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überzeugt hat, daß es ein Leben nach der Dissertation gibt.



Zusammenfassung

Wir stellen eine Klasse von Reaktionsnetzwerken unter Einbeziehung von

Reaktionszwischenstufen vor.

Ein allgemeines chemisches Modell wurde erstellt, und das Langzeitverhal-

ten der daraus hervorgehenden kinetischen Differentialgleichungen werden

mit analytischen und numerischen Methoden untersucht. Zwei Spezialfälle

werden eingehender betrachtet: ein auf wechselseitiger Konkurrenz beruhen-

des, das eng mit einem von Schlögl vorgeschlagenen Modell verwandt ist,

und ein mutualistisches, aus dem Hypercyclusmodell von Eigen und Schus-

ter abgeleitetes, mit geschlossener zyklischer Katalyse.

Diese Modelle werden unter drei unterschiedlichen Randbedingungen behan-

delt; nämlich im gerührten Durchflußreaktor, in einem geschlossenen Reak-

tionsgefäß, wobei angenommen wird daß die Reaktionsprodukte unter Auf-

nahme von Energie von außerhalb des Systems wieder in die Edukte zerfallen,

und schließlich im Evolutionsreaktor.

Für eine bestimmte Wahl der Reaktionskonstanten konnte die Stabilität

aller Fixpunkte sowohl im Konkurrenz– als auch im mutualistischen Modell

berechnet werden. Während im Konkurrenzmodell nur Tangentialbifurkatio-

nen auftreten können, wurden im mutualistischen Modell Serien von Hopf–

Bifurkationen gefunden. Analytische Formeln zur Berechnung der kritischen

Parameter, bei denen diese Bifurkationen stattfinden, werden abgeleitet.

Schließlich wird das Verhalten der Systeme bei der Einbeziehung von Diffu-

sion untersucht. In beiden Modellen können Turing–Instabilitäten auftreten,

wenn man die Anfangsbedingung in der Nähe eines stabilen Fixpunktes

wählt. Im mutualistischen Modell tritt in der Nähe von stabilen Grenzzyklen

ein interessantes Verhalten auf: es können sich, je nach Wahl der Reak-

tionskonstanten und Diffusionskoeffizienten, räumlich inhomogene, aber sta-

tionäre Muster oder oszillierende Bereiche ausbilden. Auf einer zweidimen-

sionalen Domäne können sich darüberhinaus rotierende Spiralen bilden.
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Abstract

The behaviour of a class of autocatalytic systems with intermediates has

been studied.

A general chemical model has been derived, and the corresponding kinetic

differential equations have been studied by both analytical and numerical

methods. Two special cases were investigated in more detail: a competitive

model, closely related to the second order Schlögl model, and a mutualistic

model, derived from the hypercycle model due to Eigen and Schuster.

The reaction systems have been investigated under three different kinds of

boundary conditions: the continuously stirred tank reactor, a closed sys-

tem where reaction products decay to the substrate, consuming energy from

outside the system, and the evolution reactor.

For a special choice of the rate constants, stabilities of all fixed points could

be calculated both in the competitive and the mutualistic model. While the

competitive model admits only saddle node bifurcations under these condi-

tions, sequences of Hopf bifurcations can be found in the mutualistic model.

Analytical formulae for the critical parameters where the bifurcations occur

have been derived.

Finally, the behaviour of the systems under diffusion has been studied. In

both models, Turing instabilities can be found under appropriate conditions

when starting near a fixed point that is stable in the absence of diffusion.

For stable limit cycles in the mutualistic model an interesting behaviour was

found: they can form either stationary but spatially inhomogeneous patterns

or oscillating patches. Limit cycles on a two dimensional domain can lead to

the formation of spirals.
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Chapter 1

Introduction

Não me enfileirem conquistas

Das ciências

(Das ciências, Deus meu, das ciências!)

Fernando Pessoa Nogueira: Lisbon revisited

1.1 Evolution

Very detailed knowledge of biological and biochemical processes governing

the reproduction of cells has been accumulated in the last decades. With

this knowledge, it became possible to ask questions concerning the physical

nature of life itself in a very detailed and precise way. Among many others,

this comprises questions about the uniqueness of the genetic code, about the

optimality of enzymatic action as well as the origin of life itself.

It is a well established fact that conditions on Earth in the beginning (that is

in the first hundreds of millions of years after its formation) would not have

admitted the existence of complicated bio-polymers [50, 35]. This raises the

5



CHAPTER 1. INTRODUCTION 6

question of emergence and evolution of these bio-polymers and the intricate

systems of interactions between them.

The logic of evolution may be condensed into the following statements [9]:

• natural selection is a consequence of self-reproduction under conditions

far from thermodynamic equilibrium.

• Variation is due to imprecise reproduction or other modifications in-

volved in the reproduction process.

• Evolution is the result of variation and natural selection under condi-

tions far from thermodynamic equilibrium.

Charles Darwin was the first to stress this interplay of selection and variation

as the principle of evolution. To recognize the importance of advantages or

disadvantage, however slight, of individuals over others as the fundamental

driving force of selection seems to be one of the principal achievements of

Darwin’s work [6].

1.2 Self-Organization

“The self organization of matter associated with the origin of life must have

started from random events in a sense of non-existing of fundamental orga-

nization.” [8]. In his famous paper, which stimulated much research in this

field, Manfred Eigen sets out the development of a theory about self organi-

zation. He addresses the question of self organizing matter into replicating

‘individuals’.

In the last decades, a number of physical and chemical systems that show

self organization has been observed. The selection of laser modes [20], the

formation of coherent convection patterns [5], chemical oscillators, or the
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spontaneous formation of concentration patterns in autocatalytic chemical

reaction systems may serve as examples.

Based on these findings, the self organization of life–like phenomena became

— as thought experiment or as a computer simulations — rather the rule

than a once witnessed exception. Trying to make definitions of life as an

abstract quality so tight that they would still fit only to the phenomenon

of life seems to become a way of reassuring ourselves of our uniqueness.

Consequently, ploughing this field is left to philosophy and the theory of

sciences. In recent years, the term ’artificial life’ has become widely used

(for developments in that field see [26]), generally without too much concern

about precise definitions – ‘Artificial organisms are logical automata which

exhibit life-like processes’ [25]; on the other hand, research in the field of

the origin of life and of the mechanisms of evolution concentrated on the

phenomena of living organisms.

1.3 Pattern and structure

The examples for physical systems exhibiting ‘life-like behavior’ given above

lead to the question of the nature of the structures which these systems

exhibit.

Commonly accepted precise definitions of the terms ‘structure’ and ‘pattern’,

terms widely used in everyday language, describing ‘obvious’ phenomena, are

lacking – a situation quite similar to the definition of the term ‘complexity’.

For the purposes of this work it will be sufficient to view patterns as structures

with an appreciable degree of repetitivity (in space coordinates or in time),

so that it is possible to concentrate on the term ‘structure’.

From a thermodynamic point of view, a profound distinction was introduced

by Glansdorff [18], namely between

• equilibrium structures and
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• dissipative structures.

Equilibrium structures may be formed and maintained through reversible

transformations implying no appreciable deviation from equilibrium. A crys-

tal is a typical example of an equilibrium structure. Dissipative structures

have a quite different status: they are formed and maintained through the ef-

fect of exchange of energy and possibly matter in nonequilibrium conditions.

In thermodynamics, ‘systems’ are regions with a well defined boundary,

inside of which macroscopic properties are studied. For this, the follow-

ing distinction regarding the exchange with the surroundings proved useful:

open systems exchange of matter and energy

closed systems exchange of energy

isolated systems no exchange

In an isolated system, the entropy S tends to a maximum; the equilibrium

state in an isolated system is characterized by dS = 0. For a closed system at

a given temperature, a similar relation holds: The free energy F , defined by

F = E − TS, with E the energy of the system and T the absolute tempera-

ture, at equilibrium reaches a minimum. For an open system, the generalized

thermodynamic potential Θ = Θ(T, V, µi) (where µi is the chemical potential

of substance i) attains a minimum.

For a closed or an open system, dS can be split into the contribution due

to the irreversible processes inside the system and the contribution of the

outside world,

dS = deS + diS

and still diS ≥ 0. To maintain a steady nonequilibrium state, it is necessary

to maintain a negative flow of entropy exactly compensating for the internal

entropy production. Thus, dissipative structures can only be found in closed

or open systems, but never in isolated ones.

A closed or open system can reach thermodynamic equilibrium only un-

der special constraints (or boundary conditions); other boundary conditions
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might not admit equilibrium. For example a layer of liquid with a temper-

ature T0 maintained at the bottom and T1 on top can only reach thermo-

dynamic equilibrium if T0 = T1; else a gradient will be maintained, and the

internal entropy production will be compensated by the flow of heat through

the layer. For sufficiently small flows, the behavior of the system will be

qualitatively equal to the equilibrium state. The range of the independent

parameter governing the flow, for which this is valid, is called the ’thermo-

dynamic branch’. Prigogine, in his thesis [37], showed that for isothermal

closed or open systems in the thermodynamic branch, the total entropy pro-

duction reaches a minimum. This principle of minimum entropy production

is responsible for the fact that such systems are not able to develop ordered

behavior; this statement is equivalent to the fact that no fluctuation around

the thermodynamic branch can be amplified.

It is therefore that dissipative structures (which can be seen as the stabi-

lization of an a priori extremely improbable fluctuation) only outside the

thermodynamic branch (far from equilibrium).

1.4 Diffusion

Diffusion plays a key role in the formation of spatial patterns in reaction

diffusion systems as well as in many biological systems.

There are two principal approaches to diffusion : the macroscopic and the

stochastic; both will - under certain assumptions - lead to the same “law”.

In the case of the macroscopic (i.e. thermodynamic) approach, diffusion is

the flux of a component that arises from a spatial concentration gradient of

this component. The gradient represents the driving force of this process.

Assume that the diffusion of component i takes place in a medium which is

in excess; then

Ji,diff(x) = −Lii

(
∇µi

T

)

T,p
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where Ji,diff is the flux of the component i due to diffusion at x, µi is its

chemical potential and Lii is the phenomenological coefficient. For an ideal

solution this is equivalent to

Ji,diff(x) = −di∇ci

with ci the concentration of species i and di its diffusion coefficient; this is

called Fick’s first law of diffusion.

In a given volume element ∆ V with interior Ω and surface ∂Ω, the change

of mass over dt in that volume element is

∂ci∆V

∂t
= −

∮

∂Ω
〈Jido〉

with o the unit normal on the surface. The negative sign is caused by the

fact that the flux is directed outward. With Green’s theorem, this yields

∂ci∆V

∂t
= −

∫

Ω
∇JidV.

Letting ∆V −→ 0,
∂ci
∂t

= −∇Ji

If the diffusion coefficient is space independent, this yields Fick’s second law

of diffusion.
∂ci
∂t

= di∆ci

The other approach to diffusion is to view it as a stochastic process involv-

ing individual particles. The microscopic process underlying diffusion in an

isotropic medium is a random walk of the diffusing particles. The change of

direction and momentum is due to collision with other particles. Under the

assumption of several simplifications again the diffusion equation is obtained.

The space in which diffusion takes place is of central importance to the be-

havior of solutions of reaction diffusion systems. The natural domain for
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such models is a bounded subspace of IR, IR2 or IR3, with boundary condi-

tions that can arise in a physical context. For a closed vessel, these would

correspond to homogeneous Neumann or no-flux boundary conditions.

〈∇u, o〉 = 0 on ∂Ω,

where again o denotes the unit outer normal. If the walls are permeable to

some substances, mixed boundary conditions are appropriate; in the limit of

infinite permeability, this yields Dirichlet boundary conditions.

u = c on ∂Ω,

where c is a vector valued function of space, but usually is taken to be

constant in subregions of the boundary ∂Ω. Mixed boundary conditions are

a linear combination of these two,

(1 − α)〈∇u, o〉 + α(u − c) = 0.

Diffusion alone cannot produce any pattern-formation, since the pure diffu-

sion equation u̇ = D∆u describes a process which tends to drive to equilib-

rium all local perturbations. But in the case of coupling with nonlinear reac-

tions diffusion has a double role : ’on the one hand, it increases the stability of

the steady state, but on the other hand, it increases the manifold of perturba-

tions compatible with the macroscopic equations of change. . . . if the second

effect is dominant, we may expect symmetry breaking instabilities.’[38]

1.5 Experimental systems

In this section, we shall discuss some chemical reaction systems capable of

oscillatory behaviour and pattern formation.
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1.5.1 Halate oscillators

Among the first to describe chemical reactions exhibiting a non monotonous

approach to thermodynamical equilibrium in closed systems are Morgan [28],

who found a periodic release of carbon monoxide from a mixture of hydrogen

peroxide, formic acid and sulfuric acid Babloyantz [1], and Bray [4], who

observed a periodicity of iodine concentration in an acidic medium in which

iodate catalyzed the decomposition of hydrogen peroxide to hydrogen and

oxygen. The latter is the first example from the group of halate oscillators,

which account for the largest number of known chemical oscillators of today.

Epstein [13] gives a classification of the known halate driven oscillators, which

can be divided into bromate, chlorate and iodate oscillators; among them,

the bromate oscillators, which usually, but not always, contain metal ions as

catalysts, form the largest group, whereas the group of the iodate oscillators

has not experienced a substantial extension since Bray’s discovery.

1.5.2 The Belousov–Žabotinskij reaction

In the course of studying the oxidation of citric acid by potassium bromate,

catalyzed by the redox pair Ce3+/Ce4+, Belousov observed oscillations of

concentrations manifested by the regular alternation of color of the solution

between yellow and colorless. But it was not before the intensive study

of the mechanism and the properties of that reaction by Žabotinskij in the

early sixties that the phenomenon of oscillations in homogeneous solution was

given attention ([2, 56]). Field, Körös and Noyes [14] have identified a set of

reactions which since then has been taken as the basis of simplified models

developed to simulate the behavior of the Belousov–Žabotinskij reaction.

This set of reactions is referred to in the literature as the ‘FKN-model’.

After having analyzed this mechanism, Field and Noyes cast these reactions

into the following model [15], called the ‘Oregonator’ to honor the university

at which it was developed:
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A+ Y ⇀↽ X

X + Y ⇀↽ P

B +X ⇀↽ 2X + Z

2X ⇀↽ Q

Z ⇀↽ f Y

The model is related to the FKN-model by identifying X as HBrO2, Y as

Br− and Z as Ce4+, and, under certain constraints, A and B as BrO−
3 . f is a

stoichiometric factor accounting for the diverse oxidations Ce4+ can perform.

Improvements on the original system were introduced in order to model the

real chemical system better, which has since been studied by more and more

refined methods. An early comprehensive work, describing the model and

the chemical waves it exhibits, is by Tyson [49]. Innumerous articles on

the model – ranging from experimental to purely mathematical – have been

published since then, treating its behavior in the homogeneous case, also

for other catalysts, and especially its capability to exhibit a very diverse

spectrum of spatial patterns under diffusion. Among these, target patterns

(circular symmetric wave trains in two spatial dimensions), one– and multi–

armed spirals, three dimensional vortex dynamics, as well as chaotic behavior

have to be mentioned; many phenomena exhibited by the reaction diffusion

system have been observed only after mathematical analysis predicted them

[29]. Among others, the group around Winfree has explored and classified

two and three dimensional spirals in great detail, experimentally as well as

theoretically (e.g. [52]).

The research group around Swinney in collaboration with that at the Univer-

sity of Bordeaux has designed different reactor types for the observation of

spatial and spatiotemporal structures displayed by the Belousov–Žabotinskij

reaction and its modifications. The so called Couette reactor, in which the

reaction mixture fills the gap between two cylinders rotating against each
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other and is in contact with reservoirs at the two ends of the cylinders,

proved useful to study reaction diffusion systems under Dirichlet boundary

conditions; the rotation leads to equal effective diffusion coefficients three to

five orders of magnitude larger than the conventional diffusion coefficients in

the same medium, allowing the observation of appropriately larger spatial

structures ([47, 36]). The Continuously Fed Unstirred Reactor (CFUR) can

serve as a tool for systematic studies of spatial pattern formation in two di-

mensions; in the CFUR, the reaction diffusion process is observed in a gel

that is sandwiched between a glass plate and a glass capillary array which is

in contact with a well stirred reservoir [46]; an annular geometry instead of a

gel sheet – nearly related to the cyclic arrangement discussed by Turing [48]

– was realized by Noszticzius [32]. The principal advantage of these reactors

over the conventional isolated systems is the possibility to remain away from

thermodynamic equilibrium for arbitrary long times.

1.5.3 The peroxidase reaction

An interesting example of a chemical oscillator involving enzymes is the ox-

idation of NADH by O2 catalyzed by horseradish peroxidase. In 1965, Ya-

mazaki et al. [55, 54] found damped oscillations in oxygen concentration

when they studied this reaction in an open system. Degn [7] proved that

the system exhibits bistability under suitable experimental conditions due to

the fact that the peroxidase is inhibited by oxygen at high concentrations,

forming an inactive complex. Nakamura, Yokota and Yamazaki [30] then

designed the first system of this kind that exhibits stable oscillations, using

Lactoperoxidase, NADPH and methylene blue, which catalyzes the decom-

position of the inactive complex (plus some additional stabilizing agents). In

1977, Olsen and Degn found chaotic oscillations in a similar system ([34, 33]).

In a recent work by Geest ([17]), these oscillations were reproduced and a

period doubling route to chaos was found.
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1.5.4 Other examples

In the reaction described by Morgan [28] (see above), an interplay of chemical

reactions and physical steps is responsible for the oscillations. In strong

sulfuric acid, formic acid is dehydrated to form carbon monoxide which is

only slightly soluble in aqueous solutions. The homogeneous nucleation of

bubbles of carbon monoxide from a supersaturated solution and the practical

irreversibility of its release as bubbles account for the oscillations.

Another example of a gas evolution oscillator is the formation of nitrogen

from ammonium and nitrite in acidic solution in the presence of perchlorate

(which presumably mainly has the effect of increasing the surface tension in

the solution, an important factor in the kinetics of bubble formation) ([23]).

An example of a system exhibiting spatial structures, and in which physical

processes play an important role besides chemical processes, is the class of

the Liesegang reactions, the precipitation of a salt of very low solubility in a

gel matrix. Usually, one ion is present in the gel matrix, whereas the other

ion diffuses into that medium. At a certain level of supersaturation, precipi-

tation sets in, depleting the surrounding region of ions and thus reducing the

probability of precipitation in the neighborhood. Commonly, lead iodide or

lead chromate are used. ([39, 27])

A chemically simple example of an excitable system admitting a traveling

pulse was given by Kramer [24]: in a tube, the equilibrium between the flu-

orosulfate radical (SO3F) and its dimer S2O6F2 is disturbed by a laser beam

the frequency of which is tuned as to only excite SO3F. Again excitability is

due to the fact that the rate of formation of the radical is a highly nonlinear

process, leading to the phenomenon of hysteresis and multiple steady states.
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1.6 Modelling ecosystems: Types of Inter-

action

After having presented experimental systems that show various kinds of self

organization, this section is dedicated to purely mathematical models aimed

to describe certain phenomena in ecological systems. The behavior of the

solutions is in some cases quite similar to trajectories observed in chemical

reaction diffusion system, including oscillations, pattern formation etc.

The analysis of the interaction between two species can be quite compli-

cated, involving the effects of exterior and interior parameters. As a first

approximation, however, one may distinguish (apart from the case of zero

interaction) three basic situations.

• Competition: Two species are rivals in the exploitation of a common

resource. The more there is of one species, the worse for the other

one. Because of the importance of competition as a limiting factor in

evolution, such situations have attracted considerable attention.

• Symbiosis: This is the reverse situation: both species benefit from each

other. The more there is of one species, the better for the other one.

Such mutualistic relationships have been treated by Eigen and Schuster

[10, 11, 12] In particular, there are good reasons to think that also

living cells of the type occurring in higher organisms are the outcome

of a symbiosis between more primitive organisms.

• Host-parasite relationship: The situation, here, is asymmetrical. The

parasites benefit from the host but they do it no good. Examples are

e.g. viruses or interactions between predatory animals and their prey.

We now present one mathematical model for each of these interactions. They

are all “classical” in the sense that have been created long ago and are well
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studied. The first two of them will play a particularly important role in this

work.

1.6.1 Competition: The Schlögl model

Schlögl [40] investigated two model systems in which the substance Xi is

formed from a substrate A via first order and second order autocatalysis,

respectively:

A+Xi
ki→ 2Xi (1.1)

(first order autocatalysis) and

A + 2Xi
fi→ 3Xi (1.2)

(second order autocatalysis). Some additional reactions are required in or-

der to guarantee boundedness of the solutions. Schlögl considered only one

species Xi and thought of the reactants as ideal gases. Schuster and Sig-

mund [41] applied these models to selection and evolutionary optimization,

extending the models to n species X1, . . . , Xn, which are thought of as RNA

strands that compete for the common substrate A (the nucleoside triphos-

phates). They showed that in the continuously stirred tank reactor (CSTR)

setting (see Chapter 3), an arbitrary number of species could coexist under

suitable conditions in the case of first order autocatalysis, whereas for the

second order autocatalysis all fixed points at which more than one species

exists are unstable. The second order system is called selective, since all tra-

jectories converge to fixed points at which only a single species exists. Which

one of the species is selected depends not only on the rate constants fi, but

also on the initial conditions.

In both cases a generalized gradient could be found; hence, complicated

dynamical behaviour like oscillations, quasiperiodicity and chaotic dynamics

are impossible.
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1.6.2 Symbiosis: The Hypercycle

Eigen [8] estimated that nucleic acids viewed as information carriers could

not accumulate a stable information content of more than about 200 bits,

corresponding to the formation of polymers not longer than approximately

100 base pairs. Since even the simplest bacteria have genomes that are

several orders of magnitude large than this estimate, Eigen concluded that

the competition of information carriers alone could not lead to any type of

correlated function. This phenomenon was termed “information crisis”.

In a collective of chemical species, where each species catalyzes the formation

of another one, a closed loop of catalysis may be found. By this cyclic

action, the individual members of the closed loop influence the probability of

their reproduction as a collective. Then the collective of the members of the

cycle is subject to selection and can, in contrast to single species, code an

arbitrarily high amount of information, namely the sum of the information

content over all individual information carriers which are members of the

cycle, provided the replication network is stable against small perturbations

caused, for instance, by stochastic fluctuations. By this, a way out of the

information crisis can be found.

A model for this cyclically catalytic action was developed by Eigen and Schus-

ter [8, 10, 11], in which n information carriers, that show the property of

autocatalytic self-reproduction, are linked together by catalytic action into

a “cyclic hierarchy”, as each member also gives (possibly indirect) catalytic

help to the reproduction of the next member:

A +Xi +Xi−1
fi−1→ 2Xi +Xi−1 i = 2, . . . , n

A +X1 +Xn
fn→ 2X1 +Xn

(1.3)

This model has since gained fame as the “hypercycle”. It is cooperative in

the sense that either all species survive or all die out. Schuster and Sigmund

[41] found that in the CSTR setting there are two fixed points at which all
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species coexist: one is always unstable, the other one is stable if n ≤ 4 and

unstable otherwise. In the latter case this fixed point is surrounded by a

stable limit cycle. Much work has been done on the hypercycle, especially

in the evolution reactor setting (see Chapter 3). Hofbauer and Sigmund [21]

present an excellent survey.

1.6.3 Host-parasite relationship: The Lotka-Volterra

model

In the years after the First world war, the amount of predatory fishes in

the Adriatic was found to be considerably higher than in the years before.

The hostilities between Austria and Italy had disrupted fishery to a great

extent, but it was not clear why this was more favorable to the predators

than to their prey. Volterra [51] created a mathematical model to describe

the situation: He assumed that in absence of predators the rate of growth of

the prey population x is given by some constant a, but it decreases linearly as

a function of the population of the predators, y. The predators, on the other

hand, would die out at rate c in the absence of prey, but their population

grows linearly with x. This leads to the following system of differential

equations:

ẋ = a− by

ẏ = −c+ dx
(1.4)

(a, b, c, d > 0). This system has a fixed point where both predators and

prey die out and one at which they coexist where x = c/d, y = a/b. The

latter is surrounded by a set of periodic orbits. Volterra was able to show

that the time average of the populations along the periodic orbits equals the

populations at the fixed point which they surround.

Assuming that fishing reduces the growth rate of the prey to a − k and

augments the rate of decrease of the predators to c+m and introducing these

quantities instead of a and c into the equilibrium concentrations, we see that
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fishing leads to an increase in prey and a decrease in predator population.

Stoppage of fishing, of course, has the converse effect.

1.7 Second order reaction networks

The equations (1.2) and (1.3) can be viewed as two special cases of a gen-

eral reaction scheme with n species X1, . . . , Xn that have certain catalytic

activities and a substrate A of which they are formed:

A+Xi +Xj
bji→ 2Xi +Xj (1.5)

Thus, Xi is formed from A with catalytic help of Xj. Again, we need some

additional reactions to keep solutions bounded. The essential steps (1.5)

require the collision of three reactants. Termolecular collisions are highly

improbable and hence do not contribute to reactions kinetics. Superposition

of catalytic reactions, nevertheless, may lead to an overall dynamics which

can be modelled properly by second order catalytic reaction steps.

This work is mainly concerned with the effects of replacing the single step

(1.5) by two successive first order catalytic reactions. This involves con-

sidering intermediates, which can be thought of as activated complexes if

the Xi are chemical reactants. We shall present this model, along with the

mathematical settings in which we investigate it, in detail in Chapter 3. In

Chapter 2, we introduce the mathematical framework. Chapters 4 and 5 deal

with two special cases, the competitive and the mutualistic model, which are

equivalent two the Schlögl model and the hypercycle, respectively, in terms

of second order reaction networks. In chapter 6 we shall present the effects

of considering diffusion rather than reactions in well stirred mixtures as in

chapter 4 and 5. Chapter 7 contains conclusions and outlook.



Chapter 2

Methods

2.1 Ordinary Differential Equations

2.1.1 Canonical Forms for Linear Operators

Let T : E → E be an operator. Its characteristic polynomial can be written

as

p(t) =
r∏

k=1

(t− λk)
nk

where λk are the r distinct eigenvalues and nk are their multiplicities. Clearly

n1 + n2 + . . . + nr = dim E. The generalized eigenspace of T belonging to

λk is defined as

E(T, λk) = ker(T − λk)
nk ⊂ E

Proposition 2.1 (Primary decomposition theorem) Let T be an oper-

ator on a complex vector space E. Then E is the direct sum of the generalized

eigenspaces of T . The dimension of the eigenspaces equals the multiplicity of

the corresponding eigenvalue.

We say an operator A is semisimple iff its complexification is diagonalizable.

It is nilpotent if there is an n ∈ N such that An = 0.

21
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Proposition 2.2 For any operator T ∈ L(IRn) there are unique operator S

and N on IRn such that T = S + N , SN = NS, where S is semisimple and

N is nilpotent.

The semisimple part S itself may be decomposed into a part SR corresponding

to real eigenvalues and a part SC corresponding to complex conjugate pairs

of eigenvalues. By an appropriate change in coordinates SR may be rewritten

in diagonal form and SC then consists of 2 × 2 blocks of the form

Ci =


 a −b
b a




where a and b are real. This representation for S is called (real) canonical

form. If we allow for complex entries S is diagonalizable as a whole; instead of

the matrices Ai we have the pair of complex eigenvalues of Ai in the diagonal.

An elementary nilpotent block is a matrix of the form

N1 =




0

1 .

. .

. .

. .

1 0




Proposition 2.3 Let N be a nilpotent operator on a real vector space E.

Then E has a basis such that N is represented by a matrix of the form N =

diag(N1, . . . , Nr) in which Nk is an elementary nilpotent block and the size

of Nk is a nonincreasing function of k. The number r of blocks is equal to

dim kerA. Two nilpotent operators of the same vectorspace are similar iff

they have the same canonical form N .

Let us now consider an operator of the form T = λ E + N where E is the

unit operator and N is nilpotent. If we choose the basis such that the matrix
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N is a nilpotent canonical form, we find the matrix representation of T to

be N + λ E. This matrix has block diagonal form with identical blocks of

the form 


λ

1 .

. .

. .

. .

1 λ




which are called elementary JORDAN blocks. The number of such blocks is

r = dim ker (T − λ)

and their size is m
r
, where m is the dimension of the vector space. If λ is

complex the elementary blocks may be rewritten in real form for a pair of

conjugate eigenvalues.




D

E2 .

. .

. .

. .

E2 D




D =


 a −b
b a


 and E2 =


 1 0

0 1




Proposition 2.4 The canonical form for an arbitrary operator T may now

be written as the direct sum of matrices of the above form. It is therefore

a block diagonal matrix consisting Jordan blocks corresponding to the eigen-

values λk of T . Each block has size nk and is made up of dim ker(T − λk)

elementary Jordan blocks.
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2.1.2 Linear ODEs with Constant Coefficients

Let T : E → E be a linear operator . Its exponential is defined as

exp T =
∞∑

k=1

T k

k!
.

This series converges for all T ∈ L(E). If Q = PTP−1 then the exponential

of Q is given by

expQ = P · expT · P−1

and if x is a real eigenvector of T belonging to λ, then x is also eigenvector

to exp T belonging to eλ.

Let us now consider the solutions of the homogeneous linear system

ẋ = A · x

Proposition 2.5 Let A be an operator on IRn. Then the initial value prob-

lem ẋ = A · x, x(0) = x0 ∈ IRn has the unique solution.

x(t) = exp(t · A) · x0

The exponential of an elementary n-dimensional Jordan block B may be

readily calculated: with

exp(t ·B) = eλt ·




1

t 1

p2 t 1

. . . .

. . . . .

pn−1 pn−2 . . t 1




In coordinates we may write down the solutions of the initial value problem

as

xj(t) = eλt
j−1∑

k=1

tk

k!
x0

j−k;
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where x0
i denotes the coordinates of x0.

If λ is complex we identify C m and IR2m by the correspondence

(x1 + ıy1, x2 + ıy2, . . . , xm + ıym) = (x1, y1, x2, y2, . . . , xm, ym)

The solution is formally the same as above, but with the complex vector z

instead of the real vector x. With z0
i = x0

i + ı y0
i we obtain the solution in

real variables:

xi(t) = eat
j−1∑

k=0

tk

k!

[
x0

j−k cos bt− y0
j−kybt

]

yi(t) = eat
j−1∑

k=0

tk

k!

[
y0

j−k cos bt− x0
j−kybt

]

where λ = a + ı b.

Proposition 2.6 Every trajectory of ẋ = Ax tends to 0 for t −→ ∞, iff

every eigenvalue of A has negative real part.

Definition 2.1 Let (a, b) ⊂ IR be an open interval, U ⊆ IRn a region. A

map Φ : U× (a, b) −→ IRn is called the flow, if Φ(Φ(x, t1), t2) = Φ(x, t1 + t2)

holds.

The linear flow exp (tA) induced by the linear operator A is a contraction iff

the real parts of all eigenvalues of A are negative, i.e. if | exp(tA)x| decays

exponentially. If all eigenvalues have positive real parts this quantity grows

exponentially and the flow is called an expansion. If all eigenvalues of A are

nonzero the flow is called regular, and if the real parts of all eigenvalues are

nonzero we have a hyperbolic flow. If the flow is hyperbolic it is just the

direct sum of a contraction and an expansion.

We remember that when A is semisimple, the operator and thus also the

differential equation breaks down into a number of uncoupled equations of
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Phase portraits a the two-dimensional ODE: Stable fixed points:

(a)-(d); Structurally stable: (a),(b),(e);
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dimensions one ore two. The classification of the one-dimensional flows is

straight forward. A qualitative summary of the two-dimensional case is given

in fig. 2.1 and a quantitative one in terms of trace and determinant of A in

fig.2.2.

Det

Tr

= 0∆

SourcesSpirals SpiralsSinks

∆ = 0
Tr < 0 Foci Foci

∆ = 0 
Tr > 0

Saddles

Det < 0

Nodes Nodes

C
en

te
rs

Tr > 0 Tr < 0 

T
r 

= 
0

∆ 
< 

0 
,

Tr >0, Det >0 Tr <0, Det >0

∆  < 0, ∆  < 0, 

Figure 2.2: Classification of the two-dimensional linear ODE ẋ = Ax in

terms of the invariant quantities ∆ = det A and Tr A.

2.1.3 Nonlinear Dynamical Systems

A dynamical system is a way of describing the passage in time of all points

in a given state space S. Mathematically this space S will be an Euclidean
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space or an open subset of an Euclidean space.

Definition 2.2 A dynamical system is a C1 map S × IR −→ S. If we have

φt(x) = φ(xj; t), the map φt : S −→ S satisfies

• φ0 : S −→ is the identity;

• The composition φt ◦ φs = φs+t for all s,t in IR.

Definition 2.3 Let E be an Euclidean vector space; W ⊆ E and f : W −→
E a continuous map. A solution of the (nonlinear) differential equation

ẋ = f(x)

is a differentiable function u : J −→ W defined on some interval J ⊆ IR

such that for all t ∈ J holds

u̇(t) = f (u(t)) .

So we repeat some fundamental theorems concerning existence, uniqueness

and continuity of solutions for ODEs of the above form.

Proposition 2.7 (Existence and Uniqueness) Let f ∈ C1(W ) and x0 ∈
W . Then there is some open interval J ⊆ R and a unique solution

x : J −→ E satisfying x(0) = x0.

Proposition 2.8 (Continuity of Solutions) Let f ∈ C1(W ) and y(t) be

a solution of ẋ = f(x) defined on a closed interval [t0,t1] with y(t0) = y0.

There is a neighborhood U ⊂ E of y0 and a constant k such that if z0 ∈ U ,

then there is a unique solution z(t) also defined on [t0,t1] with z(t0) = z0;

and z satisfies

|y(t) − z(t)| ≤ k|y0 − z0|ek(t−t0)
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Proposition 2.9 Every dynamical system on an Euclidean vector space gives

rise to a differential equation:

ẋ =
∂

∂t
φt

∣∣∣∣∣
t=0

(x)

and conversely every autonomous differential equation ẋ = f(x) arising from

a C1-map defines a dynamical system: φ(t,x) = u(t) is the solution of the

initial value problem with u(0) = x and ẋ = f(x).

2.2 Limit Sets

It is not possible in general to calculate the solution curves u(t) explicitly. In

fact we don’t have to know the exact solutions for the investigation subjects

to this thesis. But we ought to know where a trajectory comes from, where

it goes to, i.e. the asymptotic behavior of a given trajectory.

Definition 2.4 A invariant set G for a flow φt is a subset G ⊆ E such that

φt(x) ∈ G for x ∈ G ∀ t ∈ IR.

The most simple examples are fixed points x̄, i.e. (f(x̄) = 0).

Definition 2.5 x̄ is called a fixed point ( or rest point or equilibrium ) of

a system of differential equations ẋ = F (x), if F (x̄) = 0.

We divide the subspaces spanned by the generalized eigenvectors ξ1, . . . , ξr

into three classes:

• Es = span{ξs
1, . . . , ξ

s
r} is called the stable eigenspace.It is spanned by

the generalized eigenvectors with eigenvalues with negative real part.
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• Eu = span{ξu
1 , . . . , ξ

u
r } is called the unstable eigenspace.It is spanned

by the generalized eigenvectors with eigenvalues with positive real part.

• Ec = span{ξc
1, . . . , ξ

c
r} is called the center eigenspace.It is spanned

by the generalized eigenvectors belonging to eigenvalues with vanishing

real part.

Definition 2.6 A point p ∈ W is called nonwandering for the flow φt if, for

any neighborhood U of p, there exist arbitrarily large T such that φt(U)∩U 6=
∅.

A nonwandering point lies on or near orbits which come back within a speci-

fied distance of themselves. Fixed points and periodic orbits are thus nonwan-

dering. The set of all nonwandering points is closed. Note that all invariant

sets consist of nonwandering points.

Definition 2.7 The ω-limit of x, denoted by ω(x), is the set of all points

p which have the following property: there are points φt1(x), φt2(x), . . . on

the orbit of x and such that φti(x) −→ p as ti −→ ∞. Correspondingly the

α-limit α(x) with all points q for which such a sequence exists for ti −→ −∞.

Definition 2.8 A closed invariant set A ⊂ E is called an attracting set if

there is some neighborhood of A such that φt(x) ∈ U for all t ≥ 0 and φt(x)

−→ A as t −→ ∞ for all x ∈ U . The set
⋃

t≥0

φt(U) is the domain of attraction

of A.

There is an analogous definition for repelling sets.

Domains of attraction of disjoint attracting sets are necessarily nonintersect-

ing and separated by the stable manifolds of non-attracting sets.

A fixed point x̄ is stable if for every neighborhood V of x̄ in U there is

a neighborhood V1 ⊂ V such that every solution x(x0, t) with x0 ∈ V1 is
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defined and lies in V for all t > 0. If, in addition, V1 can be chosen such

that x(x0, t) −→ x̄ as t −→ ∞ then x̄ is said to be asymptotically stable.

Asymptotically stable fixed points are called to be sinks. A fixed point is

called a source if there is a neighborhood U of x̄ such that for every y0 ∈ U |
x̄ there is a T > 0 such that y(y0, T ) 6∈ U .

We close this section with a working definition of an attractor as given by

Guckenheimer and Holmes [19].

Definition 2.9 The closed set Λ is indecomposable if for every pair of points

x, y in Λ and for all ε > 0 there are points X = x0,x1,. . .,xn = y and

t1, . . . , tn ≥ 1 such that

dist(φti(xi − 1),xi) < ε

Definition 2.10 An attractor is an indecomposable closed invariant set Λ

with the property that, given ε > 0, there is a set U of positive Lebesgue

measure in the ε-neighborhood of Λ such that x ∈ U implies that the ω-limit

of X is contained in Λ and the forward orbit of x is contained in U .

There are different types of attractors for dynamical systems: An equilib-

rium is by far the most simple case. Fixed points will often be treated by

analytical methods in this work. Limit sets consisting of equilibria and orbits

connecting them are important in the models discussed here, although the

are not structurally stable. Limit cycles and continua of periodic orbits are

in generally very difficult to treat analytically, whereas strange attractors do

not allow for extensive analytical treatment.

2.3 Linearisation of Vector Fields

Suppose we know a fixed point x̄ of the differential equation ẋ = f(x) and

we wish to know the behavior of the dynamical system in a neighborhood of
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this point. We answer this question by studying the linear system

ξ̇ = J · ξ,

where Jij = [∂fi/∂xj] at the position of the fixed point x̄. J is called the

Jacobian (matrix) of the vector field f .

Proposition 2.10 (Hartman-Grobman) If J is hyperbolic then there is

a homeomorphism h defined on some neighborhood U of x̄ in E locally tak-

ing orbits of the nonlinear flow φt of ẋ = f(x) to those of the linear flow

exp Jt. The homeomorphism h preserves the sense of the orbits and can also

be chosen to preserve parametrization by time.

Definition 2.11 The set W s
loc(x̄) (W u

loc(x̄)) defined below is called the local

stable (unstable) manifold of x̄.

W s
loc(x̄) = {x ∈ U |φt(x) → x̄ as t→ ∞, and φt(x) ∈ U ∀t ≥ 0}

W u
loc(x̄) = {x ∈ U |φt(x) → x̄ as t→ −∞, and φt(x) ∈ U ∀t ≤ 0}

Proposition 2.11 [Stable Manifold Theorem] Suppose that ẋ = f(x) has an

equilibrium x̄. Then there exist local stable, unstable, and center manifolds

W s
loc, W

u
loc, W

c
loc of the same dimensions ns, nu, and nc as the eigenspaces

Es and Eu of the linearized system and tangent to them at x̄. The local

stable and unstable manifolds are as smooth as the vector field f . Whereas

the stable and unstable manifold are unique, this is not true for the center

manifold.

Let x̄ be a hyperbolic equilibrium of ẋ = f(x). If W u
loc = ∅ then x̄ is a sink.

If W s
loc = ∅ the fixed point is a source, otherwise it is a saddle point. (For

nonhyperbolic flows we will define a saddle as homeomorph to a hyperbolic

saddle.) There is method to determine whether a fixed point is stable which

does not depend on the hyperbolicity of the flow:
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Proposition 2.12 (Ljapunov) Let x̄ be a fixed point for ẋ = f(x) and

v : W → IR be a differentiable function defined on some neighborhood W ⊆ U

of x̄ such that:

• v(x̄) = 0 and v(x) > 0 if x 6= x̄,

• v̇(x) ≤ 0 in W \ {x̄}.
Then x̄ is stable. Moreover, if

• v̇(x) < 0 in W \ {x̄}

then x̄ is asymptotically stable.

A stable fixed point is said to be globally stable if all trajectories tend towards

it for t→ ∞.

A second class of limit sets – besides fixed points – consists of certain unions

of equilibria and trajectories connecting them. If distinct fixed points are

connected we have a heteroclinic orbit, if a fixed point is connected to itself

we have a homoclinic orbit. Both are sets of nonwandering points.

2.4 Structural Stability

Definition 2.12 Let f ∈ Cm(E), m ∈ IN and ε > 0. We say g ∈ Cm(E)

lies in an ε-neighborhood of f with respect to a compact set K ⊂ E, if for all

x ∈ K holds

min{‖f(x) − g(x)‖, ‖∂(f − g)(x)‖} < ε.

Definition 2.13 Two vector fields f and g are topologically equivalent if

there exists a homeomorphism h which takes the orbits φf
t (x) of f to orbits

φg
t (x) of g, preserving the senses but not necessarily parametrization by time.
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Definition 2.14 A vector field f is called structurally stable if there in an

ε > 0 such that all C1 functions g in an ε-neighborhood of f are topologically

equivalent to f .

For gradients systems there is an easy to verify sufficient condition for struc-

tural stability:

Proposition 2.13 Gradient systems for which all fixed points are hyperbolic

and all intersections of stable and unstable manifolds are transversal, are

structurally stable.

It is an unsolved problem whether the union of all structurally stable flows is

generic in arbitrary dimensions. For planar flows on compact manifolds the

problem is solved by the following

Proposition 2.14 (Peixoto) Let M be a compact two-dimensional mani-

fold. (If M has a boundary then assume the flux transverse.) A C r vector

field on M is structurally stable iff

• the number of fixed points and periodic orbits is finite and they are all

hyperbolic;

• there are no orbits connecting two saddle points;

• The set of nonwandering points consists of fixed points and periodic

orbits;

Moreover, if m is orientable, the set of structurally stable vector fields is

generic, i.e. open dense in Cr(M).

It is a nice result that both hyperbolicity and semisimpicity are generic prop-

erties of linear operators, i.e. semisimple (hyperbolic) operators on E form

an open dense subset of L(E). This means that almost all operators have this
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property and that the slightest perturbation of a nongeneric operator leads

to a generic one. That means if we do not know all entries of the matrix A

exactly, we may assume any generic property we want to have; it would not

make sense to insist on a single special form of A.

On the other hand there may be good reasons for not assuming a particular

generic property. If there are natural symmetries in the ODE or if the flow

must conserve some quantity, say the energy, then the assumption of a generic

property may be a mistake.

2.5 Bifurcations

Consider a set of differential equations

ẋ = f(x, µ), x ∈ IRn, µ ∈ IRk (2.1)

If µ is varied, the implicit function theorem states that the fixed points, i.e.

the solutions of the equation f(x, µ) = 0, can be described by continuous

functions x(µ), if the Jacobian ∂f(xµ) has no eigenvalue with zero real part.

If (x0, µ0) is a point where the Jacobian has at least one such eigenvalue,

several functions x(µ) can intersect in (x0, µ0). We say there is a bifurcation

at (x0, µ0). At the bifurcation point the vector field is structurally unstable.

Theorem 2.1 For ẋ = f(x, µ), µ ∈ IR, the types of bifurcation can be

classified as follows:

1. saddle node bifurcations

2. pitchfork bifurcations

3. transcritical bifurcations

4. Hopf bifurcations
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The proof of this theorem is found in [19]. We just want to give a qualitative

explanation of how the flow changes at the various bifurcations.

• Saddle node bifurcation: For µ “below” µ0 there is no fixed point, for

µ “above” this value there are two, namely a saddle and a node; hence

the name.

• Pitchfork bifurcation: For µ “below” the critical value, there is one

fixed point, “above” this value there are three. Of the newly created

fixed points one is stable and the other one unstable. The stability of

the fixed point that exists on both sides of the bifurcation also changes

at µ0. Pitchfork bifurcations are of special interest in reaction diffusion

systems since Turing instabilities arise in such bifurcations.

• Transcritical bifurcation: Two fixed points exist on both sides of the

bifurcation. At µ0 they coincide and exchange stability.

• Hopf bifurcation: Two generic cases of Hopf bifurcations are possible:

a stable fixed point surrounded by an unstable limit cycle “below” µ0

and a stable fixed point “above” that value or a stable fixed point

“below” the bifurcation and an unstable fixed point surrounded by a

stable limit cycle “above” the bifurcation.

In the first three cases, a single real eigenvalue of the Jacobian changes sign

at µ0; in the Hopf bifurcation a pair of complex eigenvalues crosses the imag-

inary axis. The terms above and below are used with quotes, because they

can be replaced by each other, according to the meaning of µ in the specific

problem.

2.6 The effect of Diffusion

After we have introduced the concept of diffusion along with some basic

considerations in chapter 1, we now want to make precise the setting we use
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to investigate reaction diffusion systems.

2.6.1 Reaction Diffusion Equations and Symmetry Break-

ing

In general, the reaction diffusion equation has the form:

u̇ = D∇2u + f(u)

where f(u) is the reaction part and D∇2u = D∆u is the diffusion part.

If a uniform solution of a reaction diffusion system is unstable due to diffusion,

a perturbation of that homogeneous state can be amplified by diffusion and

ultimately lead to a new (steady or unsteady) state. But not all perturbation

show this property. Especially, a uniform perturbation of a uniform state

cannot induce the formation of a nonuniform state.

Conversely, if a uniform solution of the reaction diffusion system is stable

against all sufficiently small perturbations, it is called diffusion stable.

Those perturbations that can lead to a nonuniform state were termed ’sym-

metry breaking’ [18, 31], because a higher degree of symmetry can be ascribed

to the uniform state.

Only in very limited number of cases, exact solutions for reaction diffusion

equations are known. One example is the travelling wave solution for the

FitzHugh-Nagumo-equation [16].

2.6.2 Approximation of Solutions of Reaction-Diffusion

equations

Since most reaction diffusion equations cannot be solved analytically, it is

necessary to use numerical methods. A variety of different approaches has
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been described. The simplest approach is to divide both space and time

into small segments and to assume that solutions are constant within these

segments. This is the approach we use here. Alternatively, one might re-

place the differential equations by appropriate maps. This is the so called

coupled map lattice approach, described e.g. by Kaneko [22]. Going still one

step further, one may discretize not only space and time, but also the state

variables, obtaining cellular automata [53].

A partial differential equation u̇ = F (u,ux,uxx) an a domain Ω, subject to

certain boundary conditions, can be approximated by dividing the domain

into elements in which the solution is constant in space; the solutions in adja-

cent elements are coupled by discrete approximations of the space derivatives.

For example the reaction diffusion equation u̇ = f(u) + Duxx in Ω = [0,1]

under Neumann boundary conditions, after dividing Ω into N equal elements

ei = [ i
N
, i+1

N
] leads to the system of ordinary differential equations

u̇i = f(ui) +m2D(ui−1 + ui+1 − 2ui) for i = 2, . . . , N − 1

u̇1 = f(u1) +m2D(u2 − u1)

u̇N = f(uN) +m2D(uN−1 − uN ).

Here we use

lim
∆x→∞

∆

δx

(
∆

δx

)
=

∂2

∂x2

with ∆ : ∆f(x) = f(x+ ∆x
2

)−f(x− ∆x
2

). Setting ∆x = 1
N

, the limit N → ∞
thus yields the continuous formulation. It is obvious that the formulation for

u̇1 and u̇N corresponds to Neumann boundary conditions. In our numerical

studies, we shall restrict ourselves to rectangular domains with Neumann

boundary conditions.

For Dirichlet boundary conditions, the appropriate formulation is

u̇1 = f(u1) +m2D(u2 + c0 − 2u1)

u̇N = f(uN) +m2D(uN−1 + c1 − 2uN),
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where c0 and c1 are the boundary values at x = 0 and x = 1 respectively.

For cyclic boundary conditions,

u̇1 = f(u1) +N2D(u2 + uN − 2u1)

u̇N = f(uN) +N2D(uN−1 + u1 − 2uN)

are appropriate. Discretization of two– and threedimensional domains can

be carried out analogously.

This approach approximates the reaction diffusion equation as anN -dimensional

coupled system of sparsely coupled ordinary differential equations. If there

are k components, the k dimensional system of partial differential equations

is approximated as a k×N dimensional system of ordinary differential equa-

tions. If the discretization is made infinitely fine the original system is re-

gained; for this reason, partial differential equations can be viewed as infinite

dimensional systems of ordinary differential equations ([45]).

2.6.3 Diffusion Stability

When studying reaction diffusion systems, we are mainly interested in those

fixed points that are stable in the reaction system but not diffusion stable,

since only these can exhibit the diffusion breaking mentioned above. If we

approximate the partial differential equations by a system of ordinary differ-

ential equations as described, a fixed point is diffusion stable if both the k–

dimensional Jacobian of the reaction system J and the N × k–dimensional

Jacobian of the reaction diffusion system Ĵ, evaluated at the fixed point,

have only eigenvalues with negative real parts for all possible sets of diffu-

sion coefficients. The following important theorem on that problem is found

in Streissler [45]:

Theorem 2.2 The matrix Ĵ (the Jacobian of the reaction diffusion system,

evaluated with the concentration in all cells equal to that of a stable fixed
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point of the reaction system) has only eigenvalues with negative real parts if

the matrix

J − ΛkD

has only eigenvalues with negative real part for all possible choices of k, where

D is the diagonal matrix of the diffusion coefficients, k = (i1, i2, . . . , in) ∈
[1, N1]×[1, N2]×. . .×[1, Nn], n is the number of spatial coordinates, Ni is the

number of cells for coordinate i, Λk = (λi1 +λi2 +. . .+λin), and λj is the j–th

eigenvalue of the Ni × Ni matrix C1 that describes how the individual cells

are coupled. If the matrix J−ΛkD has eigenvalues with positive real part for

a certaim choice of k, a (suitable) perturbation of the uniform solution will

lead to the formation of a nonuniform solution with ij extrema in the spatial

coordinate j.

For Neumann boundary conditions, they are determined by

λj = 2
(
cos

2π j

n
− 1

)
, j = 1, . . . , Ni − 1

Although the eigenvalues of J−ΛkD are much easier to compute than those

of Ĵ, they can be used only to determine the stability of the fixed point for

a given set of diffusion coefficients D. The following theorem by Berman,

Plemmons [3] and Streissler [45] can be used to find out if there is a matrix

D, which destabilizes the fixed point:

Theorem 2.3 Let J be the Jacobian of a reaction system, evaluated at a

fixed point with eigenvalues with negative real part except for one zero eigen-

value, let D > 0 be a real diagonal n × n-matrix with di ≥ 0 and at least

one di non-vanishing. Then all the principal minors of −J are nonnegative

iff −J + D is nonsingular for every D. If the principal minor obtained by

1If the cells i and j couple (if there is exchange of matter between them), the entries

cij and cji of C are 1, otherwise they are zero. If cell i couples with m other cells the

diagonal entry cii is −m.
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cancelling the rows and columns corresponding to ui1 , ui2, . . . , uik is nega-

tive, Turing instabilities can be induced by choosing the diffusion coefficients

of these reactants larger than those of the others.

The proof is found in Streissler [45], so that it will not be repeated here.

Combining 2.2 with 2.3 we see that if all principal minors of −J, evaluated

at a certain fixed point, are nonnegative, then this fixed point is diffusion

stable. Furthermore, if we can evaluate the eigenvalues of J− ΛkD directly,

we can conclude, that wherever one of these eigenvalues has a zero real part,

there is a bifurcation in the spatial coordinates.

2.6.4 Implementation of the algorithm

All numerical results on reaction diffusion systems were obtained using the

program package STAR by Christoph Streissler. This program uses a finite

difference algorithm for the space and a variable time step Crank–Nicolson

scheme for the time. In all one dimensional problems a lattice size of 100

cells was chosen. For two dimensional problems we used a square lattice of

25×25 cells. The program and the algorithms it uses is described in great

detail in [45].



Chapter 3

General model

The reaction networks treated in this work are dealing with three different

kinds of substances:

1. The replicating species Xi: These species are assumed to be capable

of independent replication. In the act of replication the substrate A is

used to form Xi, the kinetic constant of this reaction is ki. Besides,

there is an alternative way of formation ofXi, using the intermediates Sl

instead of the substrate. The replicating species might represent DNA

or RNA strings or simple monocellular organisms such as bacteria etc.

2. The intermediates Sl: They are formed in a catalyzed reaction from the

substrate A, using Xl as catalyst. The kinetic constant of this reaction

is termed gl. As mentioned above, the intermediates can be used by

the replicating species replacing the substrate A; the reaction constant

of Sl in the reaction of producing Xi is bli.

3. The substrate A: This is the (energy-rich) material from which both

the replicating species and the intermediates are built. If the replicating

species are RNA molecules, one might think of a solution containing

the nucleotide triphosphates.

42
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All reactions are considered to be irreversible. This is, of course, a simplifi-

cation if we consider chemical kinetics; however, since in many biochemical

reactions the forward reaction is much faster than the backward reaction, the

effects of neglecting the latter should be negligible.

We then have the following reaction network:

A+Xi
ki→ 2Xi

A+Xi
gi→ Xi + Si

Xi + Sl
bli→ 2Xi

(3.1)

with i, l ∈ {1, 2, . . . , n} and n is the total number of replicating species (and

intermediates). From the definition of ki, gi, and bil as reaction constants

it is clear that they all are nonnegative. Moreover, since for gi = 0 the

intermediate Si cannot exist (at least in the long term) and hence we loose

the interesting part of the dynamics, namely the interaction of Xi with the

other replicating species via the intermediate, we assume that all gi > 0. The

matrix B= (bil) is called coupling matrix or interaction matrix.

Occasionally, we shall compare the dynamics of system (3.1) with the simpler

replicator–like systems:

A +Xi

k′

i→ 2Xi

A +Xi +Xl

b′
li→ 2Xl

(3.2)

The constants k′i and b′il will be zero wherever ki and bil, respectively, are

zero and vice versa. The absolute values of the constants in the two systems

need not coincide, however.

The difference between (3.1) and (3.2) is that the termolecular reaction step

in the latter scheme is replaced by two consecutive bimolecular reactions in

the former. Termolecular reactions, as mentioned in chapter 1, are physically

very improbable, since the chance for termolecular collisions is normally some

orders of magnitude less than that for bimolecular collisions. However, under
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certain circumstances, the differential equations based on the assumption

of a termolecular reaction step can correctly predict the behaviour of the

variables. We shall therefore occasionally compare the results for (3.1) with

those for the “underlying replicator–like reaction scheme” (3.2).

Before we go on, I would like to point out that definitions in this chapter

are valid throughout the text (unless explicitly redefined). Definitions in the

remaining chapters are valid only in these chapters.

Since interesting dynamic behaviour occurs only for chemical systems far

from thermodynamic equilibrium, we must consider an experimental setup

with a constant flow of matter or energy (or both) through the system. In

particular, three such setups, which are closely related to one another, are

considered, namely

1. The continuously stirred tank reactor (CSTR)

2. The closed system with recycling reaction

3. The evolution reactor

We now consider them in turn.

3.1 The continuously stirred tank reactor (CSTR)

In experimental chemical kinetics, the CSTR is widely used to study fast

chemical reactions shortly after the onset of the reaction. In the CSTR,

the separate reactants flow into a reactor chamber continuously, where they

mix, and the reaction products flow out with a rate exactly balancing the

feed. Mixing should be achieved in a time negligible in comparison to the

mean residence time τ of the reactants in the reactor. This is done by using

specially designed nozzles and continuous stirring. The state that is reached

in the reaction chamber after some time corresponds to the state of the
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reaction after the time τ . By varying the flow rate (designated by r in this

work), different mean residence times are realized, yielding different data

points for the time development of the composition of the reaction. A sketch

of a CSTR is shown in figure 3.1

r r

[A]=a(t)[A]=a
0

Figure 3.1: continuously stirred tank reactor

In modelling the reaction network (3.1) in the CSTR setting, we assume that

the solution flowing into the reactor at rate r contains the substrate A at

a concentration a0 and that all Xi, Si and the substrate are diluted out of

the reactor at the same rate r. This keeps the solutions bounded. Writing

xi, si and a for the concentrations of Xi, Si and A respectively, the kinetic

differential equations for the above reaction network in the CSTR are:

ẋi=xi(kia+
∑n

l=1 blisl − r)

ṡl=glxla− sl(
∑n

i=1 blixi + r)

ȧ=a0r − a (
∑n

i=1(ki + gi)xi + r)

(3.3)

It should be clear that the first two of the above equations stand for n analo-

gous equations each. Adding together all the above equations we see that the
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total concentration c0 = a+
∑
xi + si tends to a0. Therefore all fixed points

(and all other ω–limits) must lie on the set S2n+1 = {(u1, . . . , u2n+1)|
∑
ui =

a0, ui ≥ 0}, which is known as concentration simplex.

The kinetic constants ki, gi and bil are in general complicated functions of

temperature, pressure etc. There is no obvious way to vary one of them,

keeping the others fixed, in order to investigate the influence of a single

parameter on the system. The flow rate r and the influx concentration of

the substrate a0, on the other hand, can be easily varied over a wide range in

an experimental setting without changing any of the other parameters. We

therefore describe how the behaviour of the system changes if for a given set

of kinetic constants the flow rate is varied.

We shall assume the variables to be ordered in the following way: (x1, . . . , xn,

s1, . . . , sn, a). Moreover, unless explicitly stated otherwise, we shall assume

that all ki are different and that the labels are chosen such that k1 > ki, i =

2, . . . , n. (The importance of this assumption will become clear soon).

For any fixed point where the equilibrium concentration (which we shall

denote by over bars) of the species Xi is zero, the concentration of Si also

vanishes and vice versa. This leads us to the following

Definition 3.1 For every fixed point we define the index set I as the set

of species that are present at the fixed point in positive concentrations: i ∈
I ⇐⇒ x̄i, s̄i > 0. We label the corresponding fixed point PI; if there is

more than one fixed point for this index set, we shall distinguish them by

superscripts. The number of entries in I, nI , is called the dimension of the

fixed point PI.

There may be index sets for which there is no fixed point, depending on the

properties of the constants bli, ki and gi.

There are three kinds of fixed points: the trivial fixed point, the interior fixed

point and fixed points on the boundary of the simplex.
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3.1.1 The trivial fixed point

The trivial fixed point is the one with I = ∅, that is, we have only the

substrate A in the reactor. It then follows from what we have said above

that ā = a0. The trivial fixed point exists for all possible choices of the

kinetic constants and the flow rate r. The Jacobian of the system, evaluated

at the trivial fixed point is just a diagonal matrix with the entries (and hence

eigenvalues) kia0 − r and −r (n + 1 times). Since we assumed k1 to be the

largest of the constants ki, the trivial fixed point is stable for r > a0k1.

3.1.2 The interior fixed point

At the interior fixed point, on the other hand, all species coexist: I = N =

{1, 2, . . . , n}. It may be calculated as follows: calculate the values of s̄i using

the equations ẋi = 0 and treating ā as parameter; insert these values into

the set of equations s̄i = 0 and use them to calculate x̄i, treating ā as above;

finally, insert these values into the normalization condition

ā =
∑

x̄i + s̄i = a0 (3.4)

To make the results readable, we adopt (column) vector notation for the

equilibrium concentrations and kinetic constants: x = (x1, . . . , xn)t, s =

(s1, . . . , sn)t, k = (k1, . . . , kn)t, g = (g1, . . . gn)t. Besides, we define the

matrix B = (bli) and the vector 1 with n entries of unity. We then have the

following equation system for s:

Bs̄ = r1 − āk (3.5)

This equation system has a unique solution if the matrix B is invertible. The

solution is then given by

s̄ = B−1(r1− āk) (3.6)
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Thus, the s̄i are linear in ā. They are not linear in r, however, for ki 6= 0,

since ā is generally a nonlinear function of r.

To find the equilibrium concentrations of the replicating species, we define

the matrix C = (ci,j) with ci,j = giāδi,j − bjis̄i, where δi,j is Kronecker’s

symbol. If B is invertible, ā can be chosen such that C is also invertible. We

then have

Cx̄ = rs̄ (3.7)

Then, if we define C(i) as the matrix where the i–th column vector of C has

been replaced by rs̄, we obtain

x̄i =
|C(i)|
|C| (3.8)

Since all rows of C are linear in ā, the determinants |C| and |C(i)| can be at

most n–th order in ā. Inserting now the above results into (3.4), we see that

it generally is an equation of n + 1–th order in ā, that is, we have at most

n+ 1 interior fixed points. However, some of the solutions of (3.4) might be

negative or imaginary. Moreover, for the fixed point to lie in the interior of

the simplex, we must have 0 < x̄i, s̄i < a0 − ā, which gives us 2n additional

inequalities that must be fulfilled. The actual number of interior fixed points

may thus be considerably lower than n + 1.

The stability of the interior fixed point(s) can be computed only for very

special cases. The only thing we know is that there is always one eigenvalue

−r (the so–called external eigenvalue, see below).

3.1.3 Fixed points on the boundary of the simplex

These are all remaining fixed points, that is, fixed points with I 6= ∅ and

I 6= N (there may be no such fixed points at all). When we shall deal with

fixed point on the boundary of the simplex in special cases, the following

definition will be useful:
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Definition 3.2 We call an index set I admissible if a fixed point PI exists

at least for a certain range of flow rates.

If nI is the number of elements of I, the problem of finding the equilibrium

concentrations x̄i, s̄i, i ∈ I and ā is equivalent to finding the interior fixed

point of an nI–species system with a matrix B’, where only rows and columns

with indices that lie in I are retained.

The eigenvalues of the Jacobian, evaluated at a fixed point on the boundary of

the simplex, can be split into three groups: external, transversal and internal

eigenvalues.

There is always one eigenvalue −r, called the external eigenvalue. It exists

in all CSTR systems, which follows from the fact that the sum of the entries

of a column is always −r. Hence the vector with 2n + 1 entries of unity is

a left eigenvector with the corresponding eigenvalue −r. Geometrically, this

eigenvalue describes the stability of the fixed point against a perturbation in

which all concentrations are raised (lowered) simultaneously, thus violating

the normalization condition and leading off the simplex. Since we have seen

that every solution converges to the simplex, it is clear that this eigenvalue

must be negative. All the other eigenvectors can be chosen so that perturbing

along them we do not leave the simplex (the sum of the components is zero).

The transversal eigenvalues provide information on stability against the in-

troduction of new species. For every l /∈ I, the l-th row of the Jacobian has

only one nonzero entry, namely

∂ẋl

∂xl
= klā +

∑

i∈I

bils̄i − r = λ
(tr,1)
l (3.9)

which is therefore an eigenvalue. The corresponding eigenvector has nonzero

components both for xl and sl and thus describes a perturbation introducing

xl and sl simultaneously. The eigenvalue can have either sign; if it is zero,

there is a transcritical bifurcation with a fixed point that has the index set
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I ∪ {l}. In the (l + n)– th row there are two nonzero entries:

∂ṡl

∂xl
= glā and

∂ṡl

∂sl
= −

(
∑

i∈I

blix̄i + r

)
= λ

(tr,2)
l (3.10)

The first of these terms cancels in the factorization of the secular determi-

nant; the second is an eigenvalue of the Jacobian, which is, of course, always

negative. The corresponding eigenvector has a nonzero component for sl but

not for xl; thus, it describes the effect of introducing only sl into the system.

Since sl cannot be produced in the absence of xl, it is clear that any fixed

point is stable against this perturbation. Since the sign of λ(tr,2) is always

negative, we shall ignore it in stability considerations and speak of λ(tr,1) as

“the” transversal eigenvalue.

The internal eigenvalues describe the stability within the sub-simplex in

which the fixed point lies. As is seen easily from (3.9) and (3.10), their

eigenvectors have zero entries for all xl, sl with l /∈ I. Their computation

is equivalent to calculating the eigenvalues of the corresponding nI–species

system.

One dimensional fixed points (nI = 1)

The fixed points with nI = 1, i.e. I = {i} are of special importance, because

they exist for every coupling matrix B at least for sufficiently low flow rates.

If they are stable, any initial distribution of concentrations that contains

enough of species i will eventually converge to a state where only species

i survives: the system is selective. Moreover, we can obtain analytical ex-

pressions for the equilibrium concentrations and for the eigenvalues of the

Jacobian. We distinguish two principal cases which differ very much in their

behaviour: bii = 0 and bii > 0.
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Case 1: bii = 0: If bii = 0, we have

x̄i =
kia0 − r

κi

, s̄i =
gi(kia0 − r)

kiκi

, ā =
r

ki

(3.11)

where κi = ki + gi. The internal eigenvalues (and the external eigenvalue)

are obtained by finding the eigenvalues of the matrix



kiā− r 0 kix̄i

giā −r gix̄i

−κiā 0 −r − κix̄i


 (3.12)

The characteristic polynomial – after division by (λ − r) to get rid of the

external eigenvalue – is easily found:

(λ− r) (−λ + kiā− r − κix̄i) = 0 (3.13)

and since ā = r/ki, the second eigenvalue is −κix̄i = r−kia0. This eigenvalue

is nonnegative if the fixed point lies on the simplex. Moreover, we see that

for r = kia0, there is a transcritical bifurcation with the trivial fixed point

and for flow rates above this value the fixed point lies outside the simplex.

The internal eigenvalues therefore are both negative.

The transversal eigenvalues are obtained by combining (3.11) with (3.9) and

(3.10) as:

λ
(tr,1)
l =

r

ki

(
kl − ki −

gibil
κi

)
+
gikia0bil
kiκi

, λ
(tr,2)
l = −(bilx̄i + r) (3.14)

While the latter is always negative, the sign of the former depends on ki, kl,

and bil:

1. If bil = 0, the eigenvalue is negative if and only if kl < ki.

2. If bil > 0 and kl > ki, the eigenvalue is positive for all flow rates for

which the fixed point exists. Conversely, if kl < ki, the eigenvalue is

positive for flow rates less than

ri×l =
gikia0bil

gibil + (ki − kl)κi
< kia0 (3.15)
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At this flow rate, there is a transcritical bifurcation with the fixed point

P{i,l}, and the transversal eigenvalue of P{i} is negative for higher flow

rates.

Since it is not clear in general that the fixed point P{i,l} exists and can pass

through P{i}, we now prove that this is indeed the case if kl > ki and bil > 0.

At P{i,l}, the equilibrium concentrations fulfill the following equations:

kiā+ bils̄l − r=0

klā+ blls̄l + blis̄i=0

gix̄iā− s̄i(blix̄i + r)=0

glx̄lā− s̄l(bllx̄l + blix̄i + r)=0

a0 − x̄1 − x̄2 − s̄1 − s̄2 − ā=0

(3.16)

From the first equation it is clear that if s̄l vanishes, ā must equal r/ki.

Inserting this into the fourth equation, we see that then x̄l = 0. We can now

calculate x̄i and s̄i from the second and third equation:

x̄i =
r(ki − kl)

bligi

, s̄i =
r(ki − kl)

bliki

(3.17)

Since ki > kl, both concentrations are positive. If there is a flow rate for

which these results fulfill the last equation, there is indeed a transcritical

bifurcation between P{i,l} and P{i}:

a0 − r

(
ki − kl

bilki
+
ki − kl

bilgi
+

1

ki

)
= 0 (3.18)

Solving this equation for r, we obtain again ri×l.

The results of this paragraph are summarized on the next page.
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One dimensional fixed points in the CSTR, bii = 0

1. There is exactly one fixed point PI with I = {i} for flow rates below

a0ki

2. If all entries bil are zero, the fixed point P{1} is stable for 0 < r <

a0k1, that is, for all flow rates at which it exists, while all other

one–dimensional fixed points are saddles.

3. If some of the b1l are greater than zero, P{1} is stable at least for

flow rates sufficiently close to a0k1, but it becomes unstable for

sufficiently small flow rates (due to a transcritical bifurcation with

the fixed point P{1,l}).

4. All the remaining one–dimensional fixed points are unstable.

5. The fixed point P{i} lies outside the simplex for flow rates above

a0ki. For flow rates above a0k1, i. e. after all one dimensional fixed

points have left the simplex, the trivial fixed point is stable.

Case 2: bii > 0: If bii > 0, the equilibrium concentrations are

x̄i =
r(r − kiā)

bii(κiā− r)
, s̄i =

r − kiā

bii
(3.19)

with κi = (ki + gi). (3.19) implies that for every solution that lies on the

simplex ā must fulfill the inequalities āki ≤ r < āκi. ā fulfills the equation

ā2κi(bii − ki) − ā(biia0κi + r(bii − κi)) + biia0r = 0 (3.20)

This equation has two positive solutions if bii > ki and one positive solution

in the converse case. If there are two positive solutions, we have a saddle
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node bifurcation at

r∗± =
a0biiκi

(
bii + gi − ki ± 2

√
gi(bii − ki)

)

(bii − κi)2
, ā∗± = a0

bii
(
1 ±

√
gi

bii−ki

)

bii − κi

(3.21)

These critical parameters were calculated by setting the discriminant of (3.20)

to zero. Since the value ā∗+ with the plus sign before the square root is greater

than a0, we are only interested in the solutions with the minus sign. Setting

∆i = bii − ki, we can rewrite the latter

r∗− =
a0biiκi

(
√
gi +

√
∆i)2

, ā∗− =
a0bii

∆i +
√
gi∆i

(3.22)

ā∗− is less than a0 if bii > bcii = kiκi/gi, which means that the saddle node

bifurcation occurs on the simplex if the above inequality is fulfilled, and

outside the simplex otherwise. If we have two solutions of (3.20) that lie on

the simplex, we call the fixed point with the lower equilibrium concentration

of ā P
(1)
{i} and the other one P

(2)
{i} .

As in the case bii = 0, there is a transcritical bifurcation at r{i}×∅ = a0ki,

which can be easily verified from (3.20) and (3.19). There is no other tran-

scritical bifurcation with the trivial fixed point even if there are two (mean-

ingful) solutions of (3.20).

For very small values of r we see from (3.20) that there is exactly one solution

that fulfills the inequality āki < r < āκ. If bii > bcii, a second solution enters

the simplex if the flow rate is raised above a0ki and the two fixed points

disappear in a saddle node bifurcation at r∗−. In the converse case, the fixed

point lies outside the simplex for r > a0ki.

To find the internal eigenvalues (and the external eigenvalue) is equivalent

to finding the eigenvalues of




0 biix̄i kix̄i

giā− biis̄i −biis̄i − r gix̄i

−κix̄i 0 −r − κix̄i


 (3.23)



CHAPTER 3. GENERAL MODEL 55

If bii > ki we can write the characteristic polynomial of (3.23), using (3.19),

(3.20), and (3.22), after dividing by (λ+ r):

λ2bii(āκi − r)2 + λr(āκi − r)[κi(r − āki) + āgibii] + (ā− ā∗−)Ki = 0 (3.24)

with

Ki =
2a0biiκ

2
i r
√
gi∆i(r − āki)

(√
gi +

√
∆i)

2
)

(bii − κi)2
> 0 (3.25)

From the sign of the coefficients of λ in (3.24) we see that there are three

negative eigenvalues for ā < ā∗ and two negative and one positive for ā > ā∗.

Thus, if all transversal eigenvalues are negative, the fixed point with the

lower concentration of the substrate is a sink, while the one with the higher

concentration (if it lies on the simplex) is a saddle.

If bii < ki, we have ∆i < 0. The characteristic polynomial of the Jacobian

(after division by (λ+ r)) then reads:

λ2bii(āκi − r)2 +λr(āκi − r)[κi(r − āki) + āgibii] +

+r(r − āk1)[g1r
2 − ∆i(āκi − r)2] = 0 (3.26)

and since all coefficients of λ are positive, both internal eigenvalues are neg-

ative.

The computation of the transversal eigenvalues is a little more complicated

than in the case bii = 0. Inserting (3.19) into (3.9), we obtain

λ = (klā− r) − bil
bii

(kiā− r) (3.27)

The following three cases can be distinguished:

1. ki > klbii/bil, bii > bil: The transversal eigenvalue is negative for all

flow rates.

2. ki > klbii/bil, bii < bil or ki < klbii/bil, bii > bil: There is a transcritical

bifurcation with a fixed point P{il} (the transversal eigenvalue changes

sign).
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3. ki < klbii/bil, bii < bil: The transversal eigenvalue is positive for all

flow rates.

The transcritical bifurcation of P{i} and P{i,l} (if there is any) takes place at

ri×l = āi×l biikl − bilki

bii − bil
(3.28)

where āi×l is calculated by inserting (3.28) into (3.20) :

āi×l = a0
gi(bii − bil) − ∆ilbii

gi(bii − bil) − ∆il(bii − κi)
< a0 (3.29)

with ∆il = kl−ki > 0. However, for āi×l to lie between zero and a0, ∆il must

be less than gi(bii − bil)/bii.

If there are two solutions of (3.20), we want to know which one of them is

undergoing the transcritical bifurcation. Comparing (3.22) with (3.29), we

see that P{i,l} passes through P
(2)
{i} if

∆il > ∆c
il =

(bii − bil)
(
biigi + κi

√
gi∆

)

bii(bii − κi)
(3.30)

The proof that the fixed point P{i,l} really passes through P{i} is very similar

to that for the case bii = 0 and is therefore omitted.

To find out how the transversal eigenvalue changes at the transcritical bifur-

cation, we examine the its derivative with respect to the flow rate:

dλ

dr
=

[
∆il + ki

(
1 +

bil
bii

)]
dā

dr
−
(

1 +
bil
bii

)
(3.31)

Evaluating this at
(
āi×l, ri×l

)
and using (3.22), we obtain, after some alge-

bra: (
dλ

dr

)

āi×l, ri×l

=
a0bii(bii + bil)giā

i×l

(ā∗ − āi×l)N(āi×l)
(3.32)
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where

N(āi×l) = ∆i

[
bii
(
a0 − āi×l

)
+ āi×lκi

]
+ a0

√
gi∆i > 0 (3.33)

If bii < ki, we cannot use (3.32) since ā∗ is complex in this case. However,

using the fact that ∆i < 0 we can rewrite (3.32):

(
dλ

dr

)

āi×l, ri×l

=
a0bii(bii + bil)giā

i×l

(∆i(a0 − āi×l) + a0ki)
2 − ∆igiāi×l

> 0 (3.34)

Hence, if we raise the flow rate above ri×l, the transversal eigenvalue of the

fixed point P
(2)
{i} becomes positive if P{i,l} passes through this point. Con-

versely, if P{i,l} passes through P
(1)
{i} , its transversal eigenvalues becomes neg-

ative for r > ri×l.

The results of this paragraph are summarized in the box on the next page.
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One dimensional fixed points in the CSTR, bii > 0

1. For flow rates below a0ki there is exactly one fixed point P{i}. Above

this flow rate, there may be none or two; the latter is the case if

bii > bcii. In this case, there is a saddlenode bifurcation in which

the two fixed point disappear at r = r∗.

2. If two fixed points are possible for a given index set, the fixed point

with the higher concentration of the substrate is always a saddle.

3. The fixed point with the lower concentration of a (the only one for

bii < bcii) is a sink if for all l one of the following three conditions is

fulfilled

(a) ki > klbii/bil and bii > bil or

(b) ki > klbii/bil, bii < bil and

i. r < ri×l or

ii. āi×l > ā∗

or

(c) ki < klbii/bil and bii > bil and

r > ri×l and āi×l < ā∗.

3.2 The recycling reaction

In this model, we consider a closed system in which the amount of substrate

is limited and the species and intermediates decay (irreversibly) back to the

substrate. Fig. 3.2 shows a sketch of the setting. We then have the following



CHAPTER 3. GENERAL MODEL 59

Replicating species

Intermediates

Substrate

Energy Energy

Figure 3.2: A model for a closed system with regenerating substrate

reaction scheme:
A+Xi

ki→ 2Xi

A+Xi
gi→ Xi + Si

Xi + Sl
bli→ 2Xi

Xi
di→ A

Si
ei→ A

(3.35)

which is identical to the analogous scheme in the last section, except for

the last two entries. Taking the above reaction scheme as it stands violates

the principle of detailed balancing and thus contradicts the laws of physical

chemistry, but if some kind of energy is pumped into the reaction vessel, this

objection does not hold anymore.

The closed system approach is particularly suited for treating diffusion, which

is the main reason for introducing it.

We shall only deal with the case of equal decay constants, i.e. di = ei = r.

In this case the kinetic differential equations for ẋi and ṡi are identical to
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those for the CSTR (3.3). For the substrate we have

ȧ = −
n∑

i=1

(ki + gi)xi + r
∑

(xi + si) (3.36)

If the total concentration of all reactants is a0, we can substitute
∑n

i=1(xi +

si) = a0 − a into (3.36) and see that this equation is identical to the one for

the CSTR case. Thus both systems have the same fixed points. This is not

very surprising since we know that the CSTR system converges to a constant

total concentration of a0.

The eigenvalues of the Jacobian at a fixed point are identical to those of the

CSTR system except for the external eigenvalue, which is zero (rather than

−r), which is obvious from the fact that the kinetic equations are linearly

dependent: ȧ = −∑(ẋi + ṡi). This follows from the fact that the Jacobian

of the closed system can be obtained from the one of the CSTR just by

adding r to all entries in the last line. Since for the CSTR the sum of the

components of all eigenvectors besides the external one is zero, it is clear

that all these eigenvectors of the CSTR system are also eigenvectors of the

closed system with the same eigenvalues. The only difference between the two

systems is that the CSTR system starts somewhere in the positive orthant

and converges to the simplex S2n+1, whereas the closed system never leaves

this simplex.

3.3 The evolution reactor

The evolution reactor, as shown in fig. 3.3, is a kind of dialysis reactor with

walls impermeable to replicating species and intermediates. A flow is pro-

vided, which keeps the reaction mixture away from equilibrium. Transport

of the substrate is adjusted such that the concentration of the substrate and

the sum of the concentrations is held constant. Furthermore, we assume that

the substrate is present in excess (buffered), so that we can ignore it in the
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substrate, replicators, and intermediates

         substrate solution

Figure 3.3: Evolution-reactor with external controlling device.

differential equations and absorb its influence in the reaction constants. An

unspecific dilution flux is provided to keep the total concentration of replicat-

ing species and intermediates constant. Reactors of this kind are somewhat

difficult to realize, but the resulting differential equations are much simpler

than in the CSTR.

To simplify the kinetic equations, we consider relative concentrations: xi :=

[Xi]/c0, si = [Si]/c0, c0 =
∑

([Xi] + [Si]). Thus we obtain

ẋi=xi(ki + c0
∑n

l=1 blisi − Φ)

ṡl=glxl − sl(c0
∑n

i=1 blixi + Φ)
(3.37)

where Φ represents the flux term:

Φ =
∑

κixi (3.38)

where κi = ki + gi.

Since of all parameters the total concentration is the one that is most easily

varied in experimental settings, we choose it as the critical parameter and
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describe the behaviour for a fixed set of kinetic reaction constants in depen-

dence of c0. Thus the total concentration has in some sense the role that was

played by the flow rate in the CSTR.

As in the CSTR setting, we shall assume the variables to be ordered as

follows (x1, . . . , xn, s1, . . . , sn). We shall also assume that all the constants ki

are different and that k1 is the largest of them. Index sets, the vectors k, g,

f, x, s, and the matrix B are defined as in the CSTR case.

In the evolution reactor, we have only the interior fixed point(s) and fixed

points on the boundary of the simplex; the trivial fixed point does not exist

since the concentrations of the replicating species and the intermediates must

sum to c0. Many of the results in the next two sections will look familiar to

you if you have read the section on the CSTR, but I include them here for

completeness.

3.3.1 The interior fixed point

The equilibrium concentrations of the intermediates at an interior fixed point

are uniquely determined if the matrix B is invertible. In this case we have

s̄ = B−1(Φ̄1 − k) (3.39)

where Φ̄ denotes the flux at the fixed point. Thus the s̄i are linear in Φ̄.

Defining a matrix D= (dil) with dil = giδi,l + blis̄l and matrices D(i), where

the i–th column vector of D is replaced by Φ̄s̄, we obtain the equilibrium

concentration of xi:

x̄i =
|D(i)|
|D| (3.40)

Since all rows of D are linear in Φ̄ (the s̄l depend linearly on Φ̄), the deter-

minants |D| and |D(i)| can be at most of n–th order in Φ. Inserting now the

above results into the equation
∑

(x̄i + s̄i) = 1 to determine Φ̄, we get gen-

erally a n+ 1–th order equation, i.e. there may be at most n fixed points in
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the interior of the simplex. However, some of the solutions may be negative

or imaginary. Moreover, for the fixed point to lie on the simplex, we must

have 0 < x̄i, s̄i < c0, which gives us 2n additional inequalities that must be

fulfilled. The actual number of interior fixed points may thus be considerably

lower than n + 1.

3.3.2 Fixed points on the boundary of the simplex

These are all fixed points except the interior one. Finding the fixed point(s)

for the index set I is equivalent to finding the interior fixed point of the nI–

species system with the matrix B’ which is obtained from B by cancelling

rows and columns for all species l /∈ I.

The eigenvalues of the Jacobian at a given fixed point can again be split in

external, transversal and internal eigenvalues.

The external eigenvalue is −Φ̄, as is easily verified by checking that the vector

with 2n entries of unity is a left eigenvector. All (right) eigenvectors but one

(the one corresponding to the eigenvalue −Φ̄ can be chosen such that the

sum of their entries is zero.

The transversal eigenvalues are

λ
(tr,1)
l = kl − Φ̄ + c0

∑

i∈I

bils̄i, λ
(tr,2)
l = −

(
c0
∑

i∈I

blix̄i + Φ̄

)
< 0 (3.41)

The latter, which is always negative, describes the effect of introducing Sl

into the system, while the former describes the introduction of both Xl and

Sl and may have either sign. If it becomes zero, there is a transcritical

bifurcation of P{i} with P{i,l} at this value of c0.

The computation of the internal eigenvalues is equivalent to finding the eigen-

values of the Jacobian of the corresponding reduced system. As in the CSTR

case, there is no general way to calculate them.
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One dimensional fixed points (nI = 1)

We now examine the one dimensional fixed points and their stability. The

cases bii = 0 and bii > 0 are again quite different and are therefore treated

separately. In the latter case we shall see how much the evolution reactor

setting simplifies the calculations.

Case 1:bii = 0: The equilibrium concentration at the fixed point with the

index set I = {i} are

x̄i =
ki

κi

, s̄i =
gi

κi

, Φ̄ = ki (3.42)

In contrast to the CSTR setting, the fixed point exists for all values of c0.

The internal eigenvalue is found by solving the eigenvalue problem for (the

other eigenvalue of this system is the external one)


 −κix̄i 0

gi − κix̄is̄i −κix̄i


 (3.43)

Hence, the internal eigenvalue is −κix̄i = −Φ̄ < 0.

The transversal eigenvalue λ
(tr,1)
l for coordinate l is

λ
(tr,1)
l = kl + c0bils̄i − Φ̄ = kl + c0

bilgi

κi
− ki (3.44)

which is negative for

c0 < ci×l
0 =

(ki − kl)κi

bilgi
(3.45)

if ki > kl (otherwise it is always positive).

Thus, the fixed point P{1} is stable for c0 < min c
(1×l)
0 . If b1l = 0, l = 2, . . . , n,

P{1} is stable for all values of c0. All the other one–dimensional fixed points

are saddles.
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Case 2: bii > 0: The equilibrium concentrations at the fixed point P{i} are

x̄i =
bii + ki

bii + κi
, s̄i =

gi

bii + κi
, Φ̄ =

κi(bii + ki)

bii + κi
(3.46)

The internal and the external eigenvalue are found by solving the eigenvalue

problem for 
 −κix̄i biix̄i

gi − s̄i(bii + κi) −κi − biix̄i


 (3.47)

The internal eigenvalue is −(κi + bii)x̄i < 0.

For the transversal eigenvalue λ
(tr,1)
l we have

λ
(tr,1)
l = kl + c0bils̄i − Φ̄ = kl + c0bil −

κi(c0bii + ki)

c0bii + κi

(3.48)

Introducing ∆il = ki − kl, we see that the eigenvalue is negative if

c0 < ci×l
0 =

κi∆il

gi(bil − bii) − bii∆il
(3.49)

Thus, if ∆il > 0 and bii ≥ bil, the eigenvalue is always negative, while for

∆il < 0, bii ≤ bil it is always positive. In the remaining two cases there can

be a change of the sign of the transversal eigenvalue (transcritical bifurcation

with P{i,l}) if

|∆il| < ∆c
il =

∣∣∣∣∣
gi(bil − bii)

bii

∣∣∣∣∣ (3.50)

which is almost the same formula as in the CSTR, with the difference that

in the evolution reactor transcritical bifurcations can occur also for negative

values of ∆il.

Thus, in the evolution reactor setting, a one–dimensional fixed point is stable

if for all indices l 6= i

1. ki > kl and

(a) bii ≥ bil or
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(b) ∆il > ∆c
il or

(c) ∆il < ∆c
il and c0 < ci×l

0

2. or if ki < kl, |∆il| < ∆c
il and c0 > ci×l

0



Chapter 4

The competitive model

In this model we consider a particularly simple form of the interaction matrix

B, namely bil = fiδil, where δil is Kronecker’s symbol. In this model the

species interact only via the substrate A (in the CSTR and in the recycling

reaction system) or via the flux Φ (in the evolution reactor). The reaction

scheme is
A+Xi

ki→ 2Xi

A+Xi
gi→ Xi + Si

Xi + Si
fi→ 2Xi

(4.1)

Since the diagonal form of the coupling matrix B is not changed if we relabel

the species, we are free to choose the labelling so that the constants ki form

a decreasing sequence.

The corresponding replicator–like system is known as “Schlögl model” [40]:

A +Xi

k′

i→ 2Xi

A + 2Xi
f ′

i→ 3Xi

(4.2)

Models of this kind (special cases with f ′
i = 0 or k′i = 0) have been analyzed

by Schuster and Sigmund [42] in the CSTR setting.

67
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4.1 General results

4.1.1 CSTR

In the CSTR setting, the kinetic differential equations read

ẋi = xi(kia+ fi−1si−1 − r)

ṡi = giaxi − si(fixi+1 + r)

ȧ = a0r − a(r +
∑

(ki + gi)xi)

(4.3)

where i runs from 1 to n, the total number of reacting species. The total

concentration c0 = a+
∑

(xi + si) converges to a0. Therefore all fixed points

lie on the 2n + 1– dimensional simplex S2n+1.

Besides the trivial fixed point there may be numerous other fixed points if

the flow rate is sufficiently small. From the form of the matrix B it is clear

that the equilibrium concentrations of the interior fixed point of a n–species

system are equal to a fixed point on the boundary of a m–species system

(m > n, with the appropriate rate constants) with an index set that contains

only the species of the lower dimensional system. Thus the formulae for

equilibrium concentrations for the interior fixed points and the fixed points

on the boundary are identical.

The equilibrium concentrations (marked by bars) for the fixed point PI with

the index set I are:

s̄i =
r − kiā

fi

, x̄i =
r(r − kiā)

fi(κiā− r)
(4.4)

Definition 4.1 Let m be the index so that κm = mini∈I κi
1 and M the index

so that kM = maxi∈I ki.

1m need not be uniquely defined. If more than one index fulfills the above definition,

we may just pick any one of them.
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Then a necessary condition for the fixed point to lie on the simplex is

r

κm
≤ ā ≤

(
r

kM

)
(4.5)

This motivates the following

Lemma 4.1 An index set is admissible in the competitive model if and only

if kM < κm. For each admissible index set I we define the set I ′ = I \ {M},
which is also admissible.

Proof: The “only if” part follows directly from (4.5). That the condition

given in the lemma is sufficient, follows from the proof of Theorem 4.1.1,

where we show that we need no additional condition for the fixed point to

exist at sufficiently small flow rates.

2

The equilibrium concentration of the substrate is implicitly given by the

function

F (a, r) := a0 − a−
∑

i∈I

r − kia

fi

(
1 +

r

κia− r

)
(4.6)

At the equilibrium concentration this function vanishes: F (ā(r), r) = 0. If

all κi are different, this is an equation of order nI + 1 in a. In general, if

there are s different values of κ in I, the equation is of order s + 1. We can

give no analytic solution for arbitrary nI , but we can derive the number of

solutions that lie on the simplex.

Theorem 4.1 For every admissible index set I there is exactly one fixed

point PI that lies on the simplex for sufficiently small flow rates. At some

flow rate rI×I′ > 0 there is a transcritical bifurcation of a fixed point PI with

a fixed point PI′. For higher flow rates, there is either no fixed point PI on

the simplex or there are two. We call the former case scenario 1 and the

latter scenario 2. In scenario 2 there is a saddle node bifurcation at some
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flow rate r∗ > rI×I′, in which the both fixed points disappear. There is no

fixed point PI for any flow rate r > r∗ in scenario 2 and for any r > rI×I′ in

scenario 1.

Proof: We start with remarking that at r = 0 we have a s−fold solution

ā = 0 and one solution ā = a0(1 − ∑
(ki/fi))

−1. The latter is positive if
∑

(ki/fi) < 1, but in any case it does not lie on the simplex. Next we observe

that F (a, r) goes to infinity and changes sign for a = r/κi. Therefore, if j

and k are two indices with κj 6= κk and there is no index for which κ lies

between those two, then there must be a solution of (4.6) between a = r/κi

and a = r/κi+1, i. e. there are s− 1 solutions that cannot lie on the simplex

because of (4.5). Thus there can be at most two solutions on the simplex. If
∑

(ki/fi) > 1, however, there can be only one solution on the simplex, since

then there is one negative solution. Hence
∑

(ki/fi) < 1 is a necessary but

not sufficient condition for having two fixed points.

To find the exact number of solutions, we investigate the behaviour of F (a, r)

along the line a = r/kM. We obtain

F
(
r

kM
, r
)

= a0 −
r

kM
(1 + ΓI′) , ΓI′ =

∑

i∈I′

κi(kM − ki)

fi(κi − kM)
≥ 0 (4.7)

This is positive for

r < rI×I′ =
a0kM
1 + ΓI′

(4.8)

Since F (r, (r/κm)+ε) is negative for ε sufficiently small, there is one solution

for r < rI×I′, and two or none for r > rI×I′. At r = rI×I′ there is a

transcritical bifurcation of PI with PI′. For one-dimensional fixed points,

this means that P{i} passes through the trivial fixed point at r{i}×∅ = a0ki.

There are two ways in which this bifurcation can happen: The interior fixed

point may leave the simplex (scenario 1) or a second fixed point may enter

it (scenario 2). In the latter case the fixed point that enters the simplex in

a transcritical bifurcation has the higher value of ā; we call it P
(2)
I and the
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corresponding equilibrium concentration of the substrate ā(2). Since the fixed

point cannot leave the simplex again at a higher flow rate, it is clear that

P
(1)
I and P

(2)
I must disappear in a saddle node bifurcation at some flow rate

r∗I > rI×I′.

2

Fig. 4.1 shows the how the function F looks typically in scenario 1 (4.1.a)

and 2 (4.1.b). The dashed lines are the functions a = r/kM, the dotted

a = r/κm that confine the region where physically meaningful solutions can

lie. Note that there is always one solution that lies entirely below the line

a = r/κm.

In fig. 4.2 we show how the fixed points move as the flow rate is changed.

Since we need at least two species to show anything interesting and the

simplex S5 is hard to draw, we have show the sum of each species and the

corresponding intermediate instead of showing all individual concentrations.

The figures (a) and (b) correspond to (a) and (b) of fig. 4.1. One can see

here that there are two fixed points of all types in (a) and one in (b). Also,

one can see the transcritical and saddle node bifurcations. In fig. (c) we

have the case kM > κm and hence there are only the one dimensional and

the trivial fixed points.

We now want to know how the equilibrium concentrations change with the

flow rate. We can obtain the derivative of ā by implicit differentiation:

dā

dr
= −

(
∂F

∂r

)

ā

/(∂F
∂a

)

ā

(4.9)

where (
∂F

∂r

)

ā

= −ā2
∑

i∈I

κigi

fi(κiā− r)2
< 0 (4.10)

Therefore the signs of dā/dr and (∂F/∂a)ā coincide. Since F (r, (r/κm) + ε)

is negative for ε sufficiently small, as remarked above, it is clear that the
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Figure 4.1: Competitive model; n = 2, k1 = 1.5, k2 = 1, g1 = 3, g2 =

5, a0 = 1 and (a): f1 = 7, f2 = 2; (b) f1 = 0.8, f2 = 0.3
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Figure 4.2: Competitive model; n = 2, a0 = 1, constants for (a) and (b) see

fig. 4.1; (c) k1 = 1.5, k2 = 1, g1 = 3, g2 = 0.3, f1 = 0.8, f2 = 0.3
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partial derivative of F with respect to a is positive at ā(1): (∂F/∂a)ā(1) > 0.

At ā(2) (if it exists), the sign of the partial derivative is therefore negative.

Hence
dā(1)

dr
> 0,

dā(2)

dr
< 0 (4.11)

Stability properties

Transversal eigenvalues: We now investigate the stability properties of

the fixed points. For each index l /∈ I (if PI is not the interior fixed point),

there are two transversal eigenvalues: −r and klā − r. The latter describes

the stability of the fixed point against the introduction of replicating species

l and the corresponding intermediate. We distinguish three cases:

1. kl < kM: Since r > kMā, the eigenvalue is always negative.

2. kM < kl < κm: There is a transcritical bifurcation of PI with PIl,

where I l = I ∪ {l}. It takes place at r = rI×Il

= klā. Evaluating the

corresponding value of ā from (4.6), we obtain

āI×Il

=
a0

1 + ΓI

, rI×Il

=
a0kl

1 + ΓI

(4.12)

where ΓI is defined like ΓI′ in (4.7), but extending the summation over

all i ∈ I. It is not clear whether the eigenvalue is negative for flow

rates above or below the critical flow rate. We therefore compute the

derivative of the eigenvalue with respect to r
(
dλ

dr

)

rI×Il

= −1 + kl

(
dā

dr

)

rI×Il ,āI×Il

(4.13)

The partial derivatives of F at
(
āI×Il

, rI×Il
)

are

(
∂F

∂ā

)

rI×Il ,āI×Il

= −(1 + ΓI) + klΘI ,

(
∂F

∂r

)

rI×Il ,āI×Il

= −ΘI

(4.14)
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with

ΘI =
∑

i∈I

κigi

fi(κi − kl)2
> 0 (4.15)

If we now introduce these results into (4.9), (4.13) becomes
(
dλ

dr

)

rI×Il

=
1 + ΓI

klΘI − (1 + ΓI)
(4.16)

The sign of dλ/dr is therefore the same as that of (∂F/∂a)rI×Il ,āI×Il ,

i. e. it is positive if PIl passes through P
(1)
I and negative if PIl passes

through P
(2)
I . The last equation also allows us to distinguish between

these two cases: PIl passes through P
(1)
I if klΘIl > 1 + ΓI.

If PIl passes through P
(1)
I , we have scenario 1 for I l: This becomes clear

by looking at the derivative (dā(Il)/dr)
āI×Il ,rI×Il :

(
∂F

∂a

)

āI×Il ,rI×Il

= −(1 + ΓI) + klΘIl,

(
∂F

∂r

)

āI×Il ,rI×Il

= −ΘIl

(4.17)

with ΘIl = ΘI + κl/fl and therefore ΘIl > ΘI . Hence

(dā(Il)/dr)
āI×Il ,rI×Il > (dā(I)/dr)

āI×Il ,rI×Il

from which the above assertion follows.

The behaviour of the transversal eigenvalue can therefore be summa-

rized as follows: At rI×Il

there is a transcritical bifurcation of PIl with

(one of the) fixed point(s) PI . If PIl passes through P
(1)
I , its transversal

eigenvalue is positive for flow rates above rI×Il

. Since ā(2) > ā(1), it is

clear that the transversal eigenvalue is also positive for P
(2)
I . Reverting

this argument we see that if PIl passes through P
(2)
I , the transversal

eigenvalue is negative for both fixed points PI at flow rates above rI×Il

,

while it is positive for P
(2)
I for lower flow rates.

3. kl > κm: In this case the index set I l is not admissible. The transversal

eigenvalue is positive for all flow rates since κmā− r > 0.
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Internal eigenvalues: The internal eigenvalues are much harder to cal-

culate. In fact, except for the results on one dimensional fixed points, we

can derive analytical results only for the case of equal reaction constants

described in the next section. Still, we could obtain information on the sign

of all eigenvalues using the fact that all fixed points undergo transcritical

bifurcations with lower dimensional fixed points, if there were no Hopf bifur-

cations. There is a generalized potential for the corresponding second order

replication network (at least for the one with ki = 0), thus there can be no

complex eigenvalues (and hence no Hopf bifurcations) for this system. I have

spent several weeks in fruitless attempts to find a generalized potential or at

least a Ljapunov function for (4.1); so I guess that either there is none or it

should look quite disgusting.

The only thing I could do was to test the conjecture that there were no Hopf

bifurcations by numerical experiments. Test series for n = 3, 4, and 5 were

made, setting k1 = 1, a0 = 1 and choosing ki from (0, 1), r from (0, rI×I′), gi

from (ki, 5) (to ensure kM < κm) and fi from (0, 5). For each value of n 1000

samples were taken, checking if there were any complex eigenvalues of the

Jacobian, evaluated at the interior fixed point and how many eigenvalues had

positive sign. I never found complex eigenvalues and the number of positive

eigenvalues was always n− 1. This is just what we would expect in absence

of Hopf bifurcations, since from the fact that every n dimensional fixed point

passes through an n− 1 dimensional fixed point and the changes of the sign

of the transversal eigenvalue of the latter, it is clear that the former must

have one positive eigenvalue more. Since the one dimensional fixed point has

only negative interior eigenvalues, the above result on n dimensional fixed

points follows. (remember that under the conditions chosen there is only

one interior fixed point). A second series of experiments was carried out to

study the stability of the second fixed point (where it exists). To that end I

chose ki, gi and a0 as above, but r from (rI×I′, rI×I′ + 0.1) (since under the

above conditions the saddle node bifurcation usually takes place at flow rates
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between these values) and fi from (5, 10) (since high values of f favor the

occurrence of scenario 2). If the set of parameters chosen led to scenario 1 or

the flow rate was above the critical flow rate for the saddle node bifurcation,

it was discarded. Again 1000 samples were taken for each n = 3, 4 and 5.

As expected, we found again that all eigenvalues were real and there were

n and n − 1 positive eigenvalues for the fixed point with the higher (lower)

equilibrium concentration of the substrate, respectively.

4.1.2 The evolution reactor

In the evolution reactor it is convenient to describe the system in terms

of relative concentrations xi = [Xi]/c0, si = [Si]/c0, where c0 is the total

concentration. The differential equations describing the system then are:

ẋi = xi(ki + fic0si − Φ)

ṡi = gixi − si(fic0xi + Φ)
(4.18)

the flow Φ being defined as

Φ =
∑

i∈I

κixi (4.19)

Since the overall concentration is held constant, the phase space is the simplex

S2n.

The concentrations of the individual species are coupled only via Φ, so the

computation of the equilibrium concentrations is the same for fixed points

in the interior and on the boundary of the simplex, which are themselves

simplices. (The stability properties, however, depend on all species.)

As in the CSTR setting, we define M and m with kM = maxi∈I ki, κm =

mini∈I κi. Again, an index set admissible if κm > kM. For every admissible

index set we define the set I ′ = I \ {M}, which is also admissible.

The equilibrium concentrations at the fixed point PI (denoted by bars) then
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are

s̄i =
Φ̄ − ki

fic0
x̄i =

Φ̄(Φ̄ − ki)

fic0(κi − Φ̄)
(4.20)

Therefore PI can only lie on the simplex if

kM < Φ̄ < κm (4.21)

Therefore the fixed point PI can exist only if the index set is admissible. The

flow at the equilibrium Φ̄ can be determined by the condition that the sum

of the relative concentrations must be 1:

F (Φ, c0) := 1 − 1

c0

∑

i∈I

Φ − ki

fi

(
1 +

Φ

κi − Φ

)
= 0 (4.22)

This is an equation of n−th order in Φ if all κi are different; in general, if

there are only s different values of κi, i ∈ I, the equation is of order s.

Theorem 4.2 For every admissible index set with nI > 1, there is exactly

one fixed point PI for sufficiently large values of c0. At a certain total concen-

tration, a transcritical bifurcations with the fixed point PI′ takes place. For

c0 below this value, PI lies outside the simplex.

Proof: At Φ = κi, F (c0,Φ) goes to infinity and changes sign, so there must

be one solution of (4.22) between each pair of two adjoining lines Φ = κi

andΦ = κj. Thus there are s − 1 solutions that cannot lie on the simplex

because of (4.21). In other words, there can be at most one solution on the

simplex. To find out whether the last solution really lies on the simplex we

determine the value of F (Φ, c0) at Φ = kM:

F (kM, c0) = 1 − cI×I′

0

c0
, cI×I′

0 =
∑

i∈I

κi(kM − ki)

fi(κi − kM)
(4.23)

This is negative for c0 < cI×I′

0 and since F (κm − ε, c0) < 0 for ε sufficiently

small, it follows that there is one fixed point on the simplex for c0 > cI×I′

0
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and none for c0 < cI×I′

0 . At cI×I′

0 PI undergoes a transcritical bifurcation

with the lower dimensional fixed point P ′
I . 2

Fig. 4.3 shows the graph of F for the two typical situations in a two species

system. In (a) we have kM < κm. One of solutions lies below the line kM

(the dotted line) for small total concentrations, then it crosses this line and

remains between kM and κm for all higher values of c0. In (b), kM is less

than κm and thus there is no solution between kM and κm for any total

concentration. In both cases one of the two solutions lies above the line κm

(the dashed line), as predicted by the theorem.

In fig. 4.4 we show how the fixed point moves through the system as c0 is

varied. Only the interior fixed point is shown. The rate constants are the

same as in fig. 4.3.(a).

Note that, since the critical total concentration as defined by (4.23) is zero

for nI = 1, one–dimensional fixed points exist at all values of c0 in accordance

with the results on the general model.

Stability properties

Transversal eigenvalues: We now turn towards the investigation of the

stability properties of the fixed points. For every l /∈ I, the Jacobian at the

fixed point PI has one eigenvalue −Φ̄ and one kl − Φ̄. While the former is

always negative, for the latter we must distinguish the following cases:

1. kl < ki: The eigenvalue is negative for all values of c0 because kM < Φ̄.

2. kM < kl < κm: There is a transcritical bifurcation of the fixed point PI

with PIl, where I l := I ∪{l}. It takes place at c0 = cI×Il

0 , which is com-

puted like cI×I′

0 , replacing kM by kl and extending the summation over

all i ∈ I l. The fixed point PIl lies on the simplex for c0 > cI×Il

0 , which

can be shown by the same argument as above for PI . The derivative of
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the transversal eigenvalue is
(
dλ

dc0

)

cI×Il

0

=

(
dΦ̄

dc0

)

cI×Il

0

> 0 (4.24)

which follows from the fact that PIl enters the simplex if we raise the

total concentration above cI×Il

0 (it can also be shown directly by implicit

differentiation of the function F ). Therefore the transversal eigenvalue

is positive for total concentration below and negative above cI×Il

0 . The

Jacobian of PIl must therefore have one positive eigenvalue more than

that of PI at least for total concentrations not too much above cI×Il

0 .

3. kl > κm: The eigenvalue is positive for all values of c0. The fixed point

PIl does not exist, since the index set I l is not admissible.

The phase portrait of the system, depending on the total concentration, is

therefore as follows: at c0 = 0 only the one–dimensional fixed points exist.

As c0 is raised, all fixed points P{i} for which the conditions ki < κj and kj <

κi are fulfilled, undergo transcritical bifurcations as two–dimensional fixed

points P{i,j} enter the simplex. At higher concentrations, three–dimensional

fixed points may pass through the two–dimensional ones etc. This means that

if a fixed point PI with I = {i1, i2, . . . , in} (the indices being ascending) exist

at a certain total concentration, then the fixed point with I ′ = {i2, i3, . . . , in},
I ′′ = {i3, i4, . . . , in} etc. also exist. Furthermore fixed points with 1 ∈ I

cannot undergo transcritical bifurcations as c0 is raised. Finally, condition

(4.21) ensures that for no pair of indices i, j with ki > κj there is a fixed

point containing xi and xj simultaneously.

Internal eigenvalues: As in the CSTR setting, we are not able to compute

all internal eigenvalues. We can, however, prove that all even dimensional

fixed points are unstable:

Theorem 4.3 At all fixed points with even nI , the Jacobian has at least one

positive real (internal) eigenvalue.
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Proof: The (internal part of the) Jacobian J = (jij) at the fixed point has

the following form:

∂ẋi

∂xj
=−κj x̄i

∂ẋi

∂sj
=c0fix̄iδi,j

∂ṡi

∂xj
=−κj s̄i + (gi − s̄ic0fi)δi,j

∂ṡi

∂sj
=−(c0fix̄i + Φ̄)δi,j

(4.25)

Since gi − s̄ic0fi = κi − Φ̄, we can write ∂ṡi/∂xi = −κis̄i + κi − Φ̄. We now

multiply the i–th row of J by (c0fix̄i − Φ̄)/c0fix̄i and add it to the n+ i–th

line. We then can expand the determinant with respect to the last n columns.

Thus we obtain

detJ = (−1)n
n∏

i=1

c0fix̄i det J̃ (4.26)

where J̃ = (̃ij) is a n× n matrix with the entries

̃jij = −κi

(
x̄j + s̄j +

Φ̄

c0fj

)
+ (κi − Φ̄)δi,j

The determinant of J̃ is

det J̃ = 1 −
n∑

i=1

κi

κi − Φ̄

(
x̄i + s̄i +

Φ̄

c0fi

)

and since

n∑

i=1

κi

κi − Φ̄
(x̄i + s̄i +

Φ̄

c0fi
) >

n∑

i=1

x̄i + s̄i +
Φ̄

c0fi
= 1 + Φ̄

n∑

i=1

1

c0fi

it follows that det J̃ is negative. From (4.26) we now see that detJ is negative

for even nI . Since the determinant is the product of the eigenvalues, there

must be at least one positive factor and hence the assertion of the theorem

follows.

2

Numerical evidence leads us to the same conjecture as in the CSTR setting,

namely that all eigenvalues are real and that an nI dimensional fixed point
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Figure 4.3: Competitive model; n = 2, k1 = 1.5, k2 = 1, g1 = 3, f1 =

7, f2 = 2 and (a): g2 = 5; (b) g2 = 0.3
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Figure 4.4: Competitive model; n = 2, k1 = 1.5, k2 = 1, g1 = 3, g2 =

5, f1 = 7, f2 = 2, 0.335 < c0 < 10
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has nI −1 positive (internal) eigenvalues (which follows from the sequence of

transcritical bifurcations through which the fixed point enters the simplex,

if there are no Hopf bifurcations). This conjecture was tested for 1000 pa-

rameter sets for each n = 3, 4 and 5. k1 and c0 were set to unity, the other

ki were chosen from (0, 1), gi from (1− ki, 5) (to ensure that the index set is

admissible), and fi from (0, 10). If the interior fixed point did not exist for

the parameter set, it was discarded. For each accepted parameter set, the

eigenvalues of the Jacobian at the interior fixed point were calculated. The

above conjecture held in all cases.

4.2 Equal reaction constants

The equations are very much simplified if we assume the rate constants to be

equal for all species, i.e. ki = k, gi = g, fi = f, i = 1, . . . , n. The symmetry

in the rate constants induces symmetry in the equilibrium concentrations:

x̄i = x̄, s̄i = s̄ ∀i ∈ I. Under these condition (interior part of) the Jacobian

has a special form: it consists of 4 circulant nI×nI blocks (plus one additional

row and column for the substrate in the CSTR case). This enables us to

derive analytical expressions for the (interior) eigenvalues of the Jacobian

and thus determine the stability of the fixed points.

4.2.1 The CSTR

The differential equations are:

ẋi = xi(ka + fsi − r)

ṡi = gxia− si(fxi + r)

ȧ = a0r − a (r + κ
∑
xi)

(4.27)

where κ = k + g. Since κ > k, all possible index sets are admissible. There-

fore, there are 2n admissible index sets. The equilibrium concentrations at a
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fixed point PI are:

x̄ =
r(r − kā)

f(κā− r)
, s̄ =

r − kā

f
(4.28)

The determining equation for ā is

ā2κ(f − nIk) − ā(fa0κ + fr − nIκr) + fa0r = 0 (4.29)

If f < nIk, there is one positive and one negative solution, if f > nIk there

are two positive solutions at least for sufficiently small r. In the latter case

there is a saddle node bifurcation at

r̄∗ =
a0fκ

(
f − nI(k − g)2 ±

√
nIg(f − nIk)

)

(f − niκ)
2 (4.30)

ā∗ =
a0f

(
f − nIk ±

√
nIg(f − nIk)

)

(f − nIκ)(f − nIk)
(4.31)

Since the solution with the plus sign before the square root yields values of

ā∗ that are either negative or greater than a0, we are only interested in the

formulae with the minus sign. Putting ∆ = f−nIk, we can rewrite the latter

as

r∗ =
a0κf

(
√

∆ +
√
nIg)2

, a∗ =
a0f

∆ +
√

∆nIg
(4.32)

For all index sets there is a transcritical bifurcation with the trivial fixed

point at r = ka0, as may be easily verified from (4.29). Again, there are the

familiar scenarii 1 and 2 described in the last section; the latter occurs if

f > f c =
nIkκ

g
> nIk (4.33)

For different index sets, different scenarii may occur, depending on nI .
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Stability properties

The (internal part of the) Jacobian has the following form:

∂ẋi

∂xj
=0 ∂ẋi

∂sj
=fx̄δi,j

∂ẋi

∂a
=kx̄

∂ṡi

∂xj
=(gā− f s̄)δi,j

∂ṡi

∂sj
=−(fx̄+ r)δi,j

∂ṡi

∂a
=gx̄

∂ȧ
∂xi

=−κx ∂ȧ
∂si

=0 ∂ȧ
∂a

=−r − nIκx̄

(4.34)

Inserting the value of s̄, we can write ∂ṡi/∂xi = gā− f s̄ = κa− r > 0.

The Jacobian consists of 4 circulant nI × nI blocks (plus one row and one

column for the substrate). Since all circulant matrices have the same eigen-

vectors, namely

νj = (1, zj, z2j , . . . , z(n−1)j), z = e
2πi
n (4.35)

with 0 ≤ j ≤ n − 1 and i =
√−1, we make the following ansatz for the

eigenvectors ξj of the Jacobian:

ξj = (1, zj, . . . , z(n−1)j , βj, βjz
j , . . . , βjz

(n−1)j , ωj) (4.36)

where we have to determine βj and ωj so that the equation

Jξj = λjξj (4.37)

is fulfilled. The corresponding eigenvalue is simply the first entry of Jξj,

since the first entry of ξj is unity, and hence

λj = βjfx̄ + ωjkx̄ (4.38)

We now calculate βj and ωj:

Jξj =
(
x̄(βjf + ωjk), . . .︸ ︷︷ ︸

nI terms

, κā− r − βj(fx̄+ r) + ωjgx̄, . . .︸ ︷︷ ︸
nI terms

, (4.39)

−κx̄∑n−1
k=0 z

jk − ωj(r + nκx̄)
)
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Since
∑n−1

k=0 z
jk = 0 if j 6= 0, we can choose ωj = 0 in this case. Substituting

(4.39) into (4.37), we get

β2
j fx̄+ βj(fx̄+ r) − κā + r = 0, j = 1, 2, . . . , n− 1 (4.40)

Since the quadratic and the absolute term have opposite signs, there is one

positive and one negative solution for βj (and also for λj). The eigenvalues

are

λ
(1)/(2)
j =

1

2

(
−fx̄− r ±

√
(fx̄ + r)2 + 4fx̄(κā− r)

)
(4.41)

For j = 0, the following equations result:

ω2
0kx̄+ ω0(β0fx̄+ r + nIκx̄) + nIκā = 0 (4.42)

ω0(β0kx̄− gx̄) + β2
0fx̄+ β0(fx̄+ r) − κā + r = 0 (4.43)

Solving the latter for ω0

ω0 =
β2

0fx̄+ β0(fx̄− r) − κā + r

β0x̄(g − k)
(4.44)

and inserting the solution into the former, we get

(β0fx̄ + r − kā)×

×
(
β2

0 x̄(f − nIk) + β0

[
r + x̄

(
f − nI(k − g)

)]
+ r − κā+ nIgx̄

)
= 0 (4.45)

Thus, there is one solution

β
(1)
0 = −r − kā

f
, ω

(1)
0 = − ā

x̄
, λ

(1)
0 = −r (4.46)

which is the external eigenvalue.

To find the remaining two solutions of (4.45), we eliminate x̄ by introducing

(4.28) and r by solving (4.29) for r and introducing this into (4.45):

β2
0∆γα− β0γ (∆α + nI(a0g + āk))− fα2 − nI ā(āg+ 2āk− a0k) = 0 (4.47)
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with γ = f(a0 − ā) + nIkā > 0 and α = a0 − ā > 0. Introducing (4.44) into

(4.38), we get

λ0 =
κ (γ2β0 − n2

Igkā
2)

α(g − kβ0)(γ + nIgā)
(4.48)

The eigenvalue therefore becomes zero at

β0 = β∗
0 =

n2
Igkā

2

γ2
(4.49)

We now introduce β ′
0 = β0 − β∗

0 . Since kβ0 < g for ā < a0, β
′
0 and λ0 have

the same sign. Equations (4.47) now becomes

β ′2
0 αγ

4 + β ′
0γ

2L + nIα
2fg(γ + nIkā)A = 0 (4.50)

where the factor L in the linear coefficient is

L = ∆3α3 + ∆2α2(a0g + 2a0k + āk)+

+∆αn2
Ik(2gā

2 + 2ga2
0 + 2ka0ā+ ka2

0) + n3
Ia

2
0k

2(ga0 + kā) > 0

For f < nIk (∆ < 0), the factor A in the absolute term can be written

A = (∆α + nIka0)
2 − nIg∆ā

2 > 0 (4.51)

The quadratic and the absolute term in (4.50) therefore are both positive;

since the linear term is also positive, there are two negative solutions of (4.50)

and hence two negative eigenvalues for j = 0.

For ∆ > 0, we can write the factor A using (4.32):

A = (ā∗ − ā)(∆ +
√
nIg∆)(α∆ + ā

√
nIg∆ + nIka0) (4.52)

All terms but the first are positive; the sign of A is therefore positive if ā < ā∗,

that is, for the fixed point with the lower equilibrium concentration of the

substrate. Hence there are two negative eigenvalues for this fixed point, while

for the other (if it exists), there is one positive and one negative eigenvalue.
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There are 2 eigenvalues for each value of j 6= 0 and three for j = 0 and

therefore totally 2n + 1 eigenvalues, i.e. the ansatz we used allows us to

compute all eigenvalues of the Jacobian. While the eigenvalues for j 6= 0

depend on the specific interaction matrix we used in this model, those for

j = 0 depend only on the fact that there is exactly one entry per row and

column and that they all have the same value. We shall use this fact later

when we treat the mutualistic model.

The transversal eigenvalues (if any exist) are kā − r and −r, each of them

with multiplicity n − nI . They are all negative. Therefore, any fixed point

is transversally stable, i.e. stable against the introduction of new species.

The overall behaviour is therefore as follows: For small values of r there is

exactly one fixed point per index set. The one dimensional fixed points are

sinks equilibrium concentration of the substrate), the other ones are saddles

with nI − 1–dimensional unstable manifolds. The trivial fixed point is also

a saddle. At r = a0k, there is a transcritical bifurcation with the trivial

fixed point for every index set. At this flow rate, either the fixed point PI

leaves the simplex or a second fixed point with the same index set enters it.

The latter is more probable for small nI . The fixed point with the higher

equilibrium concentration of the substrate has one more positive eigenvalue

than that with the lower concentration. If there are two fixed points with

the index set I for r > a0k, they disappear in a saddle node bifurcation at a

somewhat higher flow rate. The trivial fixed point is stable for r > a0k.

4.2.2 The evolution reactor

We now leave the domain of five–line–formulae and turn to the much simpler

world of the evolution reactor.

The differential equations are

ẋi = xi(k + c0fsi − Φ)

ṡi = gxi − si(c0fxi + Φ
(4.53)
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where the flow is Φ = κ
∑
xi. The equilibrium concentrations at the fixed

point PI then are

x̄ =
Φ̄(Φ̄ − k)

fc0(κ− Φ̄)
, s̄ =

Φ̄ − k

c0f
(4.54)

As in the CSTR setting, all possible index sets are admissible. Thus there

are 2n − 1 admissible index sets.

The flow at the fixed point is

Φ̄ =
κ(nIk + c0f)

nIκ+ c0f
(4.55)

Inserting this into (4.54), we obtain

x̄ =
nIk + c0f

nI(nIκ+ c0f)
, s̄ =

g

nIκ + c0f
(4.56)

The fixed points exist for all values of c0: in contrast to the general model,

where only one dimensional fixed points exist for all total concentrations,

there are no transcritical bifurcations of higher dimensional fixed points in

the case of equal reaction constants.

Stability properties

The (internal part of the) Jacobian at the fixed point PI has the following

form:
∂xi

∂xj
=−κx̄ ∂xi

∂sj
=c0fx̄δi,j

∂si

∂xj
=−κs̄ + (g − s̄c0f)δi,j

∂si

∂sj
=−(c0fx̄ + Φ̄)δi,j

(4.57)

Calculating the eigenvalues, we shall make use of the identity g − s̄c0f =

κ− Φ̄ > 0. The Jacobian again consists of four nI ×nI circulant matrices, so

that our ansatz for the eigenvector is very similar to the one for the CSTR

model:

ξj = (1, zj, . . . , z(n−1)j , βj, βjz
j, . . . , βjz

(n−1)j) (4.58)
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where z is defined as above and j ranges from zero to nI −1. We must choose

β so that the equation

Jξj = λjξj (4.59)

is fulfilled. With

Jξj = (βjc0fx̄− κx̄
n−1∑

k=0

zjk, . . .

︸ ︷︷ ︸
nI terms

, βj(c0fx̄− Φ̄) + κ− Φ̄ − κs̄
n−1∑

k=0

zjk, . . .

︸ ︷︷ ︸
nI terms

)

(4.60)

we see that

λj = βjc0fx̄− nκx̄
n−1∑

k=0

zjk (4.61)

Since
∑
zjk = nIδ0,j , we get different equations for the case j = 0 and j 6= 0.

In the latter case βj must fulfill the equation

β2
j c0fx̄− βj(c0fx̄ + Φ̄) − κ+ Φ̄ = 0 (4.62)

and the corresponding eigenvalue is

λj = βjc0fx̄ =
1

2

(
−c0fx̄− Φ̄ ±

√
(c0fx̄+ Φ̄)2 + 4fc0x̄(κ− Φ̄)

)
(4.63)

Since κ − Φ̄ > 0, there is one positive and one negative eigenvalue for each

j 6= 0. If j = 0, the β0 must fulfill the equation

β2
0c0fx̄+ β0(c0fx̄+ Φ̄ − nIκx̄) − κ+ Φ̄ + nIκs̄ = 0 (4.64)

Since Φ̄ = nIκx̄ and nI s̄ + nI x̄ = 1 the linear and absolute coefficients

reduce to c0fx̄ and zero, respectively. The solutions of the above equation

are therefore β
(1)
0 = 0 and β

(2)
0 = −1 with the associated eigenvalues λ

(1)
0 =

−nIκx̄ = −Φ̄ (the external eigenvalue) and λ
(2)
0 = −(nIκ+ c0f)x̄.

There are 2 eigenvalues per value of j; since j can take n different values, we

get all eigenvalues of the Jacobian using the above ansatz. As in the CSTR

model, the eigenvalues for j 6= 0 depend on the coupling matrix B while
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those for j = 0 do not, which we shall use when treating the mutualistic

model.

The properties of the competitive model in the evolution reactor with equal

reaction constants is therefore as follows: There is exactly one fixed point

for each index set; it exists for all values of c0. There are no bifurcations of

any kind. The one dimensional fixed points are all stable, higher dimensional

fixed points are saddles with nI − 1 dimensional unstable manifolds.

4.2.3 Comparison with the Schlögl model

Comparing the results of the competitive model with equal reaction constants

with the corresponding second order reaction network, we see that they both

in the CSTR and in the evolution reactor the number of fixed points and the

stabilities coincide in both models if the constants are appropriately chosen.



Chapter 5

The mutualistic model

In the mutualistic model the entries of the interaction matrix B are bli =

fiδl+1,i, with the indices taken modulo n (which we shall imply wherever

we treat the mutualistic model). Thus each Xi produces Si, which in turn

produces Xi+1 (i = 1, . . . , n − 1), and Sn produces X1: the species form a

catalytic cycle. This is, of course, true only if all species are present in the

system; otherwise we may get a (number of) catalytic chain(s). In contrast

to the competitive model, where the fixed points in the interior of the sim-

plex and those on the boundary were quite similar, we shall see that in the

mutualistic model they really form two classes with very different physical

behaviour.

The reaction scheme of the mutualistic model is:

(A) +Xi
ki→ 2Xi

(A) +Xi
gi→ Xi + Si

Xi + Si−1
fi−1→ 2Xi

Xi
r→ ∗

Si
r→ ∗

(5.1)

The corresponding second order reaction network is the famous hypercycle,

92
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invented by Eigen and Schuster [10, 11, 12] in an attempt to understand

important questions in the evolution of live:

(A) +Xi
k′

i→ 2Xi

(A) +Xi +Xi−1

f ′

i→ 2Xi +Xi−1

(5.2)

This system has been thoroughly investigated ([42]), particularly in the evo-

lution reactor setting ([43, 44]). In this setting, (5.2) has only one interior

fixed point. For the the case k′i = 0 ∀i (called the homogeneous hypercycle),

i.e. omission of the uncatalyzed formation, a barycentric transformation can

be found, i.e., a coordinate transformation that shifts the interior fixed point

to the barycentre of the simplex (regardless of the kinetic constants). In these

coordinates, the Jacobian of the system at the interior fixed point becomes

circulant, so that the eigenvalues can easily be evaluated. In this special

case, stability depends only on n. Thus it can be shown that the interior

fixed point is stable for n < 4 and unstable for n > 4. For n = 4 the stability

of the fixed point can be shown using Ljapunov functions. For n > 4, the

(unstable) interior fixed point is surrounded by a stable limit cycle.

In the next sections we first examine the mutualistic model in general in the

CSTR. Then we examine the special case ki = 0 for all i (we call this the

homogeneous case in accordance with the corresponding hypercycle model)

in the CSTR. We do this mainly because the general mutualistic model in

the CSTR leads to confusing formulae and the proof of the essential theorem

of section 1, although it must be modified a little, becomes much clearer in

the homogeneous case. In the third section we treat the mutualistic model

in the evolution reactor. Finally we investigate the case of equal reaction

constants both in the CSTR and the evolution reactor. As in the mutualistic

model, this simplifies all calculations a lot and enables us to derive analytic

formulae for the fixed points and eigenvalues of the Jacobian.
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5.1 The general mutualistic model in the CSTR

In the CSTR setting, system (5.1) produces the following kinetic differential

equations:

ẋi = xi(kia+ fi−1si−1 − r)

ṡi = gixia− si(fixi+1 + r)

ȧ = a0r − a(r +
∑n

i=1(ki + gi)xi)

(5.3)

We shall assume that all ki are different. Then we may assume (without

loosing generality) k1 = max ki.

Besides the trivial fixed point, the system (5.3) admits fixed points on the

boundary and in the interior of the simplex. We now consider them in turn.

5.1.1 Nontrivial fixed points on the boundary of the

simplex

We are first going to investigate for which index sets I the corresponding

fixed point PI can exist. As in the competitive model, we shall call them ad-

missible. Since at very high flow rates only the trivial fixed point exists, “can

exist” means here that the fixed point exists for suitably chosen flow rates

(the exact meaning of this somewhat vague formulation will become clear

later). The conditions on the index set will turn out to be quite restrictive.

We start with the following

Lemma 5.1 In every admissible index set I, there is only one index j for

which j − 1 /∈ I, j ∈ I.

Proof: If I contains two indices j and j ′, j ′ 6= j with j − 1 /∈ I, j ′ − 1 /∈ I,

then inserting s̄j−1 = s̄j′−1 = 0 into the corresponding equations in (5.3)

would yield

x̄j(kjā− r) = 0

x̄j′(kj′ā− r) = 0
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or ā = r/kj = r/kj′, since x̄j 6= 0, x̄j′ 6= 0. This is a contradiction, however,

since we assumed that all ki are different.

2

Thus, every admissible index set is of the form I = {j, j + 1, . . . , k − 1, k}
(the species form a single catalytic chain). Throughout this chapter, we shall

use the indices j and k to label the first (last) member of the catalytic chain

formed at a fixed point on the boundary of the simplex.

Lemma 5.2 If I is admissible then kj = maxi∈I ki. If an admissible set

contains both 1 and n, then I = N .

Proof: From the proof of (5.1) we see that ā = r/kj at the fixed point PI .

Hence the equilibrium concentrations of Si are

s̄i =
r(kj − ki+1)

fikj

i ∈ I \ {k} (5.4)

Since s̄i must be positive, kj must be greater than ki. Specifically, if 1 ∈ I,

the fixed point can exist only if j = 1. Then, if n ∈ I, it is clear that I = N .

2

Combining these lemmas, we get the following

Lemma 5.3 For an index set to be admissible in the general mutualistic

model, it must be of the form I = {j, j+1, . . . , k−1, k}, 1 ≤ j ≤ k ≤ n and if

kj = maxi∈I ki. For every admissible set I we define the set I ′ = I\{k}, which

is also admissible. For the set N = {1, 2, . . . , n}, we define the (admissible)

set N ′ = N \ {n}.

Remark: When we compute the equilibrium concentrations, we shall see

that we need conditions on the index set besides those stated in the lemma.
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The conditions given in the above lemma are therefore not only necessary

but also sufficient.

There are at most two admissible index sets with n− 1 species present (I =

{1, 2, . . . , n − 1} and I = {2, . . . , n}; the latter exists if k2 = maxi∈I ki), at

most three with n− 2 species and so on. The maximal number of admissible

index sets, namely 1+n(n+1)/2 (including the trivial and the interior fixed

point), is obtained if k2, k3, . . . , kn form a decreasing sequence. On the

other hand, if they form an increasing sequence, there are only 2n admissible

index sets (this is the minimal number). In the general case, the number of

admissible index sets will be between these two extremes.

The equilibrium values for xi, i ∈ I = {j, . . . , k} can be calculated easily, if

we don’t insist on eliminating s̄k, leaving it as a parameter:

x̄i =
k∑

m=i

s̄mkj

gi

m−1∏

l=i

s̄lflkj

glr
=

=
s̄kkj

gk

k−1∏

l=i

kj − kl+1

gl

+
k−1∑

m=i

r

fm

m∏

l=i

kj − kl+1

gl

=

= s̄k
kjfk−1

gk
µ

(i,j)
k−1 + r

k−1∑

m=i

µ(i,j)
m (5.5)

where we have put

µ(i,j)
m =

1

fm

m∏

l=i

kj − kl+1

gl
(5.6)

Now we can determine s̄k from ā − a0 +
∑

i∈I x̄i + s̄i = 0, using (5.4) and

(5.5):

s̄k


1 +

kjfk−1

gk

k∑

i=j

µ
(i,j)
k−1


+

r

kj


1 + kjψ

(j,k) −K(i,j) + kj

k−1∑

i=j

k−1∑

m=i

µ(i,j)
m


−a0 = 0

(5.7)

with

ψ(j,k) =
k−1∑

i=1

1

fi
, K(i,j) =

k−1∑

i=1

ki+1

fi
(5.8)
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s̄k =
a0kj − r

(
1 + kjψ

j,k −K(i,j) + kj
∑k−1

i=j

∑k−1
m=i µ

(i,j)
m

)

kj


1 +

kjfk−1

gk

k∑

i=j

µ
(i,j)
k−1




(5.9)

Now we might substitute (5.9) into (5.5) to get the equilibrium concentrations

x̄i as a function of the kinetic parameters and I alone, but I guess everyone

who kept reading up to this line will be glad if I don’t do it.

For fixed points on the boundary on the simplex, the following theorem holds:

Theorem 5.1 For each admissible index set I except N and ∅, there is

exactly one fixed point PI for sufficiently small flow rates. At r = rI×I′ > 0,

there is a transcritical bifurcation with PI′ (PI leaves the simplex through

PI′). For all r > rI×I′ the fixed point lies outside the simplex.

Proof: Since s̄k is uniquely determined by (5.9), there is only one fixed point

PI for each admissible index set I 6= N . The equilibrium concentrations at

PI depend only on I and the flow rate. We see, however, from (5.9) that the

fixed point does not exist for all flow rates: it leaves the simplex (that is, x̄k

and s̄k become negative), if

r > r(I×I′) =
a0kj

1 + kjψ
(j,k) −K(j,k) + kj

k−1∑

i=j

k−1∑

m=1

µ(i,j)
m




(5.10)

Since s̄k is linear in r, it is clear that the fixed point can not lie on the simplex

for r > rI×I′.

To show that PI passes through PI′ at r = r(I×I′), it suffices to prove that

s̄I
k−1 = s̄I′

k−1 at the critical flow rate (the superscripts are used to distinguish

the fixed points). From (5.7) we have

s̄I′

k−1


1 +

kjfk−2

gk

k−1∑

i=j

µ
(i,j)
k−2


+

r(I×I′)

kj


1 + kjψ

(j,k−1) −K(j,k−1) + kj

k−2∑

i=j

k−2∑

m=i

µ(i,j)
m


−a0 = 0

(5.11)
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Using (5.10) we obtain

r(I×I′)

kj


1 + kjψ

(j,k−1) −K(j,k−1) + kj

k−2∑

i=j

k−2∑

m=i

µ(i,j)
m


−a0 = −r

(I×I′)

kj


kj − kk

fk−1
+ kj

k−1∑

i=j

µ
(i,j)
k−1


 > 0

(5.12)

Since kj = maxi∈I ki, it follows that kjψ
(j,k) > K(j,k) and hence r(I×I′) is

positive. If we take into account that

µ
(i,j)
k−2 =

fk−1gk−1

fk−2(kj − kk)
µ

(i,j)
k−1 (5.13)

we can rewrite (5.11) as
(
s̄I′

k−1 −
r(I×I′)(kj − kk)

kjfk−1

)
+

(
s̄I′

k−1fk−1kj

kj − kk
− r(I×I′)

)
k−1∑

i=j

µ
(i,j)
k−1 = 0 (5.14)

and hence

s̄I′

k−1 =
r(I×I′)(kj − kk)

kjfk−1

= s̄I
k−1 (5.15)

2

5.1.2 Interior fixed point

Following the procedure outlined in chapter 3, we find the following expres-

sions for the equilibrium concentration of the replicating species and the

intermediates:

x̄i =

n−1∑

l=0

r

fi+l

l∏

m=0

s̄i+mfi+m

gi+mā

1 −
n∏

m=1

fms̄m

gm

(5.16)

s̄i =
r − ki+1ā

fi
(5.17)

For ā 6= 0, we may rewrite (5.16), using (5.17) and multiplying by ān:

x̄i =
r
∑n

l=1 γi,lā
n−lφi,l

an − Γφ1,n
(5.18)
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with

γi,l =
1

fi+l−1

l−1∏

m=0

1

gi+m
, Γ =

n∏

m=1

1

gm
, φi,l =

l∏

m=1

(r − ki+mā) (5.19)

The equilibrium concentration of the substrate ā is then implicitly deter-

mined by the function

F(a, r) = a− a0 +
n∑

i=1

xi + si (5.20)

Inserting (5.18) and (5.17) this function becomes:

F(a, r) = a(1 −K(1,n)) − a0 + rψ(1,n) +
r
∑n

i=1

∑n
l=1 a

n−lγi,lφi,l

an − Γφ1,n
= 0 (5.21)

with

K(1,n) =
n∑

i=1

ki+1

fi
, ψ(1,n) =

n∑

i=1

1

fi
(5.22)

At the equilibrium concentration this function vanishes:F(ā(r), r) = 0.

(5.21) has the general form

F(a, r) = v(a, r) +
w(a, r)

z(a, r)
(5.23)

with

v = a(1 −K(1,n)) − a0 + rψ(1,n) (5.24)

w = r
n∑

i=1

n∑

l=1

an−lγi,lφi,l (5.25)

z = an − Γφ1,n (5.26)

Since (5.21) is a n+ 1–order equation in a, there might be as much as n+ 1

interior fixed point. We shall see, however, that most of them lie outside the

simplex:
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Theorem 5.2 For sufficiently small flow rates, there is exactly one interior

fixed point. At r = rN×N ′

, there is a bifurcation of an interior fixed point

with the unique fixed point PN ′. There are two ways in which this bifurcation

can happen: the fixed point that lay inside the simplex may pass through PN ′

and leave the simplex (which we call scenario 1), or a second fixed point may

enter the simplex (scenario 2). In the latter case, we call the fixed point

that enters the simplex (the one with the higher equilibrium concentration of

the substrate) P
(2)
N and the other one P

(1)
N . They disappear in a saddle node

bifurcation at r = r∗ > rN×N ′

. In scenario 1, no interior fixed point exists

for any flow rate greater than rN×N ′

. In scenario 2, no fixed point exists for

any r > r∗.

Proof: In this proof, the partial derivatives of F with respect to a and r

play an important role. For simplicity, we shall denote partial derivative with

respect to a by primes and those with respect to r by subscript r.

Now let us first define the part of the a, r–plane where we can expect physi-

cally acceptable solutions: since the total concentration at the fixed point is

a0, we must have a ≤ a0. Since s̄i becomes negative if a > r/ki (5.17) and

k1 = max ki, the following condition must hold:

a ≤ min{ r
k1
, a0} (5.27)

On the other hand, z(a, r) must be positive; otherwise all x̄i would be neg-

ative. We must therefore find the values aP (r) : z(aP (r), r) = 0 and choose

a > max aP (r). Since

z′ = nan−1 − Γφ′
1,n (5.28)

is nonnegative for 0 ≤ a ≤ r/k1 (φ′
1,n is negative if a is in this range), w is

increasing in a (for r fixed) in this range. Thus there is at most one solution

aP between zero and min{r/k1, a0}. With w(0, r) = −rn ≤ 0, w(r/k1, r) =

rn/kn
1 ≥ 0 we see that there is exactly one solution at least for r ≤ a0k1.

We can even say that āP (r) is strictly increasing, because zr = −(φ1,n)r <

0, 0 ≤ a ≤ r/k1 and hence daP/dr = −zr/z
′ > 0.
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We define S as the part of the a, r–plane that is confined by the lines a =

r/k1, a = a0, and the curve a = aP (r). Only solution of F(ā, r) = 0 that lie

in S give rise to fixed point on the simplex.

We first prove that there is exactly one solution of (5.21) with ā = r/k1 and

call the corresponding value rN×N ′

. Inserting a = r/k1 into (5.21) we get

F
(
r

k1
, r
)

=
r

k1

(
1 −K(1,n) + k1ψ

(1,n)
)

+
r
∑n

i=1

∑n
l=1 γi,lφi,l

(
r
k1

)l (5.29)

With

γ(i,l)φi,l=
1

fi+l−1

l∏

m=1

(r − ki+mā)

gi+m−1

=
rl

kl
1fi+l−1

l∏

m=1

(k1 − ki+m)

gi+m−1





=
(
r

k1

)l

µ
(i,1)
i+l−1 if i + l ≤ n

= 0 if i + l > n

this becomes

F
(
r

k1
, r
)

=
rN×N ′

k1

(
1 −K(1,n) + k1ψ

(1,n) + k1

n−1∑

i=1

n−1∑

l=i

µ
(i,1)
l

)
(5.30)

If there is a solution of (5.21) with ā = r/k1, the right–hand–side of (5.30)

must be zero, and hence we have for rN×N ′

the unique value

rN×N ′

=
a0k1

1 −K(1,n) + k1ψ(1,n) + k1
∑n−1

i=1

∑n−1
l=i µ

(i,1)
l

(5.31)

Since k1ψ
(1,n) − K is positive, the denominator in this equation is greater

than one and 0 < rN×N ′

< a0k1.

We now prove that at this critical flow rate there is a transcritical bifurcation

of an interior fixed point with the fixed point PN ′. It is easy to see from (5.16)

and (5.17) that x̄n = s̄n = 0 if ā = r/k1. Besides, since k1ψ
(1,n) − K is just

∑n−1
i=1 (k1 − ki+1)/fi, (5.31) is equal to (5.10) with j = 1, k = n and hence

we don’t need to repeat the proof that s̄N
′

n−1 = s̄Nn−1 = r(k1 − kn)/k1fn−1 at



CHAPTER 5. THE MUTUALISTIC MODEL 102

r = rN×N ′

. For the remaining s̄i (i 6= n − 1) we obtain with (5.17) and

ā = r/k1

s̄Ni =
r(k1 − ki+1)

k1fi

= s̄N
′

i

Finally, for x̄i, (i 6= n) we obtain

x̄Ni =
r
∑n−i

l=1 ā
n−lālµ

(i,1)
i+l−1

ān
= r

n−1∑

l=i

µ
(i,1)
l = xN

′

i (5.32)

if we insert the equilibrium value of s̄n−1 into (5.5). Hence PN and PN ′

coincide at rN×N ′

and there is a transcritical bifurcation.

We see from (5.30) that for r < rN×N ′

, F(r/k1, r) is negative, whereas

F(āP + ε, r) is positive for all r and ε > 0 and sufficiently small. Thus

there must be an odd number of interior fixed points for these flow rates (at

least one). On the other hand, for r > rN×N ′

, F(r/k1, r) is positive and we

have an even number of interior fixed points.

F is monotonously increasing in r on S, because the partial derivative with

respect to r is everywhere positive:

Fr = ψ(1,n) +

z

(
w

r

∑

i=1

n
n∑

l=1

an−lγi,l(φi,l)r

)
+ wΓ(φ1,n)r

z2
> 0 (5.33)

(this follows from (φi,l)r > 0 for all i, l on S.)

We now complete the proof by showing that the second partial derivative of

F with respect to a does not change sign on the area bounded by (5.27).

Hence there can be at most two solutions of the equation F(a, r) = 0 for any

fixed value of r that complies with (5.27). I have tried my best to keep the

notation as lucid as possible; nevertheless I would not be too surprised if the

next two pages just looked like a great confused heap of φ’s and
∑

’s to you.

The first partial derivative of F with respect to a is:

F ′ = v′ +
w′z − wz′

z2
(5.34)
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With

v′ = 1 −K(1,n)

w′ = r
∑

i=1

n
n∑

l=1

γ(i,l)[a
n−lφ′

i,l + (n− l)an−l−1φi,l] (5.35)

z′ = nan−1 − Γφ′
1,n

we have

w′z − wz′ = r
n∑

i=1

n∑

l=1

γ(i,l)a
n−l−1[ān+1φ′

i,l −

− lanφi,l + aΓ(φ′
1,nφi,l − φ1,nφ

′
i,l) − (n− l)Γφ1,nφi,l] (5.36)

This is negative, because φ′
i,l < 0 ∀i, l and

φ′
1,nφi,l − φ1,nφ

′
i,l = −

∑

p=l+1

ki+p

n∏

m=1

m6=p

(r − ki+ma)
l∏

m=1

(r − ki+ma) < 0 (5.37)

if (5.27) is fulfilled. Hence there can be no extrema on S unless K (1,n) < 1

(in the converse case F < 0 everywhere on S). To calculate the number of

extrema of F as a function of a for fixed r, we consider the second partial

derivative of F with respect to a:

F ′′ =
z(w′′z − wz′′) − z′(w′z − wz′)

z3
(5.38)

since v′′ = 0. Inserting

w′′ = r
n∑

i=1

n∑

l=1

γ(i,l)a
n−l−2[ā2φ′′

i,l + 2(n− l)aφ′
i,l + (n− l)(n− l − 1)φi,l

z′′ = n(n− 1)an−2 − Γφ′′
1,n (5.39)

we see that that the quantity w′′z − wz′′ is always positive:

w′′z − wz′′ = r
n∑

i=1

n∑

l=1

γ(i,l)a
n−l−2[an+2φ′′

i,l + 2(n− l)an+1φ′
i,l −

− l(2n− l − 1)anφi,l + Γa2(φ′′
1,nφi,l − φ1,nφ

′′
i,l) −

− 2(n− l)aΓφ1,n − (n− l)(n− l − 1)Γφ1,nφi,l] (5.40)
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since

φ′′
1,nφi,l − φ1,nφ

′′
i,l =

n∑

p=1

n∑

q=l+1

q 6=p

ki+pki+q

n∏

m=1

m6=p,q

(r − ki+ma)
l∏

m=1

(r − ki+ma) > 0

(5.41)

Putting together (5.38), (5.36) and (5.40) we finally get

z(w′′z − wz′′) − 2z′(w′z − wz′) = r
n∑

i=1

n∑

l=1

γ(i,l)a
n−l−2

{
a2n+2φ′′

i,l −

− 2la2n+1φ′
i,l + l(l + 1)a2nφi,l + ān+2Γ(φ′′

1,nφi,l − 2φ1,nφ
′′
i,l + 2φ′

1,nφ
′
i,l) −

− 2an+1Γ
[
2(n− l)φ1,nφ

′
i,l + lφ′

1,nφi,l + n(φ′
1,nφi,l − φ1,nφ

′
i,l)
]
+

+ (n2 − 2nl + n− 2l − 2l2)anΓφ1,nφi,l +

+ a2Γ2
[
2φ′

1,n(φ
′
1,nφi,l − φ1,nφ

′
i,l) − φ1,n(φ

′′
1,nφi,l − φ1,nφ

′′
i,l)
]
+

+ 2(n− l)aΓφ1,n(φ1,nφ
′
i,l − φ′

1,nφi,l) + (n− l)(n− l − 1)Γ2φ2
1,nφi,l

}

(5.42)

All coefficients of this polynomial are nonnegative. For most of the coeffi-

cients this follows directly from the fact that φi,l > 0, φ′
i,l ≤ 0, φ′′

i,l ≥ 0

wherever (5.27) is fulfilled, and from (5.37) and (5.41). The coefficient

of an, (n2 − 2nl + n − 2l − 2l2), is positive since we can rewrite it as

(n − l)2 + 4l(n − l) + (l − 1)2 + n − 1 and n ≥ 1, n ≥ l, l ≥ 1. All

that remains to prove is that (φ′′
1,nφi,l −2φ1,nφ

′′
i,l +2φ′

1,nφ
′
i,l), the coefficient of

an+2, is nonnegative. Actually, we only need to consider (φ′
1,nφ

′
i,l − φ1,nφ

′′
i,l):

φ′
1,nφ

′
i,l =

n∑

p=1

n∑

q=1

ki+pki+q

n∏

m=1

m6=p

(r − ki+ma)
l∏

m=1

m6=q

(r − ki+ma)

φ1,nφ
′′
i,l =

l∑

p=1

l∑

q=1

ki+pki+q

n∏

m=1

(r − ki+ma)
l∏

m=1
m6=p,q

(r − ki+ma)

Every term in the lower line is also present in the upper one, but not vice versa

(n× l vs. l2 − l terms). Thus, since all terms are positive, φ′
1,nφ

′
i,l > φ1,nφ

′′
i,l

and the coefficient of an+1 is positive.
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We now have proved that F ′′ does not change sign on S, and thus there can

be at most one extremum and two fixed points on the simplex.

2

Fig. 5.1 shows the solutions of the equation F = 0 in scenario 1 (a) and

scenario 2 (b) in a two species system. The dashed line is the function

ā = r/k1; meaningful solutions must lie below this line. Fig. 5.2 shows how

the positions of the fixed points change with the flow rate; the rate constants

are the same as in 5.1.

5.1.3 Stability

Transversal eigenvalues

For an nI dimensional (nI < n) fixed point there are each n−nI−1 (transver-

sal) eigenvalues −r and ksā− r = r(ks −kj)/kj, s /∈ I, s 6= k+1. The latter

are negative if ks < kj and positive in the converse case, but their sign does

not change with the flow rate. There is one eigenvalue −fk+1x̄k − r < 0.

Finally, there is one eigenvalue kk+1ā− r + fks̄k. It is positive if kk+1 > kj,

but in the converse case it may have either sign, depending on r. If define

the set Î = I ∪ {k + 1}, the eigenvalue changes sign at r = r Î×I , as may be

easily proved by inserting (5.9) into the condition (kk+1−kj)r/kj +fks̄k = 0.

Hence, if Î is an admissible index set, it is clear that PI is unstable for flow

rates below rÎ×I . On the other hand, if Î 6= N , PÎ has one more negative

eigenvalue than PI at least for r not too much below the critical flow rate.

Specifically, if PI was stable for flow rates a little higher than rÎ×I , PÎ is

stable for flow rates a little lower than rÎ×I .

The general phase portrait of the mutualistic system is therefore as follows:

For very high flow rates, only the trivial fixed point exist, which is stable.

At r = a0k1, the fixed point P{1}, which is a sink, enters the simplex, and
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Figure 5.1: Mutualistic model; n = 2, k1 = 1.5, k2 = 1, g1 = 3, g2 = 5, a0 =

1 and (a): f1 = 5, f2 = 7; (b) f1 = 0.5, f2 = 0.7
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Figure 5.2: Mutualistic model; n = 2, k1 = 1.5, k2 = 1, g1 = 3, g2 = 5, a0 =

1 and (a): f1 = 5, f2 = 7; (b) f1 = 0.5, f2 = 0.7
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the trivial fixed point becomes unstable. As r is lowered further, fixed points

with I2 = {1, 2}, I3 = {1, 2, 3} etc. enter the simplex, each one through the

one that came in last. Each of them is stable at least transversally as long

as the next one does not exist. Finally, the interior fixed point enters the

simplex through PN ′ (scenario 1), or two fixed points are born in the simplex

in a saddle node bifurcation and one of them leaves the simplex through PN ′

(scenario 2). Since Hopf bifurcations are likely to occur, as we shall see in the

section on equal reaction constants and there is no general way to determine

the internal eigenvalues, we can only determine the stability in transversal

directions. The stability of the interior fixed point thus remains in the dark.

5.2 Homogeneous System

In the homogeneous mutualistic system we assume ki = 0, ∀i ∈ N , i.e. we

omit the uncatalyzed formation of the replicating species. In the CSTR this

yields the following equations:

ẋi = xi(fi−1si−1 − r)

ṡi = gixia− si(fixi+1 + r)

ȧ = a0r − a(r +
∑n

i=1(ki + gi)xi)

(5.43)

In contrast to the general mutualistic system, the homogeneous one has no

fixed points on the boundary: if x̄m = 0 for some m, s̄m is also zero. But

then we have x̄m+1(fms̄m−r) = −x̄m+1r = 0 and hence x̄m+1 = 0. Therefore

x̄i = s̄i = 0 for all i, that is, we are at the trivial fixed point. (If we start

with s̄m = 0 for some m, we get the same result.) Thus we have only the

trivial and the interior fixed point. The former is stable at all flow rates (all

eigenvalues of the Jacobian are −r).
The equilibrium concentrations at the interior fixed point are:

x̄i =

∑n
l=1 ā

n−lrl+1γi,l

ān − rnΓ
, s̄i =

r

fi
(5.44)
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with

γi,l =
1

fi+l−1

l−1∏

m=0

1

gi+m
, Γ =

n∏

i=1

1

gi
(5.45)

The equilibrium concentration of the substrate is given implicitly by the

function

F(a, r) = a− a0 + rK +

∑n
i=1

∑n
l=1 a

n−lrl+1γi,l

an − rnΓ

= v(a, r) +
w(a, r)

z(a, r)
(5.46)

with

K =
n∑

i=1

1

fi
(5.47)

v(a, r) = a− a0 + rK (5.48)

w(a, r) =
n∑

i=1

n∑

l=1

an−lrl+1γi,l (5.49)

z(a, r) = an − rnΓ (5.50)

At the equilibrium, the function vanishes: F(ā(r), r) = 0.

The physically reasonable part of the a, r−plane (which we call again S) is

confined by the lines r = 0, a = a0 and a = rΓ1/n, since the total concentra-

tion at the fixed point is a0 and all x̄i become negative for a < rΓ1/n. Hence,

there is no solution for r > a0Γ
−1/n. In all future considerations we shall

therefore assume that r is below this value. Obviously, w, z ≥ 0 everywhere

on S. Furthermore, since w/z =
∑
xi ≥ 0, v must be non positive at the

fixed point(s).

Since (5.46) is of order n + 1 in a, there may be n + 1 solutions. As in

the general system, we can show that the actual number never exceeds two.

More exactly, it is two or zero, since there are no transcritical bifurcation in

the homogeneous system. The proof is very similar to that for the general

system, but it must be slightly modified, since that proof depends heavily on

the fact that r < k1a, which we cannot use in the homogeneous case.
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We start with observing that F(a0, r) > 0, F(rΓ1/n + ε, r) > 0 for ε suffi-

ciently small and all r. Therefore the number of solutions of (5.46) must be

even. For very small flow rates and ā ≈ a0 we may approximate (5.46) by

F ≈ ā− a0 + rK = 0 (5.51)

neglecting quadratic and higher order terms in r. (5.51) has one solution on

S, namely ā(1) = a0 − rK and hence there are at least two solutions on S for

r sufficiently small.

Next, we show that F(a, r) is monotonous in r on S and that the function

has at most one extremum in a between rΓ1/n and a0 for any fixed value of

r. We consider the partial derivatives of F with respect to r (denoted by

subscript r):

Fr = K +
z
∑n

i=1

∑n
l=1(l + 1)an−lrl + nwrn−1Γ

z2
> 0 (5.52)

The derivatives with respect to a (denoted by primes) are:

F ′ = 1 +
w′z − wz′

z2
(5.53)

F ′′ =
z(w′′z − wz′′) − 2z′(w′z − wz′)

z3
(5.54)

since v′ = 1, v′′ = 0. With

w′ =
n∑

i=1

n∑

l=1

(n− l)an−l−1rl+1γi,l (5.55)

w′′ =
n∑

i=1

n∑

l=1

(n− l)(n− l − 1)an−l−2rl+1γi,l (5.56)

z′ = nan−1, z′′ = n(n− 1)an−2 (5.57)

we obtain

w′z − wz′ = −
n∑

i=1

n∑

l=1

an−l−1f l+1γi,l[la
n + (n− l)rnΓ] < 0 (5.58)
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w′′z−wz′′ = −
n∑

i=1

n∑

l=1

an−l−2rl+1γi,l[l(2n− l−1)an +(n− l)(n− l−1)rnΓ] < 0

(5.59)

and therefore

F ′′ =
1

z3

n∑

i=1

n∑

l=1

an−l−2rl+1γi,l[l(l + 1)a2n +

+ (n2 − 2nl + n− 2l − 2l2)anrnΓ + (n− l)(n− l − 1)r2nΓ2](5.60)

Since n2 − 2nl + n − 2l − 2l2 ≥ 0 (see last chapter) the coefficient of the

second and the third term in brackets are nonnegative and thus the whole

expression is positive. Therefore F ′ can change sign only once on S for fixed

r and (5.46) has at most two solutions on S. We know already that for small

flow rates there are at least two solutions on S, so there must be exactly two.

Fig. 5.3 shows the solutions of F = 0 and the position of the fixed points for

a two species homogeneous mutualistic model. At r = 0 the unstable interior

fixed point coincides with the trivial fixed point.
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Figure 5.3: Homogeneous mutualistic model; n = 2, g1 = 3, g2 = 5, f1 =

5, f2 = 7, a0 = 1. (a) Solutions of F = 0 (b) Position of fixed points
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5.3 The evolution reactor

We now examine the mutualistic model in the evolution reactor. Using rela-

tive concentrations xi = [Xi]/c0, si = [Si]/c0, we obtain the following differ-

ential equations

ẋi=xi(ki + fi−1c0si−1 − Φ)

ṡi=gixi − si(fic0xi+1 + Φ)
(5.61)

Φ is the already familiar dilution flux:

Φ =
n∑

j=1

κixi (5.62)

with κi = ki + gi.

As in the CSTR setting, we assume that all ki are different and that k1 is

the greatest of the rate constants ki.

We now turn to the description of fixed points on the boundary of the simplex

and then to the interior fixed point(s).

5.3.1 Fixed points on the boundary of the simplex

Some of the basic considerations on fixed points on the boundary of the

simplex obtained for the CSTR apply also under constant organization and

the arguments are so similar that we don’t want to repeat them here, namely

1. An index set I is admissible if it is of the form I = {j, j+1, . . . , k}, 1 ≤
j ≤ k ≤ n and if kj = maxi∈I ki. For every admissible index set I we

define the set I ′ = I \{k}. For the interior fixed point we define the set

N = {1, 2, . . . , n} and the set N ′ = N\{n} (which are also admissible).

For all admissible index sets with more than one element, the set I ′ is

also admissible.
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2. The maximal possible number of fixed points (including the interior

one) is n(n + 1)/2. It is obtained if k2, k3, . . . , kn form a decreasing

sequence. The minimal number is 2n−1; it is obtained if they form an

increasing sequence. In the general case, the number of possible fixed

points will lie between these two numbers. We must stress the word

possible, since these fixed points will generally not exist for all values

of c0.

In analogy with the results on the mutualistic model in the CSTR, we now

shall prove the following

Theorem 5.3 For every admissible index set with nI > 1, there is exactly

one fixed point on the boundary of the simplex if c0 > cI×I′

0 and none for total

concentrations below that value. At cI×I′, PI and PI′ undergo an transcritical

bifurcation. For index sets with nI = 1, there is exactly one fixed point which

exists for all values of c0.

Proof: From ẋj = x̄j(kj − Φ̄) = 0 we get Φ̄ = kj and hence the equilibrium

concentration of the intermediates is

s̄i =
ki − kj

fic0
(5.63)

for all i ∈ I ′. The corresponding equilibrium concentrations for the replica-

tors are

x̄i = kj

(
k∑

l=i

s̄l

gl

l−1∏

m=i

s̄mfmc0
gm

)
(5.64)

This formula is valid also for i = k. Inserting the values s̄i and defining

µ(i,j)
m =

1

fm

j∏

l=i

kj − kl+1

gl
(5.65)

this becomes

x̄i = ki

(
s̄kfk−1

gk
µ

(i,j)
k−1 +

1

c0

k−1∑

m=i

µ(i,j)
m

)
(5.66)
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Now we can calculate s̄k using the condition Φ̄ = kj =
∑

i∈I κix̄i:

ki = ki

∑

i∈I

κi

(
s̄kfk−1

gk
µ

(i,j)
k−1 +

1

c0

k−1∑

m=i

µ(i,j)
m

)
(5.67)

s̄k =
gk

fk−1
∑
i∈I
κiµ

(i,j)
k−1

(
1 − 1

c0

∑

i∈I

κi

k−1∑

l=i

µ
(i,j)
l

)
(5.68)

Since the equilibrium concentrations are uniquely determined by the reaction

constants and the total concentration, there is only on fixed point for every

admissible index set.

From (5.68) we see that the fixed points do not exist for all values of c0: if

c0 is lowered below the critical value cI×I′

0 ,

cI×I′

0 =
k∑

i=j

κi

k−1∑

l=i

µ
(i,j)
l (5.69)

s̄I
k becomes negative and hence P I leaves the simplex, passing through P I′.

However, this is valid only if I has at least two elements, since otherwise

we have I ′ = ∅. The fixed points at which only one species is present with

I = {i} and

x̄i = ki/κi, s̄i = gi/κi (5.70)

do not depend on the total concentration and are therefore present at all

values of c0.

2

Comparing these formulae with the corresponding ones in the CSTR system,

we see that they are quite similar (except for (5.68)). The role of the control

parameter played by the flow rate r in the previous chapter is here taken by

1/c0.
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5.3.2 Interior fixed point

If the system has an interior fixed point, the equilibrium values of si are

determined by

s̄i =
Φ̄ − ki+1

fic0
(5.71)

The equilibrium values of xi are obtained by solving the equations ṡi = 0 for

xi:

x̄i =

Φ̄
n−1∑

l=0

1

fi+lc0

l∏

m=0

s̄i+lfi+lc0
gi+l

1 −
n∏

l=1

s̄lflc0
gl

=

n−1∑

l=0

Φ
1

gi+lfi+lc0

l∏

m=0

Φ̄ − ki+m+1

gi+m

1 −
n∏

l=1

Φ̄ − kl+1

gl

With the abbreviations

γi,l =
1

fi+l−1

l−1∏

m=0

1

gi+m
, Γ =

n∏

l=1

1

gl
, φi,l =

l∏

m=1

Φ̄ − ki+m (5.72)

we obtain

x̄j =
Φ̄
∑n

l=1 γi,lφi,l

c0 (1 − Γφ1,n)
(5.73)

From (5.73) and (5.71) we conclude that an interior fixed point can only exist

for Φ̄ ≥ k1, otherwise s̄1 would be negative.

Inserting (5.73) and (5.71) into the normalization condition
∑

(xj+sj)−1 = 0

yields

Φ̄


ψ

(1,n) +

n∑
i=1

n∑
l=1

γi,lφi,l

1 − Γφ1,n


+K(1,n) − c0 = 0 (5.74)
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where

K(1,n) =
n∑

l=1

kl+1

fl

, ψ(1,n) =
n∑

l=1

1

fl

(5.75)

as determining equation for Φ̄. This equation is only n–th order in Φ̄, since

the term in Φ̄n+1 cancel, and hence there can be at most n interior fixed

points.

The next two theorems shed light on the behaviour of fixed points in the

interior of the simplex:

Theorem 5.4 There are no saddle node or transcritical bifurcations in the

interior of the simplex

Proof: Consider the entries of the Jacobian for a fixed point in the interior

of the simplex:

∂ẋi

∂xl
= −κlx̄i ∀l

∂ẋi

∂sl
= fi−1c0x̄iδi,l+1

∂ṡi

∂xl
=





gi − s̄iκi

−s̄i(fic0 + κi+1)

−κls̄i

l = i

l = i + 1

otherwise
∂ṡi

∂sl
= −(fic0x̄i+1 + Φ̄)δi,l

If there were saddle node or transcritical bifurcations, this would mean that

the determinant of the Jacobian would become zero. In this case the Jacobian

must be linearly dependent, so that there must be a set of numbers αi and

βi so that
∑n

i=1 αi
∂ẋl

∂xi
+ βi

∂ẋl

∂si
= 0

∑n
i=1 αi

∂ṡl

∂xi
+ βi

∂ṡl

∂si
= 0

for all l. Inserting the elements of the Jacobian yields:

n∑

i=1

αiκix̄l = βix̄lfl−1c0
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−
(

n∑

i=1

αiκis̄l

)
+ αlgl − αl+1s̄lflc0 − βl(flc0x̄l+1 + Φ̄) = 0

The first of these equations can be used to obtain βl:

βl =
1

flc0

n∑

i=1

αiκi

Inserting this into the second equation, we have

−
(

n∑

i=1

αiκi

)(
s̄l + x̄l+1 +

Φ̄

flc0

)
+ αlgl − αl+1s̄lflc0 = 0

Now we sum the last equation over all l

−
(

n∑

i=1

αiκi

)(
n∑

l=1

s̄l + x̄l+1 +
Φ̄

flc0

)
+

n∑

l=1

αlgl −
n∑

l=1

αl+1s̄lflc0 = 0

Since
∑n

l=1 s̄l + x̄l = 1 and s̄lflc0 = Φ̄ − kl+1 we may rewrite this as

−
(

n∑

i=1

αiκi

)(
1 + Φ̄

n∑

l=1

1

flc0

)
+

n∑

l=1

αlκl − Φ̄
n∑

l=1

αl = 0

−Φ̄

(
n∑

i=1

αiκi

)
n∑

l=1

1

flc0
− Φ

n∑

l=1

αl = 0

n∑

l=1

1

flc0

n∑

i=1

αiκi = −
n∑

l=1

αi

Since
∑n

l=1
1

flc0
> 0, it follows that

∑n
i=1 αiκi and

∑n
l=1 αi must have opposite

sign. Therefore at least one of the αi’s must be positive and at least one

negative.

Now assume
∑n

i+1 αi(ki + gi) > 0. Then
∑n

i+1 αi < 0. Then at least one αi

must be positive, which we call αl+1. Then we have




n∑

i+1

αiκi



(
sl + xl+1 +

Φ

flc0

)
+ αl+1slflc0 = αlgl
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Since all terms on the left hand side are positive, αl must be positive too.

Applying this argument recursively, we see that all αi must be positive, which

is a contradiction to what we have stated before. The same argument holds

if
∑n

i+1 αiκi < 0.

2

Theorem 5.5 At low total concentrations, system (5.61) has no interior

fixed point. At c0 = cN×N ′

0 a fixed point enters the simplex, passing through

PN ′. It lies in the interior of the simplex for all c0 > cN×N ′

0 .

Proof: For c0 small enough there are no interior fixed points, since the

kinetic equations for xi may then be written (neglecting the term fi−1si−1c0)

as

ẋi = xi(ki − Φ)

and therefore Φ = ki at the fixed point, which cannot be fulfilled for all i

simultaneously, as we assumed the ki to be different.

Since there are no saddle node bifurcations, fixed points can come into the

interior of the simplex only through the lower dimensional simplices that

form the boundary of S2n, passing through a fixed point on this boundary

in a transcritical bifurcation. It is clear from (5.71) that PN can only pass

through PN ′ and that it does so if Φ̄ = k1. Inserting this condition into

(5.74), we find the corresponding value of the total concentration at which

the bifurcation takes place (we call it cN×N ′

0 ):

k1

(
ψ(1,n) +

n−1∑

i=1

n−i−1∑

l=1

γi,l

l∏

m=1

(k1 − ki+l)

)
+K(1,n) − cN×N ′

0 = 0 (5.76)

where we have changed the summation indices so that summands that are

zero do not appear. Taking into account that

γi,l

l∏

m=1

(k1 − ki+l) = µi,1
i+l−1 (5.77)
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we have

cN×N ′

0 = k1

(
ψ(1,n) +

n−1∑

i=1

n−1∑

l=i

µi,1
l

)
+K(1,n) (5.78)

Inserting this and the condition Φ̄ = k1 into (5.71) and (5.73) and comparing

with (5.66), (5.63), and (5.68) we see that PN and PN ′ coincide indeed at

cN×N ′

0 . Since there is only solution of (5.78), there can be no other trans-

critical bifurcations at the interior fixed point. Moreover, we can verify by

implicit differentiation of (5.74) that ∂Φ̄/∂c0 is positive at c0 = cN×N ′

0 and

hence Φ̄ > k1 if the total concentration is raised above the critical value.

Thus there is no interior fixed point for c0 < cN×N ′

0 and exactly one for

c0 > cN×N ′

0 .

5.3.3 Stability of the fixed points

As in the CSTR setting, we can give no general analytical formulae for the

internal eigenvalues. We therefore focus on the transversal eigenvalues.

Transversal eigenvalues

If I has nI elements, there are nI − 1 transversal eigenvalues −kj, one eigen-

value −(kj +fk−1c0x̄k) (these are always negative), nI −1 eigenvalues ks−kj

s /∈ I, s 6= k + 1, (these are negative if kj > ks and positive in the converse

case), and one eigenvalue kk+1 − ki + fkc0s̄k. If ki > kk+1, the last eigenvalue

is negative for small c0 and becomes positive at cÎ×I
0 , (where Î = I∪{k+1}),

that is, at the concentration at which PÎ enters the simplex in a transcrit-

ical bifurcation. Thus for the fixed point PI to be stable in all transversal

directions, kj must be greater than any other ks (which means i = 1) and

the fixed point PÎ must not exist.

For low overall concentrations we have therefore the following picture: there

are n fixed points, at each of which only one species is present. The fixed
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point PI1 with I1 = {1} is stable, and since all other fixed points have at

least one positive transversal eigenvalue, it is globally stable. As c0 is raised,

the fixed point PI2, I2 = {1, 2} passes through PI1. PI2 must be globally

stable at least for overall concentrations not too much above cI1×I2
0 . If c0

is raised further, however, a Hopf bifurcation might occur and make P I2

unstable in the non traversal directions. The transversal eigenvalues stay

negative, so that any trajectory starting in the interior of the simplex must

end up eventually in the boundary subsimplex that contains PI3. As c0 is

raised further, a series of transcritical bifurcations leads to the state where

PN lies in the interior of the simplex and all fixed points on the boundary

of the simplex are transversally unstable. There may be also transcritical

bifurcations on the other faces of the simplex, but the fixed points that enter

the boundary in these bifurcations do not greatly affect the dynamics in

the interior of the simplex, since they have at least one positive transversal

eigenvalue (they are unstable against introduction of X1 and S1).

2

Fig. 5.4 is likely to produce the so called “déjà vu” effect. It shows the

solutions of F = 0 (a) and the position of the interior fixed point at various

total concentrations for a two species mutualistic model in the evolution

reactor. The dashed line in (a) is ā = k1, which confines the region where

meaningful solutions can lie.

5.4 Equal reaction constants

If we assume the rate constants to be the same for all species, i.e. ki =

k, gi = g, fi = f, ∀i, we get again symmetry in equilibrium concentrations.

In fact, the equilibrium concentrations are identical to those observed in the

competitive model for equal reaction constants; so we need not discuss them
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Figure 5.4: Homogeneous mutualistic model; n = 2, k1 = 1.5, k2 = 1, g1 =

3, g2 = 5, f1 = 5, f2 = 7, a0 = 1. (a) Solutions of F = 0 (b) Position of

fixed points

again. The Jacobian at the interior fixed point consists again of four circulant

blocks (plus one row and one column for the substrate in the CSTR setting),

but most eigenvalues are complex and thus there can be Hopf bifurcations.

We can even derive analytical formulae for the flow rates at which these

bifurcations take place. This is an important difference to the hypercycle

with equal reaction constants, for which there are no Hopf bifurcations.

5.4.1 Continuously stirred tank reactor

The kinetic differential equations for the mutualistic model with equal reac-

tion constants in the CSTR setting are:

ẋi=xi(ka + fsi−1 − r)

ṡi=gxia− si(fx+ r)

ȧ=a0r − a(r + κ
∑
xi)

(5.79)
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with κ = k + g.

Fixed points on the boundary of the simplex

There are some fixed points on the boundary of the simplex. The admissible

index sets are, however, quite different from those of the general model, where

we assumed all ki to be different.

Lemma 5.4 An index set is admissible for the mutualistic model with equal

reaction constants if I = N or for all i ∈ I i− 1, i+ 1 /∈ I. If I 6= N , there

is exactly one fixed point PI if and only if the I is admissible. It exists for

r < a0k. This fixed point is unstable.

Proof: Assume I 6= N and the fixed point exists. Then there is at least one

index j such that j ∈ I, j−1 /∈ I. Therefore ā = r/k. If j+1 ∈ I, this would

imply kā+ f s̄j − r = 0. But since s̄j 6= 0, we must conclude j+1 /∈ I. Using

the same argument, we can show that for all i ∈ I, i+ 1 /∈ I and reverting it

we see that for i ∈ I, i− 1 /∈ I.

If I is admissible, the equilibrium concentrations are

x̄ =
a0k − r

nkκ
, s̄ =

g(a0k − r)

nκ
, ā =

r

k
∀i ∈ I (5.80)

It is clear that these fixed points can exist only if r < a0k.

For all i ∈ I, one (transversal) eigenvalue of the Jacobian at PI is kā+ f s̄i −
r = f s̄ > 0 and hence the fixed point is unstable.

2

Interior fixed point

We repeat briefly the results on equilibrium concentrations and existence of

fixed points.
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The equilibrium concentrations of replicating species and intermediates are:

x̄i =
r(r − kā)

f(āκ− r)
s̄i =

r − kā

f
(5.81)

where ā is a solution of the equation

ā2κ(nk − f) + ā[κ(fa0 − nr) + fr] − fa0r = 0 (5.82)

For a solution of (5.82) to lie inside the simplex, it must fulfill the following

inequalities:

ā < a0 (5.83)

r

κ
< ā <

r

k
(5.84)

At r = a0k there is a transcritical bifurcation with the trivial fixed point; for

higher flow rates there are two fixed points if

f > f c =
nkκ

g
(5.85)

(scenario 2) and none in the converse case (scenario 1). In scenario 2 there

is a saddle node bifurcation at

r∗ =
a0κf

(
√

∆ +
√
ng)2

, ā∗ =
a0f

∆ +
√

∆ng
(5.86)

If there are two interior fixed point, the one with the higher concentration of

A is called P
(2)
N and the other one P

(1)
N .

Stability properties

The Jacobian J of (5.79) at the interior fixed point is of the form
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0 0 0 · · · 0 0 0 · · · 0 fx̄ kx̄

0 0 0 · · · 0 fx̄ 0 · · · 0 0 kx̄
...

...
... · · ·

...
...

... · · ·
...

...

0 0 0 · · · 0 0 0 · · · fx̄ 0 kx̄

gā kā − r 0 · · · 0 −fx̄ − r 0 · · · 0 0 gx̄

0 gā kā − r · · · 0 0 −fx̄ − r · · · 0 0 gx̄

...
...

... · · ·
...

...
... · · ·

...
...

kā − r 0 0 · · · gā 0 0 · · · 0 −fx̄ − r gx̄

− κā −κā −κā · · · −κā 0 0 · · · 0 0 −r − nκx̄




The lines have been introduced to make the block structure visible. Again,

we have 4 n× n circulant sub-matrices (plus one extra line and column), so

we try an approach similar to the one we used for the competitive model to

find the eigenvalues λj and the eigenvectors ξj:

ξj = (z0, zj, . . . , z(n−1)j , βjz
0, βjz

j, . . . , βjz
(n−1)j , ωj) (5.87)

where z = e
2πi
n and i is the imaginary unit.

For j = 0 we get the same results an in the competitive model: the external

eigenvalue −r, two negative real internal eigenvalues for P
(1)
N and one positive

and one negative real internal eigenvalue for P
(2)
N (if the latter exists).

For j 6= 0, we can assume ωj = 0. Evaluating the equation

Jξj = λjξj (5.88)

we obtain the following equation for βj:

β2
j fx̄z

−j = gā+ (āk − r)zj − βj(fx̄+ r) (5.89)

with the solutions

β
+/−
j =

−(fx̄ + r) ±
√

(fx̄ + r)2 + 4fx̄(āk − r + gāz−j)

2fx̄z−j
(5.90)
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Since the first component of ξj is unity, the eigenvalues are

λj = βjfx̄z
−j (5.91)

and hence

λ
+/−
j =

1

2

(
−(fx̄ + r) ±

√
(fx̄+ r)2 + 4fx̄(āk − r + gāz−j)

)
(5.92)

For j = n/2 (5.92) becomes

λn/2 =
1

2

(
−(fx̄ + r) ±

√
(fx̄+ r)2 + 4fx̄(ak − r − ag)

)
(5.93)

Since the second term under the root is always negative because of (5.84),

both eigenvalues are negative or have negative real parts. Thus there can be

no Hopf bifurcation for j = n/2 (if n is even). Hence for n = 2 the fixed

point P
(1)
N is always stable.

For j 6= 0, j 6= n/2, we rewrite equation (5.92) as

λ
+/−
j =

1

2

(
−u±

√
u2 − 4v + w(cosφ+ iyφ)

)
(5.94)

with
u=fx̄+ r

v=fx̄(r − kā)

w=fgx̄ā

φ=−2πj
n

(5.95)

A Hopf bifurcation occurs if the real part of the square root becomes equal

to u. It is clear, however, that Hopf bifurcations are possible only for λ+
j ,

since the real part of the root is always positive.

Since the real parts of the eigenvalues are the same for j and n−j and we are

interested only in the real parts, we can restrict attention to 1 ≤ j ≤ n/2.

Thus all statements that are made e.g. for j = n/4 are valid also for j = 3n/4

etc.
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From the relation

<
(√

a+ ib
)

=

√
1

2

(
a+

√
a2 + b2

)
a, b,∈ R (5.96)

we obtain the following condition for the real part of λ+
j to become zero:

u = <
(√

u2 − 4v + 4w(cosφ+ iyφ)
)

(5.97)

u =

√
1

2

(
u2 − 4v + 4w cosφ+

√
(u2 − 4v)2 + 2(u2 − 4v)w cosφ+ w2

)

(5.98)

u2 + 4v − 4w cosφ =
√

(u2 − 4v)2 + 2(u2 − 4c)w cosφ+ w2 (5.99)

u2(v − w cosφ) − w2y2φ = 0 (5.100)

For 1 ≤ j ≤ n/2, the real part λ+
j is decreasing in j. Since we are only inter-

ested in Hopf bifurcations that lead from sinks to saddles, we need consider

(5.100) only for j = 1; if (5.100) is fulfilled for j > 1, λ+
1 is already positive

and the Hopf bifurcation leads only from one saddle to another, which is not

very exciting.

Inserting (5.95) into (5.100) and dividing by fx̄, we obtain

(fx̄+ r)2(r − kā− gā cosφ) − (r − āk)(āk + āg − r)y2φ = 0 (5.101)

Inserting (5.81) and dividing by ā2g2r
(κā−r)2

yields

r(r − āk − āg cosφ) − (r − āk)(κā− r)y2φ = 0 (5.102)

Finally, inserting the solutions of (5.82) we obtain, after squaring to get rid

of the roots and division by r2, a very clumsy equation of second order in r,

which is not shown here. However, the fact that the equation is quadratic

means that there are at most two Hopf bifurcation for any j 6= 0. For n = 3

and n = 4 however, the formulae are quite simple. For n = 3 we have

rH =
a0f

14

2fg + 20fk + 33gk − 48k2 ± (2f − 9k)
√
g2 − 64gk + k2

2f 2 + fg − 8fk + 6gk + 6k2
(5.103)
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For n = 4 we have

r
(1)
H =

a0f(g + k)

2(f + 4(g − k)
r
(2)
H = a0k (5.104)

Solving (5.82) for r instead of ā and inserting the solution into (5.102), we

can calculate the values of ā at which the Hopf bifurcation takes place (which

we shall call āH):

ā2[f(f − nk)(1 − cosφ) + n cosφ(fg − nkκ) + nf(gy2φ+ k cosφ)]+

+āa0f [cosφ(2(f−nk)−ng)−(2f−n(k−g))+ng cos2 φ]+a2
0f

2(1−cos φ) = 0

(5.105)

Substituting α = ā− a0 gives

α2[f(f − nk)(1 − cosφ) + n cosφ(fg − nkκ) + nf(g(1 − cos2 φ) + k cosφ)]+

αa0n[fg(1+cosφ− cos2 φ)− fk(1− 2 cosφ)− 2nkκ cos φ]−a2
0n

2kκ cosφ = 0

(5.106)

Inserting n = 3 into the first equation and solving for ā yields

āH =
a0f(4f +

(
g − 8k ±√

g2 − 64gk + 16k2
)

2(2f 2 + f(g − 8k) + 6kκ)

Thus, for āH to be real and between zero and a0 we must choose g greater

than roughly 64k.

For j = n/4 the solution of (5.105) reads

āH =
a0f

f + n(g − k)

which lies on the simplex if and only if g > k.

In scenario 2 there is still another problem to be solved: we do not know which

one of the two fixed points is undergoing the Hopf bifurcation. Obviously,

if āH < ā∗ it is P
(1)
N , in the converse case it is P

(2)
N . The limiting case
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is āH = ā∗, that is the saddle node bifurcation and the Hopf bifurcation

coincide. Thus we may calculate a critical value of f , using (5.105) and

(5.86) and substituting f̂ = f − nkκ/g = f − f c:

f̂ 2g(cosφ− 1)2+

+f̂ng[k2(1 − 4 cosφ+ 2 cos2 φ) − 2gk cosφ(1 + y2φ) − g2(cosφ+ y2φ)]−
− cos φk2κn2[k(2 − cosφ) + g(cosφ+ 2y2φ)] = 0

(5.107)

At the solutions of this equation, which we call fcr, the saddle node bifur-

cation and the Hopf bifurcation coincide. Since the quadratic coefficient is

positive and the absolute coefficient negative for n > 4, j = 1, there is ex-

actly one positive f̂cr. The other solution is irrelevant, because f̂ < 0 means

that we are in scenario 1. Besides, since at f̂ = 0 we have ā∗ = a0 > āH ,

it is clear that the Hopf bifurcation occurs for P
(1)
N if f̂ < f̂cr and for P

(2)
N

otherwise. In the latter case the fixed point P
(1)
N is stable for all flow rates

r < r∗.

For n = 4, j = 1 the equation (5.107) reduces to f̂cr = 4(g2 − k2), since the

absolute coefficient then vanishes. Since Hopf bifurcations for n = 4 require

g > k, f̂cr is positive. Thus if g > k, we obtain the same picture as for n > 4.

For n = 3, j = 1 both the quadratic and the absolute coefficient are positive,

while the linear coefficient is negative, as can be easily verified by inserting

φ = π/3 into (5.107) and taking into account that g must be greater than

64k. Therefore there are two positive solutions of (5.107), one of which is

close to zero. Thus for very small positive values of f̂ both Hopf bifurcations

occur at P
(1)
N , for values between the two solutions of (5.107),there is one

Hopf bifurcation at each fixed point, while for large f̂ there are two Hopf

bifurcations at P
(2)
N .

At r = 0, ā = 0 and at r = a0k, ā = a0, all λ+
j , j 6= 0 are zero. The sign

of the eigenvalue near these flow rates is therefore determined by the sign of

the derivative with respect to r:
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dλ+
j

dr
=
∂λ+

j

∂r
+
∂λ+

j

∂ā

dā

dr
+
∂λ+

j

∂x̄

(
∂x̄

∂r
+
∂x̄

∂ā

dā

dr

)
(5.108)

The derivative of ā with respect to r (found by implicit differentiation of

(5.82)) is:
dā

dr
=

ā(f − nκ) + fa0

2āκ(nk − f) + κ(fa0 − nr) + fr
(5.109)

The partial derivatives in (5.108) are:

∂λ+
j

∂r
=−1

2
+ r−fx̄

2
√

(fx̄)2+4fx̄(ā−r+āgz−j)

∂λ+
j

∂ā
= fx̄(k+gz−j)√

(fx̄)2+4fx̄(ā−r+āgz−j)

∂λ+
j

∂x̄
=−f

2
+ f(fx̄+r+2āk−2r+2āgz−j)√

(fx̄)2+4fx̄(ā−r+āgz−j)

∂x̄
∂r

= r−kā
f

∂x̄
∂ā

=− rk
fκ

(5.110)

At r = 0, ā = 0, this evaluates to

(
dā
dr

)
r=0,ā=0

= 1
κ

(
∂λ+

j

∂r

)

r=0,ā=0
=−1

(
∂λ+

j

∂ā

)

r=0,ā=0
=k + gz−j

(
∂λ+

j

∂x̄

)

r=0,ā=0
=0

(
∂x̄
∂r

)
r=0,ā=0

=0
(

∂x̄
∂ā

)
r=0,ā=0

=0

(5.111)

and hence (
dλ+

j

dr

)

r=0, ā=0

=
g

κ
(z−j − 1) (5.112)

Since this formula is valid for j 6= 0 only, we see that all λ+
j , j 6= 0 have

negative real parts for sufficiently small flow rates, regardless of the rate

constants.

At r = a0k, ā = a0, x̄ = 0, the partial derivatives are

(
dā
dr

)
r=a0k, ā=a0

= nκ
−fg+nkκ

(
∂λ+

j

∂r

)

r=a0k, ā=a0

=0
(

∂λ+
j

∂ā

)

r=a0k, ā=a0

=0
(

∂λ+
j

∂x̄

)

r=a0k, ā=a0

=fg
k
z−j

(
∂x̄
∂r̄

)
r=a0k, ā=a0

= k
fg

(
∂x̄
∂ā

)
r=a0k, ā=a0

=− k2

fg

(5.113)
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Therefore we have
(
dλ+

j

dr

)

r=a0k,ā=a0

=
fg

fg − nkκ
z−j (5.114)

The denominator is positive if f > f c, that is, if we are in scenario 2. In this

case the sign of the real parts of the eigenvalues equals the sign of cos 2πj/n

for flow rates that are not too much greater than a0k. Otherwise, we have

scenario 1 and the denominator is negative. This means that the sign of the

real part of the eigenvalue coincides with the sign of cos 2πj/n for flow rates

not too much below a0k. Thus the sign of the eigenvalues is the sign of cosφ

if the interior fixed point is sufficiently close to P ∅, regardless of the scenario.

These results could also have been obtained by examination of the quadratic

and absolute coefficients of (5.105) and (5.106).

Thus, for the eigenvalues with j < n/4 we have two Hopf bifurcations or

none inside the simplex and for j > n/4 we have exactly one. Forj = n/4

there is at most one Hopf bifurcation inside the simplex.

We now summarize the results for the CSTR:

• At low flow rates there is one globally stable fixed point P
(1)
N in the

interior of the simplex and the unstable trivial fixed point.

• At r = a0k the trivial fixed point becomes stable and either P
(1)
N leaves

the simplex (scenario 1) or a second fixed point enters it (scenario 2),

in which case both fixed points disappear in a saddle node bifurcation

at some higher flow rate.

• At all flow rates there are at least n+ 2 eigenvalues with negative real

part for P
(1)
N and n + 1 for P

(2)
N . (if n is even the number of negative

eigenvalues is one higher).

• For n = 4 there is one Hopf bifurcation on the simplex if g > k. For

n = 3 there can be none or two, g > k being a necessary condition for
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the latter case. For n > 4, finally, there is exactly one. In scenario 2 it

depends on the value of f , at which of the two fixed points the Hopf

bifurcation(s) take(s) place. Generally speaking, the Hopf bifurcations

occur at the unstable fixed point P
(2)
N for large f and at the stable fixed

point P
(1)
N for low f .

Special case: f = nk

The equations for the CSTR become considerably simpler if we choose f =

nk, since in this case the quadratic coefficient of (5.82) vanishes. Therefore,

there is only one fixed point with the coordinates:

ā =
a0kr

a0kκ− rg
x̄ =

a0k − r

f
s̄ =

rg(a0k − r)

f(a0kκ− rg)
(5.115)

The eigenvectors for j = 0 are:

ξ = (1, 1, . . . ,− gr

a0kκ− rg
, . . . ,

a0k
2nr

(a0k − r)((a0kκ− rg)
) λ = −r (5.116)

ξ = (1, . . . ,−g((a0k − r)2κ+ kr(a0k − 2r))

((a0kκ− rg)((a0k − r) + kr)
, . . . ,

a0k
2nrκ

((a0kκ− rg)((a0k − r) + kr)
)

λ = −a0k + r (5.117)

ξ = (0, 0, . . . ,
1

n
,
1

n
, . . . ,−1) λ = −a0kκ− rg

k
(5.118)

It is quite obvious that all these eigenvalues are negative. For the remaining

eigenvalues there are Hopf bifurcations where r fulfills the equation

r2g(2−cos2 φ)−ra0k(g(3−cosφ−cos2 φ)+k)−a2
0k

2κ(cosφ−1) = 0 (5.119)

The value of ā at the bifurcation can be found by solving the equation

ā2gy2φ+ āa0(−g(y2φ+ cosφ) − k) + a2
0k(1 − cosφ) = 0 (5.120)
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5.4.2 The evolution reactor

In the evolution reactor, we obtain the following kinetic equations for the

relative concentrations xi and si:

ẋi=xi(k + c0 f si−1 − Φ)

ṡi=gxi − si(c0 f xi+1 + Φ)
(5.121)

with Φ = κ
∑
xi and κ = k + g. There are fixed points on the boundary

of the simplex for the same index sets as in the CSTR, but they are also

unstable and the proofs are so similar that I don’t want to repeat them.

The equilibrium concentration at the interior fixed point are

x̄ =
Φ̄(Φ̄ − k)

c0f(κ− Φ̄)
, s̄ =

Φ̄ − k

c0f
(5.122)

If we insert

Φ̄ =
κ(nk + c0f)

nκ + c0f
(5.123)

into the above formulae, we get

x̄ =
nk + c0f

n(nκ+ c0f)
, s̄ =

g

nκ + c0f
(5.124)

Stability properties

The Jacobian of (5.121) at the interior fixed point has the following form:




−κx̄ −κx̄ . . . −κx̄ 0 0 . . . −c0fx̄

−κx̄ −κx̄ . . . −κx̄ −c0fx̄ 0 . . . 0
...

...
. . .

...
...

...
. . .

...

−κx̄ −κx̄ . . . −κx̄ 0 0 . . . 0

g − κs̄ −c0fs̄ − κs̄ . . . −κs̄ −c0fx̄ − Φ̄ 0 . . . 0

−κs̄ g − κs̄ . . . −κs̄ 0 −c0fx̄ − Φ̄ . . . 0
...

...
. . .

...
...

...
. . .

...

−c0fs̄ − κs̄ −κs̄ . . . g − κs̄ 0 0 . . . −c0fx̄ − Φ̄
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where we have used lines to make the block structure visible.

We make the following ansatz for the eigenvectors:

ξj = (1, zj, z2j , . . . , z(n−1)j , βjβjz
j, . . . , βjz

(n−1)j) (5.125)

with z = e
2πi
n . The constants βj are found by evaluating the equation

Jξj = λjξj (5.126)

The eigenvectors and eigenvalues for j = 0 are identical to those found in the

competitive model: one eigenvalue is the external eigenvalue −Φ̄, the other

one is −(nκ + c0f)x̄. For j 6= 0 we get

λj = c0fx̄βjz
−j (5.127)

β2
j c0fx̄z

−j = g − c0f s̄z
j − βj(c0fx̄+ Φ̄) (5.128)

Solving the latter equation for βj and inserting it into the former, we obtain

βj =
−c0fx̄− Φ̄ ±

√
(c0fx̄− Φ̄)2 − 4c0fx̄(Φ̄ − k − gzj)

2c0fx̄
(5.129)

λ
+/−
j =

1

2

(
−c0fx̄− Φ̄ ±

√
(c0fx̄− Φ̄)2 − 4c0fx̄(Φ̄ − k − gzj)

)
(5.130)

or, inserting the equilibrium values for x̄ and Φ̄

λ
+/−
j =

1

2


−nk + c0f

n
±
√√√√
(
nk + c0f

n

)2

+ 4
c0fg(nk + c0f)

n(nκ + c0f)

(
z−j − c0f

nκ + c0f

)


(5.131)

We rewrite the latter as

1

2

(
−u±

√
u2 − 4v + 4w(cosφ+ iyφ)

)
(5.132)

with
u = nk+c0f

n

v = f2g(nk+c0f)
n(nκ+c0f)2

w = fg(nk+c0f)
n(nκ+c0f)

φ = −2πij
n

(5.133)
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Since (5.132) has the same form as (5.94), the condition for finding a Hopf

bifurcation is again (5.100). Inserting (5.133) into this yields the following

condition for Hopf bifurcations in the evolution reactor:

(c0f − (nκ + c0f) cosφ) (nk + c0f) − nc0fgy
2φ = 0 (5.134)

Since c0 is the parameter which is most easily varied we order (5.134) in

powers of c0:

c20f
2(1 − cosφ) + c0fn

(
k(1 − 2 cosφ) − g(y2φ+ cosφ)

)
−

− kn2 cos φκ = 0 (5.135)

As in the CSTR setting, we can restrict the discussion to the case j = 1,

since we are mainly interested in Hopf bifurcation that lead from stable fixed

points to saddles.

The quadratic coefficient of (5.135) is always positive; the absolute coefficient

is positive if n > 4. Therefore, if n > 4, there is exactly one positive value of

c0 where a Hopf bifurcation takes place, whereas for n < 4 there are either

two or none. For n = 4 one solution of (5.135) is c0 = 0, which is then doubly

degenerate, and the other one is c0 = 4(g − k)/f , which is positive if g > k.

To determine whether the fixed point becomes stable or unstable if we raise

c0 above the critical value (i.e. the solutions of (5.135)), we expand the

eigenvalue in powers of c0 at c0 = 0. Since λ+
j = 0 if c0 = 0, the sign of the

eigenvalue is determined by the derivative with respect to c0 for small total

concentrations: (
dλ+

j

dc0

)

c0=0

=
fgzj

nκ
(5.136)

Obviously, the real part of λ+
1 is negative for n < 4 and positive for n > 4, if

c0 is sufficiently small. For n = 4, the first order expansion term is zero. We

therefore consider the second derivative of the real part of λ+
1 with respect
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to c0 at c0 = 0:

<
(
d2λ+

1

df 2

)

c0=0

=
f 2g(g − k)

8kκ2

For n = 4 the eigenvalue λ+
1 is therefore positive in the range 0 < f < 4(g−k)

if g > k and negative for all f > 0 if g < k (calculation of the corresponding

third derivative shows that in fact the eigenvalue is also negative for all f > 0

if g = k).

For the important special cases of n = 3 and n = 4 we have:

n = 3: The critical values are

c0 =
g − 8k ±√

g2 − 64gk + 16k2

4f

Bifurcations can therefore only take place if g exceeds a value of roughly

64k. Numerical studies indicate the existence of a limit cycle between

the two bifurcations. If g is less than the stated value, the fixed point

is a sink for all c0.

n = 4: The fixed point is a saddle for 0 < c0 < 4(g − k)/f if g < k and a sink

otherwise. In the region where the fixed point is unstable there seems

to be a limit cycle as for n = 3.

The behaviour of the eigenvalues when c0 is gradually raised from zero is

therefore as follows:

• There is one interior fixed point which determines the dynamics on the

simplex and several transversally instable fixed points on the boundary

of the simplex.

• For n = 2 the (interior) fixed point is always stable.

• For n = 3 the (interior) fixed point is stable for small c0. If bifurcations

occur (which is possible only if g � k), the first one leads to instability

and the second one to stability.
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• For n = 4 two eigenvalues of the Jacobian at the interior fixed point

have positive real parts and become negative at c0 = 4(g − k)/f if

g > k. Otherwise they are negative for all c0 > 0.

• For n > 4 the eigenvalues are positive for small c0, but become negative

at the positive solution of (5.135) and then remain negative.

• For any choice of the remaining parameters we can find a ccrit
0 such that

the real parts of all eigenvalues are negative if c0 > ccrit
0 .

• The behaviour of the system in the CSTR at low flow rates resembles

the behaviour in the evolution reactor for high c0. This can be under-

stood from the equations, since in both cases the terms with fsi are

predominant.

5.4.3 Comparison with the inhomogeneous hypercy-

cle

It is instructive to compare the system (5.1) with the inhomogeneous hyper-

cycle with equal reaction constants. The latter is given by the equations

A+Xj
k̂j→ 2Xj

A+Xj +Xj−1
f̂j−1→ 2Xj +Xj−1

A
r→ ∗

Xj
r→ ∗

(5.137)

In the CSTR, putting k̂i = k, f̂i = f , we have the following kinetic equations

ẋi=xi[a(k + fxi−1) − r]

ȧ=a0r − a[r +
∑
xi(k + fxi−1)]

(5.138)

The interior fixed point has the coordinates

x̄ =
r − āk

āf
ā =

nk + a0f ±
√

(nk + a0f)2 − 4nfr

2f
(5.139)



CHAPTER 5. THE MUTUALISTIC MODEL 136

At r = a0k we have one solution ā = a0 (transcritical bifurcation with the

trivial fixed point). The second solution is ā = nk/f . Thus the second fixed

point lies inside the simplex at r = a0k if nk < a0f , in which case we have

scenario 2. Otherwise we have scenario 1.

The saddle node bifurcation takes place at

r∗ =
(nk + a0f)2

4nf
ā∗ =

nk + a0f

2f

The Jacobian at the interior fixed point has the form

J =




0 0 . . . 0 r − āk r(r−āk)
ā2f

r − āk 0 . . . 0 0 r(r−āk)
ā2f

...
. . . . . .

...

0 0 . . . r − āk 0 r(r−āk)
ā2f

āk − 2r āk − 2r. . .āk − 2r āk − 2r −r
(
1 + n(r−āk)

a2f

)




(5.140)

Following the procedure outlined above, we find n − 1 eigenvectors of the

form

ξj = (z0, zj, z2j , . . . , z(n−1)j , 0) j = 1, . . . , n− 1

with corresponding eigenvalues

λj = (r − āk)z(n−1)j = (r − āk)z−j

Since r − āk > 0, these eigenvalues have the sign of the corresponding unit

roots.

Additionally, we have two eigenvectors of the form

ξ0 = (1, 1, . . . , 1, ω)

where ω fulfills the equation

ω[(r − āk)(1 +
ωr

ā2f
)] + n(2r − āk) + ωr(1 +

n(r − āk)

ā2f
) = 0
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with the solutions

ω(1) = −n, λ
(1)
0 = (r − āk)(1 − nr

ā2f
)

ω(2) =
ā2f(āk − 2r)

r(r − āk)
, λ

(2)
0 = −r

To find the sign of λ
(1)
0 , we compute r as function of ā

r(ā) =
ā(f(a0 − a) + nk)

n

Thus we obtain

λ
(1)
0 =

(ā− a0)(f(a0 − 2ā) + nk)

n
=

2f(ā− a0)(ā
∗ − ā)

n

Therefore, we have λ
(1)
0 < 0 for 0 < ā∗ and λ

(1)
0 > 0 for ā∗ < ā < a0. In other

words, this eigenvalue is always negative for the fixed point with the lower

equilibrium concentration of a and positive for the other one.

Under the constraint of constant organization, considering relative concen-

trations and setting k̂i = k, f̂i = f as above, we obtain the equations

ẋi = xi(k + c0fxi−1 − Φ) (5.141)

The dilution flux Φ is defined by

Φ = k + c0f
∑

xixi−1 (5.142)

Hence, the terms k in the kinetic equations cancel and we are left with the

homogeneous hypercycle. The interior fixed point has the coordinates

x̄ =
1

n
Φ̄ =

c0f + nk

n
(5.143)

The Jacobian at the interior fixed point is circulant and has the form

J =




−2c0fx̄
2 −2c0fx̄

2. . . −2c0fx̄
2 −2c0fx̄

2 + c0fx̄

−2c0fx̄
2 + c0fx̄ −2c0fx̄

2. . . −2c0fx̄
2 −2c0fx̄

2

...
. . . . . .

...

−2c0fx̄
2 −2c0fx̄

2. . .−2c0fx̄
2 + c0fx̄ −2c0fx̄

2




(5.144)
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Therefore the eigenvalues are

λ0=c0fx̄(−2nx̄ + 1)=− c0f
n

λj= c0fx̄e
2πi(n−1)j

n = c0f
n
e−

2πij

n

If we now compare the results for (5.121) and (5.79) with those for (5.141)

and (5.138) resp., we see that for a suitable choice of parameters the inho-

mogeneous hypercycle reproduces many of the features of the more complex

system, such as number of fixed points, transcritical bifurcations etc. The

most important difference between the two systems is that the sign of the

complex eigenvalues of the hypercycle depends only on n and that there-

fore, in contrast to the other system there can be no Hopf bifurcation in the

hypercycle.



Chapter 6

Spatial resolution

In this chapter we shall investigate the properties of our models under dif-

fusion. To that end we use the discretization formalism presented in section

2.7. and the recycling reaction setting, since neither the CSTR nor the evo-

lution reactor are compatible with diffusion. We recall that the fixed points

in the recycling reaction system are the same as in the CSTR and that the

Jacobian at a fixed point in the recycling reaction system can be obtained

from that in the CSTR by adding r to all entries in the last row.

We shall present both analytical and numerical results in this chapter. In all

numerical studies we started with a fixed point of the reaction system and

added a 1% perturbation.

The trivial fixed point is diffusion stable in both models and thus not very

interesting.

For the competitive model we investigate diffusion stability only for stable

one dimensional fixed points.

For the mutualistic model we can show that one dimensional fixed points

are diffusion stable, but the higher dimensional ones are not. We know that

higher dimensional fixed points can be stable in the absence of diffusion, and

139
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therefore Turing instabilities can be found. Particularly, for the case of equal

reaction constants, with the additional assumption that all replicating species

and all intermediates have the same diffusion coefficient, we can explicitly

calculate at which diffusion coefficients the bifurcation takes place. The

behaviour of the stable limit cycles that were found for the reaction system

is investigated numerically.

We now show the diffusion stability of the trivial fixed point, using theorem

2.3, which said the fixed point was diffusion stable iff all principal minors of

-J were nonnegative. The entries of -J are:

−ji,l =





(r − a0ki)δil i ≤ n,

rδil n < i ≤ 2n

−r + rδil i = 2n + 1

Therefore, all principal minors can be written as products of factors (r−a0ki)

and r and since the trivial fixed point is stable if r > a0k1 (assuming that

k1 = max ki), the trivial fixed point is diffusion stable iff it is stable.

6.1 The competitive model

We first show that stable one dimensional fixed points are not diffusion stable

by finding a negative principal minor of -J. If I = {j}, the principal minor

where only the rows and columns corresponding to xj and sj are retained is

det


 0 −fjx̄j

−gj ā+ fj s̄j fjx̄j + r


 = fjx̄j(r − κj ā) < 0

Therefore, Turing instabilities can be induced by choosing the diffusion co-

efficient of the substrate dA larger than that of the replicating species and

the intermediates. We can even calculate the critical value d∗A at which this
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bifurcation takes place by setting

det




−ΛdXj
fjx̄j kx̄

κjā− r −fjx̄j − r − ΛdSj
gx̄

−κj ā r −κjx̄j = ΛdA


 = 0 (6.1)

where Λ is defined as in section 2.7.4 and dXj
and dSj

are the diffusion

coefficients of Xj and Sj, respectively. Thus we obtain

d∗A =
x̄(dSj

kj(r − κj ā) − dSj
dXj

Λκj − dXj
kjr − dXj

fjκjx̄j)

fjx̄(r − κj ā) + dXj
Λ(fjx̄j + r + dSj

Λ)
(6.2)

In fig. 6.1 we show an example for pattern formation by Turing instabilities.

The diffusion coefficient of the substrate was chosen twice the critical value.

We start near the fixed point. The plot shows how small fluctuations around

the fixed point are amplified and a stable pattern is formed after short time.
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Figure 6.1: Turing instabilties in one species competitve model: k = 1, g =

5, f = 2, a0 = 1, r = 0.5, dX = dS = 2 × 10−5, dA = 1.3 × 10−3. The plot

shows the concentration of X vs. space and time.
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Since we conjecture that all the other fixed points are unstable in the absence

of diffusion and that there are no limit cycles, we do not expect any interesting

results for starting at one of these fixed points.

6.2 The mutualistic model

6.2.1 General results

We first prove the following

Lemma 6.1 In the mutualistic model, one dimensional fixed points are dif-

fusion stable if they are stable.

Proof: All principal minors of –J at the fixed point P{j} can be written as

product of

1. −λ(tr,1)
s = r − ksā > 0

2. −λ(tr,2)
s = fj−1x̄jδs,j−1 + r > 0

3. Principal minors of



0 0 −kjx̄j

−gjā r −gjx̄j

κj ā− r −r κjx̄j


 (6.3)

with s 6= j. Since the factors of the first two types are just the negative of the

transversal eigenvalues, they are trivially positive if the fixed point is stable.

Thus we only have to show that all principal minors of (6.3) are nonnegative.

For the principal minors of rank 1 (the diagonal elements) this is obviously

the case. The principal minors of rank 2 are

0

kjx̄j(κj ā− r) > 0

r(kjx̄j) ≥ 0
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The principal minor of rank 3 (the determinant) is also positive, since it

is just the product of the internal eigenvalues and the external eigenvalue,

multiplied by −1.

2

Lemma 6.2 All stable fixed points at which at least two species coexist are

not diffusion stable

Proof: For the fixed point PI with I = {j, j+1, . . . , k}, consider the principal

minor of −J that is obtained by cancelling all rows and columns correspond-

ing to xs and ss for all s /∈ I (if any) and those for the substrate a. It has

the following form:

det




0 0 . . . 0 0 . . . 0 −fj−1x̄j

0 0 . . . 0 −fjx̄j+1 . . . 0 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 . . . −fk−1x̄k 0

−gj ā fj s̄j . . . 0 fjx̄j+1 + r . . . 0 0

0 −gj+1ā . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...

Ξ 0 . . . −gkā 0 . . . 0 Ψ




(6.4)

where Ψ = fnx̄n + r, Ξ = fns̄n if I = N and Ψ = r, Ξ = 0 otherwise. If

I = N , this determinant equals

−
n∏

i=1

fix̄i




n∏

i=1

(r − kiā) − ān
n∏

i+1

gi




The factor in the brackets is positive, since it is just the denominator of x̄i

in (5.18). If I 6= N , the principal minor equals

−ānI

k∏

i=j

gifi−1x̄i < 0
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2

Thus we see that also in the mutualistic model, Turing instabilities can be

induced by choosing dA larger than the diffusion coefficients of the reacting

species and intermediates. Since the picture would look exactly the same as

for the competitive model, we do not show it here.

6.2.2 Equal reaction constants

In the case of equal reaction constants, we can calculate the critical dif-

fusion coefficient d∗A at which the bifurcation occurs, if we assume that

dXi
= dX , dSi

= dS for all i = 1, . . . , n. This additional assumption is

not too artificial, since equal reaction constants imply that the reactants are

very similar and it should not be surprising if they diffuse with the same

speed. In this case the matrix J−ΛD (where D is the matrix of diffusion co-

efficients) consists again of four circulant blocks plus one additional row and

column, and we can apply the now already familiar methods of section 5.4.

From this section it is clear that only the eigenvalues λ0 can vanish; all the

others have at least nonzero imaginary parts. Thus, since we are interested

mainly in pitchfork bifurcations, we consider only eigenvectors of the form

ξ0 = (1, 1, . . . , 1, β0, . . . , β0, ω) (6.5)

β0 and ω can be determined from the equations

β0(−ΛdX + β0fx̄+ ωkx̄) = κā− r − β0(fx̄+ r + ΛdS) + ωgx̄ (6.6)

ω(−ΛdX + β0fx̄+ ωkx̄) = n(r − κā) + nβ0r − ω(nκx̄+ ΛdA) (6.7)

The corresponding eigenvalue is

λ0 = −ΛdX + β0fx̄+ ωkx̄ (6.8)
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If λ0 vanishes, we can calculate β0 from (6.8):

β0 =
ΛdX − ωkx̄

f x̄
(6.9)

Inserting this into the above equations, we obtain the critical value d∗A:

d∗A =
nx̄(ΛdSdXκdSkκā + (dX − dS)kr + dXfκ)

Λ2dXdS − ΛdX(fx̄+ r) + fx̄(κa− r)
(6.10)

If dS = dX , this simplifies to

d∗A =
ndXκx̄(ΛdX + kā + fx̄)

Λ2d2
X − ΛdX(fx̄ + r) + fx̄(κa− r)

(6.11)

Equations (6.10) and (6.11) are, strictly speaking, valid only for stable fixed

points. Numerical studies showed, however, that symmetry breaking occurs

also for unstable fixed points surrounded by stable limit cycles at roughly the

same values of the diffusion coefficient of the substrate as predicted by these

equations. Streissler [45] found that hypercycles with 5 or more members

(for which there is a stable limit cycle) formed patches within which oscilla-

tions were going, when diffusion coefficients were chosen appropriately. The

periods were somewhat different than without diffusion.

In the mutualistic model1, two basic ways of symmetry breaking behavior

were found: formation of oscillating patches, as described for the hypercycle,

and formation of inhomogeneous but stationary patterns.

In some cases it was difficult to distinguish between oscillatory and stationary

behaviour, since oscillatory transients can sustain quite a long time before

the system evolves to a stationary state. On the other hand, in some cases

it took a long time before oscillations started and the system looked at the

beginning as if it were stationary. We therefore used the following methods

to distinguish these two kinds of behaviour:

1We investigated only the case of equal reaction constant, because this is the only case

where we could derive formulae for the critical diffusion coefficients
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• For symmetry reasons, the system cannot start to oscillate if the con-

centration of all species and of all intermediates is equal in every single

cell. Thus it is easy to check if the system has reached the stationary

state.

• Checking if the system will stay oscillatory is much harder. We adopted

the following scheme: the system is integrated over some time to get

rid of initial conditions. Then, the state of the system at some time t0

is chosen as reference state. For each time step ti, the configuration of

the system at step ti−1 and ti−2 is saved. At each integration step, the

(2n+1)×N dimensional vector of the concentrations of all reactants in

all N cells is subtracted from that of the reference state. If the norm of

the difference vector goes through a minimum at time tm, integration

is started again from tm−1 with a smaller time step. This procedure is

repeated until the norm of the difference vector changes less than 10%.

Then the time since the last minimum was found is measured. Also,

we monitored the maxima of the difference vector (the “amplitude” of

the oscillation). When both period and amplitude of the oscillations

remained almost constant and deviations were distributed randomly,

the oscillation was the final state. When periods changed always in one

direction and amplitudes became always smaller, it was a transient.

The greatest setback of this method is that it works only if there is only

one oscillatory patch. If there are two or more, the oscillations do not

have the same period (probably due to boundary effects), and hence,

in general, the system approaches its initial state only after very long

time.

In fig. 6.2 we show the three basic situations for a five species mutualistic

model on a one dimensional domain. The concentration of X1 is plotted

vs. the space coordinate x and time. In (a), the diffusion coefficient of

the substrate was equal to that of the replicating species and intermediates.
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After a short initial period, the whole domain oscillates at the same phase.

In (b), the diffusion coefficient of the substrate was chosen twice the critical

value as computed in (6.11). After an initial period, oscillating patches form.

In (c), dA was chosen five times larger than in (b). The oscillations are

now strongly damped and the system convergens rapidly to the stationary

(spatially inhomogeneous) state.

The stationary state is favored by the following factors:

1. Large diffusion coefficients of the substrate. Indeed it was in all inves-

tigated cases possible to suppress the oscillations by choosing dA large

enough.

2. Low value of k. For the case k = 0 (homogeneous model) we could not

observe oscillations.

3. Large value of f . It is not possible to choose f bigger than one or

two orders of magnitude bigger than k, since then the Hopf bifurcation

occurs at the unstable fixed point P
(2)
N and P

(1)
N remains stable for all

values of r.

In fig. 6.3 we try to show how the interplay of k, g, and f influences the

behaviour of the system.

On two dimensional domains, spirals can form if we start close to a stable

limit cycle and the diffusion coefficient of the substrate is not too high. Spirals

are thus, in a way, the two dimensional counterpart to the synchronized

oscillation of the whole domain in the one dimensional system. Fig. 6.4

show how the spirals develop in time. Although the time intervals between

the individual pictures is somewhat large, one can still see how they rotate.

In fig. 6.5 and 6.6, the concentration of all species at the end of the simulation

is shown.

The other two possible cases we found on two dimensional domains are com-

pletely equivalent to what we have seen in one dimension: oscillating patches
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Figure 6.2: Mutualistic five species model: k = 1, g = 1, f = 1, a0 =

1, dX = dS = 2 × 10−5. Concentration of X1 is shown as function of space

and time coordinates. (a) dA = 2 × 10−5. The whole domain oscillates in

phase. (b) dA = 5×10−4 A single oscillating patch forms (there might also be

several patches if we scaled all diffusion coefficients down). (c) dA = 2.5×10−3

After some oscillations, a stable stationary state forms. (d) Contour plot of

(c)
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Figure 6.3: Dependence of stationary and oscillatory behaviour on rate con-

stants: k = 1, the diffusion coefficient of the substrate was twice the critical

value in all calculations. The stars represent the stationary states, the trian-

gles the oscillatory states.

(shown in fig. 6.7) and stationary patterns (fig. 6.8). In the latter case we

show only the concentration of X1, S1, and A, since the concentrations of the

other species and intermediates are distributed in exactly the same way. As

in one dimension, high diffusion coefficients of the substrate favor stationary

solutions. We did not check, however, the influence of the kinetic constants,

since this would have been too time consuming.
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Figure 6.4: Mutualistic five species model: k = 1, g = 2, f = 5, a0 =

1, dX = dS = dA = 2 × 10−6. Contour plots showing distribution of X2 over

the lattice, ranging from black=0 mM to white=0.2 mM . Time: (a) 5 000

s, (b) 10 000 s, (c) 15 000 s, (d) 20 000 s (e) 25 000 s and (f) 30 000 s
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Figure 6.5: Mutualistic five species model: k = 1, g = 2, f = 5, a0 =

1, dX = dS = dA = 2 × 10−6. Contour plots showing distribution of X1 (a)

to X5 (e) over the lattice, ranging from black=0mM to white=0.15 mM at

t = 30000s.
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Figure 6.6: Mutualistic five species model, constants as above. Contour

plots showing distribution of S1 (a) to S5 (e) over the lattice, ranging from

black=0mM to white=0.15 mM , and distribution of A (f), ranging from 0.44

to 0.46 mM at t = 30000s.
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Figure 6.7: Mutualistic five species model: k = 1, g = 2, f = 5, a0 =

1, dX = dS = 10−5, dA = 2.5 × 10−4. Contour plots showing distri-

bution of X1 (a) to X5 (e) over the lattice, ranging from black=0mM to

white=0.6 mM , and of A, ranging from 0.35 (black) to 0.46 mM (white), at

t = 6000s.



CHAPTER 6. SPATIAL RESOLUTION 154

� � � � � � � � ��
 ���� �
�

� � �

� � �

� �


� �	�

�

(a)

� ��� � ���	� ����
 ���� �
�

��� �

���	�

����


����

�

(b)

� � � � � � � � ��
 ���� �
�

� � �

� � �

� �


� �	�

�

(c)

� ��� � ���	� ����
 ���� �
�

��� �

���	�

����


����

�

(d)

Figure 6.8: Mutualistic five species model: k = 1, g = 2, f = 5, a0 =

1, dX = dS = 10−5, dA = 2.5 × 10−3. Contour plots showing distribution

of X1 at (a) 50 000 s and (b) 100 000 s, ranging from 0 (black)to 2.5 mM

(white); distribution of S1 (c) and A (d) at 100 000 s, ranging from 0 to 0.25

and from 0.28 to 0.33 mM respectively
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Conclusions

Não me venham com conclusões!

A única conclusão é morrer.

Fernando Pessoa Nogueira: Lisbon revisited

In this work we have investigated the effect of substituting the trimolecular

autocatalytic reaction step of second order replicator systems by two subse-

quent bimolecular reaction steps. The resulting reaction networks have been

investigated in three different settings:

• The Continuously Stirred Tank Reactor (CSTR)

• The closed system with recycling reaction

• The evolution reactor

The results for the closed system coincide almost completely with those ob-

tained for the CSTR, if we assume all degradation rates to be equal. In

fact, the closed system approach has been introduced mainly because it fa-

cilitates the study of the reaction diffusion system. On the other hand, the

155
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results for the evolution reactor can differ considerably from those for the

CSTR, because the former causes generally simpler equations and admits

less fixed points. In what follows we state results for the CSTR (results for

the evolution reactor are given in parentheses).

Reaction without diffusion: Fixed points at which only one species is

present have been studied for general interaction matrices. The results de-

pend largely upon the diagonal elements of the interaction matrix: if the

diagonal terms are zero, these fixed points tend to become unstable for high

flow rates (low total concentrations), while with positive diagonal term they

can be stable for all flow rates (total concentrations) at which they exist. Fur-

thermore, in the CSTR there can be two fixed point at which only species

i exists if the corresponding diagonal element of the interaction matrix is

positive, but only one if it vanishes.

Two special types of interaction have been investigated in more detail: the

competitive model, which corresponds to a Schlögl model where the species

interact only via the substrate (via the dilution flux) and the mutualistic

model, which corresponds to the hypercycle where each species catalyzes the

formation of the next and the reaction form a cycle.

In the competitive model there can be at most two (one) fixed points for

each index set that admits a fixed point. For fixed points with only one

species present we can prove that if there are two, the one with the higher

equilibrium concentration of the substrate is unstable. The ones with the

lower equilibrium concentration of the substrate can be stable. We conjecture

that all fixed points at which several species coexist are unstable. Numerical

evidence supports this conjecture, but we are not able to give an analytical

proof in the general case. If the rate constants are equal for all species, we

can show that all fixed points with one species present are stable and the

other ones are unstable and that there are no changes in stablility induced

by Hopf bifurcations. The behavior of the competitive model resembles that
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of a Schlögl model.

In the mutualistic model, there can be at most one fixed point for every index

set on the boundary of the simplex, but two (one) interior fixed points. A

fixed point PI on the boundary of the simplex can be stable only if there

exists no fixed point PI′ such that I ′ is a superset of I. For the case of equal

reaction constants, we can compute the stability of the interior fixed point:

if there are two, the one with the higher equilibrium concentration of the

substrate is unstable. The other one is stable in the two species system. For

more than two species it can be destabilized by a Hopf bifurcation. For more

than five species, it is generally unstable for sufficiently high flow rates (low

total concentrations). Independent of the number of species, this fixed point

is always stable at sufficiently low flow rates (high total concentrations). If

the interior fixed point is unstable, a stable limit cycle surrounds it. The ex-

istence of Hopf bifurcations is an interesting feature absent in the elementary

hypercycle.

The influence of diffusion: In the competitive model we can show that

the spatially uniform solution for the fixed points at which only one species is

present (the only ones we know to be stable) can be destabilized by choosing

the diffusion coefficient of the substrate greater than that of the replicat-

ing species and the intermediate (formation of Turing patterns). We can

calculate the critical diffusion coefficient at which this bifurcation occurs.

In the mutualistic model the fixed points at which only one species exists

are stable against diffusion. For all remaining (stable) fixed points the uni-

form solution can be destabilized by choosing the diffusion coefficient of the

substrate greater than that of the replicating species and intermediates. For

the case of equal reaction constants and equal diffusion coefficients for all

species and all intermediates we can calculate the critical diffusion coefficient

at which the interior fixed point is destabilized. If the interior fixed point

is unstable and surrounded by a stable limit cycle, symmetry breaking oc-
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curs at diffusion coefficients near the calculated critical value. Two different

kinds of behaviour can be distinguished in this case: Oscillation in patches

and stationary patterns. The second case has not been reported so far for

limit cycles in the hypercycle.

In two dimensons, the formation of spirals could be observed if we started

from an unstable fixed point surrounded by a limit cycle and chose the dif-

fusion coefficient of the substrate equal to that of the replicating species and

intermediates. For higher diffusuion coefficients of the substrate, we could

observe qualitatively the same behaviour like in one dimension, namely os-

cillation in patches or formation of stationary patterns.

Outlook: Although my own experiences in this field have been quite frus-

trating, there may be some way to prove analytically the conjecture that

all fixed points at which several species coexist are unstable in the competi-

tive model. In the mutualistic model it might be possible to find analytical

formulae for the eigenvalues of fixed points on the boundary of the simplex,

since the equilibrium concentrations at these fixed points are linear functions

of the flow rate (the total concentration). For the interior fixed point(s) this

task seems to be hopeless.

More general interaction matrices could be examined, at least for two or

three species.

It would also be worth wile to check if it is possible for some limiting case

(e.g. high rates fi) to deduce results on our model from known results on

second order replication networks, using perturbation theory.

In the mutualistic model with diffusion, it is not at all clear what causes

the transition between oscillatory and stationary solutions. Some qualitative

model that explains why stationary solutions are favoured e.g. by high dif-

fusion coefficients of the substrate should be found. The behaviour of the

system on a two dimensional domain should be investigated in more detail.



Bibliography

[1] A. Babloyantz. Molecules, Dynamics, and Life. Wiley (New York), 1986.

[2] B. P. Belousov. Sborn. referat. radiat. med., chapter An oscillating Re-

action and its Mechanism, page 145. Medgiz (Moscow), 1959.

[3] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathe-

matical Sciences. Academic Press, New york, London, San Francisco,

1979.

[4] W. Bray. A periodic reaction in homogeneous solution and its relation

to catalysis. J. Am. Chem. Soc., 43:1262–1267, 1921.

[5] S. Chandrasekar. Hydrodynamic and Hydromagnetic Stability. Claren-

don Press (Oxford), 1961.

[6] C. Darwin. The Origin of Species. reprinted in Penguin Classics, 1859.

[7] H. Degn. Bistability caused by substrate inhibition of peroxidase in an

open reaction system. Nature, 217:1047, 1968.

[8] M. Eigen. Selforganization of matter and the evolution of biological

macromolecules. Die Naturwissenschaften, 10:465–523, 1971.

[9] M. Eigen, J. McCaskill, and P. Schuster. The molecular Quasispecies.

volume 75, pages 149 – 263. J. Wiley & Sons, 1989.

159



BIBLIOGRAPHY 160

[10] M. Eigen and P. Schuster. The hypercycle A: A principle of natural

self-organization : Emergence of the hypercycle. Naturwissenschaften,

64:541–565, 1977.

[11] M. Eigen and P. Schuster. The Hpercycle B: The abstract hypercycle.

Naturwissenschaften, 65:7–41, 1978.

[12] M. Eigen and P. Schuster. The hypercycle C: The realistic hypercycle.

Naturwissenschaften, 65:341–369, 1978.

[13] I. R. Epstein. Oscillating chemical reactions. Sci. Am., 248(3):96–108,

1983.

[14] R. J. Field, E. Körös, and R. M. Noyes. Oscillations in chemical systes

II: Thorough analysis of temporal oscillations in the bromate–cerium–

malonic acid system. J. Am. Chem. Soc., 94:8649–8664, 1972.

[15] R. J. Field and R. M. Noyes. Oscillations in chemical systems IV: Limit

cycle behavior in a model of a real chemical reaction. J. Chem. Phys.,

60:1844–1877, 1974.

[16] P. C. Fife. Mathematical Aspects of Reacting and Diffusing Sys-

tems. Number 28 in Lecture notes in Biomathematics. Springer,

Berlin,Heidelberg,New York, 1979.

[17] T. Geest, C. Steinmetz, R. Larter, and L. F. Olsen. Period- Doubling

Bifurcations and Chaos in an Enzyme Reaction. J. Phys. Chem, 96:5678,

1992.

[18] P. Glansdorff and I. Prigogine. Thermodynamic Theory of Structure,

Stability and Fluctuations. John Wiley, New York, 1971.

[19] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields. Springer (New York), 1983.



BIBLIOGRAPHY 161

[20] H. Haken. Cooperative phenomena in systems far form equilibrium. Rev.

Mod. Phys., 47:67–121, 1975.

[21] J. Hofbauer and K. Sigmund. The Theory of Evolution and Dynamical

Systems. Cambridge University Press (Cambridge), 1988.

[22] K. Kaneko. Pattern dynamics in spatiotemporal chaos. Physica, 34

D:1–41, 1989.

[23] S. M. Kaushkin, Z. Yuan, and R. M. Noyes. A simple demonstration of

a gas evolution oscillator. J. Chem. Educ., 63(1):76–80, 1986.

[24] J. Kramer, J. Reiter, and J. Ross. Propagation of a chemical pulse in an

illuminated thermochemical bistable system. J. Chem. Phys., 84:1492–

1499, 1986.

[25] R. Laing. Artificial Life, chapter Artificial Organisms: History, Prob-

lems, Directions, pages 49–61. Santa Fe Institute Studies in the Sciences

of Complexity, Proc. Vol. VI. Addison Wesley (Redwood City), 1989.

[26] C. E. Langton. Artificial Life. Santa Fe Institute Studies in the Sciences

of Complexity, Proc. Vol. VI. Addison Wesley (Redwood City), 1989.

[27] M. E. Le Van and J. Ross. Measurement and a hypothesis on periodic

precitipitation processes. J. Phys. Chem., 91:6300–6308, 1987.

[28] J. S. Morgan. J. Chem. Soc. Trans., 109:274–283, 1916.

[29] J. D. Murray. Mathematical Biology. Springer (Berlin, Heidelberg, New

York), 1989.

[30] S. Nakamura, K. Yokota, and I. Yamazaki. Sustained oscillations in a

lactoperoxidase, NADPH and O2 system. Nature, 222:794, 1969.

[31] G. Nicolis and I. Prigogine. Self-organisation in non-equilibrium sys-

tems. John Wiley, New York, 1977.



BIBLIOGRAPHY 162

[32] Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L. Swinney, and

W. Y. Tam. Sustained chemical waves in an annular gel reactor: a

chemical pinwheel. Nature, 329:619–620, 1987.

[33] L. F. Olsen. The oscillatory peroxidase – oxidase reaction in an open

system. Biochim. Biophys. Acta, 527:212, 1978.

[34] L. F. Olsen and H. Degn. Chaos in an enzyme reaction. Nature, 267:177,

1977.

[35] A. I. Oparin. The Origin of Life on the Earth. Oliver & Boyd, Edin-

bourgh, 1957.

[36] Q. Ouyang, V. Castets, J. Boissonade, J. C. Roux, P. De Kepper, and

H. L. Swinney. Sustained patterns in chlorite–iodide reactions in a one–

dimensional reactor. Chem. Phys., 95:351–360, 1991.

[37] I. Prigogine. Bull. Acad. Roy. Belg. Cl. Sci., 31:600, 1945.

[38] I. Prigogine and R. Lefever. Symmetry breaking instabilities in dissipa-

tive systems ii. J. Chem. Phys., 48:1665–1700, 1968.

[39] J. Ross. Non–linearities in chemical reactions. temporal and spatial

structures; efficiency. Ber. Bunsenges. Phys. Chem., 89:605–619, 1985.
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