
Nucleic Acid Sequence Alignments of

Partly Coding Regions

DISSERTATION

zur Erlangung des akademischen Grades
Doctor rerum naturalium

Vorgelegt der
Fakultät für Naturwissenschaften und Mathematik

der Universität Wien

von
Mag. Roman Stocsits

am Institut für
Theoretische Chemie und Molekulare Strukturbiologie

Februar 2003

i

Abstract

High quality sequence alignments of RNA and DNA sequences are a prereq-

uisite for the comparative analysis of genomic sequence data. The high level

of sequence heterogeneity, as compared to proteins, makes good alignments

of nucleic acid sequences often impossible. In many cases, the nucleic acid

sequences under consideration, or parts of them, code for proteins. While pro-

tein sequences can still show substantial homology, the corresponding nucleic

acid sequences have already evolutionarily diverged, thus they are essentially

randomized. This is caused by the inherent redundancy of the genetic code:

Most amino acids have more than one codon on the level of nucleic acid.

This specific problem leads to gaps and incorrectly aligned segments within

coding regions.

In the thesis a multiple nucleic acid alignment procedure was implemented

that uses genetic information about coding and non-coding regions as part

of the scoring function in order to improve the resulting alignment. Our

algorithm combines (mis)match scores for nucleic acids with those for the

underlying amino acids in the case of open reading frames and exons. The

program makes explicit use of information about overlapping open reading

frames, as they occur in virus sequences, to further improve the reliability

and quality of the nucleic acid alignment.

The implementation is realized in the program package code2aln which

is freely available.

Code2aln is based upon a Gotoh-type dynamic programming algorithm

with affine gap penalties, and features more complex scoring functions for

coding regions that combine nucleic acid with amino acid scores.

Alignments computed with code2aln have a significantly improved qual-

ity in coding regions compared to other methods for nucleic acids. In par-

ticular, disruptions of codons are reduced. Code2aln alignments are shown

to improve the sensitivity of a method for the detection of conserved RNA

structures.

An application of code2aln to two unrelated groups of viruses is de-

scribed. We processed the alignments as input for the procedure of alidot

for detecting conserved RNA secondary structure elements in RNA genomes

of Leviviridae and the pregenomic RNA of human hepatitis B virus. Virus

genomes contain various (partially overlapping) open reading frames and are

ii

an ideal test case for a procedure that makes usage of information about

(overlapping) coding regions to improve the input alignments and, therefore,

the identification of conserved secondary structures.

We find a number of highly significant secondary structure elements, not

being described in the literature so far, and some well known elements like

the ε-elements and two important elements of the HPRE region in hepatitis

B virus. Also the results of the Levivirus group are of particular interest:

We detect various secondary structure elements that are strongly confirmed

by compensatory mutations and gain novel insight into the structural orga-

nization of Levivirus genomes.

iii

Zusammenfassung

Nukleinsäuresequenz-Alignments hoher Qualität sind von großer Bedeutung

für die vergleichende Analyse genomischer Sequenzdaten. Die höhere Sequ-

enzheterogenität auf der Ebene von Nukleinsäuren, verglichen mit Protein-

sequenzen, macht es oft unmöglich, gute Nukleinsäure-Alignments zu errei-

chen. In vielen Fällen codieren die betrachteten Sequenzen, oder Teile davon,

für Proteine. Während Proteinsequenzen weitgehend Homologie zeigen, kön-

nen die entsprechenden Nukleinsäuresequenzen evolutionäre Divergenz bis

hin zur völligen Heterogenität zeigen. Der Grund ist die inhärente Redun-

danz des genetischen Codes: die meisten Aminosäuren haben mehr als ein

Nukleinsäure-Codon. Das führt zu ’Gaps’ und schlecht alignierten Teilen

innerhalb codierender Regionen.

Wir haben einen multiplen Nukleinsäure-Alignmentalgorithmus entwik-

kelt, der genetische Information über codierende und nicht codierende Regio-

nen als Teil der Scoring-Funktion nutzt, um die resultierenden Alignments zu

verbessern. Unsere Implementation kombiniert (Mis)match-Scores von Nukl-

einsäuren mit denen der entsprechenden Aminosäuren innerhalb codierender

Bereiche und Exons. Der Algorithmus zieht explizit Nutzen aus der Infor-

mation über überlappende ORFs, wie sie in Virussequenzen oft vorkommen,

um die Qualität der Nukleinsäure-Alignments weiter zu optimieren.

Der Algorithmus ist implementiert in dem Programmpaket code2aln, das

frei erhältlich ist.

Code2aln ist eine Version eines Dynamic-Programming-Algorithmus nach

dem ’Gotoh-Typ’ mit affinen Gap-Penalties und einer komplexeren Scoring-

Funktion, die Nukleinsäure- mit Aminosäure-Scores kombiniert.

Wir konnten zeigen, dass die Alignments tatsächlich signifikant verbessert

wurden. Wir fanden die starke Tendenz von code2aln, Codons innerhalb

codierender Regionen nicht durch das Einfügen von Gaps zu unterbrechen.

Wir haben die Resultate von code2aln als Input für die Detektion kon-

servierter RNA-Sekundärstrukturelemente in RNA-Genomen von Leviviri-

dae und prägenomischen RNA-Sequenzen von humanen Hepatitis B-Viren

durch alidot angewandt.

Virusgenome sind ideale Testfälle für eine Methode, die Information über

(überlappende) codierende Regionen nutzt, um deren Alignments zu verbess-

ern, weil sie oft mehrere (auch überlappende) ORFs enthalten.

iv

Wir fanden etliche hochsignifikante Sekundärstrukturelemente, die bis

dato in der Literatur nicht beschrieben sind, sowie auch einige bekannte

Elemente, wie das ε-Element und Elemente der HPRE-Region in Hepatitis

B-Viren.

Auch die Resultate für die Levivirus-Gruppe sind hochinteressant: wir

detektierten verschiedene Elemente, die durch kompensatorische Mutationen

deutlich bestätigt sind, und wir konnten neue Einblicke in die strukturelle

Organisation des Genus Levivirus gewinnen.

v

Danksagung

Ich danke Peter Stadler für die hervorragende und freundschaftliche Be-

treuung meiner Arbeit und die Möglichkeit, bei ihm diese Dissertation fer-

tigzustellen. Danke an Ivo Hofacker für viele sehr hilfreiche Ratschläge und

Hinweise.

Ich danke Peter Schuster für die freundliche Aufnahme an seinem Institut.

Vielen Dank auch an Christoph Flamm für seine immerwährende Hilfsbe-

reitschaft.

Danke an alle meine Freunde und Kollegen: Michael Wolfinger, Stefanie Wid-

der, Daniela Dorigoni, Michael Kospach, Kurt Grünberger, Judith Ivansits,

Caroline Thurner, Christina Witwer, Stephan Bernhart, Stefan Müller, An-

dreas Svrcek-Seiler (die unerschöpfliche Quelle weiser Danksagungen), An-

dreas Wernitznig, Günther Weberndorfer, Bärbel Stadler, Jan Cupal, Ulli

Mückstein, Uli Langhammer, Gil Benkö, Camille Stephan Otto Attolini, Jörg

Hackermüller, Ingrid Abfalter, Sonja Prohaska, Claudia Fried.

Zuletzt vielen Dank an meine Eltern, die mir dieses Studium ermöglicht

haben.

Contents vi

Contents

1 Introduction 1

2 Theoretical Background 8

2.1 Alignments in Principle . 8
2.2 The Scoring of Alignments . 8
2.3 Pairwise Alignment Algorithms 13
2.4 Alignments with Affine Gap Penalties 15
2.5 Multiple Alignments . 17
2.6 Some Other Multiple Alignment Algorithms 22
2.7 RNA Secondary Structure Prediction 26
2.8 Inherent Difficulties of Nucleic Acid Alignments 29

3 A First Attempt: The ralign Project 31

3.1 The Idea behind ralign . 31
3.2 The ralign Algorithm . 32
3.3 Results and Conclusions on ralign 36

4 The code2aln Project 40

4.1 Code2aln in Short . 40
4.2 More Complex Scoring Systems 41
4.3 The code2aln Algorithm . 46
4.4 An Example Program Run . 53

5 An Example for an Application 57

6 Hepatitis B Virus 62

6.1 The Morphology of the Hepatitis B Virus 62
6.2 The Genomic Organization of Hepadnaviruses 64
6.3 The ε-Structure: a proximal Encapsidation Signal 67
6.4 The HPRE regulatory element 67
6.5 Results for Hepatitis B Virus 68

6.5.1 Using clustalw . 70
6.5.2 Using code2aln . 73

7 Leviviridae 80

7.1 The Morphology of the Levivirus Genus 80
7.2 The Genomic Organization of Levivirus 80

Contents vii

7.3 Results for Levivirus . 82
7.3.1 Using clustalw . 87
7.3.2 Using code2aln . 91

8 Conclusions and Outlook 97

9 Appendix A - The Codon Tables 102

10 Appendix B - The Program Description 103

10.1 The Structure Variables . 103
10.2 The Routines . 106

11 Appendix C - The Manual Page 117

11.1 NAME . 117
11.2 SYNOPSIS . 117
11.3 DESCRIPTION . 117
11.4 OPTIONS . 118
11.5 VERSION . 119
11.6 AUTHOR . 119
11.7 BUGS . 119

1 Introduction 1

1 Introduction

During the last decades, research in the fields of molecular biology and bio-

chemistry has provided the scientific community with huge amounts of se-

quence data sets. These data are available as entries in data banks such as

GenBank. In many cases, however, there are no satisfactory tools to process

the data [117]. One of the most basic and essential tools for data analysis in

molecular biology is the alignment of nucleotide or amino acid sequences. In

principle, it is used to tell whether two or more sequences are related and to

give an impression how close a relationship is in terms of sequence similarity.

Multiple sequence alignments are used, for instance, to find diagnostic

patterns that characterize protein families; to detect or demonstrate ho-

mology between new sequences and existing families of sequences; to help

predict the secondary and tertiary structures of new sequences; to suggest

oligonucleotide primers for PCR; and as an essential prelude to molecular

evolutionary analysis [62].

Beside the basic necessity to process existing data, the rate of appearance

of new sequence data is steadily increasing and the development of efficient

and accurate automatic methods for multiple sequence alignments is of major

importance [1, 3].

In fact, many advanced techniques of sequence analysis are dependent

upon the availablity of high quality multiple sequence alignments. A proce-

dure for extracting conserved secondary structure elements from a moderate

size sample of related RNA sequences will be one example in this thesis. A

procedure like this needs essentially a high quality alignment of nucleic acid

sequences.

Recent research in our group aims at finding conserved secondary struc-

ture elements that are part of the genomes of RNA viruses and the prege-

nomic RNA intermediates of some DNA viruses like the Hepatitis B viruses

1 Introduction 2

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +L+ L+++H+ K

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

Figure 1: This figure shows a protein sequence alignment between a fragment of human

alpha globin and leghaemoglobin from yellow lupin. Some identities are shown and some

similar positions which have a positive score in the substitution matrix (indicated by ’+’).

This is a biologically meaningful alignment, in that we know that these two sequences are

evolutionarily related.

SIVCPZGAB CUGACAACAUUA-------------------------------------CA--AAUGGCAUU------------------AUAAUACUGCCAUG
O-ANT70 AUUA-UACCUUU-UCA----------UGUAACGGAACCACCUGUAGUGUUAGUAAUGUUAGUCAAGG------UAACAAUGGCACUCUACCUUG
D-NDK AU-AGUACAUGGAAU----------CA--GACUAAUAG---UACAGGGUUC--AAUAAUGGCACAG---------------UCACACUCCCAUG
B-YU2 -------CUUGG------AAUGAUACUAGAAA---------------GUUA--AAUAACACUGGAAG---AAAU------AUCACACUCCCAUG
B-OYI AU-AGUACUUGGAAU------------------GAUA---CUACAAGGGCA--AAUAGCACUGAA---------GUAACUAUCACACUCCCAUG
B-MANC AU-AGUACUUGGAAUACUGGG---------AAUGAUA---CUAGAGAGUCA--AAUGACACAAAUAA---UACUGGAAAUAUCACACUCCCAUG
B-LAI AU-AGUACUUGGUUU---AAUAGUACUUGGAGUA------CUGAAGGGUCA--AAUAACACUGAAGG---AAGUGACACAAUCACACUCCCAUG
B-JRCSF AU-AGUACUUGGAAU-------G-------A-UA------CUGAAAAGUCA--AGUGGCACUGAAGG---AAAUGACACCAUCAUACUCCCAUG
B-D31 AU-AGUACUUGGAAU------------------GAUA---CUAAAGAGUCA--AAUAACACAAAU---------GGAACUAUCACACUCCCAUG
B-ACH320A AU-AGUACUUGG------AAUGAUACUGGGAAUGUUA---CUGAAAGGUCA--AAUAACAAUGA------AAAU------AUCACACUCCCAUG
B-896 AU-AGUACUUGGAAU-------G-------U-UA------CUGGAGGGACA--AAUGGCACUGAAGG---AAAUGACAUAAUCACACUCCAAUG
AE-90CF402 AU-AGUACUUGGAUA---------------AAUGGAACCAUGCAGGAGGUU--AAUGGCACAAACUC---A---GGCAAUAUCACACUUCCAUG
ADI-MAL AU-AGUACAUGGCAGAAUAAUGGUGC----AAGA------CU-AA--GU----AAUAGCACAGAGUC---AACUGGUAGUAUCACACUCCCAUG

Figure 2: This figure shows part of a clustalw nucleic acid alignment of HIV-1 sequences.

The region shown here is a coding region located at the center of the env gene. The

alignment is highly disrupted. We see various gaps where they are not really necessary,

because the biologically important part of the system is protein in this region of the

genome.

[79, 91]. For this reason predicted secondary structures of genomic RNA

sequences have to be compared on the basis of a reliable multiple sequence

alignment.

As far as we know, almost all RNA molecules and consequently also

almost all subsequences of a large RNA molecule form secondary structures.

But the presence of secondary structure in itself therefore does not indicate

any functional significance. Extensive computer simulations [30] showed that

a small number of point mutations is very likely to cause large changes in the

1 Introduction 3

SIVCPZGAB UUUUAUAAUAUAGAAAAUGUAGUAGGA------------GAUACCAGAUCUGCCUACUGUAAG
O-MVP5180 CGCAGUAUGACACUUAAAAGAAGUAACAAUACAUCACCAAGAUCAAGGGUAGCUUAUUGUACA
O-ANT70 UACAGCAUGGGAAUAGGGGGAACAGCAGGAAACAGC------UCAAGGGCAGCUUAUUGCAAG
D-NDK CUCUAUACAAUAACAGGAAAAAAGAAGAAAACAGGA---UACAUAGGACAAGCACAUUGUAAA
D-ELI CUCUAUACUACAAGAUCAAGAUCA---------------AUAAUAGGACAAGCACAUUGUAAU
B-pNL43 UUUGUUACAAUAGGAAAA---AUAGGA------------AAUAUGAGACAAGCACAUUGUAAC
B-YU2 UUGUAUACAACAGGAGAAAUAAUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-WEAU CUUUAUACAACAGGAGAAAUAAUAGGA------------GAUAUAAGACGAGCACAUUGUAAC
B-SF2 UUUCAUACAACAGGAAGAAUAAUAGGA------------GAUAUAAGAAAAGCACAUUGUAAC
B-OYI UUUCAUACAACAAAACAAAUAAUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-MANC UUUCAUGUAACAAGAGCCGUAACAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-LAI UUUGUUACAAUAGGAAAA---AUAGGA------------AAUAUGAGACAAGCACAUUGUAAC
B-JRCSF UUUUAUACAACAGGAGAAAUAAUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-HXB2 UUUGUUACAAUAGGAAAA---AUAGGA------------AAUAUGAGACAAGCACAUUGUAAC
B-HIV1AD8 UUUUAUACAACAGGAGACAUAAUAGGA------------GAUAUAAGACAAGCACAUUGCAAC
B-D31 UUUUAUACAAAAGGAAAAAUAAUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-CAM1 GUUUAUGCAACAGACAGAAUAAUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-BCSG3 UAUUAUACAACAGGAGAAAUAGUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-ACH320A UUUUAUGCAACAGGACAAAUAAUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
B-896 UUUUAUGCAAGAAGAAACAUAAUAGGA------------GAUAUAAGACAAGCACAUUGUAAC
AE-CM240 UUCUAUAGAACAGGAGAUAUAAUAGGA------------AAUAUAAGAAAAGCAUAUUGUGAG
AE-90CF402 UUCCAUACAACAGGAAACAUAAAUGGU------------GAUAUAAGAAAAGCAUAUUGUGAA
ADI-MAL CUCUAUACAACAGGGAUAGUAGGA---------------GAUAUAAGAAGAGCAUAUUGUACU

Figure 3: A part of a nucleic acid alignment of HIV-1 sequences, also located in the env

gene, but produced by another alignment algorithm using env protein sequence informa-

tion for improving the alignment of the underlying nucleic acid sequences (ralign, see

below). This region was aligned on the level of amino acids and reverse translated. Many

identities are shown and make this alignment a biologically meaningful one, in that we see

that these sequences are evolutionarily closely related.

secondary structures. A difference in the nucleic acid sequence of only 10%

leads almost surely to unrelated structures if the mutated sequence positions

are chosen randomly. Secondary structure elements that are consistently

present in a group of sequences with less than, say 95%, average pairwise

identity are therefore most likely the result of stabilizing selection, not a

consequence of sequence homology. If selection acts to preserve a structural

element, then it must of course have some function [29, 99, 98].

The development and implementation of computational methods capable

of reliably predicting functional structural elements on the basis of sequence

alignment information will provide immense benefits in terms of our under-

standing of the relationship between sequence and structure [11, 24, 30, 60].

Since only functional secondary structures are likely to be conserved, a pro-

cedure that detects and highlights conserved structural elements based solely

1 Introduction 4

on already available sequence data could be used widely, e.g. to guide exper-

imental mutagenesis or deletion studies [37, 38, 61].

Such methods will also be useful in tasks such as drug discovery or the

study of molecular evolution [32]. Quite easily they could be applied to huge

quantities of sequence data at our disposal nowadays to discover important

structural motifs and trends in various macromolecules, without measuring

the 3D structure of each macromolecule which is very laborious and expensive

[4, 10, 16, 75, 97, 96].

It is not surprising that the quality of the input sequence alignment is

important for this method. However, sequence heterogenity on the level of

nucleic acids makes good alignments often infeasible even for phylogenetically

closely related sequences. In many cases one observes too many gaps. This

is caused by the inherent redundancy of the genetic code: most amino acids

have more than one codon on the level of nucleic acids. As a result it is

possible that two different nucleic acid sequences code for the same protein

sequence. All three nucleotides in two codons might be different and, in

spite of that, those codons might code for the same amino acid. In a protein

alignment these amino acids would match each other while the differences on

the level of nucleic acids can produce gaps in a nucleic acid alignment. This

specific problem leads to various gaps within coding regions where they are

not really necessary, because the biologically important part of the system

is protein in this region of the genome. On the level of protein alignments

many of these gaps could have been avoided.

The purpose of this thesis was to develop an alignment algorithm and

a suitable scoring system to improve the quality of nucleic acid sequence

alignments; especially nucleic acid alignments of RNA virus genomes.

Furthermore, procedures are described that utilize the information con-

tained in the amino acid sequences of coding regions to construct an improved

multiple alignment of the underlying nucleic acid sequences.

1 Introduction 5

pregenomic RNA

pre-S1 pre-S2 S

P

X

C

pre-C

Figure 4: Diagram of the genome organization of hepatitis B virus with the four open

reading frames (C, P, S, X). We can see the overlapping coding regions which are used

as information for improving the alignments of hepatitis B virus strains on the level of

nucleic acid.

Currently, there are two very different implementations of program packages

which function according to this principle: The first algorithm, which consists

of a combination of amino acid and nucleic acid based partial alignments, is

implemented in the program package ralign. This program detects possible

coding regions in all input data sets and aligns them on amino acid level

while non-coding regions are handled as nucleic acids. Finally, the various

alignments of the different parts of the input sequences are combined. Ralign

is the only algorithm of this type currently available. (The procedure is

described in detail in [101, 102, 103].)

The second algorithm processes the complete nucleic acid sequences and

produces a ’real’ nucleic acid alignment that, however, uses the information

on coding and non-coding regions as part of the scoring function: code2aln.

The idea behind both the combined amino acid and nucleic acid based

alignments (ralign) and the alignments produced by code2aln is that cod-

ing regions vary less on the level of protein than on the level of nucleic acid,

because most amino acids are coded by more than one codon (base triplet)

and some different nucleic acid sequences can produce the same protein se-

quence after translation. Protein sequences can still show substantial homol-

ogy when the corresponding nucleic acid sequences are already essentially

randomized.

1 Introduction 6

In the following some examples will be shown how alignments of viral

genomes can be improved, and, furthermore, how the number of gaps can

be reduced without using unrealistically large gap parameters. Both pro-

grams have been applied to producing input for the program alidot [51] for

finding conserved RNA secondary structures. The complete procedure was

applied to pregenomic RNA of human hepatitis B virus and the bacterio-

phage Levivirus sequences. Secondary structures of ssRNA viruses or (as in

the case of Hepatitis B virus) pregenomic RNA intermediates are known to

play an important role in the regulation of the viral life cycle [39, 74]. Much

research is performed to find conserved secondary structure elements as part

of the genomes of RNA viruses (e.g. Levivirus) and the pregenomic RNA

intermediates of some DNA viruses (e.g. the Hepatitis B viruses) [79, 91].

Secondary structure prediction was performed using the algorithms of

the Vienna RNA package [52, 54], such as RNAfold, which calculates the

minimum free energy structure and the partition function and base pairing

probability matrix of a RNA sequence.

The final step of the procedure is the detection of structural conservation

by means of compensatory mutations. Alidot detects conserved secondary

structure elements in relatively small sets of RNAs by combining multiple

sequence alignments and secondary structure predictions. The starting point

of this approach is the list of all predicted base pairs. The multiple sequence

alignment is very useful to establish which base pairs from different sequences

correspond to each other. Then the individual base pairs are ranked by

certain filtering procedures. The procedure is described in detail in [53, 51].

As expected, the performance of alidot depends not only on the quality

of the RNA secondary structure prediction but also crucially on the quality of

the input multiple sequence alignment. It will be shown that the alignments

are indeed improved by usage of genetic information.

1 Introduction 7

U
U
U
U
U
C
A
C
C
U
C
UG

C
C
U
A
A
U
C
A
U
C
U
C
UU

G
U
U
C
A
U
G
U
C
C
U
A

C U
G
U

UC
A
A
G
C
C
U
C
C
A
A
G

C
U

GU
G
C

C
U
U
G
G
GUG
G
C
U
U
U
G
G
G
A
C
A
U
G
G
A
C
A

U

UGACCCGU
AU

AAAGAA
UUUGGAGC

UUCUGUG
GAGUUACU

CUCUUUU
UUGCCUUCU

G
AC

U
U

CU
U

U
C
C

UUC
U

G
U
U

CG
A

GAU
C
U

C
C
UC

G
A
C

A
C
C

G
C
C

UC
U

G
C

U
C
UG

U
A

U
C
G
G
G
A

G
G

C
C

U

U

A
G

A
G

U
CU

C
C

G
G

A
A
C
AUU

G
U

U
C

A
CC

U
C

A
C

C
A
UAC

A
G

C
A
C
UCA

G
G
C
A

AGC
U
A

U U
C
U
C

U
G
U
U
G
G

G
G
U
G
A
G
U

U
G
AU

G
A

AU
C

U
GG

C
C
A

CC
U
G G

G
U
G G

G
A
A
G U

AA
U

U
U

G
G

A
AG

A
UC

A
A

G C
A U

C
C

A
G

G
G

A
U
UU

A
G

U
A

GU
C
A G

C
U

A
U G

U
CA

AU
G

UU
A

A
UA

U
G

G
G

C

A

U
A

A
A

A
AU

CA
G

A
C

A
A
C

U
AUU

G
U

G
GU

U
C C

A
C

A
U
U
U

C C U
G

U
C

U
U A

C U
U

U
U

GGA
AG

A
G

A
A
AC

U
G U

U
C

U
UG

AG
U

A
U

U
U

G
G

U
G

U
C

U
UU

UG
G

A
G

U
G

U
G

GA
U
U C

G
C

A
C

U
C

CU
C

C
C

G C U
U
A
C A

G
ACC

A
C

C
A

A
A

U
G

C
C

C
C

U
A

U
C U

U
A
U C

A

A
C

A
C U

U
C

C
G

G
A
A A

C
UAC

U
G

U
U

G
U

UA
G A

C
G

A
C

GAGGCAGGU
CCCCUAG

AAGAAGAA
C
U

CCCUC
GCCU

C

GCAGACG
AAGGU

C
UC

A
A

U C G C C
G C G U C G CA

GA
AG

AUCUC
AAU

C
U C G G G A

A U
C U CAA

UGU
UAGU

AUCCCUUG
GAC

U
C A U A A G GUG G

GCAA C U
UU A C U

G G G C
U

U U A
U U C U U C U

A C U G
U A C C U G U C U UUA

AUCCUGAGUGG
C
A

A
ACUCCC

U
C

C
U
U
U

C
C U A A C

A
U
U C A U UUAC A G G AA

GACAUU
AUU

A
A

U A
G A U G U CA

ACAA
U

A U G U G
G

G
C

C
C

U
C
U

U A
C

A
G
U
U

AA UG
A

A
A
A A

A
GGAGAU

UA
AAAU

U
AAUU

AUGCCUGC
UAG

GUUC U A
U

C
C
C
A
A

C
C

U
UACCAAA

U
A

U
U
U
G
C

C
C

U U GGAUAAAGG
CA

U
U
A A A

C C UUAU U A U C CUG A A C
A U

G CA

GUU
A

AUCA
U

U
A
C

U U C A
A
A A C

U

A G G C A U U
A U U

U A C
A
U A C

U C U
G U GG A A GG CUG

G
C
A
U

U C U A
U
A
U

A A A A G A G A A A C U
ACAC G C A G

C G C U U C A
U U U U

G U GGG U C ACCA
U A UUCUUGG

G
A A

C A A G A
GCU

A
C A

G CA

UGGGAGGU
C
C G

U C U U C C AA
ACCUC

G
A

A A
A G GC

AUGGGGACGAAU
C U

U U CUG U U C C C AAUC
C U CUGGGAU

U
C

U U
U C C C GAUC

A C CAGUUGGAC
CCUG

C
G

U U
C
GG A G

C C A A C UC
A

A
A

C
AA

U
C

CAG
A
U

U
G

G
GAC

U
U

C A A
C
C

C
C

A
A C A

A
G

G
A

UC
A

C U
GG

C
CA

G A
G

G
CA

A
A U

CA
G

G
U

A
G

G
A

GC
G

G
GA

G
CAUU

C
G

G
G

C
C

A
G

G
G

U
U

C
A

C
C

C
C

AC
C
AC

A
CG

G
C A

G
U C

U U
U
U

G
G

G
G

UGG
A

G
C

C
C

UCA
G

G
C

U
CA

GG
G

C
A

UAU
U
G
A

C A A
C
G

G
U

G
C

C A
G
C
A

G
C G

C
C

U C
C

U
C

C
U

G
C

C
UC

C
A

C
C A

A
U

CG
G

CA
G

U
CC

G
G A

A
G

A
C A

G
C

CU
A

C
U

C
C

C
AU
C

U
C

UCC
A
C

C U C
U
A

A
G

A
G

AC
A

G
U

C
A U

C
C
U
C
AG
G
C
C
A

U
G

C
A

G
U

G
G

A
A

UU
C
C
A C A

A
C

A
U
U
C
C
A
CC

A
A

G
C

U
C

U
G

C
U

A
GAU

C
C
C
A

G
A

G
UGA

G
G

G
G

C
C

U
AUA

U
U
U

U
C

C
U

G
C
U

G
G
U

G
G
C

U
C

C
A

G
U

U
C

C
G

G
A

A
C

A
GU

A
A A C

C
C
U
G
U
U
C
C
GA
C
U

A
CU
G
CC

U
C

U
C

C
CAU

A
U
CG
U

CA
A
U

C
U
U

C U
C

G
A

G
G
A
C

U
G

G
G
G
A C

C
C
U

G
C
A

C
CG

A
A
CA
U
G
G
A
GAG

C
AC
A

A
C
A

U
C
A
G
G
A U

U
C
C

U
A
G
GA
C
C
C
C
U
G
C
U
C G U

G
U
U

A
C

A
G
G
C
G
G
G
G
U
U
U U

U
C
U
U
G

U
U G

A
C
A
A
G
A
A U

C
C

UCA
C
A

A U
A
C
C
A
C
AG
A
G
U

C
U A

G
A
C
U
C
G
U
G
G
U
G
G
AC UU

C
U
C
U
C

A
A
U

U U U
C
U

A
G
G
G
G
G
A G

C
A
C

C
C A

A
G
U
G
U
C

C
U
G
G
C
CA
A
A
A

U
U
CG

C
A
G

U
C
C

C C
A
A

CC
U
G
C

A

A U C A
C U

C A C C
AA C C

U C U U
G U C C U C C A A C U U

G U C C U G G C U
A U

C G
C U G G A U GUG U C U

G
C
G
G
C
GU

U
U

U
A
U
C

A
U A U U C

C
U
C
U
U

C
A

UCCU
G
C
U
G
C

U A U G C C U C A
C

C U U
C
U
U
G
U

U
G
G
U
U
C

U
U C

U
G

G
A

C
U

A
C

C
A

A
G

GUA
U G U U G

C
C C G

U U U
G U C C U C U

A C U
U

C C A G G AA
C

A
U
C

A A C U
A
C
C

AG C
A
C

G
G
G

ACCA
U
G

C
A
A
GACCU

G
C

A
C
G
G
U
U
C
C
U
G

C U
C

AA
G

G
A

A
C

CU
C U

A
UG

U
U

U
C

C
C U

C
U

U
G

U
U

G
C

U G U
A
C

A
AA

A
CC
UU

CG
G

A
CG

G
A

A
A

C
UG

C
A

C
U

U
G

U
A

U
U

C
C

CA
U

C
C

C
A

UCAUCCUG
G

G
C
UUU

C
G C

A
AG

A
UU

C
C

UA
U

G
G

G
AG

U G G G CCUCA G
U

C
C

G U U
U
C

U
C C U G G

C U C
A
G U U U A CU

A
G
U

G
C

C
A

U
U
U

G U
U

CA
G

U
G

G
UU

CGU
A G

G
G
C

U U
U

CC
C

C
CA

CU
G

UG
U G G C U U U C A

G U U
A U A

U G G A U G A U G U G G U A
U

U
G

G
G

G
G

C
C

A
A

G
UCU

G
U

C C
AA

C
A

UC
U

U
GA

G
U

C
C

C
UU U

UU A C C U C
U A U U

A C C A A U U
UUC

UGUU G U C U U
U G G G U

A
U
A

C
A U U U G

A
A C C C U A A U

A
A A A C

C
A

AACGUUGGGG
CU

A
C

U
C

CCUUA
ACUU

CAUGGGAUA
UG

UAAUUGG
AAGU

UGGGGUA
CUU

UACCACAG

G A A
C A U A U U G U

A
U

U A A
A
A
A

U
CAA

GCAAUGU
UUUCG

G A A A
CU A

C C U G U A A
A U

A G G C
CUAUUG A

U U
G G A A A G U

A U G U
C A A

A G AAU U G U

G G G U
C U U

U UG G G C
U

U U
G C U G C

C
C C U U

U
U
A

C
ACAA

U
GUGGC

U
AUCCU

GCCU
UGA

UGCCUU
UA U A U

G C
A

UGUAUACAAUCU
AA

GCA
GGCUUUCAC

UU
UC

UC
GCC

AA
CUUACAAGG

CC
UUUC

U G U G U C A A
C A A U A C

C U
G C A

CC UU
U
A C C C C G U U G C C

C
GGCAACGGUCAGGU

CUC
UGC

CAA
GUGUUUGC

UGACGCAA
CC

C C C A C U
G

GA
UGGGGC

UU
G G C C A

U
A

GGCCAU
CG

G C G C A

U G C G U G G A
A C CU

U
U
GUG

G C U C C U C
U G C C

G A U C C A
U A C

U
G C G G A

A C U C C U
A G C A G C U

U G U U U U G C U CGC
A G C

C
G

GU
CUGGAGCGAAACU

U
AUCG

G G A CU
G A C A A C U

C
U

GUUGUCC
UCUCU

CG
G A A

A U A
C
A

C
CUC

C
UUCC

C
A
U
GGCUGCUC

GGAUGUG
CUGC

CAA
C
UGGAUCCU

GCGC
GGGACGUCC

UUU
G
UCUACGUC

CCG
U

C
G

G
C GC

U
G

A
A

UCC
C
G

C
G

G
A

C
G

A C
C

C
G U C

U
C
G

G
G

G
C

C G
U
UUG

G
G

C
C

U
CUA

U
C

GUCCCCUUCUU
C

G
U

C
U

G
CC

G
U

U
CC

A
G

C
C

G
A

CC

A
C

G
G

G
G C

GCA
C

C U C
U
C
U

UUAC
G
C
G

G
U

CU
C

C
C

C
G

U

C

UGUGCC

U

U

C

UCAUCUG
CCG

GACC
G

U
G U

G
C A

C
UU

C
G

CU
U
C

A
CC
UCU

G
C A

C
GU

C
G

C
AUGGAAGCCACC

GUGAAC
GCCC

A
CCAGGUCU

U
GCCCA

A

GCUCUUG
UA

UA
AGAGGAC

UCU
UGGA

CUCUCAGCA
A

UG
U
C A

A
C

GA
C

C
G

A
CC

U
UGAGGCAUACUUCAAAGACUGUUUG

UU
UA

AGGACUGGGA
GGAGUUGGGGGA

GGAGA
CUA

GGU
UA

AUGAUC
UA
UG
UA

CU
AG
G
A
G
G
C
U

G

U
A
G
G
C
A

U

A
A
A

U

U
G
G
U
C
U
G

U
U

CA
C
C
A

GC
A

C
C
AUGCAACUU

U
UUCACCUCU

G
C

C
U
AAU

C
AUC

UC
UU

G
U
U
C
A
U
G
U
C
C
U
A

C U
G
U

UC
A
A
G
C
C
U
C
C
A
A
G

C
U

GU
G
C

C
U
U
G
G
GU
G
G
C
U
U
U
G
G
G
A
C
A
U
G
G
A
C
A

U

U
G
ACC

C
G

U
A
U

A
AAG

A
A
U

U
U
G
G
A
G
C
U
U
C
UGUG

G
A
G
U

U
A
C
U
C
UC

U
U
U
U
U
C
A
C
C
U
C
U

G
C
C
U
A
G
U
C
A
U
C
U
C
U
CG

U
U
C
A
U
G
U
C
C
U
A

C U
G
U

UC
A
A
G
C
C
U
C
C
A
A
G

C
U

GU
G
C

C
U
U
G
G
GUG
G
C
U
U
U
A
G
G
A
C
A
U
G
G
A
C

A

U

UGACCC
UUAUAAAG

A
A

UUUGG
AGCU

UCUGUG
GAGU

UACUCUCUUUU
UUGCCUGCU

G
A

CU
U

C
U

U
U

C
C

G
U

C
G
G

UG
C
A

U
G
A
CCU

C
C

U
AG

A
U

A
C
C

G
C
U

UC
U

G
C

U
U
UG

U
A
U
C
G
G
G
AA

G
C
C

UU
A

G
A

A
U

C
U

C
C

U
G

AA
CAU

U
G

C
U

C
A
C

C
UCA

U
C
A
C

A C A
G
C
A
A
U
C
A
G
GCAA

GCUA
U
U
C
U
G
U

G
C
U

GGGGG
GAA

UUA
A

U
G

A
C

U
C

U
A

G
CU

U
C

C
U

G
G

G
U

G
G

G
U

A
A

U
AAUU

U
A
C
A

A G A
U

C
C

AGCGU
C

C
A
G

G
G

A
A C

U
A
GUA

G
U

C
AA

U
U

AUG
UUAACA

C
U

CACAUGGG
C

CUAAA
GA

UCAGGCAAUUAUUG
U

GGUUU
C

ACAUUUCCUGUA
UU

ACUUUUGGAAG
AGA

A
ACUGU

U
CUUGAAUA

U
U

U
G

G
U

G
U

C
U

UU
UG

G
A

G
U

G
U

G
GA

U
U C

G
C

A
C

U
C

CU
C

C
U

G C C
U
A
C A

G
ACC

A
C

C
A

A
AU

GCCCC
U

A
U

C
U
U

AUC
A

A
C

A
CU

UCCG
GA

A
A C

U A
C U

G
U

U
G
U

U A
G

AC

GACG
AGGCAGGU

CCCCUAGA
AGAAGA

ACUCCCU
CG

CCUCGCAGACG
AAGGU

C
UC

A
A

U C A C C
G C G U C G C

A G A A G
A U C U C

GGU C U A G G G
A A C C U C

A A U G U U
AGU

AUCCCUUGGA
CU

CA
U
A

A G G U G G G A
A A C U

U U AC
G G G G C U

U
U A U U C

U
U C U A C A G UAC

CGG
UCUUU

AAUCC
UG

A
A U G G

C A A A
C U C C C

U C
C U U U C C A A AC

AUUCAUUUGCAGGAGG
ACCU

U
AUUG

A
UAG

A
U
G

U A A G
C A A UUUGUG G G

A C C C C UUACAG U A A A U G A A
A

A C A G G A G A
C

U A A A
A U U A A U A A U G C C U G

C U
AGAU U U

U A U C C
U

A A
U G U U A

C C A
A A

U A
U U U

G C C C U U

A
G A

G
A

A
A

G
G

A
A U

CA

AA
CC

C
U A

U UA

UCCAGAG
C

AUGUAGU
UAAU

CA
UUA

CUU
C
C A

G G C
G A

G A C
A U U A U

U U G C A UACU
C U U U G G A

A

GG C GGG U AU
C
U
U A U

A
U
A A A A G A G A G U

C A
A C A C G

U A G C
G C C

U
C G U U U U G

C GGG U C ACCAUAUUCUUGG
G
A A

C A A G AUCUA
C A G C AUGGGAGGU

C
C G

U C U U C C AA
ACCUC

G
A

A A
A G GC

AUGGGGACAAA
U
C
U U U

C
U G U C C C C AA

UCCC
CUGGGAUUCU

U
C

C C
C
G A U CAU

C A GUU
G G ACC

C UG
C

G
U

U
CAAA

G
C

C
AACUCAGA

A
A
A
U

C
CAG

A
U
U

G
G

GAC
C
U

C A
A
C

C
C

A C A C
A
A
G

G
A

C A
A

C

U
G

G
C C

G
G

A
C

G
CC

C
A C

AA
G

G
U

G
G

G
A

GU
G

G
G

A
G

CAUU
C

G
G

G
C

C
A

G
G

G
U

U
C

A
C

U
C

C
U

C
C

C
CA

U G
G

G
G

G
A
C

U G
U

UG
G

G
G

UGG
A

G
C

C
C

UCA
G

G
C

U
CA

GG
G

C
A

U
ACU

C
A

C A A
C
U

G
U

G
C

C A
G
C
A

G
C

U
C

C
U C

C
U

C
C

U
G

C
C

UC
CA
CC
AA
UC
G
G
C
A
GUC

A
G
G
AA

G
G
C
A
GCCU

A
C
U

C
C

C
U

U
AUC

U
C
C

A C C
U
C

U
A

A
G

G
G

A C
A

CU
C
A

U
C

C
U

C
A

G
G

C
C
A U

G
CA

G
U

G
G

A
ACU

C
C

A C C A
C
U

U
U
C
C
A
CC
A
A

A
CU
C

U
U

C
A

A
G

A
UCCC

A
G

A
GUC

A
G

G
G

C
U

C
U

G
U

A
C

C
UUC

C
U
G

C
U

G
GU

G
G C

U
C
C
A
G
U U

C
A
G
G

A
A
C
A
GUA
A
G
C
C
C
U
G
C
U
CA G

AAUA
C

U
G
U
C

U
C U A C C

A
U
A
U

C
G

U
C

A
A
U
C
U
UAU
CG
A
A
G
A

C
U
G
G
G
G
A CC

C
U

G
U
GC CG

A
A

C
A
U
G
G
A
G
A
A
C

A
U
C
G
C
AU

C
A
G
G
A
U
U

C

C

U
A
G
G
A
C
C
C
CUG

C
U

C
G
U

G
U U

A
C

A
G
G
C
G
G
G
G
U
U
U
UUCUC

GU
UG
AC

CA
AA

A
U
C
C
U C

A
C
A

AU

A
C
C
A
C
AG
A
G
U

C
U A

G
A
C
U
C
G
U
G
G
U G

G
A
C
U

U
CU

C
UCA

A
U
U
U
U
C
C
A
G
G
G

G
G
C
A
C

A
C C

C
G
U
G
U
G

U
C
U
U
G
GC
CA
A
A
A
U
U

C
G

C
A
G
U
C
CC

A
A A

U
CU

C
C
A
G
U

C
A

C
U
CA

C
C
A
A
C

C
U

G
U
U
G

U
C C

U
C

C
A
A
U

U
U

G
UC
CU

G
G
U

U
A

U
C

G
C
U
G
G
A
U
G
U
G
U

CU
G
C
G
G

C
G
U
U
U
UA
U
C
A
U
C

U
U
C

C

U
C
U
G
C

A
U
C
C
U
G
C
U
G
C
U

A

U

G
C
C

U
C
A
U

C
UU

C
U
U
G
U

U
G
G
U
U
C

U
U C

U
G

G
A

C
U

A
U

C
A

A
G

G
U

A
U

G
U
UG

G
CC

G
U
U

UG
U
C
C
U

C
U

A A U
U
C

CA
G

G
A

UC
A
U
C
A

A
C

C
A

C
CA

G
C
A
C G

G
G

A
C
CA U

G
C
A
A

G A
C

CU
G

C
A
C
A

AC
U

C
C

U
G

C
UC

G
A
A
A
C
A

C
C U C

U
AU

G
U

U
U

CC
C

U
C

A
UG

U
U G

C
U

G
U

A C
A

A
A
A
C

C U A
C

G
G

A
C
G G

A
A
ACUG

C
AC

CUGUA
U

U
C

C
C

A
U

C
C

C
A
U

C A
U
C

UU
G

G
G

C U U U
C
G
C

A
A

AAUA
C

C
U
A

U
G

G
G

A
G

U
G

G
G

C

CU
C
AG

U
C

C
G

U
U
U

C
UCU

U
G
G
CUC

A
G

U
U

UA
CU

AG U
G

C
C A

U
U U

G
U

U
C

A G
U

G
G

U
U

C
G

U
A G

G
G
C

U U
U

CC
C

C
CA

CU
GU C U GG C U U U C A G U U A U A U G

G
A
U G

A
U G

U
G

G
U

A
U
U G

G
G

G
G

C
C

A
A

G
UCU

G
U

A C
AA

C
A

CC
U

U
GA

G
U

C
C

C
U
UUA

U
G

C
C

G
C
U

GUU
AC C C A U

U
U U C U U U U G U

C U U
U G G G

C
A

U A C
A
U
U

U
AAA

CCC
UC

AUAA
AACCAAAAGAU

G G G G A
U A

UUCCCUUAACUUCAUGGG
A

UAUGUAAUUGGGAGCUGGG
GUUCAUUG

C
C

A
C
AGG

A
A

C
A

UA
U

UG
U

A
CC A

AAA A U C A A
A

C U A
U G U U U U A G G A

A A
C

UUCCUGUAAACA
G

GCCUA
UUGAUUG G A

AAG U U U G U
C

C A
C G C A U

U G U
G G G U

C U U
U

U G G G A UUUGCUG C C
C C A U U

U A
C

GC
AAUG

UGGU
U

AUCCUGC
UUUAA

UGCCU
U

UAU
AUGC

AUG
UAUACAAGCA A A

ACAG G C
U

U U U
A
C
U

U
UCU

C
GCCA A C U

UACAA
G G C C U

U U C U G A G U A A
A C A

G U A
U C U

G
A
C

CCU
U

UAC
CCCG

UUGCUCGGCAAC
GGCCU

G G U C U G U G C C A A G U
G
U

U U G C U
G
AC

GCAAC
CC

C C A C U
G

GU
UGGGGCUUGGCCAUAGGCCA

U
CAG
C G

C
AU

GCGU
G

G
G

A
C

C
U

U
U

G U

G
U

C
U

C
C

U
C

U G
C

C G A U C C A
U A C

U
G C G G A

A C U
C C U A G C C

G C UUGUUU
U G C U C

G
C

AGCA
G G U C

U
G G A G C G

A A
A C UC A

U
C G G G A C

U G A C A A
U

UC
UGUCGUGCUCUCCCGCA

AGUA
UAC

CUCCUU
U
CCA

U
GGCU

GCUAGGCU
GUG

CUGC
CAA

C
UGGAUCC

U
GCG
C

G
G

G
A

C
G

U C C
U
U

U
GUU

U
A

C
G

U
C

C
C

G
UC

G
G

C
G C

U
G

A A
U

C
C

C
G

C
G

GACGA
C

C
C C

U
CCC

G
G

GG

C
C

G
CUUG

G
G

GC
U

CUA
C
C

G
C

CC
G

C
U

U
C

U
C

C
G

U
C

UGC
C

G
U A

C
C

G
A

C C
G

A
C C

A C
G

G
G

G
C

G
C

A
C
C

U C U
C
U
C

U
ACG

C
G

G A
C

UC
C
C

C
G

UC
U

G
U

G
C

C
U

UC
UC

G
U

CU
G

CCG
G

A C
C
G

U
G U

G
C A

C
UU

C
G

CU
U
C

A
CC

U
C

U
G

C
A
C
G

U
C

GC
A

U
G

G
A

G
A

C
C

A
C

C
G

U
G

A
A
C
G

C
C
C

A
C
C

G
G

A
A C

C
U
G

C
C
C

A
A
G
G

U
C
U
U
G

CA
U

A
A
G

A G
G

A
C
U

C
U

U
G
G

ACU
U
U

C A G
C

A
AU

G
U
C

A
AC

G
A

C

C
G

A
C

C
U

U
GA

G
G

C
AU

A
C
U

U
CAA

A
GA

C
U

GU
G

U
G

U
U

U
A

CUG
A
G

U
G

G
G

A
G

G
A

G
C

U

G
GG

G
G

A
G

G
A

G
A

UUAGGUU
A

A
A

G
G

U
C

U
UU

GU
ACUAG

G
A
G
G
C
U

G
U
A
G
G
C
A

U

A
A
A

U

U
G
G
U
C
U
G

U
U

CA
C
C
A

GC
A

C
C
AUGCAACUU

U
UUCACCUCU

G
C

C
U
AG

U
C
AUC

U
C
UC

G
U
U
C
A
U
G
U
C
C
U
A

C U
G
U

UC
A
A
G
C
C
U
C
C
A
A
G

C
U

GU
G
C

C
U
U
G
G
GU
G
G
C
U
U
U
A
G
G
A
C
A
U
G
G
A
C

A

U
U
G
A
CC

C
U
U

A
U

A
AAG

A
A
U

U
U

G
G
A
G
C
U
U
C
UGUG

G
A
G
U

U
A
C
U
C
UC

Figure 5: Two predicted secondary structures of the complete RNA pregenomes of (closely

related) human hepatitis B viruses (AB014360 and HBD50521). Note that there is hardly

similarity between the predictions: little changes in the nucleic acid sequences cause large

changes in secondary structures.

2 Theoretical Background 8

2 Theoretical Background

2.1 Alignments in Principle

An alignment is the most basic sequence analysis task. It is used to tell

whether two or more sequences are related and to give an impression how

close their relationship is in terms of sequence similarity. To find the best pos-

sible alignment of sequences is of central importance for bioinformatics and

data processing after routine laboratory procedures like sequencing nucleic

acids. Some alignment algorithms exist which are used to find an optimal

(global or local) alignment, and, of course, a scoring system is necessary to

rank alignments. In principle, all known algorithms are based on two criteria,

(i) maximum similarity or (ii) minimum (Hamming-) distance [28, 33, 50].

For evaluating the difference between two sequences we have three possi-

bilities of pairs of opposite symbols: (i) identity, (ii) substitution or mismatch

and (iii) insertion or deletion. The procedure is usually done by first align-

ing the sequences and then deciding whether that alignment is more likely

to have occurred because the sequences are related, or just by chance. In

any case the scoring system should help to answer this question regarding

to identical and similar positions in the alignment. (Similar pairs of residues

in amino acid alignments are those which have a positive score in the sub-

stitution matrix used to score the alignment, e.g. aspartate-glutamate pairs,

D-E, both negatively charged amino acids.)

2.2 The Scoring of Alignments

Careful thought must be given to the scoring system used to evaluate an

alignment when we are looking for evidence that they have diverged from a

common ancestor by a process of mutation and selection. The basic muta-

tional processes that are considered are substitutions, which change residues

2 Theoretical Background 9

in a sequence, and insertions and deletions, which add or remove residues

and are together referred to as ’gaps’. The total score of an alignment is a

sum of terms for each aligned pair of residues, plus contributions for each

gap. Informally, using an additive scoring system we expect identities and

conservative substitutions to be more likely in good (biologically relevant)

alignments than we expect by chance, and so they should contribute positive

score terms. And on the other hand, non-conservative changes are expected

to be observed less frequently in real alignments than we expect by chance,

and so these contribute negative score terms. This system also corresponds

to the assumption that we can consider mutations at different sites in a se-

quence to have occurred independently (treating a gap of arbitrary length as

a single event). All alignment algorithms depend crucially on such a scoring

scheme and from a biological point of view the assumption of independence

appears to be a reasonable approximation for DNA and protein sequences,

although we know that intramolecular interactions between residues of a pro-

tein play a very important role in determining protein structure. Regarding

the secondary structures of RNAs, where base pairing introduces very critical

long range dependencies, the model of independent mutations is biologically

inaccurate [59, 64, 67].

We need score terms for each aligned residue (or base) pair. We derive

substitution scores from a probabilistic model that gives a measure of the rel-

ative likelyhood that the sequences are related as opposed to being unrelated.

We do this by having models that assign a probability to the alignment in

each of the two cases. Then we consider the ratio of the two probabilities.

The random model R assumes that a letter in the sequence (for proteins

an amino acid or one of the four bases in the case of DNA or RNA) occurs

independently with some frequency q, and hence the probability of the two

2 Theoretical Background 10

sequences is the product of the probabilities of each amino acid (or base):

P (x, y|R) =
∏

i

qxi

∏

j

qyj
(1)

where x and y is a pair of sequences, xi is the ith symbol in x and yj is

the jth symbol in y. These symbols come from an alphabet (A, G, C, T,

U in the case of nucleic acids or an amino acid in the case of protein). In

the alternative match model M , aligned pairs of residues occur with a joint

probability pab. This value pab can be thought of as the probability that the

residues a and b have each independently been derived from some unknown

original residue c in their common ancestor (c might be the same as a and/or

b). This yields a probability for the whole alignment:

P (x, y|M) =
∏

i

pxiyi
(2)

The ratio of these two likelihoods is the ’odds ratio’,

P (x, y|M)

P (x, y|R)
=

∏

i pxiyi
∏

i qxi

∏

i qyi

=
∏

i

pxiyi

qxi
qyi

(3)

We want to arrive at an additive scoring system, so we have to take the

logarithm of this ratio, known as the ’log-odds ratio’,

S =
∑

i

s(xi, yi) (4)

where

s(a, b) = log(
pab

qaqb

) (5)

is the log-likelihood ratio of the residue pair(a, b) occurring as an really valid

aligned pair, as opposed to an unaligned pair (or by chance joined pair of

residues or nucleic acids). We can see that S in this equation is a sum of

individual scores s(a, b) for each aligned pair of residues. And these indi-

vidual scores, these log-odds values can be rounded to the nearest integer

2 Theoretical Background 11

for purposes of computational efficiency and then arranged in a matrix. For

instance, in the case of proteins the matrix is a 20×20 matrix which gives an

individual score s(ai, bj) for sequences a and b in position i and j. The high-

est positive entries in the matrix are given for identical residue pairs, lower,

but also positive, values do the conservative substitutions have while non

conservative substitutions give a negative score. So it is possible to derive

scores, in fact s(a, b) in the above equation, for every pair of residues in the

alignment. Any matrix like this is making a statement about the probability

of observing ab pairs in real (biologically relevant) alignments and is called

substitution matrix or score matrix or weight matrix. Examples of substi-

tution matrices are the BLOSUM50, the BLOSUM62 [47] or the PAM250 matrix

[25].

The next point is penalising gaps. There are two possibilities: the stan-

dard cost associated with a gap of length g could be given by a linear score

γ(g) = −gd (6)

where d is called the gap open penalty. But it seems to be more legitimate

to make a difference whether a gap is newly opened or an existing gap is just

extended. A type of score could be used which is known as the affine score

γ(g) = −d − (g − 1)e (7)

where e is called the gap extension penalty. This penalty should be set to

something less than the gap open penalty d, so that extension of existing in-

sertions (or deletions) is penalised less than opening further gaps (as it would

be by the linear gap cost). Gap penalties also correspond to a probabilistic

model of alignment. We assume that the probability of a gap occurring at

a particular site in a given sequence is the product of a function f(g) of

the length of the gap, and the combined probability of the set of inserted

2 Theoretical Background 12

residues,

P (gap) = f(g)
∏

i∈gap

qxi
. (8)

The form of this equation as a product of f(g) with the qxi
terms corresponds

to an assumption that the length of the gap is not correlated to the residues

it contains. The natural values for the qa probabilities here are the same

as those used in the random model above, because they both correspond to

unmatched independent residues. When we divide by the probability of this

region according to the random model to form the odds ratio, the qxi
terms

cancel out. This leaves us with a term dependent on length γ(g) = log(f(g)).

Gap penalties correspond to the log probability of a gap of that length.

On the other hand, if there is evidence for a different distribution of

residues in gap regions then there should be residue-specific scores for the

unaligned residues in gap regions, equal to the logs of the ratio of their

frequencies in gapped versus aligned regions. This might happen if it is

expected that polar amino acids are more likely to occur in gaps in protein

alignments than indicated by their average frequency in protein sequences,

because the gaps are more likely to be in loops on the surface of the protein

structure than in the buried core.

After having determined a certain scoring system, we need to have an

algorithm for finding an optimal alignment for a pair of sequences. The

alignment problem becomes very complicated when gaps are allowed: for

sequences of length 30 there are 109 possibilities, and with length 60 we have

1018 possible alignments. But in terms of molecular biology sequences of

this length are comparatively short, and often it is necessary to find the best

alignment between sequences which have a length of some thousand amino

acids or nucleotides (like in the case of virus genomes). It is of course not

computationally feasible to enumerate all these.

So we need to find a way to obtain optimal alignments without testing and

2 Theoretical Background 13

valueing every possible solution. An algorithm for finding optimal alignments

given an additive alignment score is called dynamic programming. It implies

that we get the best possible alignment as a result of an optimal alignment till

each current position. Using the introduced scoring scheme better alignments

have higher scores. So what we have to do is to maximise the score to find

the optimal alignment as opposed to other interpretations of scoring which

search for minimal distances or costs. Both approaches have been used in the

biological sequence comparison literature. Dynamic programming algorithms

apply to either case. The differences are, simply said, just exchanges of ’min’

for ’max’ [82, 85, 86].

2.3 Pairwise Alignment Algorithms

The most important dynamic programming algorithm in biological sequence

analysis for obtaining the optimal global alignment between two sequences,

allowing gaps, is the Needleman-Wunsch algorithm [85, 6], introduced in

1970.

The idea behind all versions is to build up an optimal alignment using

previous solutions for optimal alignments of smaller subsequences. A matrix

F of the two sequences is constructed, indexed by i and j, one index for each

sequence, where the value F (i, j) is the score of the best alignment between

the initial segment x1...i of x up to xi and the initial segment y1...j of y up to

yj. The score value F (i, j) is builded recursively and we start by initialising

F (0, 0) = 0.

We have three possibilities of pairs of opposite symbols: (i) identity, (ii)

substitution or ’mismatch’ and (iii) insertion or deletion. So we proceed to fill

the matrix from top left to bottom right, from the first letters of the sequences

to their ends. Along the top horizontal row (where j = 0) and the first

vertical column (where i = 0) we write the pairs of one sequence’s letters with

2 Theoretical Background 14

a gap in the second sequence and get the scores of these gaps by multiplying

the position of the letter by the gap penalty. So the values F (i, 0) represent

alignments of a prefix of x to all gaps in y and we can define F (i, 0) = −id.

Likewise down the left column F (0, j) = −jd. If F (i − 1, j − 1), F (i − 1, j)

and F (i, j − 1) are known, it is possible to calculate F (i, j). There are

three possible ways that the best score F (i, j) of an alignment up to xi,

yj could be obtained: xi could be aligned to yj, in which case F (i, j) =

F (i − 1, j − 1) + s(xi, yj), where s(xi, yj) is the individual score for this

pair of amino acids or nucleotides; or xi is aligned to a gap, in which case

F (i, j) = F (i − 1, j) − d, where d is the gap penalty; or yj is aligned to a

gap, in which case F (i, j) = F (i, j − 1)− d. The best score up to (i, j) is the

largest of these three options. Therefore, we have

F (i, j) = sup

F (i − 1, j − 1) + s(xi, yj),

F (i − 1, j) − d,

F (i, j − 1) − d.

(9)

This equation is applied repeatedly to fill in the matrix of F (i, j) values,

calculating the value in the bottom right-hand corner of each square of four

cells from one of the other three values (above left, left, or above). And as

we fill in the F (i, j) values, we also keep a pointer in each cell back to the

cell from which its F (i, j) was derived. Finally the value in the bottom right

cell of the matrix F (n, m) is by definition the best score for an alignment

of x1...n to y1...m. To gain the alignment itself, we must find the path of

choices which led to this final value. The procedure for doing this is called

backtracking. We build the alignment in reverse, starting from the final cell,

and following the pointers that we stored when building the matrix. At each

step in the backtracking process we go back from the current cell (i, j) to

the one of the cells (i − 1, j − 1), (i − 1, j) or (i, j − 1) from which the value

F (i, j) was derived. So with every step we get a pair of symbols and add it

to the growing alignment: xi and yj if the step was to (i − 1, j − 1), xi and

2 Theoretical Background 15

the gap character ’-’ if the step was to (i− 1, j), or ’-’ and yj if the step was

to (i, j − 1). Finally we reach the starting point of the matrix, i = j = 0.

The reason that the algorithm works is that the score is made of a sum of

independent pieces, so the best score up to some point in the alignment is

the best score up to the point one step before, plus the incremental score of

the new step.

2.4 Alignments with Affine Gap Penalties

In fact, the common way of penalizing gaps is not the (more simple) linear

score where the standard cost associated with a gap of length g is given by

γ(g) = −gd (10)

where d is called the gap open penalty (see above). Mostly, it seems to be

more legitimate to make a difference whether a gap is newly opened or an

existing gap is just extended. The type of score used here is known as the

affine gap score:

γ(g) = −d − (g − 1)e (11)

where e is called the gap extension penalty. Also for this form of gap cost

there is once again an efficient implementation of dynamic programming.

Doing affine gap alignments requires keeping track of multiple values for

each pair of letters instead of the single value F (i, j). Let us define M(i, j)

to be the best score up to (i, j) given that xi is aligned to yj. Let Ix(i, j) be

the best score given that xi is aligned to a gap, and Iy(i, j) be the best score

given that yj is aligned to a gap (this corresponds to the case that yj is part

of an insertion with respect to x, and vice versa).

2 Theoretical Background 16

The recurrence relations now become more complex:

M(i, j) = sup

M(i − 1, j − 1) + s(xi, yj),

Ix(i − 1, j − 1) + s(xi, yj),

Iy(i − 1, j − 1) + s(xi, yj).

(12)

Ix(i, j) = sup

M(i − 1, j) − d,

Ix(i − 1, j) − e,

Iy(i − 1, j) − d.

(13)

Iy(i, j) = sup

M(i, j − 1) − d,

Ix(i, j − 1) − d,

Iy(i, j − 1) − e.

(14)

In these equations, we assume that it is possible for a deletion to be followed

directly by an insertion. As previously, we find the alignment itself using the

traceback procedure.

The scoring system defined here can be described by a type of diagram

named finite state automaton. This shows a state for each of the three

matrix values, with arrows between the states which symbolize the possible

transitions. The transitions each carry a score increment, and the states each

specify a ∆(i, j) pair, which is used to determine the change in indices i and

j when the state is entered. The recurrence relations of all matrix values

can be read directly from the finite state automaton. But it is important

to note that this type of diagram does not reflect the alignment algorithm

itself. In fact, it only summarizes the possible scorings, and the progress of

the alignment can be represented as a walk through the diagram from one

state to another via the transition paths: the new value for a state variable at

(i, j) is the maximum of the scores corresponding to the transitions coming

into the state. Each transition score is given by the value of the source

state at the offsets specified by the ∆(i, j) pair of the target state, plus the

2 Theoretical Background 17

M

Ix

Iy

(+1, +1)

(+0, +1)

(+1, +0)

−d

−d

−d

−e

−e

−d

+Sn

+Sn

+Sn

Figure 6: This finite state automaton is a diagram of the relationships and transitions

between the three states used for affine gap alignment. The progress of the alignment can

be represented as a walk through the diagram from one state to another via the transition

paths. M means (mis)match, Ix and Iy are insertions and deletions, Sn is the increment

of nucleic acid score, and d and e represent the gap open and extension penalties.

specified score increment. Letters from the underlying pair of sequences are

transferred to the alignment referring to the ∆(i, j) values in the states.

Also the algorithm of the code2aln implementation makes use of the

’Gotoh-type’ affine gap penalty algorithm, even though with some extensions

[35].

2.5 Multiple Alignments

Full dynamic programming is used in order to align just two sequences. This

guarantees a mathematically optimal alignment, given a table of scores for

matches and mismatches between all amino acids or nucleotides and penal-

2 Theoretical Background 18

ties for insertions or deletions of different lengths. Attempts at generalising

dynamic programming to multiple alignments, however, are limited to small

numbers of short sequences [73]. For more than ten or so proteins of average

length, the problem is infeasible given current computer power. Therefore,

all of the methods capable of handling larger problems in practical timescales

make use of heuristics. Nowadays, the most widely used approach is to ex-

ploit the fact that homologous sequences are evolutionary related. We can

produce a multiple alignment progressively by a series of pairwise alignments,

following the branching order in a phylogenetic tree [26]. We first align all

possible pairs of sequences and derive a either a distance matrix or a resulting

pairwise alignment score matrix in order to calculate the initial guide tree

which is built up by the distances or similarities between the sequences. Then

the most closely related sequences get aligned progressively according to the

branching order in the guide tree, gradually adding in the more distant ones

when we already have some information about the most basic mismatches or

gaps. Some information which is derived from the first pairwise alignments

of the most closely related sequences.

This approach is fast enough to allow alignments of virtually any size.

Further, in most (simple) cases, the quality of alignments of this type is very

good, as judged by the ability to correctly align corresponding domains from

sequences of known secondary or tertiary structures [5]. So this approach

also works well if the data sets consist of sequences of different degrees of

divergence. By the time the most distantly related sequences are aligned,

one already has a sample of aligned sequences which gives important infor-

mation about the variability at each position. The placement of gaps in

alignments between closely related sequences is much more accurate than

between distantly related ones. Therefore, the positions of the gaps which

were introduced during the early alignments of the closely related sequences

are not changed as new sequences are added. One problem is that this ap-

2 Theoretical Background 19

proach becomes less reliable if all of the sequences are highly divergent. More

specifically, any mistakes like misaligned regions made early in the alignment

process cannot be corrected later as new information from other sequences

is added. Thus, there is no guarantee that the global optimal solution has

been found and the alignment is not caught in a local minimum. This risk

increases with the divergence of the initially aligned sequences and is thought

of as mainly resulting from an incorrect branching order in the initial tree.

Initial trees are derived from a matrix of distances between the separately

aligned pairs of sequences in the first steps of the multiple alignment process.

Most relevant errors occur during these initial alignments.

Furthermore, the parameter choice problem is very important. One choo-

ses a weight matrix and two gap penalties (one for opening a new gap and one

for extension of an existing gap) and expects that these should work well over

all parts of all the sequences in the data set. When the sequences are closely

related this works in most cases. This problem also becomes worse with

increasing sequence diversity. All residue weight matrices give most weight

to identities. If identities dominate an alignment, almost any weight matrix

will find approximately the correct solution. With very divergent sequences

the scores given to non-identical residues will become critically important,

because there are more mismatches than identities.

Another problem arises with the choice of the best gap penalties. The

range of gap penalty values which will find the correct or best possible solu-

tion can be very broad for highly similar sequences, but as more and more

divergent sequences are used, the exact values of the gap penalties become

very important for success [113]. Further, in protein alignments, gaps do not

occur randomly. They occur far more often between the major secondary

structural elements like helices than within [90].

The first basic step of the multiple alignment algorithm described here is

aligning separately all pairs of sequences in order to calculate a resulting final

2 Theoretical Background 20

pairwise score matrix giving the divergence of each pair of sequences. Ac-

curate scores for constructing the best pairwise alignments are derived from

full dynamic programming alignments using two gap penalties (for opening

or extending gaps) and a full usage of the scoring function including an amino

acid score matrix for information regarding the coding regions (see below).

The tree used to guide the final multiple alignment process is computed

from the final pairwise score matrix derived in the first step. This method

produces trees with branches and branching points that reflect the divergence

relations calculated from the pairwise alignments.

Then the progressive profile alignments of already existing smaller align-

ments start. The basic procedure at this stage is to use the already available

series of pairwise alignments to align larger and larger groups of sequences,

following the branching order in the guide tree. First the most similar se-

quences or sequence groups at the tips of the tree get aligned. Then this

alignment gets aligned with the third most similar sequence or group which

is something more divergent from the first two sequences (groups) and so on

till the last sequence (group) with the least homology gets aligned with an

alignment consisting of all other sequences. See figure 7 for an example of a

guide tree and the process of a multiple alignment.

At each stage a full dynamic programming algorithm [84] is used with a

(mis)match score value, a score value for possible underlying coding regions

in all frames, and penalties for opening and extending gaps. So each step con-

sists of an alignment of two existing alignments or sequences. Gaps that are

present in former alignments remain fixed, but new gaps that are introduced

at each state of alignment get full opening and extending penalties even if

they are introduced inside old gap positions in other sequences. The score

between a position from one sequence or alignment and one from another is

calculated as the average of all pairwise nucleic acid match scores and the

appropriate amino acid weight (substitution) matrix scores in the two sets.

2 Theoretical Background 21

AGCGGTTGC AGGGGTTGC
CGGAGTTGC ACCAGCTTGGC

CGGACTTTGCC

GCCGACCTGC

AGCGGTTGC

AGCCGTTGC

AGGGGTTGC

AGCGGTTGC

AGCCGTTGC

AGGGGTTGC

AGCCCTTGC

AGCGGTTGC

AGCCGTTGC

AGGGGTTGC

AGCCCTTGC

CGGAGTTGC

GCCTTAGCCTA

AGCCGTTGC

AGCCCTTGC CTGGCCTAAGC
ACCGTTGCCC

GCGACCGTGG GCCTTAGCCTA

ACCGTTGCC−C

AGCCGTTGC

AGCGGTTGC

−CGGACTTTGCC

−CTGGCCTAAGC

GCCGACCT−−GC

−−−GCCTTAGCCTA

−−−ACCGTTGCC−C

GCCGACCT−−GC

ACCAGC−TTGGC

−CGGACTTTGCC

−CTGGCCTAAGC

GCGACCGT−−GG

ACCAGC−TTGGC

ACCAGC−TTGGC

−CGGACTTTGCC

−CTGGCCTAAGC

ACCAGC−TTGGC

−CGGACTTTGCC

−−−ACCGTTGCC−C

−−−GCCTTAGCCTA

GCGACCGT−−GG−−

GCCGACCT−−GC−−

−CTGGCCTAAGC−−

−CGGACTTTGCC−−

ACCAGC−TTGGC−−

−−AGCGGTT−GC−−

−−AGCCGTT−GC−−

−−AGGGGTT−GC−−

−−AGCCCTT−GC−−

−−CGGAGTT−GC−−

ACCAGC−TTGGC−−

−CGGACTTTGCC−−

−CTGGCCTAAGC−−

GCCGACCT−−GC−−

GCGACCGT−−GG−−

Figure 7: An example for a guide tree and a process of a multiple alignment. The guide

tree tells nothing about the evolutionary distances between the sequences. It only produces

an order of the profile alignments.

For example, aligning two alignments with 3 and 4 sequences, the final score

for this position is the average of 12 (3 × 4) comparisons.

Two different gap penalties are used: a gap opening penalty, which gives

the cost of opening a new gap of any length, and a gap extension penalty,

which gives the cost of every item in the gap. We vary gap penalties and

use weight (substitution) matrices of amino acid comparisons of amino acids

which are encoded by the aligned nucleic acid sequences to improve the ac-

curacy of the sequence alignments.

In principle, it is possible to offer two main series of weight matrices

to the user: the Dayhoff PAM series [25] and the BLOSUM series [47]. In

each case there is a choice of matrices ranging from strict ones, useful for

comparing very closely related sequences, to less strict ones which are useful

for aligning more divergent sequences. Depending on the distances between

the two sequences or groups of sequences to be compared, CLUSTAL W, for

instance, switches between 4 different matrices in each series. The distances

2 Theoretical Background 22

are measured directly from the guide tree [105]. But in our applications we

prefer to reduce ourselves to one highly universal amino acid scoring matrix

(BLOSUM62) [47] for the reason of reproducibility, because our algorithm of

combining the information on nucleic acid level with that on amino acid level

makes the scoring function more complex a priori.

2.6 Some Other Multiple Alignment Algorithms

In the following, a short overview about currently used alignment algorithms

is given. All of them use heuristics, because the problem of exact dynamic

programming for multiple alignments is, that the solution is computationally

not accessible in most cases for sequences of typical biological lengths, given

current computer power. None of the methods mentioned here makes use of

genetic information about coding and amino acid scores within nucleic acid

sequences to improve the resulting multiple alignment.

Calign

Genomic DNA and cDNA are compared to improve the understanding of

coding regions consisting of exons and introns. The algorithm uses restricted

affine gap penalties which penalize long gaps with a constant penalty. Several

techniques developed for solving the approximate string-matching problem

are employed for computing the optimal alignment with restricted affine gap

penalties. The algorithms are derived based on the suffix automaton with

failure transitions and on the diagonalwise monotonicity of the cost tables.

The source code is freely available [18, 19].

FramePlus

An algorithm for DNA-Protein sequence alignment is used for automated

annotation of Expressed Sequence Tags (ESTs). The approach is to align

2 Theoretical Background 23

gene fragments against well-documented databases of protein sequences. The

SCOP database was used to develop a general framework for testing the

sensitivity of such an alignment algorithm when searching large databases.

In this framework, the performance of FramePlus was found to be better

than other algorithms in the presence of moderate and high rates of frame

shift errors. The source code for FramePlus is freely available [40, 41].

The dead-end elimination algorithm

A polynomial-time algorithm for rigorously solving the local multiple align-

ment problem for extracting functionally important regions shared by a fam-

ily of protein sequences. The algorithm is based on the dead-end elimination

procedure to avoid an exhaustive search: certain rejection criteria elimi-

nate those sequence segments and segment pairs that can be mathematically

shown to be inconsistent (dead-ending) with the globally optimal alignment.

Iterative application of the elimination criteria reduce combinatorial possi-

bilities without considering them explicitly. In contrast to the exhaustive

search, whose computational complexity is combinatorial, the number of op-

erations required to eliminate the dead-ending segments and segment pairs

grows quadratically and cubically, respectively, with the total number of se-

quence elements. The source code is available from the authors [78].

OWEN

This is an interactive tool for aligning two long DNA sequences that repre-

sents similarity between them by a chain of collinear (non-conflicting) local

similarities. OWEN uses several methods for constructing and editing local

similarities and for resolving conflicts between them. Similarity between two

long orthologous regions of genomes can be represented by a chain of local

similarities. Within such a chain, pairs of successive similarities are collinear.

2 Theoretical Background 24

OWEN is supposed to find the true chain of these local similarities. Many

conflicts between pairs are resolved by deleting a similarity by a stronger

similarity. This constructs a chain of similarities faster than when a chain is

sought optimally with some global criterion. The software is freely available

[94, 95].

POA - Partial Order Alignments

One common problem of many progressive multiple sequence alignment al-

gorithms is the fact that they depend on reducing an alignment to a linear

profile for each alignment step. This leads to loss of information and gap

scoring artefacts. POA represents an alignment as a graph that can itself be

aligned directly by pairwise dynamic programming, eliminating the need to

reduce the alignment to a profile. POA guarantees that the optimal alignment

of each new sequence versus each sequence will be considered. Furthermore,

a new edit operator (homologous recombination) is introduced to the algo-

rithm, which is important for multidomain sequences. POA is significantly

faster than other multiple sequence alignment algorithms [69], and is avail-

able at [70].

Handel

Handel is a software implementation of a synthesis of probabilistic sequence

alignment, profiling and phylogeny: A multiple alignment algorithm for

Bayesian inference in the links model proposed in [107]. The program samples

from and/or maximizes the posterior distribution over multiple alignments

for any number of DNA or protein sequences, conditioned on a phylogenetic

tree. No more computational resources than for pairwise alignment are re-

quired. Handel is freely distributed [57, 58].

2 Theoretical Background 25

Divide-and-Conquer Alignment Algorithm

Also this method allows to quickly compute heuristic multiple sequence align-

ments. The sequences are cut at certain positions near to their center. This

divides the problem of aligning K long sequences into the two problems of

aligning the shorter K prefix and K suffix sequences. Assuming that it is pos-

sible to compute optimal alignments of these two sets of shorter sequences,

an alignment of the complete sequences is obtained by conctatenating the

prefix alignment and the suffix alignment. If one of those is still too long

to be aligned optimally, the procedure is repeated until the sequences are

of a length short enough to be tractable for the exact alignment procedure.

The choice of the cut positions is critical and determined using heuristic

approaches [92, 104, 108]. The program is available at [109].

ComAlign

This is a heuristic method that extracts qualitatively good sub-alignments

from a set of multiple alignments and combines these into a new, often im-

proved alignment. The algorithm is implemented as a variant of the tra-

ditional dynamic programming technique. ComAlign actually does combine

parts from different alignments and not just select the best of them. By this

method it is guaranteed that the results always lie within a certain distance

of an optimal solution (given a measure of quality) [14]. The source code of

ComAlign is free and available on [13].

ProtEST

This method constructs multiple protein sequence alignments from protein

sequences and translated expressed sequence tags (ESTs). ProtEST is more

effective than a simple TBLASTN search of the query against the EST database,

as the sequences are automatically clustered, assembled, made non-redund-

2 Theoretical Background 26

ant, checked for sequence errors, translated into protein and then aligned

and displayed. The ProtEST method [23] is available as an internet (WWW)

service at [22].

DIALIGN

In the segment-by-segment approach to sequence alignment, as implemented

in DIALIGN, pairwise and multiple alignments are generated by comparing

gap-free segments of the sequences under study. The input can be seen as a

set of non-gapped segment pairs (diagonals). Given a weight function that

assigns a weight score to every possible diagonal, the goal is to choose a

consistent set of diagonals of maximum weight. In this approach, the score

of an alignment is defined as the sum of all weights of these segment pairs.

A later modification of the weight function used in the original version of the

alignment program DIALIGN, published recently, has two further important

characteristics: it can be applied to both globally and locally related sequence

sets, and the running time of the program is considerably improved. The

program is available online at the Bielefeld University Bioinformatics Server

(BiBiServ) [71, 72, 83].

2.7 RNA Secondary Structure Prediction

RNA polymers are macromolecules, consisting of a linear arrangement of

building blocks, the monomers [42, 118]. RNA polymers have the ability to

fold back on themselves, due to interactions between individual base pairs.

For biopolymers like proteins or RNA these interactions are specific, and

can lead to the adoption of a unique compact conformation called ’native

state’. During the structure formation process both, RNA and proteins, try

to minimize the solvent exposure of hydrophobic residues by burying these

residues in the interior of the structure [48]. But it is self-evident from

2 Theoretical Background 27

the different chemical nature of RNA and proteins that the ways how these

macromolecules achieve their compact conformation is different. For proteins

the driving force of the collapse into compact conformations is the formation

of a hydrophobic core. For RNA the formation of compact conformation is

promoted by the tendency to maximize the stacking interaction between base

pairs [49]. And it is essential for living cells that this formation of the correct

and functional conformation is achieved in biologically relevant sufficiently

short time [44, 68, 114, 115, 116].

From a theoretical point of view, the problem of how biopolymers achieve

their native state splits up into two aspects. The first aspect is the structure

prediction problem. The second aspect deals with the dynamics of the folding

process itself [15, 17, 46, 63].

Since the sequence of a biopolymer specifies its three-dimensional struc-

ture, it should be possible, at least in principle, to predict its native structure

solely from the knowledge of the sequence [56]. And in fact, as is becoming

increasingly clear, biopolymers like proteins or RNA are flexible and rapidly

fluctuating molecules whose structural mobilities have functional significance

[20, 80].

The native states of RNA consist of a large ensemble of closely related and

rapidly inter-converting conformational sub-states of nearly equal stabilities.

Theoretical methods for structure prediction require extensive computation.

The secondary structure of RNA is defined as the pattern of base pairs, which

is formed by hydrogen bonds between atoms of the four bases [89, 88].

For RNA folding, powerful algorithms [87, 119] based on the method of

dynamic programming [6] and experimentally measured energy parameters

have been developed [31, 45, 60, 110].

RNAfold as part of the Vienna RNA package calculates the minimum free

energy structure from RNA sequences, the partition function and base pairing

probability matrix [52, 81]. It returns the minimum free energy structure,

2 Theoretical Background 28

G
G
GUG

G
G

A
C
C
C
C

U
UU

C
G
G
G
G
U

_
C
C
U

G
CUCUA

C
U

C
C
C
U

G A A G A
_
G

C
UA

AG
UA

C
C

A
U

U
U

G

C

A

_

_

_
A

C
G
U
C
U

U
A

A
GC_

_
_
C A

G
A
CG

C
U_
_A

C
C
A

U
G

C
C
G

AU
A

G
C

U
G

UAG
G
U
A
A
CC

G
U
A
A

U
U
CC

A
U
A
U
A
C
AG

G
A

G
G

A
U

C
U

A
U
G

U
G

U
C

C G A A A U C A _ _ _ _ A A C
A

U
_

G
A

U
A
G
A
A
A
G
A
A
C
A

A
G

A
U

C
A

A
A

CUUGUCUC___UCAC
G

A
U

A
A

U
A

A
A
G
A
C

A
A
G

GA
A
A C

U
GAAG

A
C

A
A
C
U
C

U
UU__

_
_

U
G
A

A
U A U

A
U
CGAU

A
A
A

A A U
C
G
C
C
U
C
CAAAACCGUUCAACUACACAGAAACCUGGACAAAUCAG

U
G
G
C
A
A U

A
C
C
C
G
U

A

G

A
C
C
UAC

G
A
AC

G
U G

G
G

G
_

A
A
U
A
GC

U
A

U
C
A

C
U

G
C
U
_

U
C

G
A

U
C
AA

C
C
U
G
U
C
G
A
C
A
C
G
C
G
A
A
C
UC

G
GA

A
A
C

C
G

U
C
GG

A
U C

G
C

G
GG

U
G

C
C

A
A

G
A

G
G

CU
G

A
C
G

AU
G
G

U A
G

C
GUGAA

C
C
C
C
A

A C A A A
C

G
C
A

C
C

G
C
C
A
A
CAGC

CA
G
CA
C
C
C
U
G
G
AA

A
U

A
A

A
A

A
C

G
U

A
AC

U
U
A
C
A
C
A
G
A
_
_
_
CG

U
A
C

C
AAU

A
A
A
C

A U U G
A

U
A

A
C
C
G

A
G

C U
U
C
G
A
C
C
GA

AGUCCUCA
AU
A
AG

CUC
A

CU
C

A
A

G
C

U
AAC

C
U
C

A A C A
U

U
G

G
G

G
U

U
G

C
UA

U
U G

C
U

GA
AGCCAAG

AC
GA

CUGCCU
C
A

C
A

ACUCG
CGA

C
GCA

A
A
C

C A U U G
C
G
C

U
C A U C A

A A G CCU
A CACUGC

U
GCA

A
A

G C G C G G U
A A

U U G G C
G A

C A G GCG C UCC_
_ _ _G

C
U
A

C
U

C
A
G
C
G
C
C
G
A

A
C

A
A

C
GAUCCAAAAUU

C
C

_
U

U
C

U
A
A
G
G
A
C
C

U
C

G
C A G G C A GAUGGCUCGAA

C
U
GCAGUAC

GGU

UGG
C

U
ACCACUUAUGAGUGA

U
A

U
C
A
A
A
G
C
U
GCAUA

UGAGA

U

GCUU
A

CGAAAA
CU

C
A U C U U CA

UGC
GU

U
U

A U
G CCUAUGAG A G CCAU

A CGUAA
C

G
U

CGGCGC
A

A
_
A
C
A
U

A
A U U A C A

A
A
G G G CCGAAUGUCG

A A U C C G C A GGCA A
U
A
C

U
UGAG

C
C
U
A

C AGG
CA

A
C A

U A UC
UCGACGA

A
U U A C__

A A UAUG
GU

A
U

U A
C A U

A
A
A

C G

A

U C C
ACGU

CUCGCA
UGGGCGAC

U
UCCC

U
A

GGGA
UCUU

GAA
CCC

U
CUAG

A
A
A
U

A G A
G

U
G G G

A A
A A G A C

G C CG
UGCUCGUUC

GUUGUCGACU
GGUU

C
C U

A C C U
G U C GGUAACAU

G A U C G A AGC
C

AUGACCAA
C

C C
G C U A GGCCGCGAUAAUAUUUCCGGAACAAAAA

C C G A C C A A A U A G A A G C A A A G U C G A A U ACAACCC
UUGA

A
G
_

_ _ C C
U
A
U G G U U G

G
G

C
U
G
G
A
A

C
GG C A A A G

G
U

A
A
C
U
G

C
_

_
AGACG C

A A A
U
C
A

CUG C G A C A C
A UCG A C G__UACAAUUCCUUU__

CC
CA
CA
AC
UG

G C C CGU A C
G U G AA

A
U

C
U

C
C

A
C

U C
A

C
G

A
G

G
C

UC
C

A
C
A

C
CGC

A
A
A U G

CA
U

U A
G

CA
C

U
A

A
U

C
A

A
CC

AA
C

G
C
C
U
C
A

A
A

AGAUAA
A

G
_
_
_
_
_

_
_ _ C G

G
A

G
U

U__
A
G

C
CA

C
A U

G
G

C _ _
_
_
A

A
C

U
U

U
A

C
G

CA
G

U
U

_C
G

U
A

CUC
G

U
CG

A
C

A A
U
G

G
C

G
G

A
A

C
G

G
G

G
AAU

GU
U
A
C U G

U
C

G
C

U
C

C
U
A

G C A A
C
A
A

C
GCCA

A
C G

G
C

G
U

C
G C

U
G

A
A

U
G

G
A
U
C

A C C A
A
U
A
A

C
UCG C G C A C U C A G

G C
U
U

A
CAA

A
G

U
GAC

C
G

CUA
G
C
G A U C

G
U

C
A G
A

C
AG

C
U

GC
G
G
A C A

A
G

C
G
CA
A A

UA
C

A
C

C
A

U
CA

A
A

C
U

CG
A
A

G
U

G
CC

G
A
A A A

U
C

G
CA
A
C
C C

A
A
A
U
C G

U
A

A
A
U
G
G

C
G
UA
G

A
G

C
U
G

C
C
U
G
U
UG
CC

G
C A U

G
G
A

A
G
G
C

G
U
A
C
G
C C A A U A

U
G

G
A

A
C
U
A
A

C C A
U
C
C
CU

A
U

C

U
U

C
GC

U
A
C

G A A
C
G
A

C
G
AC G

G
G
ACU

C
U
U
A
U

U G C C A
A
G
G
C

A
CU

C
C
AAGGC

CU
CU
UC
AA

AA
UUG

G
G
A

A
C C C

G A U U G C U G
A
A G C C A U CG

C
A

G
C

A
A

A
C

A
C

U
G

G
C

A
U

C
U

A
C

_
_ _ U

A
A

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_G
A
G
A

C
ACAA

A
C
C
A

U U C A
A
A
C
A
U
A
AG
G

A
A A

A
C
C
C
A
U
G
UC CA

A
A
U
C
A
A

C
A
A
A
G
AA
C

G
A A A

A
C
A
C
U
C
UAU

GU
AU

G
G
A
U
C
G

CA
C
U
C
G

C
G A U CG

U G C U
C
U
C
C

A
A

U
UUCACCA

A
U

A
A
A
U
U
C

A
G U C A G U C

G
A

U
A
C
G
G
G
A
U
C

U
U C

U
G
A
U
C
C
GC

A
U
A
C
U
C
A
C
G
A C

U
U
U
A
A
A
G
C
A
AU

U
G
C

C
U

A C
C

U
A
AG

G
G
A

C
G

A
A

U
G
U

C
U A A C

A
A
A
A

C
A

UCC
G
A

C
A

C
U
A

G
GG

G
A

CAG
U
A
A

UGAC
G
A
CGC

A A
CC

CG U A A G A AA
C
U
A
G
C
A

A A
C

G
C

C
AAA

C U
UA

UG G
A
G
A
C

G
A A U C A A

A
G A U G CAAAAACAAAAACAG

U
A
A C

G
G

A
U
A
C
G

A A C A
U

G
A
C

C
AAAC

C
G
A

GU
CAG G C G

A

A
C C

G
A
A
C
G
G

U
A
U

A C A
A
A
C

CAC
C

A
C

C
C

AGA
C

C
C

U
U

A
U

UG C
A
A
A
C

CUA C UUA
C U G G C UAU G A A UCUCACUUCCUGAACCAUU

G
U

A
C

A
U

U
C

U
C C

A
A

C
G G

A
G

C
C

U
C

A A
A

AG
G

G
C

A
C
A

AG
U

U
G
CA

G
G

A
U

G
C

A
G

C
G
C
CGUA

U
A

A G
A

AG
A

UC
G

C
U

G
AA

CAAG
C

AA
C C G U U A CA

C
C

U C C
U
G

C
U
U

A G A
A
A

G
CGG

CC G U G C U C G C C G U A
AAAAAGUGCGCAC C G U

G GAUCCG
U

C
A

C
A
C
G
C

A
_

_ _ _ _ C G U
A

U
G
_
C
G
A

C
G

A
G

A
C
A
A

A A U
G
A
U

UUAG
G

CGC
G

U
G

G
A

AGGCA
A

C
G

G
U

G U G
U
U

UAC
U

G
U

U
C

CG A A G A
ACAAUA A A A U A G A U C G G G C UGC C

U G
C
A

AGGAGCCUGAU
A U G A A U A U G U A C C

U A C
A G A

A
A GG G G

C C G G C G
C

U U U C
A
U

A
AGA

CGCCG
CCUC

A
AAUC

CG
UGGGUAUAG A C C U G A A C G A U C A A A C G

AGCAAUCAGCAACUAGCC C A A C
A U G G C

A G C A
U U G A U G G

U U C G
C U U

G C
G
A

C
G A U A

G
A
C
U
U

A
ACGAC

C
GC

UAC
CGA

UUCCAUC
UCCGAC

CGCC
UAGUGUGG A A

U
U
U

A
C

UCCCA
C

C
G
C
A
G

C
U

A
UAUUCAU A U C U C
G

A
C

C
G
U
A
U
C
C
G
A

A
C

A
C

A
C

U
ACACAAUCAUAG

A
U

G
G

C
C

A
G
A
U
G
A
A
U

A
A

G
U

G G G
A

A
CUAUUUUC

U

A

C
GAUGG

GUAAUGG

G

U
U

CA
C

GUUCGAACUAGA
G U C C A

U G A
U
A

UUC
UGGGC

U
AUAA

GC
A
A

G
ACUACUAAGAUCCA

C

U
UUG

GUAACA C C G G A
ACAAUAG

G C A U C
U

A C G G G G
A C G A

U
A
U

A
AUAG

G
CCCCAC

U G A
GAGUG

C A
C CCCGUCUCCUAG

A G G C
A C U A

U
C
C

G
CCGA

A
A
AUUUUA

A A C C G A A U C
AGCAGAAAACA

U U C A
C GACC

G G G U
A

CUU
UCGCGA

GAGCU
G

C
GGC

GC
G
C
A

C
UUCU

U
C
A

A
A GGUGCC

G
A

UGUAAA
A

CCUUUUUACAGCAAGAA
A

C
C
A
A
U
G
G
A
AAACCUUCCCG

AC
CU
AA
U
G
CU

GA
UA

UGU
AACAGGAU

A
C
G
G
G
G
U

U
G
G G

G

G

A
C
U
G
U
C

G
G

A
G
GAAUA

U
C
A

G
A C C

C
A

CGC
C
U

C
UA
U

C
AG

A
UA
U
G
G
A
A
A

G

A
G
C

U C

G
C
C
G

AU A U
G
A
U
A
C
C
G

C C G A A G
U

U
U
A
A
G

G
G

U
G

G
A

A C
G

A
A

C
C U G

G
A
U
C

C
C

G
A

C
A
A
C

U A C C
U
C
G

U
CUCA

C
C

G
C A U

A
_
_

___A
A
C
C

U
G

G
UG
U

A
U

C
A

C
A

A
G

A
U

C
G

U
G

U
U

G
C

G
A

C
G

_
_

_
G

U
A

C
G

C
A

G
AG
G

C
U

U G
A
A

CCA
C
A

G
G

U
U
C
C
C
G
U

C
U

C
G

C

_
_

_
_

_
_

_
_
_
_
_
_
_
_
_

_
_

_
_ _ _ _ _ _ _ C A C G A

A
A

A U G G
U

C
G

CUACAU
C

C
A
G
U
G

G
U

U
CC
A

U
A

C
G

G
G

A
_

_
_G
G U

G
A

AAU
C
A
C

C
G

A
AACC

A
U
G

A A G U
C

C
G

C
C_

G
G

U
G
U
A
C
G
C G

C
AA

_
A

C
C

U
A

A
C
U

CG
G
A

A
UG
G
A
GAACAC

A
G
A
U
C

C
C
C
C
U
A
U
U
C
C

C
UC

A
G

G
A

A_
U

A
G

A
G

GC
C

AG
C G

A
G

C
U
C
U
C
C
U _ G

A
U
A

G
CAUA

_
_
_
_
_

A
G

G
ACC

C
C
C C

C
AAA

C
G

G
G

G

U G
G

GUG
U
G
A
C
C

G
AA

A
G
A

G
C
A

CG
A
_
G
GAGG

C
G

A
A
A
C

C
C

G
C

CCG
C

C
U

C
C
_
C
A
G

A
AA
C

G
G

UG
G
G
C

G
G

GG
A

C
UA

G
U
C

C
G
C

U
U

G
G

AC
A

G
U

CA
C
C
A
A

A
A

A _ _ _ _ _ _
_

_
_
_
_
_
_

_
_

_

_
_

_
_
_
_
_
_
_
_
_
_
_
_

_
__

_
_
_
_
_
_
_
_
_
_
_
_

__
_
_

_

G
G
G
U
G
G
G
A
C
C
C
C

U
UU

C
G
G
G
G
U
C
C
U
G
C
C
C

A
A

C
U
U
C
C
_
UG_ACGAG

CUA__AAUGCCA
U
G

C
AUA

A
_

CG
U
C
U

U
A

A
GC_

_
G

_ A
G
A
CG

C
U

_
_A

C
C
A

U
G

C
C
G

AU
A

G
C

U
G

UAG
G
U

_

G
A

CG
G
A

A
U

_U
C
C

A
U

AU
A

C
A G

G
A

G
G

A
U
C
UA

C
G

U
GU

C
CG
A
A
A
_
_
G
A
A
U
A
U
A
G
A
C
A
G
A
A
A
U

U
A

U
_
A
G
G

U
U

A
A

AC_UAUA
U

C
U

U
A
C
G
A
C
A
A
G
A
A
A
G
G
G
A
A
_
C
U
A
G
U
U
U
CC

G
A

C
G

ACU
C
U

U U
U
G

A
G

_
C

U
G

U
C

G
A

U
AACU_A_UC

U
C

U
U

U
C
A
A
A
_
A

U
C

G U U C G A _ _ A
C G U A G A A A C

C
U

G
G

U
C
A
U
A
U

U
C

A
A
A
A
A
G
A
C
U
_

_
U

C
C

G
AAAAC_AAAC_

_
_

_
G

A
A

C
U
_
_
_
_
_
U
C

U
_

_
G G A _ _

_
A

C
G

GCGA G C G C U _
_

G
U

U
U
C
_
A
A
U
C
_

G
C

C
A

G
_

UC__GGUACCUA
C

A
C

U
C

G
_
_
A
A
C
U
G

_
G

C
U

C
A U C GUGGG

_
_
C
G
C

C
_

_
_

A
A

G
A

G
G

A
A

GAUGACGGU_AUCG__
U

G
A

A
C

C
C

U
_

A
G
A
AGCAC A C

U
G
C
_

_
CAAC

A
GCC_

_
_

ACC A C G U U A G A C A A
A

A
C

A
U
G
A
C
U
A
U
U

U
A

U
C

C
A

GGUCC___CUCAA
U

A
A

A
C

A
U
U
G
A
U
A

A
C

C
GAGC

UUC
G

A
CCG

A
A

G
U C C U C

A
A
U
A

A
GCUC

A
C
U

C
A

A
G
C

U
AAC

C
U
C

A A C A
U

U
G

G
GGUUGCU

A
UUGC

UG
A

A G C
C

A A GAC G A C U G
C

C
U

CACAACUCGCGAC
G C A A A C C A U U GCGCUCAUCAA

AGC
CU

ACACUGC

U
GC

A
AAG

CGC
GG

UA
A

U U
G G C G

A
C A G

G CGCUCCCCCACCUCCCCAUAAACGAACACCG
_ _ _ C A A G A G U U C C U U C U A A G G A C C U C G C AGGC

AG
A
U G G C UCGAACU

G C A G UA
CGG

UUG
G
C

U A
C C A

C U U A U G A G U G
A
UAUCAAA

G
C U G C A U

AUGAGA
UGCU

UA
CGAAAACUC

A
U

CUUCA
U

GC
GU

U
U

A U
G C

C
U

A U G
A
G A G CCA

UACGU
AAC

GUCG
G
C

G
CA

ACACAU_AA_UUACA
A

AG
C_

CG
U_

A
U

G U
C G

A A U
C C_GCA__GCAAACUU__UCAGACA A C G A C C _ A C A U A U C A G C G A A G UACCG

A_
A
U A

U G G U
A

U
U A C A U

A
A

A
C G A U

C C
A C G U

C U
C
G CAUGGGCGA

C U U C C C U AGGGA
UCUU

GAA
CCC

U
CUA

G
A
A
A

U
A G A

G
U
G G G

A A
A A G A C

G C C G
U
G C U C G UUCG

U U GUCGACU
GGUU

C
C U

A C C U
G U C G GU

A
A
C

A
U G A

U
C
G
A

AG CCA UGACCAA
C

C C
G C U A G G C__CUCGAU

A U _ A U U U C CGG
AA

C
A
A

A A
A
C C
_

U

A
A

C
A

A
C

U
C
_
_
G
A
A
U
C

A
A

A
A A U A A A C G _ C G A C

G
C

U
U
A
C
A
G
C
U
A
C
_

G
G

U
U

G
G__UCU

G
G A A C G

A
C
A
A
A
G
C
_
A
A
C
U
GCA

A
A C

G C
G

A
A

A
A

U
CAGC U G A C A _ G _ A U C G A _ _ CGUA

C
A

A
_

U
C

C
_
U
U
U
_
_
C C C A CAACU_GGC_CGUACGU

G A A A U C U C C A _ _ C U C AA
U

G
G_

_ U
C

C
A

C
A

C C G C
A
A
AU

G
CA

U
U

A
G
CAC

U
A

A
U
C
A
A

C
C

A A
C
G
C
CUCAAAA

G
A

U
A

_
A
_
_
_
_
_
_
A

A
C

C G _ _ G
AGU

U
A

G
C

C

A

C
A

U
G

G
C____AACUUU

A
C

G
C
A
G
_
U
U
C

G
U

A
CUC

G
U

CG
A
C

A A
U
G

G
C

G
G

A
A

C
G

G
G

G
AAU

GU
U
A
C U G

U
C

G
C

U
C

C U _ _ _ A
G

C
A
A
C
_

_
_

G
C

C
A A

C
G
G
C
G
U

C
G
CU

G
A

A
U

G
GAUCACCA

A
U

A
A
C
U
C
G
C

G
CA

C
U

C A
G
G

CU
U
A C

AA
A

G
U

GAC
C
G

CUA
G
C
G A U C

G
U

C
A G
A

C
AG

C
U

GC
G
G
A C A

A
G

C
G
CA
A A

UA
C

A
C

C
A

U
CA

A
A

C
U

CG
A
A

G
U

G
CC

G
A
A A A

U
C

G
CA
A
C
C C

A
A
A
U
C G

U
A

A
A
U
G
G

C
G
UA
G

A
G

C
U
G

C
C
U
G
U
UG
CC

G
C A U

G
G
A

A
G
G
C

G
U
A
C
G
C C A A U

A
U
G
G
A
A
C

U
A

A
C
C
A
UC
C

C
U

A U
C
U
U
CG
C
UACG

A
A

C
G
A
C

GA
C
_

G
U
G
A
C
UC

U
U
A

U U G
C
C

A
A
G
G
C
A
C U

_
G

CA
_

G
G
C
C
U
C
U

U
C
A
A
A
A
U
UG
G

G
A A

C
C
C G

A
U
U
G
C

U
G

AA
G
C

C
AU

CG
C
A
G
C A

A
A
C
AC
U
G
G

C
A

U
C
U
A

C
_

_
_

U
AA________

_
_

_
_

_
_

_
_
_
_
_
A
G

G
C

C
A G _ A A C C A U U C

A
A
A
C
A
U
A
AG
G

A
A A

A
C
C
C
A
U
G _ U

C
C
AA

U
U
C
_
AC A

A
A
GA

_
A
G

A A _
A
A
C

AC
U
C
U A

U
G

U
AU

G
G
A
U
C
G
C
A
C
UCG

C
G
A
UC
G
U
G
CU

C
U
C
C

A
A

U
UUCAC__

C
A

A
U
C
_
_
U
U

C
A

G U C A G U C
G

A
U
A
C
G
G
G
A
U
C

U
U C

U
G
A
U
C
C
GC

A
U
A
C
U
C
A
C
G
A C

U
U
U
A
A
A

G
C
A
AU

U
G
C

C
U

A C
C

U
A
AG

G
G
A

C
G

A
A

U
G
U

C
U A A C

A
A
A
A

C
A

UCC
G
A

C
A

C
U

A
G

G
G
G
A

CAG
U
A

A
UGAC

G
A
C
G

CAAC
C
C
G
UA

A
G

A
A
A
CU

A
G
C

_
U A

U
_G

C
C

AAACUU
A
U
G
G
A
_
_
_
_
__

UAGUGAU
CA

A
A
G
A
G
G
C
A
A A

A
U
_
_
_
A
A
A
C
AG

U
A
A

C G
G
AU

A
C _ _ _

U
U

A
_
_
_
_
C
A
U
_

A
C

C
G

A
UCC_UG

G
C
G
UACGAACC

G
G

A
_AUAUUACAA

_
A

C
C

_
G
C
_
U
C
A
G

_
A

C
C C U U A U U G C A

A
A

C
C
U
A
C
U
U
A

C
U

G
G

CUAUGA
A

U
C
_
U
C

A _ C U G
C

C
U
G
A

A
C
_ A

U
UG

UA
C

A
U

U
C

U
C C

A
A

C
G G

A
G

C
C

U
C

A A
A

AG
G

G
C

A
C
A

AG
U

U
G
CA

G
G

A
U

GCAGCG
C

CGU
A

U
A

A G
A

A
G

A
U

CGC
U
G

A A
C

AA
G

CAA
C

C
G

U
U
A
C
A
C

C
U

C
CUG

CU
U
A
U
G
A
A
A
_
_ G

C
C

G
C

G
C

U
C

G
CG

G
U
C A A

A
_A

C
C
_

_
UG

C
G

C

A
C

C
GUG

G
_
A
U

_
C U G A

C
A
C
G

C
AG
G A

A
A

C
G

U
A

U
G
G
C
G

A
C G A G A C

_
A
U
A
U

G
G

_
UUUAG

G
CGCGU _G

U
A
_

GG C A A
C

G G
U G U G U U U A

C U G
U U C C G A A

G
AACAAUAAAAUAG A U C G G G C UGC C

U G
C
A

AGGAGCCU G A U A U
GAAUAU G U A C C

U A C
A G A

A
A GG G G

C C G G C G
C

U U U C
A
U

A
AGA

CGCCG
CCUC

A
AAUC

CG
UGGGUAUA G

A
CCU

G
A
A

CGAUCA A A C G A G C A A
UCAGCAACUAG C C

C A A
C

AUGGCA
G C A U

U G A U G G
U U C G

C U U
G C

G
A

C
G A U A

G
A
C
U
U

A
ACGAC

C
GC

UAC
CGA

UUCCAUCU
C
CGA
C C

G C
C U A G U G U G

G
A
A

U U U A
C
UC C C A C C

GCAGCUA
U
A
U U C AUA U C U C

G
A
C
C
G
U

A
U

C
CGAACACA CU A C A C A A UC AUAGAUGG

_
C
G

A
G
A
A
C
A
U
A
A
G
_
U G G G A

A C
U
A

UU
UUCUA

C G A U G
G G U

A A U G G

G
U U C

A C
G
U

UC
GAAC

U
AGAG

U C C A
U G A

U
A

UUC
UGGGC U

A
U
A
A
G

C
A

A___G
A

C
C
C
A
U

A
U _ CCAU_
_ U

UUGG
U A

A C A C
C
G G

A
A C A A

U
A
G G C A U C

U
A C G G G G

A C G A
U
A
U

A
AUAG

G
CCCCAC

U G A
GAGUG

C A
C CCCGUCUCCUAG

A G G C
A C U A

U
C
C
_

C
UCUA

_
A
AUUUUA

A A C C G A A U C
AGCAGAAAACA

U U C A
C GACC

G G G U
A

CUU
UCGCGA

GAGCU
G

C
GGC

GC
G
C
A

C
UUCU

U
C
A

A
A GGUGCC

G
AUGUA

A
A
A
CC

UUU
U
UACAGCAAGAAACCA

AUGG
A

A
A

A
C

C
U

_
U

C
C_GACCUAAUGCUGA

U
A

U
G

U
A

A
C

A
G
G
A
U
A
C
GGGGUUGGG

G
G

A
C UG

U
C

G
G

A
G

GAAUAUC
A

G
A C C

C
A

CGC
C
U

C
UA
U

C
A

G
A

U
A

U
GG

_
A

A
A

G
A

C
UC
U C C

A
G

AUA
U
G

A
U

A
C

C
G

C
C

GA
A
G

U
U

UA_
A

G
GGUGGAA

CG
A

A
C

C U G
G

A
U
C

C
C

G
A

C
_

A C _
U
A

CC U
C
G U

C
UC

A
CC

G
CA
U

A
_

_
_

_
A

A
C

C
U

_
G

G
U

G
U

A
_

A
C

_
_

_
_A

_
U

U
A

G
U

U
_

_
_

_
_

C
G

_
_

U
G

U
U

_
G

C
GA
A

G
G

C A C
G
U
_

__AC
U
G
G

U
U

U
C
_
_
_
_

_
_

_
_

_
_

_AA_____CGA
_

_
_

_
_

C
A
A
G
U
U
C
_
_
C

C
G

C
A A G A A C C A C G A

A
A

A U G G
U

C
G

CUACAU
C

C
A
G
U
G

G
U

U
C

CAUACGGGA
_

_
_G
G
U
G
A

A A U
C
A

C
C_G

A
A A

C
C

AUG
A
A
G

U
C

C
G

C
C

_
GGUGU

A
C
GCGC

A
AACC

G
A

A
C_

UCGGAAUG
GAG

AACAC
A

G
A

U
CC
C
C
C
U
A
U
U
C
C

C
UC

A
G

G
A

AG
U

A
G

A
G

G
CCA

G
C G A

G
C

U

C

U
C
C
U
_
G
A
U

A
G

_U
_
A

U
C_
_

A
G

G
AA

C
_C

C
C
C
G

U
__

A
C

G
G

G
GU

G
G
G
U
G
U
GA
C
C

G
AA

A
G_
G
C
A
CC

G
A
U
_
_
G
_
G
A
_
_
_
_
G
G
U
_
_
_
G
A
U
_
_
A
C
C
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
C
U
_
_
__

C
C
_
C
A
_
_
_
_
_
_
_
C
C
C
C
C
U
A
A
A
_
_
_
A
G
G
_
_
_
C
G
G
_
_
U
U
C
U
C
_
_
_
_
_
_
_
_G

G
U
A
A
C
U
A
G
_U
U

G
CU

U
G
G
C
U
A
G
U
C
A
C
C

A
C
C
C
A

Figure 8: Two predicted secondary structures of the complete RNA genomes of Levivirus

genus. These plots were generated using RNAalifold which is part of the Vienna RNA

package [52]. The only difference between the plots is the alignment procedure (clustalw

and code2aln) that was used for producing the input.

2 Theoretical Background 29

its energy, the free energy of the thermodynamic ensemble and the frequency

of the minimum free energy structure in the ensemble. It also produces

PostScript files with plots of the resulting secondary structure graph and a

dot plot of the base pairing matrix. The dot plot shows a matrix of squares

with area proportional to the pairing probability in the upper half, and one

square for each pair in the minimum free energy structure in the lower half.

RNAalifold, also part of the Vienna RNA package, does the same, in

principle, but processes alignments. See figure 8.

The results that were produced in this work using RNAfold are used as

an input for alidot [54, 55, 51].

2.8 Inherent Difficulties of Nucleic Acid Alignments

Alignments of nucleic acid sequences bear one main problem: the higher se-

quence heterogenity on the level of nucleic acid, as compared to proteins,

makes good alignments often impossible. The resulting alignments contain

too many gaps and poorly aligned regions although the sequences should be

very similar regarding their high degree of relationship. While protein se-

quences can still show substantial homology, the corresponding nucleic acid

sequences have already evolutionary diverged, thus they are essentially ran-

domized. This is caused by the inherent redundancy of the genetic code:

most amino acids have more than one codon on the level of nucleic acid.

As a result it is possible that two different nucleic acid sequences code for

the same protein sequence. In a protein alignment these amino acids would

match each other while the differences on the level of nucleic acids can pro-

duce gaps in a nucleic acid alignment. This specific problem leads to various

gaps and badly aligned segments within coding regions where they are not

really necessary, because the biologically important part of the system is

protein at this region of the genome.

2 Theoretical Background 30

SARGLSSTVSLGQFEHWSPR

+AR+LS+TVSL+QF+H SPR

NARNLSDTVSLSQFDHPSPR

AGTGCAAGAGGATTAAGTAGTACAGTAAGTTTAGGACAATTTGAACATTGGAGTCCAAGA

GC G G T AC G T CA TT GA CA CC G

GACGCCCGCGACCTCTCCGACACCGCTTCCCTCTCCCAGTTCGACCACCCCTCCCCCCGC

Figure 9: Example for the problem of higher sequence heterogenity on the level of nucleic

acids. It shows an hypothetical amino acid alignment on top which represents a high de-

gree of similarity between both protein sequences allowing for an unambiguous alignment.

Below the same sequences are aligned on the level of nucleic acids. It is clearly visible

that the sequences are much more heterogenous: the pairwise identity is only 33%. This

is only slightly above the 25% identity expected for two random nucleic acid sequences.

Therefore, on the level of protein, many of this alignment problems of

higher sequence divergency of nucleic acids as compared to the underlying

protein sequences could have been avoided. And, in most cases, it is pos-

sible to obtain better alignments: The scores (the per cent homologies) are

higher and the number of gaps within the protein sequences is not as high

as it would be in the case of nucleic acids. Reducing the gaps within an

alignment improves the resulting alignment which may be used as input into

other sequence data processing programs like those for secondary structure

prediction.

So, what we need is a procedure that utilizes the information contained

in the amino acid sequences to construct an improved multiple alignment of

the underlying nucleic acid sequences.

3 A First Attempt: The ralign Project 31

3 A First Attempt: The ralign Project

3.1 The Idea behind ralign

The idea behind the combined amino acid and nucleic acid based alignments

(ralign) is that coding regions on the level of protein vary less than on the

level of nucleic acid, because most amino acids are encoded by more than one

codon (base triplet) and some different nucleic acid sequences can produce

the same protein sequence after translation. Thus, this first approach was

to improve the quality of sequence alignments of RNA viruses (especially

the pregenomic RNA intermediate of Hepatitis B virus) by creating and

implementing an environment for a combined alignment algorithm.

The algorithm proposed formerly has the following features: first the

program detects all possible coding regions of a minimum size without user

intervention. The next step is translation of the detected coding regions into

amino acid sequences.

Corresponding open reading frames are identified and then aligned. While

the program can operate fully automatically, manual alteration of the list of

corresponding open reading frames by the user is possible and often recom-

mended.

The protein alignment results are then reverse translated back into nu-

cleic acids and the non coding regions between the open reading frames are

aligned as nucleic acids using the alignments of the open reading frames as

constraints.

The last step consists of joining all reverse translated protein sequence

alignments with the nucleic acid alignments of the non coding regions.

In many cases, the sequences under consideration code for proteins. It

is well known that amino acid sequences can be aligned much more reliably

than their underlying genomic DNA or RNA sequences.

One could argue that the quality of sequence alignments could be im-

3 A First Attempt: The ralign Project 32

proved simply by translating the entire nucleic acid sequence into protein

and processing on the level of proteins. But a very important factor is that

the viral genomic sequence could consist of more than just one open reading

frame (various coding regions in different frames) as well as some non-coding

regions. These non-coding regions should, of course, be processed as nucleic

acids, and every open reading frame should be processed in the correct frame.

3.2 The ralign Algorithm

The combined amino acid and nucleic acid based alignment procedure is made

available in the program called ralign. The source code of the package is

written in the C programming language and will run on all computers with

an ANSI C compiler.

Ralign processes nucleic acid sequences from various sequence file for-

mats. Besides, it is possible to define one or more than one codon tables for

each sequence or a group of sequences. 18 codon tables are available and

cover most needs (see Appendix A). Every input file can be processed using

its own codon table. The standard codon table is the universal genetic codon

table which fits most cases. These user-defined codon tables are then used

by the program for translation and, of course, for detecting the correct start-

and stop codons in the nucleic acid sequences. Then the program finds all

possible open reading frames which have a previously defined minimal length.

GenBank files may contain information about the exact positions of start-

and stop codons, the genomic structure of exons and introns or the protein

sequence after translation. If some information like this (e.g. regarding exons

and introns) is presented in the GenBank file, it can be obtained and used as

preferred information.

The detected coding regions are translated, using the correct codon ta-

ble, and the resulting proteins are compared to the protein sequences in the

3 A First Attempt: The ralign Project 33

GenBank file, if available. An output file is created which contains all data

about the detected open reading frames, either derived by reading the data in

the GenBank file or as a result of the automatic search done by the program.

From this file the user can get information about all open reading frames,

about their length, their start and stop, and the lengths of their proteins af-

ter translation. Also a second file is created: a PostScript output file which

gives a graphical representation of the found open reading frames either in

one of the three frames or, beyond these, as derived from the GenBank file

input with all exons and introns.

Overlapping open reading frames are quite frequent in virus genomes. If

a certain part of the sequence is coding for two or even three proteins, a

decision has to be made which open reading frame is used for the protein

alignment. Ralign constructs a hierarchy which considers the lengths of the

open reading frames. The largest selected coding regions from every sequence

get aligned first as a protein alignment.

The program makes a first decision, which coding regions are maintained

through the alignments as protein sequences.. The proposed assignment is

presented to the user in a file listing the open reading frames chosen for

protein alignment. The user now has a possibility to alter this choice.

Then ralign computes alignments of the homologous sequence parts. In

this older implementation the widely known clustalw algorithm is used for

this purpose [106, 105]. In contrast, code2aln features its own alignment

algorithms.

Normally, an alignment like this produces end gaps. End gaps are not

penalised by the clustalw algorithm, so they occur very often. Here we are

aligning only a piece of the genomic sequence; thus this treatment of end

gaps is not desireable. Since clustalw is used as a ‘black box’ via a system

call, we have to resort to a trick: Ralign cuts off the end gaps (the frail ends)

such that the remaining ’central alignment block’ has no gaps both at the

3 A First Attempt: The ralign Project 34

first and the last position. The sequence pieces that have been cut off are

joined to the neighbouring sequence parts before and after the now aligned

protein parts of the sequence. In the case of overlapping coding regions these

cut off parts are again handled on the level of the proteins that these regions

code for (at least the parts that are not covered by the prior alignment).

On the other hand, if the neighbouring sequences are non-coding, the cut off

sequence pieces are handled directly as nucleic acids.

Then the second protein alignment of the second largest open reading

frames (with second priority) is started. The alignment is treated the same

way concerning the end gaps.

After having aligned all protein subsequences (all chosen open reading

frames), after having removed all end gap containing regions, and after having

linked them to the neighbouring parts of the sequences, the alignments of the

non-coding regions start. Again the ends of the aligned sequence parts are

forced to lie one above the other, if these ends are adjacent to formerly aligned

protein parts. That way all parts can be joined smoothly together.

The protein alignments are then reverse translated. At every position

where the protein alignments contain a gap of length n, a gap of length 3n

is inserted into the corresponding nucleic acid sequence at the corresponding

site.

Finally, all alignments, either on the level of proteins or nucleic acids, get

combined and a resulting alignment output file is created which contains the

complete nucleic acid sequence alignment.

In some rare cases clustalw will not properly align the tag regions added

to suppress end gaps. Gaps inserted into the tags can lead to imperfect

removal of the tags and thereby corruption of the sequences.

In a last step the final alignment is checked for such errors. Unfortunately,

regarding ralign the only recourse is to remove the offending sequence from

the alignment.

3 A First Attempt: The ralign Project 35

Read input sequence files

Search open reading frames

Extract information like about introns,
protein sequence and names

respecting the correct codon table

Translate all ORFs respecting the
correct codon table

Create PostScript output

Create text file output and present
information

Sort ORFs by length

Make an assumption which ORFs get
aligned on the level of protein

Present the assumption and wait for
corrections

Read corrections and start alignments

Align all open reading frames using
a hierarchy built up by the lengths of
the ORFs in the case of overlaps

Align all non coding regions lying
between the ORFs

and using tags

using tags to align
the ends correctly

Reverse translate the protein alignments

Merge the alignment parts

Write the resulting output file

Check for alignment errors and display
information about them

and remove tags

Output:

ORF.ps
ral.aln: the resulting alignment file

: the PostScript output
ORF.ral: the text output
ORFinput.ral: the assumption about
 the protein alignments
NCral.out: CLUSTAL W messages
 for the non coding regions
ORFral.out: CLUSTAL W messages
 for the ORFs

Figure 10: This flow chart shows the main steps of ralign.

3 A First Attempt: The ralign Project 36

3.3 Results and Conclusions on ralign

In principle, the ralign approach is indeed feasible and leads to significant

improvements. The number of small gaps is reduced, and insertions and

deletions at the nucleic acid level within a coding region match insertions

and deletions at the level of protein sequences.

It was the aim of the implementation of ralign to use the information

contained in the amino acid sequences translated from the coding regions of

a (virus) genome as a means of improving the quality of the alignment of

the genomic DNA or RNA sequences. The program ralign was the first

implementation of this approach.

Ralign was written in ANSI C and hence easily portable to different oper-

ating systems. It was developed on PC’s running Linux and works well with

different Unix dialects. The standard multiple alignment package clustalw

is invoked by means of a system call.

So far, the results showed that ralign yields significantly improved align-

ments, compared to the output of the simple clustalw alignments of the

same nucleic acid sequences. As examples for the significant reduction of the

number of short gaps we have calculated alignments of complete HIV-1 RNA

genomes. While the length of the entire alignment was almost the same, we

found the number of gaps was reduced by 44% up to 70 % in certain parts of

the multiple alignment. The ralign approach guarantees that insertions and

deletions within coding regions correspond exactly to insertions and deletions

at the protein level. A number of very short gaps is therefore often collected

into a single longer one.

As a first application for the combination of amino acid and nucleic acid

based alignments, the output of ralign was used as a basis of the search

for conserved RNA secondary structure elements using the program alidot.

Although the results are surprisingly robust with respect to minor alignment

problems, we know that alignment inaccuracies are a substantial problem

3 A First Attempt: The ralign Project 37

SIVCPZGAB CUGACAACAUUA-------------------------------------CA--AAUGGCAUU------------------AUAAUACUGCCAUG
O-MVP5180 ACUA-UACUUUUAUCAA--------CUGUACAAAGUCCGGAUGCCAGGAGAUCAAAGGGAGCAAUGAGACCAAUAAAAAUGGUACUAUACCUUG
O-ANT70 AUUA-UACCUUU-UCA----------UGUAACGGAACCACCUGUAGUGUUAGUAAUGUUAGUCAAGG------UAACAAUGGCACUCUACCUUG
D-NDK AU-AGUACAUGGAAU----------CA--GACUAAUAG---UACAGGGUUC--AAUAAUGGCACAG---------------UCACACUCCCAUG
D-ELI AU-AGUACAUGGAAUAU---UAGUGCAUGGAAUAAUAU---UACAGAGUCA--AAUAAUAGCACAAA---CAC---AAACAUCACACUCCAAUG
B-pNL43 AU-AGUACUUGGUUU---AAUAGUACUUGGAGUA------CUGAAGGGUCA--AAUAACACUGAAGG---AAGUGACACAAUCACACUCCCAUG
B-YU2 -------CUUGG------AAUGAUACUAGAAA---------------GUUA--AAUAACACUGGAAG---AAAU------AUCACACUCCCAUG
B-WEAU AU-AGUACUUGGCAUGCUAAUGGUACUUGGAAGAAUA---CUGAAGGGGCA--GAUAACAAU------------------AUCACACUCCCAUG
B-SF2 AU-AAUACAUGGAGGUUAAAU-------------------CACACU-G-----AA-GGAACUAAAGG---AAAUGACACAAUCAUACUCCCAUG
B-OYI AU-AGUACUUGGAAU------------------GAUA---CUACAAGGGCA--AAUAGCACUGAA---------GUAACUAUCACACUCCCAUG
B-MANC AU-AGUACUUGGAAUACUGGG---------AAUGAUA---CUAGAGAGUCA--AAUGACACAAAUAA---UACUGGAAAUAUCACACUCCCAUG
B-LAI AU-AGUACUUGGUUU---AAUAGUACUUGGAGUA------CUGAAGGGUCA--AAUAACACUGAAGG---AAGUGACACAAUCACACUCCCAUG
B-JRCSF AU-AGUACUUGGAAU-------G-------A-UA------CUGAAAAGUCA--AGUGGCACUGAAGG---AAAUGACACCAUCAUACUCCCAUG
B-HXB2 AU-AGUACUUGGUUU---AAUAGUACUUGGAGUA------CUGAAGGGUCA--AAUAACACUGAAGG---AAGUGACACAAUCACCCUCCCAUG
B-HIV1AD8 AU-AGUACUUGGAAUUUUAAUGGUACUUGGAAUUUAA---CACAAUCG-----AAUGGUACUGAAGG---AAAUGACACUAUCACACUCCCAUG
B-D31 AU-AGUACUUGGAAU------------------GAUA---CUAAAGAGUCA--AAUAACACAAAU---------GGAACUAUCACACUCCCAUG
B-CAM1 AU-ACUACUUGGCUGUUUAAUGGUACUUGGAAUGAUA---CUGAAGGGUUA--AAUAACACUGAAAG---AAAU------AUUACACUUCCAUG
B-BCSG3 AU-AGUACUUGGGCUGGGAAUAAUACUUGGAAUAGUAGUGCUGAAAGGUCA--GAUGACACUGGAGG---AAAU------AUCACACUCCCAUG
B-ACH320A AU-AGUACUUGG------AAUGAUACUGGGAAUGUUA---CUGAAAGGUCA--AAUAACAAUGA------AAAU------AUCACACUCCCAUG
B-896 AU-AGUACUUGGAAU-------G-------U-UA------CUGGAGGGACA--AAUGGCACUGAAGG---AAAUGACAUAAUCACACUCCAAUG
AE-CM240 AU-AAUACUUGCCUAG------------GAAAUGAAACCAUGGCGGGGUGU--AAUGACAC------------------UAUCACACUUCCAUG
AE-90CF402 AU-AGUACUUGGAUA---------------AAUGGAACCAUGCAGGAGGUU--AAUGGCACAAACUC---A---GGCAAUAUCACACUUCCAUG
ADI-MAL AU-AGUACAUGGCAGAAUAAUGGUGC----AAGA------CU-AA--GU----AAUAGCACAGAGUC---AACUGGUAGUAUCACACUCCCAUG

Figure 11: This figure shows part of a nucleic acid alignment of HIV-1 sequences (produced

by clustalw, located in the env-gene). The alignment is highly disrupted. We see a lot

of gaps, some of them very short, some a little bit longer. An alignment like this is not

usable for detection of conserved secondary structure elements where the quality of the

input alignments is of great importance. 116 gaps, 39 can not be divided by 3.

SIVCPZGAB ---ACUGACAACAUUACAAAUGGC---------------------AUUAUAAUACUGCCAUG
O-MVP5180 ACUAUACUUUUAUCAAC---UGUACAAAGUCCGGAUGCCAGGAGAUCAAAGGGAGCAAUGAG------------ACCAAUAAAAAUGGUACUAUACCUUG
O-ANT70 AUUAUACCUUUUCA------UGUAACGGAACCACCUGUAGUGUUAGUAAUGUUAGUCAA------------------GGUAACAAUGGCACUCUACCUUG
D-NDK AUAGUACAUGGAAUCAGACU---------AAUAGUACAGGGUUCAAUAAUGGCACA------------------------------GUCACACUCCCAUG
D-ELI AUAGUACAUGGAAUAUUAGUGCAUGGAAUAAUAUUACAGAGUCAAAUAAUAGCACAAACACA---------------------AACAUCACACUCCAAUG
B-pNL43 AUAGUACUUGGUUUAAUAGUACU------UGGAGUACUGAAGGGUCAAAUAACACUGAAGGA---------------AGUGACACAAUCACACUCCCAUG
B-YU2 -----ACUUGGAAU------------------GAUACUAGAAAGUUAAAUAACACUGGAAGA---------------------AAUAUCACACUCCCAUG
B-WEAU AUAGUACUUGGCAU------------------GCUAAUGGUACUUGGAAGAAUACUGAAGGG------------GCAGAUAACAAUAUCACACUCCCAUG
B-SF2 AUAAUACAUGGAGG------------------UUAAAUCACACUGAAGGAACUAAAGGAAAU---------------GAC---ACAAUCAUACUCCCAUG
B-OYI AUAGUACUUGGAAU------------------GAUACUACAAGGGCAAAUAGCACUGAAGUA---------------------ACUAUCACACUCCCAUG
B-MANC AUAGUACUUGGAAUACU---GGG------AAUGAUACUAGAGAGUCAAAUGACACAAAUAAU---------------ACUGGAAAUAUCACACUCCCAUG
B-LAI AUAGUACUUGGUUUAAUAGUACU------UGGAGUACUGAAGGGUCAAAUAACACUGAAGGA---------------AGUGACACAAUCACACUCCCAUG
B-JRCSF AUAGUACUUGGAAU------------------GAUACUGAAAAGUCAAGUGGCACUGAAGGA---------------AAUGACACCAUCAUACUCCCAUG
B-HXB2 AUAGUACUUGGUUUAAUAGUACU------UGGAGUACUGAAGGGUCAAAUAACACUGAAGGA---------------AGUGACACAAUCACCCUCCCAUG
B-HIV1AD8 AUAGUACUUGGAAU------------------UUUAAUGGUACUUGGAAUUUAACACAAUCGAAUGGUACUGAAGGAAAUGACACUAUCACACUCCCAUG
B-D31 AUAGUACUUGGAAU------------------GAUACUAAAGAGUCAAAUAACACAAAU---------------------GGAACUAUCACACUCCCAUG
B-CAM1 AUACUACUUGGCUG------------------UUUAAUGGUACUUGGAAUGAUACUGAAGGG---UUAAAUAACACUGAAAGAAAUAUUACACUUCCAUG
B-BCSG3 AUAGUACUUGGGCUGGG------------------AAUAAUACUUGGAAUAGUAGUGCUGAAAGGUCAGAUGACACUGGAGGAAAUAUCACACUCCCAUG
B-ACH320A AUAGUACUUGGAAUGAUACUGGG------AAUGUUACUGAAAGGUCAAAUAACAAUGAA------------------------AAUAUCACACUCCCAUG
B-896 AUAGUACUUGGAAU------------------GUUACUGGAGGGACAAAUGGCACUGAAGGA---------------AAUGACAUAAUCACACUCCAAUG
AE-CM240 AUAAUACUUGCCUAGGA---------AAUGAAACCAUGGCGGGGUGUAAUGACACU------------------------------AUCACACUUCCAUG
AE-90CF402 AUAGUACUUGGAUA------------AAUGGAACCAUGCAGGAGGUUAAUGGCACAAACUCA------------------GGCAAUAUCACACUUCCAUG
ADI-MAL AUAGUACAUGGCAGAAUAAUGGU---GCAAGACUAAGUAAUAGCACAGAGUCAACUGGU------------------------AGUAUCACACUCCCAUG

Figure 12: This figure shows the same region and demonstrates the advanced capability

of the ralign alignment algorithm environment to obtain better alignments. The number

of gaps could has been reduced dramatically as a result of the combined amino acid and

nucleic acid based alignment technique. Most lines still have only two remaining gaps. 46

gaps (60% less gaps).

3 A First Attempt: The ralign Project 38

when dealing with more diverse data sets.

Hence, the advantages of ralign have been demonstrated formerly in

the example of viral sequences: A number of probably significant secondary

structure elements were predicted from a sample of 14 sequences of prege-

nomic RNA of different isolates of the Human Hepatitis B virus.

The most important structure among these, the well-known ε-structure,

was correctly predicted by alidot from the ralign alignment of human

hepatitis B virus genomes. Also a number of secondary structure elements

have been detected by this method that have not been described in the

literature so far.

But ralign has some serious disadvantages too: First, to create a hierar-

chy of open reading frames just based on length is highly arbitrary. In many

cases this may emphasize the wrong point. And we have to keep in mind that

this is very likely to produce artefacts. Furthermore, ralign uses only one

frame in case of overlapping genes. But overlapping open reading frames are

quite frequent in virus genomes. If a certain part of the sequence is coding

for two or even three proteins, a decision has to be made which open reading

frame is used for the protein alignment. Also this is arbitrary.

In many cases we can see significant differences in the genetic structure

regarding the number and order of various open reading frames even between

very closely related sequences. This makes it difficult to decide which coding

regions correspond to each other in the various sequences.

Two of the major problems are as follows: First, the junctions between

coding and non-coding regions and the way ralign organizes them surely

produce more or less artefacts. And, second, ralign is not sufficiently stable

against handling errors.

The ralign procedure of combining amino acid and nucleic acid based

partial alignments has a number of shortcoming that were the reason for

choosing a different approach in the code2aln project.

3 A First Attempt: The ralign Project 39

The alignment might use alternative hierachies of open reading frames.

In particular, it might be advantageous to use the more conserved (instead

of the longer) ORFs with higher priority. In general, the current mechanism

for detecting homologous reading frames is not very robust. The procedure

could probably be improved significantly by explicitly comparing the pairwise

sequence homologies of all ORFs.

Even in the case of overlapping reading frames, it might be useful to

consider the alignments of each reading frame and to combine them, for

instance, using local optimzation rules, instead of selecting a single reading

frame.

In some cases, clustalw introduces gaps into the ‘tagging sequences’ that

are used to force sequence ends to lie one above the other when combining

the alignments of the individual open reading frames. At present, ralign

returns an error message if this problem occurs. While this a rare problem,

a more reliable procedure would be desireable.

Ralign invokes clustalw using a system call. One might want to use

different multiple alignment procedures instead, if only for the sake of com-

parison. On the other hand, system calls cause a substantial loss in perfor-

mance, so that it would be desirable to have the multiple alignment procedure

available as a run-time library.

Finally, ralign at present does not produce auxiliary information, such

as guide trees, that can be used to trace the process of the multiple alignment.

4 The code2aln Project 40

4 The code2aln Project

4.1 Code2aln in Short

For usage of alignments by processes like alidot the best possible quality of

the input alignment is of crucial importance. In this thesis it is shown that

the alignments are indeed improved in various means either by integration

of genetic information into the scoring function, or by combination of several

protein and nucleic acid alignments to one final alignment. The number of

gaps is reduced significantly (at least in the case of the combined amino

acid and nucleic acid based alignments as implemented in the older program

ralign) [101, 102].

Code2aln processes complete nucleic acid sequences without cutting se-

quences, produces ’real’ multiple nucleic acid alignments and uses the infor-

mation on coding and non-coding regions as part of the scoring function,

in order to prevent the problem of higher sequence divergency on the level

of nucleic acid as compared to the alignments of the underlying protein se-

quences in the case of coding at a certain region of the input nucleic acid

sequences.

Code2aln reduces the number of gaps not as effectively as when ralign is

used. But code2aln produces better results in terms of avoiding artefacts like

those which occur at the junctions between coding and non-coding regions

when the chosen alignment procedure is ralign, because forcing the sequence

ends to lie one above the other, as implemented in ralign, is highly arbitrary;

also creating a hierarchy of open reading frames just based on length is often

just at random. In many cases this emphasizes the wrong point.

Furthermore, code2aln uses not only one frame in case of overlapping

genes like ralign. In the case of ralign we loose information that could be

used for further improvement of the alignment. This is a great advantage

of code2aln, especially in the applications to viruses, because overlapping

4 The code2aln Project 41

open reading frames are quite frequent in virus genomes. If a certain part

of the sequence is coding for two or even three proteins, a decision has to

be made, in the case of ralign, which open reading frame is used for the

protein alignment. Also this is as arbitrary as the fact, that we often also

have to evaluate significant differences in the genetic structure regarding the

number and order of various open reading frames even between very closely

related sequences. This makes it difficult to decide which coding regions

correspond to each other in the various sequences. Code2aln bypasses this

problem effectively.

4.2 More Complex Scoring Systems

Describing dynamic programming and its scoring by usage of the finite state

automaton model has one important advantage: it is easy to see how to

generate new types of algorithms and scoring. The idea behind this repre-

sentation is that there may be more information about the sequences aligned

than only the type of nucleic acid. This information can be used for further

improvement of the alignment. The progress of the alignment can be rep-

resented as a walk through the diagram from one state to another via the

transition paths.

For example, there may be high fidelity regions without gaps, correspond-

ing to a certain match state A, while lower fidelity regions with gaps can cor-

respond to another match state B. Each state can bear its own substitution

scores which should be chosen to reflect the expected degrees of similarity in

the different regions.

Another possibility constitutes the algorithm proposed here: it is an ex-

ample for a type of more complex scoring system without introducing a new

match state (and a new scoring matrix and a new recurrence relation) which

has a high cost of computational resources, especially for long sequences. In

4 The code2aln Project 42

the following, this finite state automaton gives a diagram of the relationships

and transitions between the states and scoring terms used for the code2aln

algorithm. The progress of the alignment can be understood as a course

through the finite state automaton model from one state to another via the

transition paths. We see states for matches and mismatches on the level

of nucleic acid, states for insertions and deletions, gap open- and extension

penalties and the score increments for matches and mismatches on nucleic

acid level. But, additionally, three score factors (increments) are possible for

the amino acid scores in three different frames to add a certain value to the

nucleic acid score in case that the nucleotide is part of one or more codons

in one or more reading frames. Hence, nucleic acid sequence positions that

are part of codons are weighted significantly higher than positions that are

not in open reading frames (or exons).

M

Ix

Iy

(+1, +1)

(+0, +1)

(+1, +0)

−d

−d

−d

−e

−e

−d

+Sn

+Sn

Frame 1

Frame 2

+Sn

Frame 3
(+Saa)

(+Saa)

(+Saa)

Figure 13: This finite state automaton gives a diagram of the relationships and transi-

tions between the states and scoring terms used for the code2aln algorithm. M means

(mis)match, Ix and Iy are insertions and deletions, Sn is the increment of nucleic acid

score, and d and e represent the gap open and extension penalties. The Saa terms repre-

sent the amino acid scores in three different frames, they add a certain value to the nucleic

acid score in case that the nucleotide is part of one or more codons.

4 The code2aln Project 43

In principle, code2aln represents a classical Gotoh-type version of the

Needleman-Wunsch algorithm with affine gap penalties and three scoring

matrices, that means, three recurrence relations. The special point is the

scoring function which is more complex regarding the extensions for amino

acid sequence information.

The scoring function of the code2aln algorithm as defined by the finite

state automaton is:

S = SN +

3
∑

i=1

SAi
(15)

where S is the total score of the considered pair of nucleotides, SN is the

nucleic acid part of the scoring, and the sum of the three amino acid scores

SAi
reflects the coding of the pair of nucleic acids as the first, second, and/or

third position in a base triplet.This type of scoring takes frameshifts at least

partially into account, because an amino acid score is only added if the two

nucleic acid letters that are compared lie in the same codon positions, see

Figure 14.

In our applications to viral sequences we often see the fact that the

sequences under consideration code for proteins in one or more than one

frame(s). So, we can use this information as an heuristic approach to spe-

cially adapt the scoring to this case, if possible. We do this by adding the

amino acid scores for all amino acids that are encoded by the considered nu-

cleotide in the way that the nucleotide is part of the codon of the amino acid.

Three codons are possible, thus three amino acids and three additional scores.

This means that the scoring in general is additive. The higher the degree

of coding is for a considered nucleotide, the higher is the possible maximum

score. This is biologically meaningful, in that, for example, a position that

is double encoded, also counts more. In fact, positions which code for one or

more amino acids as part of a codon, are supposed to be higher conserved

throughout evolution. We can see this in the lower sequence heterogenity on

4 The code2aln Project 44

the level of proteins as compared to the underlying nucleic acid sequences

(see before).

Gln Gly

Lys

Met Ala

Gly

.... C A U G G

.... C A A G −−

Nucleic acid score:
Amino acid score (frame 1):
Amino acid score (frame 2):
Amino acid score (frame 3):

Gap penalty:

10 10 0 10 0
0 4 0 12 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 −10

Total sum: 10 4 26 −1014

54321Match number:

Figure 14: This figure gives an example of the local scoring of an alignment of two short

nucleic acid fragments that code in none, one or two frames. The local scores of the 5

matches of positions are calculated as follows:

Match 1: A CC match, one of the nucleotides is part of two codons (above), the other is

not coding (below). The score for this match is only the nucleotide match score 10.

Match 2: An AA match, the nucleotide above is coding for Lys as the first position in the

codon, and for Gln as the second position. The nucleotide below codes for Met as the first

codon position. Thus, the total score for this match is 14: The nucleotide match score 10

+ the amino acid mismatch score for Met-Lys which is 4.

Mismatch 3: An AU mismatch, the A codes for Gln as position 3 in the codon, and for

Lys as position 2. The U codes for Met as codon position 2. The total score is 0 (for the

nucleotide mismatch) + 4 (for the Met-Lys mismatch) = 4.

Match 4: A GG match, the nucleotide above codes for Gly as position 1 and for Lys as

position 3 in the codons, the nucleotide below is also position 1 in Gly, and position 3

in Met. Thus, the score for this match is: 10 (nucleotide match) + 12 (Gly-match) + 4

(Lys-Met-mismatch) = 26.

Gap 5: G matches to a gap. The score is the gap open penalty -10.

4 The code2aln Project 45

Our scoring function also considers frame shifting as a side effect: an

amino acid score is only added to the total score if we look at the same

position within a codon triplet. Thus, if frame shifting alters the codon and

destroys the open reading frame, this is respected inherently, simply because

such comparisons of shifted positions are not allowed.

But the major problem of more complex scoring functions is as follows:

In the case of an alignment with a simple parameter set, it is possible, at

least theoretically, to optimize the parameter set by using a training set of

alignments and to adapt the parameters. This is a process of learning. The

resulting (small) set of parameters and usage of them in alignments should

then be quite robust and universal, even for test sets that are very different

from the training set of alignments. In the case of larger parameter sets, this

optimization is not possible, computationally not feasible. Hence, we use

theoretical approaches what might be useful for the special current align-

ment problem: for example, we add protein sequence information when we

know that protein sequences are of dominant importance in our alignment

of nucleic acids. But the problem is that we, first, have to avoid the effect

of overlearning, and that we, second, have no chance to overview the com-

plete space of parameter combinations and weighting, and their resulting

alignments, because our training set is too small in any case for our larger

parameter set. A larger parameter set needs much more training. So, we do

not know, whether our parameter set is useful for all or most sequences, or

only for a very small subset of sequences and their according alignments.

Overlearning is another insight to the problem. It is known from work

with neural nets that, if we do too much learning with a special (in this case

too small) training set, we specialize ourselves too much to our training set,

and the parameters fail when used with a diverse test set, that is different

from all solutions (alignments) in our training set.

In principle, every approach of using parameter sets that can not be

4 The code2aln Project 46

optimized widely absolutely, is heuristic and arbitrary. This means for this

work that it is not possible to build too complex scoring functions (we did

testing) and we have to restrict ourselves to more ’simple’ extensions of the

scoring. The addition of amino acid scores for all three possible frames for

each nucleotide, was the most that is feasible to get better alignment results

that are not partially or totally at random, because of this problem mentioned

above.

4.3 The code2aln Algorithm

The improved multiple alignment procedure using genetic information about

coding and non-coding regions in the input nucleic acid sequences as a func-

tion of the scoring system, is made available in the program called code2aln.

The source code of the package is written in the C programming language

and will run on computers with an ANSI C compiler.

The idea behind the usage of information about open reading frames as it

is implemented in code2aln is that sequences vary less on the level of protein

than on the level of nucleic acid, because most amino acids are encoded by

more than one codon (base triplet) and some different nucleic acid sequences

can produce the same protein sequence after translation. This coding infor-

mation is part of the scoring function and leads to better alignments.

Code2aln technically processes the input nucleic acid files as described in

Appendix B. There are various possible input sequence file formats. Code-

2aln automatically detects the types of the various input sequence files and

handles them accordingly. Also files that contain only the sequence in one or

more lines can be handled. Besides, it is possible to define one or more than

one codon tables for each sequence or groups of sequences. Default is the

universal genetic code which fits most cases. The codon tables are important,

because they ensure that fine adjustment of detection and translation of

4 The code2aln Project 47

coding regions during the process of aligning is possible for various organism

groups or their fitting mitochondrial sequences.

GenBank files contain information about the exact positions of coding re-

gions, the genomic structure of exons and introns, or the protein sequence

after translation. If some information like this (e.g. regarding exons and

introns) is present in the GenBank file, it is used for supporting the align-

ment algorithm, especially the scoring. In any case, either if the GenBank

file contains information about coding parts, or if there are no supporting

data (e.g. in FASTA format files), code2aln searches open reading frames

respecting the correct codon table. These data may then be compared one

to each other for critical analysis of the input.

Code2aln also produces some output files which contain the data about

sequences and coding and provide a graphical representation of the genomic

structures of the input nucleic acid files. The open reading frames are shown

either within the three frames or, beyond these, as derived from the GenBank

file respecting all introns and exons.

Especially in the case of viruses, one has often to handle circular genomes

which sometimes have coding regions that get torn into two pieces when the

genome is cut for sequencing and treatment as data base content. In these

cases code2aln automatically rejoins the pieces to get the full length of the

open reading frame for further processing. Also if exons and introns exist as

part of the input sequences, code2aln simulates splicing and produces the

correct protein sequences after translation.

Then the pairwise nucleic acid alignments of all sequences get started. All

knowledge about coding regions is incorporated. Code2aln uses an affine gap

scoring, which differentiates between gap open- and gap extension penalties.

The (mis)match scoring system is a combination of nucleic acid score and

amino acid score (in all three frames) in the case of coding regions (see above).

As an amino acid scoring matrix a highly universal matrix is used; it fits the

4 The code2aln Project 48

File name: Test2/NewMAUS1.gbf

Codon Table: univ

Sequence name: > MUSMHQAMB [2875bp] Number: 1

GenBank file information derived exons, if available:

START - STOP:

200 - 272

502 - 768

1028 - 1303

1871 - 2155

2255 - 2388

GenBank file derived CDS marked open reading frames:

START - STOP:

200 - 272

502 - 768

1028 - 1303

1871 - 2155

2255 - 2388

Open reading frames derived by code2aln automatic search:

START - STOP:

1066 - 1356

1807 - 2163

Figure 15: An example for the text file output of code2aln. Various data about the input

sequences are shown: the names of files and sequences, the codon table used, the start

and stop codons of found and Genbank derived open reading frames, and, if available, the

exon data.

most protein types and organism groups.

The next step after the initial alignments is producing a guide tree which

controls the subsequent (multiple) profile alignments. Again a file output

is created that presents the clustering of sequences in order to build up the

guide tree. It is important to note that the guide tree in this context tells

nothing about the evolutionary distances between the sequences. It is only

usable to get an order of the following profile alignments, to define which

smaller clusters are merged to a larger one.

The process of the profile alignments runs according to the guide tree,

and genetic information, affine gap penalties, and the suited nucleic acid and

amino acid scorings are used throughout all alignments. Finally, the resulting

alignment is checked for errors and the output file is written.

4 The code2aln Project 49

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3227 bpfile: Data/AB014366.gbf > AB014366

0 2500 5000 7500

Exons

Frame 1

Frame 2

Frame 3

9672 bpfile: Data/HIV2ST.gb > HIV2ST

0 5000 10000 15000

Exons

Frame 1

Frame 2

Frame 3

15894 bpfile: Data/MORB.gb > AB012948

complete nucleic acid sequence in file

GenBank file information derived exons and open reading frames

open reading frames derived by ral2 automatic search

Figure 16: An example for the PostScript output of code2aln. The figure shows a

graphical representation of the found open reading frames of three unrelated sequences.

The genomes of hepatitis B virus, HIV1 and the measles virus.

4 The code2aln Project 50

SEARCH OPEN READING FRAMES
RESPECTING THE CORRECT CODON TABLE

PROTEIN SEQUENCE AND NAMES
EXTRACT INFORMATION ABOUT INTRONS,

CREATE OUTPUT (POST SCRIPT ETC.)

READ INPUT SEQUENCE FILES

PAIRWISE NUCLEIC ACID ALIGNMENTS
OF ALL SEQUENCES USING
KNOWLEDGE ABOUT CODING REGIONS
IN ORDER TO CREATE A GUIDE TREE

PROFILE ALIGNMENT USING GUIDE TREE
AND AGAIN GENETIC INFORMATION

WRITE THE RESULTING OUTPUT FILE

OUTPUT

Figure 17: This flow chart gives a graphical representation of the main steps of code2aln.

It produces a priori only nucleic acid alignments; the scoring function uses information

about coding and non-coding regions and the type of amino acid.

4 The code2aln Project 51

0 10 20 30 40
gap length

0

10

20

30

40

50

60

70

nu
m

be
r

of
 g

ap
s

code2aln
clustalw

Figure 18: This chart shows the distribution of the types of various gap lengths after

alignment of Levivirus genomes using clustalw and code2aln (see below). Code2aln

produces a higher fraction of gaps with a length that can be divided by 3 (Clustalw: 182

gaps, 40 can be divided by 3; code2aln: 110 gaps, 66 can be divided by 3). This shows

the strong tendency of code2aln not to disrupt codons.

4 The code2aln Project 52

0 10 20 30 40
gap length

0

10

20

30

40

nu
m

be
r

of
 g

ap
s

code2aln
clustalw

Figure 19: This chart shows the distribution of the types of various gap lengths after align-

ment of hepatitis B virus pregenomes using clustalw and code2aln (see below). Code2aln

produces without exception gaps with a length that can be divided by 3 (Clustalw: 57

gaps, 42 can be divided by 3; code2aln: 62 gaps, all can be divided by 3). This shows the

strong tendency of code2aln not to disrupt codons.

4 The code2aln Project 53

4.4 An Example Program Run

INPUT FILES: 12 sequences of mouse (Mus musculus), manually edited (ran-

dom mutations, insertions and deletions were added) for reasons of demon-

stration and testing.

PROGRAM CALL: code2aln seq*

OUTPUT (STDOUT):

Encoding.....Done

Pairwise alignments.....

Alignment: 1 Sequ. (1 : 2) Score: 71716

Alignment: 2 Sequ. (1 : 3) Score: 71047

Alignment: 3 Sequ. (1 : 4) Score: 70957

(....)

Alignment: 65 Sequ. (10 : 12) Score: 74646

Alignment: 66 Sequ. (11 : 12) Score: 74716

Profile alignments.....

Alignment: 67 Cluster: 12 Score: 74933

Alignment: 68 Cluster: 13 Score: 74716

(....)

Alignment: 76 Cluster: 21 Score: 35763

Alignment: 77 Cluster: 22 Score: 33775

See ’cluster.txt’ and ’info.txt’ for information about profiles.

OUTPUT FILES: cluster.txt, info.txt, ORF.ps, aln.aln

4 The code2aln Project 54

cluster.txt:

Cluster: 0 Sequence(s): 1
Cluster: 1 Sequence(s): 2
Cluster: 2 Sequence(s): 3
Cluster: 3 Sequence(s): 4
Cluster: 4 Sequence(s): 5
Cluster: 5 Sequence(s): 6
Cluster: 6 Sequence(s): 7
Cluster: 7 Sequence(s): 8
Cluster: 8 Sequence(s): 9
Cluster: 9 Sequence(s): 10
Cluster: 10 Sequence(s): 11
Cluster: 11 Sequence(s): 12
Cluster: 12 Sequence(s): 3, 4
Cluster: 13 Sequence(s): 10, 11
Cluster: 14 Sequence(s): 12, 10, 11
Cluster: 15 Sequence(s): 9, 12, 10, 11
Cluster: 16 Sequence(s): 7, 8
Cluster: 17 Sequence(s): 5, 6
Cluster: 18 Sequence(s): 9, 12, 10, 11, 5, 6
Cluster: 19 Sequence(s): 2, 3, 4
Cluster: 20 Sequence(s): 9, 12, 10, 11, 5, 6, 2, 3, 4
Cluster: 21 Sequence(s): 7, 8, 9, 12, 10, 11, 5, 6, 2, 3, 4
Cluster: 22 Sequence(s): 1, 7, 8, 9, 12, 10, 11, 5, 6, 2, 3, 4

info.txt:

File name: seqA.seq

Codon Table: univ

Sequence name: > MUSB1 [3221bp] Number: 1

GenBank file information derived exons, if available:

no exons

GenBank file derived CDS marked open reading frames:

Could not read GenBank file information.

Open reading frames derived by code2aln automatic search:

START - STOP:

4 - 309

986 - 1243

1247 - 1483

2190 - 2564

2480 - 2740

(....)

4 The code2aln Project 55

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3221 bpfile: seqA.seq > MUSB1

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3222 bpfile: seqB.seq > MUSM2

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3228 bpfile: seqC.seq > MUSMH3

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3249 bpfile: seqD.seq > MUB4

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3232 bpfile: seqE.seq > MUSMH5

complete nucleic acid sequence in file

GenBank file information derived exons and open reading frames

open reading frames derived by code2aln automatic search

Figure 20: ORF.ps, the PostScript output of code2aln, page 1.

4 The code2aln Project 56

CLUSTAL X (1.82) MULTIPLE SEQUENCE ALIGNMENT
File: aln.ps Date: Wed Feb 5 18:10:29 2003

Page 1 of 1
 * * *** *** * **** ** ************************** *
 MUSB1 ACTGCCCATGGGT-TTGCCCCTATGTG----------------CG------CATCCATGCTTTATACCCAAAAATGTGAC 1244
 MUSMH7 ACTGCCCATGGGT-TTGCCCCTATGTG----------------CG------CATCCATGCTTTATACCCAAAAATGTGAC 1236
 MUQAMB8 ACTGCCCATGGGT-TTGCCCCTATGTG----------------CG------CATCCATGCTTTATACCCAAAAATGTGAC 1242
 MU99 A--CCTCATTGGT-TTGCCCCTATTT-TTTTTGGGAAAAATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1272
 MHQB12 AC-CCTCATTGGTGCGGTTCCTAGGTGCTACCCGCAACCATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1275
 MUSM10 A--CCTCATTGGT-TTGTTCCTATTTGGT-TTGGGAAAAATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1272
 MAMB11 A--CCTCATTGGT-TTGTTCCTAGGTGCT-TCGGCAACCATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1272
 MUSMH5 ACTGCCCATGGGT-TTGCCCCTATGT-----ATGG--------CGT----GCATCCATGCTTTATACCCAAAAATGTTTC 1250
 MUAMB6 AC--CCCATGGGT-TTGCCCCTATGT--TGGGGGG--------CGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1255
 MUSM2 ACTGCCCATGGGT-TTGCCCCTATG---------------TG-CG------CATCCATGCTTTATACCCAAAAATGTTTC 1241
 MUSMH3 ACTGCCCATGGGT-TTGCCCCTATG---------------TG-CGT----GCATCCATGCTTTATACCCAAAAATGTTTC 1247
 MUB4 ACTGCCCATGGGT-TTGCCCCTATGT-------------ATGGCGT----GCATCCATGCTTTATACCCAAAAATGTTTC 1250
 ruler1210......1220......1230......1240......1250......1260......1270......1280

Figure 21: aln.aln: the resulting alignment. This short cutout of the resulting alignment

gives an impression about the function of code2aln. One partially divergent region is

shown, as represented by clustalx. We see 6 gaps with lengths that can be divided

by 3. In contrast, the alignment below (derived by clustalw) has only one gap of this

type. Thus, code2aln has produced the sixfold amount of those gaps. This result is

representative and shows the much stronger tendency of code2aln not to disrupt codons

in coding regions.

CLUSTAL X (1.82) MULTIPLE SEQUENCE ALIGNMENT
File: all.ps Date: Wed Feb 5 18:09:17 2003

Page 1 of 1
 ** *** *** * **** * ************************** *
 MAMB11 ACC--TCATTGGTTTG-TTCCTAGGTGCT-TCGGCAACCATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1272
 MHQB12 ACCC-TCATTGGTGCGGTTCCTAGGTGCTACCCGCAACCATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1275
 MUSM10 ACC--TCATTGGTTTG-TTCCTATTTGGT-TTGGGAAAAATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1272
 MU99 ACC--TCATTGGTTTG-CCCCTATTTTTT-TTGGGAAAAATTTCGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1272
 MUAMB6 ACC--CCATGGGTTTG-CCCCTATGT-----TGGGGGG-----CGTTAAAGCATCCATGCTTTATACCCAAAAATGTTTC 1255
 MUSMH5 ACTGCCCATGGGTTTG-CCCCTATGT-------------ATGGCGT----GCATCCATGCTTTATACCCAAAAATGTTTC 1250
 MUB4 ACTGCCCATGGGTTTG-CCCCTATGT-------------ATGGCGT----GCATCCATGCTTTATACCCAAAAATGTTTC 1250
 MUSM2 ACTGCCCATGGGTTTG-CCCCTATGTG----------------CG------CATCCATGCTTTATACCCAAAAATGTTTC 1241
 MUSMH3 ACTGCCCATGGGTTTG-CCCCTATGTG----------------CGT----GCATCCATGCTTTATACCCAAAAATGTTTC 1247
 MUSMH7 ACTGCCCATGGGTTTG-CCCCTATGTGC----------------------GCATCCATGCTTTATACCCAAAAATGTGAC 1236
 MUQAMB8 ACTGCCCATGGGTTTG-CCCCTATGTGC----------------------GCATCCATGCTTTATACCCAAAAATGTGAC 1242
 MUSB1 ACTGCCCATGGGTTTG-CCCCTATGTGC----------------------GCATCCATGCTTTATACCCAAAAATGTGAC 1244
 ruler1210......1220......1230......1240......1250......1260......1270......1280

Figure 22: For comparison, the same part of the resulting alignment, after alignment with

clustalw, as represented by clustalx. One gap length can be divided by 3.

5 An Example for an Application 57

5 An Example for an Application

Much research is performed to find methods for detecting and identifying

significant common sequence and structure motifs in a set of nucleic acid

sequences [34, 36, 43]. Various implementations of algorithmic approaches

exist that are supposed to find solutions to this problem [76, 77].

The program alidot detects conserved RNA secondary structure ele-

ments in relatively small sets of RNAs by combining multiple sequence align-

ments and secondary structure predictions. Both a (good) sequence align-

ment and secondary structure predictions for each sequence in the alignment

must be provided as inputs [51, 53].

The starting point of the analysis of conserved secondary structure ele-

ments is a list of all predicted base pairs. This list will in general not be a

valid secondary structure, because it is possible that one certain nucleotide

takes part in more than one base pairs and it is possible that base pairs cross.

The quality of the input sequence alignment is of crucial importance.

So the approach of using genetic information in the combined amino acid

and nucleic acid based alignments, or as part of the scoring function, should

provide one with better sequence alignments [101].

The basic idea behind both alidot is to sort the individual base pairs by

their credibility and to reduce the number of entries in the list by subsequent

filtering steps until only those secondary structure elements are left that are

consistently predicted. Of course the sorting procedure is very important.

For each predicted base pair the nucleotides occurring in the corresponding

positions in the sequence alignment are stored. A sequence is non-compatible

with a base pair (i.j) if the two nucleotides at positions i and j would form

a non-standard base pair such as GA or UU. A sequence is compatible with

base pair (i.j) if the two nucleotides form either one of the following six

combinations: GC, CG, AU, UA, GU, UG.

5 An Example for an Application 58

When different standard combinations are found for a particular base pair

(i.j) we may speak of consistent mutations. If we find combinations where

both positions are mutated at once we have compensatory mutations. The

occurrance of consistent and, in particular, compensatory mutations strongly

supports a predicted base pair, at least in the absence of non-consistent

mutations.

We call a base pair (i.j) symmetric if j is the most frequently predicted

pairing partner of i and if i is the most frequently predicted pairing partner

of j. Foe each sequence position i there is at most one symmetric base pair

involving i.

In the first step of alidot, a list of ’believable base pairs’ is extracted from

the set of all pairs which are contained in the input. In this first processing

step, all but the most frequent pair (i.j) for each base i is removed. The

remaining list is then sorted according to some hierarchical criteria like: (i)

the more sequences are non-compatible with (i.j), the less credible is the base

pair, (ii) symmetric base pairs are more credible than other base pairs, (iii)

a base pair with more consistent mutations is more credible, (iv) base pairs

are more credible with smaller values of a certain pseudo-entropy which is

derived from the frequencies fij with which (i.j) is predicted in the sample

of sequences and which is a measure for the reliability.

As the next step the sorted list is reduced by running through it and

removing all base pairs that cross with higher ranking ones and hence would

not yield a valid secondary structure.

The resulting secondary structure will, in general, still contain ill-suppor-

ted base pairs. These are removed by three subsequent filtering steps. First

all pairs are removed that have more than two non-compatible sequences, as

well as pairs with two non-compatible sequences adjacent to a pair that also

has non-compatible sequences.

Next all isolated base pairs are omitted. The remaining pairs are col-

5 An Example for an Application 59

RNA Sequencs

Multiple Sequence Alignment

CLUSTAL W

Minimum Energy Folding

Mountain Representations

Vienna RNA Package

Secondary Structures

Aligned
Structures

Detect conserved sub-structures Confirmed conserved sub-structures

CHECK:

compensatory

mutations

Figure 23: Scheme of the secondary structure analysis of viral genomes. Sequences are

aligned using a standard multiple alignment procedure. Secondary structures for each

sequence are predicted and gaps are inserted based on the sequence alignment. The

resulting aligned structures can be represented as aligned mountain plots. From the aligned

structures consistently predicted base pairs are identified. The alignment is used to identify

compensatory mutations that support base pairs and inconsistent mutants that contradict

pairs. This information is used to rank proposed base pairs by their credibility and to

filter the original list of predicted pairs.

5 An Example for an Application 60

lected into helices. Only those helices are retained that satisfy the following

conditions: (i) the highest ranking base pair must not have non-compatible

sequences, (ii) for the highest ranking base pair the product of the mean

probability and the number of different pairing combinations must be greater

than 0.3, (iii) if the helix has length 2, it must not have more non-compatible

sequences than consistent mutations.

The search algorithms for detecting conserved RNA structure elements

are based on both a multiple sequence alignment and predicted secondary

structures. The multiple sequence alignment is contained in a single file

in clustalw format. The predicted secondary structures are contained in

individual files (e.g minimum free energy files or base pairing probabilities

produced by RNAfold as part of the Vienna RNA package).

Both text and PostScript output is produced. The text output contains

some statistics, all base pairing data and the conserved structure in bracket

notation. The PostScript output are dot plots, a simple graphical repre-

sentation of structures, where each base pair corresponds to a small square

in a matrix of size sequence length × sequence length. The size and color

of this ’dot’ are used to encode additional information like the frequency of

prediction and the number of different consistent base pairs. The dot plots fi-

nally were used to construct the secondary structure graphs and the Hogeweg

mountain representations. Before producing the secondary structure graphs

the consensus sequences were calculated.

In principle, the development and implementation of computational meth-

ods capable of reliably predicting functional structural elements on the basis

of sequence information is necessary to provide advanced benefits in terms of

our understanding of the relationship between sequence and structure [21].

Thus, much research is performed to find conserved secondary structure el-

ements [79, 91], e.g. as part of the pregenome of hepatitis B viruses or the

genomes of Leviviridae.

5 An Example for an Application 61

For such a procedure a high quality alignment of nucleic acid sequences

is of major importance and methods that improve the input sequence align-

ments will become more and more essential.

Virus genomes sometimes contain various open reading frames within

their genomes. The lengths of small virus genomes can vary from some 3500

bp as in hepatitis B up to about 20000 bp as in the case of Ebola. The typical

genome size is about 10000 bp. The genomes can consist of single-stranded or

double-stranded DNA or single- or double-stranded RNA. Also some viruses

with relatively large double-stranded genomes exist, such as the pox viruses.

Retrotranscribing viruses are the retroviruses (e.g. HIV), the hepatitis B

viruses as well as caulimoviruses which have a DNA genome but use RNA as

an intermediate during their replication. RNA viruses have enormously high

mutation rates of up to 10−3 per position and replication. This makes them

a reasonable candidate for the process of alidot. The number of the viral

open reading frames depends on the type of virus considered. In addition,

the organization of virus genomes is extremely variable. Overlapping open

reading frames are possible and, in fact, frequent, hence one part of the

nucleic acid sequence codes for more than one protein in different frames.

Theoretically, three open reading frames can be covered by the same nucleic

acid sequence in all three possible reading frames. This possibility is actually

realized neither in the hepatitis B virus nor in Levivirus (see Figures 25, 41,

and 42). Both groups contain overlapping open reading frames in ’only’ two

frames. In addition, various non coding regions can exist in a certain virus

genome [12].

6 Hepatitis B Virus 62

6 Hepatitis B Virus

6.1 The Morphology of the Hepatitis B Virus

The Hepatitis B virus infects mammals and members the family of the Hep-

adnaviridae. Their morphology is spherical, occasionally pleomorphic, 40-

48 nm in diameter (40-42nm in the case of HBV, 46-48nm in the case of

duck HBV) but with no evident surface projections. The outer 7 nm thick,

detergent-sensitive envelope contains the surface antigens and surrounds an

icosahedral, 27-35 nm diameter (HBV: 27nm, DHBV: 35nm) nucleocapsid

core with 180 capsomers. The core is composed of one major protein species,

the core antigen, and encloses the viral genome (DNA) and some associated

minor proteins. Some viruses occur with filamentous forms of variable length

and 22 nm diameter and others with spherical 16-25 nm structures that lack

cores [12].

The genome consists of a single molecule of non-covalently closed, cir-

cular DNA that is partially double-stranded and partially single-stranded

(see Figure 25). The G+C content is about 48 %. One strand in negative

sense (complementary to the viral mRNAs) is full-length (3100 -3400 nt), the

other is shorter and varies in size. In the hepatitis B virus genome, which

is a member of the Orthohepadnavirus genus, the full-length negative sense

DNA strand has a nick at a unique site corresponding to a position 242 nt

downstream from the 5’ end of the positive sense strand. The ssDNA may

represent up to 60 % of the circle. In the second genus (Avihepadnavirus,

e.g. duck hepatitis B) of the family Hepadnaviridae the nick in the negative

sense DNA is about 50 nt from the end and genomes may be fully double-

stranded. The uniquely located 5’ ends of the two strands overlap by about

240 nt so that the circular configuration is maintained by base pairing of co-

hesive ends. The 5’ end of the negative sense DNA has a covalently attached

terminal protein. The 5’ end of the positive sense DNA has a covalently

6 Hepatitis B Virus 63

Figure 24: Electron micrograph of hepatitis B virus particles (virion cores produced by

detergent treatment of virions) [12].

6 Hepatitis B Virus 64

attached 19 nt, 5’ capped oligoribonucleotide primer [66].

In orthohepadnaviruses the envelope (surface antigen) proteins of virions

consist of three groups of antigenically complex proteins: S-proteins (p24,

gp27), M-proteins (p33, gp36) and L-proteins (p39, gp42). All three have

common carboxy termini and differ in amino termini (due to different sites

of translation initiation) and in the presence and form of glycosylation. In

hepatitis B virus the S-proteins appear to have the same amino acid compo-

sition and, beside this, gp27 has a single glycosylation site that is shared by

the M-proteins p33 and gp36 which are composed of p24 with additional 55

amino acids and a further glycosylation site. The L-proteins contain about

further 120 amino acids and their N-termini are myristylated.

The virion core is composed principally of the 22 kDa core antigen, a

phosphoprotein. Enzymes associated with virions include a protein kinase

and reverse transcriptase with RNA- and DNA- dependent DNA-polymerase

and RNase H activities (P-gene products). Other functional components

include the terminal protein covalently attached to the 5’ end of the full

length DNA strand. This terminal protein has been shown to be a component

of the about 90 kDa P gene product.

The envelope lipids of virions are derived from the host cell membranes.

6.2 The Genomic Organization of Hepadnaviruses

The hepatitis B virus genome has four partially overlapping genes (S, C, P,

X), all oriented in the same direction. The duck hepatitis B virus (genus

Avihepadnavirus) consists of three genes (S, C, P). There appear to be no

intervening sequences. The S-gene ORF codes for the surface antigens. In

the S-gene the p24 protein is preceded by pre-S2 which, in turn, is preceded

by pre-S1. Each has an in-frame ATG start codon for the initiation of protein

synthesis of all surface antigens (S-, M- and L-proteins). The C-gene ORF

6 Hepatitis B Virus 65

specifies the core protein. This is preceded by a short pre-C region that varies

in size between different viruses and is larger in avihepadnaviruses than in

mammalians.

The P-gene covers 80 % of the entire genome and overlaps the other

three ORFs. It codes for the reverse transcriptase, with DNA polymerase

and RNase H activities, and the genome-linked terminal protein. Finally, the

X-gene specifies a protein with a probable transactivation function. It varies

in size among the HBV serotypes.

After having entered the hepatocytes, the single-stranded regions are

made full length double-stranded DNA. The terminal protein of the negative

strand is removed, also the terminally redundant region and the oligoribonu-

cleotide of the positive strand, and the DNA is converted into a covalently

closed circular DNA by ligation.

After location of the double-stranded DNA into the nucleus of infected

cells, transcription of viral mRNAs starts enhanced by the X-protein. Tran-

scription yields various species of mRNAs with various lengths which code

for the viral proteins. Following transcription, translation of the gene prod-

ucts ensues in the cytoplasm of the infected cells. The 3.4 kb pre-genome

is transcribed which is greater in size than the genome, because of termi-

nally redundant sequence parts. The pre-genome is initiated near the start

of the pre-C ORF and terminates about 100 nucleotides downstream of the

pre-C initiation site after making a complete copy of the genome (240 nu-

cleotides downstream in the case of avian hepatitis B virus). The mRNAs

are unspliced and are made from distinct promotors. Two regions of the

HBV genome have transcription enhancer activities, another is similar to

glucocorticoid responsive elements.

Integration of viral DNA into the host genome is possible, but singly

integrated forms cannot serve as templates for the synthesis of the 3.4 kb

pre-genome (which requires circularized or concatenated copies of integrated

6 Hepatitis B Virus 66

pre S1

S
P

X

C

pre-C

2.4 kb

2.1 kb

3.5 kb

0.7 kb

5'

5'

+-

Figure 25: Diagram of the genome organization of hepatitis B virus indicating the DNA

arrangement, the positions of the four open reading frames (C, P, S, X) and the mRNA

transcripts.

6 Hepatitis B Virus 67

DNA).

Current evidence indicates that following the generation of a covalently

closed circular DNA and synthesis of the 3.4 kb pre-genome, this RNA as-

sociates with viral core particles where it serves as a template for synthesis

of minus-strand DNA by reverse transcription using a protein primer. Then

the minus-strand DNA serves as a template for plus-strand DNA synthesis.

The plus-strand DNA strand is incomplete in most core particles at the time

of virion assembly and release from infected cells. And finally the carboxy-

terminal domain of C-protein probably is required for packaging the DNA.

6.3 The ε-Structure: a proximal Encapsidation Signal

The ε-structure is a 5’-proximal encapsidation signal which mediates the

specific packaging of the transcript into viral capsids after reverse transcrip-

tion of the terminally redundant RNA pregenome by interaction with the

reverse transcriptase (P-protein) [65, 93]. Because of the redundancy of the

RNA pre-genome a second copy of the ε-structure occurs at the 3’-end. See

figures 28 and 31. ε-function is correlated with the formation of a hairpin con-

taining bulges and a loop. This interaction is not only central to pregenome

packing but also to capsid assembly. Furthermore, it is essential for initia-

tion of reverse transcription. There is striking assymetry in the importance

of primary sequence in the 5’- and the 3’-part of the ε-structure. The motif

CU is important in the proximal bulge position. It has been proposed that

these nucleotides are in close contact with P protein. Deletion of the bulge

prevents incapsidation [93].

6.4 The HPRE regulatory element

Posttranscriptional regulatory processes may be an important means of en-

hancing transfection efficiency. Although the exact mechanism is unknown,

6 Hepatitis B Virus 68

posttranscriptional regulatory systems may involve facilitating RNA process-

ing and/or RNA export to the cytoplasm. The post-transcriptional regula-

tory element (HPRE) facilitates the cytoplasmic localization of intronless

transcripts and is composed of at least two independent sub-elements (α and

β1) which are necessary for full HPRE function and conserved throughout

the mammalian Hepadnaviruses. Two regions of these sub-elements (SLα

and SLβ1) form stem-loop structures [100], Figure 27.

6.5 Results for Hepatitis B Virus

The Hogeweg-mountain representation is often the best suited representation

of RNA for the techniques of finding conserved secondary structure elements.

In a mountain plot every left-handed ascent and its corresponding right-

handed descent indicate base pairs, plateaus are loops.

We have investigated 14 pregenomic RNA sequences and all known sub-

genomic RNAs of hepatitis B virus. The processed sequences are members

of 6 different subgroups which contain some different sequence parts.

Table 1: With 14 pregenomic RNA sequences of hepatitis B virus the alignments using

various algorithms were done:

AF046996 HBV131567 HBVAYWE AB014366

HHVBFFOU HBV131571 HBV18858 HBD50521

HBVADW4A HBV131574 HBV18857 HBVAYWMCG

HBV131573 HVHEPB

In the case of hepatitis B virus, the redundant terminal part of the pregen-

omes was attached to the sequence end. Using code2aln and also clustalw

led to alignments (of hepatitis B virus and Levivirus) which were suitable

for further processing by alidot and the technique of detecting conserved

6 Hepatitis B Virus 69

secondary structure elements in complete virus genomes.

In principle, the two different alignment algorithms yield results that look

quite different, but we can see various structures which are confirmed by both

processes in the same way (see the next pages).

In the case of clustalw we find the four most prominent conserved ele-

ments: the ε-element, a proximal encapsidation signal which is necessary for

the specific packaging of the transcript into viral capsids, and its copy at the

5’ and 3’ end of the pregenome. And the two stem loop structures α and β1

in the HPRE region (the post-transcriptional regulatory element) that facili-

tates the cytoplasmic localization of intronless transcripts. Using code2aln,

the β1-element could not be detected, but we see some novel structures that

are not detected the same way using clustalw.

In the C-transcript we found one stem-loop structure, Figure 29, that does

not appear to be conserved in the pregenomic RNA because interactions with

a region outside the C-gene are thermodynamically favorable. The fact that

we find a conserved structure in C and distinctly different folding in other

context makes this feature a candidate for a regulatory function.

In principle, secondary structures of ssRNA viruses or (as in the case

of hepatitis B virus) pregenomic RNA intermediates, or even mRNAs, are

known to play an important role in the regulation of the viral life cycle.

When comparing the alignments themselves, we can see one tendency

regarding code2aln: code2aln tends not to disrupt codons within coding

regions. The reason is that code2aln respects the fact that amino acids

are the biologically relevant part of the system in coding regions, and amino

acids, respectively the codons, should not be disrupted, and gaps should not

be inserted into codons, if possible, given the used scoring function.

6 Hepatitis B Virus 70

6.5.1 Using clustalw

0 100 200 300 400 500 600 700 800 900 100
0

110
0

120
0

130
0

140
0

150
0

160
0

170
0

180
0

190
0

200
0

210
0

220
0

230
0

240
0

250
0

260
0

270
0

280
0

290
0

300
0

310
0

320
0

330
0

340
0

ε ε

α

β

’

HPRE SL

pregenomic RNA

pre-S1 pre-S2 S

P

X

C

pre-C

Figure 26: Using clustalw: The four most prominent conserved elements are the ε-

element, a proximal encapsidation signal which is necessary for the specific packaging of

the transcript into viral capsids, and its copy at the 5’ and 3’ end of the pregenome.

And the two stem loop structures α and β1 in the HPRE region (the post-transcriptional

regulatory element) that facilitates the cytoplasmic localization of intronless transcripts.

Colors indicate compensatory mutations: red = 1, ocre = 2, green = 3, turquoise = 4,

blue = 5 and violet = 6 types of base pairs.

6 Hepatitis B Virus 71

Various colours are used to indicate compensatory mutations. Pale colours

tell us that we have some inconsistent mutations, which means, variable sequ-

ence positions where not all sequences do base pairing. The colour codes of

the Hogeweg mountain plots are as follows:

red all sequences have the same two nucleotides

ocre two types of base pairs occur

green three types of base pairs occur

turquoise four types of base pairs occur

blue five types of base pairs occur

violet all six possible types of base pairs occur

CA
U

C
U
C

A U
G
U---U
C
A
U
G
U
C
CUA

C
U
GUUCA

A
G
C
C
U
C
C
A
A
G

C
U G U

G
CC

U
U

G
G

GU
G

G
C

U
U

U

G
G
G
G
C
A
U
G
G
A
C
A U

U
G
A

C

U G

U A

GCU
U

G
U
U

U U G
C

U
C
GC

A
G
C

U G
G

UC
U

G
G

G
G

C
A
A

G
C

C
G

G
C

C
G

C
G
C

G
G
G
A
C
G
UC

C
U
U U G

U
U
U

A
C
G
U
C
C
C G

U
C

GG

Figure 27: Predicted secondary structure of ε, α, and β1 element. Circles indicate com-

pensatory mutations. The post-transcriptional regulatory element (HPRE) facilitates the

cytoplasmic localization of intronless transcripts and is composed of at least two indepen-

dent sub-elements (α and β1) which are necessary for full HPRE function and conserved

throughout the mammalian Hepadnaviruses.

6 Hepatitis B Virus 72

. (((. (((((((. (((((((((((.)))))) .))))) . .))))))) .))) . ((((((.

19 29 39 49 59 69 79 89 99 C
A

U
C
U
C

U U
G
U

U
C
A
U
G
U
C
CUACU

G
UUCA

A
G
C
C
U
C
C
A
A
G

C
U

G U
G
C

C
U
U
G
G
GU
G
G
C
U
U

U

G
G
G
G
C
A
U
G

G
A
C
A U U

G
A
C
C
C

U
U

AUAA

U A

Figure 28: The ε-element in Human Hepatitis B Virus RNA Pregenomes. This structure

is conserved among all Mammalian Hepatitis B Viruses. Because of the redundancy of

the RNA pre-genome a second copy of the ε-structure occurs at the 3’-end. This is a

highly conserved sequence part, only two compensatory mutations confirm the conserved

structure.

. . . (((((((((. . . . ((((.)))))))) .)))))

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

U
A
A

U
G
A
C
U
C
U
A
GC

U
U
C

C
U
G
GGUG

G
G

C
A
A
U
A

A
U U U G G A A

G
A
U
C
C
A

G
C

AUC
C
A
G G

G
A

A
C
U
A
GU
A
G
U
C
A A

U
U

AU

A U

A U
C G

Figure 29: A secondary structure element with unknown function that appears to be con-

served in the C-mRNA but does not appear as conserved structure in complete pregenomic

RNA. In this case interactions with a region outside the C-gene are thermodynamically

favorable. The fact that we find a conserved structure in C and distinctly different folding

in other context makes this feature a candidate for a regulatory function.

6 Hepatitis B Virus 73

6.5.2 Using code2aln

The Hogeweg mountain plot after usage of code2aln looks quite different

from the one after usage of clustalw, although most of the important ele-

ments are also detected.

The usage of genetic information about coding and non-coding sequence

parts as part of the scoring function like implemented in code2aln, or the

combined amino acid and nucleic acid based alignment algorithm as im-

plemented in ralign formerly, is especially helpful when used with rather

closely related sequences. In these cases the reduction of gaps (especially

with ralign) and the incorporation of amino acid scores (in code2aln) bears

quite good alignment results.

Therefore, as an example for an application, human hepatitis B virus

genomes were used as well as the genome sequences of various species of

Levivirus genus (in the following). It is possible to detect various conserved

secondary structure elements in hepatitis B; the most important of them

are also detected after alignment with clustalw, but there are also some

differences: the β1-element could not be detected here, and we see some

novel structures that are not detected the same way using clustalw.

6 Hepatitis B Virus 74

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

ε
ε

α

’

HPRE SL

pregenomic RNA

pre-S1 pre-S2 S

P

X

C

pre-C

Figure 30: Using code2aln: Again three of the four most prominent conserved elements:

the ε-element and its copy at the 5’ and 3’ end of the pregenome and the stem loop

structure α in the HPRE region. The β1-element could not be detected here. Instead of

it we see an other, but noticeable, element beside the α element which is maybe also part

of the HPRE region.

6 Hepatitis B Virus 75

. (((((((((((.)))))) .)))))

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

UCC
U

A
C
U
G

U
U C A

A
G
C
C
U
C
C
A
A
G

C
U G U

G
CC

U
U

G
G

G
UG

G
C

U
U

U
G
G
G

G
C

Figure 31: The ε-element in human hepatitis B virus RNA pregenomes as detected af-

ter code2aln alignment. A 5’-proximal encapsidation signal which mediates the specific

packaging of the transcript into viral capsids. This structure is conserved among all Mam-

malian Hepatitis B Viruses.

. . . . (((((((.)))))))

28
50

28
51

28
52

28
53

28
54

28
55

28
56

28
57

28
58

28
59

28
60

28
61

28
62

28
63

28
64

28
65

28
66

28
67

28
68

28
69

28
70

28
71

28
72

28
73

28
74

28
75

28
76

28
77

28
78

28
79

28
80

28
81

G
C
G
CG

G
G
A
C
G
U

C
C
U

U U G
U
U

U
A
C
G
U
C
C
CG

U
C

G

Figure 32: The α-element in human hepatitis B virus RNA pregenomes as detected after

code2aln alignment. This structural element is conserved as part of the HPRE region.

HPRE facilitates the cytoplasmic localization of intronless transcripts and is composed

of at least two independent sub-elements (α and β1) which are necessary for full HPRE

function and conserved throughout the mammalian Hepadnaviruses. Using code2aln as

the input alignment we could not detect the β1 structure.

6 Hepatitis B Virus 76

. . . ((((((. ((((((((((((((((.)))))) .))))) . .))))))))))) .))

33
10

33
20

33
30

33
40

33
50

33
60

33
70

33
80

U
C
A

U
G

U
U

C
A

UGU
C
C
U A C

U
G
U
U
C
A
A
G
C
C
U
C
C
A
A
G

C
U

G U
G
C

C
U
U
G
G
GU
G
G
C
U
UU
GG
G
G
C
A
U
G
G
A
C
A U U

G
A
C
C

C
UUAU

A

G C

U A

U G

Figure 33: The ε-element at the end of human hepatitis B virus RNA pregenomes as

detected after code2aln alignment. This structure is conserved among all mammalian

hepatitis B viruses, but code2aln alignment led to a longer structural element at the

redundant end than at the beginning.

((((((((((. . . ((. . . ((((((((. . . .)))))))))))))))) ((.

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

G
A
G

U
A

U
U
U

G
GU

G
U

C
UU

U

U
G

G
A

G
U

G
U

GG
A

U U
C

G
C

A
C

U
C

CU -CCUG
C
U
U
ACA

G A
C
C
A

C
C
A
A
A
U G C

C
C
C

U
AUCU

G
C

A
U

U A
U A

U A

U A

Figure 34: Positions 430 - 500: A conserved structural element as detected after code2aln

alignment. This structural element is obviously unknown, there are no informations what

the function might be; but it seems to be conserved, at least as a primary structure, on

sequence level.

6 Hepatitis B Virus 77

. ((((((. . . (((. . (((. . (((((((.)))))))))) . . .))) .)))))) .

20
00

20
10

20
20

20
30

20
40

20
50

20
60

20
70

20
80

20
90

21
00

G
U

U
G

CUGUA
C

A
A
A
A
C

C U U C G
G

A
C
G

G
A
AAC

U
G
C

A C
C

UGUA
U

U
C

C
C

A
U

C
C
C
A
U
C

A
U

C U U G G G C
U

U
U
C
G
C
A

A
A

A
UUCCUAU

G
G

G
A

G
U

G
G

G
C
CUC

A
G
UC

C
G

U
U

U
C

U
G

Figure 35: Positions 2000 - 2100: A long hairpin with two interior loops and one short bulge

as a conserved structural element as detected after code2aln alignment. The structure

is highly conserved and confirmed by various compensatory mutations. There are no

informations what the function of this element might be.

. . . ((((((. ((((((((((((((((.)))))) .))))) . .))))))))))) .))

33
10

33
20

33
30

33
40

33
50

33
60

33
70

33
80

U
C
A

U
G
U
U
C
A

UGU
C
C

U A C
U
G
U
U
C
A
A
G
C
C
U
C
C
A
A
G

C
U

G U
G
C

C
U
U
G
G
GU
G
G
C
U
UU
GG

G
G
C
A
U
G
G
A
C
A U

U
G
A

CCC

Figure 36: Positions 3310 - 3380: A long hairpin with two short bulges and one long bulge.

Two compensatory mutations. We don’t know what the function of this element might

be.

6 Hepatitis B Virus 78

. ((((((. ((. . . (((. ((.)) . .))) . .))))

29
99

30
09

30
19

30
29

30
39

30
49

30
59

UGU
G

C
C
U
U

C
U C A

UC
U
G
C

C G
G

A
C
CG

U
G

U
G
C

A
C U

U
C

G
C
U
U

C
A
C

C
U

C
U G

C
-

A
CG

U -
-

-
-
-

C
G

C
A

U G

Figure 37: Positions 3000 - 3060: Also this conserved structural element as detected after

code2aln alignment is obviously unknown regarding its function. We see some interior

loops between highly conserved segments. Highly conserved at least on the level of the

primary structure, the sequence. We see no sequence variation; this is a fact that is not

supporting the prediction of a conserved structure. Maybe, it is also some part of the

HPRE region, but it is obviously not the β1-element.

6 Hepatitis B Virus 79

Table 2: Summary of the positions of predicted secondary structure elements in the RNA

pregenome of Human Hepatitis B Virus after two different types of alignment (clustalw

and code2aln).

clustalw Figures code2aln Figures Function

1-100 26, 27, 28 40-75 30, 31 ε-element

2800-2850 26, 27 2850-2870 30, 32 α-element (HPRE)

2930-2970 26, 27 ? none β1-element (HPRE)

3360-3440 26, 27 3300-3380 30, 33 repeat of ε-element

C-mRNA 29 ? none ?

? none 430-500 34 ?

? none 2000-2100 35 ?

? none 3310-3380 36 ?

? none 3000-3060 37 ?

7 Leviviridae 80

7 Leviviridae

7.1 The Morphology of the Levivirus Genus

The members of the genus Levivirus infect eubacteria. The enterobacteria

phages MS2, KU1, GA, and fr are species of the genus Levivirus which be-

longs to the family of Leviviridae.The virions of these ssRNA Phages are

neither enveloped nor tailed. The nucleocapsids are isometric, 24-26 nm in

diameter. Their type of symmetry is icosahedral (this means twenty edges).

Every virus particle consists of 32 capsomers per nucleocapsid. Virions con-

tain 31 % nucleic acid, that is one molecule of linear positive-sense single

stranded RNA. The molecular mass of one virus capsule of members of the

family Leviviridae is about 3.6 − 4.2 × 106 (depending on the genus). The

virions are sensitive to various detergents and they contain no lipids [2, 27].

7.2 The Genomic Organization of Levivirus

All members of the family Leviviridae are ssRNA positive-strand viruses.The

replication cycle includes no DNA stage. The total genome length is 3466

up to 4276 nucleotides depending on type of strain. Base ratio between the

purine bases is 50% guanine and 50% adenine; Also the pyrimidine bases

share 50% cytosine and 50% uracil.

Most Levivirus species have four (partly) overlapping genes, some excep-

tions exist which contain only three open reading frames. Currently, two

structural virion proteins have been found and identified. Every capsid con-

tains one copy of the so called A protein. A typical protein size of this type

is about 35000-44000 Da. It is required for the maturation of the virion and

for the pilus attachment during infection of the host [12].

The protein size of the 2nd largest protein found so far is about 14000 Da.

It functions as a coat protein and builds up the capsid. The capsid contains

7 Leviviridae 81

Figure 38: Electron micrograph of Levivirus virion cores. Levivirus contains no spheres,

no filaments and no tails (like many other bacteriophages), from [12].

180 copies of the coat protein, arranged in 60 identical triangular units.

The infection is mediated and performed mainly by the genomic nucleic

acid sequence. All newly produced virions are found in the cytoplasm. The

genome replicates in the cytoplasm. The host of the members of the Levivirus

genus belongs to the domain Eubacteria (Procarya) [111, 112].

7 Leviviridae 82

7.3 Results for Levivirus

We have investigated 8 sequences of the Levivirus genus. Currently, there are

5 types of strains represented in the GenBank data base as complete genomes:

The Enterobacteria phages MS2, KU1, GA, fr, and AP205.

The last one was eliminated from the data set analyzed here because of

large changes in genomic structure. Changes, which cause a massive diver-

gency from all other types and lead to the impossibility of making useable

alignments for further processing by alidot.

The genus Allolevivirus (especially the well analyzed Qbeta) is also object

of intensive research, but the sequence of Qbeta which was also in our data

set first, is highly divergent from the Levivirus sequences. Neither using

clustalw nor with code2aln it is possible to obtain alignments that are

suited input for alidot. The alignments are completely disrupted and it is

clearly visible that the incompatibility between Levivirus and Allolevivirus is

the reason. Thus, we restrict ourselves to Levivirus in this work (see Figure

39).

At the 5’-terminal end of the Levivirus sequences we detect a short GC-

rich hairpin (tetraloop) which follows to an unpaired GGG element, see Fig-

ures 40 and 51. This is probably the analogon to the recognition signal site

for the RNA replicase in Alloleviviruses. This stem-loop-structure is well

known and defined in Qbeta. The Qbeta replicase amplifies RNA templates

autocatalytically with high efficiency. This recognition element, consisting

of a hairpin and a very short unpaired region, at the 5’-terminus, is essential

for function [7, 8].

The results regarding Levivirus are quite complex for analysis: the se-

quences are much more divergent than in the case of hepatitis B virus. Nev-

ertheless, some conserved structure elements which are also well supported

by compensatory mutations, are visible.

The two different alignment processes produce significantly different re-

7 Leviviridae 83

Title: levi.nex
Date : Sun Feb 9 11:23:16 2003

Fit=99.7 ntax=9 nchar=4329 gaps=964 const=784 nonparsi=1911 -dsplits -hamming

NC_001417

LEBFRX, NC_001333

LEMS2X

AF227250, NC_002250

Qbeta

LEGAXX, NC_001426

0.1

Figure 39: The phylogenetic relationships among the Levivirus sequences analyzed here

and the Allolevivirus Qbeta. The evolutionary distance between the four groups of Le-

vivirus and Allolevivirus, which destructs the alignments, is visible. The tree was produced

using SplitsTree3.1.

GG
G
C
A

C C
C

C
C

C
U

U
C
GG

G
G

G
G
U
C

Figure 40: The 5’-terminal RNA replicase recognition site in the Allolevivirus Qbeta,

which is highly functional for recognition of the template and amplification of it. Important

characteristics are marked (see also Figure 51).

7 Leviviridae 84

Table 3: The GenBank data files with the 8 input sequences of complete Levivirus RNA

genomes.

Enterobacteria phage MS2 NC 001417, LEMS2X

Enterobacteria phage KU1 NC 002250, AF227250

Enterobacteria phage GA NC 001426, LEGAXX

Enterobacterio phage fr NC 001333, LEBFRX

sults. Especially interesting is the fact that code2aln and alidot detect an

obvious type of conserved long range interactions, clearly visible at the basis

of the mountain plot (see figure 50).

Using clustalw these long range effects are not detected, but they seem

to be important, because they are apparently supported by compensatory

mutations.

When comparing the alignments themselves, we can again see that code2-

aln tends not to disrupt codons within coding regions. We count 36 gaps (out

of 182) with a length that can be divided by 3 in the clustalw alignment,

but 40 gaps (out of 166) of this type in the code2aln alignment. This is

a indication that code2aln respects coding regions, and that amino acids,

respectively the codons, should not be disrupted, and gaps should not be

inserted into codons, if possible, given the used scoring function.

7 Leviviridae 85

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3486 bpfile: levi.gbf > NC_002250

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3466 bpfile: levi.gbf > NC_001426

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3569 bpfile: levi.gbf > NC_001417

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3575 bpfile: levi.gbf > NC_001333

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3466 bpfile: levi.gbf > LEGAXX

complete nucleic acid sequence in file

GenBank file information derived exons and open reading frames

open reading frames derived by code2aln automatic search

Figure 41: This PostScript output of code2aln shows the graphical representation of the

Levivirus open reading frames derived from the GenBank file and detected by the code2aln

automatic search for coding regions. All sequences represented here were used as an input

into the process of detecting conserved secondary structure elements by alidot.

7 Leviviridae 86

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3569 bpfile: levi.gbf > LEMS2X

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3486 bpfile: levi.gbf > AF227250

0 1000 2000 3000

Exons

Frame 1

Frame 2

Frame 3

3575 bpfile: levi.gbf > LEBFRX

complete nucleic acid sequence in file

GenBank file information derived exons and open reading frames

open reading frames derived by code2aln automatic search

Figure 42: This PostScript output of code2aln shows the graphical representation of the

Levivirus open reading frames derived from the GenBank file and detected by the code2aln

automatic search for coding regions. All sequences represented here were used as an input

into the process of detecting conserved secondary structure elements by alidot.

7 Leviviridae 87

7.3.1 Using clustalw

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

Figure 43: Using clustalw: This Hogeweg mountain plot shows an overview about the

complete RNA genome of Levivirus genus. It looks quite different from the version that

was produced using code2aln as an input alignment, see below. But one can see at a first

glance that the sequences are very divergent, although it seems that we have quite a lot

of compensatory mutations.

7 Leviviridae 88

)) (((. . (((. . (((. . . .))) . . .))))))

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

A
C

G
C
U--A

C
C

A
U G

C
C

G
A U

A
G

C
U
G
U

AG
G

U
A
A
CG C

Figure 44: Position 80 - 110: A highly conserved structure, a hairpin with a tetraloop and

an interior loop. Lots of compensatory mutations strongly confirm this element. At this

point, we do not know what the function of this element is.

. . ((((. ((((. (((. . . .))) .)))) . .)))) . . .

54
0

54
1

54
2

54
3

54
4

54
5

54
6

54
7

54
8

54
9

55
0

55
1

55
2

55
3

55
4

55
5

55
6

55
7

55
8

55
9

56
0

56
1

56
2

56
3

56
4

56
5

56
6

56
7

56
8

56
9

57
0

57
1

57
2

57
3

57
4

57
5

57
6

C
U

C
A
A
G

C
U
A
A
C

C
U
C
A

A
C A

U
U
G
G

G
G
U
U
GC

U
A
U
U
G

C
U

G

A U

A U

Figure 45: Position 540 - 575: A conserved tetraloop tip followed by a variable position

and again a very conserved secondary structure part. The green colour indicates that we

have three types of base pairs at this position. We have no information what the function

might be.

7 Leviviridae 89

. . ((. ((((. . .)))))) . .

14
78

14
79

14
80

14
81

14
82

14
83

14
84

14
85

14
86

14
87

14
88

14
89

14
90

14
91

14
92

14
93

14
94

14
95

14
96

14
97

14
98

C
A

G
G
C
U
U
A
C
A A

A
G
U
G
A
C
C

G
C

Figure 46: Position 1480 - 1495: A short but highly conserved hairpin structure. Two

ocre and one green trapezoids indicate compensatory mutations that strongly support the

structure. No information about the function.

. ((. (((((. . ((((. . (((((.)) .))) . .)))) . . .))))) .))

15
20

15
30

15
40

15
50

15
60

15
70

15
80

15
90

GACA
A

G
C
G
C
A

A A U A
C
A

C
C
A
U
C

A
A A

C
U
C

G
A A

G
U
G
C

C
G

A A A
A
U

CG
CA
A

C
C
C
AA

A
U
C
G
U

AA
A

U
G

G
C

G
U

A
G
A
G
C

U

A C

C U

C A

Figure 47: Position 1520 - 1590: Lots of compensatory mutations with two and (once)

three types of base pairs. A highly conserved structure with unknown function.

7 Leviviridae 90

) (((((. ((. . . .))))))) . . (((((((. ((((. ((.)))))))))))))

17
85

17
95

18
05

18
15

18
25

18
35

18
45

18
55

AUUCAAACAUAAGG
AA

A
A C C C A U G U

C
C A

A
A

U
C

A
A

C A
A

A
G
AA

C
G

A A
A

AC
A

C
U

C
U
A
UG

UAU
G

G
A

U
C

GC
AC

UC
G

A
C

U
A

Figure 48: Position 1785 - 1855: Two hairpins, one features a tetraloop and a short bulge,

the other has an interior loop and also a short bulge near the terminal loop. Both are

conserved and thus obviously important. Various compensatory mutations.

. . . . (((((((((.))) .)))))) . .

34
05

34
06

34
07

34
08

34
09

34
10

34
11

34
12

34
13

34
14

34
15

34
16

34
17

34
18

34
19

34
20

34
21

34
22

34
23

34
24

34
25

34
26

34
27

34
28

34
29

34
30

34
31

34
32

34
33

34
34

34
35

34
36

G
A

U
C C

C
C
C
U
A
U
U
C

C
C

U C
A
G

G
A
A
-U

A
G
A
G
G

C
C

Figure 49: Position 3405 - 3435: A very highly conserved structure, strongly supported by

lots of compensatory mutations. One short bulge, two green trapezoids in the mountain

plot show three types of base pairs.

7 Leviviridae 91

7.3.2 Using code2aln

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

Figure 50: Using code2aln: This Hogeweg mountain plot shows an overview about the

complete RNA genome of Levivirus genus after alignment by code2aln. It is very different

from the version above that was produced using clustalw. Very interesting is this obvious

type of conserved long range interactions, clearly visible at the basis of the plot. Using

clustalw these long range effects are not detected, but they seem to be important because

they are apparently supported by compensatory mutations.

7 Leviviridae 92

. . . . ((((((((. . . .)))))))) ((. (((.))) ((. . . (((. . (((. . . .))) . . .))) .)) . . ((((. . . .)))))) . . . ((. ((.

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

GGGUG
G

G
A

C
C

C
C
UU

U
C G

G
G

G
U

C
C

U
G

C

C

C
A

A
C U U

CC
-

U
G
A
A
C
G
A

G
C

UA--AA
U

G
C
C
A
U
G

C
A U A A -

C
G

U
C
U
U

A
A

G
C - - G - AGACG

C
U

- - A
C

C
A

U G
C

C
G A

U
AG

C
U
G

UAG
G

U
-G

A
C
G
G A A U -

U
CC

AUAU
A

C
AGGAG

GAUCU
A
C
G
U
G
U
C
C

GA
AA-A

A
U

G
A

C
G

C
G

U
A

C
G

C
G

C
G

A
U

Figure 51: Position 1 - 150: A multiloop structure containing three tetraloops and some

interior loops. We see various compensatory mutations of second and third order, but also

some variable positions that show higher divergence. The 5’-terminal hairpin is probably

the analogon to the recognition signal site for the RNA replicase in Alloleviviruses which is

well analyzed in Qbeta. In Qbeta the replicase amplifies RNA templates autocatalytically

with high efficiency. This recognition element in Levivirus is supposed to be essential for

a similar function

. . ((. . . (((. . (((. . . .))) . . .))) .))

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

A
C

G
C

U
-
- A

C
C

A
U G

C
C

G
A U

A
G

C
U
G
U

AG
G

U
-

G
AG A

Figure 52: Position 80 - 110: This structure contains alternating conserved stems and

interior loops and a terminal tetraloop. Three positions with compensatory mutations.

7 Leviviridae 93

. . ((. . . ((. ((((. ((((. (((. . . .))) .)))) . .)))))) . .))

54
5

55
5

56
5

57
5

58
5

59
5

60
5

61
5

G
A

C
CG

A
A

G
UCCUC

A
A
U
A
A
G
CUCACUC

A
A
G
C

U
A
A
C
C

U
C
A
A

C A
U

U
G

G
G

G
U

U
G
C

UA
U

U
G

C
U

G
A

AG
C

C
A

A
G

A
C

GA

C A

A U

A U

Figure 53: Position 545 - 615: Also here we see a tetraloop structure and various interior

loops of different size. Some compensatory mutations; no information what the function

of the element might be.

. . (((((. ((((.))))))))) . .

14
25

14
26

14
27

14
28

14
29

14
30

14
31

14
32

14
33

14
34

14
35

14
36

14
37

14
38

14
39

14
40

14
41

14
42

14
43

14
44

14
45

14
46

14
47

14
48

14
49

14
50

14
51

14
52

14
53

14
54

U
U

C
G
U
A
C
U
C
G
U
C

G
A

C A
A
U

G
G
C
G
G
A
A
C
G

G
G

C G

Figure 54: Positions 1427 - 1451: A highly conserved sequence, one compensatory mutation

supports the structure, we see a short one-letter bulge.

7 Leviviridae 94

. ((. (((((. . ((((. . (((((.)) .))) . .)))) . . .))))) .))

15
60

15
70

15
80

15
90

16
00

16
10

16
20

16
30

16
40

A
CAGCUG

C
G

G
A
C
A
A
G

C
G

C A A A U A
C
A C

C
A
U

C
A

A A
C
U
C

G
A A

G
U
G
C

C
G

A A A
A
U

CG
CA

A
C

C
C

AA
A

U
C
G
U

AA
A

U
G

G
CG

U
A
G
A
G
C
U

G

A C

C U

C A

Figure 55: Positions 1560 - 1640: A hairpin structure with three interior loops and one

bulge near the terminal loop. Lots of compensatory mutations strongly support the struc-

ture on one hand, but on the other hand we a see some variable positions (pale colours in

the mountain plot).

. (((. . (((((. ((((. ((((((.)))))) . .)))) .))))))))

22
50

22
60

22
70

22
80

22
90

23
00

23
10

A
A

C
-
A

U U
G
UACA
U
U
C
U

C
C
A
A
C

G
G
A
G
C
C
U

C
A A A

A
G
G
G
C
A
C

A
A

G
U
U
G
C

A
G
G
A
U
G
C
A G

C
G
C

C
GU

C G

Figure 56: Positions 2250 - 2310: A long conserved hairpin structure containing two

internal loops and one short bulge. We cannot tell what the function of this element

might be.

7 Leviviridae 95

. ((. ((. . ((((. (((((((((.))) .)))))))))) .)) . . .)) .

34
70

34
80

34
90

35
00

35
10

35
20

35
30

35
40

CGA
A
C

- U
C

G
G
A

A
UG

G
A
GA

A
C
A
C
A
G

AU C C
C
C
C
U
A
U
U
C

C
C U C

A
GG

A
AG

U
A

G
A

G
G

C
C
A

G
C

GA
G
C
U
C

U
C
C
U
-G

A
U

U A

C G

Figure 57: Positions 3470 - 3540: At the top of the mountain plot we see a highly supported

stem with green trapezoids (three types of base pairs), then a large interior loop, then again

two conserved pairs, confirmed by compensatory mutations.

. (((((((((. ((. . . .)))))))))))

36
90

36
91

36
92

36
93

36
94

36
95

36
96

36
97

36
98

36
99

37
00

37
01

37
02

37
03

37
04

37
05

37
06

37
07

37
08

37
09

37
10

37
11

37
12

37
13

37
14

37
15

37
16

37
17

37
18

37
19

37
20

37
21

37
22

37
23

-
G

G
U

A
A

C
U

A
G-

U
U

G
C U

U
G
G
C
U
A
G
U
C
A
C
C A

C
C

CA

Figure 58: Positions 3690 - 3717: A longer hairpin with tetraloop and one short bulge

near the tetraloop; three compensatory mutated base pairs support the structure. Also in

this case we have no information what the function of the element might be.

7 Leviviridae 96

Table 4: Summary of the positions of predicted secondary structure elements in the ge-

nomic RNA of Leviviridae after two different types of alignment using clustalw and

code2aln.

clustalw Figures code2aln Figures Function

? none 1-150 51 replicase recognition

80-110 44 80-110 52 ?

540-575 45 545-615 53 ?

1480-1495 46 1427-1451 54 ?

1520-1590 47 1560-1640 55 ?

1785-1855 48 ? none ?

? none 2250-2310 56 ?

3405-3435 49 3470-3540 57 ?

? none 3690-3717 58 ?

8 Conclusions and Outlook 97

8 Conclusions and Outlook

It was the aim of this work to construct and implement an alignment algo-

rithm that produces multiple nucleic acid alignments using information on

coding and non-coding regions as part of the scoring function. Information

as contained in the amino acid sequences translated from the coding regions

of a partial or complete (virus) genome after identification of these open

reading frames or exons. Overlapping open reading frames, as they occur in

viruses, are respected and information about them is used in order to im-

prove the resulting alignment. This algorithm is implemented in the program

code2aln.

Code2aln is written in ANSI C and hence easily portable to different op-

erating systems. It was developed on PCs running Linux and works well

with different Unix dialects.

The program was utilized for the generation of part of the input for

the procedure of detecting conserved RNA secondary structure elements in

hepatitis B virus and Leviviridae (pre)genomes.

In this thesis it is demonstrated that the alignments are indeed improved

by integration of genetic information into the scoring function and that the

code2aln approach is indeed expedient, in that the alignments, used as input

into the process of alidot, produce various predictions of secondary structure

elements in both investigated virus types that are not detected when using

conventional alignment algorithms like that implemented in clustalw.

The program alidot is used to scan a group of RNA sequences for con-

served secondary structure elements and to predict their consensus struc-

ture. A good multiple alignment and structure predictions for each of the

sequences under consideration are required as input for this procedure. The

performance of the alidot algorithm depends crucially on the quality of the

multiple nucleic acid sequence alignment. Although the results are quite

8 Conclusions and Outlook 98

robust to minor alignment inaccuracies, those always become a substantial

problem when dealing with more diverse data sets. Hence, the advantages

of code2aln lie especially in the fact that code2aln makes implicit use of

all information about the genetical relevance of the input data reflecting the

coding and non-coding of sequence parts which are biologically meaningful

as protein sequences. Nucleic acid sequence positions that are part of one or

even more codons are weighted significantly higher than positions that are

not in open reading frames (or exons).

In principle, when calculating alidot-predictions, the occurrance of con-

sistent and, in particular, compensatory mutations strongly supports a pre-

dicted base pair.

When comparing the alignments themselves, we can see one strong ten-

dency regarding code2aln: code2aln significantly tends not to disrupt cod-

ons within coding regions.

In the case of hepatitis B virus, we count 54 gaps with a length that can

be divided by 3 in the clustalw alignment, but 173 gaps of this type in the

code2aln alignment. This is a factor of more than 3.2.

In the case of Leviviridae, we can again see the same effect: we count 36

gaps with a length that can be divided by 3 in the clustalw alignment, but

276 gaps of this type in the code2aln alignment. This is a factor of almost

7.7 and a very strong indication that code2aln works very well.

The reason is that code2aln respects the fact that amino acids are the

biologically relevant part of the system in coding regions, and amino acids,

respectively the codons, should not be disrupted, and gaps should not be

inserted into codons, if possible, given the used scoring function.

When using the code2aln approach we can assure that insertions and

deletions within coding regions highly tend to correspond to insertions and

deletions at the protein level.

Besides, it is possible to define one or more than one codon tables for

8 Conclusions and Outlook 99

each sequence or groups of sequences. The codon tables are important, be-

cause they ensure that fine adjustment of detection and translation of coding

regions during the process of aligning is possible for various organism groups

or their fitting mitochondrial sequences.

We use a theoretical approach what is supposed to be useful for the special

alignment problem of coding sequences: we add protein sequence informa-

tion when we know that the translated protein sequences are of dominant

importance in our alignment of nucleic acids.

We find a number of highly significant secondary structure elements, not

being described in the literature so far, and some well known elements such

as the ε-element and two elements of the HPRE region in hepatitis B virus.

Also the results of the Levivirus group are of particular interest: We detect

various secondary structure elements that are strongly confirmed by compen-

satory mutations and obtain novel insight into the structural organization of

Levivirus genomes that guides the life cycle of Levivirus.

The ε-structure in human hepatitis B virus was correctly predicted after

both clustalw and code2aln alignment. Also the stem-loop structure α in

the post-transcriptional regulatory element HPRE. Using code2aln we could

not find the β1-element, but some other noticeable elements that, at least in

one case, could also be part of HPRE.

In principle, every approach of using parameter sets that can not be op-

timized absolutely, is heuristic and arbitrary. This means for this work that

it is not possible to build too complex scoring functions and we have severe

restrictions to moderate extensions of the scoring function. The addition of

amino acid scores for all three possible frames for each nucleotide, is the op-

timal introduction of more complexity to the scoring to get better alignment

results that are not partially at risk to be at random, because our training

set is too small in any case for a much larger parameter set that is computa-

tionally (even theoretically) not feasible to be optimized by learning. Our set

8 Conclusions and Outlook 100

of parameters and usage of them in alignments is quite robust and universal,

and is useful for all types of nucleic acid sequences.

It could be shown that the usage of genetic information about coding and

non-coding sequence parts as part of the scoring function, like implemented

in code2aln, is especially helpful when used with rather diverse data sets. In

these cases we get relatively good alignment results. Using in combination

with alidot we can detect a lot of known and unknown conserved RNA

secondary structure elements.

In principle, using this method we cannot tell what the function of the

conserved structure elements might be.

Nevertheless, knowledge about their location is very helpful and impor-

tant to guide further studies.

For further implementations, it would be desirable to investigate if it is

possible, at least with forthcoming computer resources, to extend the scoring

function and to use a wider parameter set, and, in spite of that, to calculate

a sufficiently broad overview (with a sufficiently large training set) of the

space of possible parameter combinations for test cases.

The scoring function could be extended by an explicit term for frame

shifting, in that way:

S = SN +
3

∑

i=1

SAi
+

3
∑

i=1

SFShifti (16)

where S is the total score of the considered pair of nucleotides, SN is the

nucleic acid part of the scoring, and the sum of the three amino acid scores

SAi
is the coding of the pair of nucleic acids as the first, second, and/or third

position in a base triplet. Also a sum of three scores might be considered

that reflects frame shifting in three frames (SFShifti).

Instead of just looking for open reading frames one could use, for instance,

hidden Markov Models to search for likely coding regions. These methods

8 Conclusions and Outlook 101

could improve the discriminating between open reading frames that do not

code for a protein and actual coding sequences, see e.g. [9].

The user interface is terse in the present implementation. A graphical

user interface, following the example of clustalx would be possible.

It would certainly be very interesting to see if mutations that affect the

secondary structure but are neutral at the level of the proteins, have an effect

on the viability of the viruses. Unfortunately, only experimental evidence will

eventually decide whether the RNA structure in some region is of importance

for the viability of the virus.

Finally, the code2aln guide tree at present does not reflect auxiliary

phylogenetic information. It tells nothing about the evolutionary distances

between the sequences, it is only usable to get an order of the profile align-

ments.

9 Appendix A - The Codon Tables 102

9 Appendix A - The Codon Tables

This table shows the codon tables which ensure that fine adjustment of de-

tection and translation of coding regions during the process of aligning is

possible for various organism groups or their fitting mitochondrial sequences.

The following codon tables are available:

univ universal genetic code (default)

acet Acetabularia

ccyl Candida cylindrica

tepa Tetrahymena, Paramecium,

Oxytrichia, Stylonychia, Glaucoma

eupl Euplotes

mlut Micrococcus luteus

mysp Mycoplasma, Spiroplasma

mitocan canonical mitochondrial code

mitovrt Vertebrates - mitochondrial code

mitoart Arthropods - mitochondrial code

mitoech Echinoderms - mitochondrial code

mitomol Molluscs - mitochondrial code

mitoasc Ascidians - mitochondrial code

mitonem Nematodes - mitochondrial code

mitopla Plathelminths - mitochondrial code

mitoyea Yeasts - mitochondrial code

mitoeua Euascomycetes - mitochondrial code

mitopro Protozoans - mitochondrial code

10 Appendix B - The Program Description 103

10 Appendix B - The Program Description

10.1 The Structure Variables

struct FILEdata {

char FN[256], CTN[8];

};

This structure contains the file name of one input file, and the name of the

codon table that is used for this input file. The codon table is important for

correct finding of coding regions and translation of them.

struct CDSdata {

long start, stop;

char *AAseq, *joinedSeq;

short join;

};

In this structure all information is contained regarding start and stop codons

of open reading frames and start and stop positions of exons. Further, in the

case of exons and open reading frames that have to be joined, we have a short

integer that indicates whether this coding part has to be joined to another

element downstream, upstream, or if it is located between others. The last

element of an array of exons (ORFs) that have to be joined, contains also

the joined sequence and its translated protein sequence.

10 Appendix B - The Program Description 104

struct LETTERdata {

char nucl;

char aa[3];

};

This structure represents one letter in a nucleic acid sequence from the input.

It contains the nucleotide and amino acid information: if the nucleotide

is within one coding region or more than one, in the case of overlapping

coding regions in three possible frames, then a character which indicates the

according amino acid is written into the fitting position (up to three) of the

character array. The encoding is as follows: If the nucleotide is the first

position in a codon, then the first character in the array is the appropriate

amino acid, if the nucleotide is the second position in the codon, then the

second character in the array is written, and so on.

struct SEQdata {

struct CDSdata *exon;

struct CDSdata *ORF;

struct CDSdata *found;

struct LETTERdata *letter;

int no; /* starts with 1! */

char *seq, *seqname, FN[256], CTN[8];

int len;

};

This structure contains three arrays of structures of the type CDSdata for ex-

ons and open reading frames read from the GenBank file, and for ORFs which

have been detected by the program. It contains also an array of structures of

the type LETTERdata that simply represents the nucleic acid sequence after

encoding and addition of coding and amino acid information. Further, an

10 Appendix B - The Program Description 105

integer which counts the sequences, and one for the length of the sequence,

and a character pointer for each, the sequence, the sequence name, the file

name, and the codon table name.

struct ALNdata {

char ***TRmatrix;

int ***SCmatrix;

char **seqname;

struct LETTERdata **alignment;

long score;

int no[200]; /* starts with 1! */

};

Each element in an array of structures of this type represents an alignment.

It holds a three dimensional array of integers and one of character vari-

ables (in both cases three two-dimensional matrices). These, in summation,

three dimensional matrices contain the score matrix for all Gotoh-type states

and a backtracking matrix which guides the backtracking process after the

scoring matrix is filled. A two dimensional character pointer contains all

sequence names in the alignment, another two dimensional array of the type

LETTERdata contains the sequences with gaps, if any. An integer array holds

all numbers of the involved sequences, and a long integer gives the score.

10 Appendix B - The Program Description 106

struct CLUSTERdata {

int no[200];

int melted1[200];

int melted2[200];

short done;

};

An array of this structure encodes the clustering of the initial pairwise align-

ments regarding to their scores: it builds up the guide tree. The clusters are

the branches of the guide tree, and they are encoded as elements of this type.

The structure contains the numbers of all concerned sequences and how the

cluster was made (which smaller clusters were merged to the larger one). We

have also a short integer as an indicator for the program if the considered

cluster has already been integrated into the tree.

10.2 The Routines

void start(int argc, char **argv);

This routine takes over the integer value argc which represents the number of

arguments, the program was started with, and the two dimensional character

array **argv which lists all arguments. These arguments are on one hand

the paths and the names of the input sequence files and on the other hand

the synonyms for the codon tables that should be used for finding the open

reading frames in the sequences and for translating them. Every desired

codon table follows the argument ’-c’ and is used then by the program for

all the input sequence files that follow this codon table name in the command

line till the next ’-c’ with an codon table name.

The standard codon table is the universal genetic code. This will be used

if no other codon table name is specified and it will work well in most cases.

10 Appendix B - The Program Description 107

The sequence input files can contain one ore more sequences. They can be

GenBank files or files in Pearson’s format (FASTA) or only sequences without

any format. If the sequences have distinct names within the files, these names

are used. If the sequence input file contains just the sequence without any

name, the name and path of the file become the sequence name.

This routine also fills an array of structures of the type FILEdata, one

structure for each input file. It writes the desired codon table and the file

name into this structure. Furthermore, it calls the routine

short decideFN(char FN[256], char CTN[8]);

for processing and handling GenBank files and files in Pearson’s format. This

subroutine is called once for each input file.

void help(short ret);

void use_me_this_way(short ret);

These routines both supply the user with some helping information about

correct starting of the program, about the available codon tables and their

shortcuts, about the synopsis and usage.

short decideFN(char FN[256], char CTN[8]);

This routine opens the input sequence files and decides whether to use the

routines for processing of GenBank files or those for the files in other formats;

and it calls these subroutines. The return value is a short integer variable

that gives the number of the input sequences for reasons of internal control.

char *get_seq(FILE *fp, char *line, long len, short is_fp);

The routine is called during reading of GenBank files, it extracts the nucleic

acid sequence of the input file. It takes over a file pointer which points at the

line of the input file where the sequence data start, a character pointer with

10 Appendix B - The Program Description 108

the current read line, a long integer (the sequence length) and a short integer

that is an indicator whether the input came from stdin or as arguments. It

returns a character pointer with the read sequence.

short readPears(char FN[256], char CTN[8], char *line,

FILE *fp, short is_fp);

This function is called after the decision has been made that the current input

file should be processed as a file in FASTA format or as a file without any

format. The routine takes over character arrays containing the file name and

the codon table name, a character pointer with the current line of the file, the

file pointer and the short integer which is an indicator if the input came as

arguments or from stdin. The file might contain one or more sequence entries

with according names. The nucleic acid sequences and names are extracted

from the file after the necessary memory space has been allocated. Finally,

the file name, the codon table name, the sequence name, the sequence, the

sequence length, and two initialized, but empty arrays for read open reading

frames and exons are all together given to the following subroutine. The

return value is the number of the input sequences processed so far.

short write2SEQ1(char FN[256], char CTN[8], char seqname[256],

char *seq, long len, struct CDSdata *ORF,

struct CDSdata *exon);

The file name, the codon table name, the sequence name, the sequence, the

sequence length, and two initialized, but empty arrays for read open reading

frames and exons are all together received by this function. And all these

data are written into one element in the array of structure variables of the

type SEQdata. The routine returns the number of the currently processed

input sequence for the reason of program internal control.

10 Appendix B - The Program Description 109

void findORF(void);

This routine detects and processes open reading frames in nucleic acid se-

quences. First, memory space is allocated for an array of structure variables

of the type CDSdata. These structures contain relevant information about

open reading frames (see below). Elements of the structures get initialized,

then the search for possible coding regions is started. The function searches

start codons and, depending on them, the fitting stop codons. The used

codon table is respected for appropriate recognition of codons. Then the

sequences of the detected possibly coding regions get translated. Finally, all

data about the found possible open reading frames (including the protein

sequences) are written into the elements of the array.

void infoFile(void);

Here a file is opened for writing (info.txt) and many data about the input

files, sequences and the read or found open reading frames and exons are

written to this file for further information of the user during the program

run.

void makePS(void);

A file is opened for writing and the source code for the PostScript output

of the program is written to this file (ORF.ps).

short readGBF(char FN[256], char CTN[8], char *line,

FILE *fp, short is_fp);

This function reads GenBank files and extracts all necessary information. It

takes over character arrays containing the input file names and codon table

names, a character pointer with the current line of the read GenBank file,

the file pointer, and a short integer which is an indicator whether the input

10 Appendix B - The Program Description 110

file came as an argument or from stdin. It calls subroutines for reading the

nucleic acid and protein sequences and memory space is allocated for the

arrays of the structure type CDSdata that then get filled with all extracted

information about open reading frames and exons (after initialization with

zero values). The structures also contain informations about the joining of

exons to complete open reading frames or, in the case of complete ORFs, if

two parts of those have to be connected beyond the ends of the nucleic acid

sequence, if the sequence should be circularly closed. Finally, the input file

names and codon table names, and the extracted sequence names, sequences,

sequence lengths, and arrays of the structure type CDSdata are written into

elements of the array of the type SEQdata, one element for each input se-

quence. The return value is the number of the input sequences processed so

far.

char *readAAseq(char *line, FILE *fp, short is_fp);

This routine is called during the reading of the input GenBank file when a line

is reached that contains an amino acid sequence and it extracts this sequence

and returns it.

void mergeJOIN();

In the case of existence of exons or divided open reading frames that have

to be joined to establish the complete coding sequence, it has to be checked

whether the single parts of the coding frame are the first part or the last or

one in between. These parts get joined during this routine after the allocation

or reallocation of appropriate memory space. The structure variable of the

type CDSdata contain a short integer that is an indicator if the exon or

part of an open reading frame that we look at is at this first, middle, or

last position. Finally, the joined sequence parts are written into the fitting

element of the array of the structure variable type SEQdata. Also CDSdata

is part of SEQdata.

10 Appendix B - The Program Description 111

char *translateORF(char *orf, char *CodonTableName);

This routine simply translates incoming nucleic acid sequences; it takes over

two character pointers, one containing the nucleic acid sequence that is to

be translated, the second is the currently used codon table name that is

necessary for suited and correct translation. It gives back the character

pointer with the protein sequence.

void pretranslate();

Here the translation of complete open reading frames and joined parts of them

is coordinated, if there was no possibility to read the protein sequence from

a GenBank file. Coding regions, joined ORFs and exons, are translated after

the allocation of the desired memory space. All resulting protein sequences

are written into the fitting element of the structure variable type SEQdata,

where the nucleic acid sequences came from.

void encode();

An array of the structure variable type LETTERdata (see below) is established

and memory is allocated. LETTERdata is part of SEQdata. Each nucleotide

is written into its own element; if the nucleotide is within one coding region

or more than one, in the case of overlapping coding regions in three possible

frames, then a character which indicates the according amino acid is written

into the fitting position (up to three) of a character array. The encoding is

as follows: If the nucleotide is the first position in a codon, then the first

character in the array is the appropriate amino acid, if the nucleotide is

the second position in the codon, then the second character in the array is

written, and so on.

10 Appendix B - The Program Description 112

int align();

This routine organizes the alignment process. First, an array of the structure

variable type ALNdata (see below) is established and memory is allocated.

Part of this structure is a two dimensional array of the type LETTERdata that

contains an alignment. One alignment per structure element. The alignment

is initialized, the routine which constructs the matching matrix is called,

also the traceback routine and the function that constructs the guide tree

after all pairwise alignments are done. Some output is written to stdout

that gives information about the advance of the complete multiple alignment

procedure. Finally, the multiple alignments are started. The return value is

the number of the pairwise or profile alignments processed so far.

short matrix(int a, int b, int c);

The scoring and traceback matrices for the initial pairwise sequence align-

ments are built by this routine. Three integers which indicate the current

sequences and the number of the alignment are input. A three dimensional

array of integers is allocated and one of character variables (in both cases

three two-dimensional matrices). These, in summation, three dimensional

matrices contain the score matrix for all Gotoh-type states and a backtrack-

ing matrix which guides the backtracking process after the scoring matrix

is filled. For every pair of positions of both sequences three routines are

called that calculate and return the scores for each Gotoh type of states (the

match- and the two gap states). Finally, it is decided which of the three

two-dimensional backtracking matrices serves as the starting point for the

traceback process and an indicator for that decision is returned.

void trace(int a, int b, int c, short TRstart);

The backtracking for the initial pairwise sequence alignments is performed

by this routine. Three integers which indicate the current sequences and

10 Appendix B - The Program Description 113

the number of the alignment, and a short integer that indicates which back-

tracking matrix serves as the starting point for the traceback process, are

input. One element of the structure variable of the type LETTERdata is ini-

tialized and defined as empty for usage as gap element. Then, step by step,

the backtracking through the three two-dimensional backtracking matrices is

performed and the new alignment is written.

void bluntEnd(int c);

After the backtracking each raw alignment needs to be processed by this

routine due to technical reasons of the program. In principle, overhanging

useless parts at the end of an alignment are cut away, if necessary.

struct CLUSTERdata *cluster(int c);

This function performs the clustering of the initial pairwise alignments re-

garding to their scores: it builds up the guide tree. The clusters are the

branches of the guide tree, and they are encoded as elements in an array of

the structure variable type CLUSTERdata (see below) which contain informa-

tion about the associated sequences and how the cluster was made (which

smaller clusters were merged to this larger one). Finally, a file is opened for

writing and all information about the assembly of the guide tree is written to

this file (cluster.txt). The return variable is one element of the array of the

structure variable type CLUSTERdata that represents the currently processed

cluster.

int multiple(struct CLUSTERdata *clust, int c, int a);

This routine takes over the array of structures of the type CLUSTERdata and

initializes the process of the multiple alignment. It has just organizatorial

and, for the program run, logistic functions. For example, it writes short

10 Appendix B - The Program Description 114

information about the progress of the complete multiple alignment to stdout.

The return value is the number of the pairwise or profile alignments processed

so far.

void findPartn(int c, struct CLUSTERdata clust);

The function takes over one element of the array of the structure variable type

CLUSTERdata and, according to this, prepares two elements of the structure

variable type ALNdata (see below) for alignment. Then the routine is called

that constructs the matching matrices and the traceback matrices. And,

finally, the backtracking is started.

short multMx(struct ALNdata tempaln[2], int c);

The scoring and traceback matrices for the profile alignment are built by this

routine. It takes over two elements of the structure variable type ALNdata

(see below) and starts their alignment; and an integer which counts the

numbers of the alignments, is also accepted. A three dimensional array of

integers is allocated and one of character variables (in both cases three two-

dimensional matrices). These, in summation, three dimensional matrices

contain the score matrix for all Gotoh-type states and a backtracking matrix

which guides the backtracking process after the scoring matrix is filled. For

every pair of positions of both sequences or alignments three routines are

called that calculate and return the scores for each Gotoh type of states (the

match- and the two gap states). Finally, it is decided which of the three

two-dimensional backtracking matrices serves as the starting point for the

traceback process and an indicator for that decision is returned.

10 Appendix B - The Program Description 115

void multTrace(struct ALNdata tempaln[2],

int c, short TRstart);

The backtracking for the alignments of profiles is performed by this routine.

It takes over two elements of the structure variable type ALNdata (see below),

an integer which counts the numbers of the alignments, and an indicator

which backtracking matrix serves as the starting point for the traceback

process. One element of the structure variable of the type LETTERdata is

initialized and defined as empty for usage as gap element. Then, step by step,

the backtracking through the three two-dimensional backtracking matrices is

performed and the new alignment is written.

int scoreM(int a, int b, int c, int g, int h);

This function is called during the building of the score matrix for the match

state in one of the initial pairwise sequence alignments. I takes over the

numbers of the sequences, of the current alignment, and the positions that

should be aligned. It calculates the score for nucleic and amino acid matches

(it uses the BLOSUM62 matrix), it writes an indicator into the appropriate

traceback matrix, and it returns the score value.

int scoreIx(int a, int b, int c, int g, int h);

int scoreIy(int a, int b, int c, int g, int h);

Two short routines that are called and take over the same as the routine

above and simply calculate the scores for gap opening and extension for both

dimensions of the matrices (this means which sequence contains the gap).

They write an indicator into the appropriate traceback matrices and return

the score values.

10 Appendix B - The Program Description 116

int MscoreM(struct ALNdata tempaln[2], int c, int g, int h);

This function is called during the building of the score matrix for the match

state in one of the profile alignments of groups of sequences. It takes over

two elements of the structure variable type ALNdata (see below), an integer

which counts the numbers of the alignments, and the compared positions. It

calculates the score for nucleic and amino acid matches (it uses the BLOSUM62

matrix), it writes an indicator into the appropriate traceback matrix, and it

returns the score value.

int MscoreIx(struct ALNdata tempaln[2], int c, int g, int h);

int MscoreIy(struct ALNdata tempaln[2], int c, int g, int h);

Two short routines that are called and take over the same as the routine

above and simply calculate the scores for gap opening and extension for

both dimensions of the matrices (this means which profile contains the gap).

They write an indicator into the appropriate traceback matrices and return

the score values.

void check();

This routine makes a final check if there have been made changes to the input

sequences during the alignment process. If an error is found, the alignment

is aborted. This never should happen.

void output(int c);

The resulting, the final alignment containing, file is written and formatted.

11 Appendix C - The Manual Page 117

11 Appendix C - The Manual Page

11.1 NAME

code2aln

11.2 SYNOPSIS

code2aln [-c [CTN]] FN FN FN ... [-c [CTN]] FN FN FN ...

where FN is the path and name of the input file, and CTN is the shortcut for

the desired codon table.

11.3 DESCRIPTION

Code2aln produces multiple nucleic acid alignments using information on

coding and non-coding regions as part of the scoring function. This is done

in order to prevent the problem of higher sequence divergency on the level

of nucleic acids as compared to the underlying protein sequences in the case

of coding at a certain region of the input nucleic acid sequences.

Code2aln reads the input nucleic acid files as arguments. The possible

input sequence file formats are Pearson’s format (FASTA) or GenBank file

format or sequence data in one or more lines without any format. Code2aln

automatically detects the types of the various input sequence files and handles

them accordingly. All data may be read as separate files or merged to one

file.

It is possible to define one or more than one codon tables for each sequence

or groups of sequences. Default is the universal genetic code. Entering

’code2aln’ without any options or input files displays a short help and a list

of the various available codon tables. The codon tables are important for

searching for start and stop codons and for translation of the detected open

reading frames.

11 Appendix C - The Manual Page 118

Code2aln detects all theoretically possible open reading frames which

have a minimal length of 300 and one fifteenths of the sequence length. Di-

vided coding regions and exons are joined, translated, and the amino acid

sequences, beside the nucleic acid sequences, are used for the scoring function.

All pairwise alignments are done using all scoring parameters. A guide

tree is built which defines the order of the profile alignments. An output file is

created that gives a textual representation of this guide tree (cluster.txt).

Further output files are ORF.ps, a PostScript display which shows the read

and found open reading frames and exons, and info.txt, a file containing

the same information in text format.

The profile alignments are done respecting the guide tree and using all

scoring parameters. And, finally, the resulting multiple nucleic acid sequence

alignment is written to the output file aln.aln.

11.4 OPTIONS

The following codon tables (and shortcuts) are available:

univ: universal genetic code (default)

acet: Acetabularia

ccyl: Candida cylindrica

tepa: Tetrahymena, Paramecium,

Oxytrichia, Stylonychia, Glaucoma

eupl: Euplotes

mlut: Micrococcus luteus

mysp: Mycoplasma, Spiroplasma

mitocan: canonical mitochondrial code

mitovrt: Vertebrates - mitochondrial code

mitoart: Arthropods - mitochondrial code

mitoech: Echinoderms - mitochondrial code

11 Appendix C - The Manual Page 119

mitomol: Molluscs - mitochondrial code

mitoasc: Ascidians - mitochondrial code

mitonem: Nematodes - mitochondrial code

mitopla: Plathelminths - mitochondrial code

mitoyea: Yeasts - mitochondrial code

mitoeua: Euascomycetes - mitochondrial code

mitopro: Protozoans - mitochondrial code

11.5 VERSION

This man page documents version 1 of code2aln.

11.6 AUTHOR

Roman R. Stocsits

11.7 BUGS

Comments and bug reports should be sent to roman@tbi.univie.ac.at.

References 120

References

[1] J. P. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij.

Prediction of RNA secondary structure, including pseudoknotting, by

computer simulation. Nucl. Acids Res., 18:3035–3044, 1990.

[2] H. W. Ackermann and M. S. DuBow. Viruses of prokaryotes. Vol II.

CRC Press, pages 171–218, 1987.

[3] V. V. Anshelevich, A. V. Vologodskii, A. V. Lukashin, and M. D.

Frank-Kamenetskii. Slow relaxational processes in the melting of linear

biopolymers: A theory and its application to nucleic acids. Biopoly-

mers, 23:39–58, 1984.

[4] A. R. Banerjee, J. A. Jaeger, and D. H. Turner. Thermal unfolding

of a group I ribozyme: The low-temperature transition is primarily

disruption of tertiary structure. Biochemistry, 32:153–163, 1993.

[5] G. J. Barton and M. J. E. Sternberg. A strategy for the rapid multiple

alignment of protein sequences. confidence levels from tertiary structure

comparisons. J. Mol. Biol., 198:327–337, 1987.

[6] R. Bellman. On the theory of dynamic programming. Proc. Natl. Acad.

Sci. USA, 38:716–719, 1952.

[7] C. K. Biebricher and R. Luce. In vitro recombination and terminal

elongation of RNA by Qbeta replicase. EMBO J., 11:5129–5135, 1992.

[8] C. K. Biebricher and R. Luce. Sequence analysis of RNA species syn-

thesized by Qbeta replicase without template. Biochemistry, 32:4848–

4854, 1993.

[9] M. Borodovsky and J. McIninch. Genmark: parallel gene recognition

for both DNA strands. Comp. & Chem., 17:123–133, 1993.

References 121

[10] J. Boyle, G. T. Robillard, and S. H. Kim. Sequential folding of transfer

RNA. A nuclear magnetic resonance study of successively longer tRNA

fragments with a common 5’ end. J. Mol. Biol., 139:601–625, 1980.

[11] N. Breton, C. Jacob, and P. Daegelen. Prediction of sequentially opti-

mal RNA secondary structures. J. Biomol. Struct. Dyn., 14:772–740,

1997.

[12] C. Büchen-Osmond. ICTVdB Virus Database, the universal virus

database of the international committee on taxonomy of viruses.

http://www.ncbi.nlm.nih.gov/ICTVdb, 2002. (database).

[13] K. Bucka-Lassen, O. Caprani, and J. Hein. ComAlign.

http://www.daimi.au.dk/ ocaprani, 1999. (Free Software).

[14] K. Bucka-Lassen, O. Caprani, and J. Hein. Combining many multiple

alignments in one improved alignment. Bioinformatics, 15:122–130,

1999.

[15] J. H. Cate, A. R. Gooding, E. Podell, K. Zhou, B. L. Golden, A. A.

Szewczak, C. D. Kundrot, T. R. Cech, and J. H. Doudna. Crystal

structure of a group I ribozyme domain: Principles of RNA packing.

Science, 273:1678–1685, 1996.

[16] J. H. Cate, A. R. Gooding, E. Podell, K. Zhou, B. L. Golden, A. A.

Szewczak, C. D. Kundrot, T. R. Cech, and J. H. Doudna. RNA tertiary

structure mediation by adenosine platforms. Science, 273:1696–1699,

1996.

[17] T. R. Cech and B. L. Bass. Biological catalysis by RNA. Annu. Rev.

Biochem., 55:599–630, 1986.

[18] K. M. Chao. Calign. http://iubio.bio.indiana.edu, 1999. (Free

Software).

References 122

[19] K. M. Chao. Calign: aligning sequences with restricted affine gap

penalties. Bioinformatics, 15:298–304, 1999.

[20] M. Chastain and I. Tinoco. Nucleoside triples from the group I intron.

Biochemistry, 32:14220–14228, 1993.

[21] D. M. Crothers, P.E. Cole, C. W. Hilbers, and R. G. Shulman. The

molecular mechanism of thermal unfolding of escherichia coli formyl-

methionine transfer RNA. J. Mol. Biol., 87:63–88, 1974.

[22] J. A. Cuff, E. Birney, M. E. Clamp, and G. J. Barton. ProtEST.

http://barton.ebi.ac.uk/servers/protest.html, 2000.

[23] J. A. Cuff, E. Birney, M. E. Clamp, and G. J. Barton. ProtEST:

protein multiple sequence alignments from expressed sequence tags.

Bioinformatics, 16:111–116, 2000.

[24] Jan Cupal, Ivo L. Hofacker, and Peter F. Stadler. Dynamic program-

ming algorithm for the density of states of RNA secondary structures.

In R. Hofstädt, T. Lengauer, M. Löffler, and D. Schomburg, editors,

Computer Science and Biology 96 (Proceedings of the German Con-

ference on Bioinformatics), pages 184–186, Leipzig (Germany), 1996.

Univeristät Leipzig.

[25] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. Atlas of Protein

Sequence and Structure, volume 5 of 3, chapter 3, pages 345–352. NBRF

Washington, 1978.

[26] D. F. Feng and R. F. Doolittle. Progressive sequence alignment as a

prerequisite to correct phylogenetic trees. J. Mol. Evol., 25:351–360,

1987.

[27] W. Fiers. Structure and function of RNA bacteriophages. Comprehen-

sive Virology, 13:69–204, 1979.

References 123

[28] W. M. Fitch and E. Margoliash. Construction of phylogenetic trees.

Science, 155:279–284, 1967.

[29] W. Fontana and P. Schuster. Continuity in evolution. on the nature of

transitions. Science, 280:1451–1455, 1998.

[30] W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L.

Hofacker, M. Tacker, P. Taranzona, E. D. Weinberger, and P. Schuster.

RNA folding and combinatory landscapes. Phys. Rev. E, 47:2083–2099,

1993.

[31] S. M. Freier, R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers,

T. Neilson, and T. H. Turner. Improved free energy parameters for

prediction of RNA duplex stability. ProcṄatl. Acad. Sci. USA, 83:9373–

9377, 1986.

[32] T. C. Gluick and D. E. Draper. Thermodynamics of a pseudoknotted

mRNA fragment. J. Mol. Biol., 241:246–262, 1994.

[33] W. B. Goad and M. I. Kanehisa. Pattern recognition in nucleic acid

sequences. A general method for finding local homologies and symme-

tries. Nucl. Acids Res., 10:247–263, 1982.

[34] J. Gorodkin, L. J. Heyer, and G. D. Stormo. Finding the most signifi-

cant common sequence and structure motifs in a set of rna sequences.

Nucleic Acids Res., 25:3724–3732, 1997.

[35] O. Gotoh. Optimal alignment between groups of sequences and its

application to multiple sequence alignment. CABIOS, 9:361–370, 1993.

[36] Brad Gulko and David Haussler. Using multiple alignments and phy-

logenetic trees to detect RNA secondary structure. In L. Hunter and

References 124

T. Klein, editors, Proceedings of the Pacific Symposium on Biocomput-

ing, pages 350–367, Singapore, 1996. World Scientific.

[37] A. P. Gultyaev. The computer simulation of RNA folding involving

pseudoknot formation. Nucl. Acids Res., 19:2489–2494, 1991.

[38] A. P. Gultyaev, F. H. D. van Batenburg, and C. W. A. Pleij. The com-

puter simulation of RNA folding pathways using a genetic algorithm.

J. Mol. Biol., 250:37–51, 1995.

[39] A. P. Gultyaev, F. H. D. van Batenburg, and C. W. A. Pleij. Dynamic

competition between alternative structures in viroid RNAs simulated

by an RNA folding algorithm. J. Mol. Biol., 276:43–55, 1998.

[40] E. Halperin, S. Faigler, and R. Gill-More. FramePlus.

ftp.compugen.co.il/pub/research, 1999. (Free Software).

[41] E. Halperin, S. Faigler, and R. Gill-More. Frameplus: aligning DNA

to protein sequences. Bioinformatics, 15:867–873, 1999.

[42] R. W. Hamming. Coding and Information Theory, pages 44–47.

Prentice-Hall, Englewood Cliffs, 2 edition, 1989.

[43] Kyungsook Han and Hong-Jin Kim. Prediction of common folding

structures of homologous RNAs. Nucl. Acids Res., 21:1251–1257, 1993.

[44] T. P. Hausner, J. Atmadja, and K. H. Nierhaus. Evidence that the

G2661 region of 23S rRNA is located at the ribosomal binding site of

both elongation factors. Biochemie, 69:911–923, 1987.

[45] L. He, R. Kierzek, J. SantaLucia, A. E. Walter, and D. H. Turner.

Nearest-neighbour parameters for G-U mismatches. Biochemistry,

30:11124–11132, 1991.

References 125

[46] R. Hecker, Z. Wang, G. Riesner, and D. Steger. Analysis of RNA

structures by temperature-gradient gel electrophoresis: Viroid replica-

tion and processing. Gene, 72:59–74, 1988.

[47] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from

protein blocks. Proc. Natl. Acad. Sci. USA, 89:10915–10919, 1992.

[48] D. Herschlag. RNA chaperones and the RNA folding problem. J. Biol.

Chem., 270:20871–20874, 1995.

[49] P. G. Higgs and S. R. Morgan. Thermodynamics of RNA folding.

when is an RNA molecule in equilibrium. In F. Morán, A. Moreno,

J. J. Merelo, and Chacón, editors, Advances in Artificial Life, pages

852–861, Berlin, 1995. ECAL 95, Springer Verlag.

[50] D. S. Hirschberg. A linear space algorithm for computing maximal

common subsequences. Comm. Assoc. Comp. Mach., 18:341–343, 1975.

[51] I. L. Hofacker, M. Fekete, C. Flamm, M. A. Huynen, S. Rauscher,

P. E. Stolorz, and P. F. Stadler. Automatic detection of conserved

RNA structure elements in complete RNA virus genomes. Nucl. Acids

Res, 26:3825–3863, 1998.

[52] I. L. Hofacker, W. Fontana, P. F. Stadler, and P. Schuster. Vienna RNA

Package. http://www.tbi.univie.ac.at/~ivo/RNA/, 1994. (Free

Software).

[53] I. L. Hofacker and P. F. Stadler. Automatic detection of conserved base

pairing patterns in RNA virus genomes. Comp. & Chem., 23:401–414,

1999.

[54] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoef-

fer, Manfred Tacker, and Peter Schuster. Fast folding and comparison

of RNA secondary structures. Monatsh. Chemie, 125:167–188, 1994.

References 126

[55] Ivo L. Hofacker, Martijn A. Huynen, Peter F. Stadler, and Paul E.

Stolorz. Knowledge discovery in RNA sequence families of HIV using

scalable computers. In Evangelos Simoudis, Jiawei Han, and Usama

Fayyad, editors, Proceedings of the 2nd International Conference on

Knowledge Discovery and Data Mining, Portland, OR, pages 20–25,

Menlo Park, CA, 1996. AAAI Press.

[56] P. Hogeweg and B. Hesper. Energy directed folding of RNA sequences.

Nucl. Acids Res., 12:67–74, 1984.

[57] I. Holmes and W. J. Bruno. Evolutionary HMMs: a Bayesian approach

to multiple alignment. Bioinformatics, 17:803–820, 2001.

[58] I. Holmes and W. J. Bruno. Handel.

http://www.biowiki.org/Handel, 2001. (Free Software).

[59] J. W. Hunt and M. D. McIlroy. An algorithm for differential file com-

parison. Technical Report Comp. Sci. 41, Bell Laboratories, 1976.

[60] J. A. Jaeger, D. H. Turner, and M. Zuker. Improved predictions of

secondary structures for RNA. Proc. Natl. Acad. Sci. USA, 86:7706–

7710, 1989.

[61] B. R. Jordan. Computer generation of pairing schemes for RNA

molecules. J. Theor. Biol., 34:363–378, 1972.

[62] G. F. Joyce. In vitro evolution of nucleic acids. Curr. Opin. Struct.

Biol., 4:331–336, 1994.

[63] V. Juan and C. Wilson. RNA secondary structure prediction based

on free energy and phylogenetic analysis. J. Mol. Biol., 289:935–947,

1999.

References 127

[64] M.I. Kanehisa and W. B. Goad. Pattern recognition in nucleic acid se-

quences. An efficient method for finding locally stable secondary struc-

tures. Nucl. Acids Res., 10:265–277, 1982.

[65] A. H. Kidd and K. Kidd-Ljunggren. A revised secondary structure

model for the 3’-end of hepatitis B virus pregenomic RNA. Nucl. Acids

Res., 24:3295–3301, 1996.

[66] K. Kidd-Ljunggren, Y. Miyakawa, and A. H. Kidd. Genetic variability

in hepatitis B viruses. Journal of General Virology, 83:1267–1280, 2002.

[67] M. Kunze and G. Thierrin. Maximal common subsequences of pairs of

strings. Congr. Num., 34:299–311, 1982.

[68] S-Y. Le and M. Zuker. Predicting common foldings of homologous

RNAs. J. Biomolecular Structure & Dynamics, 8:1027–1044, 1991.

[69] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment

using partial order graphs. Bioinformatics, 18:452–464, 2002.

[70] C. Lee, C. Grasso, and M. F. Sharlow. POA.

http://www.bioinformatics.ucla.edu/poa, 2002. ().

[71] H. P. Lenhof, B. Morgenstern, and K Reinert. DIALIGN.

http://bibiserv.TechFak.Uni-Bielefeld.DE/dialign/, 1999.

[72] H. P. Lenhof, B. Morgenstern, and K Reinert. An exact solution for

the segment-to-segment multiple sequence alignment problem. Bioin-

formatics, 15:203–210, 1999.

[73] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple

sequence alignment. Proc. Natl. Acad. Sci. USA, 86:4412–4415, 1989.

References 128

[74] P. Loss, M. Schmitz, G. Steger, and D. Riesner. Formation of a ther-

modynamically metastable structure containing hairpin II is critical for

infectivity of potato spindle tuber viroid RNA. EMBO J., 10:719–727,

1991.

[75] M. Lu and D. E. Draper. Bases defining an ammonium and magnesium

ion-dependent tertiary structure within the large subunit ribosomal

RNA. J. Mol. Biol., 244:572–585, 1994.

[76] R. Lück, S. Gräf, and G. Steger. ConStruct: A tool for thermodynamic

controlled prediction of conserved secondary structure. Nucl. Acids

Res., 27:4208–4217, 1999.

[77] R. Lück, G. Steger, and D. Riesner. Thermodynamic prediction of

conserved secondary structure: Application to the RRE element of

HIV, the tRNA-like element of CMV, and the mRNA of prion protein.

J. Mol. Biol., 258:813–826, 1996.

[78] A. V. Lukashin and J. J. Rosa. Local multiple sequence alignment

using dead-end elimination. Bioinformatics, 15:947–953, 1999.

[79] C. W. Mandl, H. Holzmann, T. Meixner, S. Rauscher, P. F. Stadler,

S. L. Allison, , and F. X. Heinz. Spontaneous and engineered deletions

in the 3’ noncoding region of tick-borne encephalitis virus: construction

of highly attenuated mutants of a flavivirus. J. Virology, 72:2132–2140,

1998.

[80] H. M. Martinez. An RNA folding rule. Nucl. Acids Res., 12:323–324,

1984.

[81] J. S. McCaskill. The equilibrium partition function and base pair bind-

ing probabilities for RNA secondary structure. Biopolymers, 29:1105–

1119, 1990.

References 129

[82] D. L. Mills, editor. A new algorithm to determine the Levenshtein dis-

tance between two strings, Conference on Sequence Comparison. Uni-

versity of Montreal, 1978.

[83] B. Morgenstern. A space-efficient algorithm for aligning large genomic

sequences. Bioinformatics, 16:948–949, 2000.

[84] E. W. Myers and W. Miller. Optimal alignments in linear space.

CABIOS, 4:11–17, 1988.

[85] S. B. Needleman and C.D. Wunsch. A general method applicable to

the search for similarities in the amino acid sequences of two proteins.

J. Mol. Biol., 48:443–453, 1970.

[86] J. M. Norman. Elementary dynamic programming. Crane, Russak and

Co., New York, 1975.

[87] R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the

secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci.

USA, 77:6309–6313, 1980.

[88] R. Nussinov, I. Tinoco, and A. Jacobsen. Secondary structure model

for the complete simian virus 50 late precursor RNA. Nucl. Acids Res.,

10:351–363, 1982.

[89] R. Nussinov, I. Tinoco, and A. B. Jacobson. Small changes in free

energy assignments for unpaired bases do not affect predicted secondary

structures in single stranded RNA. Nucl. Acids Res., 10:341–349, 1982.

[90] S. Pascarella and P. Argos. Analysis of insertions/deletions in protein

structures. J. Mol. Biol., 224:461–471, 1992.

[91] S. Rauscher, C. Flamm, C. Mandl, F. X. Heinz, and P. F. Stadler.

Secondary structure of the 3’ noncoding regions of flavivirus genomes:

References 130

Comparative analysis of base pairing probabilities. RNA, 3:779–791,

1997.

[92] K. Reinert, J. Stoye, and T. Will. An iterative method for faster sum-of-

pairs multiple sequence alignment. Bioinformatics, 16:808–814, 2000.

[93] A. Rieger and M. Nassal. Distinct requirements for primary sequence in

the 5’-and 3’-part of a bulge in the hepatitis B virus RNA encapsidation

signal revealed by a combined in vivo selection/in vitro amplification

system. Nucl. Acids Res., 23:3909–3915, 1995.

[94] M. A. Roytberg, A. Y. Ogurtsov, S. A. Shabalina, and A. S. Kon-

drashov. A hierarchical approach to aligning collinear regions of

genomes. Bioinformatics, 18:1673–1680, 2002.

[95] M. A. Roytberg, A. Y. Ogurtsov, S. A. Shabalina, and A. S. Kon-

drashov. OWEN. ftp://ftp.ncbi.nih.gov/pub/kondrashov/owen,

2002. (Free Software).

[96] D. Sankoff, R. J. Cedergren, and G. Lapalme. Frequency of insertion-

deletion, transversion and transition in the evolution of 5S ribosomal

RNA. J. Mol. Evol., 7:133–149, 1976.

[97] D. Sankoff, C. Morel, and R. J. Cedergren. Evolution of 5S RNA and

the nonrandomness of base replacement. Nature New Biology, 245:232–

234, 1973.

[98] P. Schuster. How to search for RNA structures. theoretical concepts in

evolutionary biotechnology. J. Biotechnology, 41:239–258, 1995.

[99] P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker. From se-

quences to shapes and back: A case study in RNA secondary structures.

Proc. R. Soc. Lond. B, 255:279–284, 1994.

References 131

[100] G. J. Smith, J. E. Donello, R. Lueck, G. Steger, and T. J. Hope. The

hepatitis B virus post-transcriptional regulatory element contains two

conserved RNA stem-loops which are required for function. Nucl. Acids

Res., 26,:4818–4827, 1998.

[101] R. R. Stocsits. Improved alignments based on a combination of amino

acid and nucleic acid sequence information. diploma thesis, 1999.

[102] R. R. Stocsits. Detection of conserved RNA secondary structures: Hep-

atitis B as an example. Proceedings of the Complex Systems Summer

School in Santa Fe CSSS02, 2002.

[103] R. R. Stocsits, I. L. Hofacker, and P. F. Stadler. Conserved secondary

structures in hepatitis B virus RNA. Proceedings of the German Con-

ference on Bioinformatics GCB 1999, pages 73–79, 1999.

[104] J. Stoye. Multiple sequence alignment with the divide-and-conquer

method. Gene, 211:GC45–GC56, 1998.

[105] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W:

Improving the sensitivity of progressive multiple sequence alignments

through sequence weighting, position specific gap penalties and weight

matrix choice. Nucl. Acids Res., 22:4673–4680, 1994.

[106] J. D. Thompson, D. G. Higgins, and T. J. Gibson. Improved sensitivity

of profile searches through the use of sequence weights and gap excision.

CABIOS, 10:19–29, 1994.

[107] J. L. Thorne, H. Kishino, and J. Felsenstein. An evolutionary model

for maximum likelihood alignment of DNA sequences. J. Mol. Evol.,

33:114–124, 1991.

References 132

[108] U. Tönges, S. W. Perrey, J. Stoye, and A. W. M. Dress. A general

method for fast multiple sequence alignment. Gene, 172:GC33–GC41,

1996.

[109] U. Tönges, S. W. Perrey, J. Stoye, and A. W. M. Dress. DCA.

http://bibiserv.techfak.uni-bielefeld.de, 2000.

[110] D. H. Turner, N. Sugimoto, and S. Freier. RNA structure prediction.

Ann. Rev. Biophys. Chem., 17:167–192, 1988.

[111] K. Valegaard, L. Liljas, K. Fridborg, and T. Unge. The three-

dimensional structure of the bacterial virus MS2. Nature, 345:36–41,

1990.

[112] J. van Duin. Single-stranded RNA phages (Leviviridae). Encyclopedia

of Virology, pages 1663–1668, 1999.

[113] M. Vingron and M. S. Waterman. Sequence alignment and penalty

choice. Review of concepts, case studies and implications. J. Mol.

Biol., 235:1–12, 1994.

[114] A. E. Walter, D. H. Turner, J. Kim, M. H. Lyttle, P. Mueller, D. H.

Mathews, and M. Zuker. Co-axial stacking of helices enhances binding

of oligoribonucleotides and improves predictions of RNA folding. Proc.

Natl. Acad. Sci. USA, 91:9218–9222, 1994.

[115] M. S. Waterman. Studies on foundation and combinatorics, advances

in mathematics supplementary studies, volume 1, chapter secondary

structures of single stranded nucleic acids, pages 167–212. Academic

Press N. Y., 1978.

[116] M. S. Waterman and T. Byers. A dynamic programming algorithm to

find all solutions in the neighborhood of the optimum. Math. Biosci.,

77:179–188, 1985.

References 133

[117] W. J. Wilbur and D. J. Lipman. Rapid similarity searches of nucleic

acid and protein data banks. Proc. Natl. Acad. Sci. USA, 80:726–730,

1983.

[118] M. Zuker and D. Sankoff. RNA secondary structures and their predic-

tion. Bull. Math. Biol., 46(4):591–621, 1984.

[119] M. Zuker and P. Stiegler. Optimal computer folding of larger RNA se-

quences using thermodynamics and auxiliary information. Nucl. Acids

Res., 9:133–148, 1981.

Curriculum Vitae

Name: Roman Rudolf Stocsits

Date of Birth: 1971-02-04

Place of Birth: Vienna

1977 - 1981: Elementary School, Volkschule Knöllgasse

1981 - 1985: Secondary School, BG V Rainergasse

1985 - 1989: Classical Secondary School,

Humanistisches Gymnasium V

1989: School Leaving Certificate, passing with

distinction

1989: Entering University of Vienna, study of biology

and molecular biology

1994, Nov. 15th: Achieving B.Sc.

1998: Start of diploma work at the Institute for

Theoretical Chemistry, working with

Ao. Prof. Dr. Peter F. Stadler

on the field of multiple sequence alignments

1999: Achieving M.Sc. (Magister rerum naturalium)

and start of work as a Ph.D. student

with Prof. Dr. Peter F. Stadler

on the field of multiple sequence alignments

and extended scoring functions

Current Address: Angeligasse 59/14

A-1100 Vienna

Tel.: +43 1 941 46 31

e-mail: roman@tbi.univie.ac.at

