when the earth was young, she was very, very hot.

¢) Afterwards, it became somewhat cooler, and it rained a lot. If someone
had observed some wet, marshy patches among the hits of meteors, he would have
been taken aback by the most fascinating process ever found:
The Origin of Life.
Ounly a short time later, Darwin [14] inspired innumerable scientists to publish

about that topic.

1.1. The RNA world

1.1.1. Chicken or Egg 7

The most fundamental distinction in biology is between nucleic acids, with their
role as carriers of information, and proteins, which generate the phenotype. In
existing organisms, nucleic acids and proteins mutually presume each other. The
former, owing to their template activity, store the heritable information: the latter,
by the enzymatic activity, read and express this information. Which came first,
nucleic acids or proteins? There are three possible answers:

(i) nucleic acids

(ii) proteins

(iii) neither: they coevolved.

Nowadays, most scientists all over the world agree that in the early stages of life

nucleic acids accounted both for the chicken and the egg.
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1.1.2. RNA as an Enzyme

First one may consider why proteins can act as enzymes. An enzyme has a well-
determined three-dimensional structure of chemical groups that, in most cases,
arises automatically from the primary structure. Substrates of that enzyme are
bound by chemical groups on the surface. This means that the reactants will be
kept in close proximity, and hence experience a much higher local concentration

of each other than in solution. This, by itself increases the rate of the reaction.

Enzymes speed up reactions in a second way as well. During a chemical reaction,
an intermediate structure of high energy is formed, the socalled transition state
complex. The higher this activation energy, the slower the reaction. As Linus
Pauling suggested fifty years ago, enzymes decrease the activation energy by bind-
ing to and distorting the reactants. Further, enzymes are not rigid structures:
By torsion and bending, they may guide the reaction. The effect of these various
processes can be to increase the reaction rate by more than a millionfold. After
the reaction is complete, the products leave the enzyme, and the latter, having

completed its catalytic cycle, is ready to start the next one.

What of nucleic acids? RNA often forms well-defined, flexible, three dimensional
structures, presenting various functional groups on its surface. In principle, there-

fore, one would expect some RNA molecules to act as enzymes.

1.2. Early RNA’s

The general idea that, in the development of life on the earth, evolution based on
RNA replication preceded the appearance of protein synthesis was first proposed

more than twenty years ago [110, 13, 72].

It was suggested that catalysis made entirely of RNA are likely to have been impor-
tant at this early stage in the origins of life, but the possibility that RNA catalysis

might be present in contemporary organisms was overlooked. The unanticipated
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discovery of ribozymes [64, 38] initiated extensive discussion of the role of RNA
in the origins of life [73, 87, 65] and led to the coining of the phrase “the RNA
world” [35].

Since it is not at all clear from the beginning what the term RNA world means,

it seems convenient to attempt a rather restrictive definition. All RNA world

hypotheses include three basic assumptions:

(i) At some time in the evolution of life, genetic continuity was assured by the
replication of RNA.

(ii) Watson-Crick base-pairing was the key to replication;

(iii) genetically encoded proteins were not involved as catalysts.

RNA world hypotheses differ in what they assume about life that may have pro-
ceeded the RNA world, about the metabolic complexity of the RNA word, and
about the role of low-molecular-weight cofactors, possibly including polypeptides,

in the chemistry of the RNA world.

It should be emphasized that the existence of an RNA world as a precursor of
our DNA /protein world is a hypothesis. Still, it is a very attractive hypothesis
and there is support from the results of experiments that it has inspired. The
demonstration that the peptide-bond-forming step of protein synthesis is catalyzed

by largely protein-free ribosomal RNA is particularly striking [70].

1.3. Ribozymes

RNA is a particularly versatile molecule. Its many functions as messenger-RNA'’s,
transfer-RNA’s, ribosomal RNA’s, +-strands as genome of viruses were enlarged
by catalytic activity. Various types of ribozymes have been found [99]:

— Introns: There are group I and group II introns

— Hammerhead Ribozymes: very small ribozymes that were found in plant-

viroids.
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— Hepatitis Delta Virus (HDV).
— RNAseP: The RNA alone can do the catalytic part.
— Hairpin Ribozyme.

RNA can do quite a lot of different chemical reactions. Because of modern tech-
niques, such as reverse transcriptase, PCR or 3SR, is has become possible to train
RNA molecules for various purposes. see figure 1. These seler—experiments per-
form accelerated evolution, for they select the fitting molecules out of a pool,
amplificate them, and create a new pool by some means of diversification. After

several cycles a properly “trained” target is likely to be found.

1.4. Template Chemistry

In order to find out whether self-sustaining chemical systems can have developed,
and how, a variety of self-replicating chemical systems have been constructed and
investigated experimentally in the past 25 years since Spiegelman’s [93] in wvitro
serial transfer experiments on Q3. The QA system was subject to extensive stud-
ies in Manfred Eigen’s lab in Gd&ttingen [8, 9, 10, 6]. Recently there has been
quite some progress on artificial self-replicating molecules by Orgel [71], Rebek
91, 27, 75] and von Kiedrowski [106]. The notion of a replicator — originally
introduced by Richard Dawkins [15] and now used in theoretical biology for “an
entity that passes on its structure largely intact in successive replications” — is a

useful characterization of these chemical systems.

In parallel to the advances in template chemistry a theory of molecular evolution
has been developed, based on a series of pioneering papers by Manfred Eigen and
Peter Schuster [18, 22, 23, 24]. Replication can be expressed formally as a an

auto-catalytic chemical reaction of the form

(A)+ 1 — 21+ (W). (1.1)

,10,
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Figure 1: A schematic representation of a selex experiment. A (random) pool of RNA-molecules
passes a affinity chromatographic column. The “fittest” of them are bound, while the
rest passes and is thrown away. Afterwards the good ones are washed off the column
and collected. After an amplification and diversification step (e.g. reverse transcriptase
and PCR), the new pool undergoes the next round of selection, and so on ..., until
the required properties are found.

The collection of monomers necessary for building up the replicating species are

subsumed under the symbol (A), and (W) stands for all waste produced by the

— 11 -
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copy reaction.

Polynucleotide replication (both in vivo and in wvitro) is an enormously compli-
cated multi-step process. Commonly it involves two catalysts: the polynucleotide
template and a replicase, which in present day biochemistry is a protein enzyme.
In the context of an RNA world one may well speculate about a ribozyme repli-
case and hence neglect the problem of a translation apparatus. Extensive kinetic
studies [93, 8, 9, 10] have shown that the following reaction scheme allows for a

quantitative description of the replication dynamics:

N

*.E.l [+E+I* l.E.I*

N N

I* denotes the complementary sequence to I. Binding and dissociation of the

(1.2)

polynucleotides are reversible, while the polymerization process is an irreversible
step. This model is still far removed from an elementary step mechanism, which
would include, for instance, the kinetics of chain elongation by single nucleotides.
On the other hand (1.2) is much more involved than the simple autocatalytic
network (1.1). It is by no means clear therefore that the replicator equation is

capable of capturing properties of the realistic reaction mechanism (1.2).

Other reaction mechanisms have been used to model the behavior of the artificial
replicators of Rebek and von Kiedrowski [91, 105, 106]. All these models treat the

building blocks explicitly, assuming
A+B+1=AB.I — I.I=2] (1.3)

as the basic reaction scheme. More detailed descriptions resolve the first reversible

step into successive bimolecular steps, e.g.,

A+B+1=Al+B=ABI=BI+A=A+B+1. (1.4)

— 12 —
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It has been shown [106] that the mechanism (1.3) leads to approximately parabolic
growth in wide range of conditions on rate constants and reactant concentrations.

This is to say that the concentration = of the replicator fulfills & oc /.

1.5. Replication as an Overall Reaction

Assume we are given a network of simple chemical reactions the dynamics of which
is well known to us. Now we replace the elementary steps in this network by
more realistic, that is more detailed, reaction mechanisms — thereby introducing
additional intermediate species. What can we say about the dynamics of the

extended reaction network?

We can view these additional reactions as perturbations of the structure of the
reaction network; in general their effects on the dynamics can be huge. An im-
portant question is hence the following: Under which conditions is a structural
perturbation small? A more precise formulation of this question might be: Under
what conditions on the structural perturbation (in terms of both reaction mecha-
nism and associated rate constants) does the time evolution of the original species

remain essentially unchanged?

These questions have been asked recently by Fontana and Buss [29] at the level

of their constructive dynamics, though no attempts have been made to deal with

this problem in the context of kinetic equations. Within the limited scope of

autocatalytic reaction networks this ansatz is not hopeless. The reason for this

restriction is twofold:

(1) There is a well developed body of theory for the structurally unperturbed
systems: they are replicator equations [56].

(2) Replicator equations have been used as the paradigm for catalytic networks in
prebiotic chemistry [25], while the actual reaction mechanisms are known to
be much more involved [7]. The applicability of replicator equations and the

limits of their validity are therefore an important problem in its own right.

,13,



INTRODUCTION

1.6. Structural Perturbations

The term structural perturbation can be defined in various different ways:
(i) By the term structural stability, which matches its formal definition.

Definition. [47) Let f € C™(E), m € IN and € > 0. We say g € C™(FE) lies in an
e-neighborhood of f with respect to a compact set K C F, if for all x € K holds

min{||f(z) — g(@)II, [(f — 9)(2) ]|} <e. (1.5)

Definition. Two vector fields f and g are topologically equivalent if there exists a
homeomorphism A which takes the orbits (b{ (x) of f to orbits ¢7 (x) of g, preserving

the senses but not necessarily parameterization by time.

Definition. A vectorfield f is called structurally stable if there in an € > 0 such
that all C! functions g in an e-neighborhood of f are topologically equivalent to f.
For gradients systems there is an easy to verify sufficient condition for structural

stability:

Theorem 1. Gradient systems for which all fized points are hyperbolic and all
intersections of stable and unstable manifolds are transversal, are structurally sta-
ble. 1t is an unsolved problem whether the union of all structurally stable flows
is generic in arbitrary dimensions. For planar flows on compact manifolds the

problem is solved by the following

Theorem 2. (Peizoto) Let M be a compact two-dimensional manifold. (If
M has a boundary then assume the flux transverse.) A C" wector field on M is
stucturally stable iff
a) the number of fized points and periodic orbits is finite and they are all
hyperbolic;
b) there are no orbits connecting two saddle points;

c) The set of nonwandering points consists of fized points and periodic orbits;

— 14 —
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Moreover, if m is orientable, the set of stucturally stable vector fields is generic,

i.e. open dense in C"(M).

(ii) Beside this very restrictive definition often one is interested, whether large
scale dynamical systems, consisting of many connected subsystems, remain stable
if one or more connections are broken or new ones are generated [89]. So if for
the beginning, no “outside world” effects are taken into account, it is convenient

to consider the dynamical system
& = Au, (1.6)

which may be represented by a directed graph, a digraph, see figure 2.

aq )

Figure 2: Full Digraph of a matrix A with two interacting subsystems.

To concentrate strictly on the structure of the system, we ignore the actual values
of the elements of the matrix A, but replace them by the so called interconnection
or adjacency matrix E, where
0 — 1 it z; “acts” on x;
Y 0 otherwise.

It is quite common in dynamic models of physical, social, and biological pro-
cesses that agents are disconnected and again connected in various ways during
the process. For example, a predator in a multispecies community stops preying
on another species, causing a line removal in the corresponding digraph. This is

a structural perturbation of the system and it is described by another adjacency

,15,
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a) b)

QO X1 X2 OQ O X X2 O

©) d)

Figure 3: Structural perturbations of a simple 2 by 2 system by removal of interactions from
the adjacency matrix.

The examples shown are a) E1= <é i) b) E2: <(1) (1)> c) E3: ((1) (1)>

d) By = (8 8)

matrix where the corresponding unit element is changed to zero. (see, for example

figure 3.)

(iii) Furthermore, structural perturbations can be defined in the sense of enriching
(enlarging) equations of dynamical systems by replacing simpler mechanisms by
more sophisticated ones, e.g., by considering the elementary steps of an overall
mechanism. For such purposes, singular perturbation theory may be a means to
deal with the almost certainly uncopable differential equations that arise from such

refinement of mechanisms.

1.7. Differential Equations for Molecular Evolution
One of the central questions in any theory of molecular evolution concerns the be-

havior of a collection of competing (or otherwise interacting) species of replicators

Iy, ..., I,. Very little is known on this topic in terms of the realistic replication

,16,
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mechanisms described above. On the other hand there is a well developed theory

for the most simple reaction scheme
I+FE—2I+E, (1.7)

namely the theory of the molecular quasispecies [18, 66, 21]. Here the enzyme E
is part of the environment provided by the experimentalist. Without going into
details it can be remarked here that this framework has been very successful in

describing the evolution of RNA viruses.

Self-replication on molecular level is the crucial “invention” at the origin of life.
Nowadays, most experts agree that RNA or an RNA precursor was the first repli-
cator in the history of life [20, 109], as pointed out in the earlier sections. In a
model of prebiotic evolution we have to account for the production of the enzyme
E that makes the replication possible. Assuming that E is a protein enzyme we

have to add a translation mechanism with the over-all effect
I — I+ F (1.8)

to the model of the replication step. Of course one might envision a more sophisti-
cated mechanism requiring additional catalysts (enzymes and/or polynucleotides)

as precursor of present day ribosomes.

A translation step is not necessary if we assume a pure RNA world in which the
task of the replicase E is a performed by a ribozyme I’. In fact, recent discoveries of
catalytically active RNAs [11, 12, 37, 108] make this assumption very appealing. In
its most condensed form the logics of an RNA world is captured in the autocatalytic

reaction network
I, +1, — 21+ 1, k,l=1,...,n. (1.9)

A wealth of knowledge on this model has accumulated over the last two decades
beginning with the theory of the hypercycle [22, 23, 25]. The dynamical system

associated with (1.9) is now termed replicator equation [80]

n
i‘k = Tk E Qpil; — E Qi T2 . (1.10)
i=1 ]

,17,
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It is based on the chemical reaction scheme (1.9) and the assumption of con-
stant organization ,as described in chapter 3; the variables x; refer to the relative
concentrations of the species I;. Originally developed as a model of prebiotic
evolution replicator equations have been encountered since then in many different
fields: populations genetics, mathematical ecology (where they occur disguised as
Lotka-Volterra equations [48]), economics, or laser physics. Their properties have
been the subject of hundreds of research papers by many research groups, most
prominently among them Schuster, Sigmund, Hofbauer and co-workers in Vienna.

The results of the first decade of investigation are compiled in the book [56].

Replication schemes without specific catalyst, i.e., models of the form (1.3) could
be used to model an even earlier stage of prebiotic evolution. In order to construct
a self-sufficient system we have to assume a mechanism for producing the build-
ing blocks A, B used in the replication step. They could either be produced by
external production pathways or they require catalytic assistance by the replicat-
ing polynucleotides for their formation. In the latter case (1.3) is augmented by
reactions of the form

(N)+1T— A+1, (1.11)

or more sophisticated versions thereof.

1.8. More Realistic Autocatalytic Networks

Very little is known on the dynamics of the more realistic replication mechanisms.
The full RNA replication mechanism (1.2) has been studied in some detail for a
single species [33]. A numerical study on competition in this system assuming
constant enzyme concentration has been published recently by Biebricher and
co-workers [7]. A number of systematic simplifications of this model have been
mentioned in the literature, though non of them has been studied for more than

a few simple special cases. In figure 4 their mutual relationships are shown.

,18,
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Replacing the enzyme E by a ribozyme I’ leads to the RNA world version of (1.2),
which has not been considered at all so far. This model can be simplified further
in two ways:

(i) Neglecting the fact that nucleic acids exhibit complementary replication yields
“model I” in [26]. It allows to study the effects of a Michaelis-Menten type
kinetic for the formation of enzyme-template complexes. A few results on a
hypercycle with this replication scheme are known [26].

(ii) Ignoring the binding and dissociation steps and hence replacing each cycle
in (1.2) by a single irreversible copy reaction of the form I + I' — I +
I* + I' extracts the effect of the complementary logic of the polynucleotide

replication. This model has already been studied in some detail [96].

RNA
E=l I=1*

RNA World "Model I1"

|=|* /E:,/

"Model 1"
T Cell Networks

Complementary

Replicator Eqgn,

Figure 4: Models for polynucleotide replications.

Neglecting complementarity from the beginning leads to “model II” of reference
[26]. Tt has been studied numerically for the special case of the hypercycle using

a simple translation step. It reduces to “model I” if the enzyme F is replaced by

,19,
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a ribozyme. A simplification of “model II” by neglecting one of the two enzyme-

polynucleotide complexes, yielding
I+E=I1FE — 2I+F, (1.12)

has received considerable interest in theoretical immunology as a model for T-cell
growth under stimulation by anti-gen presenting cells [17, 67]. In this context
it may be remarked that B-cell networks can as well be modeled by replicator

equations [97] of the form

n
i =ap | felz) = Y ;fix) (1.13)
i=1
where f is non-linear response function instead of the linear interaction model
(1.10).
Neglecting also the second complex formation step we arrive at the reaction scheme

Ik—l-Ej — 2Ik+Ej
(R/T)
I, — I+ E}

which captures the basic separation of replicating material and enzymes. [41].

A closely related replication scheme has been found experimentally for the bac-
teriophage Qg infecting E. coli. This system constitutes the first example of a
realistic hypercycle [19].

Even less is known about competition of replicators obeying scheme (1.3). An
analogue of (1.10) for parabolically growing species has been investigated in some

detail by Szatmary [100].

,20,
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1.9. Summary

The RNA-world—assumption is a widely accepted model for the transition from
chemical to biological evolution. It has been shown in a great variety of experi-
ments that RNA-molecules are both capable of storing information and performing
catalytic activities. But science is still very far away from a full understanding of

the origins of life.

Replicator dynamics have been established as a model of interactions in prebiotic

times and in order to demonstrate the increase of complexity.

Replication is the most crucial process in biology, for it is the only way to pass
genetic information from one generation to the next. The process of duplicating
DNA today is a most complicated multi-step procedure, involving many highly
specialized enzymes. Since it is absurd to think of such processes in prebiotic
times, it it fruitful to investigate the limits of the one-step “overall”kinetics that

are described by replicator equations.

Thus is is interesting to apply structural perturbations to the pure model and find
out about their limits, i.e., see, whether the qualitative behavior of the replicator

equation is still valid under different conditions.

There are different types of possible structural perturbations:

(i) Deterministic perturbations that introduce new intermediate species by refin-
ing the underlying mechanisms.

(ii) Stochastic perturbations by introducing new species that interact randomly
with the existing ones.

(iii) Physical perturbations in the sense of different physical boundary conditions.

See also figure 5.
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Figure 5: Different types of structural perturbations of the replicator equation. There is a wide
field of possible perturbations and refinements that finally converges to models which

are close to reality, but completely untreatable.
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IT WAS THE HISTORICAL MISSION OF ANALYSIS —
THIS WAS WHAT HE’D TOLD HIS OWN GUYS AT ONE
O’CLOCK IN THE MORNING — TO SCREW THINGS UP
AND THEREFORE MAKE OPERATIONS LOOK GOOD.

Peter Caray, The Unusual Life of Tristan Smith
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SINGULAR PERTURBATION THEORY

2. Dingular Perturbation Theory

ingular perturbation theory has become a powerful tool for dealing with

a class of perturbation problems for which ordinary perturbation meth-

2.1.Introductory Definitions and Remarks

Definition:[74] A regular perturbation problem P.(y.) = 0 depends on its small
parameter € in such a way that its solution y.(x) converges as ¢ — 0 (uniformly
with respect to the independent variable z in the relevant domain) to the solution

yo(x) of the limiting problem Py(yo) = 0.

The parameter € typically represents the influence of many nearly negligible physi-
cal influences. Usually, we will restrict attention to boundary value problems where
P. is defined by differential operators and boundary forms, though one might also
study integral or other operator equations or more global auxiliary conditions. As-
suming sufficient smoothness (with respect to x, y, and €), the solution of a regular
perturbation problem can be approximated by a formal asymptotic power series
expansion in € having the leading term (i.e., asymptotic limit) yo. A good example
for the application of regular perturbation theory is the treatment of mutation for

replicator equations in [96].

A singular perturbation is said to occur whenever the regular perturbation limit
Ye(x) — yo(z) fails. Such a breakdown, typically, occurs in narrow intervals of
space or short intervals of time (although secular problems with nonuniform be-
havior at infinity, such as the harmonic oscillator, are also common). Much of the
special vocabulary of singular perturbations comes from physically natural ter-
minology in high Reynolds number fluid flow past physical bodies [104]. In such

a flow, a no-slip condition along the surface results in a thin boundary layer of
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nonuniform convergence about the body where the velocity varies from zero to

that of the uniform outside flow.

Singularly perturbed dynamical systems often occur when the underlying dynamics
perform on different time scales, i.e., if the process of interest splits into subsys-
tems, some of which are much faster that the overall dynamics. certainly the same
is true if some processes are much slower, for in that case the time derivatives are

almost zero and these variables can be held constant.

2.2. Singular Perturbations

A great deal of the mathematical theory of singular perturbation theory is compiled
in the books [69, 74, 101]. The results outlined in the following few paragraphs
are well known, see e.g., [28, 46, 63, 78].

Consider the singularly perturbed problem

&= f(x,y,a,¢) (SPP)

ey = g(z,y, a,€)
where v € X and y € Y, a € A C R? is the admissible space of parameters, and
€ € I C R. Furthermore let K C X X Y be compact such that int K is simply

connected. We are interested in the dynamics in the compact set K.

Suppose g has the following properties:
(i)  There is a unique function ¢ : X x A — Y such that g(x, ¢(z,a),a,0) = 0.

0
(ii) The Jacobian J(z,a) = —g[a:, o(z,a),a,0] is uniformly hyperbolic on A x

Ay
X, i.e., there is a positive constant ¥ > 0 such that absolute value of all
eigenvalues of J(x,a) is bounded below by ¥ for all z € X and all a € A.

(iii) For fixed a € A we have {(z, p(x,a))|x € X}SK # 0.
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Theorem 3. Under the above hypotheses there are open sets A’ C A, I' €
I such that for all (a,e) € A" x I' there is a unique integral manifold M, . =
{y = ¥(x,a,¢)|x € X} with the following properties:

(i) Y:X x A" xI' =Y is continuously differentiable.

(ii) ¥ satisfies uniformly on X x A’:

: .0y I
limy(z,a,¢) = p(z,a)  and  lim =-fz,a,¢] = o[z, a].
If J(z,a) is stable on X x A then the long-time behavior of a trajectory passing
through a point xy in a suitably small neighborhood of the integral manifold M, .

is determined by the dynamics on this manifold, i.e., by the differential equation

= f(x,¥(x,a,¢€),a,¢). Under these circumstances we introduce the notation

F(a:’ a) S f('T’ (P(-r, a)7 a? 0) bl

(2.2)
Az, a,€) =£ f(x,¥(x,a,¢€),a,¢)— f(x,o(z,a),a,0).

The differential equation & = F(x, a) is known as the degenerate system. Property
(ii) of 1) means that there is a continuous function 6(e) with #(0) = 0 such that
| (x, a,€)—@(x,a)|le < O(€). Here || .||s denotes the C! norm, see, e.g. [47, p. 304].
If f is continuously differentiable with uniformly bounded derivatives on X x Y
there is a continuous function 0, (¢) with ,(0) = 0 such that ||A(z, a,€)||e < O4(€).
In other words, the dynamics of trajectories near the integral manifold M, . is

described by the differential equation
&= F(x,a) + Az, a,¢€) (2.3)

where A(x,a,€) is a regular perturbation of the degenerate system & = F(x,a).
In such a case we will say the the singularly perturbed problem (SPP) reduces to

the degenerate problem.

If (SPP) reduces to its degenerate system, then the following propositions are true:

(i) If the degenerate system has a hyperbolic equilibrium Zp, then there is a
hyperbolic equilibrium Z. of (SPP) nearby, at least for sufficiently small €. In
particular, Z. is asymptotically stable iff #y is asymptotically stable [101].
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(ii) If the degenerate system has a non-degenerate closed orbit 7y with primitive
period Ty, then (*) contains a nearby non-degenerate closed orbit 7. with
primitive period T, close to Ty for small enough € > 0 [3]

(iii) The existence of a transversal homoclinic orbit in the degenerate system im-
plies the existence of a nearby transversal homoclinic orbit in (SPP) for suf-
ficiently small € > 0 [78, Thm. 3.1’].

Property (iii) also suggests that the existence of a strange attractor of the degen-
erate system implies the existence of chaotic orbits in the non-degenerate system
[39]. In special cases, for instance Silnikov’s theorem [90] can be used to make this

statement precise [78].

Remark: For a numerical example see, e.g. chapter 5, fig.11.

2.3. Example: Nonlinear Problem from Enzyme Kinetics

Following, a well-known example from biochemistry is given. The theory of
Michaelis and Menten [68] and Briggs and Haldane [34] concerns a substrate S
being converted irreversibly by a single enzyme E into a product P. There is an
intermediate substrate—enzyme complex S E. Since the back reaction is negligible,
we shall systematically write
k1 ks

S+Ei[SE]—>P+E (2.4)
Using the law of mass action, we shall take the rates of reactions to be proportional
to the concentrations of the reactants. Introducing s, e, ¢ and p to denote the
respective concentrations of S, E, SE, and P, we thereby obtain the nonlinear

autonomous differential system
$=—kise+k_qc
é=—kise+ (k_1+ ko)c
¢ =kise— (k—1+ ko)c

ﬁ:kgc

,28,



SINGULAR PERTURBATION THEORY

subject to the initial conditions s(0) = so > 0,€e(0) = ey > 0,¢(0) = 0 and
p(0) = 0. Since d(e + ¢)/dt =0 and d(s + c+ p)/dt = 0,

e(t) = eg — c(t)
p(t) = s0 — s(t) — (1)

and there remains a nonlinear initial value problem for the concentrations s and

(2.6)

C.
§= —]{31608 + (kls + k'_l)C 8(0) = S0
(2.7)
¢ = ]C1608 — (kls + ]C_l + ]CQ)C C(O) =0

We note that such redundancy in the original differential equation often occurs
in chemical kinetics, circuit analysis, and other fields, due to constraints between
variables which result from physical conservation or balance laws. Here, the re-
sulting initial value problem for the two-dimensional system could be studied by

describing all representative trajectories in the first quadrant of the s — ¢ plane.

Biochemists often explain the Michaelis Menten kinetics less mathematically by
simply assuming a pseudo-steady state such as é ~ 0. This approach set one
derivative in this system equal to zero, but remains the other. It is used extensively

though it is not always valid (as at ¢ = 0, where ¢(0) = 0 while s(0) > 0).

For a better understanding of the true solution behavior the variables can be

nondimensionalized by setting

ko _ k_1+ ko __€g

Z: kie t, A= y ’
170 k1so k1so 50

s(t c(t
o =0 ym =, (28)
So €o
Typically, € ~ 1075, Omitting the bar on t we obtain the singularly perturbed
initial value problem
t=—-z+(x+r-Ny, 2(0)=1

MM
y=z—(z+r)y,  y(0)=0.

Because the fast variable is stable for e — 0

T+ K <0

i
dy =(t) €
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Xo(t)

Figure 6: Outer Solution of Michaelis-Menten kinetics; corresponds to quasi-steady state as-

sumption.

(assuming A and « positive and bounded), we get the corresponding reduced dif-

ferential algebraic initial value problem

dXy
— =-X X - MY, Xp=1
dt 0+ (Xo+r =)o, 0 (2.10)
0= XO - (XO + H)Yb
That yields the outer solution Yy = Xf_‘;_ﬁ and the reduced-order initial value
problem
dXo AXo
—_— = — Xo=1. 2.11
dt Xo + &’ 0 (2.11)

They together correspond to the pseudo-steady state hypothesis of Michaelis-
Menten, see figure 6. Because the limiting outer solution cannot describe the
fast variable y near ¢ = 0 there is need for an initial layer correction in y that

suggests an asymptotic solution of the form

x(tye) = X(t,€) + e&(T,€)

(2.12)
y(t,e) =Y (t,e) +n(r,e€)
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1+kK

] %(s)

Figure 7: Concentration of enzyme-substrate complex; corresponds to fast variable of Michaelis-
Menten system.

with an outer solution () and an initial layer correction (if) which tends to zero

Y
as the stretched time

Y ,6; —
(5(7’ 6)) i(ﬂﬂ)é (2.13)
n(re)/ =(r)

will satisfy linearized variational differential-algebraic systems obtained from suc-

cessively equating coefficients of higher powers of € to zero.
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3. Chararcterization of Permanence

5 ery few dynamical systems allow for analytical treatment. Besides, of-

ten one is not interested in all details of a dynamical system or in the
structure of its w-limit sets, less detailed knowledge may well be sufficient. In this
context one could investigate the following question: Can all species coexist in the
system for arbitrarily long time? Or will some species die out in the long run ?
Schuster et al. [84] introduced the notion of permanence (permanent coexistence)
to formalize this question. A variety of different notions of cooperation, the first of
which is now called weak persistence [31], have been proposed by various authors.

For an overview see reference [30]. A recent review of permanence is [60].

Let S be a closed subset of R™ and let f : S — IR™ be such that the solutions

x(t) € S of the initial value problem

= f(x), =(0)=x (3.1)
is unique and defined for all ¢ > 0.

Definition. The dynamical system (3.1) is called permanent, if all orbits are
uniformly bounded and there is a compact set C entirely contained in the interior

of S, such that for all = € int .S holds

w(x)eC (3.2)

An equivalent formulation for both bounded and unbounded state spaces is the

following
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Theorem 4. (Hofbauer and Sigmund [55]) The dynamical system (3.1) is perma-
nent iff there is a 6 > 0 and a M > 0 such that for all initial conditions x € intS
holds

tlim inf dist(x(t),0S) > 6

: (3.3)
thm sup |z(t)| < M

If the statespace S is compact, the second condition — uniform boundedness of the

orbits — is always satisfied.

We remark that one obtains the definition of (strong) persistence for 6 — 0 in
equ.(3.3). [30]

Thus far there is only one necessary and sufficient condition for permanence.

Definition. Let P : S — IR be a nonnegative function, strictly positive in int S
and vanishing on 05. Furthermore, suppose that there is a lower semicontinuous
function ¥ : S — IR such that the following conditions hold

(i) For all z € int S we have

P(z) = P(z)¥(x) (3.4)
(ii) For all z € 95 we have for some T > 1
%/OT U(a(t))dt > 0 (3.5)

Then P is an Average Ljapunov Function for the differential equation (1).

Theorem 5. Suppose all orbits are uniformly bounded. Then the dynamical
system (3.1) is permanent iff it admits an Average Ljapunov Function. That
existence of an Average Ljapunov Function implies permanence has been shown by
Hofbauer [51], the converse is due to Hutson [59]. It has been shown [58] that it

is sufficient to require condition (3.4) for all points in w-limits on 0S only.

As a consequence of Brower’s fixed point theorem it has been shown that if the
dynamical system (3.1) in permanent then there is a rest point in the interior of
S [61].
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In the following, attention is restricted to only two types of ordinary differential
equations:

(i)  The replicator equation
i = o [frle) = Y wi f(2)] (R)
i=1
is defined on the simplex
Sn={x € ]R7_|1_|ij =1}
71=1
(ii) whereas the ecological equation (E) — also known as Kolmogorov system

Ur = Yrr(T) (E)
is defined on the positive orthant R}

Note that the simplex S,, is n — 1-dimensional. The ecological and the replicator
equation are closely related to each other. Let F{n} be the face of 5,, defined by

Ty, = 0. Let us now investigate the following transformation:

H: Sn\F{n}—ﬂRi_l: ykzi—k k<n
- n Yk
Ht: R? - S, \ Frpann: oTh = ———,
b= Snt1 \ Fngny k (S S (3.8)
1
Tpn4l1 = 7———=n
1+Z]=1y_7

This diffeomorphism has originally been used by J. Hofbauer [49] to show flow

equivalence between the second order replicator equation
ir =z [(Az), — (zAz)], k=1,...,n (SR)
and the Lotka-Volterra-Equation

yk:yk[rk+(By)k}, kzl,...,n—l. (LV)
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The transformation allows us more generally to obtain an ODE of the form (E)
from any ODE of the form (R) via

(1) = Sl 5= 0 D)=y 1) (3.11)

and vice versa.

We will use the notation Fx for the interior of the faces of S,, or ]R?_ defined by
xp =0forz €S, (or yr =0 for y € R, resp.) if and only if k£ € K.

Jansen [62] proved a sufficient condition for permanence of second order replicator
equations (SR) and Lotka-Volterra Equations (LV) based on the Average Ljapunov

Function .
P(z) = H s with p=(p1,...,pn) € int Sy (3.12)

and the following theorem on time averages:
Theorem 6. Let x(t) be a trajectory in int IR satisfying condition (3.3). Then

there is a unique restpoint § in int IR", satisfying

1 T
j= lim — t)dt 3.13
g ngoT/O y(t) (3.13)

An analogous results holds for second order replicator equations [82].

Definition. [50] A rest point of (SR) #X € Fy is called saturated if for all

transversal eigenvalues
Me(#8) = [A2K]), — (28 A2K) keK (3.14)
holds A (#%) < 0. Analogously we obtain for Lotka-Volterra systems
Ae(§™) = ri — [A9"] (3.15)

for the transversal eigenvalues of a rest point §% € Fi.
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Theorem 7. (Jansen [62]) Let #% denote the isolated rest point of (SR) or (LV)
in the interior of the boundary face Fi. In case of (LV) assume additionally that
all orbits are uniformly bounded. Then (SR) or (LV) is permanent if there is a
vector p € intS,, such that for all ¥ holds

> pi-A(E%) > 0. (3.16)
jEK

Theorem 6 does not apply to the more general systems (R) or (E). Therefore, there
seems to be no way to obtain a pure algebraic condition for permanence for more

complicated systems than (SR) and (LV).

The following linear programming algorithm to solve the set of linear inequalities

(3.16) is also due to Jansen [62]:
Theorem 8. Let 2% as in theorem 7. The solution of the LP-problem

Z — min.

d (@) +z>0 vk

> pi=1
7j=1

fulfills one of the following three alternatives
(1) Zmin <0 and all p; > 0. Then (SR) is permanent.
(7i) Zmin < 0 and some p; < 0. Then (SR) is not permanent.

(#ii) Zmin > 0. Then the permanence-problem remains undecided.

A matrix A for which (SR) fulfills Jansen’s permanence criterion (i) will be referred

to as type-j matriz.

An analogous result holds for Lotka Volterra systems (LV) with uniformly bounded

orbits.
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Since the second order replicator equation (SR) is invariant under the transforma-
tion

aij — a;j +b; (3.18)

with arbitrary constants b; we may assume the normal form a;; = 0 without loss

of generality.

Except for the existence of an interior equilibrium there are three additional nec-

essary conditions for permanence in second order replicator equations

Theorem 9. (Hofbauer and Sigmund [50, 55]) If the dynamical system (SR) is
permanent and A is in normal form then the following conditions are fulfilled:
(i) There is a unique interior equilibrium & € int.Sy,
(1) ®(3) =D 7_ aiji:i; >0
(iii) (=1)""'detA > 0.

(iv) There is no regular saturated rest point in 0S,.

We will say that a matrix A fulfilling (i) and (ii) is type-a, if (iii) also holds we call
it type-b and if finally all four necessary conditions are fulfilled we call A a type-c

matriz.

Remark. If A is a type-j matrix, it leads to permanence; thus it is also a type-
¢ matrix. The converse is not true: neither type-j nor type-c is equivalent to

permanence.
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4. Boundary Conditions

atural environments are always open systems. There is either in—/outflux

¥ of matter, or of energy, or of both. So one has to provide a both experi-

mentally and mathematically suitable surrounding in order to keep the dynamical

system away from equilibrium.

Given the choice of better experimental or better mathematical treatment, one

has to select out of a couple of different models that allow for both necessities:

(i)

From the experimental point of view the most natural choice is the continu-
ously stirred tank reactor, CSTR. It consists of a reaction vessel with constant
volume V' which is well stirred so that all concentrations are spatially homo-
geneous. An influx line introduces at a constant flux rate r» which contains
the building material (A) at a constant concentration. The volume is kept
constant by an outflux of the reaction mixture at the same flux rate . Con-
sidering replication only, the system of differential equations reads in this

case

q = —a;yjfj (y) +r(ao —a) (CSTR)

Yk = yrlafe(y) — ]
A simpler dynamical system can be obtained at the expense of a much more
demanding experimental setting. The influx of the evolution reactor is reg-
ulated such that the concentration the building material (A) is constant in
time, for instance by providing a large excess of (A) in the input flux. The
outflux is regulated as well: two outflux channels, one for the reaction mixture
and one equipped with a diaphragm that holds back all polymeric material
are regulated such that both the volume of reaction mixture and the total
concentration of the replicating species are kept constant. This setting has
been termed constant organization. An approximate realization of an evolu-

tion reactor under constant organization is Husimi’s cellstat [57]. The kinetic
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differential equations for this system read

. G0 N~
Uk = Yrao [r(Y) ykzjyj;yyfy(y)- (4.2)

n
. o, o . . . . def
In this case it is convenient to introduce relative concentrations rp ==y / E Yk
j=1

and to rescale the units such that ag = 1. The differential equations above

then simplify to
br = | fr(z) =) wif(@) (R)
7j=1

This dynamical system has been termed replicator equation [80]. Originally
developed as a model of prebiotic evolution replicator equations have been
encountered since then in many different fields: populations genetics, math-
ematical ecology (where they occur disguised as Lotka-Volterra equations
[48]), economics, or laser physics. Their properties have been the subject of
hundreds of research papers by many research groups, see the book by Hof-
bauer and Sigmund [56] and the references therein. In this contribution we
will be concerned with the relation between the dynamical systems (CSTR)
and (R).

(iii) Yet there is still another possible setting for boundary conditions. Sometimes
it it convenient to assume that there is no flux of material at all, but only
exchange of energy. The low molecular supply gets regenerated from degraded
macromolecules by some more or less sophisticated mechanism which is driven
by the energy flux, e.g., radiation. The kinetic differential equations for this

system read
a

p = — 0O N, . 4.4
Uk = Yraofr(y) ykzjyj;ygfg(y) (4.4)
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(A) S

AON

Figure 8: CSTR and Evolution Reactor under Constant Organization.

The continuously stirred flow reactor (CSTR) is known also as “chemostat” in micro-
biology. The reaction is maintained by the continuous influx of a solution containing
the materials which are necessary for replication. In the simplified model systems to
discussed here, we assume only one energy rich compound (A). The evolutionary con-
straint is provided by the continuous outflux of solution from the reactor. Replicating
molecules are injected into the reactor at ¥ = 3. Then, their concentrations may
increase and eventually reach a stationary value, or they may be diluted out of the re-
actor depending on the input solution and the flow rate 7 which is commonly measured
in terms of the reciprocal residence time of the solution in the tank reactor [45].
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solvent (A) Q

o0

measurements

Computer

Figure 9: The evolution reactor is a more sophisticated version of a flow reactor. It consists of
a reaction vessel which has walls which are impermeable to polymer material. Energy
rich monomers are poured from the environment into the reactor. The degradation
products are removed steadily. Material transport is adjusted in such a way that the
concentrations of energy rich monomers are constant in the reactor. A dilution flux
is installed in order to remove the excess of polymers produced by replication. Thus
the sum of the polymer concentrations may be controlled by the dilution flux. Under
“constant organization” it is adjusted such that the total polymer concentration is
constant in time. This regulation requires internal control, which may be archived by
analysis of the solution and data processing by a computer as indicated above.
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Energy

+
e ] e
— = k — =
e —
O
O \/

Figure 10: The regenerative dynamical setting is convenient for models with no flux of matter.
The driving force is a flux of energy that supplies some mechanism of regeneration that
provides the low molecular building material.
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SUDDENLY I FELT MY BRAIN SLIDING DOWN THE IN-
SIDE OF MY LEFT NOSTRIL. [...] I KNEW I HAD TO
GET IT BACK INSIDE, SO I GRABBED THE LUMP AND
SWALLOWED IT QUICKLY. AFTER RECOVERING MY
BRAIN [ WENT BACK TO SLEEP AGAIN.

Nina Fitzpatrick, Fables of the Irish Intelligentsia

— 44 —



REDUCTION OF CSTR TO CONSTANT ORGANIZATION

3. Redurtion of the CSTR Egquations
to Constant Grgantzation

cal treatment of the resulting differntial equations from the CSTR is all but invit-
ing. But the answer to the question, whether for some parameters the constant
organization setting describes the behavior of the CSTR well enough, can be read-

ily given [42].

Second order replication with arbitrary response-functions fi(y) yields the follow-

ing system of differntial equations.(see previous chapter.)
i=-a> yif5(y) + rao —a)
j; 7 (CSTR)

Yk = yrlafe(y) — 7]

Let R denote the second order replicator equation with the same response functions

-

The limat of small fluxr rates r. In order to simplify the notation below let us

introduce the total concentration of the replicators z = Zyj and the activity of
j=1

the system ®(y) = Z y; fi(y). Throughout this contribution we will assume that
j=1

the following to hypotheses hold:

(H1) there is a continuous function h : Rg4 — R4 such that h(z) < f;(y) on any
compact subset of R”};; and h(z) > 0 for all z > 0.

(H2) the initial conditions fulfills z(t = 0) > 0.

Hypothesis (H1) means that we limit ourselves to the species that are capable of
replication in the absence of all other replicators. The self-catalyzed selfreplication

can, however, be much less effective then replication catalyzed by other polymers
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in the system. Hypothesis (H2) requires that some replicators are present in the

initial condition.

It is well known that a(t) + z(¢) converges exponentially towards ag for ¢ — oo
[81]. The following lemma shows that the for small enough flow rates r the CSTR
will eventually be filled almost entirely by replicators (as opposed to being filled
by unprocessed building material) provided (H1) and (H2) are true.

Lemma 1. For any initial value problem (CSTR) fulfilling (H1) and (H2) there
exist two constants my, mg > 0 independent of the initial condition and a con-
stant rg = ro(2(0)) > 0 such that for all r < ro there exists a finite time
T =T(r,a(0),y(0)) < oo with the property that the inequality mir < a(t) < mor
holds for allt > T.

Proof. The first step is to show that there exists a constant 0 < v < 1, independent
of r and the initial conditions such that a(t) < vag. First we construct a differential

equation for z:

z= Zy] =®(y)a—rz > zh(z)a —rz. (5.2)

Now suppose there is a t* > T, which might depend on r > rg, such that a(t) >
~vag. Then

H(t7) > =(t) [aoh(=(t)) = 1]

-~

>0

By continuity of h there is a continuous function zo(r) > 0 such that yagh(z) > 2r
for all z > zo(r). Conversely, given z(t*), there exists a r* > 0 such that
the expression in the bracket is bounded from below by r*. Then z(t + t*) >
z(t*) exp(r*t) — oo, which contradicts the uniform upper bound z(¢) < 2ag, be-
cause of z(t) + a(t) — ag for long times. Since 7 is an arbitrary constant for which
have only required 0 < 7 < 1 we have in particular z(t) > ag/2 and a(t) < ap/2
for allt > T.
The second step is to use the differential equation @ = —a®(y) + r(ap — a) for
obtaining tighter bounds on a(t). For large enough t one finds

1 Tag

— min

2 O(y)+r

rag

<a(t) < 2max ————,
O < 2mG0)

(5.3)
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where the minimum and the maximum are taken over all y(¢) with ¢t > T'. The

lower bound is easily obtained:

1 ragp > rag 1 > aop 1 def
—min —mm > — - r——
2 O(y)+r 2 max®(y)+ro 2 2a9Mi + 7o

myr,  (5.4)

where we have used that max ®(y) < max z-max f;(y) and M, is a uniform upper
bound for f;(y) on the box [0, 2ao|™ which exists by the continuity assumptions of

f;. Analogously we observe that

min ®(y) > min z - min h(z) > %0 min P(z) = 2,
z>ap/2 2
where the constant 7 == min ®(z) > 0 as an immediate consequence of (H1).

z>ap/2
Collecting the inequalities for the upper bound we find

aor def
t) < det o,
W< ey "

Observing that my is independent of r completes the proof. g

Schuster and Sigmund [81] showed that the projections of the trajectories of
(CSTR) to relatives concentrations zj follow a replicator equation (R) provided
all functions fx, 1 < k < n are homogeneous of degree p. They were not concerned
with the survival or extinction of the replicators. As a consequence of Lemma 1

we can resolve this problem.

Theorem 10. Consider the system ( CSTR) together with the hypotheses ( H1)
and ( H2) and let fi. be a homogeneous function of degree p for 1 < k <mn. Then
there is a constant ro > 0 such that for all v < ro we have z(t) > ag/2 for large
enough times t and the relative concentrations xi are given by the solutions of the

replicator equation ( R) up to a finite change in velocity.

Proof. Tt has been shown in [81] that the xj fulfill the differential equation

Tk = azp {fk(y) - ixjfj(y)} = a(t)2(1)P - {fk(x) - ixjfj(ﬂ?)} (5:5)
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Lemma 1 now implies that a(t)z(t) > mir(ap/2)? > 0 for large enough times, and
thus we can invoke a change in velocity in order to drop the time-dependent factor

a(t)z(t) without changing the phase portraits. g
Using ¢ =£ In(a/r) instead of a we can rewrite (CSTR) as

g =agexp(—g) —®(y) —r
(CSTR)

Ur = ryx (fx(y) exp(g) — 1)

Lemma 1 can be restated for this dynamical system in the following form:

Corollary 1. Given zg > 0 there exists a constant ro = ro(z0) such that the
compact box K =L [Inmy,Inms] X [ao/2, 2a0|™ is strictly forward invariant under
the flow of (CSTR’) for all v < rg, and K is reached in finite time from all initial
condition fulfilling z(0) > 0.

Lemma 2. The phase portrait of (CSTR’) and the phase portrait of the singular

perturbation problem

rg = exp(—g) (ao exp(—g) — ®(y) — )
(SPP)

Ur = Yk (fx(y) — exp(—g))

are topologically equivalent on the compact box K provided 0 < r < rg.

Proof. The vector fields on the r.h.s of eqns. (CSTR’) and (SPP) differ by simply
by the factor rexp(g). Lemma 1 implies immediately that rexp(—g) = a(t) is
bounded away from 0 on the box K. Thus (SPP) is obtained from (CSTR’) by a

change in velocity. g

Now it is highly time to turn to the purpose of the whole game:

The Main Result. Let us now return to the limit » — 0 our singular perturbation
version of the CSTR equation. The main result of this contribution is that (SPP)

reduces to a replicator equation in the above sense.
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0.6 - CSTR i | Constant i
' r=0.075 Organization
04 1 1 F -
N
X
02 1t 1+ -
0.0 L | L | L L | L | L | L L |

0.0 0.1 0.2 03 00 01 02 03 04 00 01 02 03 04

x1
Figure 11: A numerical example of a chaotic attractor. For small 7 the dynamics of the CSTR
and the corresponding replicator equation become virtually indistinguishable.
We consider four replicating species with interaction functions fk (y) = Ozk—{—zj AkiY;j,
where at = 0.1 and

0 05 —01 0.1
. 1.1 0 —0.6 —0.001
Tl -05 1 0 0655

1.7 -1 —02 0

A was chosen according to [4, 5, 77]. Initial conditions were Y123 = 0.1,y4 =
0.7,a = 0.1 and ag = 1. From left to the right the flow rate 7 was reduced (r; =
0.075, r9 = 0.01, r3 = 0.0) The right-hand figure represents constant organization.

Theorem 11. (CSTR) reduces to the second order replicator equation on K for

small enough flow rates r.
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Proof. In our model the fast variable g is one-dimensional. Of course all our vector

fields are smooth enough for the above arguments to be applicable to our models.

For r = 0 the first equation reduces to ®(§) = agexp(—g), i.e., given y we obtain a

unique solution for g on K. Its Jacobian at x is simply given by partial derivative
99

99 = exp(—g) (agexp(—g) — ®(y) — r)—agexp(—2g) = —rg—agexp(—2g). (5.8)

For sufficiently small » we have |rg| < agexp(—2¢) on K and hence the solution

for g is stable on K. Consequently (CSTR’) reduces to (R) for small enough r.

In particular there is a one-to-one correspondence of the fixed points of the replica-
tor equation (R) and the equilibria of (SPP) for small non-zero flux rate r, provided
the equilibria of the replicator equation are regular (i.e., if their Jacobian matrices

are hyperbolic). Similarly, hyperbolic limit cycles carry over.

In general, if only the concentration of the low-molecular monomers is small enough
then constant organization with its much less involved mathematics is sufficient

to describe the dynamical behavior.
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B. Autoratalytic Networks witly Tranglation

{ 2odels of early stages of evolution cannot entirely ignore the fact that

today (almost) all catalytic activity is carried out by proteins. Thus at

some point the invention of translation is inevitable [41].

6.1. Model Equations

Let us consider a system of n species I1,..., I, of replicators or genotypes and
their translation products Ti,...,7T,. For sake of definiteness, we may consider
the genotypes as nucleic acids and the translation products as proteins in same
later stage of prebiotic evolution [79]. The replication processes involve translation

products T; of the genotype I; as catalysts:
(A)+ e +T; 2L, + T + (W) (6.1)

for all combinations 1 < k, j < n. The rates of these reactions are aj ;[(A)] [1] [T}],
i.e. we assume mass action kinetics. Since there are no convincing models for the

kinetics of translation in a prebiotic setting we make the most simple choice:
(B)-i—[k &Tk-i-fk (6.2)

with rate wj [(B)][Ix]. We assume that the genotypes I} and the translation prod-
ucts are different types of biopolymers, thus the concentrations of the monomers
[(A)] and [(B)] are independent from each other. Consequently we will assume
that the two types of polymers are subject to different degradation or removal
reactions. In the mathematical model the latter are described by outflows [T}]®T

and [Ix|®, respectively.
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Thus the dynamical system considered here reads in its most general form

S0 = 11 Y aly ()] 1] - @
j=1 (6.3)

d / T

Note that we are still missing equations governing the concentrations of the monomers
[(A)] and [(B)], and that we have not yet specified the functions ® and ®7 which
describe the removal processes. The three types of boundary conditions, described
earlier are used again in order to gain open dynamical systems. The structure of
the differential equations is somewhat more involved than in the pure replicator
case.
(1) Constant Organization assumes
(i) that the monomer concentrations are buffered and thus constant in time,
and
(ii) that the total concentration of the different polymer types is kept con-
stant in time.

It will be convenient to use the effective rate constants

arj =[(A)]ar;  and  wp ==[(B)Jwg .

A further simplification is achieved by switching to relative coordinates

oo 2L/ L] and e ZL [T/ [T
J J
As simple calculation then shows that
b = inaijtj and ‘I)T = Zwixi . (64)
,J {
In matrix notation we obtain thus

ik = T [(At)k — <33, At>] tk = WET — tk(w, x) (RT)
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The state space of this model is the direct sum of the two (n —1)-dimensional
simplices corresponding to the coordinates xx, £k = 1,...n, and tx, k =
1,...n, respectively, where (.) denotes the scalar product.

The Continuously Stirred Flow Reactor (CSTR) is the most convenient ex-
perimental setting. A constant flow of rate r through the system carries
the monomers with concentrations ag and by and removes monomers and
polymers at the same flow rate r proportional to their concentration. Us-
ing conservation of mass one immediately finds the dynamical equations for

the concentrations of the monomers a =£[(A4)] and b == [(B)]. In order to

simplify the notation we use y;, == [I;] and uy = [Tk]-

Uk = Yk [a(Au); — 7]

U = wibyr — rug
(CSTR)

a=—aly, A'u) + r(ag — a)

b=—bw,y) +r(by — b)

The state of the system is described by a vector (y,u,a,b) € R} @ R @
RidRy.

We assume that there is no flux of material into or out of the system. The
system is kept away from thermodynamic equilibrium by means of an energy
consuming regeneration reaction that produces active monomers from the
degradation products of the polymers. While not very realistic for an experi-
mental approach this type of boundary condition is very useful for the study
of pattern formation processes as it leads to meaningful reaction- diffusion
models [107, 98, 43]. In spatially homogeneous models we obtain equations
similar to the CSTR discussed above. The rate constants of the degradation

reactions are dj and dg, respectively. Conservation of mass ensures that
[(A)] + 2 lk] = ao and [(B)] + > [Tk] = bo-

U = yr [a(A'u); — di]

i = wiby — df,

(REG)
a= _a<y7 AIU) + <d7 y>

b= —b{w,y)+ (d',u)
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The state space is the direct sum 5,41 @ Sn+1 of two n-dimensional simplices.

Since all three dynamical systems describe the same chemical reaction system,
although under quite different boundary conditions it is not surprising that their
dynamics is quite similar. Constant organization is by far the most tractable case.
A complete derivation of the results is given only for this case. Results for the
CSTR and the regeneration system are often very similar to the CO case. The
details can be found in [40]. It has been observed quite often that the dynamics of
replication systems in a CSTR or in a model with regeneration reaction(s) become
very similar to the constant organization case when the flow rate r (or the reaction
rates for the regeneration steps) become small. A singular perturbation treatment
of this effect can be found in a later chapter and also is compiled in [42]. For a

partial result see [81].

6.2. Fixed Points

Despite the fairly complicated form of our reaction scheme it is not difficult to
compute the coordinates of all equilibria. Let us begin with interior equilibria,
that is, with rest points at which all species occur with non-zero concentration.

We shall use the notation 1 for the vector with entries 1.

Theorem 12. Consider the reaction translation model under constant organiza-
tion. Then there is a unique interior equilibrium (&,1) € int (S, @ S,) if and only

if A=11 is either strictly positive or strictly negative.

Proof. Suppose A is invertible and (&,7) is a fixed point of (RT). An explicit

computation shows

A1 - A1
:i’k = n( )k and tk = % . (6.8)
1, (1, A-11)
we Y (A7),
=1 "

Thus € int S,, if and only if (A~11), has the same sign for all k. Then &, > 0 as

well since the coefficients wy, are all strictly positive by assumption.
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Remark. If there is an isolated interior equilibrium, then A is invertible and
(A711), has the same sign for all k. Furthermore there are at most two isolated

interior rest points for CSTR.

The expression for the z-coordinates of the interior rest point above strongly sug-

gests to introduce the matrix

B == Adiag[w].

With this definition we may write

1 N 1
= ———B™11 =A™ :
T T B-11) and t T A-TT) (6.9)

for the location of the interior equilibrium.

On the boundary of the state space at least one coordinate is zero. It is useful to

observe that equilibria on the boundary have a particular form:

Lemma 3. Suppose all translation rates are non-zero and let £ = (&, f) be a rest

point. Then &, = 0 if and only if t, = 0.

Proof. Suppose @, = 0. Then ¢, = —t,{w, x), where the scalar product (w,z) >
0 by assumption. Thus #; = 0. Now suppose t; = 0. This implies 0 = wyZj, and

thus 3 must vanish. g

If some of the wj are zero, parts of be boundary consist entirely of fixed points.
We will not consider these degenerate cases any further. The non-zero coordinates
of £ can be obtained by restricting the dynamical system to the variables that do
not vanish in ¢, i.e., to a smaller system of the type (RT). The theorem above can
therefore be applied also to the non-zero part of a rest point £ on the boundary of
the state space. All isolated rest points of (RT) are thus obtained as the interior
rest points of (RT) restricted to a subset K C {1,...,n} of the n replicating

species.

The stability analysis of the rest points will turn out to be very complicated in gen-

eral. It is fairly easy, however, to determine the stability of a boundary equilibrium
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¢ against introduction of species which are not present in £&. The corresponding di-
rections are called transversal [56]. To this end it will be convenient to temporarily

rearrange the order of the coordinates such that

€ = (xla tla T2, t2a e o3 T, tn)
and #; =t; = 0 for 1 < i < m. The entries of the Jacobian matrix in the first 2m

rows and columns are readily computed:

0Lk (€) = Sul(ADk — {2, AD] + 0 2L Lu(€)u
Ty
M) =0
¢
. (6.10)
O o1 _ s
a—m(f) = O Wk
i .\ .
a7, &) = ~{w.2)
Consequently the Jacobian ORT(&) is of the form
Li(§) 0 0 0 0
(( w (w,a%)) 0 0 0 0
Ls(€) 0 0 0
0 < w2 (w, z) 0 0 0

=)
=)
/N
t~
3
—
Iy
~
)
N——
o

0
o 0 0 ... 0
\ X Y
where the 2(n — m) x 2m block X is irrelevant for the stability of £ and Y is the
2(n — m) x 2(n —m) Jacobian matrix of (RT) restricted to the species that do
not vanish in the equilibrium £. The eigenvalues corresponding to the transversal

direction k are now easily computed from the 2 x 2-blocks. We find explicitly

AD =76 and AP = —(w,2) <0. (6.11)
Assuming as usual (w, %) # 0 we have £ = <w1i>diag[w] Z and thus
1
N = 1y (Adiag[w] ) — (8, Adiag[w] )] = 7= [(BE)e — (5 BE)]

(6.12)
Following [50, 56] we will say that a rest point £ of (RT) is saturated if all eigen-
values belonging to the transversal directions are non-positive. The above consid-

erations can then be summarized as
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Theorem 13. Let ¢ = (&,1) be a boundary equilibrium of a replication translation
model for which A is invertible and wi > 0 for all k. Then & is a saturated
equilibrium if and only if & is saturated equilibrium of the second order replicator

equation with interaction matriz B = Adiag[w], i.e., if and only if

Me(€) 2L (B&)y, — (&, B2) <0 for all k with &y = 0. (6.13)
by > by by = by bjj < b
e e |iomPpoj i 00|
Mutuaism Commensalism Parasitism Pi > bii
Symbiosis Predator-Prey
i ® | |ioe1—e®]
bii = bii
Neutralism Amensalism e
i L @ ® J
bji < bji
Competition

Figure 12: The different types of interaction: full arrows indicate bij —b;; > 0, empty arrows
bij — bjj < 0.

The matrix B = Adiag[w] occurs both in the explicit expression for the z-coordinates
of an interior rest point and in the expression for the transversal eigenvalues of a
boundary equilibrium. In both cases our result match the situation in a second
order replicator equation with B as interaction matrix. We will see in the following

sections that this relation between (RT) and replicator equations is even deeper.

In [95] it has been proposed to represent an autocatalytic network by a directed
graph with colored edges. In complete analogy we introduce the same notation

here: The vertices of the graph f(RT) associated with the reaction-translation
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model (RT) are the replicating species I,...,I,. There is a “full” arrow from j
to 4 if b;; — by = (ai; — ajj)w; > 0, and there is a “empty” arrow from j to 7 if
bi; — b;; < 0. As an example, look for the two-species model as follows. The six
different graphs of this type on n = 2 vertices match the usual classification of
ecological interactions between two species, see figure 12. In the following section
we show that they also correspond in a very natural way to the classification of the

dynamical behavior of the two-species replication-translation system, see figure 13.

6.3. Two Species

The special case n = 2 allows for a complete analysis of the dynamics under con-
stant organization. We consider here the general two-species system with general
selection matrix A with entries a;; > 0 and and translation constants (wy, wz) > 0.

It will be convenient to use the following abbreviations:
def def
C1 == Q12 — G22, C2 ==0a21 — a11.

The results of the previous section imply immediately that an interior equilibrium
exists if and only if ¢1,c9 > 0 or ¢1,c2 < 0. The Jacobian of the interior rest
point can be readily diagonalized with the help of Mathematica. One finds the

two external eigenvalues

D

2(cq + ¢2) 1wz + cawy

(6.14)

which do not influence the dynamical behavior on Sy & S3. Both are negative
whenever there is an interior rest point. The dynamical stability of this fixed

point is determined by the remaining two eigenvalues

—(e1 + co)wiws + /(1 + ca)2wiw3 — 2¢icowiwa(crwy + cawy)

6.15
2(6111)2 + Cle) ( )

Az 4 =

,58,



AUTOCATALYTIC NETWORKS WITH TRANSLATION

(xa2.t1)  (xat2)

RT : O o
¢, ¢

(X1.t)  (Xy.tp)

R: X))~ (x) @ SNC, 0 -0 0O

Figure 13: Comparison of the phase portraits of (RT) and (R). Black circles indicate sinks,

gray ones saddle-points, and white ones are sources. The corresponding graph P(RT)
is shown below.

This is of the form a + \/a27— , where « is always negative and sgny = sgncy,
provided ¢; and cy have the same sign. Assume that c¢1,co > 0. Then the square
root is either complex or if it is real then it is smaller than «. Consequently
A3,4 < 0 and the interior rest point is a sink. If ¢;,co > 0 then v < 0 and the
square root is real and larger than a, hence A3 < 0 and A4 > 0, and the interior

equilibrium is a saddle point.

Finally, let us briefly consider the 1-species equilibria. Their stability is determined

by the eigenvalues

aiic cic
(1,1;0,0)  :h=———,  Ag=——,
C1 + C2 C1 + C2 (6 16)
a29C cic :
(0,0;1,1) A =222 Ny =2
c1+ c2 c1+ca
Summarizing our calculations we have
c1,c2 <0 Both corners are sinks and the interior equilibrium is a saddle
point. Its unstable manifold connects to both sinks.
c1>0,c0<0 Corner 1 is a sink and corner 2 a saddle point. The unstable

manifold of corner 2 connects to the sink. There is no interior
rest point.

c1 <0,c0>0 Corner 2 is a sink and corner 1 a saddle point. The unstable
manifold of corner 1 connects to the sink. There is no interior

rest point.
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c1,c2 >0 Both corners are saddle points and the interior equilibrium is
a sink. The unstable manifolds of both corner saddle points

connect to the interior sink

The phase portraits corresponding to these four cases are shown in Fig. 13. They
compare directly to the phase portraits of the second order replicator equation

with interaction matrix A.

6.4. Barycentric Transformation

Before we proceed with the linear stability analysis of interior equilibria in larger
systems, we briefly discuss a transformation that will turn out to be a crucial tool

for most of our results. The following lemma is well known, see e.g. [56, sect. 12.4].

Lemma 4. Let D = diag[dy, ..., d,] be a diagonal matriz with d; > 0. Then there
1s a diffeomorphism B : S, — S, mapping the phase portrait of the second order
replicator equation with interaction matriz A to the phase portrait of the second

order replicator equation with interaction matriz AD.

This result can used to simplify the algebra for the stability analysis of an interior

def

rest point. Suppose there is an interior rest point . Setting d; 1/#; sends &

results in B(#) = 11, i.e., the interior rest point is mapped to the barycenter of the

T n

simplex. Therefore B is usually called barycentric transformation. The fact that
the coordinates of the interior rest point are now of a very simple form simplifies
the algebraic manipulations in many cases. Fortunately, a similar result holds for

our replication-translations system (RT).

Theorem 14. Let a;; be an arbitrary matriz, (z,t) € S, & S, and let (¢, d) €
int (S, ®Sy). Then B: S, & S, — S, & Sy, (x,t) — (u,v) defined by

G and e = dit;
> €T, b djty

Uq

(6.17)
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18 a diffeomorphism mapping the orbits of

E akiti— E xiaijtj
{ ,J

ty = wprr — tg E w;T;

1

(6.18)

onto the orbits of

e =g [ Y brivi— > ui »_ bijv;
i i j
(6.19)
b= | Teue — vk Y vy | éu,v),
J
where the coefficients of the latter differential equations are b;; = a;;/d;, v =

d;w;/c;, and

_ (;%) Zl:z—ll > 0. (6.20)

Proof. The inverse map B! is given by

U; 1 (% 1
Ci ) ;Cj uj d; >,

Differentiating u; and v; yields

U; = - 3 X;C; CjTj — Ciy Cix;| =
(Zj le‘j) J J

Zaijtj — Z.’lﬁj Zaﬂtl =
J J l
= u; a” Z uj Z @vz 1_1 . (6.22)

Uj

diwia:i djijj
— U; = — U; -
Z d t Z Zz dztz X dgt 2. 2 dity

v =

—1
_ d;w; djwj Zj dj v
= U; — V; E Uj
Cj

, —1
ci - >iC U
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By means of a change of velocity and setting b;; = a;;/d; and 7, = d;w;/c; we

obtain finally the proposition.

Corollary 2. Let £ = (&,1) be an equilibrium of (RT) and let

x; t
Ui = ——< 737 and v, =

— 6.23
By #) w by t_lt (6.23)

Then the fized point of the dynamical system obtained from (RT) by a barycentric
transformation with parameters u;, v; is B(€) = 1(1,1).

Proof. From theorem 14 one finds immediately

X & 1 P t; 1
Ui = ——= — - — — an V; = — = —.
:cizjlexj n tZt lt n"

6.5. Competitive Systems

Schlogl [76] investigated two model systems in which the substance X; is formed
from a substrate A via first order and second order autocatalysis, respectively:
A+ X; — 2X; (first order autocatalysis) and A + 2X; — 3X; (second order
autocatalysis). In the (fully) competitive case the translation products catalyze
only the replication of their own gene, i.e., the interaction matrix is diagonal
A = diag[kq, ko, ..., k,]. Therefore the differential equations for the competitive
model simplify to

.’jfk = T kktk — Z ]ijjtj tk = WET — tk ij.’lij (6.24)
J J
The phase portraits of this dynamical system as equivalent with the phase portraits

of

Up = u; |v; — Zujvj U = (up — vi) o(u,v) (6.25)

as a consequence of the barycentric transformation.
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The Jacobian matrix of this vector field is readily computed:

9 = s
auj 1 T Y]

o0 .
%ui = —uin + uzé’w

! (6.26)

O s = (i = ) 2% 4+ 65, v)
8’Uj L ! ! 8uj Y ’

o . ¢

8—Uji)i = (Uz — Uz)a—v] — (5Z~j¢(u,v)

At the fixed point P = 1(1,1) we find that ¢(P) = w. Since u; = v; at this point,
the values of 0¢/du; and 9¢/dv; are irrelevant. The Jacobian is of the form

2f(P) = (é g)

where each of the four quadratic matrices A, B, C, and D is circulant. We find

explicitly:

1 1 1
A=—-——J, B=wl, C=—-——J+ —-I,and D = —wl, (6.27)
n? n? n

where J is the matrix with all entries one and I is the identity matrix. Matrices

of this type can be analyzed using the following interesting result:

Theorem 15. Let M be a mn x mn matriz which has m? circulant blocks M;;

of size n x n. The vectors w'¥) with entries

wJ(k) = exp(2m%), fork=0,....n—1andj=1...n (6.28)

are well known to be eigenvectors of any circulant n X n matriz. Set Mijw(k) =
pz(-;-c)w(k), let R™*) be the m x m matriz with entries pz(-;-c), and denote the eigenvalues
of R®) by A,

Then Agk) is an eigenvalue of M. In particular, if all matrices R%*%) are diagonal-

izable, then we obtain all eigenvalues of M as eigenvalues of the matrices R(¥).
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Proof. We rely on the fact that the w(®¥) form a basis of eigenvectors for all
circulant matrices. Let z € R™ and suppose £ = z x w*) is an eigenvector of M.
Then

Mllzlw(k) Mlgzgw(k) . Mlmzmw(k)
(k) (k) (k)

M — M21Z‘1w M22Z-2w e M2mz.mw  (R®2) x w® = AW,
Mmlzlw(’“) MmQZQCu(k) e Mmmzmw(k)

(6.29)
Since w(®) is non-zero, this equation is equivalent to the eigenvalue equation for
the matrix R(*). Thus ¢ is an eigenvector of M if z is an eigenvector of R*), and
all eigenvalues of R(¥) are also eigenvalues of M.
Now suppose that all matrices R*), 1 < k < m are diagonalizable. Denote by
24 < ¢ < n, an orthonormal eigensystem of R*) and let £k 2L (k:0) 5 (y(k)

be the corresponding eigenvectors of M. We find that
(20 s ®) ) s (DY = (R0 Y (R KDY = 8, - S, (6.30)

i.e., all eigenvectors corresponding to different k are orthogonal, even if the corre-
sponding eigenvalues should coincide by chance. Thus the £+ form a complete

orthonormal basis of eigenvectors for M. g

In the terminology of theorem 15 we find

_1 . 1
R(O) — ( n 0 ) and R(J) = (0 n ) (631)

w —w w —w

for the competitive model. R(®) belongs to the external directions since w(®) = 1.

The corresponding eigenvalues are

1
AOD = = and AO2) =y, (6.32)
n
The remaining eigenvalues AGY) for 1 < j < n and £ = 1,2 are now easily

computed using theorem 15:

1
A®) = —% £ 5vw? +dw/n (6.33)
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independent of j. Both A(t) and A() are n — 1-fold degenerate, and it is easy to
check that A7) < 0 < A(H) for all n > 2 and w > 0. Thus ¢ is a saddle point with

n — 1 unstable eigenvalues.

The result immediately carries over to all equilibria on the boundary of the state
space in the following form: Let & be a rest point on the boundary and suppose
there are m non-vanishing species at £. Then £ has m—1 positive and m—1 negative
eigenvalues which all belong to the directions spanned by the non-vanishing species.
In particular, if £ is stable, then m = 1, i.e., only the single-species equilibria can
be stable. That they are in fact stable is determined by the transversal eigenvalues
Ae(§) = —w < 0.

6.6. Cooperation

The hypercycle [25] may serve as the paradigm of a cooperative system. Each
translation product catalyzes the replication of one other species in a circular
arrangement, see figure 14; consequently, the interaction matrix is circulant, and

the corresponding system of differential equations reads:

jﬁk = T kktk—l — Z kj.%'jtj_l
j (6.34)

t = WrTr — Tk E w;T; .
J

Again a barycentric transformation yields

ﬂk =U; |V; — ZUjUj_l (6 35)
J .
Ok = (up — vi) P(u,v).

The external eigenvalues of the interior equilibrium (1,1) are

P N (L (6.36)
n
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For the remaining eigenvalues we find

1 4 ;
Agi) — _% + 5\/w2 + _we—27fﬂ/n’ (637)
n

and their real parts can be readily computed:

4 8 16
?R(Aj):—uw—ﬂg\/w+—cos<p+\/w2+—wCOS<P+—2- (6.38)
2 n n n

It is not complicated now to derive the critical value of w at which a Hopf-

Bifurcations occurs:

sin? (2= 1)
<1>cm N _% . (<27r(nnl)j>> : (6.39)

n

~ ~a nd./%\,z

o \Z/"”

a) b)

Figure 14: The hypercycle: a) chemical reaction scheme; b) graph representation.

Since w > 0, only values of j in the interval n/4 < j < 3n/4 can fulfill this
condition. Consequently, there are no Hopf bifurcations in the two-species model.
For larger systems we find

n=3,7=Weit = 1/2
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n=4,7 = .y = 0. Since we consider only non-zero values of the translation
rate, there is in fact no stable fixed point. The corresponding hypercycle
equation, however, exhibits a marginally stable fixed point [25].

n>>5 There are no stable interior fixed points. Computational studies indi-
cate that there is a (globally) stable limit cycle, as in the case of the

second order replicator equations [52].

All equilibria on the boundary are non-saturated and degenerate, in complete

analogy to the situation in the elementary hypercycle [83].

6.7. Reduction to Replicator Equations

These facts from singular perturbation theory make precise in what sense our
replicator-translation system is related to replicator equations. We set wy = wy /€
and consider the limit w, — o0, i.e, € — 0 with constant wy and find the following

very general correspondence:

Theorem 16. The replication translation model (RT) reduces in the singular
limit w; — oo to the second order replicator equation with interaction matrix

def
bij o aijwj .

Proof. Let wy = wi/e with wg, e > 0. With the notation we obtain the singular

perturbation problem

.i?k =Tk Z akiti - le Zaijtj
i i j (6.40)
Gik = WEpTE — tk Zwixi

Wi
The fast time scale yields t(2) = ———— in the limit ¢ — 0. It is easy to see

N > Wi

that this solution is stable for all z:

oty 1
8—tj|t(m) = _E(Skj ;wlwl (6.41)
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0.8

0.1 0.2 0.3 04 01 0.2 0.3 0.4

Figure 15: The close relations between (R) and (RT) are perhaps best exemplified by strange
attractors.
Chaotic attractors have been found in three-species Lotka-Volterra equations [36, 103,
5, 4, 102]. Using Hofbauer’s transformation [48] they can be translated to four-species
second order replicator equations. A two-parameter family of strange attractors with
interaction matrix

0 0.5—0.437v  —0.1+0.1vy 0.1+ 0.337v
Apw)— | 1105630 0 —0.6+0.564v  —0.001v
’ —0.5 — 0.035v 1—0.62v 0 0.655v
1.7+ p—1.164v —1— p+0.9687 —0.2 + 0.196v 0

has been studied in detail [77]. The numerical examples shown here correspond to
pn=—0.1,v=0and wi = w for all k.

The graphs show a two-dimensional projection of the Z-coordinates. a) slow translation
w = 0.5, b) w = 2, ¢) very fast translation w = 10, and d) second order replicator
equation.
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and hence the singular perturbation problem reduces to

1
i‘k Z Ap;W; T; — Z A jW;T5%5 | - (6.42)

> o
Wi
A i i,j

Using b;; = a;;w; and a change in velocity yields the second order replicator

equation with interaction matrix B. g

Remark. A barycentric transformation shows that the replicator equation (R)

has qualitatively the same phase portraits since the constants w; are all positive.

Little can be said in general about the behavior for small translation rates. The
extremal models discussed in sections 4 and 5 show that bifurcations leading away

from “replicator like” behavior can occur for slow replication.
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7. Repliration with Intermediates:
Part A

hether the replicator equation can describe the overall reaction of more

involved mechanisms sufficiently well, or not, will be treated on the

example of a model with intermediates that are consumed in the course of the re-

action. A detailed analysis of this model including stability analysis of analytically

treatable cases can be found in [43, 44].

There are three different types of interacting species:

(i)

(i)

(iii)

The replicating species X;: These species are assumed to be capable of
independent replication. In the act of replication the substrate A is used
to form X, the kinetic constant of this reaction is k;. Besides, there is an
alternative way of formation of X;, using the intermediates S; instead of the
substrate. The replicating species might represent DNA or RNA strings or
simple monocellular organisms such as bacteria etc.

The intermediates S;: They are formed in a catalyzed reaction from the
substrate A, using X; as catalyst. The kinetic constant of this reaction
is termed ¢;. As mentioned above, the intermediates can be used by the
replicating species replacing the substrate A; the reaction constant of S; in
the reaction of producing X; is by;.

The substrate A: This is the (energy-rich) material from which both the
replicating species and the intermediates are built. If the replicating species
are RNA molecules, one might think of a solution containing the nucleotide

triphosphates.

All reactions are considered to be irreversible. This is, of course, a simplification

if we consider chemical kinetics; however, since in many biochemical reactions

the forward reaction is much faster than the backward reaction, the effects of

neglecting the latter should be negligible.
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The reaction scheme (R) above implies a third order reaction with a rate propor-
tional to [A] [Ix] [[;]. Since third order reaction kinetics are a rare phenomenon,
we replace this simple replication scheme by a two-step mechanism of the form
A+ X 5 X+ 8
(@)
The intermediate product S; can be interpreted as a specifically activated form
of the substrate. In addition we shall incorporate the first order (uncatalyzed)

replication mechanism
k;
A+ X; = 2X,. (Z')

The emphasis of this chapter is not a on a detailed description of the replication
kinetics that was already done by Hecht in his Phd-thesis. We are interested here
in the validity and the limits of these simple replicator dynamics. Certainly this
model is still much simpler than models of RNA replication kinetics devised by
Biebricher [7], but which is complicated enough to show significant deviations from
the replicator picture. In fact, the model is simple enough even to allow for an

analytical treatment of special limiting cases.

7.1. Model Equations

Assuming mass action kinetics it is straight forward to translate the reaction mech-

anism (Z,Z’) into the kinetic equations
n
T; = x; | ak; + Zciij -
i=1
n
J;“Z' = g;ax; — S; ijcij — S,L'\If

i=1

Explicit expressions for substrate concentration a and dilution flux ¥ specify the

dynamical boundary conditions. In the case of constant organization we have a = 1
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(after a suitable renormalization of the time axis) and ) .(z; + s;) = 1 with a

suitable normalization of the concentrations. As a consequence we obtain

\chonst.org. = GZ(k] + gj)-T] = Z RiZ; ﬂ@ . (74)
j=1 7j=1

The abbreviation k; ==

k; + g; will be used throughout this manuscript. Note that

the form of this flux function is quite different from the quadratic function in the
second order replicator equation. Since the overall concentration is held constant,

the phase space is the unit simplex

Sy, = {(ml,,,,,xn,sl,...,sn) ‘ x; 8 >0 A Z($i+8i):1}.

In the CSTR setting we have to take the influence of the substrate explicitly into
account. We have Uogrm = 7, a constant flux rate, while the building material a

satisfies the differential equation

n

a=apr—a Z(kZ +gi)xi+r| . (7.5)

j=1
It is convenient to use the same variable names as in the constant organization
setting since most of the results are of a very similar form. The total concentration
co=a+y .(x;+s;) converges to ag. Therefore all fixed points lie on the 2n + 1-

dimensional simplex

Sont1(ag) = {(xl,...,xn,sl, ey Sp,y ) |a:,~, Si, a>0ANa+ Z(xz +5;) = ao}.

From equ.(1-3) we see that if the replicating species X; vanishes at a certain fixed
point, then the corresponding intermediate S; must also vanish and vice versa.
We can therefore characterize a fixed point P by its index set I, i.e., by the set of
the species with positive concentrations at the fixed point. The number of these

species is denoted by |I|. It will be useful therefore the introduce the following

Definition. An index set I is admissible if the corresponding fixed point Pj exists

in a non-empty range of total concentrations (or flux rates in the CSTR setting).
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7.2. Simplified Examples

As in many other models, e.g., the replicator equation or the replication-translation
model, there are two quite simple cases that allow for analytical treatment [43,

44).:

(i) The Competitive Case, that was first treated by Schlégl [76], where species
are weakly coupled, meaning that no other interactions than competitition for the
common resources occur. There are close similarities between the CSTR and the
constant organization model. Apart from details we observe the same behavior
when cg is increased or r is decreased, respectively. This does not come as a
surprise. For the replicator equation it was shown recently [42] that the CSTR
can be viewed as a singularly perturbed constant organization model in the limit
r — 0. In this limit the full capacity of the CSTR is filled with polymeric materials,
ie., co = ) ,(x; + s;) approaches ag. We can therefore interpret ¢y and 1/r as

conceptually the same bifurcation parameter.

Secondly there is a cascade of transcritical bifurcations as cg or 1/r increases, in
which fixed points with an increasing number of species are introduced into the
physically meaningful part of the state space. This is due to the fact that cg or
r affect the relative importance of the first order and the second order reactions.
For very small ¢y the first order term dominates which leads to the selection of a
single species, i.e., there is a single stable fixed point. In the CSTR only the trivial

fixed point is stable if » becomes very large, of course.

For larger ¢y (or small r) the model behaves just like a replicator model: all 1-
species equilibria are stable, all other fixed points are unstable. This matches
exactly the phase portrait of the Schlégl model [76] in the replicator equation
setting. We conclude hence, that the competitive model with intermediates in
essence reproduces the behavior of the corresponding inhomogeneous replicator

equation [94].
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Y3

+

+

Y1 Y2

Figure 16: The competitive model with ?=3 under constant organization, where all constants
are equal. The sum ¥Y; = ; + S; is shown. The parameters used are: k = 0.1,

co=3, f=15and g = 2.

As in the competitive model there is little difference in the qualitative behavior
of CSTR and constant organization. A cascade of transcritical bifurcations intro-
duces fixed points with an increasing number of species into the system as ¢y and
1/r increase. These are either stable or associated with stable limit cycles. This
phenomenon has been observed is a variety of quite different dynamical systems
that describe replication and selection: as the capacity cg of the environment in-
creases the number of species that can be sustained increases as well, see e.g., [32,

49, 53, 92].

(ii) The Mutualistic Model [22, 23, 24], that admits cooperative behavior and

a closed Hamiltonian graph.

Here we observe considerably different phase-portraits than in the “pure” replica-

tor case (see figure 17).
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0.030

0.028 - :

0.026 - :

0.024 ‘ ‘ ‘ ‘ ‘ ‘
0.024 0.026 0.028 0.030

Figure 17: The cooperative model with 7=3 under constant organization, where all constants
are equal. k = 0.1, f = 1.5, g = 6.4 and ¢y ranges from 0.80-1.08 in 0.02 steps
from left to right.

The second order replicator equation corresponding to the limit of larger co or
small r, respectively, is the elementary hypercycle [25]. Our model exhibits a
single, stable interior fixed point in this limit. The elementary hypercycle, on the
other hand, shows stable limit cycles for n > 4 [52]. In our present model we
find stable limit cycles as well. They occur only at intermediate values of the

bifurcation parameters, however.
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7.3. Singularly Perturbed Cases

Let us now return to the two-step replication mechanism:

Theorem 17. The dynamical system with intermediates under constant organi-
zation
T, =x; | ki + Zcijsj - Z(kj + gj)wj
J J

§i = gi%; — S Z(kg +cij +9i)%5 |,
=1

reduces to the inhomogeneous replicator equation

Ui =i kit Y iy — Y _u | kit Y ey
J l J

i the limit of fast production of the intermediate.

9i%i i Yi
Proof: Let y; = ————. Then z; = ———— and E y; = 1. A short
2.5 95%; 2595 Yi

calculation yields

Ui =yi§ ki + Zcijsj - Zyl ki + chjsj
J l j

(7.6)
$i = ¢ix; — S; Z(k] +ci; + gj)xj
J
Now we set g; = 7;/€e. The second equation becomes
1 S;
€5 = =—F— yi—si—e—(k-—l—ci-)} . (7.7)
>/ { oo

In the limes € — 0 this reduces to s; = y;. In order to verify that this solution is
stable we compute the Jacobian
05; 1

= —b—-€> vty +14+€d kiTly | <O,
0s; ]ezjvj_lyj ; 775 Y XJ: 75 Y
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which is stable for all y. Thus the above model is in fact a stable singular pertur-

bation of the inhomogeneous replicator equation. g

Interestingly, the CSTR version of this model does neither reduce to the analogous
constant organization equation in the limit g; — oo, nor in the limit » — 0. In

stead we have

Theorem 18. The dynamical system under CSTR setting

Ty =T aki—l-g CijSj — T
J

n
$i = g:ax; — S; E CijTj+T
j=1

@=—ay (kj+g;)z; +r(ao—a)
j

does not reduce to the equivalent replicator setting in the limit of fast production

of the intermediates.

Proof: 1.) Let g; = =%, G = 29 = E, and b = ga. Then a = fa. So we get

. EbkZ
Ti=Ti | +ZCZ']'8]‘—7"
J

. wibwi "
§; = T — S; z:l CijTj +r , (78)
J:

. b ; b
eb=T —%;(kj-l-%)l‘j-i-T(ao—%)

In the limit of € — 0 we get

3.31' =T; E Ciij —-T
J

. w;bx; & 7.9
S = T — 8; Zcijl‘j-i-?“ . ( )
7j=1
b ragl’

s wi
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The Jacobian of the fast variable is stable
b ,
S la(t) = T Z(kj+%)xj—e <0
J
is stable. The resulting model is

:i:i =Z; E Cij8; — T

J

] w;Tapx;
S = = — 8; E CijT; + T

> Wit =

(7.10)

A different result is obtained from the limit of » — 0.

Theorem 19. The dynamical system (1,3) reduces to the non-linear replicator

equation

yz{ i Zygfg } (©)

with the response function

§ :Cij95Y;j
; =k + =L =" D
o) =k + S (D)

i the limit of small flux rates.

Proof: In order to verify that the reaction vessel is completely filled with repli-
cating species and the intermediates we follow the discussion in [42]. We find that
a/r remains finite in the limit » — 0.

Hence we can use the transformation b = a/r. Furthermore we set u; = s;/r and
introduce ® = >_.(k; + g;)z;. This yields

) 1
r;, = I; ki-l-g;ciju]‘—l

(7.13)
U -—gzxz— — Zcmxj +7r],

rdz—@-l-?—r
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In the limit » — 0 we obtain the finite values

bgix
wp = — L0 (7.14)
aop Zj CijTj
and b = ap/®. This solution is stable since the Jacobian

du; 8ij ab
Ou; _  _%j ey 22—
Ouj r (Z] CijTj + T) Ouj
du; 1 o db _ _ag (7.15)
o6 = w2 Gt T ob — T

has block-diagonal form and all eigenvalues are negative for all . Thus the equa-

tion for x becomes

Zz G| ag

in the singular limit. Introducing the new variables y; = x;/ > ; x; finally yields a

‘ci ../r‘ @
24 Cis93%s ) (7.16)

.i'i =Z; (kl +

non-linear replicator equation with response function f;(y). 4

Note that for all g; = g we have a first order replicator equation with fitness values

ki +g.

Another interesting limit is obtained when the replication step is very fast, i.e., if
¢;j = di;j/e and € — 0. Interestingly, we obtain the same limit as above in this

case:

Theorem 20. The dynamical system (1) in both the constant organization and
the CSTR setting reduces to the nonlinear replicator equation (C) with response

function (D) in the limit large rate constants c;;.

Proof: The proof is the same for both the CSTR and the constant organization
case. Set Let ¢;; = d;j/e and D; = Zj d;; and define u; = D;s;/e. We obtain

dyi;
T; = x; aki-l-zlj)—%—qf
j J

. cu; [~ dij (7.17)
€u; = D; | giax; — D, 321 = Lt v

a=-a Z(kj + g5)x; + (a0 — a)
J

,79,



REPLICATION WITH INTERMEDIATES 1

In the limit € — 0 we find Wi _ 90T

= ————— because
Di >, dijz;

o,
Bu j

di;
= —(5Z-jui Z Tjﬂﬁj +® | <0.

J

x

Thus we obtain for both constant organization and the CSTR

> deij$j> )
Ti=x; lalk;, + = - T ) -0
( ( > daw

For the CSTR we have in addition:

a=—a Z(kj +g;)x; +1r(ap—a). (7.18)

Introducing the rescaled variables by y; = z;/ > ;«; we find the nonlinear repli-

cator equation with response function

- > dijg5y5 - > Cij93Y;

it S =k = fi 7.19
S dyy; S eou; fi(y) (7.19)

as in the last theorem. g

Summary: Here, a model with irreversible intermediate reactions is presented.
Because it still includes the uncatalyzed reaction step, it is appropriate for very
early stages of the RNA-world. The low-molecular support has a crucial role for
the mechanism and thus the limits of fast reaction constants yield an intermediate

model between first- and second order replicator equations.

,80,



REPLICATION WITH INTERMEDIATES 11

8. Repliration with Intermediates:
Part 1B

reacts slowly and reversibly with the low-molecular substrate to give an activated
intermediate that can either dissociate again to leave the react-ands unchanged or

yield the replicated product.

As has been shown in the introduction, this kind of mechanism is found with some
artificial replicators [91, 105, 106] as well as a model for T-cell growth [17, 67].
The dynamical setup in order to keep away from equilibrium was taken from the

two most convenient choice: constant organization and CSTR.

8.1. Constant-Organization

8.1.1. First Order - 1 Intermediate

This is the simplest possible setting. A set of n replicating molecules associates
with the low-molecular substrate and duplicates. This model corresponds to a first

order replicator model.

Lemma 5. The simple dynamical system with mass-action kinetics
; i
Xi = Vi = 2, (8.1)

under the constraint of constant organization

dai+yi=1 (8.2)
j=1
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does not have isolated interior equilibria.
Proof: We get the following differential equations:

& = —x; (a; + @) + v (Bi + 27:)
- (MM1)
Yi = iz — ¥i(Bi + 7 + ).

The flux is readily determined: ® = ) ;V5Yj- The first order MM-type system

does not have interior equilibria for non-degenerate reaction constants; At the

interior fixed point (Z,¢) we find
Lo+ @ .
=x; =T; ~ =
Bi + 27 Bi+7v+ @ (8.4)
A 1
¢=—7 (ai +0i + i £ /(@i + 8;)? + 7i(6ai; + 20, + %)) :

Q'

Yi

So if a; = a, B; = 8 and v; = v then we have a fixed point line, while in all other

cases only one replicator,say k and its intermediate can survive.

1
Ty = T (Ozk + B + 37k + /(ak + Br)? + (6ak + 26% + %))
1

k= o (—Oék — B — W F Vv + (ar + Br +7k)2)

(8.5)

Only the first of the two possible solutions is the physical meaningful one. g

Next, let us investigate what happens if the irreversible reaction is fast.

Theorem 21. The dynamical system (MM1) becomes a replicator system in the

limit of v; — o0.

Proof: After the transformation z; = v;y; = “*y; the ODEs are:

T; = —&; Oéi-i-ZZj —i—izi (ﬁ1+2%)
’ (8.6)

1

. € Ww;
e =w; | oy — —2z | Bi+ — + g 2
w € .
j
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In the limit of € — 0 we get the resulting differential algebraic equation (DAE):

T, = —x; | o; + Z zi | + 2z;
J

(8.7)
0= ;X — Z;

In order to find out if this solution is feasible, the Jacobian of the fast variables

has to be stable.

0%; w;

For € small enough the diagonal entries will be strictly diagonally dominant and
hence the Jacobian will be stable. Thus we may replace z; = «a;x; and get the first

order replicator equation

.7'31'21‘2' o — E aj:cj
J

8.1.2. Second Order - 1 Intermediate

Because replication without any catalyst is not a very likely process, a second
order approach is attempted. Here we assume a series of second order reactions:
(i) the formation of the complex of replicator and substrate, and

(ii) the addition of monomers (here taken to be a single step).

Theorem 22. The dynamical system with mass-action kinetics

Xi+X; = Vi; Hox, +; (8.9)

—
ﬁij

under the constraint of constant organization

dwi+ ) yp=1 (8.10)
j k
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becomes a second order replicator system in the limit of v;; — o0.

Proof: The resulting differential equations are:

b=~ | Y wilaij +aji) + B(@y) |+ vii (Bii + 2vi) + via(Bii + i)
J J

Uij = aijrixy — Yij(Bij + 75 + (2, y))
(MM?2)

After some unnerving calculations one gets the mean excess production

@(l‘ y Z Zy]l(ﬂ]l + 2’7]1) Q1.5 (8.12)

J

After the transformation z;; = 7v;;¥:; = %y” we get

Ti = —x; Zl‘j(aij + aji) + ¢(z, 2)

J

w; €
+ E zw (Bij + 22 c) 2B+ =
7 (8.13)

. €
€Zij = Wij | QX5 — ?Zij(ﬁij +

%) J S

) — QT;T
The limit € — 0 yields again a differential algebraic equation

> wiou + i)+ > Y (22 — ajwsx)
i i
+ > (2255 + 254)

J

(8.14)

0= QLT — Zij.
The calculation of the n? x n? Jacobian

ai’ij |

= 5t =2 Sy (B + L
J = P GO (€8k1 + 2wit) — bijy (k1) (ﬁm + . + ¢(x,z)) (8.15)
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shows that for e small enough the diagonal elements will dominate all other terms

and thus we get the second order replicator equation (using A = {a;;})

.i"k = Tk ((A.T)k — <.T),A33>) .

Conjecture: The dynamical system (MM2) has at most two inner equilibria.
Numerical experiments, using Mathematica suggest that.

Corollary 3. In the degenerated case of equal reaction constants a;; = o, Bi; = 3

and v;; = (MM2) has at most two inner fized points.

Proof: Explicit calculations by Mathematica. The resulting expressions are far

too ugly to be displayed here. g

8.1.3. First Order - m Intermediates

Certainly the elongation of the new strand (even when neglecting complementar-
ity) takes more than a single step. Thus one may ask, whether the model also
holds for a more detailed mechanism. Multi-intermediate Michaelis—Menten sys-
tems were investigated by [85, 86|, but they did neither treat replication, nor open

dynamical systems.

So let us take the dynamical system

i i (4) i (4)
a; (i) Ui ) ) Vé) Y(k—1) (i) Vl(c) Y(m—1) ()
. 7 \:\ 7 ;\ ;\ 7 ;\ ‘:\ 7 K .
Xi=v? Sy = . =y = = oy hax,  (8.16)
Bi Hy Hy Kik—1y Ky, Him—1)

that describes a multi-intermediate Michaelis—Menten replication System.
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Theorem 23. System (8.16) becomes a first order replicator system in the

singular perturbed limit v; — 00.

Proof: Let us assume mass-action kinetics, as usual. The resulting system of
differential equations is then

T = —xl(al-i-(I))-l-y )ﬁl-l—Zy() Vi

'( ) = z04 — (ﬂi + 1/11) + @) + y;)ugi)

=y s L 30 ) b=

g = y((n)b e ((7’21, 1)~ (i + NETZL—I) + ®).
(MM3)

From the boundary condition of constant organization, the flux is derived

zn: (a:j + iy,ﬁ”) =1 =& = 27 ), (8.18)
j k

In order to get a singularly perturbed system, we may apply the substitution

zlgi) = %y@ (8.19)
€

7 )

and get the new system of differential equations:

& = —wi(a; +Zz() 621 ﬁ + 220

(2)
€2 i i €z i
ezg):wi T, — wl ﬁ¢+l/1)+g zfn) +w—2iu§)
J
(8.20)

i) ()
.(i €21 (i €z i 6Z1c+1 i
ez,(c)zwi V,gll——ui )-l—u +Zz( ()

(4) (1)
() = o, | Lmzty @ Em [ Wi 6) (i)
€2, w; v ; . + Wyt sz

The limit € — 0 leaves a simple differential algebraic equation

T; = —%; (Oéi + Z ZS:L)) + QZ%)
J (8.21)

0=z — z,(qi).
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The Jacobian

924 w; [ ey w; (i) .
mo o Wi EEm [ W (i)
o= | T | +um_1+zjfzm

is diagonally dominant for € small enough and what we get is the first order

replicator equation

i‘i:xi ai—g Q5
J

8.2. CSTR

Just as under constant organization, the same phenomena are likely to happen in
a CSTR.

8.2.1. First Order - 1 Intermediate
Theorem 24. The dynamical system with mass-action kinetics
A+ X; :: v; 52X,
in the continuously stirred tank reactor (CSTR)
A XY D%
becomes a CSTR-replicator system in the limit of ~v; — oc.

Proof: The sets of differential equations are now:
&; = —wi(aa; + 1) + yi( i + 27%)
Vi = acix; — yi( B + v + 1) (MC1)
a= —aZaja:j + Zﬁjyj +r(ap — a)
J J
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The same procedure as under constant organization yields the desired results. By

we get in the limit of € — 0

change of coordinates z; = =%

&, = —xi(ac; + 1) + 22

(8.23)
0=ao;x; — %
Since
O (B4 +7) (8.24)
(9,23‘ r — 17 \M1 Vi .
is stable, we get
; = xi(ao; — 1)
(8.25)

a=-a Zaja:j + r(ap — a).
J
These are the differential equations that correspond to a replicator setting in a

CSTR. A second change of variables (& = Z”“'—m) yields then the replicator-

equation [81]: -

8.2.2. Second Order - 1 Intermediate
The second order case very much resembles constant organization.

Theorem 25. The dynamical system with mass-action kinetics
A+ X+ X; ? Y

)

Hox,+v;

under the boundary conditions of a CSTR
X’ia }/Zj L *
becomes a replicator system in the limit of v;; — oo.

Proof: The differential equations are

gi=—x; @Y zi(og +ai) +r | + Y vii(Bi + 2vi5) + vii(Bi + v5i)
J J
Yij = acijziv; — Yij(Bij + vij + 1)
a=-a Z Qx5 + Z Bijyi; + r(ao — a)

i,J ij

(MC2)
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Let z;; = =4<¥2 In the limit of € — 0 we get

T; = —x; CLZQZ‘j(OLij-i-Oéﬁ)-l-T +222ij+ZZji
J J J

0= A0 T X5 — Z45 (8'27)
a=—a Z a;;xx; + r(ag — a)
,J
The fast variables are clearly stable and we finally get
ii =T; aZaijxixj - T
J (8.28)
a=—a Z a;jxiz; +r(ag — a)
]
By change of coordinates follows the replicator equation. -

Summary: Replication requires the successful incorporation of many nucleotides
to produce a copy of the original source. Since Michaelis and Menten, their pro-
posed mechanism of enzyme-action is a well-accepted paradigm of biochemical
reactions. Therefore, this kind of mechanism was used to model replication pro-
cesses that avoid the necessity of third order kinetics. Moreover, recent attempts
to introduce artificial chemical replicators have yielded very similar mechanisms

91, 105, 106, 16].

For this kind of models, the replicator equation is a very good approximation in the
case that the formation of the product is a very quick process, while the formation

of the template—nucleotide complex is much slower.
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4. The Probability of Permanence

Z

g f‘a‘?“%‘@ he Jansen conditions [62] (see also chap. 3) provide an algorithm which
bro=—o) &

( \’@ does not characterize permanence, not even in the generic cases, but

which allows to calculate bounds on the probability for an arbitrary second order

replicator network to be permanent.

Table 1. Probability Density functions *.

A Bt

Normal \/i; exp —x%/2 ﬁ exp —z%/4

1+x/2 for xe€[-2,0]

Uniform 3 for ze€[-1,1] 1-z/2 for z€]0,2]
0 otherwise 0 otherwise

Cauchy % 1 +112 %44?352

Laplace 2 exp —|z|

All calculations have been performed for the replicator model (SR) (column A). The results
carry over to Lotka Volterra (LV) models with somewhat different distribution functions of the
coefficients (column B).

t off-diagonal elements only. 7" and the diagonal elements of B have the same distribution as A.

We assume that the entries in interaction matrices A (in normal form)are random
variables with a given probability distribution. The assumption of normal form
only implies that there is nothing special with the replication of an entity X with
itself as catalyst compared to its replication with the aid of other catalysts. Since
the flow of the replicator equation does not change when the r.h.s. of equ.(SR) is
multiplied by a positive constant we may assume that the measure for the width

of the distribution is unity provided the mean is zero.

,90,



THE PROBABILITY OF PERMANENCE

The following theorem is repeated from section 3 (Thm.9).

Theorem 26. (Hofbauer and Sigmund [50, 55]) If the second order replicator
equation (SR) is permanent and A is in normal form then the following conditions
are fulfilled:
(i) There is a unique interior equilibrium & € int.Sy
(ii) ®(z)= Z?zl a;;T;&; >0
(iii) (—=1)""ldetA > 0.

(iv) There is no regular saturated rest point in 0S,.

As stated in section 3, a matrix A that fulfills (i) and (ii) is type-a, if (iii) also
holds we call it type-b and if finally all four necessary conditions are fulfilled we

call A a type-c matriz.

9.1. Numerical Survey

For our numerical survey we use

(i)  the Gaussian normal distribution N(0; 1) with mean 0 and variance 1;
(ii)  the uniform distribution U(—1;1) on the interval [—1,1];

(iii)  the Cauchy distribution C(0;1) with zero mean and parameter 1.
(

iv)  the Laplace distribution L(0;1) with zero mean and unit parameter.

For each of these distributions we expect the probability to find an interior equi-
librium in int .S,, to be

prob{# € int S,,} = 1/2"~* (9.1)

since the replicator equation (SR) is topologically equivalent to a a Lotka Volterra
equation in n — 1 dimensions. To find the interior equilibrium of this differential
equation we have to find a solution By = r where the entries in B and r are
independent random variables with zero mean. Thus the solution y lies in each

orthant with equal probability, i.e. with probability 1/2"1.
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Table 2. Numerical survey for permanence using 1,000,000 random matrices with

zero diagonal.*

(1) (2 (3) (4) (5) (6) (8) 9)

n » int. equil. type a type b type c undec. type j
2 th. 500,000 250,000 250,000 250,000 0 250,000
3 N*¢ 249,730 125,214 69, 926 66,954 0 66,954
Ut 249,860 124,190 66, 520 64, 330 0 64,330
ct 250,550 126,340 74,670 70.780 0 70,780
L* 250,370 123,710 71,220 67,630 0 67,630
4 N°© 124,316 62,408 31,274 16, 864 5,334 11,530
Ohs 124,758 62,358 31,458 16,028 5,948 10,080
c* 124,984 62,296 31,846 19,022 4,330 14,692
L 124,642 62,455 31, 696 18,098 5,077 13,021
5 N°¢ 62,192 31,256 15,880 4,492 3,024 1,468
Uv* 62,112 31,222 15,652 4,134 3,030 1,104
C 62,456 31,327 15,748 5,404 2,685 2,719
L 62.426 31,381 15,676 4,704 2,921 1,783
6 N 31,159 15,451 7,707 1,075 965 110
U 31,487 15,735 8,004 1,001 938 63
C 31,307 15,649 7,819 1,412 1,022 390
L 31,127 15,647 7,794 1,101 999 156
7 N 15,682 7,826 3,969 280 276 4
U 15,522  7.731 3,917 9234 232 P
C 15,579 7,826 3,936 396 236 50
L 15,403 7,721 3,839 290 275 15
8 N 7,832 3,884 1,927 48 48 0
U 7,785 3,940 1,960 65 65 0
C 7770 3,962 2,075 116 109 7
L 7636 3,823 1,804 67 67 0
9 N 3,880 1,920 964 11 11 0
U 4,034 2,046 1,026 8 8 0
C 3,962 1,966 1,003 18 18 0
L 3,883 1,931 955 4 4 0
10 N 1,989 993 506 6 6 0
U 1,942 943 464 4 4 0
C 1,945 975 487 9 9 0
L 1,953 987 501 4 4 0

* Column (1) and (2) indicate dimension of the matrices and density function. Columns (3)
through (7) contain the number of matrices fulfilling criterion (n) and all previous ones.

Columns (8) and (9) give the number of undecidable cases and of permanent matrices, resp.
(see also fig.1)

@7€ Calculated from smaller sample sizes and multiplied by a factor of (a) 2, (b) 10, (c) 4 in
order to facilitate comparison.

Note that because of the flow equivalence pointed out in section 3 our estimates for

the probability of permanence also apply to Lotka-Volterra (LV) equations with
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one dimension less and

Tk = Qkn, bij = aij — an;

However, the probability distributions are not the same for the elements of A in
the replicator equation and for the off-diagonal elements of B in the Lotka-Volterra

model. Table 1 lists the density functions used in this contribution.

The probability for the quadratic form zAxz and detA to have a certain sign is
clearly 1/2. Note that these probabilities need not be independent of the existence
of an interior equilibrium. In fact, if there is an interior rest point for n = 2, then
xAx > 0 and det A < 0 are equivalent. For larger n, however, these two conditions
become more and more independent (cf. table 2 and figure 16). The conditions

(i), (ii) and (iii) in Theorem (3.17) are readily checked within polynomial time.

All numerical calculations in this contribution have been performed on IBM 3090
mainframes in Vienna and Gottingen. As programming language FORTRAN has
been used and various subroutines (random number generators, solving of linear
equations, determinant of a matrix and the simplex algorithm) have been taken

from the library package NAGLIB. Our numerical results (table 2) show that
Prob{A is “type-b”} ~ 2~ (n+1) (9.2)
for large n.

The probability that there is no saturated rest point on the boundary cannot be
estimated easily since the events “rest point x(K) € S, ” and “x(K) is saturated”
are not independent. In fact there is always at least one saturated rest point for

the replicator equation (R). Numerical results (tab.2) suggest

Prob{A is “type-c”} ~ 47" (9.3)
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Figure 18: Probability for Permanence. The probabilities for an internal equilibrium (dashed
line) and the appropriate signs of TrJ (dotted line) and detA (dash-dotted line) are
equal for all density functions. The dashed line with narrow spaces gives the average of
the probabilities for type-c matrices and the solid line shows the probabilities for type-j
matrices for different density functions: Gaussian (A), uniform (<}), Cauchy (4) and

Laplace ().

9.2. Special Types of Interaction Matrices

In this section we investigate two special sign patterns of the interaction matrix.
The first class consists of catalytic networks [1]-[56]: a;; > 0 for ¢ # j and a;; = 0.

Table 3 lists results for them. We remark that the probability for an arbitrary
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interaction matrix to be a catalytic network is 2~ "("=1),

For small catalytic networks there is an algebraic characterization of permanence.
Note that whenever there is an interior equilibrium # of (SR) with A > 0 then
(£Az) is strictly positive.
n=2 The network is permanent iff the non-diagonal elements of A are strictly
positive.
n=3 The network is permanent iff there is an interior rest point.

n=4 The network is permanent iff A is of “type c”.

Catalytic networks have been investigated for two distinct probability distribu-
tions, a uniform distribution on the unit interval and an exponential distribution
with parameter 1. We find that permanence is a relatively probable property

compared to permanence in a sample of random matrices.

The second class consists of essentially hypercyclic networks, i.e. matrices which,

after a suitable permutation of indices, have the following sign pattern

o - - ... = +
+ 0 - ... = =

A= _+ . Do (9-4)

o
I

- - - ... 0 -
- - - .+ 0

For such matrices permanence can be characterized in terms of M-matrices.

Theorem 27. (Amann and Hofbauer [2]) Let A be as in equ. 9.4. Then the
following statements are equivalent:
(i) The second order replicator equation with interaction matriz A is perma-
nent.
(ii) The matriz C obtained by moving the top row of A to the bottom is an
M -matriz.
(iii) The second order replicator equation has an interior equilibrium I and

(zAZ) > 0.
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Table 3. Numerical survey for permanence in 1x10° random matrices with zero

diagonal and positive non-diagonal entries (catalytic networks)*.

(1 (2 (3) (4) (5) (6) (7)

n p int. equil. det A sat.bd. undec. perm.
2 th. 100, 000 100, 000 100, 000 0 100, 000
3 Uy 62,615 62,615 62,615 0 62,615
E 46,070 46,070 46,070 0 46,070
4 UL 34,403 33,457 33,457 0 33,457
E 20,785 20,785 18,238 0 18,238
) Uy 17,577 16,080 16,014 0 16,014
E 9,781 7,171 6,952 16 6,936
6 U, 8,746 7,385 7,260 40 7,220
E 4,612 2,861 2,502 110 2,392
T U, 4,391 3,318 3,134 73 3,061
E 2,257 1,263 921 116 805
8 U, 2,163 1,429 1,280 87 1,193
E 1,112 599 332 102 230
9 Uy 1,080 667 499 90 419
Ee 5605 2995 125 74 o1
10 Uy 529 286 175 59 120
E° 92855 1425 39 295 95
11 Uy 279 165 91 40 51
E° 127 655 125 115 1
12 Uy 1165 57 29 20 9
E° 615 31 4 4 0

* A uniform distribution on the unit-interval, U+, and an exponential distribution with param-

eter 1, F/, was used. As for table 2, columns (3) through (7) display the numbers of matrices
passing subsequent “filters” requiring interior equilibria (3), the correct sign of detA (4) and
the absence (5) of saturated rest points on the boundary of .5,,. Columns (6) and (7) show
the numbers of permanent and undecidable {ype-c matrices.

@ calculated from 200,000 matrices
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Figure 19: Permanence for Catalytic Networks. The dashed line refers to the probability for an
interior rest point, the dash-dotted line accounts for the appropriate sign of detA, the
dotted line corresponds to the probability of type-c matrices and the solid line refers
to the probability of type-j matrices. Data are shown for the uniform distribution <)
and the exponential distribution ().

For n = 2 all essentially hypercyclic systems are permanent. For n = 3 there is

always an interior equilibrium Z. It is stable iff detA is positive. With p;,n; > 0

and thus
0 -—mn1 ps3
A= P1 0 —Ng (95)
—nz P2 0

we find detA = p1paps — ningns . Therefore the replicator equation is permanent
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Table 4. Numerical survey for permanence in 100,000 random essentially hyper-

cyclic matrices for three different probability distributions of |a;;|, i # j.

(1) (2) (3) (4) (5) (6) (7)

uniform Gaussian exponential
n equil. perm. equil. perm. equil. perm.
3 100,000 49,927 100,000 50,219 100,000 49,852
4 70,717 2,706 62,601 4,233 55,622 5,836
5¢ 56,715 83 43,649 277 33,506 229,
6¢ 38,036 0 25,323 02 17,097 26
7° 25,430 0 17,097 0 14,423 0

? calculated from 10° matrices.
calculated from 3-10° matrices.

with probability 1/2.

Numerical results are shown in table 4. Note that although these matrices are
closely related to the paradigm of permanence — the hypercycle — it is extremely
unlikely to find cooperative behavior for n > 5 for this type of interaction. The
reason for this is the large number of negative entries in A likely to violate condition

(ii) of theorem (3.17).

Note that if A is a nonpositive matrix the corresponding network may not be
permanent since in this case the quadratic form (zAz) is nonpositive on S,, con-

tradicting condition (ii) of theorem (3.17).

9.3. Permanence and Graphs
Definition. Let A € IR™*" with zero diagonal. By A% we denote the positive

part of A, i.e. a;i; = aij if a;; > 0 and afj =0 if a;; < 0. Let G(A) be the directed

graph associated with the nonnegative matrix A¥.
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Figure 20: Permanence for essentially hypercyclic networks. The probability for an interior rest
point (dashed line) and for permanence (solid line) shown for Gaussian distribution
(), uniform distribution ({») and exponential distribution (()).

Conjecture. (Jansen) If the second order replicator equation with interaction
matrix A in normal form is permanent, then G(A) is strongly connected, i.e. A*

is irreducible.

This conjecture has been proven for catalytic networks (4 = A%) by Sigmund
and Schuster [88]. We tested all permanent and undecidable matrices produced
by our simulations for irreducibility. The results are tabulated in tab.5. Indeed,

there are no reducible matrices among all the thousands of permanent matrices
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Table 5. Permanence and graphs.*

(1) (2 (8)  (4) (5)  (6) (7 (8) (9) (10
n t Gaussian Uniform Cauchy Laplace
n.h. red. n.h. red. n.h. red. n.h. red.
2 p 0 0 0 0 0 0 0 0
3 p 0 0 0 0 0 0 0 0
4 p 3.8 0 1.2 0 7.8 0 5.4 0
4 U 16 0 9 0 40 0 25 0
5 p 5 0 2 0 9 0 3 0
5 U 13 0 12 0 37 0 23 0
6 p — 0 — 0 — 0 6 0
6 U 5 0 2 0 2 0 14 0

*

Columns (3) through (10) give the probability for finding permanent p (or undecidable u)
matrices which contain no Hamiltonian circle (n.h.) or which are reducible (red). Probabilities
are given in promille.

we produced.

A directed graph is said to be Hamiltonian if it contains a closed circuit visiting
every vertex exactly once. For G(A) this means that the Hypercycle would be a

subgraph.

Theorem 28. If a catalytic network with n < 5 is permanent, then its graph is

Hamaltonzian.

The above theorem due to Amann [56] motivated us to look for Hamiltonian circles
in the graphs G(A) of permanent and undecidable matrices although we did not
expect that an analogue to theorem 28 holds for general networks, since for n > 6

counterexamples are known [1, 56].

We find that there are indeed permanent matrices with n > 4 for which G(A) is
not Hamiltonian corresponding to many different graphs even for small n. The

overwhelming majority of permanent networks however is Hamiltonian. (cf. tab.5).

For n = 3 there are only non-robust permanent networks with non-hamiltonian
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graph. This follows from the classification for n = 3 [95]. We thus expect proba-
bility 0 for finding such a network.

9.4. Permanence and Connectivity

Definition. Let A € R"™ with zero diagonal entries and m be the number of
positive entries in A; equivalently m is the number of edges in G(A). We define

the connectivity of A by

C(A) = $ (9.6)

The probability for finding a matrix A with connectivity C(A) = ﬁ is clearly

= ﬁ (”("k‘ 1)) (9.7)

Let pi be the probability that a matrix with connectivity k/n(n —1) is permanent
and let N be the number of permanent matrices with connectivity this among a
sample of M random matrices. We may then estimate pi by

- M?‘l’k

Dk (9.8)

Since most matrices have a connectivity around 1/2 we can expect sufficiently
large values of Ni only in this region. Our simulations however provide data for

catalytic networks and for essentially hypercyclic networks. It is clear that

Pn(n—1) = PCN
the probability for finding a permanent catalytic network.

If we assume that Jansen’s Conjecture is true at least in the generic cases we
may estimate p, from pgy, the probability for finding a permanent essentially

hypercyclic network. There are exactly (n — 1)! permutations for the signature
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Table 6. Permanence and connectivity for n = 3,4 and 5 *.

(1) (2 (3) (4) (5) (6)

n C(A) Gaussian Uniform Cauchy Laplace
3 0.50* 5-10~2 5-1072 5-10~2 51072
0.66 1.12-1071 1.02-1071 1.31-1071 1.23.1071

0.83 1.76 - 107! 1.62-1071 1.89-1071 1.78 - 107!

1.00 5.36-10"1 5.83-1071 3.90-1071 4.61-1071

4 0.33* 4.23-10"% 3.28-10~% - 7.1-10~%
0.42 1.9-1073 1.3-1073 3.6-103 4.3.1073

0.50 5.3-103 3.7-1073 8.7-1073 1.26 - 102

0.58 1.32-1072 9.8-10"3 1.86 - 102 2.51-1072

0.67 2.1-10"2 2.41-102 3.34-102 4.03-102

0.75 5.0-102 4.5-1072 5.3-1072 5.6-1072

0.83 7.2-10~2 7.8-1072 7.2-10~2 7.6-1072

0.92 1.2-1072 1.3-1071 1.1-1071 1.04- 1071
1.00" 2.6-10"1 3.36-1071 1.5-10"1 1.82-1071

5 0.25* 9.0-1077 1.3-1077 - 3.55.10"6
0.30 — — 8-107° —
0.35 — — 2104 5-107°

0.40 — — 3.3-1074 1.9-107%

0.45 1.5-107* 5-107° 9.0-10* 3.5.107*

0.50 4-107% 2.3-107¢ 1.5-1073 7.7-107%

0.55 9.10"4 6.6 - 10~ 2.8-1073 1.9-1073

0.60 2.6-10"3 1.5-1073 4.5-1073 2.7-1073

0.65 4.0-1073 3.1-1073 6.8-1073 4.7-1073

0.70 8.1073 5.8-1073 1.07-10"2 7.4-1073

0.75 1.4-10"2 6.6-103 1.6-10~2 1.4-1072

0.80 1.6-10"2 9.1073 1.9-10~2 1.8-1072

0.85 2-1072 1.9-1072 2.5-1072 1.8-1072

0.90 - — 3.1072 2-.1072

0.95 - — - —
1.00% — 1.61-10"1 — 6.94 - 102

* calculated from essentially hypercyclic matrices for columns (3),(4) and (6).
Column (1) gives the dimension of the network and column (2) displays the connectivity. A
graphical representation of these data is given in fig.4.

calculated from catalytic networks for columns (4) and (6).

n

equ.9.4; on the other hand all other graphs with connectivity C(A) = o) T

1/(n — 1) are reducible and the networks are therefore not permanent. Thus we
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Figure 21: The probabilities for type-c (dashed line) and type-j (solid line) are shown for
different density functions (symbols as in fig. 18) depending on the connectivity of the
matrices for 3, 4 and 5 species networks. The lines refer to the averages for a given
connectivity and dimension.

have
(n—1)!

Dn = (n(n——1)> " PEH (9.9)

n
Note that for C(A) < 1/n the graph G(A) is reducible and we do not expect
permanent networks in this case. Table 6. lists the probability for permanence

for n = 3,4 and 5 depending on the connectivity C(A) for different density func-

tions. These data are shown together with the data for undecidable matrices in
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0. 1 1 | | 1 1 |
-2 -3 -4 -5 -5 -7 .8 .8 ria1 1.0

Figure 22: Ratio of type-j matrices and type-c matrices ¢ depending on (above) the dimension
n and (below) the connectivity of networks for n=4 (dashed line) and n=5 (solid line).
Symbols as in fig. 18.

figure 4. The probability for finding permanent behavior depends strongly on the

connectivity of the matrix A; it decreases by several orders of magnitude with
C(A).

The frequency 1 — ¢ for a type-c matrix to be undecidable also depends on the
connectivity C(A). Figure 5 shows how the probability ¢ that a type-c matrix

can be shown to be permanent by Jansen’s criterion varies with n and C(A). For
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n = 3 we find ¢ = 1 independent of the connectivity. g then decreases by at least
2 orders of magnitude between n = 4 and n = 7. For larger networks ¢ cannot be
estimated with sufficient accuracy since the number of type-c matrices which can

be produced with reasonable amount of computer time is too small.

A plot of g versus connectivity C(A) shows a minimum for C(A) = 0.5 and reaches
1.0 for C(A) = ﬁ, which corresponds to essentially hypercyclic systems for all

n > 4. Unfortunately, thus, the only known sufficient condition for permanence

— Jansen’s criterion — works worst for the most probable type of matrices.

9.5. Growth of Cooperative Networks

Cooperative behavior and especially permanence have been shown to be rather
rare events in random networks. In this section we will investigate the fate of a
cooperative network when an additional species enters, for example a mutant of

one of its elements.

For second order replicator equations the minimum requirement for any type of
cooperative behavior is the existence of an interior restpoint — otherwise all tra-

jectories converge to the boundary of the simplex.

Suppose A € IR™*" leads to an interior equilibrium of (SR) in S,,. An additional
species is introduced by extending A to 4’ € RM™TV*®+1) by 5 random column

and a random row. We define
opp(n+ 1) = Prob{A’ yields an interior equilibrium}. (9.10)

In complete analogy we may ask for the probability of permanent network to incor-
porate an additional species such that the resulting network is again permanent.
Since we have no unambiguous algebraic characterization of permanence we have

to be content with an rather crude estimates, namely the probability ;; that a
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Table 7.Growth of Cooperative Networks.*

(1) (2 (3) (4) (5) (6) (7)
n_t pee(n) pec(n) Pje 9cj(n) ©5i(n)
2 th 5-1071 25-1001  25-1071 25-1001  25.1071
3 N 2.84.1071 1.14-1071 1.14-1071 1.14-1071 1.14-107!

L 2.77-1071 1.17-10~" 1.17-107t 1.17-107" 1.17-107"

4 N 2.17-1071! 6.68-1072 6.30-102 6.68-10"2 6.30-10"2
L 2.12-1071 7.01-10"' 6.66-10"1 7.01-1072 6.66-1072

5 N 1.73-1071 4.39-1072 3.33.1072 4.55-1072 3.70-102
L 1.71-1071 4.82-1072 3.83-.1072 4.78-1072 3.98-1072

6 N 1.46 - 1071 3.31-1072 1.59-102 3.02-1072 1.92-10"2
L 1.43-1071 3.56-1072 1.86-102 3.51-1072 2.29-.10"2

7 N 1.27-1071 2.50-1072 4.71-103 2.30-1072 1.03-1072
L 1.23-1071 2.77-1072 6.50-1073 2.67-1072 1.28-1072

8 N 1.13-1071 1.92-1072 1.2-1073 1.66-10"2 4.4-10"3
L 1.11- 1072 2.04-1072 1.5-10°3 1.92-1072 5.8-1073

9 N 1.01- 1072 1.48-1072 2.1-107* 1.1-1072  2.1-1073
L 9.73-1072 1.74-1072 3.2-107% 1.5-1072 3.2-1073

10 N 8.99-1072 1.09-1072 8.107° 7.1073 ~ 1073
L 8.88-1072 1.33-1072 <1074 8.1073 <1073

*

Pyz (n) denotes the probability for a network of type-x (E refers to networks with interior

equilibrium, ¢ and j to type-c and type-j networks resp.) to form a type-y network by incorpo-
ration of an external species. Column (1) gives the dimension of initial network and column

(2) specifies the density function: Gaussian (N) or Laplace (L).

matrix which fulfills Jansen’s criterion is extended such that the resulting network

again passes this test and the probability p.. for type-c matrices to form type-c

matrices again. Other possible estimate are g.;, the probability for obtaining a

type-c matrix from one which passed Jansen’s test and p;. that a type-c matrix

is extended to matrix passing Jansen'’s test.

Computational results are compiled in table 7. As all four of these estimates

seem to decrease (at least) exponentially we conjecture that the probability to

extend a permanent system to a system which is permanent again will decrease

exponentially with the number n of coexisting species.
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-as + " b

Figure 23: Probabilities for incorporation of external species into networks of dimension n.
Dashed line pgg, dash-dotted line p.., dotted line p;., dashed line with narrow spaces
pc; and solid line p;;. A and () refer to Gaussian and Laplace distribution resp. See
text for further explanation.

We may roughly estimate the chance to get a cooperative n-species network by

successive incorporation of other species by
o(n) = [ o). (9.11)

Fig. 23 compares these values with the probability for finding a cooperative n x n
network by chance. The chance to get permanent networks stepwise by incorpo-

ration of random “invaders” is orders of magnitudes smaller than the chance to
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LOG{CUMMULATED PROBABILITIES)

Figure 24: Cumulative probabilities for cooperative behavior by subsequent incorporation of
external species into cooperative networks (equ.(31)). For simplicity only averages over
the different density functions are plotted. - refers to the existence of an interior
equilibrium, <} refers to type-c networks and /\ refers to type-j networks. Solid lines
give the probabilities for accidentally finding a network of the above types, dashed lines
give the probabilities for obtaining a network of given type from a network of the same
type by subsequent incorporation of additional species (prE,pcc,0j;). The dotted lines
show p;. and p.; for comparison.

find a large permanent network at random.

What happens if an invading species is not incorporated thereby enlarging the
permanent network? If the transversal eigenvalue in the direction of the invader

is negative, than it cannot be successful and the previous network persists. We
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estimate a probability of 0.5 for this process. If, on the other hand, the network
is not stable against invasion, at least one of its members dies out in most cases
because — as we have seen above — it is very improbable that the whole system
is still cooperative. It may be replaced by the invading species, but we expect
that in most cases more than one species disappears. The contact of a cooperative
network and an external species might well be lethal for almost all species in the
system. Unfortunately there are no algebraic tools known to calculate the outcome

of such an event.
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10. Replirators witlh Stochastic Perturbations

<X

successful attempts have been made to include mutation, see for example [7, 96,

he ‘pure” replicator equation can only model selection of the interacting

species, but does not permit the generation of new species. Although

42], no new species are introduced. There is only change within the density of

given species. Obviously there are two different ways to introduce a new species

in a stochastic way:

(i)  Mutation takes a randomly chosen species and modifies it, such that the new
species interacts in quite a similar way as the old ones.

(ii) Immigration happens if a species from outside intrudes a given catalytic net-
work. Because there can be no knowledge of the species inside, the interac-

tions will be entirely of stochastic type.

So let us have a closer look on these different models.

10.1. Mutation

We start with the usual second order replicator equation.

tr = xp ((Ax), — (z, Ax)). (10.1)

Because at the inner equilibrium & no species vanishes, we have the fixed-point

condition

(A2)g = (&, AZ). (10.2)

So if a mutation occurs to the species x;, the new species will be quite similar to

the old one. Even if the relative change of parameters is large, it will nonetheless
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depend on its former value. Thus the selection new matrix A’ will be of the form:

( 0 cee Q1 e a1k+€ll\
0 cee Qo ... Qo+ €
! :
A'= QL1 (07 0 62 ’ (10'3)
\ak1+€1 aga+€ ... 0 ... 0

with @41 — @n| < max]e;|.

Theorem 29. Consider a second order replicator model. If a new species is
introduced by mutation, the probability of intrusion will not depend on the existing

species.

Proof: From Hofbauer [56] we know that the transversal eigenvalues of Replicator

equations are
Ant1 = (AZ)n41 — (&, AZ)

n n n
= E €;T; + E k;T; — E AT Tom
Jj=1 j=1

b=l ) (10.4)

-~

=0
n
= Z Gj-i‘j-
j=1
Because of the interior equilibrium, the second part of the equation is zero and
the impact of the mutation depends only on the values of the new species. If a

barycentric transformation is applied to the replicator equation, the transversal

eigenvalue A, will simply be:

1 n
Y = _ . .
=Y (10.5)
J=1
[

Remark: So if the differences of A — A’ = ¢; is symmetrically distributed around
zero, such that the expectation value { €; ) =0, we will have { A,4; ) =0 and
expect half the mutations to have no impact on the dynamical system at all.
Bemuse more often positive values of ¢; will cause positive transversal eigenvalues,
the mean fitness of the model at the interior fixed point ®, on the average, will

increase.
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Mutations of single interactions:

Corollary 4. A Replicator equation that is perturbed only by element api1.n+1

can have no interior equilibrium.

Proof: At the interior restpoint we have
Az = 1.

Therefor we have

k: Zakji“j = (i)
7=t (10.6)
n+1:Z(akj—6)a%j=<i>, e>0

Thus follows that ) &; = 0, which is a contradiction to >, z; = 1.4

Corollary 5. A Replicator equation that is perturbed only by element any1,x can

have no interior equilibrium.

Proof: At the interior restpoint we have

n
k: E Apil; = )
j=1

(10.7)

n-l-l:Zakja?j—l-ea%k:(I), e>0
j=1

From ez, = 0 follows a contradiction to the assumption of the existence of an

inner equilibrium for n species. g

10.2. Immigration

If the new species is independent of the old ones, we may expect different behavior.

Let us call the immigrating species C' and the interactions with the existing species
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¢ij. The new selection matrix A’ is

[0 a6
0 P as e Cl2
I — :
A= akr a2 ... 0 ... c?f ’ (10.8)
\ €1 c ... ¢ ... 0 /
Theorem 30. Consider a second order replicator model. If a new species is

introduced by immigration, the probability of intrusion will depend on the existing

species as well.
Proof: The transversal eigenvalue again will be
n n
)‘n—i—l = E Cji‘j - E alm:%lﬁ:m
J I,m

Here the flux does not cancel and therefore the new species depends crucially on

the old ones. g

Proposition:[Flux] The time-average of the flur (&, A%) is positive for every

trajectory on an attractor that is in the interior of a subsimpler S,, (withn > 2).

Proof: We follow Hofbauer and Sigmund [56] (Chap.19). 4

Remark: The proposition does not hold for rare phenomena such as heteroclinic

orbits.

Because immigration is a rare process, the relaxation time for each species is

sufficient to equilibrate.

Corollary 6. The expectation value { Any1 ) of the transversal eigenvalue of a

immigrating new species is less than { ¢; ) .

Proof: Let ( ¢c; ) be the expectation value for the transversal eigenvalue of an

immigrating species. Then we have

<< An+1 )) = << chm.ffl )) - << Zalmﬁclim >> < << Cj )) . (10.9)
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Because of proposition (flux) the flux is expected to be positive. .

Remark: If { ¢; ) =0 than less than half of the immigrating species are expected

to invade. Moreover, let max(|c;|) < e. If € becomes very small then
lim A1 = — (3, AZ) < 0.

If the interactions of the intruding species with the existing are small, we do not
expect any effect at all. On the other hand, if these interactions become very large,

the effect on the probability to invade will be dominated by the expectation value.

10.3. Numerical-Experiments

Because the analysis of stochastic perturbations of replicator equations is rather

involved, it was supported by intensive numerical studies.

Most of the simulations were performed as random walks. At the very begin-
ning, two species were created by randomly choosing a selection matrix in normal
form. Initial conditions were randomized as well. Then, after a integration step all
species, whose relative concentrations were below a fixed limit were thrown away.
Then a new species as invented according to the mutation and immigration mod-
els. In order to speed up performance of the algorithm several checks were made
before starting the integration process. All random numbers were taken uniformly

distributed with mean zero.

The algorithm was implemented in C, but used several subroutines from the
public-domain Fortran libraries 0DEpack, LAPACK and LINPACK. Moreover, for
the permanence-checking routine some subroutines from the NAG-package were

taken.

As predicted, the average fitness of the mutation model increases in time. There is

a linear increase in flux, due to the increasing entries of the selection matrix A, see
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---- Nr. of species
<X,AX>

10.0

Nr. of species / flux

|
I
|
50 -
I
I
I

- r= A
ot
bt
ot
[l N

jm e =t

ooLb— .
0 100 200

Number of cycles

300

Figure 25: Example of a single run of the mutation-model. The average fitness is shown together

with the changes of number of species. Although the increase is not monotonous, it

clearly increases with time.

figure 25. Because for the immigration model the system is not stable, according

to frequent breakdowns, where all but one species go extinct, there is no increase

of the average fitness in time, see figure 26.

Since the immigration model cannot increase in size, it soon takes a stationary

mean value of 2.72 living species per cycle. This means that on the average net-

works of less than three species occur. Let’s have a look on the mutation model

now: Does it increase? If it actually does, then very slowly. The data shown in
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Figure 26: Example of a single run of the immigration-model. There are frequent breakdowns
in the systems, where all but one species become extinct. Thus also the average fitness

of the model does not increase.

figure 27 are the mean of ten independent runs of length > 10% cycles. A linear
regression analysis yields a slope of 2.2x10~7 species/cycle for the growth of the
system. The “stationary” number of living species has reached 5.25 at the end of

the simulation.

A closer inspection of the data yields some interesting facts.
(i) Mutation: neither the probability for a species to survive a certain number of

cycles, nor the probability of living species per cycle depends on the dimension
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Figure 27: Time development of the mutation model. The data were sampled over 108 cycles.

A spline over 1000 points is shown and a linear regression of the original data. (The first

10° point were cut off from the regression set.) The slope of the linear fit is 2.2X 1077

with intercept 5.25.

For comparison, the immigration model has a mean number of living species of 2.72.

of the differences of the entries of the selection matrix A. A

(i)

Immigration: here the relative size of the perturbation, compared to the

entries of A have an influence of the development of the network. See also

figures 30, 31 and 32.

Conjecture: Replicator networks that have evolved over sufficiently large time

are permanent.

Evidence: All networks that have been checked for permanence fulfill the Jansen
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Figure 28: Probability of a species to survive a certain number of cycles. For the immigration
model the value of €=1. is shown
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Figure 29: Mutation model: The average time development of the mean number of living
species over 50000 cycles. Different times of the experiments are shown.
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10

Prob.

20 40
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Figure 30: Immigration model:

The probability for a species to survive a certain number
of cycles depends on the relative size of interaction.

Here a scaling of € = 0.7-2.0
demonstrates the effect. € = 1. means that the interaction with the existing species is

expected to be equally strong as between the existing network.

Prob.

10
Nr. of species

Figure 31: Immigration model: The Probability to find 7 living species at a randomly choosen
cycle. Again, the range of € was from 0.7 to 2.0.
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Figure 32: Mutation model: The probability that an invading species into a network of n species
kills a number of old ones. (as shown in the legend) © denotes the fraction of species
that enlarge the network by one.

criterion [62], i.e. they are in full permanent. 15 networks a 50000 cycles have

been tested and 200 a 500 cycles.

10.4. Summary

The perturbation of catalytic networks is assumed to be a rare process. New
species always appear in low concentrations, compared to the established ones.
Thus enough time for relaxation was given between to successive steps. The
numerical experiments suggest that if the time between two deflections of the
dynamical system is not long enough th reach equilibrium, then the number of
species will rapidly grow, since the time for extinction is not sufficient before the
next new species appears. One will get a situation of almost maximal increasing
species until a fundamental collapse happens and only few, very likely only one

species survive. Then the process repeats.
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The perturbation of a given catalytic network can occur in two different ways:

(i)

A Mutation may happen. Although it is well known that even single point
mutations can produce compleatly different phenotypes, we will assume that
the appearance of the mutant is not too different from its wildtype. Thus the
entries in the selection matrix depend on the former values of the mutant. An-
alytical calculations show that the probability of invading the existing catalytic
network are independent of the “parent”. If the changes are symmetrically
distributed around zero there will be fifty percent chance to find a positive
transversal eigenvalue and thus the new species will be able to invade.

The most striking fact about mutation is that these networks are “persistent”,
e.g. not all but one species can go extinct, but after some initial period at least
three, and later on four species are the minimum that are alive together. There
develops a network of similar species, whose mean fitness increases in time,
while the single species come and vanish. A stationary state is reached after
some time where the average number of specie does not increase any more.
(There is a very slight positive slope, but because of limited time resources it
was not possible to continue the time evolution until equilibrium.)

In general, the probability for a species to survive a number of cycles decreases
exponentially, i.e. there is no master sequence that produces a cloud of similar
mutants, but the species are successively replaced by fitter ones.

We see a different situation for the second model: Immigration. An immi-
grating species does not know about the network, it is invading. Therefore
the interaction with the existing ones does not depend on the single entries
of the selection matrix of the old network, but nonetheless it depends on the
average fitness of the invaded species.

The relative size of the interaction with the existing network is crucial for the
probability of a successful invasion of the new one. If; on the average, the size
much greater than those of the old ones, it will dominate the average fitness
term and the chance to be successful will come close to fifty percent. On the
other hand, if there is not much interaction (e.g. because the two systems
inhabit different ecological niches) the probability of invasion becomes less

and less, until it clearly vanishes in the limit of no interaction at all.
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Invaded catalytic networks are unstable. They can survive over a few cycles,

but it is very likely to find invading species that kill all the network, where

only a single species can survive. So it collapses periodically and does not

grow in size as much as the mutation model. Therefore the average expected

number of species is just half a large as in the mutation model and the average

fitness does not grow. But it seems that dominant species can be found much

more easily, for the probability of surviving a large number of cycles is much

higher, but depends on the relative size of the interactions, compared to the

old network.

Prob.
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Figure 33: The Probability to find a number of living species at a randomly choosen cycle.

Since the mutation model maybe increases in time very slowly, the according plot was

taken from the average of late times, where no networks with less than three species

occur; see also 30.
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11. Gourlustions and Guilook

that in sum let a cell be alive is still far beyond reach, yet somehow all these steps

must have evolved from some much simpler predecessor.

Nowadays, it is mostly agreed that at the very beginning of life some kind of
RNA-world existed, where RNA-molecules both fulfilled the functions of storing
information and having specific catalytic activity. A great deal of evidence for such

a setting still can be found, and many groups around the world work on ribozymes.

Many important questions about how certain components of living cells can have
developed are still unanswered, but what is common to all living creatures is
replication. So, because replication is both the basis of conserving and changing

information, it is the most crucial invention of life.

The most simple model of replication is to neglect all intermediates and regulation
processes that are known today, but take replication as an overall reaction. The
consequence of such a model is a simple one-step mechanism that describes the du-
plication of a molecule as a first order chemical reaction. Because this assumption
is very unlikely even in the context of wery basic mechanisms, a catalytic step is
introduced. Then we have a second order reaction that consists of an autocatalytic

part and interactions of the various species of the sample.

In order to create a model of replication, one has to take into account physi-

cal boundary conditions that keep away the system from equilibrium. There are

different types of realizations of such boundary conditions, such as:

(i) the CSTR, being the experimentally most easily realizable setting. It is kept
constantly stirred in order to prevent spatial effects and provides the dynam-
ical system with raw material at a constant rate. Also the volume is kept

constant.
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(ii) the Constant Organization keeps the total sum of all species constant while
the low-molecular building material is kept buffered, at the cost of enormous
experimental effort. There is a flux through the system that represents the
mean excess production. Mathematically, one gets replicator equations.

(iii) finally one could set up a regenerating system that is closed to flux of matter,
but only admits in—, and output of energy. Such a model is not of much prac-
tical value, but proves useful for creating spatial inhomogeneous dynamical

systems.

Although it is clear that replicator equations are not sufficient to cover even
the most simple features of a newly developing cell, they nonetheless do tell
us a lot about the principal phenomena of chemically and physically interact-
ing molecules. It seems straightforward to enrich the replicator equations with
intermediate species or to include replication or some sort of regulation phenom-
ena in order to enlarge the range of validity of our model, but unfortunately very

soon the resulting equations are much too involved even to write them down.

Therefore, it is interesting find out to what extent such structural perturbations of
the network are described correctly by the simpler model. It has turned out that
singular perturbation theory is an efficient tool to check the validity of the overall

reaction assumption.

Different ways have been attempted to deal with the task:

(i) Intermediates have been introduced into the process of replication. First
a model with intermediated that are consumed again in the course of the
reaction was considered. Because a detailed analysis of this model already
existed, the deviations to the plain replicator model could be worked out well.
Then a second model with intermediates was set up. This time a Michaelis-
Menten kinetics was assumed. Here a good agreement with the replicator
model was observed.

(ii) Translation was introduced by adding a simple one-step reaction that pro-
duces a protein translation product, which shows some replicase activity. Be-

cause there seems to be no reasons for a close coupling of the two subsystems,
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each was taken to obey constant organization separately. A detailed analysis
was performed and also effects of mutation were taken into account.

(iii) It is clear that there exists a close relationship between the CSTR and the
constant organization case. Thus the limit of low flux rates for the CSTR was
investigated, in order to make mathematical treatment of dynamical systems

more easy.

Moreover the effect of stochastic perturbations on the “pure” replicator equation

was treated by numerical studies. Two types of perturbation could be worked out:

(i) Mutation occurs when a new species is created by (slightly) altering an
existing one.

(ii) Immigration means the invasion of an existing network by a completely new

species.

The immigration model frequently collapses to only one remaining species, while
in the mutation model a stationary value is archived at an average size of ap-
proximately five species. Moreover, the mean fitness of such a model continually

increases, while for immigration it keeps very low.

Since Permanence of biological systems is of great interest and Lotka-Volterra
systems can be described by replicator-dynamics, the probability of permanence
for these two models was studied. Extensive numerical work has been done on
that topic. While permanence for immigration models is a very rare phenomena,
it seems that selection is very good at creating permanence, for all systems were

found to be permanent after sufficiently long time evolution.

Much time has been spent in order to find average Ljapunov-functions for the
Michaelis-Menten type systems, but these efforts were in vain, just as an attempt to
find projection-techniques for the determination of essential species of an reaction-
network. A numerical investigation about the likelihood of chaotic behavior of the
tree-species second order Michaelis-Menten type system was performed, but no

chaotic behavior could be detected.
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Outlook:

The validly of the replicator equation for certain models with more realistic set-

tings have been checked, but this work is still far from completely finished. Some

interesting information could be gained both by analytical and by numerical work

in the future.

The first replication model with intermediates seems to be neither of first,
nor of second order, but somewhere in between. Especially the limits of small
flux in the CSTR promise some nice new results about replicators with non-
homogeneous response functions. Here, both analytical and numerical work
may enlighten the situation.

In this work, some rather simple attempts were made to include more realistic
mechanisms into the family of replicator dynamics. Although even these were
almost impossible to deal with, concerning “classical” stability analysis, it
may be successful to find some models that are much closer to reality. Many
phenomena, for example regulation processes are not at all accounted for.
The stochastic model was just a beginning on that topic. Various combina-
tions should be interesting, aswell as spatial settings, where within the cells
mutation happens, but always some species immigrate from the surrounding
ones. This might prove a good way for modeling ecological niches in popula-
tion dynamics.

The actual rate-constants of interaction in a given chemical network depend
on the structure of the RNA-molecules. Thus is seems possible to link both
selection and mutation to the primary sequence of the interacting molecules
and retrieve the rate-constants for selection from some folding-algorithm. If
mutation is restricted to point mutations, the wandering of the species in
sequence space could be traced.

A generalization of the whole model in terms of A-calculus is likely to provide

work for years ...
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Wyndham Lewis, Apes of God
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