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Abstract

Statistical properties of RNA “folding landscapes” have been investigated exten-
sively very recently [9]. The underlying folding algorithm used for these calculations
yields the minimum free energy of a RNA molecule. John McCaskill [21] designed a
new dynamic programming algorithm, which makes the partition function of RNA
computable of order n? in the sequence length n. The partition function enables
one to calculate pair binding probabilities for every possible base pair, and gives
important information on the structural variability of a considered RNA molecule.
Furthermore this algorithm makes the calculation of the temperature dependence of
free energy and of the pair binding probabilities feasible. It is used here to compute
more realistic folding landscapes and to determine the temperature dependence of
statistical properties like the correlation length of the resulting landscapes. A de-
tailed examination of how strongly mutations affect on average physical properties
of RNA molecules gives an important insight into prebiotic evolution.

Deutsche Zusammenfassung

Statistische Eigenschaften von RNA “Faltungslandschaften” sind erst kiirzlich
Gegenstand wissenschaftlicher Untersuchungen gewesen [9]. Der diesen Unter-
suchungen zugrundeliegende Faltungsalgorithmus basiert auf einer Minimierung der
Freien Energie eines RNA Moleiils. John McCaskill [21] entwickelte vor kurzem
einen rekursiven Algorithmus, der die Bestimmung der Zustandsumme von RNA
Molekiilen in einer Zeit proportional zu n® erméglicht, wobei n die Linge der
RNA Sequenz ist. Mithilfe der Zustandsumme lassen sich die Wahrscheinlichkeiten
der Bildung aller méglichen Basenpaare errechnen, woraus wichtige Informationen
iber die stukturelle Variabilitit des betrachteten RNA Molekiils gewonnen wer-
den koénnen. Weiterhin gestattet dieser Algorithmus die Bestimmung der Tem-
peraturabhéngigkeit der freien Energien und der Bindungswahrscheinlichkeiten von
Basenpaaren. Im Rahmen der vorliegenden Arbeit wird der Algorithmus bentitzt
um realistischere Faltungslandschaften zu berechnen und um fiir die resultieren-
den Landschaften die Temperaturabhangigkeit statistischer Groflen wie der Kor-
relationslinge zu bestimmen. Eine detaillierte Untersuchung, wie Mutationen im
Mittel die physikalischen Eigenschaften von RNA Molekiilen beeinflufien, gibt einen
Einblick in den Lauf der prabiotischen Evolution.
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1 Introduction

Charles Darwin in 1859 presented his famous essay on “The Origin of Species”,
which was one of the most important contributions to natural sciences in the last
century. He was the first to recognize the principle of variation and selection as the
driving force of biological evolution. Although the treatise immediately gained fame
there was also a lot of criticism of Darwins theory. Apart from ideological objec-
tions, one reason, why Darwin’s conclusions were rejected, was that he attributed
chance an important role in his explanation of the origin of species. How could
something as complex as living beings evolve from an accumulation of successive
random events? No doubt, a great deal of criticism was due to a misunderstanding
of Darwins principle. But still today, where the theory is well established it remains
astonishing that the diversity and the complexity of life should be founded on such
a simple principle.

In the beginning of this century the work of Haldane [16], Wright [33] and Fisher
[8] provided a mathematical background for Darwin’s theory. It became evident,
that Darwinian Evolution only requires an object, which possesses the ability of
selfreplication and which lives from limited resources. Eigen [4] showed in 1971,
that natural selection can be extended to inanimate nature. Thereafter Eigen and
Schuster introduced [5, 6, 7] the conception of the hypercycle and a theory for the
origin of life was presented.

In connection with the selection Darwin coined the catchphrase “survival of the
fittest”, which also was cause for fatal misunderstandings and misinterpretations.
The fittest may here be defined as the one having the greatest number of offsprings
reaching the age of fertility. But describing the features, which determine the fitness
one has to face enormous problems, so that there is a temptation, to define the
fittest as the one, which survives. But the fact, that up to now it is not possible to
calculate the fitness for a living being in a given surrounding is no justification for
the famous objection, that the Darwinian theory reduces to the tautology “survival
of the survivor”.

Today evolution is often viewed as a procedure optimizing a multiparametric
problem. The parameters of the fitness function which is to optimize are a chosen
set, of properties having an influence on the fertility of the individual. Sewall Wright
in 1932 introduced the notion of fitness landscapes assigning a fitness value to every
particular set of parameter values. The process of evolution can be seen as the task
of finding blindfolded the highest mountain on the fitness landscape. Simplified: The
strategy of evolution is to walk around randomly in the landscape with the restriction
of going downhill only with low probability. Although this strategy is fairly simple,
the task is very complex, since the shape of the landscape can change the problem
dramatically. Thus information about the features of the landscape is substantial in
order to attain a better understanding the course of prebiotic evolution.

Our interest in studying biophysical landscapes arose from investigations about
evolutionary optimization and adaptation in fitness landscapes derived for RNA
molecules [11]. Modern gene technology made experimental investigation of bio-
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physical landscapes approachable in recent years. However, due to the vast num-
ber of nucleic acids, which have to be sequenced in order to determine complete
landscapes, these techniques cannot yet be utilized to derive global properties of
biophysical landscapes. Consequently computer experiments capturing the land-
scapes’ essential features are indispensable for the characterization of evolutionary
processes.

The present work is organized as follows. In section 2 we first introduce the
secondary structure model for RNA molecules, which is an important prerequisite for
the understanding of two subsequent subsections. We give a brief introduction in the
minimal free energy folding algorithm originally designed by Zuker and Sankoff [34].
This algorithm was used for the investigation of RNA folding landscapes by Fontana
et al. [9]. We will then explain in greater detail the partition function algorithm
of McCaskill [21]. It permits a more realistic calculation of RNA landscapes and
additionally has the advantage of introducing a temperature dependence into the
computation of statistical properties of RNA landscapes.

In section 3 we will give a more precise idea of the notion of a landscape. We
will discuss biologically motivated landscapes as well as landscapes resulting from
combinatorial optimization problems. We then point out the intimate connection
between landscapes and their corresponding optimization procedures. Finally we
will return to the landscapes investigated in this work.

We derive the mathematical tools needed for the investigation of landscapes in
section 4. There we will first be dealing with measures of the value distribution in
the landscape, which do not take into account their spatial arrangement. Then the
autocorrelation function is introduced as a measure for the ruggedness of landscapes.
In the last subsection we then explain two techniques, which have been applied to
explore RNA landscapes.

Our results are discussed in detail in section 5 and section 6 concludes the work.
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2 Folding algorithms

2.1 The secondary structure model

A ribonucleic acid consists of a sequence of chemically linked nucleotides, synthesized
from four different bases. These four bases are Adenine (A), Guanine (G), Cytosine
(C) and Uracil (U). A nucleotide is a base connected to a sugar , in the case of RNA
ribose, with an added phosphate group. The nucleotides are linked together by a
sugar-phosphate backbone, building up a polynucleotide chain. A nucleotide has a
phosphate group attached to the 5 position at the riboside which is connected to
a phosphate group attached to the 3’ position on the riboside of its neighbor. The
backbone is held together by 5’ — 3’ sugar-phosphate links. The terminal nucleotides
on both sides have either a free 5’ or 3’ phosphate group. Therefore a RNA molecule
is uniquely determined by the sequence of bases ordered from the 5’ end to the 3’ end
of the polynucleotide chain. A string of letters chosen from the four-letter alphabet
{A,U,G,C} is called the primary structure.

G and C, respectively A and U are complementary bases, which can form strong
hydrogen bonds. A weaker bond is also possible between G and U. These interac-
tions cause the RNA molecule to fold back upon itself and to form a complex three
dimensional structure, the so called tertiary structure. The art of predicting the
three dimensional structure from the linear representation of a RNA molecule seems
to be still at an early stage of development. Therefore current algorithms focus on
the prediction of secondary structure, i.e. what nucleotides form base pairs. Here
already satisfactory results are achieved. But there is also a biological justification
for for limiting our interest on the prediction of the secondary structure, because
secondary structure elements are conserved in evolution [2, 20].

A RNA molecule is representable as S = s1, s9, 53, ..., S, , where s; €{A,U,G,C}
and n is the length of the polynucleotide chain. The s; are ordered from the 5’ end
to the 3’ end. Physically, the secondary structure is the folding in two dimensions.
Fig. 1 gives an example for a secondary structure. Mathematically a secondary
structure can be described by the set ® of base pairs (s;, s;) with ¢ < j, which are
formed between complementary base pairs. Clearly, no base can be bound twice,
which means if (s;,s;) and (s;,5,) € ® then j = k. Let us denote with S;; the
subsequence of S starting from the ith base and ending at the jth base. ®;; then
represents the secondary structure of S;;.

From experiments we know, that a RNA molecule cannot fold back upon itself,
without leaving at least three bases unpaired. Hence, a pair (s;,s;) € ® must
fulfill the condition j — ¢ > 3. One further restriction must be imposed in order to
enable dynamic programming. We allow only structures, which contain no knots. A
secondary structure is knotted if (s;, s;) and (s, s;) are base pairsand ¢ < k < j < [.
This constraint is crucial for the recursive algorithm, which will be discussed in detail
in the forthcoming section. If (s;, s;) pair then every pairing base s with i <k < j
will have its partner in S;;. Therefore every base pair divides the secondary structure
in parts, which do not have any base pair in common. This allows to construct a
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Figure 1: An example for a RNA secondary structure, with free dangling ends,
stacks and loops

recursive scheme, which first looks for the secondary structure of substrings and
then builds up the entire secondary structure of the considered RNA sequence.

Although in reality there are examples for secondary structures which are knot-
ted, we have to relegate the problem of knotted structures to the tertiary structure
prediction. But since there are no experimental data available on how knots af-
fect the stability of the secondary structure, it seems justified to exclude knotted
structures for the present.

Every unknotted secondary structure is built up out of several structural motifs.
These are stacks, loops or bulges and external unpaired bases, like free dangling
ends and joints between independent substructures. The motifs can be described
more precisely in the following manner, by giving the expression loop a more general
meaning.

Let (si,s;) be in ®. Then (s;,s;) closes a loop. Any base pair (sg,s;) € D ,
with i < k <l < jandno k < k <1< [so that (s7,57) € @4, is called interior to
the loop closed by (si,s;). (s;,s;) is called closing base pair, which by convention
does not belong to the loop. (sg,s;) itself closes a loop, which is excluded from the
loop closed by (s;,s;). If u is the number of unpaired bases and m is the number of
interior base pairs in a loop, we can classify the loops by their values of v and m:

e m = 0,u > 0: hairpin loop
e m=1,u=0: stack

e m = 1,u > 0: bulge or interior loop
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Figure 2: The classification of loops for the decomposition of RNA secondary struc-
ture

e m > 1: multiple loop

External are those bases, which do not belong to any loop. u is also called the length
of a loop. Let uy =k —47—1and ug = 5 — 1 —1, with u = u; 4+ ug, then one can
distinguish a bulge, where u; = 0 or uy = 0, from an interior loop, where u1,ug > 0.
The loops are shown in figure 2.

From this generalization of a loop and from the assumption of unknotted sec-
ondary structure follows firstly, that if a base of a pair belongs to certain loop ,
its partner must as well belong to the same loop, and secondly, that each base is
internal exactly to one loop or is external to all loops.

2.2 The minimal free energy folding

The classification described in the previous section makes the complete decompo-
sition of a given secondary structure in terms of loops and external bases feasible.
Biochemical data have been produced to assign energy values for all possible loops
with m < 1, depending on the closing and the interior base pair, as well as the
number of unpaired interior bases [14, 17, 28, 29, 23]. The data are derived from
melting experiments with small RNA molecules or oligonucleotides.

Each possible stacked pair is given a negative stabilizing free energy, depending
on the preceding neighbor, i. e. the closing pair, and on the strength of the interaction
between the bases of the stacking pair. Internal loops and bulges have a destabilizing
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effect on the secondary structure and are therefore assigned positive free energies.
Apart from the involved base pairs and the length u of the loop, the value of free
energy also depends on the symmetry [22], i. e. the size of u; — uz. Unfortunately
there are no experimental data available for the free energy assignment of multiple
loops, but the linear ansatz

Fyp,=a+bm+cu (1)

has appeared to be useful [17]. The parameters a,b, and c¢ are adjusted through
comparison of experimentally determined secondary structures with the prediction
of the folding algorithm.

The free energy of each loop is assumed to contribute additively to the entire
free energy of the secondary structure. The evaluation of the free energy of a given
structure results in simply summing up over all loops L occurring in the secondary

structure ®.
F(®)=> Fp
Led

The task of the folding algorithm is to find out of all possible structures of a RNA
molecule the one with the minimal free energy. The most simple approach would
be to calculate successively the free energy for each possible structure and selecting
the one with minimal free energy. But as the number of different possible structures
increases exponentially with the length of the RNA molecule, such an algorithm
would break down for any realistic chain length.

Fortunately there is a way out due to the additivity of the contributions of each
loop. If the structure of the sequence S is optimal, which means that its free energy is
minimal, than the folding of any substring S;; is optimal provided that (s;, s;) form a
pair. This enables one to make full use of dynamic programming. The minimal free
energy algorithm designed by Zuker et al. [34], calculates first the optimal folding
of the smallest substrings, which form a secondary structure, and then recursively
constructs the optimal structure out of optimal subfragments. Zuker et al. achieved
a calculation of minimal free energy and optimal structure in cubic order of the
chain length n. A major advantage of the dynamic programming algorithm is its
speed, which is gained by giving up the the prediction of knots and by taking into
account only interactions between nearest neighbors. The additivity of the energy
contributions is crucial. Incorporating more complex interactions would lead to a
breakdown of the recursion scheme.

Because of the very few experimentally determined secondary structures, it is
difficult to estimate the predictive power of the folding algorithm [30]. Only transfer
RNA structures are known in detail, but secondary structures of other RNAs have
been deduced by phylogenetic comparison, i. e. by comparison of RNA molecules of
identical function in different organisms. The folding of a sequence by minimizing
the energy of all possible secondary structures predicts around 80% of the either
experimentally determined or phylogenetically deduced secondary structure for short
RNA molecules of chain length n =~ 100.
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2.3 Dynamic programming of the partition function

The above described algorithm yields only one structure with minimal free energy.
No information is gained, whether there are other structures with the same free
energy or whether there are solutions in close vicinity to the optimal folding. But the
distribution of suboptimal solutions in respect to their energy value gives important
information about the structural variability of a RNA sequence. In reality RNA
molecules do not take on only the optimal structure, but seem to change more or less
rapidly conformation between closely related structures. Waterman [31] proposed
a modification of the minimal free energy algorithm, which allows to compute all
structures lying within a certain energy range. A few years ago McCaskill [21]
presented a completely new approach, which made it possible to determine the
partition function of RNA molecules. From the partition function all thermodynamic
quantities of interest can be derived. The connection between partition function and

free energy is
F=—-kTlh@Q (2)

where @) is the partition function, T is the temperature and k is the Boltzmann
factor. The important point is here, that we get now a temperature dependence of
the free energy.

The partition function algorithm and the minimal free energy algorithm are
closely related. Both base on the above described assumptions, both recursively
scan through all possible secondary structures and in principle the calculation of the
partition function has also been possible since experimental data were available for
all different kinds of loops. The partition function of a given RNA molecule is

Q: Z e—F(@)/kT (3)

deM

where M is the set of all possible secondary structures ® of the nucleotide sequence.
Also here arises the problem, that the computational expense increases exponentially
with sequence length. Therefore one major problem of the calculation of the parti-
tion function is to refine the algorithm to a computation in cubic order of sequence
length.

The additivity of free energy contribution of the various loops implies a multi-
plicativity in the partition function.

Q= Jlem* (4)

deM Led

Note, that the product comprises a exponentially increasing number of factors.
Let Qg’j be the partition function of the segment S;; given that s; and s; pair,

i. e. that (s;, ;) € ®;5. QF; can then be written as a recursive formula

Q?j = ZG_FL/ICT 11 Qb (5)
L

(h,1)EL
i<h<I<j
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where the sum goes over all possible loops closed by (s;,s;). If L is a hairpin
loop there is no pair (h,l) € L, if L is an interior loop or a bulge there is exactly
one pair (h,l) € L, but if L is multiloop then there are m pairs (h,l) € [ with
1< h <l < - <hp<ly <j. Clearly no base can pair with itself, therefore the
initial condition of the above recursion formula is Q% = 0. Formation of unallowed
secondary structures as for example hairpin loops with length less than 3 is penal-
ized with infinitely high energy, which results in infinitely small contribution to the
partition function.

The full partition function of the subsequence S;; is the sum of the partition
function of S;; given that (s;,s;) form a pair and all configurations given that s;
and s; do not form a pair.

Qij=1+ > Qin1Qh (6)

i<h<I<)

The free energy contribution for external base is assumed to be zero. Hence, in the
partition function such structural elements result in a multiplication by 1. Therefore
the initial conditions here are Q;; = 1 and Q;41; = 1. From these two equations
the partition function can be determined recursively until one yields @1, which
is the partition function of the complete sequence. But still the problem of the
exponentially increasing computation time remains unsolved. While there is only
one possibility to form a hairpin loop and two possibilities to form bulges between
s; and s;, the actual difficulty is the calculation of all interior and multiple loops.

Dividing the partition function into the contribution coming from the different
loop forms, equation (5) can be rewritten as

i?], = e Fo(id)/kT Z e~ Full).(RDI/KT (b (7)
i<hdics
+ Y QN Qe (ttreUTI /AT (8)
i<hh<’ll<j

where equation (1) is used and where

Z‘L — Z(e—c(h—i—l)/kT + Qg?h—l)Qzle(_b+c(j_l_l))/kT (9)
hl

with Qi = 0 and Q7}, ; = 0. F,;, refers to the classification of loops described in
the previous section according to the value of m (m = 0 — hairpin loop, m =1 —
stack, interior loop, bulge). The third term in equation (8) represents the multiple
loop contribution.

We have now a recursion for the partition function, which sums over four in-
dependent indices going from 1 to n, i. e. the algorithm is now of order n* in the
sequence length n. In order to refine the computation of long interior loop to n3,
a maximum value w,, for the length of the loop may be introduced, whereby loops
longer then u,, are regarded as prohibited. This restriction is justifiable, because
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long interior loops are given rather high free energy values and therefore structures
containing large loops contribute poorly to the overall partition function. Thus the
calculation of interior loops results for long sequences in an algorithm of cubic order
multiplied by a factor proportional to u2,. For short sequences with lengths close to
Uy, the resulting algorithm remains proportmnal to nt.

A reduction of the multiple loop contribution to the partition function is achieved
by introducing a new auxiliary quantity defined by

J
= > Qhem U (10)
l=1+1
Equation (8) then has the form
f] = ¢ Fo(@a)/kT Z e~ F1l(.5),(h)0) /kTQb (11)
1<h<l<]
+ ) Qﬁl,h—lQ%—le_(ﬁb)/kT (12)
i<h<j
and equation (9) can be written
= Z (e ch /kT—i‘th 1)Qh b/kT (13)
i<hss
If we define in addition
Qz] Z Qzl (14)
1<l<_7

with QL = 0, the computation of the partition function of the subsequence Sij

Q=1+ Y Qin1Qi (15)

i<h<j

is achieved in cubic order.

Altogether the calculation of the full partition function @ is now possible with the
above recursion formulas in cubic order for long sequences. Although the partition
function algorithm is now of the same order as the minimal free energy algorithm
described in the previous section, the computation of the partition function is nev-
ertheless remarkably more time consuming, because the whole calculation has to
be done with floating point numbers, whereas the computation of the minimal free
energy involves only integers.

We want to stress, that the calculation of the partition function of the entire
sequence yields also the full partition function of all subfragments. This will be-
come important for the computation of the statistical properties of RNA folding
landscapes later on.
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Clearly the McCaskill algorithm does not predict a secondary structure of a
RNA molecule, but one can calculate the base binding probabilities between all
possible base pairs. The resulting base pair probability matrix contains important
information on the structural variability of the molecule. It gives an impression of
the uniformity of the equilibrium ensemble of the secondary structures.

A specified secondary structure @' is weighted in the partition function according
to the Boltzmann distribution, therefore its probability of occurrence is

o—F(®)/kT

P(®') = —a (16)

A base pair is either a closing pair or interior to one type of loop. The probability
of the formation of the base pair (s, s;) may consequently be expressed as

Qi 1Q%Qir1n

Q
PjQb e Pl (kT

+
2 Q;

Py =

uw<um,
b —(atb)/kT
Py Qe KL i 1T
+ QF (e QY11
i, ]
i<h<I<j

—e(j—1—1)/kT
+Qit1 ho1€ <G % + Q1 1 Q1)

The first term sums over all different configurations, where (s, s;) forms a closing
pair. The second term takes into account all possibilities, where (s, ;) is internal to
a stack, a bulge or an interior loop and (s;, s;) closes the loop. The third term gives
the contributions of multiple loop formations with (s, s;) interior to the multiloop
and (s;, s;) closing the multiloop. Again it is possible to reduce the order of the base
pairing probability to n3. Because of the restriction, that interior loops of length
greater then u,, are forbidden, the only term of order n* for long sequence length is
the multiple loop term. But also here, like in the partition function calculation, we
may help ourselves by introducing

m PijQﬁl j—1

= (17)
j (]
3>

and (j—1-1)/kT
- PemcU—t—
= 2 (18)
J ij
3>

Equation (17) may then be written

b

Q
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Pt e~ F1l(.5),(h,1)] /KT
oy Dlue (20)
ij j

7]

i<lé’<l<j
+> the_(a+b)/kT(13iTthﬁ1,h—1 (21)
ich
+ P (e iR Q1 h-1)) (22)

The resulting base pair binding probabilities can be stored in a triangular matrix.
This matrix contains information on the structural variability of the considered RNA
molecule.

Before going to the next section, we want to discuss briefly the difference between
the usage of the experimental data in the minimal free energy algorithm and in the
partition function algorithm. The data are normally determined under physiological
conditions, i. e. 37° C. In order to enable the calculation of the partition function
at different temperatures, one needs to extrapolate the data for stacks, loops and
bulges. The data for the free energy of a stack are decomposed into enthalpy and
entropy contributions. Therefore we get a temperature dependence of the stack
contributions according to

F = H3; —TSs7 (23)

where H is the enthalpy and S is the entropy.

Unfortunately there is no decomposition of interior loops and bulges into en-
thalpy and entropy. But the formation of such a loop mainly decreases entropy
and consequently its enthalpy is assumed to be negligible with respect to its en-
tropy. Hence, we also have a temperature dependence for interior loops and bulges
according to

F =-TSs3; (24)

The minimal free energy resulting from the Zuker algorithm accordingly does
not correspond to the 0 K state of the sequence, but is the energy belonging to the
most stable structure at 37° C.
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3 Landscapes

3.1 The definition of a landscape

The notion of a landscape was introduced in the early thirties by Sewall Wright [33]
in order to describe evolution as an adaptive walk on a fitness landscape. Nowadays
landscapes appear in so different fields as in the physics of spin glasses, in the
computer science of problems of combinatorial complexity, in evolution, in neural
networks, in gene regulatory networks, in the maturation of immune response and
in the biophysics of macromolecules.

A geographical landscape is described by the height A over all vectors & = (z,y)
lying in the XY -plane. Here a landscape more generally stands for a scalar function
F (%), which assigns to all points & = (x1,x9,...,2,) of a n-dimensional space a real
value. The total of all Z is called the configuration space. In order to describe a
landscape by its statistical properties, we need a metric in configuration space. In a
geographical landscape the configuration space is two-dimensional and the compo-
nents x,y of the vector & are continuous. The natural metric is the euclidian metric.
We do not restrict the components of & to be continuous, in fact in all considered
examples the x; are discrete.

We can define a landscape as a triple (X, d, f) where X is a finite set, d : X x X —
]R(")' is a metric and f : X — V is a function, which maps into a vector space with
scalar product. This definition restricts the configuration space X to be discrete,
because X has to be finite. For all landscapes discussed here, the vector space V is
R . f is often called the cost function. This expression originates from the study of
fitness landscapes, where f evaluates the fitness of a species.

3.2 Fitness landscapes

Landscapes have to be seen in the context of an optimization process, which maxi-
mizes or minimizes F(Z). Evolution can be seen as an optimization process taking
place on a fitness landscape [33]. Ever since Darwins [3] pioneering work about the
origin of species evolution is understood as the interplay of mutation and selection.
Mutation acts on the genotype, i. e. the genetic information, whereas selection takes
place on the phenotypic level, i. e. the form emerging from the translation of the
genetic information. Mutation and selection are the basis of a simple optimization
procedure.

To give an example, let us consider a simplified model of molecular evolution.
First of all we need a function P(G), which maps the genotype in the phenotype,
and a fitness landscape f(P(G)), which evaluates the fitness of a phenotype. Further
we restrict the possibilities of mutation to point mutations, where accidentally one
base is replaced by another. The probability of point mutations is assumed to be
independent of the exchanged base and the position within the sequence. With
the restriction to point mutations we assure that a mutation never affects sequence
length. Allowing insertions or deletions would result in sequences of variable chain
length and would therefore lead to a much complexer conception of configuration
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space. We model the mutation-selection process by producing a random mutant of
a given sequence and accepting it as the new sequence if its fitness value is not less
than the fitness of the original sequence. This evolution model then is an adaptive
walk on the fitness landscape.

The success of an evolutionary optimization algorithm depends strongly on the
underlying fitness landscape. An adaptive walk will often fail to find the global
optimum of a fitness landscape, which has many local optima, because whenever
the walk reaches a local optimum it gets stuck. Clearly, looking more carefully at
reality we see, that evolution is not very well described by an adaptive walk, but
we need to have information on the landscape in order to estimate the power of an
optimization algorithm. If we have for example a fitness landscape with one global
optimum and no local optima, a gradient algorithm, which calculates the fitness of
all one mutant neighbors and then accepts the one with the highest fitness, finds the
optimum in fewer time steps than the adaptive walk. But the gradient algorithm
will get stuck even faster, if there are local optima on the landscape.

The adaptive walk is the most simple model of evolution. Rechenberg [24] pre-
sented almost twenty years ago this and other more sophisticated optimization algo-
rithms based on the mutation-selection principle, which have been applied to prob-
lems of mechanical engineering with great success. Developing models for evolution
in nature one has to face enormous problems in finding appropriate functions, which
map the genotype in the phenotype and which define a fitness for the phenotype. Al-
though a lot of work has been done in morphogenesis, we are far away from predicting
the phenotype from the genetic information. Whereas the secondary structure pre-
diction is so far the only genotype-phenotype relationship, which reaches a level of
fair reliability, we have too little knowledge on how the secondary structure of RNA
molecules influences their selfreplication in order to derive a good approximation of
the fitness value.

Fontana et al. [12, 11] investigated the dynamics of evolutionary optimization on
RNA fitness landscapes, basing on a crude estimation of the velocity of selfreplication
and the degradation rate. Fitness is here a function of the replication velocity and the
degradation rate. The resulting replication and degradation landscapes have shown
to be highly complex [9], which motivated our interest in the characterization of
rugged landscapes.

3.3 The traveling salesman problem

A salesman, who has to visit several cities starting from his home city and returning
back home after his trip, will carefully plan the order in which he visits the cities so
that the total length of his tour will be as small as possible. Finding the shortest
tour is the task of the traveling salesman problem (TSP). While the enormous work

on the TSP problem contributed little to improve the living quality of salesmen',

'TIn 1832 a book appeared in Germany entitled “Der Handlungsreisende, wie er sein soll und
was er zu thun hat, um Auftrage zu erhalten und eines glicklichen Erfolgs gewiss zu sein. Von
einem alten Commis-Voyageur”. In the last chapter we find: “By a proper choice and scheduling
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many examples were found in various fields, which are closely connected with the
TSP. But the importance of the TSP arises not from its direct application, but from
being the most prominent example of a problem of combinatorial optimization.

If we consider a TSP with n cities, there are (n — 1)!/2 different tours (home
city and direction do not matter), where each city is visited only once. Having to
do in 50 cities, the salesman had the choice between 3 x 102 different tours. Hence,
finding the shortest tour is not an easy task. The TSP belongs to the class of N'P-
complete problem. NP complete are those problems, which can not be solved by
any algorithm in polynomial time in n [15].

The TSP problem has been a playground for all kinds of optimization problems.
Again we get in connection with the optimization algorithms landscapes for the
traveling salesman problem [27] We can describe a tour 7" listing the visited cities
¢; in chronological order:

T ={c1,c2,---,Cn}

Hence, the configuration space is here the set of all possible tours. In order to carry
out an adaptive walk on the traveling salesman landscape, we need a conception of
neighboring tours and moves in configuration space. A simple example for a move in
configuration space is exchanging two cities ¢; and ¢; from the tour T} and generating
therefrom the tour 7;y1. Tours, which can be mapped into each other by one single
move are called neighbors. It is important that each point in configuration space is
accessible from any other point by subsequent application of allowed moves.
The landscape of the TSP is

n

F(T) = Z d(ci, cit1)

1=0

where ¢y = ¢, and where d(c;,c;) is the distance between the cities ¢; and c;.
Different optimization techniques, like simulated annealing, evolutionary algorithms
and specially developed algorithms, have been applied to the TSP. Clearly, the
landscapes corresponding to the various optimization techniques differ on which
moves are allowed, i. e. which points are neighbors in configuration space. Another
very often used move is the inversion, where the tour between the cities ¢; and c; is
cut out and reinserted in opposite order.

The landscape of the TSP is more rugged for exchange moves than for inversions.
This results from the different neighborhoods of inversion and exchange moves. Any
exchange move X;;(T') of a tour T can be replaced by two successive inversions
Iit1,j—1(1;;(T)). Accordingly, any direct neighboring tour in the X-neighborhood can
be reached within two steps in the I-neighborhood. On the other hand direct neigh-
bors in the I-neighborhood need not be close to each other in the X-neighborhood.
Therefore it is plausible, that the X-landscape is more complex than the I-landscape
and optimization with X-moves is the harder task.

of the tour, one can often gain so much time that we have to make some suggestions. .. The most
important aspect is to cover as many locations as possible without visiting one twice”. From [19]
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In order to compare landscapes and their features we will have to find an appro-
priate measure for ruggedness. In section 4 we present tools known from statistics
to characterize landscapes, but before that we have to introduce distance measures
on RNA landscapes and in their configuration space.

3.4 The RNA configuration space and the free energy landscape

The configuration space of RNA molecules is the total of all possible sequences of
a given length. For molecules consisting of  bases, the number of points in the
configuration space is 8", where n is the length of the chain. The configuration
space is often called sequence space.

In a geographical landscape |Z — §j| is a measure of the distance of two configu-
rations. In the sequence space the distance between two molecules is given by the
number of positions in which their bases differ. This distance measure is well known
in information theory and is commonly called Hamming distance. Clearly, the max-
imal Hamming distance in the configuration space of dimension n is n. The number
of sequences consisting only of G and C with length n and with Hamming distance

h is
n
k=
(7

For four different base pairs this formula can be extended to

()

These functions have a very sharp maximum at h = n/2 for sequence length larger
then 20. Consequently two randomly chosen sequences will most likely have Ham-
ming distance d = n/2.

The configuration space for the four-letter alphabet molecules of chain length
n = 2 is shown in figure 3. Lines are drawn between sequences of Hamming distance
h = 1. The configuration space of GC-sequences of length n (see figure 4) is a
hypercube of dimension n.

The Hamming distance is a distance measure in the sequence space, but we also
need a distance measure of the values of the landscape. Again, in a geographical
landscape this measure obviously is the difference of heights |h; — h;|. For the free
energy landscape we can consequently define a distance:

de(S',57) = |F(S") — F(S)|

This distance measure and the Hamming distance in sequence space together
with an algorithm, which determines the free energy of RNA molecules, defines a
landscape, which is called the free energy landscape. For each length n and for
each choice of the base set we get a different free energy landscape. Landscapes
derived from the free energy computation according to the Zuker algorithm have
been investigated recently [9, 13]. Here we focus on free energy landscapes derived
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Figure 3: Configuration space of GCAU-sequences of chain length n = 2. The lines
are drawn between sequence which differ in one position.

from the partition function algorithm in order to study the temperature dependence
of the properties of the free energy landscape.

3.5 The landscape of the structure ensemble

Replication and degradation rates of RNA molecules depend on secondary structure
motifs. For this reason it would be interesting to know, how much the secondary
structure of two sequences with Hamming distance h = 1 differ on average. Re-
cently, several methods have been proposed to measure distance between secondary
structures [25, 18, 26]. Investigations of structure landscapes based on minimal free
energy folding and tree distance of RNA secondary structures [26] are currently in
work. With the partition function algorithm we can examine RNA landscapes at
different temperatures. But as we described in section 2.3 the partition function
algorithm yields instead of a secondary structure a base binding probability matrix.
Consequently, we cannot directly apply any of the above mentioned algorithms to
process the structural information contained in the base binding probability matrix.
However, it is possible to modify the algorithm of Konings et al. [18], so that we
compute also temperature dependence for structure landscapes.

We want to describe briefly the secondary structure comparison proposed by
Konings et al. In section 2.1 we defined the secondary structure simply as the set of
base pairs which are formed, when the polynucleotide chain folds back upon itself.
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Figure 4: Configuration space of GC-sequences of chain length n = 4. The con-
figuration space of GC-sequences of chain length n is a hypercube of dimension

n.
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A more detailed representation of the secondary structure is a linear array of the
following symbols:

e > : if a base is upstream paired
e < : if a base is downstream paired
e o : if a base is in a single-stranded position

A standard maximal match alignment for linear sequences is used to compare the
similarity of the so encoded secondary structure.

From the base binding probability matrix (p;;) we can readily calculate the
probability of a given base to be upstream, downstream or not paired:

p; = DDy (25)

>

Py o= ) pi (26)
1<t

p; = 1—p7 —p5 (27)

We define in addition a similarity measure between positions in two sequences S
and S° as

7 = \/P7 (S9p; () + [Py (S%)p5 (SP) + /P2 (S9)p3 () (28)

The main loop of the alignment routine is:

for( i=1 ; i<=sequence_length ; i++)
for( j=1 ; j<=sequence_length ; j++)
{
gamma = sqrt(p_up_ali-1] * p_up_b[j-11) +
sqrt(p_down_al[i-1] * p_down_b[j-1]) +
sqrt(p_no_al[i-1] * p_no_b[j-11);
matrix[i] [j] = maximum(matrix[i-1][j-1] + gamma,
matrix[i-1][j],
matrix[i] [j-1]1);
}
dist = abs(sequence_length
- matrix[sequence_length] [sequence_length]);

The backtracking to find the optimal alignment can be skipped, because we
are only interested in the resulting structure ensemble distance. If S¢ = S® then
v =1 for all i. Hence, d (5%, S®) = 0. Thus the structure ensemble distance ranges
between zero and the sequence length.
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Figure 5: Two secondary structures with similar shape. The two structures differ
only in the length of their free dangling ends.

Now we have a measure for the distance between the ensemble of structures of
two RNA molecules. We can therefore apply all statistical methods, which will be
derived in section 4 to a temperature dependent structure landscape basing on the
partition function algorithm.

We want to stress here, that the above defined measure is not a measure between
two structures, but measures the diversity of the secondary structure spectra of two
sequences. The landscape of the structure ensemble distance is a vector landscape,
i. e. each point in sequence space is assigned a vector, which contains information
about the probability for each base in the sequence of being bound upstream, down-
stream or not being bound at all. The free energy landscape is a scalar landscape,
because the free energy is a scalar quantity. Clearly we need for a landscape a
measure of the distance of two values. For scalar landscapes the distance measure
is obvious, but for vector landscapes the search for a convenient measure is not a
simple task.

As we want to compare the similarity of two structures the length of the con-
necting vector of two probability vectors is not the quantity of interest. In figure 5
we see two very similar secondary structures, which differ only in the length of their
free dangling ends. If we define for example the similarity measure as the number
of pairs, where ¢ is bound to j in both secondary structures, the two structures in
figure 5 have a similarity of 0. Therefore we choose the above described alignment
algorithm to find the maximal match between the two secondary structures.
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4 Statistics

4.1 Measures of the probability distribution

Let us first consider the non-spatial value distribution of the landscape. Therefore we
determine the expectation value (X;), the variance var(X;), the skewness skew(X;)
and the kurtosis kur(X;) of the probability distribution of randomly chosen value
X; in the landscape. The sample mean is defined by

(Xi)

1
~ Z Xi (29)
The coefficient of variance is given by

var(X;) = ((X; — (Xi)?)
= (X2 - 2X,(X;) + (X;)?)
= (X7) - (X)?

(2

The coefficient of skewness is

skew(X;) = —;

Finally, the kurtosis is defined by

rtty = =)
(X - 4XP(XG) + 6X2(X)? — 4X(X5) + (X)*
- (var(X;))”
(XD -4 (Xa) + 6(XF) (X)) — 3(Xy)*
B (var(X;))?

Note, that the sample mean and the variance have the dimension of X;, X? respec-
tively, whereas the coefficients of skewness and kurtosis are dimensionless.

What the expectation value and the variance tell us about a value distribution
is obvious. The skewness is a measure of the symmetry of the distribution. If the
skewness has a positive sign the distribution is skewed to the right, if it has a negative
sign the distribution is skewed to the left, if it is zero the distribution is symmetrical
in respect to its mean value. To give an example for those, who are familiar with the
geography of the alps, the Eiger seen from the Jungfraujoch is skewed to the right.
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The kurtosis gives a measure of the flatness of the distribution. The smaller the
kurtosis the flatter is the distribution. The Kilimandjaro consequently has smaller
kurtosis than the Matterhorn. To give a mathematical example, the coefficient of
skewness for the Gaussian distribution is 0 and the coefficient of kurtosis is 3.

4.2 The autocorrelation function

In order to describe the features of a landscape, we need a relationship between the
distance of two configurations in configuration space and the mean change of their
height. The previously introduced measures of probability distribution do not take
into account the spatial structure of a landscape. An appropriate measure is the
autocorrelation function defined by

cov(Xi, Xitk)
Vvar(X;)var (X )

((Xi — (X)) (Xt — (Xisk)))
VX = (X)W (Xigx — (Xigr))?)

where X; and X, belong to the same stochastic process. cov(XY') is the covariance
of X; and X, defined as

p(k)

cov(XY) = (XY) — (X)(Y)
Hence, the range of the autocorrelation function is p(k) € [—1, 1], because
O <wvar(X £Y) =war(X) 4+ var(Y) £ 2cov(XY)

— |eov(XY)| < var(X)

if X and Y are created by the same stochastic process. The formula (30) can be
simplified, because (X;) = (X;1«) and var(X;) = var(X;1), to

((Xi — (X)) ((Xipk — (Xisr)))
(X = (Xi))?)

p(k) = (30)

We can also write equation (30) as

(X?) — (XiXitk)
(X7) — (X;)?

p(k)=1-— (31)

If X; represents the height over the configuration #; and the distance on the
landscape between X; and X, is k, then the autocorrelation is the desired rela-
tionship between distance in configuration space and distance of values, which gives
us information about the ruggedness of the landscape.

If the autocorrelation function fits well to an exponential curve, with p(k) =
e **_all information about the autocorrelation function is contained already the
correlation length defined by I = A~!. A large correlation length corresponds to a
slowly decaying autocorrelation function and consequently to a smooth landscape.
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We will here present a derivative of equation (30), which will become important
later on. If we want to correlate a function over the configuration space, which has
the form F(¥, ), we cannot determine the autocorrelation function according to the
equations (30) and (31). It is possible to define a measure for structural similarity
[26] of two secondary structures, but there is no value assigned to a single secondary
structure. For this case the suitable form of the autocorrelation function is

(Xi — Xigr)?)

A (b ) 32)

An example for a function F(Z, ) is the correlation of the secondary structure.

4.3 Sampling techniques for Landscapes

Sampling statistical properties of landscapes is not that simple as one might presume.
We know from section 3.1, that for natural RNA landscapes there are 4" different
sequences of length n in configuration space. The probability, that two randomly
chosen sequences have a Hamming distance h, is

p(h) = (8- 1" (Z) g (33)

where (3 is the number of different bases of which the sequences consist. Hence,
random points in configuration space will have almost always Hamming distance
h = n/2 even for moderate chain lengths. Neighboring points in the configuration
space for sequence of length n = 30 are found with probability 8 x 10717. For the
numerical evaluation of the autocorrelation function we need to sample neighboring
sequences with sufficient statistical weight. Two different techniques were applied
here, which we want to discuss briefly in the following two sections.

4.3.1 The random walk technique

The random walk technique produces a time series
X ={Xo, X1, Xo,...}

where the sequences S* and S*+1 corresponding to the values X; and X;y; have
hamming distance h = 1. The sequence S**! generated from the sequence S* by
randomly replacing one base of S’ through an other. It is important to notice,
that the number of steps of the random walk does not coincide with the Hamming
distance. (see fig. 6. From the time series we can directly calculate (X;) and (X?).
In order to compute the autocorrelation function according to equation (31), we
have to determine (X;X;, ;)s, where the subscript & denotes the Hamming distance
between X; and X;,;. With this notation equation (31) is written

(X2) — (XiXigj)n
(X7) — (X;)?

(2

p(h) =1— (34)
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Figure 6: Possible Hamming distances for a random walk of 5 steps in the configu-

ration space of two-letter RNA sequences
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Along the time series X; can be correlated with all preceding Xy, ..., X;_1. Since
hamming distances larger than n/2 will rarely be found because of the probability
distribution (33), it is not senseful to store during the computation much more than
the last n/2 sequences and their values. Therefore we cannot determine the full
autocorrelation function with the random walk technique. But we do not need the
full autocorrelation function to calculate the correlation length of the landscape.

To avoid systematic deviation due to any quasiperiodicity of the random number
generator, we divide the random walk into packages of 1000 steps and start each
package from a new randomly chosen sequence. The total number of points needed
to assure convergence of the statistical quantities depends on the length of the
sequences, but a few 100000 points normally are sufficient for chain lengths up
to 50.

Let us denote with ®,(n, ) the probability, that a walk of s steps has a Ham-
ming distance h from the starting sequence, where n is the length of the sequences
and ( is the number of different bases contained in the sequences. Obviously

®ps(n,B8) =0for h>sorh>norh<0

We can derive a recursion formula to compute ®,4(n, 3).

n—h+1
h(B —2)
n(8—1)

h+1 1
+®ht1,5-1(n, ) n B—1

q)hs(na /8) = q)hfl,sfl(n7 ﬂ)

+<I)h,s—1(n7 /8)

Hence
1 if s =0,1
Qp—s s(n, B) = { (s—1)! /B—1

Fl_(sfl) ifs > 1

with the initial condition ®gg(n, ) = 1.

As we pointed out earlier when describing the folding algorithms, the partition
function algorithm yields not only the partition function of the whole RNA sequence
but also returns the partition function of subsequences. This enables one to measure
all statistical quantities in one program execution also for the shorter subsequence
lengths. Since the partition function algorithm requires an considerable amount
of computation time, correlation of subsequences speeds up the calculation of the
correlation length as a function of the chain length substantially.

The number of subsequences, which can be correlated in this manner, is limited
for two reasons. One purely technical reason is due to the limitations of computer
storage. The other reason is, that too short subsequences will be too seldomly
affected by random mutations. Therefore we will not accumulate enough data to
assure the convergence of the surveyed properties for short sequences.
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The backtracking for the computation of the base binding probability matrix is
also for subfragments of the whole RNA molecule of cubic order in the sublength.
This follows from equation (22) on page 13. Consequently it does not pay off to
correlate structural properties also for subfragments in one single program execution.

4.3.2 The neighborhood technique

For the neighborhood technique we choose a reference sequences of length n in
configuration space and compute for all Hamming distances fromh=1to h=n—1
n sequences. If we consider sequences consisting only of two different bases, there is
only one sequence complementary to the reference sequence, which we also take into
account in the neighborhood sample. In the case of four base sequences we choose
randomly n sequences with Hamming distance n.

We compute the free energy distance between the reference sequence S™f and
the n sequences S*(h) with Hamming distance h according to

de = [F(5") — F(S'(h))|

and count the occurrence of a certain energy distance d. under the condition, that
the two underlying sequences have a Hamming distance h. In the same way we
proceed for structural ensemble distance ds; as we defined it in section 3.5. This
data are stored in twodimensional arrays ne(h,d.), ns(h,ds) respectively. Then we
choose a new reference sequence at random and repeat the whole procedure until
the surveyed properties converge.

The conditional probability to find a distance d given that two sequences have
hamming distance h is

n(h, d)
S n(h, d)
We dropped here the subscripts e and s. According to the notation of equation (34)
we can now derive

p(dlh) = (35)

dmam d 2
max d h d
(Xi— Xjh= S dpldh) ~ Zdo0 Cn(hd)
d=0 >ame? nh, d)
and ) )
" maz 420 (b d)p(h
(Xi = X)) = 30X = X )uplh) = 42D mamn( p(h)
h=0 2odh n(h,d)

where p(h) is the probability distribution (33). For the calculation of the variance
var(X) = (X; — X;) we have to have randomly chosen sequences S; and S;. Because
we do not choose points at random in sequence space for the neighborhood technique,
we have to multiply the conditional mean square distances (X; — X;), with their
probability of occurrence.

Altogether the autocorrelation function may now be expressed as

S mer d?n(h, d)

h)y=1-
p(h) SP_o Sdmax g2 (b, d)p(h)

(36)
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The neighborhood technique enables us to derive the full autocorrelation function
of all hamming distances according to equation (32). The statistical properties also
seem to converge faster than with the random walk technique, but correlation of
subfragments is much more awkward and exhaust computer storage capability faster.
The random walk technique is applied to energy landscapes, because of the ability
to sample all statistic properties of interest also for sublengths. The neighborhood
method is only applied to the correlation of ensemble structure, because determining
the base binding probability matrix for segments of the sequence would be too time
consuming.
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5 Numerical results

5.1 The value distribution of free energy landscapes

The free energy of a given secondary structure is the sum over the free energy
contributions of the contained loops. Neglecting tertiary interactions, the free energy
of a RNA molecule is (according to equations 2 and 3)

F=—kTY e¥®
[0

where the free energy contributions of every possible secondary structure of the
molecule are weighted exponentially for the overall free energy. From here on we
will use the notion free energy always as the free energy computed with the partition
function algorithm.

Clearly, the mean value of the free energy of a given secondary structures de-
creases linearly with increasing chain length. Consequently the overall free energy
has the same dependence on chain length. Because GC-pairs are bound stronger
than AU-pairs, the formation of the secondary structure for GC-only sequences
yields on average smaller free energy than for GCAU sequences. Figure 7 shows
the chain length dependence of the mean free energy for different temperatures.
The data shown in this figure were computed with 400 independent random walks
of length 1000 for each temperature. The mean value of free energy has been mea-
sured for chain lengths from 30 up to 50 with step size 2.

As the computation of the free energy of a sequence of length 50 is rather time
consuming, we did not carry out the calculation for all temperatures up to chain
length 50. For detailed information on computer time requirements see appendix A.

The temperature dependence of the free energy (see figure 8) is also easy to
understand. There are two different effects, which contribute to the temperature
dependence of the free energy. Beginning at low temperature, we see first a linear
increase of the free energy, because the interaction between the complementary base
pairs becomes weaker for increasing temperature. But as the bonds become weaker,
the mean number of base pairs formed in the secondary structure will decrease.
This effect obviously saturates, when the majority of structures in the ensemble are
already in or at least close to the unfolded state.

In order to understand the chain length dependence of the standard deviation
we want to discuss the consequences of the linear dependence of mean free energy of
sequence length. Let us denote with (X()) the average of a random variable X (1),
which is a function of n. If the mean value of the random variable is linear in /, then

(X (I +m)) = (X (1)) + (X(m))
If we define (X) := (X (1)), we get
(X)) = KX)
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Figure 7: The mean free energy for GCAU-sequences (left) and for GC- sequences (right) versus chain length for different
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1 N 1 )

— J

- Ln
=1 j5=1

Hence, the random variable X (I) (which itself must not be linear in [), is repre-
sentable as the sum over [ random variables X. As the mean value of the free
energy is linear in the sequence length, it can be represented as a sum over ! random
variables, where [ does not have to match n, but has to be proportional to n.

Let us now calculate the variance of a random variable X (1), which is the sum
over [ random variables X.

var(X(1) = (X(1)*) - (X(1))*

! l !
= Q> xx) - X))

i=1j=1 i=1
l ! !
= QX7+ ) XNX) - QX))
i=1 ij=1 i=1
i#

If the random variables in the sum are independent, the above equation reduces to
var(X (1)) = {X?%) — 1(X)?

and the standard deviation of X (n) is proportional to the square root of [.

In figure 9 the standard deviation of the free energy values is plotted versus the
chain length for GCAU and GC-sequences. We see an increase of the standard
deviation proportional to n?, with p < 1. We expect, that in the limit of large n
the standard deviation will show a square root of n behavior, because the secondary
structure will then decompose in parts , which fold independently into substructures.
The overall free energy will then be the sum over independent variables, and therefore
its variance will increase linearly with the sequence length.

The other way around, we see how close we are to independent random contri-
butions, if we try to fit the chain length dependence of the standard deviation to
Vn.

In figure 10 the dependence of the relative deviation on free energy with chain
length is shown. The relative deviation is the standard deviation divided by the
absolute value of the mean. Since the standard deviation of the free energy increases
with chain length as n”, with p < 1, the relative deviation will converge to 0 for
large n. This implies, that the value distribution of the free energy becomes sharper
with increasing sequence length. The reason is, that the probability to find a very
stable secondary structure or to find a sequence , which does not have a secondary
structure is much more likely for short sequences then for long ones. The probability
to find a long sequence, which does not fold, is negligible and consequently sequences
with extreme high or extreme low free energy will contribute to the distribution with
very small statistical weight.

If we compare the left plot with the right plot in figure 10, we see, that the relative
deviation of the free energy for GCAU-sequences is larger than for GC-sequences.
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5 NUMERICAL RESULTS 35

It is clear, that the range of possible values for the free energy of GCAU-sequences
is larger than for GC-sequences, because the set of all GCAU-sequences comprises
pure AU-sequences, with relatively high free energy, as well as pure GC-sequences,
with rather low free energy.

The central limit theorem of probability theory leads us to another consequence
of the linearity of the mean free energy. The central limit theorem may be formulated
as follows:

Central limit theorem: Let X1, Xs,..., X,, be independent ran-
dom variables, which have the same mean p and the same variance
0% Thenif S, = X1+ Xy + -+ + X,,,

. Sn — i ) 1 b
lim P{a< —+—<b :—/ez/2d:c
n—00 < - oyn ~ V2 Ja
that is, the random variable (S, — nu)/o+/n, which is the S,

standardized to mean 0 and variance 1, is asymptotically Gaussian
distributed.

Accordingly, the same argumentation, why we expect a square root of n behavior
of the standard deviation in the limit of large n, leads us to the conjecture that the
distribution of free energy values becomes Gaussian for large n.

As we know, that the skewness of a Gaussian distribution is 0 and the kurtosis
is 3, a look at the sequence length dependence of the skewness of the free energy
distribution (see figures 11,12), tells us how close the free distribution is to the
normal distribution. The data for the GCAU-sequences show clearly the expected
convergence to the normal distribution, but for the sampled chain lengths the values
of skewness and kurtosis are still far from the values for the Gaussian distribution.
The lower the temperature, the closer the coefficient of skewness and the coefficient of
kurtosis come to the values for the Gaussian distribution. Although the values of the
skewness and the kurtosis for the GC-Data are closer to the Gaussian distribution
than for the GCAU-Data, whether the skewness nor the kurtosis show a convergent
behavior to the normal distribution within the range of sampled chain lengths.

The convergence of the free energy distribution to a Gaussian distribution is
interesting, because under the assumption of normal distribution analytical expres-
sions have been derived to estimate the number of local optima for not too highly
correlated landscapes [27].

In figure 13 we see the temperature dependence of the standard deviation of
free energy for GCAU and GC sequences. If we compare these plots with the
temperature dependence of the mean free energy in figure 8 we see at first glance a
rather similar behavior. But looking more carefully at the temperature dependence
of the standard deviation we detect, that the curvature of the plots changes the
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5 NUMERICAL RESULTS 38

sign. The different behavior of the standard deviation and the mean free energy
with temperature becomes more evident, if we plot the relative deviation versus
temperature (see figure 14).

We see that the relative deviation has a maximum. This maximum does not
only depend on which base set we choose, but also depends on chain length. The
maximum value of the relative deviation shifts for longer chain length to higher
temperatures. We seem to observe a mean melting point of the secondary structures.
The relative deviation grows with temperature, because more and more molecules
remain in the unfolded state, until the point, where the majority of structures is
unfolded. From this point on the relative deviation decreases, because structures
with low free energy will be found more and more rarely. The mean melting point
is clearly increases with chain length, because more heat is needed to melt the
secondary structures.

Figure 15 shows the temperature dependence of the skewness for the free energy
distribution. Approaching the melting point from low temperatures the the free
energy distribution gets more skewed to the left. The energy distribution is not
symmetric, because secondary structures with positive free energy are not allowed.
At higher temperature the mean value of free energy and accordingly the whole
distribution shifts towards zero, and therefore the plotted temperature dependence
of the coefficient of skewness below the melting point seems plausible.

Beyond the melting point the behavior of the GC data change dramatically.
Obviously the distribution changes completely. Comparing the skewness versus
temperature plot with the kurtosis versus temperature plot for the GC data, we
detect a sharp peak of the kurtosis at the temperature, where the skewness changes
its behavior.



o
o

60

50
60
|

40
40

30

20
20

10

\\\\‘\\\\‘\\\\‘\H—\\\‘\L\\\‘H\\W‘\\\\

Standard Deviation (0.1 kcal)
Standard Deviation (0.1 kcal)
!

o
o

—30 20 70 100 —40 10 60 130
Temperature Temperature
B—H+8 n = 20 o—— n = 30 +—+—+ n = 40 M4 n = 50 G—H+8 n = 20 >—9— n = 30 +—+—+ n = 40 M4 n = 50

Figure 13: The standard deviation for GCAU-sequences (left) and GC-sequences (right) versus temperature for chain lengths
between 20 and 50 in steps of ten. The GCAU data have been sampled at temperatures 7' = —100, —30, 37, 60, 70, 80, 100° C.
The @&Ia have been sampled at temperatures 7' = —100, —40, 20, 37,70, 90, 100,110,120, 130, 150° C.

S.LTNSHY TVOIHANWAN  §

6€



1.2

gy)
0.5

1.0

g.4

0.8

Q.3

o.

T ‘ T T 7 ‘ T T 7 ‘ T T 7

2
S vl »‘r—\\ | —— ‘ | ‘ |

0.2
0.1

0.4
““‘:;v:';{'”h‘r_\‘“““““““““‘

\\\\‘\\\st:ib

Standard Deviation/(—-Free Energy)
i .6

Standard Deviation/(—-Free Ener

o o
. T L L T T T o T T T L L B B B B T T T
-100 -50 o 50 100 -100 -50 o 50 100 150
Temperature Temperature
G518 n = 20 A—A—A n = 22 +—+—+ n = 24 G—H+8 n = 20 A—A—A n = 22 +—+—+ n = 24
M4 n = 26 MK n = 28 >—o— n = 30 P4 n = 26 XX n = 28 o—— n = 30

Figure 14: The relative deviation for GCAU-sequences (left) and GC-sequences (right) versus temperature for chain lengths
between 20 and 30 in steps of 2. The GCAU data have been sampled at temperatures 7' = —100, —30, 37,60, 70, 80, 100° C.
The @&Ia have been sampled at temperatures 7' = —100, —40, 20, 37,70, 90, 100, 110,120, 130, 150° C.

S.LTNSHY TVOIHANWAN  §

0¥



% - -
B B 4 B
1 - 1 I
n = 7 I
- ] ; @ ] -
[ L
] , ° L
] L 4 L
n ] il n 4 L
0 B F n q
v - 0 -
da | [ e _| |
gl - Eo
v ] b v 4 L
A ] r ~ i L
0] B - n
] r o | I
o ] [ - -
| . ] O‘
] r o | I
¥ T T - T T T T T T
|
-30 20 70 100 -40 10 s0 130
Temperature Temperature
B—H+8 n = 20 o—— n = 30 +—+—+ n = 40 M4 n = 50 G—H+8 n = 20 >—9— n = 30 +—+—+ n = 40 M4 n = 50

Figure 15: The skewness for GCAU-sequences (left) and GC-sequences (right) versus temperature for chain lengths between
20 and 50 in steps of ten. The GCAU data have been sampled at temperatures 7' = —100, —30, 37, 60, 70, 80, 100°C. The
GC data have been sampled at temperatures 7" = —100, —40, 20, 37,70, 90,100,110, 120, 130, 150°C.

S.LTNSHY TVOIHANWAN  §

¥



Xprism Plot

o I ‘ I I I I ©
L L 0
] i
o | L
a - -
B - ol
N I <+
o _| |
a - -
0 i . n
H i . H
n i | n
Cuo | | OO.
L~ ] L £
= i b 9
=] i . 3
[~ i L [~
o _| |
] - o
u Kl o
o — — i L
- - ° N B
° T T o T T T T T T T T
-30 20 70 100 -40 10 60 130
Temperature Temperature
B—H+8 n = 20 o—— n = 30 +—+—+ n = 40 M4 n = 50 G—H+8 n = 20 >—9— n = 30 +—+—+ n = 40 M4 n = 50

Figure 16: The kurtosis of the free energy distribution for GCAU-sequences (left) and GC-sequences (right) ver-

sus temperature for chain lengths between 20 and 50 in steps of ten. The GCAU data have been sam-

pled at temperatures 7' = -100,-30,37,60,70,80,100°C. The @&a have been sampled at temperatures T' =
—100, —40, 20, 37, 70, 90, 100, 110, 120, 130, 150° C.

S.LTNSHY TVOIHANWAN  §

(47



5 NUMERICAL RESULTS 43

5.2 The free energy and the structure landscape

The aim of this work was to explore landscapes, which are somehow connected to
evolutionary processes. As we already pointed out in section 3, the intrinsic structure
of a landscape affects very much the power of evolution as a optimization procedure.
How do we get an idea of the features of a landscape on a high dimensional support?
The picture of a twodimensional landscape is helpful for the general understanding,
but is often misleading.

Let us assume, we want to find the global maximum of a landscape with an
adaptive walk. Will it be an easier task on a low dimensional landscape, since the
total number of points in the support is comparatively small, or will the adaptive
walk be more successful on a high dimensional landscape, because the number of
directions, in which the adaptive walk can proceed, is larger?

Given the probability density p(z) of the value distribution of a landscape, we
can derive an approximation of the probability of local optima in the limiting case
of uncorrelated landscapes.

If a is the height of a point in the landscape, the probability, that at least on
direct neighboring point has a height x with = < a is

/ p(z) dx

This only is only valid if the values of neighboring points are independent. Conse-
quently, the probability, that all direct neighbors have a height smaller than a for a
n-dimensional support of the landscape, is

(/a p(x) d:c) :

— 00

If we define

we get for the probability of local maxima,

oo

P(maz) = / (/ap(:v)dj\np(a)da

oo

_ / (G(a))" G'(a) da

400

= (G(a)™*|

— 00
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Stadler and Schnabl [27] derived the same result for low correlated landscapes with
Gaussian value distribution.

In section 4.2 we introduced the autocorrelation function and the correlation
length as a measure for the ruggedness of landscapes. Numerical evaluation of the
autocorrelation function showed, that it can be modeled by a single decaying expo-
nential. Landscapes with such autocorrelation are called first order autoregressive
(AR(1)) and Weinberger [32] derived a number of analytical results for them under
the additional assumption of Gaussian value distribution. If a landscape is AR(1)
the autocorrelation function is uniquely determined by the correlation length.

In figure 17 the correlation length of the free energy landscape is plotted versus
the chain length. Due to computer time limitations the data for the correlation
length larger than 30, have not been sampled with the same precision as for shorter
chain length. The number of points needed to ensure convergence of the sampled
property increases with chain length and as the used algorithm is of cubic order in
the chain length the limits of available computer time were reached. The correlation
length for sequence length between 20 and 50 shows clearly a linear dependence.
Also for chain length up to 50 we see a roughly linear behavior with respect to the
achieved precision of the data.

It is an interesting question, whether correlation length is linear in the sequence
length also for large n. If the correlation length of a landscape does not at least
increase linearly with the chain length, the relative correlation length, i. e. the
correlation length divided by the chain length will vanish in the limit of large n.
Hence, evolution and any other optimization algorithm will fail to find the global
optimum of a landscape in finite time with probability one.

From studies of the landscape of the traveling salesman problem [27] and from
studies of RNA landscapes resulting from the minimal free energy algorithm [9], we
know that the correlation length gives an estimate for the mean walk length from
a random point in sequence space to the next local optimum. The autocorrelation
function represents the loss of information if the random walk has Hamming dis-
tance h from a chosen reference point. Accordingly there is characteristic number of
steps of a random walk or a characteristic Hamming distance after which practically
all information is lost. Points of this characteristic distance are statistically inde-
pendent. Therefore landscapes with a relative correlation length decreasing with n,
divide in more and more statistically independent and finding the global optimum
in finite time will become more and more difficult as we increase the length of the
RNA molecules.

Figure 18 shows the temperature dependence of the correlation length of the free
energy landscape for GC and GCAU sequences.
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For both data sets the correlation length remains approximately constant up to
a base set specific temperature, which can be interpreted as a mean melting tem-
perature of the structural ensemble. The term mean reflects here, that we take the
average over all sampled sequences and does not refer to all possible configurations
of a specific sequence, which are already included in the partition function. We can-
not claim to predict the experimentally determined melting temperature for RNA
sequences, because of the assumptions which have been made in order to extrapo-
late a temperature dependence of the biochemical data (see end of section 2.3), but
we seem to observe a general behavior of the correlation length with temperature.
Beyond the mean melting temperature we see in both plots a dramatic increase.

The constant behavior of the correlation length temperatures below the melting
point indicates, that the ensemble of possible secondary structures of a given RNA
molecule is mainly determined by a single structure with minimal free energy, which
does not change significantly with temperature. This means, that the probability
for a RNA molecule to fold in the most stable structure is comparatively high and
all other structures with not negligible probability of occurrence are closely related
to the likeliest structure. Only at the melting point, when many stems open, we see
a the correlation length becomes longer. Clearly the fewer bases pair the longer is
the correlation length, because a mutation of an unpaired base will normally have a
smaller effect on the change of the secondary structure, than a mutation of a base
in a stack.

The values for the correlation length of free energy landscapes resulting from the
Zuker algorithm lie significantly below those calculated with the partition function
algorithm. For GCAU landscapes the values range from 70% to 80% of the parti-
tion function correlation length, whereas the values for GC landscapes are between
75% and 85% of the partition function correlation length. We compared the correla-
tion length for landscapes corresponding to the minimal free energy algorithm with
our data computed at 37°C. As we already pointed out, the minimal free energy
algorithm determines the most stable secondary structure at 37° C, not the ground
state of the RNA molecule.

Figure 19 shows the temperature dependence of the correlation length of the
structural ensemble distance landscape. We see an increase of correlation length up
to the mean melting temperature. Above this characteristic temperature the corre-
lation length decreases again because of the vanishing variance at high temperatures.

In figure 20 the mean base pairing probability is plotted versus temperature
for the GCAU sequences as well as for the GC-only sequences. For small chain
lengths the mean base pairing probability depends on the chain length, because at
least three bases must be unpaired in a region where the molecule folds back upon
itself.

The next series of figures (21,22,23) shows the probability density surfaces of the
free energy landscape and the ensemble structure landscape for the GCAU Data at
three different temperatures. In these figures we plot the number of occurrence for
two sequences with a given Hamming distance h and a given free energy or struc-
ture distance d. Increasing temperature obviously shifts the conditional probability
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5 NUMERICAL RESULTS 50

distribution towards vanishing structure or free energy distance. The probability
surfaces at low temperature are qualitatively indistinguishable from those derived
from the minimal free energy folding algorithm [10].
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Figure 21: The probability density surfaces for the free energy landscape (left) and the ensemble structure landscape (right).
The data are obtained for the GCAU alphabet at temperature T = 37° C.
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6 CONCLUSION AND OUTLOOK 54

6 Conclusion and outlook

Two different kinds of RNA landscapes, the free energy landscape and the landscape
of the structural ensembles, have been analyzed in detail. A new algorithm [21],
which allows the calculation of the partition function of RNA molecules, has been
used to compute the value landscapes. From the partition function we derive the
free energy as well as the equilibrium probabilities for the formation of all possible
base pairs. In contrast to the conventional minimal free energy folding algorithms,
which have previously been applied to the computation of similar landscapes, the
partition function algorithm introduces temperature as a parameter into the calcula-
tion. While minimal free energy folding algorithms yield the most stable secondary
structure, the partition function algorithm takes into account all possible secondary
structures weighted according to the Boltzmann distribution. Consequently land-
scapes based on the partition function algorithm should have closer resemblance to
reality, because the partition function contains important information on the struc-
tural variability. Hence, the major goal of this work was to determine, whether there
is a qualitative difference between both landscapes.

The most appropriate quantity for a description of landscapes turned out to
be the correlation length, which is a measure accounting for ruggedness as well an
estimate for the number of local optima in the landscape.

The aim of this work then was to study the influence of temperature onto the cor-
relation length for landscapes of short RNA molecules. Due to the enormous amount
of computer time required for such simulations we investigated only landscapes cor-
responding to RNA molecules with chain lengths between 20 and 50 nucleotides.
It is shown that the correlation length is constant below a certain characteristic
temperature, which can be interpreted as an average melting temperature of the
sampled RNA sequences.

We also examined the dependence of the correlation length on chain length for
free energy landscapes and detected an approximately linear behavior. Although
this was only shown for short RNA, it is nevertheless an interesting result, since any
slower increase than the linear dependence leads in the limit of large sequence lengths
to very complex landscapes. Indeed, they become so complex, that no optimization
algorithm, which has a priori no information on the landscape, could ever find their
global optima.

Studies of free energy landscapes [9] using the minimal free energy folding al-
gorithms have showed, that landscapes of RNA molecules consisting of only two
complementary bases are more rugged than those for real RNA consisting of four
bases. This fact was also verified for partition function landscapes. Although no
salient deviation from the minimal free energy results was detected, the absolute
values of the correlation lengths are significantly higher for the more realistic par-
tition function landscapes. This increase of correlation length indicates, that real
RNA landscapes are less rugged, than might be expected from simulations using to
the minimal free energy folding. The present work is summarized in Bonhoeffer et
al. (1992) [1].
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Many questions remain to be answered. Taking into consideration that most self
replicating RNA molecules consist of a few hundred bases it would be interesting
to expand our calculations to longer chain lengths. Unfortunately this is currently
out of reach since the required amount of computation time grows proportional to
n® (n being the sequence length). The use of the free energy algorithm, however,
makes calculations up to some hundred nucleotides possible, since this algorithm is
computationally less costly Therefore investigations of free energy landscapes basing
on this algorithm have been performed up to chain length up to hundred bases. In
these studies [9] no deviation from the linear behavior of the correlation length was
detected in the range of computed sequence lengths.

It would be worthwhile, to investigate the relationship between the correlation
length of a landscape and the time needed for an evolutionary algorithm to find a
satisfactory solution. So far no simulations of evolutionary models have been carried
out on the partition function landscapes.

The remarkable difference between the correlation length of landscapes of GC
and GCAU sequences, guided our interest of our group to another point. Obviously,
the introduction of a second base pair with different stacking energy results in a
smoother landscape. We now want to find out for which percentage of A,U,G and
C the correlation length of the corresponding landscape is maximal.

A different approach modeling the melting kinetics of RNA is currently under-
taken in our group. Equilibrium constants for the melting process of RNA molecules
are computed in order to derive more realistic fitness landscapes. Models of fitness
landscapes do not only require a function for the evaluation of the phenotype in a
given surrounding, they also need a reliable prediction of phenotype from genotype.
In general the prediction of the phenotype from the genotype is still far out of reach.
The only exception is the prediction of the secondary structure of RNA molecules.
Here, the folding algorithms represent a fairly reliable prediction of the phenotype
from the mere sequence. Hence, a model for the evaluation of the selfreproducing
capability of RNA secondary structures would allow the computation of realistic
fitness landscapes.

Answers to these questions will hopefully allow to gain further understanding of
prebiotic evolution.



A COMPUTER TIME REQUIREMENTS

A Computer time requirements

workstation desired result | CPU time | chain length
Sun Sparc Station 2 free energy 0.5s 30
2s 50
probability 1s 30
45 s 50
Sun Sparc Station SLC | free energy 1s 30
4.2 s 50
probability 1.9s 30
9.1s 50

Table 1: Computer time usage

o6

The computations were carried out mainly on two different workstations. The

calculation of the partition function, from which the free energy is derived, is of cubic

order in the sequence length. As we already mentioned in section 2.3 the calculation
of the base binding probability matrix from the full partition function requires an
additional backtracking algorithm of cubic order. For this reason the computer time
is approximately doubled for the calculation of the base binding probability matrix.
The time given in the table corresponds to a single execution of the program, i. e. to
find the result for a single sequence.



B DATA TABLES

B Data tables

n\T | -100 -30 37 60 70 80 100
50 -287 -89 -43 -29 -21 -14
48 -272 -84 -40 -28 -20 -14
46 -257 79 38 -26 -19 -13
44 -241 74 35 -24 17 -12
42 -226 -69 -33 -23 -16 -11
40 -211 -64 -30 -21 -15 -10
38 -196 -59 -28 -19 -14 -10
36 -181 -54 -26 -18 -13 -9
34 -166 -49 -23 -16 -12 -9
32 -151 -44 -21 -15 -11 -8
30 |-261 -138 -39 -18 -13 -10 -7
28 | -235 -123 -34 -15 -11 -8 -6
26 |-209 -108 -30 -13 -10 -7 -5
24 |-184 -94 -25 -11 -8 -6 -5
22 |-158 -80 -21 -9 -7 -5 A4
20 |-133 66 -16 -7 -6 -4 -4
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Table 2: The mean free energy of GCAU-sequences in 0.1 kcal. The chain length n
ranges from 20 to 50 in steps of 2. The temperature T is measured in degree Celsius.



B DATA TABLES o8

n\T | -100 -40 20 37 70 90 100 110 120 130 150

50 =702 -340 -119 -86 -60 -35
48 -667 -323 -113  -82  -57 -34
46 -633 -306 -106 -77 -53 -32
44 -599 -288 -100 -72  -50 -30
42 -564 -271 -93  -68 -47 -28
40 -530 -254 -87  -63 -44 -26
38 -496 -237 -81 -58 41 -25
36 -462 -219 -74  -54 -38 -23
34 -428 -203 -68 49 -34 -21
32 -394 -186 -62 45 -31 -19

30 |-517 -362 -210 -169 -95 -56 -40 -28 -21 -18 -17
28 | -470 -328 -190 -153 -84 -50 -35 -25 -19 -16 ~-15
26 | -423 -295 -169 -136 -75 -44 -31 -22 -16 -14 -14
24 | -377 -261 -149 -119 -65 -38 -27 -19 -14 -12 -12
22 |-330 -228 -129 -103 -55 -32 -22 -16 -12 -11 -11
20 | -284 -195 -109 -8 -46 -26 -18 -13 -10 -9 -9

Table 3: The mean free energy of GC-sequences in 0.1 kcal. The chain length n
ranges from 20 to 50 in steps of 2. The temperature T is measured in degree Celsius.
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n\T | -100 -30 37 60 70 80 100

50 57.98 32.31 20.51 15.10 10.11 3.89
48 56.80 31.44 19.93 14.57 9.81 3.78
46 55.60 30.60 19.27 14.11 9.52 3.65
44 54.31 29.62 18.65 13.60 9.20 3.50
42 52.99 28.67 18.04 13.08 8.87 3.36
40 51.75 27.86 17.34 12.55 850 3.23
38 50.24 26.93 16.62 11.98 8.13 3.09
36 48.80 26.01 15.91 1141 7.73 294
34 4720 2492 15.22 1082 7.33 2.79
32 45.60 23.77 14.37 10.14 6.89 2.65

30 | 63.49 4454 2285 13.55 9.58 6.40 2.52
28 | 61.30 42.67 21.55 12.65 889 593 2.35
26 | 58.84 40.76 20.16 11.68 8.17 5.46 2.17
24 | 56.35 38.80 18.64 10.62 7.37 492 1.98
22 | 53.52 36.60 17.02 9.49 6.56 4.39 1.79
20 | 50.11 34.28 15.22 831 5.73 3.84 1.58

Table 4: The standard deviation of the free energy GCAU-sequences in 0.1 kcal.
The chain length n ranges from 20 to 50 in steps of 2. The temperature 7" is measured
in degree Celsius.



n\T | -100 -40 20 37 70 90 100 110 120 130 150
50 65.41 41.00 19.82  14.94 10.03 3.86
48 64.64 40.21 19.47 14.64 9.80 3.75
46 63.86 39.54 19.08 14.30 9.56 3.64
44 63.07 38.76 18.71 13.97 9.32 3.53
42 61.94 38.09 18.32 13.63 9.06 3.41
40 60.78 37.40 17.83 13.29 8.78 3.38
38 59.77 36.69 17.34 1290 8.48 3.14
36 58.85 35.97 16.81 12.43 8.14 3.01
34 57.87 35.05 16.31 12.00 7.80 2.88
32 56.25 34.18 15.71 11.55 7.43 2.74
30 | 70.26 54.52 38.46 33.35 2252 15.17 11.08 7.04 3.97 260 2.11
28 | 68.29 52.89 3r.28 3229 21.72 14.51 10.51 6.62 3.72 244 1.98
26 | 66.31 51.44 3597 31.11 2084 13.75 987 6.15 345 227 1.86
24 | 63.97 49.44 34.52 29.79 19.81 1291 9.13 5.63 3.15 2.09 1.70
22 | 61.29 47.20 33.056 28.44 18.68 12.01 832 5.08 2.83 190 1.56
20 | 58.30 45.08 31.38 26.92 17.38 1096 7.39 446 2.50 1.70 1.40

Table 5: The standard deviation of the free energy of GC-sequences in 0.1 kcal. The chain length n ranges from 20 to 50 in

steps of 2. The temperature 1" is measured in degree Celsius.
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B DATA TABLES 61

n\T | -100 -30 37 60 70 80 100

50 0.36 0.48 0.52 0.48 0.28
48 0.37 0.50 0.52 0.49 0.27
46 0.39 0.51 0.54 0.50 0.28
44 0.40 0.53 0.57 0.54 0.29
42 0.42 0.55 0.57 0.55 0.31
40 0.44 0.58 0.60 0.57 0.32
38 0.46 0.59 0.63 0.58 0.31
36 0.48 0.61 0.63 0.59 0.33
34 0.51 0.66 0.68 0.61 0.31
32 0.54 0.68 0.68 0.63 0.33

30 | 024 032 059 075 0.74 0.64 0.36
28 1026 0.35 063 0.84 0.81 0.74 0.39
26 | 0.28 0.38 0.67 0.90 0.82 0.78 0.43
24 1031 041 075 097 092 0.82 0.40
22 (034 046 081 1.05 094 0.88 0.45
20 | 0.38 0.52 095 1.19 0.96 0.96 0.40

Table 6: The standard deviation divided by the negative free energy GCAU-
sequences. The chain length n ranges from 20 to 50 in steps of 2. The temperature
T is measured in degree Celsius.
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n\T | -100 -40 20 37 70 90 100 110 120 130 150

50 0.12 0.17 0.17 0.17 0.11
48 0.12 0.17 0.18 0.17 0.11
46 0.13 0.18 0.19 0.18 0.11
44 0.13 0.19 0.19 0.19 0.12
42 0.14 0.20 0.20 0.19 0.12
40 0.15 0.20 0.21 0.20 0.13
38 0.15 0.21 0.22 0.21 0.13
36 0.16 0.23 0.23 0.21 0.13
34 0.17 0.24 0.24 0.23 0.14
32 0.18 0.25 0.26 0.24 0.14

30 | 014 0.15 0.18 0.20 0.24 0.27 0.28 0.25 0.19 0.14 0.12
28 (015 0.16 0.20 0.21 0.26 0.29 030 0.26 0.20 0.15 0.13
26 | 0.16 0.17 0.21 0.23 0.28 031 0.32 0.28 0.22 0.16 0.13
24 1017 0.19 023 025 030 034 034 030 0.23 0.17 0.14
22 1019 021 026 028 0.34 038 038 0.32 0.24 0.17 0.14
20 1021 0.23 0.29 031 038 042 041 034 025 0.19 0.16

Table 7: The standard deviation divided by the negative free energy of GC-
sequences. The chain length n ranges from 20 to 50 in steps of 2. The temperature
T is measured in degree Celsius.



B DATA TABLES 63

n\T | -100 -30 37 60 70 80 100
50 -0.049 -0.434 -0.860 -1.150 -1.510 -1.470
48 -0.050 -0.454 -0.903 -1.191 -1.565 -1.501
46 -0.070 -0.481 -0.924 -1.244 -1.648 -1.540
44 -0.096 -0.592 -0.961 -1.280 -1.710 -1.544
42 -0.116 -0.528 -1.022 -1.328 -1.781 -1.575
40 -0.139 -0.566 -1.085 -1.407 -1.851 -1.654
38 -0.154 -0.601 -1.138 -1.480 -1.961 -1.727
36 -0.181 -0.647 -1.215 -1.554 -2.058 -1.806
34 -0.206 -0.697 -1.303 -1.640 -2.150 -1.897
32 -0.223 -0.754 -1.407 -1.730 -2.234 -2.036
30 | -0.100 -0.263 -0.854 -1.426 -1.883 -2.388 -2.171
28 | -0.115 -0.285 -0.929 -1.556 -2.035 -2.543 -2.287
26 | -0.147 -0.337 -1.030 -1.691 -2.200 -2.710 -2.426
24 | -0.173 -0.378 -1.153 -1.866 -2.415 -2.890 -2.608
22 | -0.211 -0.451 -1.340 -2.010 -2.678 -3.245 -2.836
20 | -0.252 -0.531 -1.577 -2.412 -2.978 -3.663 -3.070

Table 8: The skewness of the free energy distribution for GCAU-sequences. The
chain length n ranges from 20 to 50 in steps of 2. The temperature T is measured
in degree Celsius.



n\T | -100 -40 20 37 70 90 100 110 120 130 150
50 0.419 0.279 -0.020 -0.059 0.028 0.912
48 0.405 0.258 -0.035 -0.091 -0.007 0.911
46 0.375 0.234 -0.043 -0.115 -0.039 0.906
44 0.372 0.211 -0.0561 -0.152 -0.073 0.910
42 0.383 0.201 -0.078 -0.196 -0.129 0.909
40 0.375 0.184 -0.101 -0.231 -0.180 0.908
38 0.368 0.166 -0.129 -0.258 -0.218 0.899
36 0.358 0.160 -0.162 -0.305 -0.234 0.891
34 0.321 0.137 -0.200 -0.353 -0.274 0.873
32 0.312 0.118 -0.238 -0.406 -0.338 0.852
30 | 0372 0.285 0.165 0.100 -0.094 -0.325 -0.429 -0.472 0.123 0.866 0.794
28 10.352 0.264 0.146 0.076 -0.127 -0.378 -0.498 -0.539 0.064 0.824 0.789
26 | 0.311 0.244 0.118 0.046 -0.172 -0.441 -0.585 -0.611 0.064 0.781 0.776
24 ]10.283 0.213 0.075 0.001 -0.232 -0.523 -0.672 -0.700 -0.034 0.725 0.752
22 1 0.254 0.183 0.025 -0.052 -0.305 -0.630 -0.778 -0.800 -0.085 0.659 0.744
20 | 0.229 0.139 0.002 -0.107 -0.394 -0.748 -0.892 -0.884 -0.151 0.583 0.712
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Table 9: The skewness of the free energy distribution for GC-sequencs. The chain length n ranges from 20 to 50 in steps of
2. The temperature 7" is measured in degree Celsius.
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B DATA TABLES

n\T | -100 -30 37 60 70 80 100
50 335 330 4.03 481 6.47 7.23
48 3.32 332 413 497 6.74 747
46 3.29 335 411 518 7.22 7.80
44 3.29 3.36 417 529 T7.60 7.85
42 334 338 433 545 8.02 8.08
40 333 344 453 5.78 841  8.69
38 3.30 347 467 6.10 9.14 9.28
36 3.28 3.54 493 635 9.78 997
34 3.29 3.63 524 6.76 10.34 10.90
32 3.30 3.74 571 7.22 10.81 12.30
30 | 3.36 333 3.96 554 8.07 12.23 13.20
28 |3.32 331 4.08 6.11 898 13.49 14.59
26 | 3.31 3.31 4.30 6.63 9.98 14.64 16.45
24 1330 3.29 4.61 751 11.53 16.33 19.04
22 1 3.29 332 527 890 13.56 20.46 23.01
20 | 3.26 3.36 6.21 11.03 1594 25.86 27.69
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Table 10: The kurtosis of the free energy distribution for GCAU-sequences. The
chain length n ranges from 20 to 50 in steps of 2. The temperature T is measured

in degree Celsius.



n\T | -100 -40 20 37 70 90 100 110 120 130 150
50 4.48 4.15 4.07 4.27 441 3.86
48 4.44 4.17 4.06 4.26 4.42 3.87
46 4.36 4.12 4.04 4.27 443 3.85
44 4.29 4.02 4.03 4.25 4.40 3.87
42 4.27 3.94 4.04 4.26 4.50 3.87
40 4.24 3.89 4.03 4.20 4.51 3.90
38 4.23 3.89 3.99 4.15 4.50 3.91
36 4.28 3.90 3.98 417 441 3.91
34 4.22 3.88 3.94 413 441 3.90
32 4.12 3.86 391 412 4.44 3.89
30 | 4.18 4.03 3.89 384 3.77 3.94 417 467 429 390 341
28 | 411 396 380 3.75 3.71 3.92 419 471 4.28 383 3.39
26 | 4.01 3.89 3.72 3.68 3.65 3.88 4.28 4.73 423 3.77 3.36
24 | 3.88 3.77 3.63 3.60 3.61 388 4.33 480 4.13 3.69 3.31
22 | 377 3.69 3.54 351 354 394 441 493 4.05 3.63 3.31
20 | 3.68 3.54 343 340 3.46 3.96 4.50 5.00 4.01 3.52 3.27

Table 11: The kurtosis of the free energy distribution for GC-sequence. The chain length n ranges from 20 to 50 in steps of

2. The temperature 7" is measured in degree Celsius.
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n\T | -100  -30 37 60 70 80 100
50 13.64 13.16 14.22 13.97 14.72 18.86
48 13.22 12.06 13.08 13.16 13.82 16.93
46 12.12 10.32 12.00 12.23 13.21 16.81
44 11.69 9.50 11.96 11.29 10.71 16.83
42 11.43 9.78 10.82 10.41 10.48 14.29
40 10.54 935 9.66 897 997 12.38
38 9.70 9.82 10.03 9.41 9.67 14.18
36 923 879 929 790 841 1149
34 8.7 850 735 859 789 11.71
32 746 7.8 797 757 6.68 11.76
30 | 788 775 78 7.7 719  8.07 10.30
28 | 706 703 728 7.14 6.53 7.45 9.117
26 | 6.52 6.52 630 6.59 6.10 6.70 7.93
24 16.03 6.0r 573 583 538 596 7.51
22 | 560 499 524 527 478 540 6.12
20 | 496 4.57 447 462 423 4.62 5.52

Table 12: The correlation length of the free energy landscape of GCAU-sequencs. The chain length n ranges from 20 to 50

in steps of 2. The temperature 7" is measured in degree Celsius.
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n\T | -100 -40 20 37 70 90 100 110 120 130 150
50 5.76 6.22 5.76 5.70 6.83 13.30
48 5.84 5.52 5.49 5.52 6.30 15.21
46 5.78 5.65 5.36 5.16 6.05 13.77
44 5.24 5.32 5.10 4.98 5.79 12.69
42 4.98 5.23 5.06 4.80 5.35 10.33
40 4.70 4.68 4.81 4.36 5.06 10.57
38 4.50 4.61 4.75 4.22 4.84 9.82
36 4.48 4.42 4.27 3.90 4.56 8.05
34 4.04 4.53 4.18 3.82 4.22 7.55
32 3.84 4.11 3.72 3.57 3.96 717
30 | 3.80 3.73 3.59 3.52 346 3.39 3.60 383 538 6.24 6.60
28 | 3.58 3.47 3.30 3.24 3.22 3.11 331 3.51 4.65 579 6.29
26 | 3.34 324 3.09 3.03 3.04 288 3.04 324 416 531 5.92
24 1315 291 281 276 2.71 259 284 294 379 499 540
22 1290 2.78 255 250 248 235 254 2.67 347 439 5.25
20 | 2.70 242 228 223 217 211 224 242 3.08 3.83 4.52

Table 13: The correlation length of the free energy landscape of GC-sequence. The chain length n ranges from 20 to 50 in

steps of 2. The temperature 1" is measured in degree Celsius.
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B DATA TABLES

chain length n = 30

T le ls D

-30 | 7.21 421 0.54
37 | 538 594 0.40
60 | 5.73 6.38 0.27
70 | 7.09 7.24 0.20
80 | 7.79 733 0.15
100 | 871  4.78 0.08

chain length n = 50

T le ls D

37 [ 1334 892 041
60 | 12.63 12.23 0.20
70 | 11.90 11.52 0.14
80 |15.13 11.33 0.10
100 | 17.96 8.03 0.07

69

Table 14: The correlation length of the free energy (l.) and the structure (/5) land-
scape for GCAU sequences at different temperatures. The third column shows the

mean binding probability at a given temperature.

chain length n = 30
T le L p
-40 | 3.6790 2.2855 0.681
37 | 3.6371 2.7582 0.646
90 3.76 3.32 0.53
100 | 3.56 3.40 0.47
110 | 3.87 3.54 0.37
130 | 6.43 2.28 0.19

chain length n = 50
T le L p
37 5.75 3.13 0.76
90 5.57 5.05 0.61
100 | 5.49 5.83 0.49
110 | 5.57 5.44 0.28
130 | 12.50 1.92 0.16

Table 15: The correlation length of the free energy (l.) and the structure (/) land-
scape for GC sequences at different temperatures. The third column shows the

mean binding probability at a given temperature.



C THE EXPERIMENTAL DATA

C The experimental data

Enthalpies for stacked pairs (0.1 kecal)

5'/3" | CG GC GU UG AU UA

CcG |-122.0 -80.0 -77.0 -77.0 -105.0 -76.0
GC | -142.0 -122.0 -75.0 -81.0 -133.0 -102.0
GU | -81.0 -77.0 -67.0 -67.0 -67.0 -69.0
uG | -75.0 -77.0 -68.0 -67.0 -69.0 -67.0
AU | -102.0 -76.0 -67.0 -69.0 -66.0 -57.0
UA | -133.0 -105.0 -69.0 -67.0 -81.0 -66.0

Entropies for stacked pairs (0.1 kcal)
5/3 | CG GC GU UG AU UA
CcG |-29.7 -194 -20.0 -20.0 -27.8 -19.2
GC |-349 -29.7 -20.0 -20.0 -35.5 -26.2
GU |-20.0 -20.0 -20.0 -20.0 -20.0 -20.0
UG |-20.0 -20.0 -20.0 -20.0 -20.0 -20.0
AU |-26.2 -19.2 -20.0 -20.0 -184 -15.5
UA | -35.5 -27.8 -20.0 -20.0 -22.6 -18.4

Free energies for loops?(0.1 keal):

hairpin AU . 9999, 9999, 45, 55, 49, 51, 52, 55, 58, 59, 60, 61,
62, 63, 64, 64, 65, 65, 66, 67, 67, 68, 68, 69, 69,
69, 70, 70, 71, 71

hairpin GC . 9999, 9999, 45, 55, 49, 51, 52, 55, 58, 59, 60, 61,
62, 63, 64, 64, 65, 65, 66, 67, 67, 68, 68, 69, 69,
69, 70, 70, 71, 71

bulge .39, 31, 35, 42, 48, 50, 52, 53, 54, 55, 57, 57, 58,
59, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 65, 65,
66, 67, 67, 67

internal loop AU&LAU : 9999, 41, 45, 49, 53, 57, 59, 60, 61, 63, 64, 64,
65, 66, 67, 68, 68, 69, 69, 70, 71, 71, 71, 72, 72,
73, 73, 74, T4, T4

internal loop GC&GC  : 9999, 41, 45, 49, 53, 57, 59, 60, 61, 63, 64, 64,
65, 66, 67, 68, 68, 69, 69, 70, 71, 71, 71, 72, 72,
73, 73, 74, T4, T4

internal loop AU&GC 9999, 41, 45, 49, 53, 57, 59, 60, 61, 63, 64, 64,
65, 66, 67, 68, 68, 69, 69, 70, 71, 71, 71, 72, 72,
73,73, 74,74, T4

2with length 1,...,30



Mismatch energies (0.1 keal)

5/3 | AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU
AA -10 -11 -19 -15 -8 -8
AC -7 -11 -10 -9 -7 -7
AG -11 -16 -19 -15 -8 -8
AU |8 -10 -10 -10 -7 -7 -7 -7 -8 -10 -10 -10 -8 -8 -8 -8
CA -8 -13 -20 -14  -10 -10
CC -6 -6 -11 -9 -7 -7
¢cG |{-19 -20 -19 -19 -10 -11 -10 -8 -19 -19 -19 -19 -14 -15 -14 -12
CU -6 -8 -15 -11 -8 -8
GA -11 -13 -19 -15 -10 -10
G¢ |{-11 -13 -13 -13 -11 -6 -6 -5 -16 -15 -14 -15 -8 -8 -8 -7
GG -12 -14 -19 -16  -10 -10
¢Gu -8 -10 -10 -10 - -vr -7 -r -8 -10 -10 -10 -8 -8 -8 -8
vA |-10 8 -11 -9 -7 6 -3 -5 -11 -9 -12 -9 -3 -6 -3 -9
UucC -9 -9 -8 -7 -7 -7
uGg |- -14 -15 -4 -9 -9 -vr -7 -15 -14 -16 -14 -9 -11 -9 -9
Uuu -9 -7 -12 -9 -8 -8
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