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Zusammenfassung

Knowledge-Based Potentials konnen verwendet werden um zu entscheiden, ob ei-
ne Aminosduresequenz in eine vorgegebene native Proteinstruktur falten wird.
Wir verwenden diesen Ansatz um die Sequenz-Strukturbeziehungen im Prote-
intraum zu untersuchen. Vorallem untersuchen wir folgende Annahmen, die fiir
eine effiziente Evolution von grofer Bedeutung sind: (i) Sequenzen, die in eine
vorgegebene native Struktur falten bilden umfangreiche Neutral Netze, die den
Sequenzraum durchziehen. (ii) Die Neutralen Netze zweier nativer Strukturen
néhern sich bis auf wenige Punktmutationen. Dies wollen wir mittels Computer-
simulationen mit zwei vollig unterschiedlichen Potentialfunktionen verifizieren:
Manfred Sippl’s PROSA II Paar Potential und und A. Lapedes’ Neuralem Netz
(NN) Potential. Um die Topologie der neutralen Menge S(%) fiir eine Struktur 1
zu untersuchen, verwende wir die Technik des inversen Faltens zur Entscheidung
ob eine Aminosduresequenz x ein Mitglied von S(¢) ist, d.h. ob z in die Struk-
tur ¢ faltet. Dieses Problem ist weniger anspruchsvoll als die Voraussage einer
unbekannten Struktur anhand einer gegebenen Sequenz. Als Maf} dafiir wie gut
die Sequenz x auf die Struktur v pafit, verwenden wir dem z-score. Formal iiber-
setzen wir das inverse Faltungsproblem in eine ein Optimierungsproblem auf der
Menge aller Sequenzen: wir suchen das Optimum von z fiir den z-score von (z, ).
Wir finden, daf sich die neutrale Pfade innerhalb der Menge S(¢) bis beinahe
zur Lénge der Aminosduresequenz ausdehnen. Wir schlieffen daraus, dafl neutra-
le Mengen umfangreiche neutrale Netze bilden, die den gesamten Sequenzraum
durchziehen. Experimente zur Untersuchung des kleinstmoglichen Abstands zwei-
er neutralen Mengen innerhalb des Sequenzraums zeigten, daf} sich die neutralen
Mengen zweier unterschiedlichen Strukturen S(¢/) und S(p) sehr nahe zusammen
kommen, wir folgern daraus, dafl im Proteinraum shape space covering gegeben
ist. Wir fanden eine vergleichsweise gute Korrelation zwischen den Ergebnisse
aus dem NN und dem PROSA II Potential. Obwohl im Detail Unterschiede
bestehen, fanden sich bei den adaptive walk, neutral walk und closest approach
walk Experimenten die gleichen Eigenschaften. Auch die aus diesen Ergebnissen
folgende Implikation der Existenz von ausgedehnten neutralen Netzen und shape

space covering gilt sowohl fiir PROSA II wund das NN Potential. Folglich sind un-



sere Schlufolgerungen beziiglich der der Topologie des Sequenzraumes die sich
aus den unterschiedlichen Computerexperimenten ergeben unabhéngig von den

Details des verwendeten Potentials.



Abstract

Knowledge-Based potentials can be used to decide whether an amino acid se-
quence is likely to fold into a prescribed native protein structure. We use this
idea to survey the sequence-structure relations in protein space. In particular, we
test the following two propositions which were found to be important for efficient
evolution: The sequences folding into a particular native fold form extensive neu-
tral networks that percolate through sequence space. The neutral networks of any
two native folds approach each other to within a few point mutations. Computer
simulations using two very different potential functions, Manfred Sippl’s PROSA
pair potential and Alan Lapedes’ neural network based NN potential, are used to
verify these claims and to test whether the results are independent of the potenti-
al used to obtain the results. In order to characterize the topology of neutral sets
S(¢) for the protein structure ¢ we use an inverse folding technique to decide
whether a given amino acid sequence z is a member of S(v), that is, whether x
folds into the structure v. This problem is less demanding than predicting the
unknown structure of a given sequence. As a measure for the quality of fit of
sequence x and structure 7 we use the z-score. Formally, we translate inverse
folding into an optimization problem on the set of all sequences: we are looking
for an optima z of the z-score z(z,®). We find that neutral paths within the
sets S(1) extend to almost the length of the amino acid sequence. We therefore
conclude that neutral sets form extensive neutral networks that percolate the en-
tire sequence space. Our closest approach experiments showed that the neutral
sets of two different structures S(¢)) and S(¢) come closely together, we the-
refore conclude that protein space exhibits shape space covering. A comparably
good correlation between the NN and PROSA II potential was found. Although
some differences appear in detail, the behavior of adaptive walks, neutral walks,
and closest approach walks, and consequent implications such as the existence of
extensive neutral networks and shape space covering, are common to both the
PROSA II and the neural network NN potentials. Hence our conclusions concer-
ning the topology of sequence space, as defined by the various types of walks, are

independent of the details of any one potential.
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1 Introduction

A core problem of modern biosciences is the design of novel proteins with pre-
defined and adjustable functions. As these functions directly reflect a certain
structure, i.e., a framework of functional groups in three dimensions, the problem
can be expressed differently as how to rationally design a protein structure with

only a few side chains (e.g. from the “active site”) exactly placed on an optimal
scaffold.

Despite the fact that a large body of knowledge on protein folds has accumulated
over the past decades, it still remains impossible to calculate native structures
from amino acid sequences. Presently many rules are known that are important
for the stability of protein chains. In some special cases the structure of pro-
teins has been predicted ahead of experiment. Nevertheless, correct predictions
of structures are singular events that depend largely on the knowledge of ho-
mologous proteins with known structures. Even an approximate map of protein
space will therefore be helpful in protein design since it can be used to direct

experimental procedures.

Mapping the sequence-structure relations of RNA, based on secondary structure
predictions, has provided a theoretical basis for understanding the dynamics of in-
vitro evolution (e.g. SELEX) experiments. In particular, the discovery of extended
neutral networks in computer simulation provides an explanation why (and how)
an evolutionary biotechnology based on functional RNA molecules is feasible at
all [52, 37].

Protein space, on the other hand, is still largely Terra incognita. Considering the
hyper-astronomical number of possible sequences, a detailed mapping of protein
space is a hopeless task. On the other hand, the repertoire of stable native folds
seems to be highly restricted or even vanishingly small [15, 34]. It makes sense
therefore, to ask how the set S(¢) of all those sequence that fold into the same
shape 1 is distributed in sequence space. We call these sequences neutral, S(v)
being the neutral set of the fold . The shape or topology of neutral sets has im-
portant implications for the evolution of proteins and for de novo design. Partial

answers to that question were recently obtained by computational studies using
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lattice models and so-called knowledge-based potentials, as well as by some crucial

experimental findings [3, 2, 11, 17].

e Are biological (evolved) structures common or rare in the space of protein

sequences?

e Are biologically relevant structures confined to a small connected subspace

of protein space or can they be found “all over the place”?

e Is the observed bias in amino acid composition necessary for folding or is

it a product of abundance and evolution?

e [s it possible to restrict the set of amino acids to only a few ones, still

preserving structure or even function?

e (Can we find different protein folds for very similar sequences, and conversely,

can we find the same fold for unrelated amino acid sequences?

e Are there neutral networks in protein space? That is, is it possible to walk
from one end of sequence space to the other, via point mutation steps, and

still fold to the same structure at every intermediate?

e Do we have shape space covering? That is, is it possible to find almost all
relevant folds within a small radius around any randomly chosen reference

sequence?

All these questions have been answered with yes for the secondary structures of
nucleic acids in a series of investigations conducted mostly by Peter Schuster’s
groups at the Institute for Theoretical Chemistry in Vienna and at the IMB in
Jena [22; 23, 24, 53, 60, 36, 30, 31, 61, 37]. In addition, it has been shown that
the results are robust with respect to small changes in energy parameters and
folding rules [61].

Three approaches have been applied so far to study the topology of neutral sets:
a mathematical model of genotype-phenotype mapping based on random graph
theory [48], extensive sample statistics [53] using neutral walks as a “probe”, and

exhaustive folding of all sequences with given chain length n [31].
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The mathematical model assumes that sequences forming the same structure are
distributed randomly using the fraction A of neutral neighbors as (the only) input
parameter. If A is large enough this model makes two rather surprising predictions
[48, 49]:

e The connectivity of S(¢)) changes drastically when A passes the threshold

1
Aer(@) =1 — a—\g ~ 0.146 (1)

where o = 20 is the size of the amino acid alphabet. The neutral set S(v)

value:

consist of a single component that spans the sequence space if A\ > A,

while it is partitioned into a large number of components below threshold.

e There is shape space covering, that is, in a moderate size ball centered at
any position in sequence space there is a sequence z that folds into any

prescribed secondary structure v, see the following section.

In this thesis global properties of the sequence-structure relation of polypeptides

are investigated using knowledge based potentials.

Previous computer simulations [3] have shown that knowledge-based potentials
can be used in principle to answer questions concerning the sequence-structure
relationship of proteins. In fact, knowledge-based potentials are designed to re-
cognize whether a sequence z folds into a native structure . This problem is by
far less demanding than predicting the unknown structure of a given sequence

because it can be investigated by inverse folding techniques [20, 8].

Recent studies using knowledge based potentials [4, 8, 26, 27, 29, 33, 57, 58]
demonstrated that the energy of the native fold (i.e., putative ground state) of a
sequence z can be estimated from the distribution of the energy values of z in its
conformation space. This allows the construction of an energy scale (z-score) by
which conformations of different sequences can be compared. Empirically, native
folds have z-scores in a narrow characteristic range. Hence we may assume that

x assumes the native fold 1) if the z-score of z(z, ) is in the native range.
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This thesis extends earlier results in two directions: (i) Repeating earlier computer
experiments using a very different potential function, we evaluate the results
from one potential in the other potential and vice versa to find common traits
of knowledge-based potentials and to verify our previous results. (ii) It answers
the main question that was left open in [3], namely whether there is shape space
covering, that is whether the neutral networks of any two different shapes come

close to each other.

In this work we used two very different potential functions, Alan Lapedes‘s Neu-
tral Network NN Potential [12] and Manfred Sippl’s PROSA II [33, 56, 57, 58,
29], based on quite different encoding of the protein structures two answer questi-
ons concerning the sequence-structure relationship of proteins and to investigate
whether or not results found in earlier experiments [3] can be verified when ree-

valuated in another potential.



2 Potentials

The energy of a macromolecular system is a function of the conformational varia-
bles (e.g. Cartesian coordinates) plus its interaction energy with the surrounding
solvent. The derivation of the energy from the conformational variables gives the
force field of the molecule. The term potential in this context is a synonym to
energy function. Generally we assume that a protein sequences s = (s1,...,Sy)

of n amino acids
;e {A,C,L]L,M,F, W, Y, VR N,D EQGHKP, ST}

is related with its structure v as represented by the coordinates x5 = (x1,... ,z,)

via the potential function V(s,):

zs = argmin V' (s, 1)

The design of molecular force fields allows at least two different approaches:

On the one hand semi-empirical approaches consider macromolecular systems as a
summation of the forces observed for monomers. The force fields are obtained from
quantum mechanical calculations, and data from thermodynamic or spectroscopic

measurements on small molecules.

On the other hand knowledge-based potentials are based on the assumption that
force fields of macromolecules are of immense complexity and the only reliable
source of information are macromolecular molecules themselves. So empirical or
knowledge-based potentials try to extract information from databases of macro-

molecular structures.

2.1 Molecular Mechanics Force Fields

The need to describe molecular structures and properties in a practical manner
led to the development of the “mechanical” molecular model [46, 65]. Although
highly accurate, quantum chemical calculations necessitate a computational effort

so immense, that solving the Schrédinger equation for macromolecular systems
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is impossible for the time being. Hence, to calculate atomic structures a classical

approach based on the following assumptions had to be chosen :

According to the Born-Oppenheimer approximation of the Schrédinger

equation, nuclei and electrons are aggregated in atom-like particles.

e These particles are spherical (radii obtained from measurements or theory)

and have a net charge (obtained from theory).

e Atoms are considered as balls, bonds represented by springs allowing the

use of classical potential functions.
e Interactions must be preassigned to specific sets of atoms.

e The spatial distribution and energies of particles are determined by inter-

actions

The object of molecular mechanics is to predict the energy associated with a
given conformation of a molecule. However, molecular mechanic energies are no
absolute quantities. Only the energy difference between two conformations of the
same molecule are meaningful. A simple molecular mechanic energy equation is

given by:

Etot = EstTetch + Ebend + Etors + Enonfbonding

These terms together with the parameters required to describe the behavior of
different kinds of atoms and bonds, is called a force-field. Many different kinds of
force-fields have been developed over the years. Some include additional energy
terms that describe other kinds of deformations. Some force-fields account for
coupling between bending and stretching in adjacent bonds in order to improve
the accuracy of the mechanical model. The constants (force constants, equilibri-
um lengths) can be either measured by spectroscopy or calculated by quantum

mechanical means.
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These terms together with the parameters required to describe the behavior of
different kinds of atoms and bonds, is called a force-field. Many different kinds of
force-fields have been developed over the years. Some include additional energy
terms that describe other kinds of deformations. Some force-fields account for
coupling between bending and stretching in adjacent bonds in order to improve
the accuracy of the mechanical model. The constants (force constants, equilibri-
um lengths) can be either measured by spectroscopy or calculated by quantum

mechanical means.

The energy terms in detail are:

Stretching Energy:
Occurs whenever a bond is deformed (stretched or compressed), and is

described by an equation based on Hooke’s law for springs.

Estretch = Z kb(r - TO)Q

whereby k; is the force constant, r is the actual bond length and ry the
equilibrium length. This parabolic approximation fails as the bond is
stretched toward the point of dissociation.

Bending Energy:
Energy increases if the equilibrium bond angles are bent. Again the ap-

proximation is harmonic and uses Hooke’s law.

Ebend = Z kﬁ(a - 00)2

kg controls the stiffness of the angel, 0 is the actual bond angle, 6y the
equilibrium angle. The force constants have to be estimated for each
triple of atoms (e.g. C-C-C, C-C-O, C-C-H)

Torsion Energy:
Intra-molecular rotations (around torsions or dihedrals) require energy

as well:

Eiorsion = Z A[(l + COS(nT - ¢))]

The parameter A controls the amplitude of this periodic function, n the

periodicity, and ¢ shifts the entire curve along the rotation angle axis
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7. Again the parameters for all combinations of four atoms have to be
determined (e.g. C-C-C-C, C-O-C-C, H-C-C-N).

Non-bonding Energy:
The different implementation of force field differ mainly in the definition

of this term. Mostly present are Van der Waals and electrostatic terms.

rij

SRR S ST
i g E K g

v

Van de? Waals CouE:)mb

The Van der Waals term accounts for the attraction and the Coulomb
term for electrostatic interaction. Repulsion occurs, when the distance
between two atoms becomes less than the sum of their radii. The shown
approximation for the van der Waals energy is of the Lennard-Jones
potential type. It is used this way for instance in in the AMBER force
field [65] as can be seen in equation( 2). The last term accounting for

H-bonds is modeled by a 6-12 potential as well.

Etotal = Z Kr(r - Teq)g (2)

bonds

+ > K0 - 0e,)

angles

Va
+ Z 7[1 + cos(ng — )]
dihedrals
Ay By | a4y
+ i 2 9}
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ij

H—bonds ij




Potentials 9

2.2 Knowledge Based Potentials

In contrast to the analytic approach of mechanical force fields, knowledge ba-
sed potentials describe the energy needed for a certain contact to occur by a
likelihood [4, 8, 26, 27, 29, 33, 57, 58]. This likelihood of finding a particular
contact is extracted from a database of known structures. Computer scientists
call this procedure data-mining. The increase of information is measured by the
log-likelihood ratio of the Bayesian events [5]. This ratio is the relation of prior
expected events and the observed occurrence. Therefore the log-likelihood is a

kind of measure for the “surprise” provided by the database.

A physical interpretation of the probability function comes from statistical me-
chanics: Based on the assumption that the protein is in its energetic minimum,
low energy elements must occur more frequently than others in 3d-structures of
globular proteins. This dependence of occurrence on energy resembles a Boltz-
mann statistic [12, 56]:

focc. ~ €Xp (_E/RT)

Here T is the conformational temperature and R is the gas constant. This simi-
larity reveals, that if in principle the frequency of occurrence can be estimated,
it is possible to gain access to the putative energy of a certain fold 1(S). This
interpretation of knowledge based potentials was introduced by Manfred Sippl

and is the basis for most of the contemporary potentials of mean force.

Recently Dill and Thomas stated severe critique on this approach of statistical
potentials [62]. They intended to test how “extracted” energies correspond with
“true” energies by mimicking the extraction process on ideal lattice models and
comparing the observed with the accurate energy of HP interactions. Their major
points of criticism for this model are that proteins are not seen as chains (rat-
her as gas composition) and the temperature applied to the Boltzmann device is
meaningless. Further they try to show that the energies for a certain fold depend
solely on clustering of polarity. These findings were put into theoretic framework
recently by Neumaier’s “Non-uniqueness Theorem” [45]. Tt shows, that empiri-
cal potentials obtained by extraction of equilibrium geometries can never reveal

true energies. In particular, empirical potentials derived solely from databases of
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equilibrium data will never be useful for dynamical studies.

2.2.1 Statistical Thermodynamics of Proteins or the Inverse Boltz-

mann Law

The so called “folding postulate” states, that “In equilibrium the native state of
a protein-solvent system corresponds to the global minimum of free energy’. This
was demonstrated in the pioneer study performed by Anfinsen [1] in 1973. He was
able to show, that by reducing and re-oxidating disulfide bonds in ribonuclease

no loss of function occurs, i.e. that folding is a reversible process.

In the following derivation that follows essentially Sippl [56], the peptide chains
will be presented by C* atoms to make the model easier, by no loss of generality.
According to Bolzmann’s law the probability f(x) of finding a physical system

in a particular state x in equilibrium is give by

@) = e |- 57

Where £ is the Boltzmann’s constant, 7' the absolute temperature in Kelvin

(Reference temperature) and Z is the partition function defined as

Z:/.../exp{— }dm

For discrete systems the integral may be replaced by the sum.
- E(z)
7 = —
Yoo [

If the energies of all states x were known, the probability density could be com-

E(z)
kT

puted. On the other hand it is possible to obtain the energy if the density of

states can be measured [56].
E(z)=—kTln[f(z)]—kTlnZ (3)

From equation (3) it is possible to calculate the energy of a particular distribution
but it is impossible to get the Boltzmann sum Z, so an additive constant remains

unknown. If the probabilities of a distribution are extracted from a database,
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the potential of mean force of interaction can be obtained. If E(x) denotes the
reference state of the system (averaged energy), the net potential for a given

interaction v can be computed by:
AE,(z) = E\(z) — E(z)

or:

f(z) Z
and since Z, and Z do not depend on the state z, it is legitime to assume Z, ~ Z,

and therefore —k7" In % ~ 0. T is tied to the temperature of the NMR or X-ray

AE,(z) = —kTIn {fv(x)} T2

measurement of the data.

AE,(z) = —kTn {];7((5))}

Due to the restriction of a limited number of observations it must be distinguis-
hed between the probability densities f(z) or f,(z) and the information obtained
from the database g(x) respectively g,(z). It is reasonable however to approxi-
mate the reference state probability f(z) with g(x) since the overall number of
interactions in the database is big enough (magnitude of 10.000). On the other
hand the number of observations can be low for particular contacts, especially
when considering higher order interactions. Therefore database size is crucial for

the approximation of f,(z) ~ g,(z).

So without knowledge of any specific interaction we have to assume f(z) ~ f,(x)
and expect AE,(z) = 0. Each information quantum derived form the database
increases f,(z), and the net contribution is twofold: (1) The relative energy of
all states AE,(x) is increased and (2) the energy of a particular state AE,(?)
is lowered. This means that if f,(z) < 1 the contribution to the overall energy
becomes negative. When parameters for all configurations v are extracted, a

summation over all contributions yields the energy of sequence .S for structure :

E(S,9) =) E,(a)

Over the past years many different approaches to potentials of mean force have

been made. The various potential functions are distinct in the definition as well as
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in the order of interaction. Therefore different “resolutions” are used to define the
energy functions. The spectrum reaches from an atomic resolution mode (Sippl)

to simplified HP-patterns (Crippen), and a lot in between.

Munson et al. [44] were able to show that increasing the order of interaction im-
proves the statistical significance of the terms. Starting with a highly significant
one body term, that counts for the exposures of the residue, continuing to a pair
potential term, that contributes for amino acid preferences (e.g. hydrophobic-
hydrophobic interactions) independent of the burial status, one can clearly iden-
tify that multi-body interactions participate to a major extent the overall poten-

tial function.

2.2.2 Log-Likelihood Ratios

Empirical Potentials can also be considered from a statistical instead of a stati-
stical mechanical view [10, 29]. The statistical approach involving log-likelihood
potentials for the construction of of potential functions was introduced by Bryant

and Lawrence [10].

For example in Sippl’s [56] PROSA II, the probability for amino acids pairs ab to
be separated by a (binned) distance r, is approximated by counting the frequency
in a database of know protein structures. This probability can then be represented
as the conditional probability P(r|ab) of finding the distance bin r for all 20 x
20 possible amino acid pairs. The approximation for statistical mechanical free-

energies is then represented by the following:

P b P(r,ab
log (T|a/ ) :log (T’a’ )
P(r) P(r)P(ab)
The interpretation from a statistical point of view, quantifies the relation between
P(r) and P(ab) by comparing the joint probability P(r,ab) to the probability
obtained under the assumption of independence between the distance r and the

pair ab. The log-likelihood quantities obtained from a ’training set’ of proteins

can then be used to evaluate the compatibility of any specific amino acid sequence
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with any given structure. Different types of potential function are based on diffe-

rent log-likelihood expressions. While Wilmanns and Eisenberg [66] express the

log-likelihood ratio for their potential function as log (P(ablr)), Sippl’s ratio [56]

P(r)
—P(Zlbab)). However when related under Bayes theorem:

P(r | ab) P(ab | )
log| ———) =log | ——F—~
o (Che ) o (b
these are identical expressions [29]. Still different log-likelihood expressions are
used by Bryant and Lawrence [10] and Skolnik et. al. [26]. In Alan Lapedes NN

is given as log (

potential the probabilities of the various pairs ab to have inter-residue distances
within certain distance bins are computed by similar frequency counting, but
the log-likelihood ratio log ( Pig’;?,'?i)) differs from the above, due to the fact that
the probabilities are compared to the probability assuming the sequence was

randomly permuted and re-threaded.

2.3 Various Approaches to Knowledge-Based Potentials
2.3.1 Atom-Atom Potentials

The reversible energy required to bring two particles close to each other at con-
stant volume is given by the potential of mean force or Helmholtz free energy of

the system. It is related to the radial distribution function g(r) through
w(r) = —kT In[g(r)]

and can give insights to protein folding and the role of specific interaction in
native structures (e.g. H-bonds). The distribution function for arbitrary sets of
atom-atom interactions occurring in proteins can either be obtained by diffraction
experiments, or they are extracted from a database of structures. The two functi-
ons turn out to be equal, if the distance distributions are similar. The knowledge

based distribution function is accessed by the determination of

pan(T) = Z o(r — i)
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as the sum over all distinct pairs ab within the radius 7 in a protein library. The
observed density is compared with a bulk of non interacting particles to finally

obtain the distribution function:

_ pab(r)
gab(r) - P)

The potentials using these distribution functions are perfectly suited for a detai-

led analysis of spatial distributions of atom contacts along a protein chain [59].
To make use of an atom-atom based potential, one has to know the Cartesian
coordinates for all residues in a poly peptide chain. Therefore this approach is of

no use to solve the inverse folding problem, as targeted by our group.

2.3.2 Contact Potentials

Contact potentials can be understood as subgroup of knowledge based potential.
This kind of mean energy function measures the overall energy of a system, as the
sum of nearest neighbor contacts. Some of the early works considered the frequen-
cy with which pairs of amino acids appeared within a certain “contact” distance
of each other and used a quasi-chemical approximation to relate this frequency

to an approximate free-energy of interaction of a “gas” of residue pairs [43].

One of the most prominent examples is Crippen’s Simplified Potential. To obtain
a simplified representation of heteropolymers Ken A. Dill introduced the concept
of lattice polymers [13]. When used to model proteins, each amino acids occu-
pies one position on the grid of the lattice. Conformations of lattice polymers
are represented by self-avoiding walks, short SAWs. Hence this method greatly
reduces the conformational space of the optimization problem. On a lattice bond
lengths are, of course, always constant, furthermore potentials for lattice prote-
ins usually neglect bond angles and dihedrals. Instead they focus on non-bonding

interactions of topological neighbors.

In Crippen’s potential the energy for the pair interaction has the form
E(s,%) = Y U[s(i), 5(5); i = jl; de(xi, x;)]
4,3

The individual interaction terms ¥ depend on the type s(i) and s(j) of residues,
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on their separation |i— j| along the chain and on the euclidian distance dz(x;, x;)

of the lattice points. The potential function

Ws(i), 8(5); |t = 4I; de(xi, %)) = Uls(2), s(5); [i — jllg(de(xi; %))

is normalized such that the contribution of the nearest neighbor reduces to
Uls(2), s(5); ¢ = ]I-

Crippen extracted a contact matrix of the form:

Uls(i),s(4); i — 4l =

(

—0.008 if|i—j| = 3

0.004 if|i—j| = 4

0.021 if|i—j| = 5,6,7
{ [ —0.012 —0.074 —0.054 0.123

—-0.074  0.123 -0.317  0.156
—-0.054 -0.317 —-0.263 —0.010
0.123  0.156 —0.010 —0.004

ifi—j| > 8

from a structural database where the matrix entries correspond to the four amino

acids classes:

1 = {GYHSRNE}
2 {A V}

3 = {LICMF}

4 = {PWTKDQ}

A further simplification of the potential can be obtained by restricting the amino
acid alphabet to just two classes: H for hydrophobic amino acids and P for polar

residues. For a review of HP based potentials see [14, 19].

Crippen recently used the described potential in kinetic simulations and calcu-
lations of denaturation curves [16]. These computer experiments showed that
folding kinetics largely depend on the coding scheme and that the results obtai-
ned by using the Crippen alphabet differ strongly from calculations for spin-glass
encoded SAWs [27, 28].
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2.3.3 Profiling Potentials

Eisenberg and coworkers decided to “translate” the 3d-structures to a 1d-string,

using three parameters:

1. The total side-chain area being covered by any other protein atoms

2. The fraction of side-chain area being covered by polar atoms or water mo-

lecules

3. The local secondary structure

The environment strings were extracted from a database of known structures.
The resulting environment classes discriminate buried and exposed residues, and
further subdivisions yield 18 distinct classes for the 20 amino acids. The optimi-
zation problem was to find the most favorable alignment of a protein sequence
to the environment string, whereby classical alignment techniques came to use.
The resulting threading procedure has been successfully employed to identify

sequence-structure pairs.

2.3.4 Tropsha’s Four-Point Potential

Avoiding the arbitrariness of a binned distance, A. Tropsha [68, 55, 69] introdu-
ced an approach from computational geometry to knowledge based potentials. He
suggested to represent the protein structure as a set of points in 3d, for simplifi-
cation only C* atoms were chosen as model for the backbone. This set of points
is tessellated using the Delauney triangulation. The result of this geometric pro-
cedure is a partitioning of the space included by the set into irregular tetrahedra
with the points as vertices. The quadruple of amino acids represented by these
points are considered to be nearest neighbors. The beauty of this method is that

it is parameter free, the list of tetrahedra is non-ambiguous.

If one counts the occurrence of all possible neighborhood combinations of the

amino acids in a structural dataset, a log-likelihood function can be constructed
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easily. This function can then be used to test if a given sequence yields favorable

contacts when threaded to a certain structure — in one word inverse folding.

The common meaning of “tessellation” is to arrange squares in a mosaic pattern.
The term derives from the Greek word “tesseres” which means four. Generally
tessellating can be understood as arranging regular polyhedra congruently (all
angles and sides are equal) in a plane with edges attached to each other. Only
three regular polygons tessellate in the Euclidean plane: triangles, squares and
hexagons (see figure 1). By extension, space or hyper space may also be tessella-
ted.

FIGURE 1: Tessellations in two dimensions.

The Delauney triangulation tessellates a set of points in R? in the sense of filling
space with tetrahedra. The Delauney triangulation is computed via its dual, the

Voronoi diagram.

Given a set S of n distinct points in R?, a Voronoi diagram is the partition of R?
into n polyhedral regions vo(p), (p € S). Each region vo(p), called the Voronoi
cell of p, is defined as the set of points in R? which are closer to p than to any

other points in S, or more precisely,
vo(p) = {z € R¥|dist(z,p) < dist(z, q)Vq € (S — p)}

where dist is the Euclidean distance function. The set of all Voronoi polyeders
forms a cell complex. The vertices of this complex are called the Vorono: vertices,

and the extreme rays (i.e. unbounded edges) are the Voronoi rays.

For each point v € RY, the nearest neighbor set nb(S,v) of v in S is the set
of points p € S — v which are closest to v in Euclidean distance. In order to

compute the Voronoi diagram, the following construction is very important. For
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each point p in S, consider the hyper-plane tangent to the paraboloid in R+
Tgy1 = 23+ - -+ + 23 . This hyper-plane is represented by h(p):

d d
2P} = D2+ wan =0
j=1 j=1

By replacing the equality with inequality > above for each point p, we obtain
the system of n inequalities, which we denote by b — Ax > 0. The polyhedron
P in R¥ of all solutions z to the system of inequalities is a lifting of the Voro-
noi diagram to one higher dimensional space. In other words, by projecting the
polyhedron P onto the original R? space, we obtain the Voronoi diagram in the
sense that the projection of each facet of P is associated with exactly the Voronoi
cell vo(p). The vertices and the extreme rays of P project exactly to the Voronoi

vertices and the rays, respectively.

Let S be a set of n points in R%. The convex hull conv(nb(S,v)) of the nearest
neighbor set of a Voronoi vertex v is called the Delauney cell of v. The Delauney
complex (or triangulation) of S is a partition of the convex hull conv(S) into the

Delauney cells of Voronoi vertices.

The Delauney complex is not in general a triangulation but becomes a triangula-
tion when the input points are non-degenerate, i.e. no d+ 2 points are cospherical
or equivalently there is no point whose nearest neighbor set has more than d + 1
elements. The Delauney complex is dual to the Voronoi diagram in the sense that
there is a natural bijection between the two complexes which reverses the face

inclusions.

There is a direct way to represent the Delaunay complex, just like the Voronoi
diagram. In fact, it uses the same paraboloid in R4 : x4, = 2% + - - + z2. Let
fx) =22+ -+ 22, and let p = (p; f(z)) € R for p € S. Then the so-called
lower hull of the lifted points represents the Delauney complex. More precisely,

let

P = conv(S) + noneg(e®™)

d+1

where e?! is the unit vector in R%*! whose last component is 1. Thus P is the
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unbounded convex polyhedron consisting of conv(S) and any nonnegative shifts
by the “upper” direction r. The nontrivial claim is that the the boundary complex
of P projects to the Delauney complex: any facet of P which is not parallel to
the vertical direction r is a Delauney cell once its last coordinate is ignored, and

any Delauney cell is represented this way.

Considering a set of points in R? the Delauney triangulation describes an algo-

rithm to decompose the convex hull of these points into tetrahedra.

As previously described, the first step in generating the tessellation built from
the irregular tetrahedron is finding the convex hull, which is the smallest convex
set, of points containing the entire set. The hull is represented by a set of facets
and a set of adjacency lists giving the neighbors and vertices for each facet. In
R3 facets are triangles and ridges are edges. The Delauney triangulation in R¢
is calculated from a convex hull in R4*! by lifting the points to a paraboloid by
adding the sum of the squares of the coordinates and computing their convex
hull, the set of ridges of the lower convex hull is the Delauney triangulation of

the original set.

The ghull algorithm [9] is a variation of the randomized incremental algorithm,
employing a constructed additional point at the hull to decide which facet belongs
to it. The point is outside the facet if it is above the set and in the ghull variation
of the original version, the point is not created randomly, but at the furthest
distance from the outside set. This method is used in the program ghull which
is publically available via the Internet Y. It has been shown empirically [9] that

this algorithm is especially efficient and well suited for a 3d set of points.

This algorithm of triangulation can be applied to any set of points in space,
always objectively describing neighborhood. Representing amino acids of a poly-
peptide chain by an atom (e.g. C* or C?) leads to a regular set of points in 3d
space, that can be tessellated applying the rules described above. The Voronoi
polyhedron is now the region around an atom, each side describes a contact to
a neighbor. The underlying Delauney simplices are irregular tetrahedra with an

amino acids at each corner. This diagram can be employed to describe contacts

DURL: http://www.geom.unn.edu/software/download/qhull . html
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of amino acids objectively in 3d space.

Tropsha’s potential was extended by Giinther Weberndorfer [63, 64] for his Ma-
ster Thesis at our Institute. He developed the Vienna Tessellation Potential. Like
the PROSA II potential and in contrast to Tropsha’s original version, it uses the
Cjs atoms to represent the amino acid residue (interpolating a virtual Cj atom
for Glycine) and furthermore, a special term for surface contacts was introduced.
These extensions much improved the quality of this potential function supplying
us with another tool to use for the exploration of protein space topology. Con-
sequently a number of computer experiments performed with the PROSA IT and

the NN potential were reproduced with the Vienna Tessellation Potential.

2.3.5 Sippl’s PROSA II

PROSA II is a true pair potential with an additional surface term. It was designed
to evaluate experimentally determined structures of globular proteins , to iden-
tify incorrectly folded proteins (or sections of proteins), and as an independent
method for evaluating theoretical models of protein structures [12, 33, 56, 57, 58|.
It is of the form

Wy, ) =Y Wlas, o5, i — jl;d5] + > Vil ()] (4)
i<j i
The additive pair-contributions W, [a, b, k;7] depend on the type v = C* or (ol
of the backbone atom, on the amino acids a = z; and b = z; at the positions i
and j of the sequence x, on their separation k = |j — i| along the chain, and on
the Euclidean distance r = dzj between the backbone atoms. The surface term
V,la; x] depends on the type v of the backbone atom, the amino acid a = x; at
sequence position 7 and the number y of protein atoms within a sphere centered
at the backbone atom of amino acid z;. The surface term is motivated by the
observation that the solvent exposure of an amino acid can be used to model
the energetic features of solvent-protein interactions [7, 8, 40]. The parameter x
serves as a (crude) quantitative measure for the surface-exposure of residue a.
The values of the PROSA II potential listed throughout the paper refer to the
CP backbone. The PROSA II potential can be used to calculate the z-score for a
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given sequence/structure pair see section 3.

2.3.6 Lapedes’ Neural Network NN Potential

The NN Potential includes multi-body interactions [29]. The parameterization is
based on the notion of a “local neighborhood” of each residue. The database of
crystal structures contains atomic information on the location of atoms of resi-
dues, as well as the backbone chain to which each residue is connected. Each
residue is attached to the backbone of a protein at the C, position. There are
two “special directions” defined by the relative positions along the backbone of
the two neighboring atoms, NV and C| to the central C, atom. These two vectors
define a plane, to which the normal vector may be erected, thereby providing an
invariant three dimensional coordinate system at each C,. Any residue within
an interaction radius of e.g. 8A to any C, atom can be labeled with invariant
x,1, z coordinates. To solve the problem of how to usefully order the list of co-
ordinates of the spatial neighbors the sphere surrounding each C, is divided into
a small number of finite spatial bins and the identity/occupancy of amino acids
of spatially neighboring residues is noted for each bin. The bins are constructed
by using the octants of the sphere, which is further divided into two radial shells,
one from 0A to 6A and the second from 6A to 8A. Neighbors along the chain are
included because they contain information on local secondary structure, which
is ultimately weighted by the neural network in an automatic fashion. An inte-
ger valued vector which is essentially the residue composition of each spatial bin
therefore serves to invariantly represent the geometrical location and identity of
spatial neighbors within each sphere. The contents of local neighborhoods from
a database of sequences with little homology is used to train a neural network
using backpropagation and the relative-entropy error function to distinguish nati-
ve from non-native configurations. Alan Lapedes et al. [29] developed a potential
with multi-body interactions, parameterized in “local neighborhoods” for each
residue. He generalized other threading approaches, and ended up in a statistical
interpretation. To employ a neural net for finding a log-likelihood ratio containing
higher order terms of interaction, it is necessary to find a suitable representation

of the available structural information. To tackle this problem an internal coordi-



nate system is defined, setting the C®-atom to the center, and constructing two
vectors pointing to the neighboring chain atoms: C' and N. This plane has been
shown to have an almost constant angle, and a third dimension is spanned by
the cross product of C°NxC°C. Further a binned sphere is constructed around
the center (C®-atom) of the coordinate system, representing a “neighborhood
shell” of residues. To order this shell to spatial residues, the sphere is split into a

predefined number of finite, binned sub-shells.

The chain neighbors, carrying information necessary for secondary structure, can
be included as well. The M bins are filled with integers mimicking the 20 amino
acids, describing the surrounding of a particular C* atom. The neural net is
trained on the pdb-select database, and parameters as number of sub-bins, bin
size, or bin resolution were varied. Approaches using C? as a core atom showed

better results in threading experiments.

3 The z-score

The quality of knowledge-based potentials can be assessed by the socalled z-score,
to test how well the potentials differentiate the native fold of a protein from an

ensemble of misfolded structures [67]. The z-score is calculated by:

W(e,%) - W)

ow ()

2(z,9) =

(5)

where W (z,%) is the energy of the native structure of a protein, W (z) is the
average energy of sequence z in all conformations (misfolds) in a database and
ow () is the standard deviation of the corresponding distribution. Normalization
of energies is necessary since the relative ground state energies of different se-
quences are not available. The z-score introduces a proper normalization, where
the range of values of native folds is known [12]. Conversely, this z-score can be
used as an approach to inverse folding: Given a fixed conformation ¥ one could
search for sequences z; that give z-scores z(z, ¥) close to the z-score of the native

sequence x.



4 Inverse Folding of Proteins

4.1 Inverse Folding

The native structure v of a given amino acid sequence x corresponds to the
minimum of its free energy, W (x, ). If this energy function W were known the
native fold could in principle be predicted from the amino acid sequence by energy
minimization in conformation space. Although the energy function is complex and
the computational problems are formidable, this is in principle a straightforward
recipe. It has indeed been used successfully to investigate the sequence-structure
relation for RNA molecules [54].

Inverse folding is, not just minimization of the energy function in sequence space
for a given conformation. This would be the case only if the energy function were
normalized such that the native state (ground state) of each sequence is equal
to 0. This, of course, amounts to solving the protein folding problem for each
possible sequence first. As a consequence exploring sequence space seems to be

even more demanding than the folding problem.

However, in our previous work [3] we have established that the optimization
problem can be solved using an inverse folding approach procedure known as
adaptive walk, in which a randomly chosen sequence position is mutated and the

mutation accepted if the z-score improves.

The existence of Neutral Paths and Neutral Networks in Protein Space similar to
the RNA case was studied with both the PROSA II and NN potentials using a

neutral walk algorithm .

The size of protein space makes it virtually impossible to check directly whether
the neutral sets S(¢) form extensive connected networks, or whether they consist
of a large number of disconnected isolated clusters. However, the existence of very
long neutral paths suggest that extensive neutral networks of sequences folding
into the same structure percolate the entire sequence space [48]. The existence of
extensive neutral networks meets a claim raised by Maynard-Smith [42] for pro-

tein spaces that are suitable for efficient evolution. The evolutionary implications
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of neutral networks are explored in detail in [37]. Empirical evidence for a large
degree of functional neutrality in protein space was presented by Wain-Hobson
and co-workers [41]. In previous studies we have introduced neutral paths as a
tool to measure the connectedness of neutral sets [53, 3]. The usefulness of this

approach is also demonstrated in [25].

As a measure for the quality of fit of sequence z and structure 1) we use the z-score
defined in equation (5) [12]. For the PROSA II potential we use the same database
as in [12]. Formally, we can now translate inverse folding into an optimization

problem on the set of all sequences: we are looking for an optima x of the z-score

2(2,1).

4.2 Neutral Sets

Sequences belonging to the same fold 9 form a subset S(¢) of sequence space.
These sequences are called neutral, S(¢) being the neutral set of fold 1. The
shape or topology of neutral sets has important implications for the evolution of

proteins and for de novo design [3].

In order to characterize the topology of neutral sets S(¢)) we need a technique
for deciding whether a given sequence z is a member of S(¢), that is, whether
x folds into the structure ¢. This problem is less demanding than predicting the
unknown structure of a given sequence. It can be investigated by inverse folding
techniques [20, 8].

Neutral paths provide a convenient tool to study the properties of S(¢). A neutral
path starting at a sequence zy folding into a structure v consists of sequences

T1,Ta,... such that

(i) the sequences z; is obtained by a single point mutation from z;_; for all

1> 0,
(ii) all sequences z; fold into v, and

(iii) the Hamming distance dy(zo,x;) = i, i.e., each mutation increases the di-

stance from the starting point [53].
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Since we have not solved the folding problem, we have to resort to a slightly
weaker notion of neutrality, we accept a sequence x; as folding into the prescribed
structure 1 if its z-score is similar or better than the wild-type score z*. A neutral
path ends after £L < n steps when no mutant of x; can be found that has

Hamming distance £ + 1 from the starting point and folds into ).

The usefulness of this approach is demonstrated in [25]. The data we have accu-
mulated shows that there are indeed extensive neutral paths, and consequently
also neutral networks in protein space. Some data is listed in Table 13. We found
that neutral paths within the sets S() extend to almost the length of the ami-
no acid sequence. We conclude that neutral sets therefore form extensive neutral
networks that percolate the entire sequence space. The results of our neutral walk

simulations are discussed in detail in Chapter 7.

4.3 Adaptive Walks

From the computational point of view, an adaptive walk is the simplest heuristic
to find the optima z of the z-score z(z, ). It is sufficient to repeatedly try random
mutations that are accepted if and only if the z-score improves, see Figure 3. In
this study we use only point-mutations. The frequency of amino acids in randomly
generated sequences, are the natural frequencies of the amino acids in known

proteins.

While the procedure would eventually terminate in a local optimum, in practice
we terminate the algorithm at a predefined threshold score z* . In all cases we
choose z* identical or 2 to 5 z-score units better than the z-score of the wildtype
sequence/structure pair. In the case of the PROSA II potentials we require that

both the C® and the C® z-scores improve with each step of the adaptive walk.

Adaptive walks already yield some insight into the structure of protein space.
The length £ of adaptive walks, that is, the number of accepted steps until z*
is reached, gives information about the ruggedness of the energy landscape [38].

Longer walks imply smoother surfaces with few local optima.

In Table 1 it is shown that adaptive walks with the NN potential are consistently
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F1GURE 2: Comparism of adaptive walks with the NN potential and the PROSA II potential.
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FIGURE 3: Adaptive walks with the NN potential (solid lines) and the PROSA II potential (dotted
lines).

longer than walks on the PROSA ITI surface. Thus the NN potential surface contains
fewer sequences with wildtype like z-scores, that is, the NN potential yields in ge-
neral a smaller neutral set than the PROSA II potential (see Figure 3). The results

of all our adaptive walks experiments will be discussed in detail in section 5.8.
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TABLE 1: Average length ¢ of Adaptive Walks to reach wildtype z-score.

PROSA II NN
Protein ¢l {4/n ¢ L/n
lcbn 18.7 | 0.406 —— ——
lubg | 61.9 | 0.814 | 75.4 | 0.992
ladr 31.7 10417 —— | ——
4icb 60.3 | 0.793 | 75.4 | 0.992
2trxa 71.7 1 0.664 | 112.0 | 1.037
1rro 79.1 1 0.732 | 125.6 | 1.163
lcew 44.1 1 0.408 | 76.0 | 0.703
1lyz 58.2 | 0.451 | 115.2 | 0.893

The length of the walk £ is averaged over 5 runs. £/n is the average length walk

normalized by the number of amino acids n in each sequence.

In order to compare the predictions from both potentials we have taken adaptive
walks computed with one potential and re-evaluated the sequences with the other
potential. Not surprisingly, sequences with bad z-score values in one potential do
not score well in the other one. We observe a strong correlation e.g. between the
two potential functions, see Figure 2 and Table 11. However, sequences that are

native-like in one potential usually have insufficient z-scores in the other one.

The results of our adaptive walks indicate that the sets S(¢) are large (indeed,
we never encountered the same inverse folded sequence twice) and spread out in
sequence space. The data collected in Table 13 show that the average Hamming
distances (d)aqw of inverse folded sequences are comparable to the sequence length
for both potential functions. We find, therefore, that the elements of S(%) are

approximately randomly distributed over sequence space.



5 The Protein Structures

Due to the nature of the potentials employed for our calculations, only globular
proteins were selected for our experiments. Prior to their use, their suitability was
established with the Prosa II Potential, to ensure, that all their parameters (Cj,
and Cp z-score, energy values) lie within the desired range. The proteins were also
chosen according to their size, the largest protein used contains 129 amino acids
(11yz) to ensure that the computer time necessary for each experiment remained
within a tolerable limit. The structures used were all well refined and scored well

within the PROSA II energy ranking. These are the proteins in detail.?

5.1 P22 C2 Repressor

FIGURE 4: DNA-binding domain of P22, PDB Structure 1ADR

The PDB Structure 1ADR belongs to the amino-terminal DNA-binding domain,
residues 1 - 76 of the P22 ¢2 Repressor, derived from Salmonella bacteriophage p22
and expressed in (Escherichia coli), Its structure was elucidated by means of NMR
studies. This protein allows the phage to reside inactively in the chromosome of its
host bacterium. This lysogenic state is maintained by binding of the regulatory

protein ¢2 to the or and ol operators, preventing the transcription of proteins

2) All Information about structural motifs were taken from PDBsum:
http://www.biochem.ucl.ac.uk/bsm/pdbsum/desc.html
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necessary for lytic development. P22 is equivalent and similar to lambda repressor

protein c;.

TABLE 2: Structure Motifs of 1ADR

Motifs Number | Start | End | n | Sequence
a-helices 1 6 17 | 12 | MGERIRARRKKL

2 21 28 | 8| QAALGKMV

3 32 39 | 8| NVAISQWE

4 47 56 | 10 GENLLALSKA

5 61 66 6 PDYLLK
[-turns 1 41 44 | 4| SETE

2 72 75| 4| TNVA

3 73 76 | 4| NVAY

The wildtype sequence of the amino-terminal DNA-binding domain is:
MNTQLMGERIRARRKKLKIRQAALGKMVGVSNVAISQWERSETEPNGENLLALSKALQCSPDYLLK
GDLSQTNVAY. Its principal structural motifs are 5 a-helices and 3 [-turns see
Table 2.

5.2 Ubiquitin

F1GURE 5: Ubiquitin from Human Erythrocytes, PDB Structure 1UBQ
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Ubiquitin is a small protein present in all eucaryotic cells, hence the name. It
plays an important role in tagging proteins for destruction. This protein is highly
conserved in evolution: yeast and human ubiquitin differ at only 3 of 76 residues.
The carboxyl-terminal glycine becomes covalently attached to the e-amino group

of lysine residues of proteins destined to be degraded.

The PDB structure of Ubiquitin from human erythrocytes resolved at A 1.8 was
used for our calculations Its wildtype sequence is:

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKEST
LHLVLRLRGG. It contains 3 a-helices, 6 S-turns and 5 (3-strands see Table 3 This
protein structure was already used for extensive prior studies [3], therefore its

properties and behaviour in this experiments were already well established.

TABLE 3: Structure Motifs of 1UBQ

Motifs Number | Start | End | n | Sequence
a-helices 1 23 34 | 12 | IENVKAKIQDKE

2 38 40 | 3| PDQ

3 57 59 | 3| SDY
[-turns 1 7 10| 4| TLTG

2 18 21 4 EPSD

3 44 47 | 4| TIFAG

4 45 48 | 4| FAGK

5 51 54 | 4| EDGR

6 62 65| 4| QKES
(-strands 1 2 7| 6| QIFVKT

2 12 16 5 TITLE

3 41 45| 5| QRLIF

4 48 49 | 2| KQ

5 66 71 6 TLHLVL
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5.3 Calbindin D9K

FI1GURE 6: Calbindin from Bos Taurus, PDB Structure 4ICB

41CB is an intestinal vitamin D-dependent calcium-binding protein, it was isolated
from Bos Taurus (Bovine) and refined by X-ray diffraction at 1.60A. It is similar
to other ef-hand calcium binding proteins and more specifically to s-100/cabp
like proteins. Its wildtype sequence is:
MKSPEELKGIFEKYAAKEGDPNQLSKEELKLLLQTEFPSLLKGPSTLDELFEELDKNGDGEVSFEE
FQVLVKKISQ. The principal structural motifs are 7 a-helices, 3 - and 1 y-turn
see Table 4.

TABLE 4: Structure Motifs of 4ICB

Motifs Number | Start | End | n | Sequence
a-helices 1 3 14 | 12 | PEELKGIFEKYA
2 25 35 | 11 | KEELKLLLQTE
3 37 40 | 4| PSLL
4 46 53 8 | LDELFEEL
5 63 66 | 4| FEEF
6 67 69 | 3| QVL
7 70 74| 5| VKKIS
[-turns 1 17 20| 4| EGDP
2 19| 22| 4| DPNQ
3 54 57 | 4| DKNG
y-turn 1 53 55| 3| LDK
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5.4 Thioredoxin

FicUre 7: Thioredoxin from E. Coli, PDB Structure 2TRXA

Thioredoxin is an electron carrier protein. It acts as an electron donor in the
reduction of ribonucleotides and plays an important role in controlling the dark
reaction of photo synthesis. It controls the activities of various enzymes in many
kinds of cells by reducing disulfide bonds. The active form of thioredoxin contains
two cystein which are oxidized to form a disulfide bond when thioredoxin activates
other enzymes. Thioredoxin is reactivated by reduction of the disulfide bond by
ferredoxin. The PDB Structure 2TRXA used for our studies is a thioredoxin from
E. Coli ( 108 amino acids) resolved at 1.68 A. Its main structural motifs are four
a-Helices and one 3-sheet consisting of five 3-strands see Table 5 and 10 (-turns
(not listed in Table 5. The active site is located at the amino-terminus of the
second alpha-helix. It contains a disulfide bridge between Cys32 and Cys35. Its
wildtype sequence is:
SDKITHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGT
APKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA.

This protein structure was also used for extensive prior studies [3], therefore its

properties and behaviour in this experiments were already well established.

The following two proteins were chosen for their globular structure as well as
for their sequence length to act as partners for the closest approach studies with
Thioredoxin, an other important feature is their structural dissimilarity to thio-

redoxin.
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TABLE 5: Structure Motifs of 2TRXA

Motifs Number | Start | End | n | Sequence
a-helices 1 12 15| 4 | FDTD
2 33 48 | 16 | GPCKMIAPILDEIADE
3 66 69 | 4 | TAPK
4 96 | 107 | 12 | KGQLKEFLDANL
[-strands 1 4 6| 3|IIH
2 22 28 7 | AILVDFW
3 53 59 | 7 | LTVAKLN
4 77 82 6 | TLLLFK
5 85 91 | 7 | EVAATKV

5.5 Cystatin

FIGURE 8: Cystatin from hen egg white, PDB Structure 1CEW

Cystatin (1CEW) isolated from hen egg white is a phosphoprotein and a cysteine

proteinase inhibitor belonging to the same super-family as the stefin family and

the kininogen family [6]. This protein binds tightly to and inhibits a variety of

thiol proteases including ficin, papain, and cathepsins b, ¢, h, and 1. Although

isolated from egg white, it is also present in serum. The main structural motifs

are 1 (-sheet, 3 a-helices and 5 (-strands (see Table 6). Furthermore it contains

2 disulphide bridges. Its wildtype sequence is:

GAPVPVDENDEGLQRALQFAMAEYNRASNDKYSSRVVRVISAKRQLVSGIKYILQVEIGRTTCPKS
SGDLQSCEFHDEPEMAKYTTCTFVVYSIPWLNQIKLLESKCQ.
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TABLE 6: Structure Motifs of 1CEW

Motifs Number | Start | End | n | Sequence
a-helices 1 19 28 | 10 | EGLQRALQFA

2 30 33 | 4 | AEYN

3 78 85 | 8 | LQSCEFHD
[-strands 1 12 13| 2| VP

2 40 54 | 15 | YSSRVVRVISAKRQL

3 58 72 | 15 | IKYILQVEIGRTTCP

4 92 | 102 | 11 | YTTCTFVVYSI

) 107 | 115 9 | QIKLLES

5.6 Rat Oncomodulin

FIGURE 9: Oncomodulin from rat tumours, PDB Structure 1RR0

Oncomodulin belongs to the Parvalbumin sub-family, it is a calcium-binding pro-

tein, it has some calmodulin-like activity with respect to enzyme activation and

growth regulation and can be found in tumor tissues and not detected in normal

tissues. The PDB Structure 1RR0 is that of rat oncomodulin, it was isolated from

rat tumours (Morris Hepatoma) and resolved at 1.30A. Its principal structural

motifs are 2 S-strands, 9 a-Helices, 5 S-turns (see Table 7) and array of 3 hairpins

and two EF-hands (not listed in Table 7). The wildtype sequence is:

SITDILSAEDIAAALQECQDPDTFEPQKFFQTSGLSKMSASQVKDIFRFIDNDQSGYLDGDELKYF
LQKFQSDARELTESETKSLMDAADNDGDGKIGADEF(QEMVHS.
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TABLE 7: Structure Motifs of 1RRO

Motifs Number | Start | End | n | Sequence
a-helices 1 2 4| 3| ITD
2 8| 17| 10 | AEDIAAALQE
3 26 33 | 8 | PQKFFQTS
4 35 37| 3 |LsK
5 40 50 | 11 | ASQVKDIFRFI
6 61 64 4 | DELK
7 66 69 | 4| FLQK
8 79 89 | 11 | ESETKSLMDAA
9 99 | 106 | 8 | ADEFQEMV
[-strands 1 57 58 | 2| YL
2 97 98 | 2| 1IG
[-turns 1 20 23 | 4| DPDT
2 51 54 | 4 | DNDQ
3 69 72 | 4 | KFQS
4 71 74| 4| QSDA
5 90 93 | 4 | DNDG

5.7 Lysozyme

FI1GURE 10: Lysozyme from chicken egg white, PDB Structure 1LYZ

Lysozyme is an enzyme capable of dissolving certain bacteria by lysis meaning
by cleaving the polysaccharide component of their cell wall. It is a relatively
small enzyme. The lysozyme from chicken egg white resolved at 2.0 Awhich was
used for our calculations, is a single polypetide chain of 129 residues. This highly

stable protein is cross-linked by four disulfide bridges: between Cys 6 and 127, 30
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TABLE 8: Structure Motifs of 1Lyz

Motifs Number | Start | End | n | Sequence
a-helices 1 5 14 | 10 | RCELAAAMKR

2 26 36 | 11 | GNWVCAAKFES

3 80 84 | 5 | CSALL

4 89 98 | 10 | TASVNCAKKI

5 104 | 107 | 4 | GMNA

6 109 | 114 | 6 | VAWRNR

7 120 | 123 4 | VQAW
(-strands 1 43 45| 3 | TNR

2 51 53 | 3| TDY

3 58 59 | 2| IN

and 115, 64 and 80, 76 and 94. The active site contains Asp 52 and Glu 35. Its
wildtype sequence is:
KKLGRCELAAAMKRHGLQNERGLSMGNWVCAAAFESNFNTQATNRNTDGSTDYTFLQINSRWWC
NDGRAPGSRNLCGIPCSALLSSDITASVNCAVKIYSDGNGCNIMVAWRNRCKGTDEQRWIRGCRL.
Its principal structural motifs are seven a-Helices, 1 3-sheet consisting of three
B-strands (see Table 8) and 13 Turns (not listed in Table 8).

5.8 The Janus Proteins

Cols*E1 Repressor of Primer and Protein G

1pgb

FIGURE 11: PDB Structure 1ROP and 1PGB
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TABLE 9: Structure Motifs of 1ROP

Motifs Number | Start | End | n | Sequence

a-helices 1 3 28 | 26 | KQEKTALNMARF IRSQTLTLLEKLNE
2 32 55 | 24 | DEQADICESLHDHADELYRSCLAR

v-turn 1 30 32| 3| DAD

The PDB Structure 1ROP is that of the regulatory protein of E.Coli refined at
1,70A, it regulates plasmid DNA replication by modulating the initiation of tran-
scription of the primer RNA precursor. processing of the precursor of the primer,
RNA 1I, is inhibited by hydrogen bonding of RNA II to its complementary se-
quence in RNAIL ROP increases the affinity of RNAI for RNA IT and thus decrea-
ses the rate of replication initiation events. In its native form it is an anti-parallel
homo dimer. A monomer of 1rop contains 2 a-helices and 1 4-turn (see Table 9).
Its wildtype sequence is :
MTKQEKTALNMARFIRSQTLTLLEKLNELDADEQADICESLHDHADELYRSCLARFGDDGENL

TABLE 10: Structure Motifs of 1PGB

Motifs Number | Start | End | n | Sequence
a-helix 1 23 36 | 14 | AATAEKVFKQYAND
[-strands 1 2 8 | 7| TYKLILN

2 13 19 7 | KGETTTE

3 42 46 5 | EWTYD

4 51 55 | 5 | TFTVT
[-turnss 1 9 12 | 4 | GKTL

2 46 49 4 | DDAT

3 47 50 4 | DATK

The PDB-Structure 1PGB belongs to the bl igG-binding domain of Protein G iso-
lated from Streptococcus, Lancefield group G. It was resolved at 1.92 A. Protein
G is a small globular protein produced by several Streptococcal species. Protein
G’s bind the Fc regions of IgG very tightly, in this functional characteristic, they
resemble the staphylococcal protein A Its main structural motifs are 13-sheet
consisting of 4 B-strands, 1 a-helix, 3 beta turns (see Table 10) and 2 S-hairpins
(not listed in Table 10). Its wildtype sequence is:
MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE



6 Adaptive walks

As mentioned in section 4.3 adaptive walks yield insight into the structure of
protein space. The length ¢ of adaptive walks gives information about the rug-
gedness of the energy landscape [38]. Longer walks imply smoother surfaces with
few local optima. In this section we discuss in detail the results of our adaptive

walk experiments.

In order to compare the predictions from both potentials we have taken adaptive
walks computed with one potential and re-evaluated the sequences with the other
potential. As would be anticipated, sequences with bad z-score values in one
potential do not score well in the other one. Thus, we observe a strong correlation
between the two potential functions. Still, as a rule we have found that sequences
that are native-like in one potential usually have insufficient z-scores in the other

one.

Adaptive walks can be used to optimize the z-score of a sequence well beyond
the native-like threshold level z*. We find that sequences with unnaturally good
z-score levels in one potential often have z-scores at least close to the native
value of the other potential. It is interesting to note that sequences optimized
with the NN potential yield more native-like PROSA z-scores than vice versa. In
the following sections, we discuss the results of the re-evaluation of the adaptive

walks in detail.

Note that better z-scores in the NN Potential are more positive (see e.g. Figure 22),
while in the PROSA II Potential better z-scores have more negative values (see

e.g. Figure 12).

6.1 Adaptive Walks 1ADR

The protein 1ADR (n = 76) is the only protein that was only evaluated in one
potential PROSA II. It was impossible to integrate it into the fingerprint database
of the NN Potential. Hence, the results for this protein could not be re-evaluated

with the other potential. Figure 12 shows the results of the 10 adaptive walks
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with the PROSA II potential. The algorithm terminated each run at a predefined
threshold score z*. We choose z* 10 z-score units better than the z-score of the
wildtype sequence/structure pair (zwt = —7.02). In the case of the PROSA II
potentials we require that both the C® and the C? z-scores improve with each
step of the adaptive walk. For 1ADR we found that the average length ¢ of all
adaptive walks to reach wildtype z-score was 31.7, corresponding to 41.7 % of

the sequence length.

Adaptive Walks with PROSAII
1ADR
4 \

-18 L L L L L L L
0 20 40 60 80 100 120 140

number of accepted mutations

FI1GURE 12: 1ADR, 10 Adaptive Walks with PROSA II

6.2 Adaptive Walks 1UBQ

1UBQ (n = 76) was evaluated with both the PROSA II and the NN Potential.

Figure 13 shows the results of the 10 adaptive walks with the PROSA II potential.
The algorithm terminated each run at a predefined threshold score z*, z* being
6 z-score units better than the z-score of the wildtype sequence/structure pair
(2wt = —9.26). We found that the average length ¢ of all adaptive walks to reach

wildtype z-score was 61.9, corresponding to 81.4 % of the sequence length.

The data from these runs was re-evaluated using the NN Potential (see Figure 14).
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Adaptive Walks with PROSAII
1UBQ
5 ‘ ‘ ‘ —

Z—-score

_17 Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160

number of accepted mutations

FIGURE 13: 1UBQ, 10 Adaptive Walks with PROSA 1T

1UBQ

PROSAII zscore
NN wt-zscore

-16 L L L L L L L L L L L L L L L L L L

NN zscore

FIGURE 14: 1UBQ, 10 Adaptive Walks with PROSA II evaluated with the NN Potential

Obviously even the sequences that scored well above wildtype level in the PROSA
IT potential do not reach wildtype level in the NN Potential. The best z-score
that was achieved in the NN Potential was 5.14 which is approximately one units

below the NN z-score for wildtype 1UBQ. However, calculating the regression of
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FIGURE 15: Regression of 10 Adaptive Walks in Figure 14
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FIGURE 16: 1UBQ, 5 Adaptive Walks with the NN Potential
the results from this comparison (see Figure 15), we find that along the adaptive
walks, we obtain an approximately linear relationship.

Figure 16 shows the results of the 5 adaptive walks with the NN potential. No

predefined threshold z-score was implemented to terminate the runs for the NN
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FIGURE 17: 1UBQ), 5 Adaptive Walks with the NN Potential evaluated with PROSA IT

adaptive walks. The modus of these runs was to mutate a sequence, accepting
only those changes that don’t decrease the fitness in comparison to the previous
test sequence. The z-scores evolved well beyond the z-score of the wildtype se-

quence/structure pair (zyt = 6.40).

We found that the average length ¢ of all adaptive walks to reach wildtype z-score

was 75.4, corresponding to 99.2 % of the sequence length.

The data from these runs was re-evaluated using the PROSA II Potential (see
Figure 17). The sequences that scored well above wildtype level in the NN potential
did not reach wildtype level in the PROSA II potential. The best z-score that was
achieved in the PROSA II Potential by the NN sequences, was 8.7 which is 0.5 units
below the PROSA II z-score for wildtype 1UBQR. Calculating the regression of the
results from this comparison (see Figure 18), we again obtain an approximately

linear relationship.

6.3 Adaptive Walks 4ICB

4ICB (n = 76) was evaluated with both the PROSA II and the NN Potential.
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FIGURE 18: Regression of 5 Adaptive Walks in Figure 17
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FIGURE 19: 4ICB, 10 Adaptive Walks with PROSA II

Figure 19 shows the results of the 10 adaptive walks with the PROSA II potential.
The algorithm terminated each run at a predefined threshold score z*, z* being
5 z-score units better than the z-score of the wildtype sequence/structure pair
(2t = —8.08).
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FIGURE 20: 4ICB, 10 Adaptive Walks with PROSA IT evaluated with the NN Potential

We found that the average length ¢ of all adaptive walks to reach wildtype z-score

was 60.3, corresponding to 79.3 % of the sequence length.

The data from these runs was re-evaluated using the NN Potential (see Figure 20).
Obviously even the sequences that scored well above wildtype level in the PROSA
IT potential do not reach wildtype level in the NN Potential.

The best z-score that was achieved in the NN Potential was 6.6 which is appro-
ximately two units below the NN z-score for wildtype 4ICB. However, calculating
the regression of the results from this comparison (see Figure 21), we find that

along the adaptive walks, we obtain an approximately linear relationship.

Figure 22 shows the results of the 5 adaptive walks with the NN potential. No
predefined threshold z-score was implemented to terminate the runs for the NN
adaptive walks. The modus of these runs was to mutate a sequence, accepting
only those changes that don’t decrease the fitness in comparison to the previous
test sequence. The z-scores evolved well beyond the z-score of the wildtype se-

quence/structure pair (zyt = 8.08).

We found that the average length ¢ of all adaptive walks to reach wildtype z-score

was 75.4, corresponding to 99.2 % of the sequence length.
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FIGURE 21: Regression of 10 Adaptive Walks in Figure 20
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FIGURE 22: 4ICB, 5 Adaptive Walks with the NN Potential

The data from these runs was re-evaluated using the PROSA II Potential (see
Figure 23). The sequences that scored well above wildtype level in the NN potential
did not reach wildtype level in the PROSA II Potential, the best z-score that was
achieved in the PROSA II Potential by the NN sequences, was 8.1 which is two units
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FI1GURE 23: 4ICB, 5 Adaptive Walks with the NN Potential evaluated with PROSA II
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FIGURE 24: Regression of 5 Adaptive Walks in Figure 23
below the PROSA II z-score for wildtype 4ICB. Calculating the regression of the

results from this comparison (see Figure 24), we again obtain an approximately

linear relationship.
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6.4 Adaptive Walks 1CEW

1CEW (n = 108) was evaluated with both the PROSA II and the NN Potential. This
was the only case were both the sequences from the PROSA II adaptive walks and
the NN adaptive walks reached above wildtype level when they were re-evaluated

in the other potential!

Figure 25 shows the results of the 10 adaptive walks with the PROSA II potential.

Adaptive walk PROSAII
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FIGURE 25: 1ICEW, 10 Adaptive Walks with PROSA II

The algorithm terminated each run at a predefined threshold score z*, z* being
10 z-score units better than the z-score of the wildtype sequence/structure pair
(ZW‘E = —5.91).

We found that the average length ¢ of all adaptive walks to reach wildtype z-
score was 44.1, corresponding to 40,8 % of the sequence length. The data from
these runs was re-evaluated using the NN Potential (see Figure 26). Obviously
even the sequences that scored well above wildtype level in the PROSA II barely
reached wildtype level in the NN Potential, the best z-score that was achieved in
the NN Potential was 6.9 which is slightly better than the NN z-score for wildtype
1CEW. Calculating the regression of the results from this comparison (see Figu-

re 21), we find that along the adaptive walks, we obtain an approximately linear
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F1cUuRE 26: 1ICEW, 10 Adaptive Walks with PROSA IT evaluated with the NN Potential
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FIGURE 27: Regression of 10 Adaptive Walks in Figure 26

Figure 28 shows the results of the 5 adaptive walks with the NN potential. No

predefined threshold z-score was implemented to terminate the runs for the NN
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adaptive walks.

Hillclimbs NN Potential
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F1GURE 28: 1ICEW, 5 Adaptive Walks with the NN Potential

The modus of these runs was to mutate a sequence, accepting only those changes
that don’t decrease the fitness in comparison to the previous test sequence. The
z-scores evolved well beyond the z-score of the wildtype sequence/structure pair
(2wt = 6.20).

We found that the average length ¢ of all adaptive walks to reach wildtype z-score

was 76.0, corresponding to 70.3 % of the sequence length.

The data from these runs was re-evaluated using the PROSA II Potential (see
Figure 29). The sequences that scored well above wildtype level in the NN potential
reached wildtype level in the PROSA II Potential, the best z-score that was
achieved in the PROSA II Potential by the NN sequences, was 6.9 which is one
unit above the PROSA ITI z-score for wildtype 1CEW.

Calculating the regression of the results from this comparison (see Figure 30), we

again obtain an approximately linear relationship.
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F1GURE 29: 1ICEW, 5 Adaptive Walks with the NN Potential evaluated with PROSA II
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F1GURE 30: Regression of 5 Adaptive Walks in Figure 29

6.5 Adaptive Walks 1RR0

1RRO (n = 108) was evaluated with both the PROSA II and the NN Potential.

Figure 31 shows the results of the 10 adaptive walks with the PROSA II potential.
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The algorithm terminated each run at a predefined threshold score z*, z* being
5 z-score units better than the z-score of the wildtype sequence/structure pair
(2wt = —10.88).

Adaptive walks with PROSAII
1RRO
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FIGURE 31: 1RRO, 10 Adaptive Walks with PROSA II

We found that the average length £ of all adaptive walks to reach wildtype z-score

was 79.1, corresponding to 73.2 % of the sequence length.

The data from these runs was re-evaluated using the NN Potential (see Figure 32).
Obviously even the sequences that scored well above wildtype level in the PROSA
IT potential do not reach wildtype level in the NN Potential.

The best z-score that was achieved in the NN Potential was 7.2 which is appro-
ximately two units below the NN z-score for wildtype 1RR0. However, calculating
the regression of the results from this comparison (see Figure 33), we find that

along the adaptive walks, we obtain an approximately linear relationship.

Figure 34 shows the results of the 5 adaptive walks with the NN potential. No
predefined threshold z-score was implemented to terminate the runs for the NN
adaptive walks. The modus of these runs was to mutate a sequence, accepting
only those changes that don’t decrease the fitness in comparison to the previous

test sequence. The z-scores evolved well beyond the z-score of the wildtype se-
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F1GURE 32: 1IRRO, 10 Adaptive Walks with PROSA II evaluated with the NN Potential
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FI1GURE 33: Regression of 10 Adaptive Walks in Figure 32

quence/structure pair (zwt = 9.80).

We found that the average length ¢ of all adaptive walks to reach wildtype z-score
was 125.6, corresponding to 116.3 % of the sequence length. The data from these

runs was re-evaluated using the PROSA II Potential (see Figure 35).
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Fi1cUrE 34: 1IRRO, 5 Adaptive Walks with the NN Potential
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FI1GURE 35: 1IRRO, 5 Adaptive Walks with the NN Potential evaluated with PROSA II

The sequences that scored well above wildtype level in the NN potential did not
reach wildtype level in the PROSA II Potential, the best z-score that was achie-
ved in the PROSA II Potential by the NN sequences, was 8.8 which is two units
below the PROSA II z-score for wildtype 1RRO.
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FIGURE 36: Regression of 5 Adaptive Walks in Figure 35

Calculating the regression of the results from this comparison (see Figure 36), we

again obtain an approximately linear relationship.

6.6 Adaptive Walks 2TRXA

2TRXA (n = 108) was evaluated with both the PROSA II and the NN Potential.

Figure 37 shows the results of the 10 adaptive walks with the PROSA II potential.
The algorithm terminated each run at a predefined threshold score z*, z* being
6 z-score units better than the z-score of the wildtype sequence/structure pair
(2wt = —9.22).

We found that the average length ¢ of all adaptive walks to reach wildtype z-score

was 71.7, corresponding to 66.4 % of the sequence length.

The data from these runs was re-evaluated using the NN Potential (see Figure 38).
Obviously even the sequences that scored well above wildtype level in the PROSA
IT potential do not reach wildtype level in the NN Potential.

The best z-score that was achieved in the NN Potential was 6.6 which is approxi-
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Fi1cUre 37: 2TRXA, 10 Adaptive Walks with PROSA II
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FI1cURE 38: 2TRXA, 10 Adaptive Walks with PROSA II evaluated with the NN Potential

mately two units below the NN z-score for wildtype 2TRXA. However, calculating
the regression of the results from this comparison (see Figure 39), we find that

along the adaptive walks, we obtain an approximately linear relationship.

Figure 40 shows the results of the 5 adaptive walks with the NN potential. No
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FIGURE 39: Regression of 10 Adaptive Walks in Figure 38

predefined threshold z-score was implemented to terminate the runs for the NN
adaptive walks.

The modus of these runs was to mutate a sequence, accepting only those changes
that don’t decrease the fitness in comparison to the previous test sequence. The
z-scores evolved well beyond the z-score of the wildtype sequence/structure pair
(2wt = 8.06).

We found that the average length £ of all adaptive walks to reach wildtype z-score

was 112.0, corresponding to 103.7 % of the sequence length.

The data from these runs was re-evaluated using the PROSA II Potential (see
Figure 41). The sequences that scored well above wildtype level in the NN potential
came close to wildtype level in the PROSA II Potential.

The best z-score that was achieved in the PROSA II Potential by the NN sequences,
was 7.3 which is 0.8 units below the PROSA II z-score for wildtype 2TRXA. Cal-
culating the regression of the results from this comparison (see Figure 42), we

again obtain an approximately linear relationship.
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FIGURE 40: 2TRXA, 5 Adaptive Walks with the NN Potential
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FIGURE 41: 2TRXA, 5 Adaptive Walks with the NN Potential evaluated with PROSA IT
6.7 Adaptive Walks 1LYZ

1LYZ (n = 129) is the largest protein used in this study, it was evaluated with
both the PROSA II and the NN Potential.
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FIGURE 43: 1LYZ, 10 Adaptive Walks with PROSA II

Figure 43 shows the results of the 10 adaptive walks with the PROSA II potential.

The algorithm terminated each run at a predefined threshold score z*, z* bein

o
(=}

8 z-score units better than the z-score of the wildtype sequence/structure pair

(ZWT; = —7.45).
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FIGURE 44: 1LYZ, 10 Adaptive Walks with PROSA IT evaluated with the NN Potential
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FIGURE 45: Regression of 10 Adaptive Walks in Figure 44
The data from these runs was re-evaluated using the NN Potential (see Figure 44).

Obviously even the sequences that scored well above wildtype level in the PROSA
IT potential do not reach wildtype level in the NN Potential.

The best z-score that was achieved in the NN Potential was 6.5 which is appro-
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FIGURE 46: 1LYZ, 5 Adaptive Walks with the NN Potential

ximately one units below the NN z-score for wildtype 1LYZ. However, calculating
the regression of the results from this comparison (see Figure 45), we find that

along the adaptive walks, we obtain an approximately linear relationship.

We found that the average length £ of all adaptive walks to reach wildtype z-score

was 115.2, corresponding to 89.3 % of the sequence length.

The data from these runs was re-evaluated using the PROSA II Potential (see
Figure 47). Again, the sequences generated with the NN Potential scored better
in the PROSA II potential, i.e. the sequences that scored well above wildtype
level in the NN potential came close to wildtype level in the PROSA II Potential,
the best z-score achieved in the PROSA II Potential by theNN sequences, was 7.7
which is only 0.2 units below the PROSA II z-score for wildtype 1LYZ. Calculating
the regression of the results from this comparison (see Figure 48), we again obtain

an approximately linear relationship.
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FIGURE 47: 1LYZ, 5 Adaptive Walks with the NN Potential evaluated with PROSA 1T
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FIGURE 48: Regression of 5 Adaptive Walks in Figure 47
6.8 Summary

We have found that along an adaptive walk, we obtain an approximately linear

relationship between the scores from the two potentials (see Table 11).
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7 =az+0b

(6)

where z is the z-score w.r.t. the potential that is used to optimize the sequences
and 2’ is the z-score w.r.t. the other potential. For each protein, ¢ and b can
be determined rather accurately from 5 to 10 independent adaptive walks. The

scatter in the data is roughly one z-score unit.

TABLE 11: z-score comparisons.

Protein P slope intercept | zopt 2yt
Adaptive walks with NN potential

4icb 0.819 | 0.24 4+ 0.005 | 3.20 + 0.06 | 8.1 | 10.06
lubq 0.896 | 0.41 4+ 0.005 | 2.14 £ 0.05 | 8.7 | 9.22
1rro 0.932 | 0.31 +0.003 | 2.17 +£0.04 | 8.8 | 10.88
lcew 0.938 | 0.25 £ 0.002 | 1.86 £ 0.03 | 7.9 | 6.20
2trxa 0.945 | 0.38 £ 0.003 | 2.13+0.03| 7.9 | 9.22
1lyz 0.919 | 0.37 = 0.003 | 1.25+0.04 | 7.5| 7.70
Adaptive walks with PROSA II potential

4icb 0.886 | 0.44 4+ 0.007 | -1.40 + 0.07 | 6.6 | 8.08
lubq 0.939 | 0.44 4+ 0.003 | -3.57 £ 0.06 | 5.1 | 6.40
lrro 0.938 | 0.49 + 0.004 | -1.16 + 0.05 | 7.2 | 9.80
lcew 0.913 | 0.58 + 0.006 | -2.57 + 0.06 | 6.9 | 5.91
2trxa 0.904 | 0.47 + 0.006 | -1.21 £ 0.06 | 7.3 | 8.06
1lyz 0.836 | 0.30 + 0.005 | 0.71 +0.05 | 6.5 | 7.45

The sequences encountered along adaptive walks performed with one potential were
evaluated with the other potential, see equation (6). Zopt denotes the best scores in
the other potential, which should be compared to the corresponding wild type z-score
zwt and p is the correlation coefficient. The inaccuracies and inconsistencies of the
two potentials are reflected by the fact that ayy /PROSA X GprosA /NN > 1 while, if

the potentials were equivalent, we would observe that the product is exactly 1.

The data in Table 11 show that in some cases (1cew) we reach wildtype level in

the reevaluated sequences that were produced using the other potential, while in
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most cases the best scores are still one or two z-score units inferior. In general,
the sequences produced with the NN potential score somewhat better in the PROSA
than PROSA-optimized sequences do in NN. For example we almost reach PROSA-
wildtype level for 2trxa and 11lyz with NN-optimized sequences, while the best
PROSA-optimized sequences are still 0.8 z-score units short of the NN wildtype

level.



7 Neutral Networks

The size of protein space makes it virtually impossible to check directly whether
the neutral sets S(¢) form extensive connected networks, or whether they consist
of a large number of disconnected isolated clusters. In previous studies we have
introduced neutral paths as a tool to measure the connectedness of neutral sets
[53, 3.

TABLE 12: Neutral Walks

Protein | n L L/n
NN | PROSA NN | PROSA
1cbn' 46 | 36.1 44.6 | 0.786 | 0.956
lubq' 76 | 64.7 72.5 | 0.851 | 0.954
ladr 76 —— 74.9 —— | 0.986
dicb 76 | 68.2 73.6 | 0.898 | 0.968
1rro 108 | 95.9 | 105.4 | 0.879 | 0.976
2trxal | 108 | 87.5 | 106.3 | 0.810 | 0.984
lcew 108 | 100.8 | 106.7 | 0.898 | 0.988
1lyzt 129 | 1154 | 126.2 | 0.894 | 0.978

Neutral Walks (see section 4.2) were performed with all the proteins dicussed in
Chapter 5 except 1PGB and 1ROP to examine the extent of neutral paths in
Sequence Space. Since the NN Potentials had problems integrating 1ADR into the
fingerprint data base, there is no NN neutral walk data available for this structure
(see Table 12 and Table 13. For each structure 10 neutral walks were performed.
Table 12 shows the length of the neutral walks for both the PROSAand the NN
data. PROSA data for the structures marked with T Table 12 was taken in from
[3]. Table 13 shows the average distances of inverse folded sequences (10 neutral
walks and 5 adaptive walks for each structure), (d)a.qw, and the average distances
between the endpoints of independent neutral walks. These distances ((d)ny), are
comparable to the sequence length in both potentials. Hence, we can conclude
that neutral paths form connected neutral networks that extend through sequence

space.
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TABLE 13: Characteristics of Neutral Sets.

Protein  n (d) ydvw/m (d)ynw/n

NN | PROSA NN | PROSA
lcbn 46 —— | 0.841 | 0.785 | 0.919
lubq 76 | 0.896 | 0.803 | 0.851 | 0.872
ladr 76 — | 0.718 —— | 0.904
4icb 76 |1 0.539 | 0.731 | 0.898 | 0.854

2trxa 108 | 0.895 | 0.812 | 0.810 | 0.903
Irro 108 | 0.590 | 0.783 | 0.888 | 0.880
lcew 108 | 0.510 | 0.762 | 0.933 | 0.913
1lyz 129 | 0.916 | 0.822 | 0.895 | 0.920

Figures 49 to 56 show the distribution of z-scores encountered along neutral walks
for four representative protein structures (1rro, icew, lubq and 4icb) for both

potential functions.

Frequency of zscores in PROSAII Neutral Walks
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FIGURE 49: 1CEW, distribution of z-scores along a neutral walk with the PROSA II potential

While the acceptable z-scores were restricted to a defined interval around the
wild type z-score during the neutral walks performed with the NN potential, we

implemented no explicit upper or lower bound on the PROSA z-scores in our neutral
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F1GURE 50: 1CEW, distribution of z-scores along a neutral walk with the NN potential
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FIGURE 51: 1RR0, distribution of z-scores along a neutral walk with the PROSA II potential

walk algorithms. Still, we find that the neutral walks are confined between wild-

type level and only 1 z-score unit better than wildtype level.
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Frequency of zscores in NN Neutral Walks
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FI1GURE 52: 1RRO, distribution of z-scores along a neutral walk with the NN potential
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FIGURE 53: 1UBQ, distribution of z-scores along a neutral walk with the PROSA II potential
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Frequency of zscores in NN Neutral Walks
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FI1GURE 54: 1UBQ, distribution of z-scores along a neutral walk with the NN potential
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FIGURE 55: 4ICB, distribution of z-scores along a neutral walk with the PROSA IT potential
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Frequency of zscores in NN Neutral Walks
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FIGURE 56: 4ICB, distribution of z-scores along a neutral walk with the NN potential



8 Closest Approach and Shape Space Covering

A sequence-structure map exhibits shape space covering if it is possible to find
almost all relevant folds within a small radius around almost any randomly chosen
reference sequence. Similarly, we want to determine how close the neutral sets of
two different native strucures S(¢/) and S(y) come together. This is of particular
interest if ¥ and ¢ of two unrelated shapes, one, say containing only 3-sheets and
the other consisting of helices only. Due to the size of protein space, and of the

neutral sets, we cannot determine the closest approach distance

D¢(S(¥), S(¢)) = min{d(z,2')|z € S(¢) and 2" € S(p)} (7)
exactly.
However, consider a pair of walks {z;} and {y;} with the following properties:
(i) o € S(¢) and yo € S(¢p).

(ii) For all t: 441 € S(v) is a neighbor of z; that is closer to yy, i.e., d(z¢y1, Yt)

IAIA

d(xt,?/t) and analogously, ;41 € S(lb)a d(ytayt+1 = 1, and d(yt+1,$t)
d(ytuxt)-

(iii) The equalities d(x41,y:) = d(x¢, yr) or d(yer1,2:) = d(t:, z;) hold at most

M time-steps in a row, where M is a fixed constant.

The procedure terminates when no mutant z,1 € S(¢) of z,, can be found that
is closer to y, than z,, and no mutant y,;; € S(p) can be found that is closer

to x, than y,.

The residual distance d(z,,y,), provides a (good) upper bound on the closest
approach distance D(¢, ¢) of the two networks. For the purpose of this section
we have adopted a more restrictive definition of the neutral set of a shape 1 by

requiring that the z-score is contained in a narrow interval:

S(W) = {z € Qy(1.022" > 2(x,¥) > 2} (8)
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TABLE 14: Closest approach walks

Potential | D; Dy/n | Di/n | Do/n | Di/n | N
lcew/2trxa

PROSA II | 4.9 0.045 | 0.665 | 0.699 | 0.648 | 20
NN 5.2 0.048 | 0.838 | 0.843 | 0.785 | 10
2trxa/irro

PROSA II | 6.5 0.060 | 0.755 | 0.711 | 0.711 | 13
NN 6.5 0.060 | 0.858 | 0.834 | 0.801 | 10

Dy: Hamming distance between the pairs of final sequences for each run, D; and Dj:
Hamming distance of final sequences to their wildtype sequence, D¢/n, Di/n, Dy/n:
distances normalized by the sequence length n, D_f/ n is the respective average and N

the number of performed experiments

We start with a pair of sequences zo € S(¢) and yy € S(¢). We use the wildtype
sequence for both starting sequences xy and y,. We attempt to find a mutant
xz1 € S(¥) of xy that is closer to yo, and then mutant y; € S(¢) of yo that is
closer to z;. The procedure is repeated until no mutant z,.; € S(¢) of z, can
be found that is closer to y, than z,, and no mutant y,.1 € S(¢) can be found
that is closer to x, than y,. In order to increase the efficiency of the simulations
we allow these closest approach walks to accept a fixed number of mutants that
lie within S(%) and at least do not increase the Hamming distance to yo before

terminating the walk.

From our simulations we derive the following quantities:

(i) Dy is the Hamming distance between the pairs of final sequences for each

run;

(ii) Dy and Dj is the Hamming distance of the two final sequences to their

respective native (wildtype) sequence;

(ili) df is the average Hamming distance between the final sequences from all

different runs.
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The values of D5 and df complement the information about the extent of the
neutral networks, verifying that they are indeed spanning most of sequence space,
see Table 12.

While small closest approach distances Df(1), ¢) even for vastly different struc-
tures ¥ and ¢ are a necessary condition for shape space covering, they cannot
serve as a proof. For a particular reference sequence z let d(x, 1) be the minimum
Hamming distance between x and a sequence that fold into ¥. We define the co-
vering radius R, as the average of d(z, ) over all sequences z and structures .
Consequently, we expect to find most folds within a ball of radius R, centered at

a typical point in sequence space.

TABLE 15: Shape Space Covering

Protein D, Dy/n D, D./n| Dg Dg/n|N
lubq 61.44 0.808 | 62.67 0.825 | 34.80 0.457 | 10
4ichb 63.22 0.831 | 61.89 0.814 | 36.60 0.481 | 10
1cew 90.21 0.835 | 95.88 0.888 | 36.80 0.341 | 10
2trxa 93.44 0.865 | 94.44 0.874 | 50.10 0.463 | 10
irro 89.11 0.825 | 90.22 0.854 | 55.40 0.513 | 10
1lyz 113.78 0.882 | 114.78 0.890 | 47.90 0.371 | 10

Dy: Hamming distance of final sequences of adaptive walks among each other, D,:
Hamming distance of final sequences of closest approach walks among each other,
D,,: Hamming distance to random sequences (starting points of adaptive walks),
Dy/n, Dy/n, Dy /n: Hamming distances normalized by sequence length n; N:

number of performed experiments

Upper bounds for d(x,%) can be readily obtained in a variation of the closest
approach walks: A sequence y folding into 1 is constructed by an adaptive walk
(initialized at x). Starting from y we then perform a neutral walk with target x
and measure the residual distance. Obviously this procedure is computationally
quite demanding as we need to perform the calculation for a large number of
structures and reference sequences. In the case of RNA we found that the covering

radius is surprisingly small and dominated by the logic of the base pairing rules
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[63, 31]. Since proteins have no equivalent to the restrictive RNA base pairing

rules, we conjecture that the covering radius for proteins will be at least as small.

A number of prliminary computations were performed for 6 different proteins
(1cew, 11lyz, 2trxa, 1rro, lubqg, 4icb). The procedure was the following: Ad-
aptive walks were conducted starting from a random sequence and terminated
at a treshold z-score (2*) ca. 3 units better than the wildtype z-score (z). A
closest approach run with the final sequences y of these runs was then performed
in the direction of the first random sequence r of the adaptive walk to receive
an estimate for the distance D, which is the distance from a random point in
sequence space to a sequence with native like z-score. Table 15 shows the results

for 10 runs for each protein with the PROSA II potential.

The average @ of d(x,1) over the reference sequences can be used to estimate
the size of the neutral set S(¢), since a ball of radius d, contains on the order of

1 sequence folding into . Thus,

20™
ISW)| = = (9)
B(dy)
where B(r) ~ 197(") is the volume of a ball of radius r in sequence space. The
number of sequences folding into 1 has been used as a measure of designability
in the context of lattice proteins [32, 39] hence the designability decreases with

a.



9 Janus

In a quite spectacular experiment Dalal et al. [17] have designed a protein, Janus
that has 50% sequence identity with a predominantly [-sheet protein (1pgb),
but which adopts a four-helix bundle conformation (the structure of the dimer
of 1rop) and possesses the attributes of a native protein. Starting from the 1pgb
sequence they mutated selected residues to adapt the sequence to the Rop fold,
usually by replacing them with the corresponding amino acid from Rop (only 9

positions in Janus differ from both Rop and 1pgb).

FIGURE 57: Schematic drawing of the structures of 1ROP and 1PGB

This is an excellent experimental example which addresses the questions concer-
ning sequence structure relationships we discuss throughout this work. We have
therefore designed a computer experiment that mimics the Dalal et al. procedu-
re. Our approach is to define a mutated Rop sequence which has high sequence
identity to the 1pgb sequence, but which retains a Rop wild type z-score when
evaluated on the Rop structure. In analogy to the experimental procedure we
restrict the sequence to be identical to either Rop or 1pgb in each position. The
7 amino acids at the C-terminus of Rop are ignored. The native form of Rop is a
dimer. In an isolated monomer many amino acids buried in the dimer would be

exposed, giving rise to non-sensical z-scores. Since our empirical potentials are
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not equipped to deal with dimers, we have artificially connected the two chains
of 1rop resulting in a good z-score for the wild-type sequence (z-score of the

monomer -4.94, z-score of the dimer -7.47).

TABLE 16: z-score evaluation of wild type and Janus sequences with the PROSA II potential

Structure
Sequence irop | 1pgb
1pgb -1.61 | 7.62
Janus (Dalal) 6.17 | 2.36
Janus (simulation) | 7.52 | 2.00
1rop 7471 0.72

In our computer experiment, both copies of the connected sequence forming the
Rop dimer are always mutated together. An attempted mutation in the 1rop
dimer is defined by replacing an amino-acid with the corresponding amino-acid
from 1pgb. The mutation is accepted if the z-score of the mutated sequence is
no worse than the wild type z-score of 1rop. When using the PROSA potential we
require that both C®- and CP®-scores are as good as the wildtype. The experiment

is terminated when no further acceptable mutations can be introduced.

We performed 18 such simulations, some of the resulting sequence are shown
in figure 59. The sequences have an average Hamming distance of 25.1 to the
wildtype 1pgb sequence, amounting to a percentage sequence identity of 55.2%.
This is only slightly larger than the experimental value: Janus was designed to
have 50% sequence identity with irop. Our results indicate that Dalal et al.

indeed employed a near minimal number of mutations from 1pgb.

One should note, however, that sequences much closer to 1pgb could be found
without the restriction that sequences must be identical to either 1rop or 1pgb
in each position, in which case hamming distances of 13 or 14 were obtained. The
average Hamming distance to the wildtype 1rop sequence is 26.9, amounting to
52.0% sequence identity, which is also quite similar to value for the Janus sequence
of 41%. Instead of terminating the runs when no mutations can be introduced

that lead closer to 1pgb, we may allow other mutations that yield a native-like
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score for 1rop. This parallels the procedure for the closest approach walk.

MTKQEKTALNMARFIRSQTLTLLEKLNELDADEQADICESLHDHADELYRSCLARF [GDDGENL] ( 1rop)
MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE ( 1pgb)
MTKKAILALNTAKFLRTQAAVLAAKLEKLGAQEANDNAVDLEDTADDLYKTLLVLA ( Janus )

F1GURE 58: Wildtype sequences of 1ROP and 1PGB, as well as the Janus sequence

Figure 59 shows nine of the 18 Prosa II-evolved janus sequences. In the con-

sensus line below '*’, ’.’, and ’.” mark conserved or nearly conserved positions.

Several sequence positions were conserved in all or most of our simulations and
also agreed with the amino acids chosen by Dalal et al. [17]. Among the conserved
amino-acids was the Asp 46 residue found in 1ROP, which participates in the
intra-monomer salt bridge with Arg 16, however the Arg 16 residue was replaced
by Thr in 10 of the 18 sequences.

TABLE 17: z-score evaluation and comparism of wild type and Janus se quen ces with PROSA
IT and the Vienna Tesselation potentials

Structure

PROSA | Tessellation
Sequence lrop | 1pgb | 1rop | 1pgb
1pgh -1.61 | 7.62 | 0.07 | 3.47
Janus (Dalal) 6.17 | 2.36 | 7.10 | 2.90
Janus (simulation) | 7.52 | 2.00 | 5.49 | 2.66
irop 747 | 0.72 | 5.31 | 0.47

Similar computer simulations were performed with the Vienna Tesselation Poten-
tial developed by G. Weberndorfer [63, 64] at our institute, to test whether our
results were reproducable in another potential. The procedure of this simulations
was identical to those with the PROSA II potential. We found that sequences
with more than 50% sequence identity to 1pgb could be generated with the Tes-
selation Potential. The 10 final sequences from independent experiments showed
an average sequence identity of approximately 87% while still retaining wild-type

like z-scores on the 1rop structure [64]. The z-scores of the wild-type and the
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MTKKEILNLKMLKGIRTTTATLAETLNKLDKDYANDIGEDLEDHYDDLYKTFTATF
MTKKEILALKTLKGITTQTATLAETLNKLDKDYANDNCEDLHDTADDLTKTFTATF
MTYKEKTALKTLKGITTTTAVLAETLNKVDKDYANDICEDLEDHADDLYKTFTATE
MTKKEKLNLKTLKGITTTTAVLAETLNKVDADYANDICEDLEWHADDLTKTFTATF
MTYKEITALKTLKGIRTTTAVLAETLNKVDKDYANDICEDLHDHADEATKTFTATF
MTYKEITALKMAKGITTQTAVLAETLEKVDKDYANDIGEDLEWTADELYKTFTATF
MTKKEITALKMLKGITTTTAVLLETLNELDADYAADICEDGEWHYDELTKTFTATF
MTKKEILALKTAKGIRTTTAVLLEKANKVDKDYAADIGVDLHDHADDLYKTFTATF
MTYKEKTALKMAKFIRSTTLVLLEKANKLDADYQADICEDLHWHADELYRTFTARF

*ok Kok *k ok ok oz ok Lk ok, op:ik kk ok * . ¥ kkkok

FIGURE 59: PROSA-evolved Janus sequences.

average for the 10 Janus sequences calculated with both PROSA II and the Tes-
selation Potential can be found in Table 17. The sign of the PROSA II z-scores

was reversed for better readability, better scores are more poitive in this Table.



10 Conclusion and Outlook

Although some differences appear in detail, the behavior of adaptive walks, neu-
tral walks, and closest approach walks, and consequent implications such as the
existence of extensive neutral networks and shape space covering, are common to
both the PROSA II and the neural network NN potentials. Hence our conclusions
concerning the topology of sequence space, as defined by the various types of

walks, are independent of the details of any one potential.

We have found a comparably good correlation between the NN and PROSA po-
tential [2] and preliminary experiments also showed a good correlation between
the tessellation potential and PROSA [64] However, usually sequences optimized
in one potential exhibit significantly worse z-scores in another. This reflects the
inaccuracies and inconsistencies between different potentials. Sequences should
therefore be optimized until a z-score several units better than the wild type
level is reached. Zhang and Skolnick [67] have estimated that the z-score of a
protein of 100 residues should be better than 15, significantly larger than the

score in currently available potentials.

We found that neutral paths within the sets S(¢) extend to almost the length
of the amino acid sequence. We therefore conclude that neutral sets form exten-
sive neutral networks that percolate the entire sequence space. The existence of
extensive neutral networks meets a claim raised by Maynard-Smith [42] for pro-
tein spaces that are suitable for efficient evolution. Empirical evidence for a large
degree of functional neutrality in protein space is indeed observed [41]. The exi-
stence of extensive neutral networks has been established using both the PROSA
IT and the NN potential. Nevertheless it will be necessary to produce neutral
path data from the tessellation potential for comparison. In addition, the length
distribution of neutral paths can be compared with simple random landscapes
models [48, 50] in order to detect systematic deviations that hint at anisotropies

in protein space.

It will be necessary to further study the dependence of neutral walk lengths on
z-score for different refinements of the potential. Neutral walk experiments should

be performed at z-score levels up to at least 3 units better than the wild-type in
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order to obtain more detailed information on the diameter of neutral networks.

A more direct, but also more demanding, way of determining whether S(v) is
indeed connected, as predicted by random graph models [48], is the following:
Two independent inverse folding runs are performed for the same structure to
produce two distant members of S(¢). We then try to explicitly construct a
neutral path connecting the two sequences. This can be done by a variant of
the closest approach procedure described in chapter 8. The feasibility of such an

approach has been demonstrated in the RNA case [25].

Like the existence of neutral networks, shape space covering was first observed
in computational studies of the RNA sequence structure relationship [53, 30, 31]:
any native structure can be found within a small ball in sequence space that
can be centered at an arbitrary reference point. Sander and Schneider [51] have
argued that sequences with more than some 30% sequence homology will give
rise to the same fold. On the other hand, the Janus examples shows that excep-
tions to this rule can be constructed. Our computational data support an even
stronger claim: sequences that fold into two completely different native structures
need not differ by more than a few crucial amino acids. So far, we have only a
very limited sample of closest approach data due to the high computational costs
of both the PROSA and the NN potential. More extensive studies are feasible with
G. Weberndorfers [63, 64| implementation of the tessellation potential. With this
potential a much larger set of structure pairs should be analyzed. Furthermo-
re, closest approach walks yield an upper bound on D;(1),¢). More extensive
calculations (in particular walks with a large number M of steps that do not
decrease Hamming distance) will be necessary to obtain improved bounds. In
addition closest approach experiments should be performed at different z-score
levels in order to obtain more reliable estimates for the closest approach distance

D¢(1, ), analogous to the neutral walk data shown in Table 12.

The random graph theory of neutral networks predicts D(¢,¢) = 1, i.e. the
neutral networks of any two structures ¢ and ¢ touch each other [48]. Although
we found values larger that 1 for Ds(1, ¢) in our closest approach experiments,
D¢(1),¢) was surprisingly small. From our results we can conclude that neu-

tral networks in protein space come very close together and further experiments
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should be performed to consolidate these findings. It will be interesting to see
if there is a dependence of D; on measure dissimilarity between the structures
¢ and ¢. While small closest approach distances D(¢, ¢) even for vastly dif-
ferent structures v and ¢ are a necessary condition for shape space covering,
they cannot serve as a proof. For a particular reference sequence z let d(x,) be
the minimum Hamming distance between x and a sequence that fold into . We
define the covering radius R, as the average of d(z,) over all sequences x and
structures 1. Consequently, we expect to find most folds within a ball of radius

R, centered at a typical point in sequence space.

Upper bounds for d(z,%) can be readily obtained in a variation of the closest
approach walks: A sequence y folding into 1 is constructed by an adaptive walk
(initialized at x). Starting from y we then perform a neutral walk with target
and measure the residual distance. Obviously this procedure is computationally
quite demanding as we need to perform the calculation for a large number of
structures and reference sequences. In the case of RNA we found that the covering
radius is surprisingly small and dominated by the logic of the base pairing rules
[53, 31]. In the preliminary experiments we performed, we found d(z,1) to be
small but larger than in the RNA case, it will be necessary to perform more

experiments of this kind to establish a tighter upper bound.

The question whether designability is an intrinsic property of a (native) fold v
should be investigated further by trying to construct sequences with native-like
z-scores from restricted alphabets. Only if the ordering of a sample of structures
with respect to the lengths of adaptive walks (and other measure of designability,
such as |S(¢)|) is the same for different alphabets, designability can considered
as a well-defined property of a structure. Preliminary data suggest that this is
indeed the case [3], these data also indicates that one can distinguish between
alphabets that allow the design of (most) native folds and alphabets that cannot
be used to build native-like protein structures. This question is of particular
interest in the context of the origin of life and evolution of the genetic code [21,
sect. XIV.4]. While native-like proteins can be designed from reduced alphabets,
recent experiments [18, 47] as well as computer simulations [3, 11] suggest that

two letters are not sufficient. Extensive studies of adaptive walks, neutral walks,
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and closest approach experiments with restricted alphabets should be performed.
It will be necessary to consider a large number of different amino acids alphabets

to arrive at a conclusive answer.

The evolutionary implications of neutral networks and shape space covering are
discussed in detail in [37, 35]. Extensive neutral network set the stage for an ef-
ficient exploration of sequence by diffusion on the neutral network. Shape space
covering, on the other hand, guarantees a constant rate of exploring novel struc-
tures that have not been encountered before. The rate of exploration begins to

slow down only when a sizable set of all shapes have already been realized.
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