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Abstract

Motivated by the observation, that RNA folding gives rise to extended neutral
networks in sequence space, concepts of random graph theory are applied to
build a model of RNA sequence to structure mappings. This model allows
to investigate generic properties of sequence-structure relations as well as
the effect of neutrality. The random mapping construction is based on two
tunable parameters. These parameters pu and pp resemble the average degree
of neutrality for unpaired and paired part of the RNA secondary structure,
respectively. In the model a set of secondary structures must be given.

The mapping is performed by building the preimage of the structures. For
this purpose, the set of sequences C is constructed which are compatible with
a given structure s. From this set, sequences are chosen with a probability
determined by pu and pp, and finally assigned to the structure s, if (and only
if) this sequence has not been mapped to another structure. The properties
we are focusing on are the existence of extended neutral nets in sequence
space, the connectivity of these nets and their denseness in C.

The mathematical theory for our model claims the existence of a threshold
value for connectivity and denseness properties of neutral nets. The theorems
hold in the limit of infinite chain length and determine the threshold value
to be p∗ = 1− κ−1

√

1/κ in both cases. Here, κ is the size of the alphabet used
to encode the unpaired or paired parts of the sequences, respectively. Below
this threshold the nets are neither connected not dense in C, whereas above
the threshold almost all nets are connected and dense in C.

Computer experiments indicate that a threshold exists also for finite chain
length, although it is not sharp anymore. However, within the accuracy of the
simulations the threshold value is identical with the theoretically predicted
one. Furthermore, it is identical for both properties.

We investigate the influence of the tertiary contacts on generic properties
of sequence-structure mappings. Instead of trying to predict tertiary struc-
tures of sequences we determine the tertiary contacts. Compatible sequences
are then constructed according to an arbitrary base-pairing rule. This model
also contains a tunable parameter determining the frequency of tertiary con-
tacts in a structure. We show that in this model large neutral networks
exist for tertiary structures even in the case where the structures contain a
relatively high number of tertiary contacts.



Zusammenfassung

Die Faltung von RNS Molekülen weist darauf hin, daß ausgedehnte neu-
trale Netzwerke im Sequenzraum bestehen. Diese Beobachtung veranlaßte
uns, Methoden der Zufallsgraphentheorie zu verwenden, um ein Modell von
RNS-Sequenz-Struktur-Abbildungen zu entwickeln. Mittels dieses Modells
untersuchen wir generische Eigenschaften der Beziehungen zwischen Sequen-
zen und Strukturen sowie die Auswirkung der Neutralität. Die Durchführung
der Zufallsabbildung beruht auf zwei vorzugebenden Parametern. Diese Pa-
rameter pu und pp entsprechen jeweils dem mittleren Grad an Neutralität in
den ungepaarten und gepaarten Teilen einer RNS Sekundärstruktur. In un-
serem Modell muß eine Menge von Sekundärstrukturen vorgegeben werden.

Wir führen die Sequenz-Struktur-Abbildung durch, indem wir die Ur-
bilder der Strukturen erzeugen. Dazu wird die Menge C der Sequenzen
gebildet, die mit der gegebenen Struktur s kompatibel sind. Mit einer
Wahrscheinlichkeit, die durch pu und pp bestimmt ist, ziehen wir aus dieser
Menge Sequenzen und weisen diese nur dann der Struktur s zu, wenn sie
nicht bereits einer anderen Struktur zugeordnet worden sind. Unser Augen-
merk liegt auf folgenden Eigenschaften: die Existenz ausgedehnter neutraler
Netze im Sequenzraum, der Zusammenhang der Netze und deren Dichte.

Die mathematische Theorie des Modells sagt voraus, daß ein Schwell-
wert für den Zusammenhang und die Dichte neutraler Netze existiert. Die
Theoreme gelten im Limes unendlicher Kettenlänge, wobei der Schwellwert
in beiden Fällen p∗ = 1− κ−1

√

1/κ ist. Mit κ bezeichnen wir die Größe des
Alphabets, mit dem wir die ungepaarten bzw. gepaarten Teile kodieren. Un-
terhalb des Schwellwerts sind die Netze weder zusammenhängend noch dicht
in C, wogegen oberhalb des Schwellwerts fast alle Netze zusammenhängend
und dicht in C sind.

Computerexperimente weisen darauf hin, daß ein Schwellwert auch für
endliche Kettenlängen existiert, obgleich er nicht mehr scharf ist. Inner-
halb der Simulationsgenauigkeit ist dieser Wert identisch mit dem theoretisch
vorhergesagten und für beide Eigenschaften gleich groß.

Wir untersuchen den Einfluß tertiärer Kontakte auf generische Eigen-
schaften der Sequenz-Struktur-Abbildung. Anstatt zu versuchen, die tertiäre
Struktur von Sequenzen vorherzusagen, geben wir tertiäre Kontakte vor.
Die kompatiblen Sequenzen werden gemäß einer willkürlichen Basen-Paar-
Regel festgelegt. Dieses Modell beinhaltet ebenfalls einen Parameter, der die
Häufigkeit der Tertiärkontakte in einer Struktur bestimmt. Wir zeigen, daß
in diesem Modell große neutrale Netzwerke für Tertiärstrukturen auch dann
existieren, wenn die Zahl der tertiären Kontakte verhältnismäßig hoch ist.



Contents

1 Introduction 1

1.1 The RNA Molecule . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Concept of Evolutionary Adaptation . . . . . . . . . . . . . 3

1.3 The Model of RNA Sequence Structure Mapping . . . . . . . . 6

1.4 Organization of this Work . . . . . . . . . . . . . . . . . . . . 9

2 Theory 11

2.1 Graph Theory and RNA Molecules . . . . . . . . . . . . . . . 12

2.2 Secondary Structures . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 A Random Graph Model Applied to RNA . . . . . . . . . . . 19

2.4 Denseness of Random Graphs . . . . . . . . . . . . . . . . . . 21

2.5 Connectivity and Sequence of Components . . . . . . . . . . . 25

2.6 The Implemented Model . . . . . . . . . . . . . . . . . . . . . 26

2.7 Tertiary Structures . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Algorithms 29

3.1 Generating Random Structures . . . . . . . . . . . . . . . . . 29

3.1.1 Secondary Structures . . . . . . . . . . . . . . . . . . . 29

3.1.2 Tertiary Structures . . . . . . . . . . . . . . . . . . . . 31

3.2 Sequence to Structure Mapping . . . . . . . . . . . . . . . . . 33

3.3 Components of a Neutral Net . . . . . . . . . . . . . . . . . . 35

3.4 Degree of Neutrality . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Neutral Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Storaging Large Numbers of Individuals . . . . . . . . . . . . 39

3.6.1 Encoding of Sequences . . . . . . . . . . . . . . . . . . 39

3.6.2 Storing the States of Integers . . . . . . . . . . . . . . 39

4 Computational Results 43

4.1 Parameters for the Random Mapping Procedure . . . . . . . . 43

4.2 Availability of Compatible Sequences . . . . . . . . . . . . . . 47

4.3 Neutrality in Preimages of Random Maps . . . . . . . . . . . 51

4.4 Distribution of Preimages . . . . . . . . . . . . . . . . . . . . 53



4.5 Composition of Neutral Nets . . . . . . . . . . . . . . . . . . . 56

4.6 Neutral Walks in Sequence Space . . . . . . . . . . . . . . . . 60

4.7 Mapping of Sequences into Tertiary Structures . . . . . . . . . 67

4.8 Random Mapping and RNA Folding Data . . . . . . . . . . . 70

4.8.1 Distribution of Preimages . . . . . . . . . . . . . . . . 72

4.8.2 Degree of Neutrality . . . . . . . . . . . . . . . . . . . 74

4.8.3 Composition of Neutral Nets . . . . . . . . . . . . . . . 77

4.8.4 New Structures in Boundary of Neutral Nets . . . . . . 80

5 Discussion 82

6 Conclusion and Outlook 88

Appendix A Supplemented Results 91

A.1 Distribution of Preimages . . . . . . . . . . . . . . . . . . . . 91

A.2 Sequence of Components . . . . . . . . . . . . . . . . . . . . . 91

A.3 New Structures in Boundary of a Neutral Walk . . . . . . . . 93

Appendix B Data Structures 94

B.1 Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.2 Balanced Binary Trees: The AVL-Algorithm . . . . . . . . . . 95

References 96



List of Figures

1 Illustration of Hypercube . . . . . . . . . . . . . . . . . . . . . 13

2 Representation of Secondary Structures . . . . . . . . . . . . . 18

3 Random Induced Subgraph . . . . . . . . . . . . . . . . . . . 21

4 Denseness of Graphs . . . . . . . . . . . . . . . . . . . . . . . 22

5 Circle Representation of Secondary Structure . . . . . . . . . . 32

6 Compatible Sequences . . . . . . . . . . . . . . . . . . . . . . 34

7 Increase of Sequences Mapped . . . . . . . . . . . . . . . . . . 40

8 Common mfe Structures . . . . . . . . . . . . . . . . . . . . . 45

9 Network to Compatible Sequences Ratio . . . . . . . . . . . . 49

10 Relative Sizes of the Neutral Nets . . . . . . . . . . . . . . . . 50

11 Degree of Neutrality (unpaired region) . . . . . . . . . . . . . 51

12 Degree of Neutrality (paired region) . . . . . . . . . . . . . . . 52

13 Distribution of Preimages . . . . . . . . . . . . . . . . . . . . 54

14 Fitting Zipf’s Law . . . . . . . . . . . . . . . . . . . . . . . . . 57

15 Number of Components . . . . . . . . . . . . . . . . . . . . . 59

16 Giant Components and Connected Nets of Frequent Structures 60

17 New Structures in Boundary of Neutral Walk . . . . . . . . . 63

18 Number of Sequences in Neutral Walk . . . . . . . . . . . . . 65

19 Covering the Hypercube . . . . . . . . . . . . . . . . . . . . . 66

20 Tertiary Preimage Distribution . . . . . . . . . . . . . . . . . 68

21 Fraction of Compatible Sequences, tertiary structures . . . . . 70

22 Number of Components, tertiary structures . . . . . . . . . . . 71

23 Distribution of mfe structures . . . . . . . . . . . . . . . . . . 73

24 Neutrality of mfe preimages . . . . . . . . . . . . . . . . . . . 74

25 Neutrality of Ranks . . . . . . . . . . . . . . . . . . . . . . . . 76

26 Neutral Net Components of mfe Structures . . . . . . . . . . . 79

27 Boundary of Folded Path . . . . . . . . . . . . . . . . . . . . . 80

28 Giant Components and Connected Nets of Rare Structures . . 92



iv

List of Tables

1 Common mfe Structures . . . . . . . . . . . . . . . . . . . . . 46

2 Preimages of Mapping Procedures . . . . . . . . . . . . . . . . 55

3 Number of Components . . . . . . . . . . . . . . . . . . . . . 58

4 New Structures in Boundary of Walks . . . . . . . . . . . . . . 61

5 Length of Neutral Walks . . . . . . . . . . . . . . . . . . . . . 64

6 Number of Sequences in Neutral Walk . . . . . . . . . . . . . 64

7 Components of Neutral Nets, Tertiary Structures . . . . . . . 71

8 Degree of Neutrality . . . . . . . . . . . . . . . . . . . . . . . 77

9 Neutral Net Components of mfe Structures . . . . . . . . . . . 78

10 Cover ability of mfe calculations . . . . . . . . . . . . . . . . . 81

11 Fit parameters for Zipf’s law . . . . . . . . . . . . . . . . . . . 91

12 Number of Components for Rare Structures . . . . . . . . . . 92

13 Fitting coefficients for Neutral Walks . . . . . . . . . . . . . . 93

14 Covering Ability of Neutral Walk . . . . . . . . . . . . . . . . 93



1 Introduction 1

1 Introduction

1.1 The RNA Molecule

It took almost a century from the first clear evidence of elements of inher-

itance provided by Gregor Mendel’s experiments in the sixties of the last

century [45] to the discovery of the structure of the molecule that carries the

“blueprint” for the phenotype. Although this molecule, the deoxyribonucleic

acid (DNA), was isolated already in 1869 from leucocytes, it was accepted

to be the carrier of the genetic code only in the late forties of our century [2].

An X-ray diffraction photograph taken by Rosalinde Franklin [20] was one of

the most important elements of the puzzle that led James Watson and Fran-

cis Crick to propose a three-dimensional model of the DNA’s double helical

conformation [74, 75]. Its basic simplicity combined with obvious biological

relevance caused immediate acceptance of the model.

The existence of a second kind of nucleic acid, which is located in the

nucleus as well as in the cytoplasm, was already known in the late nineteenth

century. The nucleotides of this ribonucleic acid (RNA) consist of the same

classes of chemical components as DNA: a phosphate group, a pentose and

either a purine or a pyrimidine base [58]. In the 1920s it was found that the

sugar contained in DNA is a deoxyribose, instead of the ribose in RNA. In

both classes of nucleic acids the hetero-cyclic bases, purines or pyrimidines,

are linked together by ribose-phosphate bridges. The purines are adenine

(A) and guanine (G), and the pyrimidines are cytosine (C) and thymine

(T), which is replaced by the base uracil (U) in RNA.

The importance of RNA molecules in viruses and cells is apparent since

RNA serves as messenger (mRNA), carrying the genetic information from

the DNA to the translation apparatus. As transfer RNA, or tRNA for short,

it plays the role of an adapter for the synthesis of proteins. Ribosomal

RNAs (rRNA) function as integral parts of the ribosome and show catalytic

activities in natural polypeptide synthesis (see e.g. [6, 7, 76]). RNA thus was

and is able to serve two purposes: (i) storage of genetic information based on

a one-dimensional template that can be read and copied on request, and (ii)

catalytic properties as ribozymes which require three-dimensional structures

in order to gain efficiency and specificity in processing specific substrates.
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The discovery of these properties led to a revival of interest in the idea

discussed in the sixties by Francis Crick, Walter Gilbert and Leslie Orgel,

that life was based entirely on RNA before proteins were existent [9, 24, 50].

In this sense the function of an RNA molecule is essentially determined

by its structure. As demonstrated by Sol Spiegelman, in vitro evolution ex-

periments can be applied to selection of RNA molecules that are capable of

fast replication [46]. Indeed, replication rates are optimized in serial transfer

experiments [14, 36, 60]. In case one wants to optimize other properties than

replication, intervention is required making use of special techniques, which

interfere with “natural selection”. A well known example is represented by

the SELEX method – an acronym for “systematic evolution of ligands by

exponential enrichment” – which allows to create molecules with optimal

binding constants [71]. The SELEX procedure is a protocol which isolates

high-affinity nucleic acid ligands for a target, for example a protein, from a

pool of variant sequences. Multiple rounds of replication and selection expo-

nentially enrich the population of species which exhibits the highest affinity,

i.e. which fulfill the required task. This procedure thus allows simultaneous

screening of highly diverse pools of nucleic acid molecules for different func-

tionalities (for a review see, e.g. [13, 40]). Results from those experiments

clearly demonstrate the essential property of RNA molecules, that genotype,

i.e. the RNA sequence, and phenotype, associated to the structure, are com-

bined in one molecule.

At this point, the question arises what is meant by the term structure

of an RNA molecule. One must define the level on which the structures of

molecules are explored. For an X-ray crystallographer a structures is tanta-

mount to a set of atomic coordinates. At a sufficiently high resolution two

structures being formed from different sequences will never be identical. In

order to obtain a more tractable definition that fits better its use in biochem-

istry and molecular biology one needs a coarse grained notation of structures.

One such coarse graining leads to the so-called secondary structure which has

been used successfully during the last three decades. The secondary struc-

ture of an RNA molecule is the list of Watson-Crick (AU and CG) and GU

base pairs. With this definition identical structures can be exhibited by very

different sequences.
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1.2 A Concept of Evolutionary Adaptation

The results obtained by the evolution experiments mentioned above bring

up the issue of how a given (RNA) molecule of length n can be found among

the 4n possible ones. The formation of RNA structures is regarded as a

mapping from sequence space to a space of all possible structures, called

shape space. The sequence space is the set of all sequences of a given length

where the Hamming distance is used as metric [30]. This metric counts the

number of positions in which two strings of same length differ, or in terms

of RNA sequences, it counts the minimal number of point mutations which

are necessary to transform one sequence into the other. The resulting metric

space is commonly identified with a generalized hypercube(1) , denoted by Q.

The notation of shape space was used previously in theoretical immunol-

ogy for the set of all structures presented by all possible antigens [51, 64].

Several methods, such as tree editing [16, 31, 65], were developed and used

as a metric in shape space, which we denote by S. In general, a mapping f

that relates two metric spaces is a called a combinatory map [19], in this case

f : Q → S. Multiple realizations of such a mapping are well known in mole-

cular biology and biochemistry. One of the first methods was the maximum

matching algorithm [49] which soon was improved to an algorithm which took

into account thermo-dynamical parameters for the formation of secondary

structures [48]. Based on the concept of calculating the structure with min-

imum free energy (mfe) more recent programs were developed [31, 80], but

also other ideas were realized, such as kinetic folding algorithms [28, 47].

In kinetic algorithms stacks are established but can melt again, if other

more favorable structures can be formed. These algorithms do not necessarily

determine the mfe structure, nevertheless the sequence-structure mapping is

unique. The suboptimal folding algorithm (see e.g. [78]) and the partition

function algorithm by John McCaskill [44] present another idea of sequence

structure relation: One sequence can, in principle, form a set of secondary

structures. We will not consider these types of mappings here, but think of

unique and surjective mappings from sequence space to shape space.

(1)An explanation of the generalized hypercube is given in section 2.1.
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Secondary structures are composed of basic elements such as loops and stacks.

Due to sterical constraints loops contain at least three bases, and stacks of

two or more base pairs are essentially the only stabilizing elements, i.e. iso-

lated base pairs are rare. An upper bound for the number of secondary

structures fulfilling these constraints was derived by Paul Stein and Michael

Waterman [67] and refined in [33]. As a result the shape spaces cardinality

is consistently smaller than that of the sequences space, implying that the

mapping is highly redundant. Computational analysis of a unique mapping

which calculates the mfe secondary structures [63] suggested that searching

for a target structure in sequence space can be considered as an adaptive walk

in a fitness landscape. The notion of fitness landscape was introduced by Se-

wall Wright in the thirties in order to illustrate evolution as an hill-climbing

process on a presumably rugged surface [77].

A landscape is considered a map from a finite, but large set of configu-

rations C into scalar values under a cost or fitness function f : C →
�
. It

also requires a notion of neighbourhood between the configurations, i.e. the

configurations are arranged by a metric. A fitness landscape can be regarded

as a specific case of combinatory maps. Altering a conformation to one which

is found in its neighbourhood usually results in a different fitness value. Thus

an adaptive walk is understood as subsequent mutation of the configuration

in order to find the “fittest” configuration.

Further development of the fitness-landscape idea made this concept to

one of the most powerful for optimization strategies not only in theoreti-

cal biology. It was applied to different fields as, for instance, to spin-glass

models (see e.g. [3]) and to combinatorial optimization problems such as the

traveling salesman problem [42]. The fitness function in these model are the

energy of the spin configurations and the length of the tour, respectively. In

the seventies and eighties the concept of fitness landscapes was applied to

dynamics of evolutionary adaptation [10, 12, 17].

Manfred Eigen initiated an approach towards the principles of early evo-

lution. The development of populations of haploid individuals, represented

by sequences of a given length, such as RNA sequences is described. The

theory is based on the replication and degradation rates and on the copying
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fidelity q = 1 − p, where p is the mutation rate per nucleotide. An impor-

tant property of the model is the existence of an error threshold p∗ for the

mutation rate. For mutation frequencies above this threshold replication is

nearly random and the sequence information is irrecoverable. Otherwise,

i.e. in case p < p∗, populations form stationary mutant distributions which

are characterized as macromolecular quasi-species. The mutation rate and

the fitness of the various species strongly influence the stationary frequencies

of each species. However, this model does not take phenotypes into consid-

erations, and thus the model is restricted to an explanation of the evolution

of sequence populations. Hence, the question remains unanswered how an

adaptive walk is able to find a solution in the set of structures while the

underlying dynamics takes place in sequence space.

At the present time the mapping from sequence space into fitness values

is simplified by partitioning the task in two steps. First, a combinatory map

(cmap, in the diagram below) realizes the formation of the shape from the

sequence. Subsequently the shape is evaluated by a fitness function f :

sequence space
cmap

=⇒ shape space
fitness

=⇒ scalar value

The restriction of the genotype-phenotype relation to a sequence to struc-

ture mapping allows to study the combined fitness landscape. A computer

model where sequences are mapped to a scalar value according to the di-

agram, allowed to gained insight into evolutionary optimization [17]. This

approach combined replication and mutation, taking place in the space of the

genotype, with selection applied to the phenotype. The concept showed that

the combined fitness landscape inherits its properties from the underlying

sequence-structure relation. Further investigations demonstrated that a very

large number of sequences are mapped to the same secondary structure, and

as a consequence these sequences have the same fitness value [19]. Thus, the

concept of neutrality was derived from studies of RNA sequence-structure

mappings.

The observation of neutrality led to the conjecture of neutral networks

spanning the sequence space [63]. This means, a structure is not only re-

alized by many sequences, but these sequences are even connected through

neutral mutations. Ranking the individual shapes by their frequencies of oc-
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currence in sequence space yields a distribution obeying a generalized Zipf’s

law [79]. There are a few common structures and many rare ones. The shape

space covering conjecture claims that any random sequence is surrounded

by a ball in sequence space which contains sequences folding into almost all

common structures, although the diameter of this ball is much smaller than

the dimension of the sequence space [16, 61]. This conjecture in combination

with neutral networks is considered an important condition for the success

of selection experiments with RNA molecules as described above.

1.3 The Model of RNA Sequence Structure Mapping

In order to get a better understanding of the relation between RNA mole-

cules and their associated structures a model is used where the context of

sequences and structures is simplified. Based on observations from thermo-

dynamical calculations of secondary structures of RNA molecules, Christian

Reidys applied concepts of random graph theory to build a model of sequence

to structure mappings [53, 54, 56]. An introduction to random graph theory

can be found in, e.g. [4, 15]. This model is suitable to investigate generic

properties of the sequence-structure mappings. The physical-chemical na-

ture of RNA structure formation is not subject of investigation in this thesis.

Results from mfe structure calculations are only used as input parameters

for the computer simulations.

As mentioned above it was found that very large numbers of sequences

are assigned to the same secondary structure [17, 19, 26, 27]. It was also

found, that mutations of sequences which result in the same structure, often

differ in one or two nucleotides only. Investigating an reference sequence

and its structure one can determine the fraction of neutral mutations: the

structures of all mutated sequences are calculated and the mutation is said

to be neutral, if the structures us identical to the reference structure. The

average fraction of neutral neighbours is a parameter which characterizes

important properties of the sequence to structure mapping, called the degree

of neutrality.

In this work, we study a model where the assignment of sequences to

structures does not make use of energy parameters. Instead of trying to de-
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termine the structure of a certain RNA sequence, the mapping is performed

inversely. This means, that for a given structure the sequences which be-

long to its preimage are determined. Again we point out, that we consider

secondary structures rather than real three-dimensional shapes. As defined

above, the secondary structure is a list of base pairs, which can be represented

by a planar graph without knots or pseudo-knots. Although pseudo-knots

occasionally occur in biological structures, they can be regarded as part of the

tertiary structure, i.e. three-dimensional interactions that occur in addition

to the secondary structure [38, 68].

Beside planar graphs, other equivalent representations for RNA secondary

structures, as for instance rooted ordered trees and paring tables have been

developed [16, 41, 65]. Depending on the context where structures are con-

sidered in, each of these representation has its advantages. Using the rooted

ordered tree representation is particularly suitable to obtain a distance mea-

sure for secondary structures. Planar graphs are the best choice for the

illustration in biological context, while pairing tables are well manageable

for mathematical purposes. In this work, we will make use of a string repre-

sentation also called bracket-dot notation [34], in which unpaired bases are

symbolized by dots and matching pairs of brackets stand for base pairs.

This kind of secondary structure representation is perfectly suitable for

computer handling. We are able to recognize paired and unpaired nucleotides

easily and in combination with the known base pairing rules we are able to

construct sequences, which are compatible with the structure under investi-

gation. A sequence is compatible with a structure if it in principle can form

this structure, i.e. it satisfies the pairing rule. For our intension, this rule

could be arbitrary. Nevertheless, it seems to be reasonable to use a natural

rule which allows the base pairs AU, GC and GU, known as Watson-Crick

and wobble base pair respectively. All the sequences which obey the given

rule, compose the set of compatible sequences, C. We emphasize, that those

sequences fulfill only a necessary condition to be mapped to a structure. At

this point, a sequence is not mapped to a particular structure.

The set C of sequences constitutes the fundamental for the investigation

of the sequence to structure mapping. For all structures being investigated
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such a set of compatible sequences is generated. An important feature is,

that for any two secondary structure their set of compatible sequences have

a non-empty intersection. This means we will always find at least two se-

quences which are compatible with both structures under consideration. We

make note of the fact, that this is not true for three or more structures.

However, being compatible is a prerequisite for a sequence to be mapped to

a structure but the mapping must be unique. Motivated by the existence of

the degree of neutrality, as found in computer simulations for mfe calcula-

tions [63], a Monte Carlo process is applied to choose sequences from the set

C. The random parameter used in this process determines the probability

for a sequence in C to be finally mapped to one (and only one) structure.

This model of a sequence to structure mapping is used, in order to study

generic properties of the sequence-structure relation, which do not depend on

thermo-dynamical parameters [70]. Therefore, the assignment of sequences

to structures as used in the mfe calculations, or folding for short, is reduced

to a mapping which is based on the degree of neutrality only. We investigate,

whether prominent features of the folding can be identified in our case. The

existence of extended neutral networks is one of these characteristics.

To study the resulting networks of sequences, which belong to the preim-

age of a structure, we will use methods developed in graph theory. The

underlying networks of the structures will be examined for important prop-

erties such as connectivity and accessibility. Freely spoken, connectivity can

be tested in a walk in the network of a structure, where a step is equivalent

to a mutation which conserves the structure. All the sequences which can

be visited in such a walk are said to belong to the same component of the

network. Obviously, a network is connected, if it consists of one component

only.

Consider two different structures, s and s′. The structure s′ is accessible

from the network of the first structure, if a mutation of a sequence belonging

to s, ends in the neutral net of the second structure s′. Instead of investi-

gating the complete network of the structure s, a trial and error approach

is used to perform a neutral walk. Starting from a sequence which belongs

to s, mutations are performed and the resulting sequence is mapped to a
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structure. Here, an error leads to a new structure, where a success means

that the structure is not altered. It is likely, that many such trials along a

neutral walk will end in the network of a structure which differs from s. This

characteristic, being accessible, is strongly related to the property of networks

to be dense in the set of compatible sequences. The denseness-property of

neutral networks is described precisely in terms of graph theory.

The focus of this study lies on the influence of the a priori probabili-

ties which are used to mimic the degree of neutrality. The set of compatible

sequences C of one structure will never change, but depending on the param-

eter which is used to realize the random mapping, the size of the networks

will vary. Even more interesting is to find an answer how the connectivity and

denseness properties of networks change with different random parameters.

The model which is realized for the sequence to secondary structure map-

ping is extended to a mapping to tertiary structures. The scaffold of those

structures is set up by secondary structures. Additionally, new contacts are

superimposed which are not subjected to any constraints [55]. In this case,

the mapping is based on the assignment of sequences to the underlying sec-

ondary structures. A sequence must then fulfill the base pairing rules for

the tertiary contacts to belong to the neutral net of the structure. It is ob-

vious, that the number of sequences contained in the preimage of a tertiary

structure is smaller than for secondary structure. Nevertheless, unexpected

results are found, when the preimages are investigated.

1.4 Organization of this Work

This work addresses the fundamental questions of genotype-phenotype map-

ping as seen from a mathematical point of view. Sequences which are com-

patible with a given secondary structure are randomly and uniquely mapped

to a structure. The sequences being mapped to a structure set up the neu-

tral network of this structure. Important properties, such as connectivity

and denseness, are immanent to those neutral networks. These characteris-

tics are essential for the understanding of optimization processes on rugged

landscapes. The influence of the random parameters used for different map-
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pings on these properties is theoretically derived and investigated by means

of computer simulations.

The following chapter will give an introduction to the mathematical tools.

Definitions of sequence space and secondary structures are expressed in terms

of graph theory. Using the terminology of this theory, neutral networks

and their properties are explained. Important theoretical propositions are

presented which are concerned with connectivity and denseness of the neutral

networks. The model of mapping is extended to structures where tertiary

contacts are included.

In chapter 3 the algorithms being used to perform the simulations are

described. The mapping of entire sequence spaces, as they are used in the

simulations of this thesis, requires a fast management of a large amount

of data, which is a non-trivial task even for present day computers. For

example, the state of all sequences, whether they are mapped yet or not

must be traced. An algorithm which allows such a tracing is introduced in

this section.

Results obtained by computer simulations are described and illustrated

in chapter 4. We will see, that the number of tertiary contacts has a sur-

prising impact on the composition of the neutral networks. A discussion

follows in chapter 5 and this work closes with chapter 6 where the results are

summarized and an outlook for further investigations is presented.



2 Theory 11

2 Theory

RNA molecules are predestinated for studies of evolution in vitro and in

silico, because they combine the genotype and phenotype in one molecule

and because their secondary structures can be determined quite fast. To

this end, a mathematical model handling RNA sequences, their secondary

structures and dynamics in sequence space is required. Such a model has

been derived by concepts from graph theory. In this thesis the focus lies on

the relation of the genotypes belonging to the same phenotype. Therefore,

the brief sketch of graph theory mainly concerned with the sequence space.

In the case of RNA sequences and their secondary structures a common

method to realize such a mapping is to use various algorithm which calcu-

late a secondary structure of any given sequence [28, 31, 43, 44, 80]. The

algorithms make use of thermo-dynamical parameters which have been de-

termined experimentally for several structural elements [21, 52, 72]. Still, the

methods of structure calculation vary and therefore the secondary structure

predicted by these programs are quite different for the same sequence.

Although these folding algorithms do not calculate identical structures

given the same sequence it was found, that the mapping inherit some ba-

sic features which are common to all algorithms [69, 70]. For example, the

distribution of the structures is highly non-uniform: It follows a general-

ized Zipf’s law, i.e. there are few structures which are realized by most of

the sequences, whereas most of the structures have a few sequences being

mapped to them [79]. Another intrinsic characteristic of these mappings is

the existence of neutral networks.

The average fraction of neutral neighbours is the link which allows us to

relate random graph theory of neutral networks and combinatory maps as

they are obtained by folding RNA sequences into secondary structures. The

model, as developed by Reidys, distinguishes between fractions of neutral

neighbours derived from single base mutations in unpaired regions and those

fractions derived from base pair mutations in double helical regions. The in-

vestigation of these networks exhibits additional, interesting properties such

as connectivity and denseness. In order to describe these terms precisely
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the following sections provide the theoretical background. The model, as

developed by Reidys, is presented which is used to simulate the sequence to

structure mapping [56].

2.1 Graph Theory and RNA Molecules

The basic objects of graph theory are vertices and edges. The vertices are

elements of a set, for instance n-tuples of integers in
� n or strings which are

composed of n elements of an alphabet consisting of κ letters. Here, n is

a finite natural number. In the former case one obtains an infinite graph,

whereas in the latter the graph is finite, if κ is finite. Edges are connections

between pairs of vertices.

In general, the size of an alphabet is denoted by κ. In this work, we will

deal with two distinct alphabets A and B. We will refer to their sizes by α

and β, respectively. The alphabets will be described in this section and in

section 2.2.

In the case of natural RNA molecules we deal with a finite alphabet which

consists of four letters A = {A, C, G, U}, corresponding to the bases adenine,

cytosine, guanine and uracil (see section 1.1). The nucleotides containing

these bases are linked together by ribose-phosphate bridges (backbone) to

form the sequence or primary structure. As a result, this single strand is

directional and starts with a phosphate unit at the 5′-end and terminates

with a ribose unit at the 3′-end.

In order to apply graph theory, RNA molecules are considered as se-

quences or strings over A, denoted by σ. Such a string corresponds to a

vertex. Due to the fact, that the two ends of an RNA sequence are chemi-

cally different there exist no palindromes in strict sense and the nucleotides

of a molecule can be numbered uniquely, starting at the 5′-end.

In the set of all sequences of constant length n, we add, for example, edges

by connecting vertices which differ in exactly one position, i.e. when their

Hamming distance is one [30]. An edge is equivalent to a point mutation of a

sequence. The resulting graph is called (generalized) hypercube of dimension

n [11]. An illustration of two hypercubes based on the natural four letter
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(A)
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GG
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Figure 1: The hypercube based on a four letter alphabet A = {A,C,G,U}. The edges

connect two vertices which differ in exactly one position. (A) Hypercube of dimension n=1,

i.e. the length of the vertices is one. The hypercube is regarded as regular tetrahedron.

(B) Hypercube of dimension n=2. It is obtained by quadruplication of the hypercube of

dimension one. The black edges show point mutations in the first position of the vertex.

The colored connections represent mutations in the second position yielding a tetrahedron

with slightly distorted edges for the sake of clarity. Generally, the hypercube of dimension

n+1 is obtained by quadruplicating the hypercube of dimension n.

alphabet for RNA is given in figure 1. Starting with a hypercube of dimension

n=1, as shown in part (A) of this figure, the hypercube of dimension n+1

is obtained by quadruplication of the existing one. One of the four letters

is appended systematically to each vertex. Iteration of this procedure leads

to conceptually simple objects which, however, are too sophisticated to be

drawn on paper.

By mere inspection, one finds some basic properties which are intrinsic

for generalized hypercubes: a) The maximal distance between two sequences

σ and σ′ of the hypercube is dH(σ, σ′) = n, independently of the size of
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the alphabet. b) Every vertex has exactly n · (κ − 1) neighbours accord-

ing to the number of different single point mutations of an RNA sequence.

We will formulate these observations in terms of the following notation and

definitions.

Notation: A graph G is a pair (v[G], e[G]), together with two incidence maps

τ̃ : e[G] → v[G] and ι̃ : e[G] → v[G]. We call v[G] the vertex set and e[G]

the edge set of G. ι̃(e) and τ̃ (e) are interpreted as the two vertices defining

a directed edge. In this work it is sufficient to consider e as an undirected

edge as given by the unsorted set of vertices e = {x, y}, x, y ∈ v[G]. We call

x incident to e if x = ι̃(e) or x = τ̃ (e). Two vertices x, y ∈ v[G] are called

adjacent if and only if {x, y} ∈ e[G].

The terms and symbols listed below will be used throughout this work:

• The order of a graph G, |G| is the cardinality of its vertex set, i.e. |v[G]|.

• The degree δx of a vertex x ∈ v[G] is the number of edges e ∈ e[G] of

the form e = {x, x′}.

• G is called γ-regular if for each vertex x ∈ v[G] hold δx = γ.

• A path π in G is a tuple of the form (x = x1, e1, x2, e2, . . . , ek−1, xk = x′)

where (ei = {xi, xi+1} for 1 ≤ i ≤ k. We say xi and ei occur in π.

Since π is already characterized by the vertices occuring in it we use

the equivalent notation π = (xi)1≤i≤k. The path π connects the vertices

x and x′, if both vertices occur in π. The set of all paths in G is denoted

by Π[G].

• The support of a path π is the set Supp(π) := {x ∈ v[G]|x occurs in π}.

• The length of a path π = (xi)1≤i≤k is l(π) := k − 1, i.e. the number of

edges occuring in π.

• Two vertices x, x′ ∈ v[G] are called connected if there exists a path in

G in which both vertices occur. A graph G is called connected if any

two vertices x, x′ ∈ v[G] are connected.
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• The distance dG(x, x′) of vertices in G is the minimum length of all

paths connecting x and x′. If there exists no path connecting the two

vertices we set dG(x, x′) = ∞. The index G is omitted, if no confusion

is possible.

• The boundary ∂GV in G of a set V ⊂ v[G] is

∂GV := {x′ ∈ v[G] \ V| ∃ x ∈ V : dG(x, x′) = 1}.

The closure in G of V ⊂ v[G], V, is given by V := V ∪̇ ∂GV.

Note: The index G is not used, if no confusion can arise.

• G′ is a subgraph of G, G′ < G, if v[G′] ⊂ v[G] and e[G′] ⊂ e[G].

• Let H ⊂ v[G]. The induced subgraph or spanned subgraph of H in G,

G[H], has the vertex set v[G[H]] = H. The edge set e[G[H]] is the

subset of all edges in e[G] where both incident vertices belong to H.

• The ball centered at x ∈ v[G] with radius r is the set

Br(x) := {x′ ∈ v[G] | d(x, x′) = r}.

We summarize that the sequence space is represented as generalized hyper-

cube Qn
κ, or just Q, if no confusion can arise. The set of sequences are the

vertices of the hypercube, i.e. v[Q] = {σ1, σ2, . . . , σκn}. Two vertices σ and

σ′ are connected by an edge e ∈ e[Q], where e[Q] is the set of all edges in Q

whose vertices have Hamming distance one: dH(σ, σ′) = 1. The generalized

hypercube Qn
κ forms an undirected graph with the defined vertices and edges.

Every vertex has out-degree (κ − 1)n. An edge e with origin o(e) = σ and

terminus t(e) = σ′ is interpreted as a point mutation leading from σ to σ′

and vice versa.

2.2 Secondary Structures

The secondary structure of an RNA molecule is a list of base pairs. A base

pair is a complex formed by intramolcular hydrogen bonds between a purine
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and a pyrimidine base. The bases can be considered as “sidechains” in the

case of RNA [66].

Secondary structures are also described by means of graph theory. A

mathematically correct and sufficient way for our purposes is to translate

the list of base pairs into an adjacency-matrix Aij [63]. Contacts defined as

tertiary interactions are not included in this definition. The n × n matrix

fulfills the following conditions:

1. aij = 1 for 1 ≤ i ≤ n and j = i± 1 (backbone).

2. For each i there is at most one j 6= i± 1 such that aij = 1 (base pair).

3. For any j 6= i± 1 and l 6= k ± 1 it holds: If aij = 1 and akl = 1 than it

is i < k < j ⇒ i < l < j and vice versa (knot-free).

This matrix can easily be translated into a planar graph, consisting of n

vertices: s = (x1, . . . , xn) . In contrast to the previous definition (section 2.1),

here, a vertex is a single nucleotide. Edges exist only between those vertices

which form a base pair, i.e. if the corresponding coefficient aij is not zero.

We further state, that each of the n vertices has an out-degree δ ≤ 3. This

means a vertex x may have at most one non-backbone bond. Base pairs,

i.e. non-backbone bonds, are also referred to by the term contact.

From the adjacency matrix we derive the set of contacts for a structure

s: Π(s) := { [i, j] | aij = 1, i, j = 1, . . . , n, |i − j| 6= 1}. The bases being

involved in a contact are called paired, the other bases are called unpaired.

The number of unpaired bases is denoted by nu(s), the number of base-pairs

by np(s), i.e. n = nu(s) + 2np(s). Usually, the argument s is omitted. If a

structure contains no bases pairs, i.e. Π(s) = {∅} the structure is called open

structure.

Let [i, j] ∈ Π(s) be a base pair and let all bases i+1, . . . , j−1 be unpaired.

These bases form a loop closed by the pair [i, j]. Due to steric constraints the

number of unpaired bases in a loop, L, is at least 3. Rule (2) from above can

be generalized, so that for each i, there is at most one j 6= i±L, with L ≥ 3

such that aij = 1.
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Beside planar graphs, various representations of secondary structures have

been developed [41, 65]. Examples of secondary structure representations are

given in figure 2. The adjacency matrix is shown in part (A). The bullets

indicate the backbone and base pairs. A translation into a planar graph is

presented in part (B) of this figure. Biologist use to label the vertices with the

one letter code of the bases which occur at the corresponding position in the

sequence. The string notation, also denoted by dot-bracket notation [34], is

shown in part (C). The string notation represents a secondary structure by a

string of length n: ‘s1 . . . sn’. An unpaired vertex k is denoted by a single dot

sk=‘.’ and pair [i, j] with i < j is represented by si=‘(’ and sj=’)’. Condition

(3) from above renders intercalating parenthesis, e.g.( ( (    ) ) ) , illegal

and thus the assignement of such a string to a secondary structure is unique.

In this work, we will make use of the string notation, since unpaired and

paired regions of the structure can be determined in a straightforward way.

Which representation is used, depends strongly on the context where

structures are considered in. For instance, rooted ordered trees (figure 2(D))

are suitable to determine a distance between secondary structures [16, 19].

In this image, base pairs are mapped into internal nodes , unpaired residues

to leaves, starting at a root (node) which has not correspondence in the

molecule. The root prevents to get lost in a forest of trees. An alteration of

the structure is equivalent to a move of nodes and leaves in the tree. These

moves are associated to certain amount of ‘costs’, and thus the total cost

which is needed to transform one tree into another gives the distance.

From biophysical chemistry we learn, that helical regions of RNA struc-

tures are made of distinct base pairs, which are energetically prefered, for

instance AU and GC pairs. This yields a pairing rule of nucleotides. The

rule can be expressed as an alphabet B coding for the paired positions. The

symbols in this alphabet consist of two letters taken from the alphabet A,

i.e. B ⊂ A × A. Therefore, we define the notion of compatibility between

sequences and structures:

Notation: A sequence σ is compatible with a structure s if and only if for all

base pairs [i, j] ∈ Π(s) the corresponding bases i and j are elements in B. The

set of sequences being compatible with a structure s, or set of compatibles for
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Figure 2: Four equivalent representations of an RNA secondary structure. (A) The list

of base pairs is translated into a adjacency matrix. The numbers show the position of

the nucleotides. Black dots correspond to base pairs where the gray dots represent the

backbone. Due to its symmetry, the matrix can be reduced to a triangle representation.

(B) The same secondary structure drawn as a planar graph. The backbone is shown as

gray line, the base pairs by black lines. (C) The string representation of this structure.

Since the structure is knot-free, matching parentheses stand for base pairs. (D) Tree

representation: base pairs correspond to nodes (black circles), unpaired bases correspond

to leaves. See also text for details.

short, is denoted by C[s]. If the structure is not the open structure v[C[s]]

is a true subset of v[Q] containing αnu · βnp vertices, where β = |B|.

Natural RNA molecules exhibit base pairs, which can be represented by

the alphabet B = {(AU), (CG), (GC), (GU), (UA), (UG)}. With respect to

the chemically different ends of RNA sequences we distinguish between a

(AU) and a (UA) pair, for example. The grouping of the nucleotides stresses

the notation of the base pairs as symbols in B. The set of compatibles

for a given structure s can therefore be determined exactly. An important

observation is, that the set of compatible sequences of two different structures

C[s] and C[s′] always have a nonempty intersection. A prove of this claim

can be found in, e.g., [54]. An example how those compatible sequences are

generated is given in figure 6 on page 34. We will come to this when the
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algorithm of the sequence to structure mapping is presented in detail. We

remark, that the generalization of this statement to three and more structures

is not valid.

We make note of the fact, that the set C[s] again forms a graph. The

sequences in this graph are connected by edges which are considered as com-

patible mutations. This means, that those positions where the nucleotides

are unpaired, single point mutations are performed. At the paired position

the mutations is regarded as an exchange of one symbol of the alphabet B,

which usually is an exchange of two letters from A.

2.3 A Random Graph Model Applied to RNA

The mathematics presented in this section is applied to model sequence-

structure relations, which are based on random graph theory [4, 15]. This

relation is regarded as a mapping [54, 56]. In general, a mapping is a triple

(f, A, B), where elements of the set A are mapped to elements of the set

B according to the (mapping) function f . Here, the set A is formed by

sequences of a fixed length n. The set of all secondary structures which can

be formed by sequences of given chain length constitutes the set B, also called

shape space as it was previously defined in theoretical immunology [51, 64].

We will denote the shape space by S.

To study generic properties of the sequence-structure relations a model

is proposed which does not make use of physical and chemical parameters.

Before we describe the details of the model, a brief sketch is given. There are

two major steps setting up the procedure of the random mapping: Firstly, a

set of possible secondary structures is constructed, i.e. the set B in the map-

ping is generated. Secondly, sequences are assigned uniquely to the structures

setting up the preimage of the structure. This assignment is the elementary

process of the random mapping: sequences compatible with the structure are

generated and accepted with a probability p which is determined in advance.

The algorithm which realizes this mapping is presented in section 3.2.

The model of sequence to structure mapping is mainly based on random

maps. For the convenience of the reader we recall the basic terminology of

probability theory, which is used to describe the propositions and theorems
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of the model. The random map and the properties which are derived from

mathematical considerations are presented next.

Notation: The set Ω is assumed to be finite. This yields a probability space

(Ω,P(Ω),µµµ) which is a triple consisting of the point set Ω, the power set P(Ω)

of Ω and a probability measure µµµ. The measure of an arbitrary set S ∈ P(Ω)

is simply given by summing the point measures: µµµ{S} =
∑

ω∈S µµµ{ω}.

A random variable X̂ is a µµµ-measurable function X̂ : Ω →
�
. The

distribution of the random variable X̂ is determined by the (cumulative)

distribution function F (x) =µµµ{X̂ < x}, where −∞< x <∞. In the case of

integer-valued random variables we can specify them as well as the probability

density function f(x)=µµµ{X̂ =x} .

The expectation value of a random variable X̂ is defined as the weighted

sum over all points ω ∈ Ω: E[X̂] =
∑

ω∈Ω ωµµµ{ω}. The variance of the

random variable is given by V[X̂] = E[(X̂ −E[X̂])2].

The idea of the random mapping is freely described as follows. A graph

H, i.e. the vertex set v[H] and the edge set e[H], are given. By choosing

some of the vertices at random with a probability 0 ≤ p ≤ 1, a subgraph

G=H[X] is induced. The edges of G are only those which also occur in H,

meaning that no new edges can be generated. The draft of a random induced

subgraph is illustrated in figure 3. The probability measure of such a graph is

determined by the number of vertices it contains. The mathematical precise

definition of a random graph is given in the following lines:

Model of Random Map: Let H be a finite graph. The each subset of the

vertex set of this graph, X ⊂ v[H], induces the subgraph H[X]. The set of

all induced subgraphs of H is denoted by G(H). A parameter p ∈ [0, 1] is

given and for every graph Γ ∈ G(H) we set

µµµp{Γ} = p|v[Γ]|(1− p)|v[H]|−|v[Γ]|.

Since this is the probability of a binomial distribution it is clear that

∑

Γ∈G

µµµp{Γ} = 1.

Hereby we obtain a probability space (G(H),P(G(H)),µµµp).
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H X⊂v[H] G=H[X]

Figure 3: The diagrams show a graph H and one induced subgraph G. Left: The parent

graph H is presented. Middle: A random processes is performed to choose vertices defining

the vertex set X⊂v[H ] of the subgraph. Right: Only the edges which occur in the parent

graph are existent in the induced graph G.

We apply this definition to the model of random sequence to structure

mapping. The parent graph is identified with the set of compatible sequences

of a secondary structure as explained in section 2.2. The vertices are chosen

with probability p resulting in the preimage of the secondary structure. We

denote this preimage by Γ[s], i.e. the random graph of sequences which are

randomly mapped to the structure s, due to the mapping f . In this sense,

the original mapping f : Q → S is inverted and we write

Γ[s] = f−1(s) ⊂ C[s] \
⋃

s′∈S
s′ 6=s

(Γ[s′] ∩C[s]) (2.1)

where f is identified with the random choice of sequences. For all secondary

structures in S, the associated preimage is generated by randomly choosing

the sequences from the set of compatibible sequences C.

2.4 Denseness of Random Graphs

The following theorem and its proof were proposed by Reidys [54]. The

theorem is based on a family of configuration spaces (C)n. For our intentions

it is sufficient to identify a configuration space with the generalized hypercube
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G, ∂G H F , ∂F

Figure 4: Illustration of the term denseness. Two subgraphs G and F of a (parent)

graph H are shown on the left and on the right hand side of H , respectively. The vertices

belonging to the subgraphs are shown as black colored circles. The boundary of the graphs

∂G and ∂F are displayed as gray circles. In the case of the subgraph G the vertex set of

the closure, i.e. v[G ∪ ∂G] is identical with H , hence G is dense in H . This not the case

for the subgraph F .

as introduced in section 2.1. A sequence of configuration spaces is obtained

by increasing the dimension of the hypercube, i.e. the length of the sequences

increases. The principle, how such a family is obtained is shown in figure 1.

Here, we will introduce the theorem and its predication. A sketch of the

proof and its implication for the model discussed in this work is given. The

complete proof is found in [54]. Let us begin with the definition of the

relevant terms.

Definition 2.1: Let H be a finite graph. A subgraph G < H is called dense

in H if and only if v[G] = v[H].

The meaning of dense is illustrated best in a diagram. In figure 4 a graph

H is shown in the middle part of the figure. Two subgraphs G and F are

displayed on the left and right side of H, respectively. The vertices of these

graphs are shown as black colored circles. The according boundaries ∂G and

∂F and are displayed as gray circles. In this figures G is dense in H, since

the vertices of closure of v[G] are identical with v[H]. The subgraph F is not

dense.
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The denseness property of random graphs Γ<C are discussed in this section.

To this end, we introduce a random variable

Ẑ(Γ) := |{v ∈ v[C]|v 6∈ v[Γ]}|

which counts the number of vertices in the configuration space having no

adjacent vertex in the graph Γ.

The measure µ is motivated by looking at a vertex v and its degree γ.

This results in a measure which takes into account the number of edges and

hence the vertices being adjacent to v. The measure is written as:

µ := lim
n−>∞

(|Cn|(1− p)γn+1)

In the case that p=0 we find µ→∞, where µ=0, if p=1. For a probability

0 < p < 1, the value of µ may also diverge. In the case that µ is finite, one

proves that the distribution of the random variable Ẑ converges to a Poisson

distributed random variable, i.e.

lim�
→∞

µµµ{Ẑ = l} =
µl

l!
e−µ.

For an infinite µ we find that lim �
→∞ µµµ{Ẑ ≥ l}=1 for all l ∈

�
. This means,

that the number of vertices which are not adjacent to the graph Γ tend to

become infinite.

Equipped with this information we can state the theorem that, under a

certain condition, a random graph is dense in the configuration space.

Theorem 2.1 Let (Cn)n be a family of configuration spaces such that p∗ :=

limn→∞(1 − |Cn|
−1/γn) exists and 0 < p∗ < 1. Let Gamman < Cn be an

induced subgraph. For p > p∗ holds:

lim
n→∞

µµµn{Γn is dense in Cn} = 1

and for p < p∗ it is:

lim
n→∞

µµµn{Γn is dense in Cn} = 0
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In the terminology of random graph theory p∗ is called threshold value for

the denseness property.

The proof mainly relies on the insight gained above. For the Poisson

distributed random variable Ẑ it always holds E[Ẑ] = µ, and here we have

E[Ẑ] = |Cn|(1− p)γn+1. Determining the limits for the expectation value we

find

lim�
→∞

E[Ẑ] =

{

0 for p > p∗

∞ for p < p∗

and with the discussion of the random variable Ẑ from above we derive µ=0

and hereby µµµ{Ẑn =0} = 1, because the variable Ẑ is Poisson distributed(2).

Therefore, we see that µµµ{Ẑn = l} = 0 for any l > 0. This means that in

the limit of infinite length n we expect that there is no vertex, which is not

adjacent to Γ. Hence Γ is dense in C.

For parameter p < p∗ we derive the opposite, because µ → ∞ and thus

µµµ{Ẑn≥ l} = 1: almost no vertex is adjacent to the graph Γ.

Applying this results to the hypercube Qn
A, which is equivalent to a se-

quence space, we have γn =n(α− 1). With |Cn|= |Q
n
A|=αn we calculate the

threshold value

p∗ = 1− α−1
√

1/α.

We summarize this section with the statement, that for a random pa-

rameter p > p∗ almost every random graph Γn is dense in Cn and almost no

Γn is dense in Cn for p < p∗. Using the random mapping as described in

equation (2.1) we expect, that the sequences which are mapped to a struc-

ture yielding in Γ[s] are dense in the set of compatible sequences C[s]. In

combination with the fact that for two secondary structures s and s′ their

set of compatibles have a nonempty intersection, we will study how a virtual

optimization process is realized.

(2)For a Poisson distributed random variable with parameter µ holds: all moments of

the distribution are µ. Further, a distribution is known if all its moments are known.
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2.5 Connectivity and Sequence of Components

Although the term connectivity is clear by intuition, we will recall some def-

initions: Two vertices v and v′ of the set v[G] are connected if there exists

a path in G which contains both vertices. The graph G is connected if

for all pairs of vertices v, v′ ∈ v[G] a path exists in G where both vertices

occur. Otherwise the graph is disconnected. All the vertices which are con-

nected build a subset V of v[G]. A component of G is an induced subgraph

G′ = G[V ] of a maximal connected subset of vertices. We neglect the trivial

components which are induced by the empty set, i.e. G[∅]. In the case that

G is disconnected we will investigate the sequence of components, i.e. a list

of the maximal connected subgraphs of G into which G can be decomposed.

For an illustration we refer to figure 4 (page 21). The graph F consists

of one component, whereas G on the left hand side is decomposed into four

components, one of size 16 and three of size one. From this figure one derives

the definition:

Definition 2.2: Given a graph G, the sequence of components of G is the

ordered tuple (|χi|) with 1≤ i≤ |G|. Each χi is a component of G and we

order these components according to |χi| ≥ |χi+1|. A component is called

giant component if and only if |χ| ≥ 2/3|G|.

A component of size one is called isolated vertex, or in terms of graph

theory, it is a vertex with the property ∂v ∪ v[Γ] = ∅.

In the following we assume that the limes limn→∞(1−|Cn|
−1/γn) exists and

fulfills 0< lim(1− |Cn|
−1/γn)<1. Further we set p∗ := limn→∞(1− |Cn|

−1/γn).

Before the theorem of connectivity can be formulated, we will discuss

some claims and propositions. For a parameter p<p∗ and for l ∈
�

one can

prove

lim
n→∞

µµµ{Γn contains at least l components with |χ| ≤ γn}

which finally yields in the observation

∀l ∈
�

: lim
n→∞

µµµ{Γn has more than l isolated vertices } = 1.
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Hence, we restrict the consideration on connectivity to the case where p>p∗.

It is shown that

lim
n→∞

µµµ{Γn contains only components with |χ| ≥ γn} = 1

and p∗ is a threshold value for the existence of nontrivial components whose

orders are smaller than γn.

From the latter one can derive, that limn→∞{Γn is connected=1. These

results are applied to the generalized hypercube Qn
A. With γN = n(α − 1)

we obtain p∗=1− α−1
√

1/α. We finally formulate the theorem:

Theorem 2.2 Let (Qn
A) be a sequence of generalized hypercubes and Γn <

Qn
A random induced subgraphs with the measure µµµ(Γn) = p|Γn|(1− p)|Q|−|Γn|.

(For the sake of clarity we use |Γn| instead of |v[Γn]|.) Then

lim
n→∞

{Γn is connected} =

{

1 for p > p∗

0 for p < p∗

The proof of this theorem is given in [54]. We hereby establish, that the

parameter p∗ is not only a threshold value for the denseness property but

also for the connectivity of a random graph.

2.6 The Implemented Model

We consider the combinatory map f : Qn
A → S from sequence space into

the shape space. We know that the vertex set of the preimage, i.e. f−1(s)

is contained in the set of compatible sequences. In particular, all neutral

neighbours of a sequence σ are located in the set C[s]. Unfortunately, the

induced subgraph Qn
A[C[s]] is not connected. It decomposes into hyperplanes

defined by a particular choice of the base pairs. Consider a base pair (G, C),

for instance. There is no path of subsequent (single) point mutations that

could convert this pair into (C, G) without loosing the structure. According

to the base pairing rules, no pairs made up from a (G, G) or (C, C) pair are

allowed.

To circumvent this problem the graph of compatible sequences G[s] is

introduced. We recall the notation of nu and np which stand for the number
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of unpaired bases and base pairs in a secondary structure and obtain:

G[s] := Qnu

A ×Q
np

B . (2.2)

This graph is understood in the sense, that for all unpaired positions the

bases are taken from the alphabet A. For the base pairs the letters are taken

from B, as mentioned above. Note, that this graph has a meaning only in

combination with a structure. We further note, that both hypercubes Qnu

A

and Q
np

B are the same for two structures consisting of the same number n of

nucleotides and with nu(s)=nu(s
′). This is illustrated in figure 6, page 34.

The randomly induced subgraphs, used in the sequence to structure map-

ping, are extended to a mapping from the two hyperplanes. We introduce

two independent probabilities pu and pp. The former is the probability for

a vertex vu ∈ Q
nu

A to be chosen, where the latter determines the probability

for a vertex vpQ
np

B .

The theorms derived in sections 2.4 and 2.5 are applied to the hypercubes

Qnu

A and Q
np

B . One derives two threshold values

p∗u =1− α−1
√

1/α

and

p∗p =1− β−1
√

1/β.

In the case, that both probabilities are above their thresholds one finds

lim
n→∞

{Γn is dense and connected} = 1.

In section 3.2 an algorithm is introduced which bases on this model. It is im-

plemented in order to investigate the properties denseness and connectivity.

The results are presented in chapter 4

2.7 Tertiary Structures

The model of sequence to secondary structure mapping is extended to tertiary

structures, also consisting of n nucleotides. A tertiary structure is considered

as a superposition of additional contacts onto a secondary. Assuming that the
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underlying secondary structure contains m base pairs, the tertiary contacts

are randomly chosen from the remaining
(

(n−1)−L
2

)

−m possible contacts as

introduced in [55]. The parameter L represents the minimum loop size, one

contact reflects the backbone. The parameter c3 determines the fraction of

tertiary, or pseudo three-dimensional, contacts in the tertiary structure st.

An important result proposed in the paper cited above is that the fraction

of nucleotides which can be involved in tertiary contacts is unlikely larger

than 0.25. Otherwise, the tertiary contacts might result in, for example,

cycles for which no compatible sequence can be found. By intuition it is clear,

that for an increasing number of contacts it is likely that cycles occur. For

instance, three bases xi, xj, xk are involved in contacts such that xi pairs with

xj, xj pairs with xk and xk pairs with xi. This requires that there is a pairing

rule for those contacts which allows other contacts than the common Watson-

Crick-type pairs. For the naturally given alphabet B one cannot find such

three nucleotides. Indeed, a number of rules are already known: non Watson-

Crick-pairs, such as UU -pairs [29] or GA-mismatches [59], G-quartets [8] and

A-platforms [5] have been detected in natural RNA structures.

We pay respect to the knowledge that the secondary structure is the scaf-

fold of RNA structures (see [38, 68]) in the following way: Firstly, sequences

are mapped to secondary structures using the independent probabilities pu

and pp for the unpaired and paired part, respectively. We obtain a random

graph Γ[s] ⊂ C[s]. At this step, the tertiary contacts are not taken into

account. Secondly, the intersection Γ[s]∩C[st] determines the network Γ[st]

of the tertiary structure st. The resulting networks are investigated for con-

nectivity and denseness. The focus of these studies lies on the influence of

the parameter c3 on these network characteristics. The a priori parameters

pu and pp are not modified.
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3 Algorithms

3.1 Generating Random Structures

3.1.1 Secondary Structures

Generating a random secondary structure of a given length n is based on

a recursive algorithm. Firstly, the number of structures Sn consisting of n

bases is determined. Therefore, a recursion formula is used as is described in

equation 3.1. This equation was firstly derived by Waterman [73]. To take

into account steric constraints the minimum number of unpaired bases in a

hairpin loop L must be greater than zero.

A newly added base is assumed to be appended to the left hand side

of the yet existing structure. The new base can remain unpaired, which is

reflected by the addend Sn−1 in the recursion formula below. Alternatively,

the new base can pair with any base k+2 having the distance k ≥ L. A base

pair separates the structure into two subparts of length k and N−k−2. The

subpart of length k is interior to the base pair, the other one is exterior. The

number of structures where 1 and k + 2 are paired is therefore the product

Sk · Sn−k−2. The complete recursion is given by:

Sn = Sn−1 +
n−2
∑

k=L

Sk · Sn−k−2 (3.1)

with n > L and

Sk = 1 for k = 0, 1, . . . , L

A detailed explanation of the calculation of the number of structures can be

found in [32].

The probabilities for the new residue to be unpaired, Pu, and to be paired

with a base at distance k + 2, Pp(k) are calculated as follows:

Pu(n) = Sn−1/Sn

Pp(n, k) = Sk · Sn−k−2/Sn (3.2)

where k = L, L + 1, . . . , n− 2
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The pseudo code 3.1 shows the scheme of a procedure which generates sec-

ondary structures. The result is a string which represents the secondary

structure in the bracket-dot notation as described in section 2.2.

The probabilities Pu and Pp are calculated according to equations 3.1

and 3.2 and stored in two arrays. A random secondary structure s is then

created with uniform distribution P (s) = 1/Sn. The generation of a structure

is iterated over substructures delimited by two bases i and j, starting with

(i,j)=(1,n). The new sectors are calculated in this iteration. The routine

random() (line 7) returns a uniformly distributed random number r between

zero and one. The probability check with Pu[n] in the next line depends

only on the length of the structure limited by i and j not on their actual

position in the structure. If i is chosen to be paired upstream the closing

base of that pair is determined by the routine closing(n,r) in line 12. This

routine determines the base k holding Pp(n, k) > r. The corresponding base

is then set to the closing base which might result in a splitting of the structure

into two new parts (see line 14). The positions of left hand and right hand

side of the new substructures are stored in the arrays sectorI and sectorJ.

These arrays are reminders for the limiting residues of the substructures,

which are not yet determined. The variable ns counts the number of stacks,

i.e. substructures, not yet completed to a hairpin.

Pseudo code 3.1: Generating random secondary structures.

1.calcProbabilities(N) comment: calculate probabilities

store in arrays Pu[N] and Pp[N/2]

sectorI[0] = i = 1

sectorJ[0] = j = N

ns = 0 comment: number of stacks

2.while(ns>=0)

3. if(j-i<=L)

4. for(l=i...j) structure[l] = ’.’

i = sectorI[ns]

j = sectorJ[ns]

5. ns = ns-1 comment: stack is completed

6. else

7. r = random() comment: random number in [0,1]
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8. if(r<Pu[i-j+1]) comment: check probability for i to be un-

paired in structure of length j-i+1

9. structure[i] = ’.’

10. i = i+1

else

11. structure[i] = ’(’

12. k = closingbase(j-i,r) comment: get a random base k>i+L

makes use of Pu[] and Pp[]

13. structure[i+k] = ’)’

14. if(i+k<j) comment: two new parts to

be determined

15. sectorI[ns] = i+k+1

16. sectorJ[ns] = j

17. ns = ns+1

endif

18. j = i+k-1

19. i = i+1

endif

endif

end

To create a set S of a given number of different secondary structures the

algorithm introduced here is repeated until the requested number is obtained.

To check for uniqueness of every structure a balanced binary search tree, for

example an AVL-tree is used (see appendix B). This set can be transformed

into a tuple T of structures by listing the structures in an array. Then every

structure can be addressed by a unique number, the index of the structure.

A new tuple of structures is obtained, when the positions of the structures

are permuted.

3.1.2 Tertiary Structures

Based on the secondary structures generated as described above, tertiary con-

tacts are introduced by choosing two bases i and j with uniform distribution

under the constraints:

• The two bases must have a distance greater than L: |i− j| > L.
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1

n

Figure 5: Circle representation of a structure as introduced by Nussinov et al. [49] for

secondary structures. The construction of tertiary contacts can be illustrated well: there

are m = 3 secondary contacts, shown as solid red lines. Three tertiary contacts, shown

as grey lines, are selected from the remaining
(

(n−1)−L

2

)

−m contacts. L is the minumum

loop size which is set to 3 in this example. For the sake of clarity only the possible contacts

for base 1 are shown (dashed lines). See also text.

• The two bases must not constitute a base pair in the secondary struc-

ture.

Note that in contrast to rule (2) for secondary structures (section 2.2) there is

no restriction to the number of tertiary contacts a base may have. Thus, we

may have base tripletts or quartets and indeed both clases of interactions were

observed in natural RNAs [5, 8, 29]. The graph in figure 5 shows a structure

with tertiary contacts. The circle representation, as introduced by Ruth

Nussinov and coworkers [49] for secondary structures, offers a convenient

method to illustrate the creation of tertiary contacts. For the sake of clarity

only for the base 1 all contacts which are allowed are plotted (dashed lines).

The base pairs of the secondary structure are represented by solid red lines,

the tertiary contacts are printed in gray. A structure of this type usually

cannot be represented as a planar graph. Moreover these structures may

contain cycles as described in section 2.7.
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3.2 Sequence to Structure Mapping

The sequence to structure mapping is performed as explained in section 2.3:

The preimage of the function f : Qn
A → Sn, i.e. σ 7→ s, is generated with the

constraints that (i) the sequence σ must be compatible with structure s and

(ii) it must be assigned uniquely to this structure.

Given a tuple T of structures the mapping is performed by means of the

following instructions:

0. Initialization:

• id = 1 (index of structure)

• cs = 0 (counter of sequences)

• % ∈ [0, 1] (fraction of Q to be covered)

1. Get the structure with index id, s = sid.

2. Split the secondary structure into two substructures su for the unpaired

region and sp for the paired region, respectively.

3. Generate all αnu and βnp sequences for the substructures. A sequence

for su is chosen with probability pu, a sequence for the paired region sp

is chosen with probability pp. This yields two sets of sequences {σu}

and {σp}.

4. Reconstruct the set of sequences being compatible with the structure

s, {σ}s = {σu} × {σp}. In the case that a structure contains tertiary

contacts the set {σt}s = {σ}s /Ry is obtained by checking the bases

being involved in the tertiary contacts. They must obey the pairing

rule Ry. If the sequence fulfills all constraints it is included in the set

{σt}s.

5. For every sequence in {σ}s check, whether it was mapped to a structure

with index j < id. If the sequence is still unmapped, it is mapped to

the current structure. Increase cs by 1. If cs = %αn goto the end of the

procedure.
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Figure 6: Construction of sequences being compatible with secondary structures. Letters

taken from A are represented as a. Bases which are involved into base pairs are printed

as b and B, i.e. the pair b-B is a valid base pair.

6. The sequences being mapped to the current structure s are stored in a

file associated to the current index id for further investigations.

7. Increase id by 1. If there exists a structure with that index repeat the

procedure starting at point 1. Otherwise the end of the procedure is

reached.

8. End of procedure

There are two criterions for the procedure to be stopped. Firstly, when a

given fraction % ∈ [0, 1] of the entire sequence space is mapped to the set of

structures, the procedure stops. (Structures covering the remaining fraction

1 − % of the sequence space have negligible small preimages in case % is set

to values of 0.95 or greater.) Secondly, the procedure comes to an end, when

the neutral nets of all structurescontained in T are constructed.

The construction of sequences which are compatible with two given sec-

ondary structures is shown in figure 6. Both secondary structures yield the

same substructures. The subsequences of the unpaired region are created by

taking letters from the alphabet A, shown as a. Bases which are involved

in base pairs are taken from the alphabet B. The complete sequence is ob-

tained by setting an a at every unpaired position of the structure. The paired

positions written as capital B are determined by the according b.
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Validating the uniqueness in step 5 is necessary since a sequence usually is

compatible with at least two structures (see sec. 2.2). The algorithm which

performs this check is described in section 3.6.

The structures are sorted and ranked according to the size of the underly-

ing net. In this context the size of a structure refers to the size of its neutral

net. The structure having the largest net is assigned to rank number one.

Structures having the same size are ranked by sorting their indeces. The

ranking of the structures is a unique mapping r :
�
→ T . Note, that the

rank of a structure usually differs from its index.

3.3 Components of a Neutral Net

The neutral net of a structure may be composed of several components. To

obtain information about the number of the components and their sizes an al-

gorithm was conceived which essentially consists of the following instructions.

The following iterative sequence of instructions describes this algorithm and

shows how the neutral net of a structure s is examined:

0. Initialization: All sequences belonging to the net of the structure s are

stored in a balanced binary tree (such as an AVL-tree). We call this

tree POOL. The variable counting the number of components nc is set

to one.

1. Take one sequence from the POOL and remove it from the POOL. This

sequence is the current sequence s cur. The component number nc

contains its first sequence. The size of this component is one.

2. Create all mutants of the current sequence which are compatible with

the structure under investigation.

3. Every mutated sequence s mut found in the POOL is stored in LIST

(usually an array). Remove s mut from the POOL. This LIST contains

all sequences on the border of the current component. The size of the

component is increased by the number of mutants added to LIST.
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4. If LIST is not empty, the first sequence in the LIST becomes the new

s cur. This sequence is removed from the LIST. Goto step 2. Other-

wise, if LIST is empty, this component is done.

5. While the POOL is not empty, the component counter nc is increased

by one. The procedure is repeated starting at step 1. Otherwise, the

net is done. The sum of the component sizes is checked with the size

of the entire net.

6. The procedure ends.

3.4 Degree of Neutrality

The mapping from sequence space to structure space is performed using a

priori random parameters pu and pp (see section 3.2). We examine, whether

the a priori parameter coincide with the degree of neutrality which results

by the mapping procedure. The following algorithm is implemented to deter-

mine the a posteriori neutrality values λu and λp for the unpaired and paired

part of the structures. (We assume that the neutral nets are generated by

the algorithm described in section 3.2.)

1. Determine an index of a structure s. The net Γ which is associated

with this index is then investigated.

2. One sequence σ0 ∈ Γ is chosen randomly.

3. For all nu unpaired bases in s the point mutations of σ0 are generated.

For each mutant σm found in Γ, cu the counter for neutral mutations

in unpaired positions is increased by one.

4. For all np base pairs, the bases being involved in the pair are mutated

according to the base pair alphabet B, e.g. a (AU) pair is altered into

a (UA) pair. If the mutant σm is found in Γ the counter cp for neutral

base pair mutations is increased by one.

5. End of procedure.
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The parameters for neutrality in the unpaired and paired positions are cal-

culated by λu = cu/nu and λp = cp/np respectively. To improve the statistics

of this investigation the number of samples for a net is about 10% of the size

of the neutral net.

3.5 Neutral Walks

A neutral walk on the net of a structure s is performed as described in

the algorithm at the end of this section. This structure will be denoted as

reference structure. The aim of the procedure is to determine the number of

different structures found in Hamming distance one from the neutral path

and from the neutral net of the reference structure.

Neutral walks are used to investigate the connectivity of neutral networks

and the rate of innovation [63, 35]. The rate of innovation is a measure for

the number of new structures found along a neutral walk. A neutral walk

consists of sequences which belong to the net of the reference structure and

are connected by compatible mutations (see section 2.1). This implies that

these sequences belong all to the same component of the net. A compatible

mutation is a point mutation if the base is unpaired. In the case that a base

is paired the two bases involved in the pair are mutated in the way that the

resulting sequence again is compatible with the reference structure. Depend-

ing on the alphabet B this may yield in Hamming distance two between a

sequence and its successor in the walk.

For this purpose it is more efficient to realize the mapping in a different

way as presented in section 3.2. Here, we will map the sequences directly to a

secondary structure, i.e. we perform the mapping f : Q → S. In the previous

algorithm we generated the preimages of the structures via inverse mapping

f−1(s) = σ. The algorithm how a sequence is mapped to a structure is shown

in the following lines:

1. A sequence σ is given. Set the index to id = 1, i.e. the mapping starts

with structure s1 ∈ T .

2. Check if σ is compatible with the structure sid ∈ T .
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3. If σ ∈ C[sid] the sequence is mapped with the probability p = pu · pp.

4. If the sequence is not mapped increase id by one and repeat the pro-

cedure at step 2. Otherwise the procedure ends.

This (forward) mapping of sequences is used in the algorithm introduced be-

low. Note that a sequence is mapped uniquely to one structure. Therefore,

every sequence σ which has been visited and the structure s = f(σ) are

stored in a balanced binary tree. (In this case a balanced binary tree is the

method of choice since the number of sequences generated is small compared

to number of sequences in Q which must be stored in the sequence to struc-

ture mapping in section 3.2. In addition, a balanced binary tree allows to

store the corresponding structures, too.)

The neutral walk is implemented using the following algorithm. Firstly,

a start sequence must be found (steps 1 and 2). Then the walk is performed

as described in steps 3 and 4:

1. Determine an index id ≥ 1 for a structure sref ∈ T , the reference

structure.

2. Find a sequence σ0 to start the neutral walk in the net of structure.

This means: a sequence being compatible with sref is created and

mapped according to the mapping procedure described above. This

step is repeated until either a sequence is found or until none of the

compatible sequences could be mapped. In the latter case the walk has

length zero, the procedure ends.

3. Generate all sequences having Hamming distance one from σ0 and map

them to the structures in T . The sequences with the mapped structures

are stored. The number of new structures found in this step is stored.

4. Generate a mutation of σ0 which is compatible with sref . This sequence

must not yet belong to the neutral walk. If no new sequence can be

found, the walk ends. Else this sequence is mapped to the structures in

T as described in the algorithm above. If it is mapped to the reference

structure, this sequence becomes σ0. The procedure is repeated at

step 3.
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A walk performed according to this algorithm does not contain cycles or

branches. Therefore the number of sequences found in a neutral walk is

usually smaller than the number of sequences belonging to the component of

the neutral net where the walk is performed in.

3.6 Storaging Large Numbers of Individuals

3.6.1 Encoding of Sequences

The algorithms introduced in this work are realized using the C programming

language [37]. In this language the smallest storage unit is the variable type

of a character which is identical to the size of one byte, the least size in

any storage media in nowadays computers. A byte consists of BYTE binary

digits, called bits. Although in all common operating systems and processor

architectures a byte holds eight bits the following considerations are done

using the parameter BYTE.

For the representation of all sequences in the hypercube Q as strings

of characters the order of n · αn bytes is needed. This amount of storage

requirements quickly exceeds the means of hardware equipment as soon as

sequences of an interesting length of the sequences are considered, i.e. n ≈ 30.

Encoding every letter in A with binary masks (or bit masks) reduces the

memory required. To encode α letters, dlog2 αe bits are necessary. It is worth

the effort of time which is needed to realize the bit encoding as long as the

number of letters in the alphabet is less than 2BY TE . Therefore a sequence

of n characters can be stored in
⌈

n·dlog2 αe
BY TE

⌉

bytes.

Beside the reduction of the required memory size we make use of another

advantage of the bit encoding: Generating sequences is simply achieved by

choosing an integer between zero to αn − 1. The bit pattern of the integer

can be decoded into a sequence of characters with standard operations of the

C programming language [37, section 2.9].

3.6.2 Storing the States of Integers

To perform the mapping procedure (see sec. 3.2) detailed information about

a sequence is not needed if it is checked for uniqueness. On the other hand,
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Figure 7: Index of structure versus fraction of sequence space mapped yet. Using prob-

ability parameters greater than pu = pp = 0.4 means that about a fraction of 0.1 of the

entire sequence space is mapped after about 200 structures are processed. The x-axis is

in logarithmic scale.

the state of all αn sequences (mapped yet or not) must be known. Sequences

being mapped to a former structure are stored in files as described in sec-

tion 3.2.

Soon after a few structures are processed the number of sequences which

are mapped to these structures figure 7. The check for uniqueness of the

sequences rises a serious problem, if the performance is a criterion. Because

of limited time resources, it is not convenient to scan the files containing the

sequences. Therefore, the information about the state should be kept in a

fast accessible storage medium, such as the main memory.

Due to the restricted capacity of computers it is not a good advice to store

them in a balanced binary tree. A balanced binary tree requires an overhead

of memory to manage the entries which cannot contain information needed
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for the check. Here, the mean of choice is a hash table which is able to store

αn entries.

As described above, every sequence can be identified by a natural number.

The state of a sequence (mapped or not) can be hold in a single bit. This

results in αn bits or dαn/BYTEe =: A bytes in order to store the state of all

sequences. Since the programming language ‘C’ allows dynamical allocation

of memory the required size of the array can be determined on run time. The

available main memory of the computer, where the program is executed on,

can be handed over to the program as a parameter to ensure that no overflow

occurs. In case that the required space of the array exceeds the memory

capacity of the computer, the sequence space is splitted into intervals of equal

size. The arrays containing the information about the associated interval are

stored on disc and loaded into the main memory as soon as sequences of this

interval are to be mapped.

The implementation of the algorithm introduced above is shown in the

pseudo code 3.2. An array holding A bytes is assumed to be already allocated.

Conventions used in ‘C’ are used in this pseudo code. For instance, integer

division is used, i.e. k/n = bk/nc, where k, n ∈
�
. Since indexing of arrays

begins with zero the according byte of every integer k is accessed in this way.

The operator mod is the modulo operator, which returns the remainder of an

integer division.

The bit operations which are used in the pseudo-code on the next page

are described in the following list:

• The shift operator a << b shifts all bits in the variable a by b positions

to the left, e.g. 1<<5 = 25. An operation with b ≥ BY TE is not

allowed.

• The call of a AND b is a bitwise comparison of a and b. If the bits

at the same position of a and b are 1 the resulting bit is a 1, too.

Otherwise the result is 0.

• The result of the command a OR b is a 0-bit only if the according bit

in a as well as in b are zero. Otherwise the resulting bit is set to 1.

• The complement of a turns every 1-bit into a 0-bit and vice versa.
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Pseudo code 3.2: Storing integers as bits

procedure: execute command for integer k

1. mask = (1 << (k mod BYTE) ) comment: set the according bit

2. nr = k/BYTE comment: get nr of byte in ARRAY, ARRAY[nr] keeps

all states for integers

(nr*BYTE)<=k<(nr+1)*BYTE

3. if command = store comment: store integer k in array

4. ARRAY[nr] = ARRAY[nr] OR mask

return

5. else if command = find comment: find integer k in array

6. if( (ARRAY[nr] AND mask) > 0 )

return TRUE

else

return FALSE

endif

7. else if command = remove comment: remove integer k from array

8. cmask = complement(mask)

9. ARRAY[nr] = ARRAY[nr] AND cmask

return

endif
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4 Computational Results

4.1 Parameters for the Random Mapping Procedure

The random sequence to structure mapping is considered as an inverse func-

tion, where the preimage of a given structure is constructed. The algorithm

which was described in detail above (sec. 3.2) is implemented to assign se-

quences to secondary structures. The resulting computer program requires

the following input parameters:

• The length n of the sequences, i.e. the number of residues in a molecule.

• An alphabet A and a base pairing alphabet B, which determines the

allowed base pair compositions, in order to compose the sequences.

• A (finite) set of secondary structures.

• The fraction % of the hypercube which must be covered by the conjunc-

tion of all preimages, as mentioned in section 3.2. Using a value which

is less than 1 the time which is needed to perform a mapping can be

reduced.

• The random parameters pu and pp which determine the a priori proba-

bilities for the mapping of the unpaired and paired part of the sequence,

respectively.

The length of the sequences influences two other input paramters. First, the

number of secondary structures which can be constructed depends on the it:

approximately Sn ≈ n−3/3 1.8n different structures can be realized [32, 73].

Second, the number of sequences increases exponentially: |Q| = κn. The

first parameter should be large in order to obtain a great number of different

structures. The size of the sequence space, however, is restricted due to

limited hardware resources. We choose, to set the length of the sequences

to n=30 and use a binary alphabet A= {A, B}. One sequence is coded by

30 bits which yields in 4 bytes. The corresponding hypercube Q30
A contains

more than 109 sequences which requires approximately 4GByte of storage.
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We think that this choice is a good compromise between a maximum of

structure variability and manageable storage requirements.

To determine the remaining parameters we study the results which are

obtained by exhaustive enumeration. In these enumerations the secondary

structures of all sequences of length n = 30 composed of the bases guanine

and cytosine were calculated [26, 27]. There, the corresponding secondary

structures with minimal free energy (mfe) were determined for all sequences

in Q30
{C,G}. The folding procedure, which was used to calculate the mfe struc-

tures, was taken from the RNAfold program package [31]. Some of the results

from the exhaustive enumerations are used in this thesis in order to tune the

input paramters for the random mapping procedure. The results and the

derived parameter values are presented in this section.

Since the folding of sequences is a special kind of sequence to structure

mapping, we will refer to observations and results from this procedure with

the term folding. In case that the random sequence to structure assignement

is considered we will use the term mapping. Thus we can distinguish between

the mfe calculations and the random assignment in a convenient way.

To create the set of secondary structures we determine the number of

structures which are needed. Using the results yielded from the folding pro-

cedure, we find 218 820 different secondary structures. The structures are

classified into two groups: common ones and rare ones. The criterion for the

classification is the average size of a neutral net, i.e. 230/218 820 ≈ 4907. The

structures whose net contain at least thsi number of sequences are called com-

mon, the remaining ones are called rare. From the folding results we derive

22 718 common structures.

The plot in figure 8 presents the cumulative number of common struc-

tures classified by their number of unpaired bases. As shown, most of these

structures do not have more than 50% unpaired bases: Within the frequent

structures only 686 structures contain 18 or more unpaired bases. Due to

steric constraints there are no structures having zero or two unpaired bases.

Structures consisting of 28 unpaired bases are thermo-dynamically unstable.

The results from the exhaustive enumerations are summarized in table 1.
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Figure 8: MFE structures classified by the number of unpaired bases. The structures

are based on sequences in Q30
{G,C}. Main plot: The classes of common mfe structures are

shown. The dashed line represents the cumulative number of structures. Structures having

26 unpaired bases are not found within the common structures. Inserted plot: Distribution

of all mfe structures by the number of unpaired based represented as bars. There are 87

structures with 26 unpaired bases. Due to steric constraints structures having 0 or 2

unpaired bases do not exist. Single base pairs are excluded because they are energetically

unfavorable and thus structures with 28 unpaired bases are not realized. The solid line

shows the number of frequent structures, as in the main plot.

The secondary structures are generated using the algorithm presented

in section 3.1. We accept only structures which have at most 14 unpaired

bases. This restriction is reasonable for two reasons: at first, the folding

enumerations revealed that the largest part of the hypercube is covered by

the preimages of structures fulfilling this criterion. At second, investigations

of former random mappings showed, that structures having 16 or more un-

paired bases would capture far too many sequences. The preimages of these
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up # str com Σ c %Q Σ%

4 21 21 21 0.1 0.1

6 727 497 518 2.1 2.2

8 6 530 2 909 3 427 12.8 15.1

10 24 358 5 997 9 424 28.2 43.2

12 47 677 5 846 15 270 28.1 71.4

14 54 718 5 182 20 452 14.7 86.0

16 43 365 1 580 22 032 4.7 90.7

18 27 590 334 22 366 1.5 92.3

20 9 750 175 22 541 0.6 92.9

22 3 743 128 22 669 0.2 93.0

24 253 48 22 717 0.0 93.1

26 87 0 22 717 0.0 93.1

30 1 1 22 718 0.0 93.1

Table 1: Results of the investigation of common structures yielded from exhaustive enu-

merations on the sequences in Q30
{C,G}. The structures are calculated by means of an

mfe algorithm [31]. The 22718 common structures cover about 93.1% of the hypercube,

whereas 6.9% is shared by 196101 rare ones. Abbreviations used in this table: up: num-

ber of unpaired bases in the structure, # str: number of structures with ‘up’ unpaired

bases, comm: common structures, Σ c: cumulative number of common structures, %Q:

percentage of the hypercube Q30
{C,G} covered by the common structures, Σ %: cumulative

percentage.

structures distorted the analysis of the neutral nets. For that reason, the

open structure, i.e. the structure consisting of n unpaired bases, is also not

included into the set of structures.

As presented in table 1 we see, that the fraction of the hypercube cov-

ered by sequences folding into common secondary structures is 93.1%. The

parameter % is used only in order to save computer resources and therefore

its setting is arbitrary. From the table we derive that a value of %=0.95 is a

generous choice.

To perform the random sequence to structure mappings we use the pa-

rameters as elaborated in this section. We summarize them in the following

list:

• The length of the sequences (and structures) is set to n = 30.
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• A binary alphabet is used: A = {A, B}. The base pairing alphabet is

defined to be complementary, i.e. B={(A, B), (B, A)}.

• 30 000 different random secondary structures are generated using the

algorithm described in section 3.1. The set of all structures is denoted

by S. In order to perform the mapping the structures must be listed in

a tuple T . For each mapping which is performed, one of the |S|! tuples

is selected yielding in a unique index for every structure.

• The randomly generated structures may have at most 50% unpaired

bases. In the case of investigating structures of length n = 30 the

structures contain at most 14 unpaired bases.

• The mapping is stopped, if:

– 95% of all sequences in the hypercube Q30
A are mapped or, if

– a preimage is found for all 30 000 structures. (Note: In this sense,

the empty set is also a valid preimage.)

• To obtain a survey about the mapping characteristics we use the fol-

lowing combinations of a priori random parameters for the mapping:

(pu, pp) = (0.1,0.1), (0.2,0.2), . . . , (0.9,0.9) and (1.0,1.0). Realistic val-

ues for the degree of neutrality were computed for tRNA [56]. There,

the degree of neutrality was investigated at differentthe levels, including

a two λ-view.

Note, that due to these restrictions we will not get information about the

total number of structures which have a nonempty preimage. In particular

we will not find out how many rare structures exist, a number which after

all can be derived exactly only by exhaustive enumerations. Remember, that

the open structure is not included into the set of structures. The results of

the mappings are discussed in the following sections.

4.2 Availability of Compatible Sequences

A first investigation of the mapping is to study the ratio of the preimage

size and cardinality of the set of compatible sequences of one structure. We
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know that for any two structures s and s′ the sets of compatible sequences

always have a nonempty intersection, C[ss] ∩C[ss′ ] 6= ∅. Since the mapping

is performed sequentially for every structure in the tuple T , starting with

index 1, we assume that structures being assigned to the first indices will

have an preimage which contains approximately pu·pp·|C[s]| sequences. The

question arises how many preimages can be created before the effect of this

hollowing out of the sequence space becomes noticeable.

The effect of the mutual influence can be studied best by using the result

of the mapping performed with the parameter set p = 1.0, i.e. the random

process has no effect. In this case, the cardinality of the neutral net of any

structure could in principle be calculated. The well known inclusion-exclusion

formula is used, to determine the size of the preimage the structure assigned

to index j:

|Γ[sj]| =

∣

∣

∣

∣

∣

C[sj] \

j−1
⋃

i=1

(Γ[si] ∩C[sj])

∣

∣

∣

∣

∣

(4.1)

Where the number of sequences belonging to the neutral nets of the first

and second structure (i.e. the index is 1 and 2, respectively) can be calculated

easily, the endeavour needed to determine the frequency of a structure with

higher index increases exponentially. The number of addends in the above

formula is 2n for structure having index n + 1. Another problem arises in

determining the sequences which belong to the intersection of the set of

compatibles of three or more structures. It is even not known, if there is a

number J for which holds that for all j > J the intersections of the set of

compatibles ∩j
i=1C[si] = ∅.

The sequences to structure mapping is a realization of the inclusion-

exclusion formula 4.1. As described in section 3.2 a sequence σ is mapped

to a structure sj, if it is compatible with this structure, σ ∈ C[sj], and if it

is not mapped yet to another structure, σ 6∈ ∪j−1
i=1 (Γ[si] ∩C[sj]). The results

of the mapping with parameter p = 1 are shown in figure 9. The fraction

of compatible sequences which are mapped to the structure assigned to the

index given on the x-axis is plotted, i.e. |Γ[si]|/|C[si]|. The semi-logarithmic

plot points out that approximately 20 structures collect almost the entire

set of compatible sequences in their preimage. For the remaining structures
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Figure 9: The plot shows the ratio of the neutral nets to the set of compatible sequences:

|Γ|/|C|. The nets result from mapping sequences in Q30
A using the parameter p=1.0, i.e. a

sequence is always mapped if it is compatible with structure assigned to the index and

if the structure is still available. The hollowing out of the set of compatible sequences

comes into effect yet after the preimages of 20 structures were constructed. (The abscissa,

i.e. the index, is given in logarithmic scale.)

the influence of the intersection with structures having been mapped before

becomes strongly noticeable.

Using smaller mapping parameters one would expect that the influence

of the intersection is reduced or almost negligible for structures with a higher

index. The sizes of the preimages are supposed to range close to their ex-

pected value: |Γ[s]|/(pu ·pp ·|C[s]|) = 1. In contrary to this expectations, the

steep descend in the plot shown in figure 9 is also existent in mappings with

lower a priori parameters.

As shown in figure 10 there is a clear effect of the mutual intersection.

The diagram in this figure presents the results for the mappings with the
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Figure 10: Results from random sequence to structure mappings with parameters p=0.1

to 1.0. The sequences are taken from Q30
A . The ratio |Γ|/|C| for the structures assigned

to the according index is shown. The curves are labeled with the according mapping

parameter. The curves present the running averages of the ratio, where the interval of

the running average is 1% of the number of structures realized by the associated mapping.

For the sake of comparability the ratio |Γ|/|C| is normalized with the factor 1/(pu ·pp).

parameter p = 0.1, 0.3, 0.5, 0.7 and 1.0. The curves present the running

averages which are calculated over an interval of 1% of the total number

of structures of each mapping experiment. For the sake of comparability,

the data shown in figure 10 are normalized with the according factor 1/(pu ·

pp). In case that smaller mapping parameters are used the intersection of

preimages has a noticeable effect for higher indices or, in terms of the mapping

chronology, for structure which are mapped later. Even when the parameters

pu and pp are set to 0.1 the ratio |Γ|/|C| results in a steep descend.
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Figure 11: The plot shows the degree of neutrality λu of the unpaired parts. The λ-

values are determined by counting the neutral neighbours of a sequence sample taken

from the preimage of the structures with according index. The preimages were generated

by mapping sequences in Q30
A to structures using the random parameters p = 0.1 to 1.0.

The curves represent the running averages, which are calculated on an intervall which

contains 1% of the available data points for each mapping. The curves are normalized

with their according value of pu. As expected, a small random parameter causes the

degree of neutrality to decrease more slowly than a large one. We state, that the running

averages are converging to the value of 0.1 · pu. (See also figure 12.)

4.3 Neutrality in Preimages of Random Maps

The Monte Carlo process used to perform the mapping requires two inde-

pendent probability parameters. As described in section 2.2, a sequence is

composed of two parts. One part, σu, is assigned to the unpaired bases in

the structure, the other, σp, encodes the base pairs of the structure. Each

part is chosen with the a priori probability pu and pp, respectively. Since

these parameters are used in analogy to the fraction of neutral neighbours

as obtained by folding experiments, we examine how the random parameters
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Figure 12: The plot shows the degree of neutrality λp for the paired parts of the secondary

structures. In this case the running averages are converging to the value of 0.17 · pp. The

descend of the λp-values is less steep than in the case of the unpaired part. In our model

a base-pair exchange is considered as a one-step mutation. The paired regions have a

higher neutrality than the unpaired regions in the case that two bases are exchanged

simultaneously and correctly. This, of course, is not likely in the case of nantural RNA

sequences. In nature a neutral base pair mutations consists of two (independent) steps.(See

also caption of fig. 11.)

match with the degree of neutrality for each part of the sequence.

To determine the neutrality parameters λu and λp for the partial se-

quences σu and σp, respectively, the algorithm detailed in section 3.4 is used.

The results are presented graphically in figures 11 and 12. The degree of

neutrality ranges from 0 to the according value of the parameter pu and pp,

resprectively. For this reason the running averages are displayed rather than

the original data. The length of the interval which is used to calculate the

running average is 1% of the number of structures which are realized in the
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according mapping. For better comparability the values are normalized by a

factor 1/pu and 1/pp, respectively.

In contrary to the fraction of compatible sequences belonging to the

preimage of a structure (see figures 9 and 10), the degree of neutrality does

not tend to the zero line. However, there exist structures for which the

neutrality almost vanishes, but the running average remains at a level of ap-

proximately 0.1pu for λu and 0.17pp for λp. This indicates that neutral nets

are existent also for small random parameters and for small preimages. More

detailed results are are presented in section 4.5. Furthermore, these results

are a first hint for the existence of neutral nets: The sequences belonging to

the preimage of a given structure are not randomly distributed in sequence

space.

4.4 Distribution of Preimages

As an important feature of the sequence to structure mappings we study

the distribution of the sizes of the preimages. To this end the structures are

sorted in descending order by the size of their preimage. This procedure yields

a ranking of the structures, i.e. r(si) < r(sj) ⇔ |Γ[si]| > |Γ[sj]| (see also

section 2.3). The results of this ranking for mappings with the parameters

pu =pp =0.2, 0.4, 0.6, 0.8 and 1.0 are shown in figure 13.

We notice that the distributions have similar shapes despite the fact that

different a priori parameters are used. Since the sequence to structure map-

pings do not cover the entire sequence space, we do not know how many

structures exist in total (see section 4.1). Therefore, the criterion used in

the case of mfe enumerations which clearly classifies structures into groups

of common and rare ones, is not suitable in our case. Nevertheless, we are

interested in a definition of the frequent structure, which is consistent for

mappings with different paramters. Here, we discuss a particular measure

of “frequent”, since frequent structures are clearly defined by considering

a familiy of structure [62]: It is the family of structures fulfilling that the

fraction of frequent structures goes to zero whereas the fraction of sequences

belonging to those structures goes to one as n →∞.
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Figure 13: Distribution of the preimage sizes. The data are obtained by mapping sequences

in Q30
A with different random parameters. The plot is in double logarithmic scale showing

the selection for parameters p=pu =pp =0.2, 0.4, 0.6, 0.8 and 1.0. Using a higher random

parameter, the number of structures which are realized decreases.

We make note of the fact that the size of the largest net varies with the

random parameter of the mapping. Furthermore, the number of structures

having a nonempty preimage is not constant either, as we see in table 2

(p. 55) and figure 13. Due to the variation of these two essential figures, we

look for a criterion which is independent of those absolute data. Therefore,

an approach of fitting the distribution curves by an analytical function is

made. We use an extended Zipf’s law function

f(r) = a (1 + r/b)−c (4.2)

to perform a non-linear curve fitting [79]. In this function r is the rank of

the structure, a is the scaling value, i.e. the maximum value, b is a parameter
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indicating the borderline between frequent and rare structures and c describes

the power-law decay for the rare structures.

Since we want to spotlight the frequent structures rather than the number

of rare structures, we are not interested in the value of the parameter c. This

specification cannot be determined using fomula 4.2, since the number of

rare structures is unknown. However, the parameter b can be evaluated well.

This parameter will not be affected even if the mapping is continued until

the entire sequence space is covered.

p # str. Σ[%] Max b |Γ| %M 25%M |Γ| %Q

0.1 29983 61.3 153105 5546, 35506, 23.2 4789, 38277 16.1

0.2 29997 87.2 294177 4249, 66347, 22.5 3730, 73550 49.6

0.3 29982 90.9 478229 2816, 99308, 20.7 2253, 119576 43.0

0.4 29784 94.2 750992 1604, 175173, 23.3 1481, 187750 47.1

0.5 29622 95.6 1186085 1069, 261302, 22.0 932, 296851 46.8

0.6 29239 96.4 1604820 715, 394400, 24.6 701, 401317 48.2

0.7 28691 97.0 2125659 578, 491302, 23.1 534, 531477 49.3

0.8 22289 97.0 2743365 398, 697805, 25.4 403, 685870 49.3

0.9 17661 97.0 3417287 333, 835993, 24.5 324, 858458 50.1

1.0 13829 97.0 4177920 280,1008772, 24.1 269,1046504 50.8

Table 2: Results of the sequence to structure mapping based on sequences in Q30
A . The

columns list the random parameters p, i.e. pu and pp which are identical, # str: the

number of structures with a preimage 6= ∅, Σ[%]: the sum of the sizes of all preimages in

percentage of Q, Max: maximum preimage size (i.e. of structure with rank 1), b: the rank

corresponding to the fit parameter yielded by the non linear curve fitting, |Γ|: the size of

this rank (b), %M: size of the preimage of rank b in percentage of the maximum, 25%M:

the number of structures whose net is larger than 25% of that of rank 1, |Γ|: the size of

the rank associates to the 25%-level, %Q: the percentage of the hypercube covered by all

preimages up to the 25%-level

In table 2 the results of the mappings which have been performed are

shown. The complete results for the fit parameters a, b, and c are listed in

table 11 in the appendix A. A consistent definition for all random parameters

is found to define the term frequent : We find that the value of the parameter

b is a rank for which the corresponding net has a size of approximately 25%

of the largest net (see column % M in table 2). Therefore, it is consistent to
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define a structure as frequent, if its neutral net contains at least 25% of the

number of sequences of the largest net.

The distributions and the fitted curves for the mappings with parameters

pu = pp = 0.2, 0.4, 0.6, 0.8 and 1.0. are shown in figure 14 on page 57. The

blow ups in the graphs show the rank and the size of the 25%-level (◦) and the

rank corresponding to the fit parameter b (�). We state, that all structures

classified as frequent cover about 50% of the entire hypercube, except in the

case where the mapping is performed with parameter pu =pp =0.1.

4.5 Composition of Neutral Nets

The average degree of neutral neighbours in the net of frequent structures

were invetigated in section 4.3. The comparison of the experimental neutral-

ity parameters λ with the a priori mapping parameters brinds up the issue,

how neutral nets are composed. We study, whether or not the neutral nets are

connected, i.e. whether all sequences belonging to one net are connected via

neutral mutations. To this end we use the algorithm described in section 3.3.

The number of components a neutral net sonsists of and as well as the sizes

of the components are evaluated. Our aim is to demonstrate that there exists

a threshold value p∗ for the mapping parameters concerning the connection

characteristics of the neutral nets. Furhter, we investigate the statement

of theorem 2.2, which claims that below the threshold of p∗ = 1− α−1
√

1/α,

i.e. p∗ =0.5 in our case, almost all nets are disconnected whereas the major

fraction of the nets is connected, if the mapping is performed with parameters

above p∗.

From the results presented in section 4.2 one would assume, that it is

most likely to find only a negligible number of structures whose nets are

completely connected. We focus on the frequent structures which were de-

termined in section 4.4. The neutral networks are classified by the number

of components they consist of. In table 3 the result of this investigation are

presented. The distribution of the number of components is shown in the

plots of figure 15 (in higher resolution than the data provided in table 3).

The histograms demonstrate, that the fraction of neutral nets, which consist
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Figure 14: The diagrams display the distribution of the preimages obtained by mapping

sequences in Q30
A with the parameters p = pu = pp = 0.2 (upper left), p = 0.4 (upper

right), p = 0.6 (lower left) and p = 0.8 (lower right). The abscissae show the rank of the

structures, the ordinates show the size of the corresponding net. The solid line represents

the experimental results where the dashed line is the result of the non linear curve fitting

using the function f(r) = a(1+r/b)−c. The inserts show the blow ups of the corresponding

boxes: The rank of the 25%-level net is shown as ◦. The rank corresponding to the fitting

parameter b is shown as �. The ordinate axis of the inserted graphs are scaled with a

factor 105.

of a few components, increases with the random parameter. For the sake of

resolution not the complete range of the number of components is used for

the x-axes.

Beside the number of components also the size of the components is de-

cisive in the case one regards the liability of a structure when the sequencs is

mutated. Therefore, we evaluate the ratio of the largest component and the
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NOC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0 0 0 0 29 58 78 92 116 196

2 0 0 0 1 14 24 14 12 17 0

[3, 10] 0 0 0 12 80 69 51 47 43 34

[11, 1000] 0 225 603 647 426 311 286 233 148 39

> 1000 4789 3505 2213 821 383 239 106 19 0 0

Sum 4789 3730 2816 1481 932 701 535 403 324 269

Mean 9739 7148 5009 2690 1391 941 476 222 69 5

Max 9393 711 245 19 1 1 1 1 1 1

Table 3: The table shows the number of components (NOC) of the frequent neutral nets as

obtained by mapping sequences inQ30
A with the parameters pu =pp =0.1, . . . , 1.0. The rows

list the number of frequent structures whose nets consist of 1 component, of 2 components,

between 3 and 10 components, between 11 and 1000 and more than 1000 components.

The last rows give a summarizing statistic about the number frequent structures, the

mean value of the number of components and the number of components, most of the nets

consist of.

preimage size. In the graph of figure 16 (page 60) the results are presented

as a plot. We summarize the results in the following list:

• Using the mapping parameters pu = pp = 0.1 results in completely un-

structured preimages.

• Giant components, i.e. components which contain at least 2/3 of the

entire net, exist for any choice of the mapping parameters, except for

p=0.1.

• For all mapping parameters p≥0.5 almost all frequent structures have

a neutral net where the largest component consists of at least 97% of

the entire net.

Investigating the rare structures reveals, that there are also neutral nets

consisting of one component, if the random parameter is less than 0.5 (see

table 12 in the appendix). These nets mostly consist of one sequence only as

shown in figure 28 in the appendix.

The occurrence of completely connected neutral nets is considered as a

trigger. In this sense, the investigation of the frequent structures indicates
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Figure 15: Distribution of the number of components (NOC), shown for the frequent

structures as yielded by mapping the sequences in Q30
A . The ordinate axes show the

fraction of the frequent nets (see table 3). The width of the bars in the histograms is

set to 200 for p = 0.1, it is set to 10 for p = 0.2 and 0.3, it is set to 1 for the remaining

parameters. The according mapping parameter pu =pp =p is printed in every histogram.

Note that the range of the axes varies. For parameters p≥ 0.5 neutral nets consisting of

one component are recorded. In the case of lower parameters the nets decompose in more

components until the are set up of many clusters as seen for the mapping with p=0.1.

that the value pu = pp = 0.5 can be regarded as the threshold value as pos-

tulated in theorem 2.2. The histograms presented in figure 15 confirm this

thesis. Below this value no neutral net is found which is completely con-

nected, above this value neutral nets which are completely connected occur.

Taking into account the sizes of the components expose the existence of the

threshold even more.

The results shown in table 3 are studied further. We state that the mean

of the number of components (NOC) noticeably differs from the maximum
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Figure 16: Analysis of the largest components of neutral nets. The abscissa of the plot

shows the random parameter used for mapping the sequences in Q30
A . The ordinate shows

the fraction of frequent structures for which holds: the neutral net consists of one compo-

nent: •, the largest component contains at least 99% of |Γ|:
�

, at least 97% of |Γ|: � . The

fraction of giant components is shown by the symbol � .

value. This value shows the number of components most of the nets are

consisting of or, in other words, it is the peak of the distribution of NOC.

The fact that the mean value and the peak are different points out that

the number of components are not Poisson (or randomly) distributed. The

random construction of the preimages according to the mapping procedure

(see section 3.2) results in well structured neutral nets.

4.6 Neutral Walks in Sequence Space

The algorithm described in section 3.5 was implemented to perform a neutral

walk on the net of a secondary structure s, the reference structure. Mapping

the sequences which lie in the boundary of the neutral walk gives insight into



4 Computational Results 61

p average max min

0.1 4.3 14 0

0.2 24.4 100 0

0.3 129.5 388 5

0.4 303.7 661 67

0.5 880.6 2110 116

0.6 2104.3 4073 378

0.7 4558.2 10907 245

0.8 7375.1 11389 1965

0.9 5960.4 11120 1291

1.0 7359.1 10265 3223
Random Parameter

N
ew

S
tr

u
ct

u
re

s

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

105

Table 4: The number of new structures found in the boundary of a neutral walk in

Γ[s] ⊂ Q30
A , performed for different random parameters p = pu = pp = 0.1 to 1.0. The

columns show the average number of structures found in 15 independent random walks as

well as the maximum and minimum number of structures. The plot shows these values

in semi-logarithmic scale: • is the mean number of structures. The whiskers represent the

total range, i.e. the minimum and maximum number of structures. We find a functional

dependence of structures number on the random parameters. The whiskers, however,

indicate statistical fluctuation.

the mechanism, how the sequence space can be “explored” by point muta-

tions. First investigations of the rate of innovation for those neutral walks

are described in [19]. Another recent example, where a tRNA is studied, can

be found in [35].

For each pair of random parameters (pu, pp) = (0.1, 0.1), (0.2, 0.2), . . . and

(1.0, 1.0) 15 neutral walks were performed. At first, the number of different,

or “new”, structures found in the boundary of a neutral path are counted.

For each walk, a different reference structure was used, in order to improve

the statistical relevance. We determine the minimum and maximum number

as well as the average number of structures found in walks performed with

one parameter value p. The results are shown in table 4. The semilogarithmic

plot beside the table visualizes the data.

The rate of innovation, i.e. the number of new structures found per step,

directly affects the ability to discover new structures in the boundary of the

walk. This rate is not a constant value, since the overall number of existing
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structures is limited. Further, we note that the number of new structures

found along a neutral walk varies. Using small mapping parameters, it is

unlikely that a mutation is neutral which results in short neutral walks.

In the case that the parameters pu and pp are increased, new structures are

hardly found since sequences are mostly mapped to a structure occuring early

in the tuple T of structures. Hence, the maximum number of structures

is not found, if the random parameters are set to 1.0. Within the scope

of the simulations we find the most structures for neutral walks using the

parameters pu =pp =0.8.

For random parameters p=0.1 to 0.5 the relation between the number of

new structures and the length of a walk is exponential. The effect of satura-

tion is not yet detectable, i.e. the rate of innovation does not yet decrease.

As presented in table 4 we find that the saturation effect is noticeable, when

the mapping parameter is set to p ≥ 0.6.

The effect of saturation can be expressed in an analytical expression for

a distribution function n(s) This function registers the number of new struc-

tures which have been detected from the beginning of the walk, i.e. step 0,

to step s. We use the following ansatz:

n(s) = M − A exp(−s/ν) (4.3)

The parameter M represents the maximum value, A is a normalization con-

stant and ν is the characteristic number of steps to find 1/e ≈ 63% of all

structures occuring in the boundary of a neutral path. Two representative

plots for random parameters p=pu = pp =0.6 and 0.8 are shown in figure 17.

The progression of function 4.3 is similar for the parameters p=0.7, 0.9 and

1.0.

The neutral nets of the structures which are found along a neutral path

cover a certain fraction of the hypercube. We use the term covering ability to

describe this feature. We are interested how the mapping parameter affects

this fraction. From the results presented in section 4.4 we derive the sizes

of all neutral nets ranked according to their size. From the neutral walks

we obtain the number of structures n(s∗) found in the boundary. Since the

mapping procedure used in the neutral walks differs from the one used in

the complete mapping experiments, we cannot identify n(s∗) with the rank
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Figure 17: The cumulative number of new structures found along a neutral walk, computed

for sequences in Q30
A . Left hand side: The plot shows the result for random parameters

pu = pp = 0.6. The walk is 898 steps long. Right hand side: The data are obtained by a

walk performed with parameters pu =pp =0.8. This walk consists of 33485 steps. Due to

the algorithm used a neutral walk contains no loops or branches, i.e. they are self avoiding

walks in Q. In both cases presented here the walk terminated in a dead end. The fit is

obtained using the function n(s)=M −A exp(−s/ν) (equation 4.3).

obtained by the sequence to structure mapping. In other words, it is unlikely,

that the most frequent n(s∗) structures are found in the boundary of a neutral

walk. However, we assume that the most frequent structures are also most

likely to be found in the early steps of a neutral walk. To get an estimation

for the lower boundary for the rank r for which holds that s1, . . . , sr are found

along the neutral path we determine the fraction γ of the n(s∗) structures

with γn(s∗) = r.

Using the function n(s) from equation 4.3 for non linear curve fitting,

we determine the parameter ν for the mappings with p = 0.6 to 1.0. This

parameter is associated with the rank r of the structure as realized in the

mapping presented in section 4.4. The ratio of the number of new structures

found at step ν, n(ν), to the total number of new structures found in the last

step s∗ of the walk, n(s∗), is approximately n(ν)/n(s∗)=γ=70% for all walks.

The numerical data are presented in table 5. For the parameters p=0.1 to

0.5 we assume γ = 1, since there is no saturation effect detectable. This

assumption does not influence the conclusion of the result we are presenting

here. The conclusion would be even more obvious, if γ was set to a smaller
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p s∗ n(s∗) γ

0.1 1 4 1.0

0.2 3 26 1.0

0.3 10 129 1.0

0.4 23 325 1.0

0.5 80 804 1.0

p s∗ ν n(s∗) n(ν) γ

0.6 898 343 2333 1590 0.68

0.7 11987 4231 4794 3422 0.71

0.8 33485 12882 7499 5469 0.73

0.9 42533 14697 5454 4097 0.75

1.0 300001 98969 7313 5472 0.75

Table 5: The tables show the the number of sequences s∗ a neutral path consists of, the

number of structures found along the path n(s∗) and the fraction of frequent structures γ.

The table on the right hand side additionally shows the characteristic number of sequences

ν as obtained by fitting, and the according number of structures n(ν). (Computed for

mapping sequences in Q30
A .)

value for these parameters. We associate the frequent structures with those

found at first in the walk. The complete list of the fitting parameters M , A

and ν is given in table 13 in appendix A.

From the data given in table 6 and figure 18 we derive the following

results: the probability for a neutral network of a structure, Γ[s], to be

connected is higher, if large random parameters are used. The algorithm

implemented to perform neutral walks (see section 3.5) does not enable a walk

to produce cycles or to diverge into branches. In this sense, a neutral walk is

a realization of a self avoiding walk in Q30
A (SAW). Due to its construction, a

walk is always performed in one component of the neutral net, which means

that a neutral walk usually cannot cover an entire component of a net.

In the semi-logarithmic plot presented in figure 18 the non-polynomial

growth of the number of sequences occuring in a neutral walk is shown for

experiments performed with parameters greater than 0.5. We interpret this

p: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

av: 1 2 8 21 99 1065 33794 123151 137319 260344

max: 3 8 23 48 280 4536 227737 300000 300000 300000

min: 0 0 1 4 7 33 24 688 710 7780

Table 6: The number of sequences belonging to a neutral walk depending on the random

parameter p. The table shows the average number of sequences from 15 walks, the max-

imum and the minimum number. In order to save CPU time resources the length of the

walks are limited to 3× 105 steps.
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Figure 18: Semilogarithmic presentation of the length of a neutral walk for the random

parameter p = 0.1 to 1.0. The length of a walk is measured in the number of sequences

belonging to the neutral walk (not the Hamming distance of the a sequence to the start

sequences). The solid line connects the mean length from 15 independent neutral walks

(•) based on mapping sequences in Q30
A . The antenna show the range of the length of

the walks, i.e. the minimum and maximum number of sequences a walk consists of. The

(short) red line shows a hypothetical exponential relation between the parameter p and

the length of a neutral walk. For parameters p ≥ 0.5 the relation becomes non-polynomial.

value of the random parameter as the threshold value for the prominence

of a neutral nets characteristic “to be connected”. This observation is in

good agreement with the results from the explicit sequence of components

decomposition presented in section 4.5.

The fraction ρ of the hypercube Q30
A which is covered by the structures

found along a neutral path is determined. Due to the algorithm which was

implemented to perform the neutral walk we do not know the preimages of

these structures. Only the total number of structures is known. As explained
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Figure 19: Covering ability of neutral walks. The fraction of Q30
A which is covered by the

structures found in the boundary of a neutral walk. The data represent the fraction ρ of Q

where the symbol • is the mean value from 15 independent walks. The whiskers represent

the range of these walks. The number of structures which are used to determine ρ corre-

sponds to the ν-value obtained by fitting the data with the function given in equation 4.3.

For parameters p=0.8, 0.9 and 1.0 the upper ends of the whiskers are almost identical at

95%. However, the mean is not steadily increasing which results from the wider range at

p=0.9.

above we associate this number with the most frequent structures realized in

the according sequence structure mapping. We can do so as long as a walk

does not reach the level of saturation, at least our conclusion is not affected.

When saturation comes into effect, we assume that only the fraction γ of all

frequent structures F of the mapping is found in the neutral walk. (Note: F

is determined as described in section 4.4.)

The results obtained from the neutral walk simulations demonstrate the

ability to cover the hypercube with such a method. The plot in figure 19

shows the fraction ρ of the hypercube Q30
A , which is covered by the preimage

conjunction of the number of structures found along the neutral walk.
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The cover ability of a neutral walk is attributed to the denseness character-

istic of the networks. A new structure s′ can only be found, if a sequence σ

which is found in the intersection of the set of compatible sequences of the

reference structure sref and the new structure, σ ∈ C[sref ]∩C[s′], is mapped

to the new structure, i.e. σ ∈ C[s′]. As long as the net of the reference

structure is not dense in C[s], the sequences belonging to the intersection

are unlikely to be found by a neutral walk. This means that only a few nets,

i.e. structures different from the reference, are accessible. If the net of the

reference structure s becomes dense in its set of compatibles C[s], all other

structures are accessible from this net. In this sense the investigation of neu-

tral walks is an evidence, that the denseness characteristics of the sequence

to structure mapping are protuberant, if the mapping parameters get larger.

In figure 19 we see, that the threshold value is p∗ =0.5, within the reso-

lution the simulation data can provide. The experimental data do not reveal

a sharp threshold leading to a heavy-side like plot. One reason is, that the

neutral walks do not cover the entire net of the reference structure. Another

reason is, that in the simulations we deal with a finite chain length, whereas

the theoretical prediction of the threshold value p∗=0.5 is made for the limit

n→∞.

4.7 Mapping of Sequences into Tertiary Structures

The tertiary structure a RNA sequence is able to form is considered as a

superposition of the well known secondary structure an some additional base

pairs. These additional base pairs are referred to as tertiary contacts. As

detailed in section 2.7 these contacts are not subjected to constraints such

as being knot free. In our model it is sufficient to generated the tertiary

contacts at random. The algorithm which is used to generate these contacts

is described in section 3.1.

Based on the tuple of secondary structures, T , tertiary contacts are set

up for different values of parameter c3. This parameter determines the frac-

tion of bases being involved in tertiary contacts. For the set up of tertiary

contacts we use the values c3 =0.05, 0.1, 0.2, 0.25 and 0.3. Starting from this
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Figure 20: Distribution of the preimages of structures with different number of tertiary

contacts. The mapping of sequences in Q30
A to secondary structures is performed with

the parameter p = 0.8. Sequences which are compatible with the tertiary contacts are

than assigned to the according tertiary structure. The x-axis is plotted in logarithmic

scale. The • indicates the rank of the structure whose net contains 25% of the largest net.

Since the mappings for the parameters shown were performed only once, the marks of the

25%-level cannot indicate a trend.

parameter we set the number of tertiary contacts to the fixed value bc3 · nc.

Therefore, all structures which are generated using the same value for c3

contain the same number of tertiary contacts. Nevertheless, the position of

the residues being involved in those contacts are chosen randomly. Further,

two structures may differ in their underlying secondary structure whereas

the tertiary contacts may be identical.

The sequence to structure mapping is performed using the a priori ran-

dom parameter p = pu = pp = 0.8. This parameter has been shown to result

in connected and dense neutral networks of secondary structures and still
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a sufficient large number of structures obtain a non-empty preimage. The

bases which are involved in a tertiary contact must obey the relation Ry.

This rule results in an alphabet Υ which is set to Υ={(A, B), (B, A)}. This

means that in the simulations performed here, Ry is identical to R∗. The

algorithm which is used to perform this mapping is described in section 3.2.

We investigate the distribution of the preimages and how the resulting nets

are composed.

The size of the nets being assigned to a tertiary structure are presented in

figure 20: The more tertiary contacts the structures contain the few sequences

are contained in the neutral networks. A surprising result is, that for a fixed

parameter c3 the size of the networks are staying at an almost constant level

for a large number of structures. To determine a figure which classifies the

structures into rare and frequent ones the criterion found for the mapping

of sequences to secondary structures is used. The black dots (•) in the plot

indicate the nets whose size is about 25% of the largest net. We find, that

the number of frequent structures also increases with the parameter c3.

To calculate the number of sequences which are compatible with a ter-

tiary structure is not as straightforward as for secondary structures. A ter-

tiary contact between two bases which are not paired with any other base,

reduces the number of compatible sequences by a factor of two. For a rough

estimate of |C[s(3)]| for tertiary structures s(3) we calculate |C[s(2)]| for the

underlying secondary structure s(2) and divide the resulting number by 2 for

every tertiary contact in the structure. The results are shown in figure 21.

The plot in figure 21 reveals, that the neutral nets of the tertiary struc-

tures contain a almost constant fraction of their compatible sequences. In

contrary to the case of secondary structures the intersection of the set of

compatible sequences of two different tertiary structures usually is empty

the inclusion exclusion formula has no effect.

The fact, that the neutral nets contain a large part of their set of compat-

ible sequences is also reflected in the composition of the neutral nets. An

investigation of the nets reveals, that most of them consist of one compo-

nent only. The histograms in figure 22 show the distribution of the number

of components of neutral networks from common structures. The fraction

of nets which are composed of more than one component is almost vanish-
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Figure 21: Fraction of compatibles sequences in Q30
A mapped to tertiary structures with

according index. The mapping to the underlying secondary structures is performed using

p = 0.8. The curves show the running average for each mapping to structures with a

different number of tertiary contacts determined by c3. The average is taken on 1% of the

structures.

ing. Investigating the sizes of the components shows that for most structures

the largest component contains 99% of the net. Detailed data are given in

table 7.

4.8 Random Mapping and RNA Folding Data

The results obtained by the random sequence to structure mapping are com-

pared with the results from exhaustive enumeration [26, 27]. These data are

generated by using an algorithm which calculates the secondary structure

with minimum free energy (mfe) of every sequence in the hypercube Qn
A.

The binary alphabet A= {C, G} is used to set up the sequences of length
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Figure 22: Fraction of common neutral nets resulting from mapping sequences in Q30
A to

tertiary structures. The range for the number of components shown here is restricted from

1 to 15.

c3 freq |χ1|= |Γ| ≥2/3|Γ| ≥0.99 # str

0.1 1268 531 1268 1267 29751

0.2 8049 4267 8049 8022 28451

0.25 727 546 727 724 27653

0.3 1378 1356 1378 1372 25380

Table 7: Results from the investigation of the neutral nets of tertiary structures obtained

by mapping the sequences in Q30
A . For different parameters c3 the table shows: the number

of frequent structures. |χ1|= |Γ|: the preimage consists of one component. |χ1| ≥2/3|Γ|:

the neutral net contains a giant component. ≥ 0.99: The largest component contains at

least 99%. The last column shows the number of structures with nonempty preimage.
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n=30. For the sake of transparency we will refer to the results obtained by

mfe calculations by the attribute folding whereas we use the term mapping

for the data obtained by random sequence to structure mapping.

We study the distribution of the preimage sizes, the degree of neutrality

of the preimages and the composition of the neutral nets. To give an overview

the results obtained by the mfe calculations are summarized:

• There are 218 820 secondary structure realized by the 230 sequences.

The average preimage contains approximately 4907 sequences.

• We find 22 718 structures whose preimage is larger than this average,

i.e. approximately 10.4% of all structures are classified as common.

About 93.1% of the hypercube is covered by the preimages of these

structures.

• The largest preimage consists of 1 568 485 sequences. The criterion

to classify a structure as frequent, which is found to be appropriate

for the mapping results (see section 4.4) requires that the neutral net

of a structure must contain at least 25% of the number of sequences

of the largest net. This criterion is fulfilled by only 175 structures,

i.e. 0.08% of all structures. The preimages of these 175 structures cover

10.0% of Q. A fit of the distribution data by using the function 4.2

results in a parameter b=132. These data and the fitted curve do not

match well with the results from the mfe folding. Therefore we focus on

the structures whose nets contain more than the average net, i.e. 4907

sequences. The data which correspond to the neutral nets which fulfill

the 25% criterion are shown for the sake of completeness.

4.8.1 Distribution of Preimages

The plot given in figure 23 shows the distribution of the folding preimages.

The abscissa presents the rank of the structures, the ordinate axis gives the

size of the according preimage. The shape of the distribution is similar to

the results obtained by the mapping procedure, but the decay is not as sharp

as in the case of the mapping procedures.
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Figure 23: The plot shows the sizes of the preimages of the mfe secondary structures

calculated from sequences in Q30
{G,C}. x-axis: Rank of Structure, y-axis: Size of Preimage,

: average size of a neutral net, ◦: the rank of the 25%-level net, �: parameter b of the

function f(r) = a(1 + r/b)−c (equation 4.2) as determined by nonlinear curve fitting. The

red colored curve presents the fitting result.

From these data we derive that the folding tends to realize more struc-

tures having a comparably small preimage rather than concentrate a large

fraction of the hypercube in the frequent structures. In almost all mapping

experiments the frequent structures cover about 50% of the hypercube, which

also explains the steep descend of the preimage distributions.

Remember that not all secondary structures are available in the sequence

to structure mappings. Previous studies showed that structures having more

than 50% unpaired bases collect to many sequences. This resulted in a dis-

tribution where even less structures have a large preimage. The model used

for the mapping procedures is not able to take into account the mechanisms

of the folding in this detail. Nevertheless, the mapping results reveal some
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Figure 24: The plot shows the running averages of the fraction of neutral mutations for the

unpaired and paired part of the structures, λu and λp, respectively. The data are obtained

by mfe calculations on Q30
{G,C}. Note, that λp is not defined for single point mutations as

is λu, but for base pair exchange. The average is taken on 1% of the frequent structures.

intrinsic characteristics of the sequence to (secondary) structure relation.

4.8.2 Degree of Neutrality

For the neutral nets obtained by the mfe calculations we cannot refer to an a

priori parameter for the degree of neutrality, whereas the average neutrality

is the key parameter for the model of the mapping procedure. For the degree

of neutrality a as a funcion of positions in tRNA, in particular paired and

unpaired positions refer to [56].

Using the algorithm described in section 3.4 the degree of neutrality is

calculated. A random sample of sequences taken from the neutral nets of

the frequent structures is investigated. The neutrality is determined for the
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paired and unpaired bases in the structures separately. The results are shown

in the plot of figure 24. For the sake of a clearer insight into the trend of the

data, the running averages are shown, rather than the values for each neutral

net. The red curve shows the running average for the degree of neutrality λu

(calculated for unpaired positions), the blue curve represents the values for

λp. The running average is calculated from 1% of the frequent structures,

i.e. on 220 points. It is important to remember, that the degree of neutrality

for the paired region λp is not defined for single point mutations as λu, but

for an exchange of a base pair. The observation that λp is larger than λu is

explained by the fact, that the stacking energy within double helical regions

provides the main contribution to the stability of a secondary structure [21].

Therefore, exchanging the two bases which are involved in a base pair does

not alter the mfe to much, and thus the secondary structure is the same.

In the case of a single point mutation, new alternative base pairs may be

form-able yielding a structure with lower energy.

The plots in figure 25 present the running averages of the values of λp as

obtained by mapping sequences to structures with different random param-

eters. In this figure the x-axis shows the rank of the structures. The y-axis

gives the value for λp in arbitrary units, respectively. For a more transparent

presentation the data are normalized with a factor 1/p. The eventual descent

to the zero line results from the fact that the nets of the structures with a

low rank mostly consist of a few sequences, which are not connected.

Comparing the λ-values obtained by the mapping procedures with the

results from the mfe calculations we state that the neutrality is less constant

over the range of structures investigated. The folding produces neutral nets

which are distributed more homogeneously in the hypercube Q than the nets

resulting from the random mapping. The mapping procedure reveals the

generic properties of sequence-structure relations and neutral networks. Any

real system of CG-sequences, ACGU-sequences etc. has its specific structural

features superimposed on the generic ones. The fold data presented here,

are not representable for other alphabets, such as ACGU. The mean, the

maximum and minimum values for the a posteriori neutrality parameters of

the mappings are compared with those from the folding results in table 8.



4 Computational Results 76

10
1

10
2

10
3

10
4

10
5

Rank

0.0

0.2

0.4

0.6

0.8

1.0

1.2

λ p/
p p

p=0.1

p=0.3

p=0.5

p=0.7

p=1.0

Figure 25: Degree of neutrality for the nets of structures as realized by mapping the

sequences in Q30
A with different paramters. The plot shows the neutrality for the paired

part of the structures, λp. For better comparability the values are normalized with the

according factor 1/p. The curves for λu look similar to the data presented here and are not

shown. The statistical fluctuations for the neutrality obtained with the random parameter

pp = 0.1 are extremely high (which is not the case for the data of the unpaired bases).

In contrary to the data from mfe-calculations, the data reach the zero line for low ranks,

since these nets contain a few disconnected sequences only.

Within the 22 718 frequent folded structures the mean values are λu =

37.5% and λp = 43.1%. These values are closest to the results of mappings

with parameters pu =0.5 and pp =0.6. In the case of the folding, we empha-

size that the mean values for λ are both below the theoretical value for the

threshold p∗ = 0.5 which is crucial for the existence of connected and dens

networks. We observe this phenomenon also for the mapping results up to

the parameter p=0.7. Therefore, the mean value of the degree of neutrality

is not necessarily a criterion for the existence of connected networks. The
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p: 0.1 0.3 0.5 0.6

λu λp λu λp λu λp λu λp

mean: 8.1 8.5 19.6 19.0 35.0 33.5 43.7 41.2

max: 11.8 19.5 33.3 39.4 52.1 56.9 61.5 63.7

min: 4.4 0 6.5 8.3 20.8 17.9 25.1 22.0

p: 0.7 0.9 1.0 fold

λu λp λu λp λu λp λu λp

mean: 49.6 46.7 66.3 61.3 75.3 68.7 37.5 43.1

max: 71.4 74.2 90.8 92.1 100.0 100.0 100.0 99.8

min: 32.3 24.9 44.9 35.6 52.9 42.1 13.6 0

Table 8: Comparison of the mean, maximum and minimum values of the posteriori neutral-

ity degrees of the mapping procedures with the results from mfe calculation. A selection

of the mapping results is shown. The data are taken from the corresponding number of

frequent structures.

high maximum values for λu is found for a structure whose preimage contains

99.9% of its compatible sequences. This structure is found at rank 412 and

contains a loop of four unpaired bases and two bases at the 5’ dangling end

of the structure. The maximum value for λp is assigned to a structure whose

preimage contains nearly 100% of its compatible sequences. This structure

is found at rank 1656 and contains four unpaired bases only.

The minimum values for λu and λp are found for the open structure. In

this case the parameter λp is meaningless. Although the preimage contains

only approximately a fraction of 8 × 10−5 of Q, the degree of neutrality is

comparably large.

4.8.3 Composition of Neutral Nets

The composition of neutral nets of the most frequent structures notedly dif-

fers from those obtained by the mapping experiments. Figure 26 shows the

distribution of the number of components up to 20. First, the number of

structures whose neutral nets decompose into two components is almost twice

the number of structures which have a completely connected network. In the



4 Computational Results 78

mean, the common networks consist of approximately 135 components, and

18 for the 175 structures fulfilling the 25% level criterion. As in the case of

random mapping a comparision of the mean value with the maximum value

of the distribution indicates that the composition of the neutral nets is not

random.

Networks with two or four components are common in Q30
CG and are thus

in conflict with the random graph model which predicts connected networks

(theorem 2.2). This observation is explained in [54]: one has to classify the

structures according to the availability of elements with unpaired bases, for

example loops and dangling ends. These structural elements are able to form

additional base pairs. Then, the concentration of the cytosine and guanine

residues in the components of the structures is determined. One detects an

anisotropy in the distribution of sequences in sequence space forming the

same structure. This anisotropy might be caused by details of the energy pa-

rameters used to perform the mfe calculations [21, 26, 31]. Structures whose

networks are partioned into four components exhibit two such structural ele-

ments, and thus two independent parameters influence the anisotropy in the

base concentrations of the components. Neutral networks consisting of one

large component or many small components are supposed to occur due to

finite size effects.

# str |χ1|= |Γ| ≥2/3|Γ| ≥0.25 ≥0.5 ≥0.9 ≥0.99

Abs: 22718 870 6280 21996 13699 3488 2097

Rel[%]: 100 3.8 27.6 96.8 60.3 15.4 9.2

Abs: 175 33 40 175 128 40 40

Rel[%]: 100 18.9 22.9 100 73.1 22.9 22.9

Table 9: Composition of the Neutral Nets of mfe structures. In the first column the

number of structures under investigation is printed. The two different criterions to classify

a structure as frequent are used, i.e. |Γ| > average size and the 25%-level criterion. The

remaining columns contain the absolute and relative data of the neutral nets which constist

of one component (|χ1| = |Γ|), where the net has a giant component (i.e. the largest

component |χ1|> 2/3|Γ|), where the largest component contains at least 25%, 50%, 90%

and 99% of the sequences in the net. The relative data refer to the number of frequent

structures.
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Figure 26: The fraction of the frequent nets consisting of 1 to 20 components are shown.

The data are obtained by mfe calculations of sequences in Q30
{G,C}. Upper graph: the

result of the frequent structures on the 25%-level. Lower graph: all common structures,

i.e. the net is larger than the average, are examined. We note a conserved pattern for the

distribution of nets consisting of 1 to 5 components. (See text for explanation.)

For a more detailed view on the composition of the nets the sizes of

the components are studied. The data in table 9 present the results of the

investigation of the neutral nets of all frequent structures. In contrary to the

mapping results, a wee fraction of all structures has a giant component. The

number of structures whose largest component contains almost all sequences

is even smaller. On the other hand, many structures have a neutral net whose

largest component contains more than half of the sequences contained in the

net. To determine the minimum distance of these components is not feasible,

since the effort to calculate the distance is in the order of |Q|2. The influence

of the composition of the neutral networks on evolutionary processes such as

neutral walks is studied next.
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Figure 27: The cumulative number of new structures found in a typical neutral walk as

determined by mfe calculations using sequences in Q30
{G,C}. The fitted cureve is obtained

by using the function n(s)=M −A exp(−s/ν) (equation 4.3).

4.8.4 New Structures in Boundary of Neutral Nets

The question arises whether the sequence space can be covered by a neutral

walk although most of the structures are based on preimages which are not

connected. As performed in the case of the mapping the boundary of a

neutral walk is examined. The folding algorithm which was used is similar

to the one described in section 3.5. The reference structure is given in dot

bracket notation and a start sequence is determined by using the inverse

folding algorithm which is available in the RNAfold program package [31].

The remaining steps in the algorithm are analogous.

We perform 15 neutral walks using another reference structure each time.

As in the case of the mappings the number of steps and the number of
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mean max min

Steps: 64417.9 228535 122

Str: 19800.2 70842 1083

γ: 0.696 0.696 1.0

Frac: 0.864 0.984 0.30

Table 10: Results of the performance of 15 neutral walks with different reference structures.

The number of steps, the number of different structures and the fraction of Q

different structures found in the boundary of the path are counted. The

plot in figure 27 shows the number of different structures found in a typical

walk. For walks where the number of new structure in the boundary reaches

the level of saturation we use equation 4.3 for a nonlinear curve fitting to

determine the number of steps ν needed to find a fraction of 1−e−1 of all

structures n(s∗). The parameter ν is calculated to ν = 11 352 and n(ν) =

13 504. In analogy to the mapping procedure, we find γ=n(ν)/n(s∗)= 0.696.

We therefore assume that about 70% of the structures found in the neutral

path are those which have the largest preimages. The mean value for the

covering ability of a neutral path is determined to to be 86.4%. This value

is close to the result obtained by a mapping with parameter p=0.7.
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5 Discussion

Random graph theory was applied to study generic properties of sequence to

structure mappings. Motivated by the observation, that RNA folding gives

rise to extended neutral networks in sequence space [31, 63], we developed

an artificial model to investigate the consequence of neutrality by construct-

ing random sequence-structure mappings with a tunable degree of neutrality.

The random mapping, which was performed on the sequence space embedded

in the generalized hypercube Qn
A, required a priori probabilities pu and pp.

These probability parameters resemble the average degree of neutrality for

the unpaired and paired part of the sequences, respectively. The set of com-

patible sequences of a given structure s was factorized into two fibers, which

again are hypercubes of dimension nu(s) and np(s), i.e. C[s] =Qnu

A × Q
np

B .

The alphabet A contains the letters which code for the unpaired regions of

a structure. The alphabet B contains symbols which represent base pairs.

Within these fibers mutations were regarded as point mutations.

In the case of Qnu

A point mutations have a biological counterpart, whereas

in the case of base pairs the process of a single base pair exchange is not

founded on biological mechanisms. The parameters λu and λp, however, were

found by investigations of neutral nets [54] as obtained by folding the entire

hypercube Q30
{CG} [26, 27] into mfe secondary structures. The parameters

reflect the average number of neutral one-error neighbours for the unpaired

and two-error neighbours for the paired regions. In a recent publication the

structure of tRNAPhe and sequences folding into the clover-leaf like secondary

structure was studied [56]. The neutral one-error neighbours of a reference

sequence were analyzed at different levels of resolution. The two λ approach

revealed that the paired region is far more sensitive for those mutations than

the unpaired region. Thus, our approach describes a strong simplification

of the biochemical considerations, but it allows to study generic properties

of sequence to structure mappings, such as the preimage distribution and

denseness and connectivity properties.

In the case of the mfe calculation the complete set of possible secondary

structures was obtained. A natural criterion which classifies neutral nets
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into common and rare structures was defined by the average size of the

preimage. In our case, the size of the preimages as well as the number

of secondary structure having a non-empty preimage depends on the random

parameter values and thus, we found another criterion to determine whether

structures are frequent or not: For each parameter set a structure was said

to be frequent, if its preimage contains at least 25% of the largest net. This

definition seemed to be reasonable because it was consistent with all random

parameter values.

The mathematical theory for our model claims the existence of a threshold

value for connectivity and denseness properties of the neutral nets [54]. The

connectivity and denseness theorems hold in the limit of infinite chain length,

and the threshold value was determined to be p∗ = 1− κ−1
√

1/κ for both

properties. Here, κ is the number of different nucleotides |A|, or the number

of allowed base pairs |B|, respectively. Below this threshold almost all nets

are disconnected and not dense, whereas the major fraction of the nets is

connected and dense, if the mapping is performed with parameters above

this threshold. The aim of this thesis was to demonstrate that the threshold

value p∗ also exists for finite chain lengths.

To investigate the range of validity of the two theorems, neutral networks

were examined, which were obtained by mappings with series of different

random parameters. The investigation was restricted to those neutral nets

satisfying the 25%-level criterion.The following results are discussed under

this assumption. The remaining rare structures were not expected to com-

prise the desired features.

The computational results presented in the previous sections clearly in-

dicate, that a critical value for the random parameter p exists. As one would

expect at finite chain lengths the transition is not sharp anymore. Within the

accuracy of the computer experiments the threshold value p∗ is identical with

the theoretically predicted value for a binary alphabet: p∗=1− κ−1
√

1/κ=1/2.

We further find that this value is identical for both connectivity and dense-

ness. Below this threshold, neutral nets of secondary structures are neither

dense nor connected. Above the threshold, both properties are found in the

simulations.
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The connectivity property was validated using two independent methods:

First, the neutral networks of a structure Γ[s] were investigated explicitly. For

random parameters below the threshold, the networks decomposed into nu-

merous small components. With increasing p, which determines the probabil-

ity of a vertex to be chosen, the sizes of the components increased and finally,

networks which are completely connected were detected for p > p∗ = 1/2.

Second, an indirect method was used to study the connectivity property

of networks. By neutral mutations we were able to walk on the neutral net

of a structure. The implemented algorithm did not allow that a sequence

occured twice in such a neutral walk. Further, the walk could not branch,

thus implying that the walk was straight forward and self-avoiding. For

parameters above the threshold value p∗ these walks were widely extended

in sequence space and short for parameters below p∗.

The denseness property of the neutral networks was also investigated in-

directly. We made use of the neutral walks and the number of new structures

were counted. New structures are those which are found in a ball of radius

one for all sequences occuring along the neutral walk. For random parame-

ters below the threshold, this number of new structures was small compared

to the case where p was set to a value above the threshold. The results

from this experiment also indicated, that the sequence space was covered by

neutral nets of the new structures found along the walk.

Neutral walks were also used to investigate the rate of innovation, as

described for the example of a tRNA in [35]. The tRNA consisting of 76

nucleotides was studied and the rate of innovation was found to be constant

over the entire neutral path. Of course, a constant rate of innovation can

only hold as long as the walk length is very small compared to the size of

the neutral net. This was the case in the tRNA example, where walk lengths

were restricted to 1000 steps. In our case found that – using parameters

above the threshold value – the neutral walks showed an initial phase of

nearly constant innovation rate, but eventually reached saturation, i.e. the

rate of innovation tended to zero. This saturation effect occurs because for

a chain length of 30 the walks could examine a large fraction of a structure’s

preimage.
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In the case where tertiary contacts were superimposed onto secondary struc-

tures we found remarkable results. The additional contacts clearly had a

negative influence on the size of the compatible sequences. Nevertheless,

the smaller neutral nets, found for those tertiary structures, were (almost)

all connected. This effect was even more perceptible when the number of

tertiary contacts was increased. Within the range of our investigations, we

could not find a sharp transition where the nets decomposed for an increasing

number of tertiary contacts.

Statistical investigation of networks obtained by folding the sequences in

Q30
CG into their mfe structure revealed that parameters λ

(mfe)
u and λ

(mfe)
p were

close to the values evaluated for random mappings with parameters between

p = 0.5 and p = 0.7. Comparing the results from neutral walks we found,

that the the facilities of the “folded” networks could be resembled best, if a

parameter near 0.7 was used. It was demonstrated that generic properties of

sequence structure mappings could be simulated using a random process.

The problem of folding sequences into tertiary structures is beyond com-

putational abilities at present. However, the influence of the tertiary contacts

on generic properties of sequence-structure mappings can be investigated. In-

troducing an arbitrary paring rule for the formation of tertiary structures, as

proposed in this work, is one approach. Again, the model contains a tunable

parameter c3 determining the frequency of tertiary contacts in a structure.

We could show that in this model large neutral networks exist for tertiary

structures even in the case that the structures contain comparably many

tertiary contacts.

In a recent publication it was shown that on the level of random tertiary

structures there exists a significant relation between structure and dynamics

in sequence space [57]. A procedure comparable to the neutral walks per-

formed in this work was used to investigate evolutionary principles. Starting

on the neutral net of a structure with medium fitness, the number of steps

were determined until a target structure could be found. The number of

steps was expressed as a transition time, needed to find the target struc-

ture. This time increased exponentially with the parameter c3. In the case

that this value exceeded 0.15, the average time needed to hit the target was
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clearly larger than for smaller parameters. In this work we found, that the

sizes of the neutral nets decrease rapidly, if c3 is set to 0.2 or larger, in good

agreement with the results presented in [57].

The problem of mapping a genotype to a phenotype which then is evalu-

ated is also addressed in [1]. Evolution on a discrete space, such as sequence

space, leads to some intrinsic problems, for instance, the smoothness of the

landscape. In the model described in [1] the choice of the Hamming metric

in sequence space results in a rugged fitness landscape where evolutionary

optimization is difficult. However, by switching to a different metric, the

landscape could be smoothed and optimization became easy: neighbouring

genotypes led to similar phenotypes and therefore small differences in fit-

ness. This concept was also used in our approach. Introducing mutations of

base pairs instead of single point mutations, allowed to find widely connected

neutral networks.

A notation of nearness in phenotype space was developed in [18]. The

concept is based on the probability of one phenotype arising from another

through mutations of the genotype. In this case, the number of different

structures occuring in the boundary of a neutral net of a given secondary

structure was investigated. The fraction of boundary sequences which fold

into each structure is a measure for nearness.

In another evolutionary model, introduced by Sergey Gavrilets and cowork-

ers [22, 23], individuals are represented by a combination of genes, i.e. its

genotype, having some fitness. It is assumed that genotype fitness can take

only two values: viable and inviable, encoded by 1 and 0, respectively. Di-

allelic loci whose number can be typically large are considered using a rep-

resentation where each genotype is a vertex in a n-dimensional hypercube.

The fitness value is assigned randomly to the genotypes using a parameter p.

Connected components in the hypercube are defined by viable individuals.

Gavrilets found an estimation for the probability parameter which is inter-

preted as threshold value. He calculates the threshold value as p∗ = 1/2n.

Above this value there are large connected components consisting of many

viable individuals. The number of paths which connect two different viable

genotypes is also quite large resulting a landscape where (small) clusters of
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inviable genotypes are enclosed by viable ones. The metaphor of a “holey”

or “swiss cheese-like” landscape is used to describe this phenomenon. Using

a parameter p < p∗ results in comparably small clusters of viable genotypes

which are connected by a single path.

Although Gavrilets’s looks similar to our model on the surface, it is in fact

quite different. The critical value determined there depends on the length of

the sequence, whereas the threshold value in our model on the number κ of

letters in the alphabet (p∗ = 1− κ−1
√

1/κ). Furthermore, there is no explicit

genotype phenotype relation in Gavrilets’s model. Genotypes are directly

identified with their phenotypes.
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6 Conclusion and Outlook

In order to study generic properties of genotype phenotype mappings, a

model based on random graph theory [54] was applied to study the rela-

tions between RNA sequences and their structures. RNA sequences, which

are regarded as vertices of a generalized hypercube of dimension n, are the

genotypes and secondary structures derived from them represent the pheno-

types. The assignment of sequences to structures was performed as an inverse

mapping, i.e. given the secondary structure the preimage was constructed.

Since RNA secondary structures can be partitioned into regions of unpaired

and paired bases, two independent random parameters were introduced to

model the corresponding parts. One part of the sequence is coding the un-

paired region, the other one codes for the part containing the base pairs of

the secondary structure.

Sequences which are compatible to a given structure can be generated

straightforwardly and are assigned to the structure with a predefined a priori

probability, resembling the degree of neutrality. This procedure results in

neutral networks for secondary structures. The existence of a threshold value

for the random parameter was demonstrated. It determines whether or not

the neutral networks exhibit features, which are important for evolutionary

optimization, namely connectivity and denseness. Within the accuracy the

computed results of the random graph model, we found that the threshold

value derived from the simulations is identical with the theoretically predicted

one. The features which are essential for optimization are connectivity and

denseness.

Connectivity was validated in two different ways. One method exam-

ines the neutral nets by a straightforward decomposition algorithm. The

other method was a primitive but successful trial and error approach based

on mutation of sequence belonging to the neutral net of a given secondary

structure. By this procedure mutations were generated which were either

neutral or resulted in a new structure. One of the neutral mutations then

represented the next step in the neutral walk, when this sequence has not yet

occurred in the path. Depending on the random parameters, long and short

self-avoiding neutral walks were obtained. It was clearly demonstrated that
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for given random parameters above the threshold the networks are mainly

connected while for lower parameters the neutral walks ended very soon,

i.e. the paths contained only a few sequences.

A model where a secondary structure was extended by superimposed ter-

tiary interactions was investigated. The bases which were involved in tertiary

contacts were chosen randomly, and thus either pseudo-knots or base triplets

and quartets were constructed. The fraction of bases which are involved in

those tertiary contacts is determined by a tunable parameter c3. A paring

rule for tertiary contacts, which is different from the base paring rule for the

secondary contacts, was applied to determine whether or not a sequence is

compatible with the tertiary structure. As a natural consequence of the ad-

ditional constraints of the structures, the neutral networks decreased in size,

when c3 was increased. Nevertheless, the networks of common structures

were still found to be connected, independently of the parameter c3.

The concepts and model presented in this thesis allow to study the effect

of neutrality on evolutionary optimization processes. One could ask, for

example, how is neutrality related to fixation of a genotype which produces

a favorable phenotype. Simulations of population dynamics can be achieved

without time consuming structure calculations. A major advantage of this

approach is that neutrality is a tunable parameter. Thus, it applies directly

to Motoo Kimura’s neutral theory of evolution [39].

The ability of a sequence to be compatible with more than one tertiary

structure is required for optimization strategies in a shape space based on

tertiary structures. The number of tertiary contacts in combination with the

type of pairing rule for these contacts is relevant for evolutionary processes.

Bases do not have to pair uniquely to a single partner as in the case of

Watson-Crick-pairs. Without the need of predicting tertiary structures of

RNA molecules, which is beyond present computer abilities, one can for

instance investigate a kind of transition: The dependence of evolutionary

efficiency on the degree of tertiary contacts.

The concept of random graphs allows to study stochastic processes on

neutral networks, as for example cluster fluctuations and pair distances in

populations. The latter is subject of current research [25], dealing with neu-
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tral nets obtained from mfe calculations RNA structures. Here, the issue

arises whether a stochastic process can be formulated and analyzed in order

to study the above mentioned properties directly or by computer simulations.

The methods and results presented in this thesis can be regarded as basis

and reference for the investigations proposed above.
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Appendix A Supplemented Results

Detailed results obtained by investigation of the neutral nets are presented

here for the sake of completeness.

A.1 Distribution of Preimages

Fit function: f(r) = a(1 + r/b)−c

p a b c M %M

0.1 92828 5545.4 1.41752 153105 23.2

0.2 243471 4248.8 1.92712 66347 22.5

0.3 365678 2815.5 1.91962 99308 20.7

0.4 651903 1603.3 1.93503 750992 23.3

0.5 1009230 1068.7 1.97404 1186085 22.0

0.6 1438210 714.5 1.9132 1604820 24.6

0.7 1922280 577.5 2.002 2125659 23.1

0.8 2619470 397.5 1.93277 2743365 25.4

0.9 3294120 332.8 1.98907 3417287 24.5

1.0 4041300 280.3 2.02751 4177920 24.1

fold 974343 131.9 0.870042 1568485 27.3

Table 11: The parameters obtained by a non linear curve fitting routine. The parameters

correspond to the ones used in the function f = a(1 + r/b)−c, where f represents the

frequency, r the rank of a structure. For each random mapping the size of the largest net

is given. The last column is the |Γ[sk]|/Max, where k dbe. The results are discussed in

section 4.4

A.2 Sequence of Components

The number of components of the neutral nets of rare structures are listed in

table 12. The numbers for the common structures are shown in section 4.5.

The curves in figure 28 discover that most of the neutral nets which are

composed of one component contain only one sequence.
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NOC 0.1 0.2 0.3 0.4 0.5

1 0 2 9 74 117

2 0 2 16 44 100

[3, 10] 0 17 72 217 649

[11, 1000] 352 2888 4837 8869 14181

> 1000 24855 23358 22232 17101 13640

Sum 25207 26267 27166 26305 28687

NOC 0.6 0.7 0.8 0.9 1.0

1 266 430 309 243 65

2 235 244 200 139 176

[3, 10] 905 925 691 597 449

[11, 1000] 17433 19605 15680 13006 11168

> 1000 9699 6916 5006 3352 1700

Sum 28538 28120 21886 17337 13558

Table 12: Number of components (NOC) of the neutral nets of the rare structures as

obtained by using the mapping parameters pu = pp = 0.1, . . . , 1.0. The columns list the

number of nets consisting of 1, of 2, 3 and 10, between 11 and 1000 and more than 1000

components.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Random Paramter

0.0
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Figure 28: For the different parameters p (abscissa) the fraction of rare structures fulfilling

that the neutral net consists of 1 component: •, the largest comp. contains at least 99%

of |Γ|:
�

, at least 97% of |Γ|: � . The fraction of giant comp. is shown by the symbol � .
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A.3 New Structures in Boundary of a Neutral Walk

The rate of innovation as presented in section 4.6 was fitted using the ana-

lytical function: n(s) = M − A exp(s/ν). As described there, a fit is only

reasonable for the results obtained by mapping the sequences with random

parameter 0.6 to 1.0. The data yielded by a neutral walk of which the data

were closest to the average values (see table 4) of all 15 walks, are used for

the fitting. The complete list of coefficients is given in table 13.

p M A ν s∗ n(s∗) av-rate

0.1 - - - 1 4 4

0.2 - - - 3 26 8.7

0.3 - - - 10 129 12.9

0.4 - - - 23 325 14.1

0.5 - - - 80 804 10.0

0.6 2404.74 2263.21 342.3 898 2333 2.60

0.7 4830.82 3625.39 4231.0 11987 4794 0.40

0.8 7728.29 6066.78 12881.7 33485 7499 0.22

0.9 5510.62 3782.37 14696.7 42533 5454 0.13

1.0 7387.65 4982.82 98968.3 300001 7313 0.02

Table 13: Fitting coefficients for the function: n(s) = M − A exp(s/ν). For the results

obtained by mappings with parameters 0.1 to 0.5 the fitting is not applicable. The rate of

innovation is nearly constant.

p γ av max min

0.1 1.0 0.05 0.18 0.01

0.2 1.0 0.78 3.35 0.18

0.3 1.0 7.93 20.04 0.43

0.4 1.0 14.89 28.35 4.16

0.5 1.0 41.18 67.78 10.07

0.6 0.7 62.73 81.78 25.84

0.7 0.7 80.16 94.26 23.48

0.8 0.7 92.11 95.47 79.15

0.9 0.7 90.77 96.07 75.75

1.0 0.7 94.95 96.38 91.43

Table 14: For each set of random parameters pu = pp = p the factor γ is listed as well as

the average, maximum and minimum fraction of the hypercube which is covered by the

nets of the structures found in the boundary of a neutral path. These results are shown

in figure 19, page 66.
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Appendix B Data Structures

B.1 Binary Trees

A tree is a data structure consisting of data nodes connected to each other

similarly as in a linked list. However, each node in a tree may be connected

to two or more other nodes, rather than a single node allowed in a linked list.

The maximum number of nodes to which a single node may be connected is

called the order of the tree. The simplest tree is of order two, and is called

binary tree.

Each node contains at least one data field, and two pointers: one to the

left child and one to the right child. The topmost node in the tree is called

the root node. A node without children is called a leaf. Balanced binary trees

are a good method to store objects which can be ordered.

Trees (binary and otherwise) have the same basic types of operations as

other data structures: (i) inserting data, (ii) deleting data and (iii) listing

data. The method for doing these tasks depends to a large extent for which

purpose the tree is being used. One of the simplest and most common uses

of a binary tree, as in this thesis, is a searching and sorting algorithm.

Given a set of (comparable) objects, for example alphanumeric strings.

These objects are sorted in a two-stage sorting algorithm:

1. If the current node is empty, store the date in it, and remember this

node. (In terms of the programming language ‘C’, remember the pointer

to this node.)

2. Otherwise, compare the new object with the data stored at the current

node. If the new object is less than data at the current one, insert

the new data into the left child of the current node (by recursively

applying the same algorithm.) Otherwise, insert the new data into the

right child of the current node.

To produce a sorted list of the objects special traverse algorithms are

used which are not discussed here. We focus on the efficiency of the sorting
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algorithm. In case the initial data are in high disorder, the binary tree will be

quite well balanced, which means that there are roughly the equal numbers of

nodes in the left and right subtree of any node. Balanced trees tend to have

few levels and are spread out width-wise. This makes the for efficient sorting

and searching routines, because both these routines work their way vertically

through the tree to locate nodes. Searching routines, which are mostly needed

in this theses, that work on balanced binary trees need O(log n) steps to find

a specific object, where n is the total number of objects in the tree.

In case the list of objects are already or very nearly in order, the tree

formed by the insertion algorithm from above will be essentially linear, mean-

ing that any searches performed on this tree be sequential. Therefore it is

desirable to have an algorithm that ensures that the tree is reasonably bal-

anced, no matter what the order of the input data. One approach which is

taken to decrease the depth of a binary tree is the AVL algorithm which is

described in the next section. This algorithm balances the tree after each

insertion.

B.2 Balanced Binary Trees: The AVL-Algorithm

AVL trees are balanced binary trees requiring an extra two bits for keeping

the tree in balance. The AVL tree was first devised by two Russian mathe-

maticians, G. M. Adel’son-Vel’skii and E. M. Landis, hence the name AVL

tree. It quickly became one of the most widely used computer-based search

trees around. The power of AVL trees comes from the fact that they are

balanced, with the main rule being that one subtree of the tree cannot be

more than one level higher or lower than the other subtree of the tree and

both subtrees are again AVL trees.

An AVL tree is constructed in the same way as an ordinary binary tree,

except that after the addition of each new node, a check must be made to

ensure that the AVL balance condition have not been violated. If all is well,

no further action need be taken. If the new node causes an imbalance in

the tree, however, some rearrangement of the tree’s nodes must be done. in

order to restore the AVL conditions.
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