SUBOPTIMAL
SECONDARY STRUCTURES
OF RNA

DIPLOMARBEIT
eingereicht von
Stefan Wuchty
zur Erlangung des akademischen Grades
Magister rerum naturalium
an der Formal- und Naturwissenschaftlichen Fakultat

der Universitat Wien

March 16, 1998



Diese Arbeit wurde in der Zeit von Mérz 1997 bis Februar 1998 im Insti-
tut fur theoretische Chemie der Universitat Wien durchgefiithrt. Zu allererst
mochte ich Peter Schuster fiir die (kurzfristige) Aufnahme in seine Arbeits-
gruppe danken. An dieser Stelle ist mir die Moglickeit gegeben, allen Freunden
und Kollegen fiir deren Unterstiitzung und Hilfe zur Erreichung dieses Zieles
zu danken.

Walter Fontana hat diese Arbeit bestens betreut und mich in wissenschaftliches
Arbeiten eingefiihrt. Ivo Hofacker hat mit mir endlos nach Bugs und anderen
Fehlern gesucht.

Last but not least bedanke ich mich bei allen anderen Mitgliedern der Arbeits-
gruppe: Peter Stadler, Ronke Babajide, Jan Cupal, Martin Fekete, Christoph
Flamm, Thomas Griesmacher, Christian Haslinger, Stephan Kopp, Béarbel
Krakhofer, Stefan Miiller, Susanne Rauscher, Alexander Renner, Norbert Tschu-
lenk, Andreas Wernitznig und die heimliche Leitung des Instituts, Judith Jaku-
betz, sorgten fiir eine ausgezeichnete Athmosphére.

Meinen Eltern danke ich fiir ihre Unterstiitzung wahrend des Studiums..



Zusammenfassung

RNA-Molekiile dienen nicht nur als Trager von Information, sondern auch als
selbststandige funktionelle Einheiten. Thre dreidimensionale Struktur spielt
eine wichtige Rolle bei einer grolen Anzahl von biologischen Prozessen. Sekun-
darstrukturen bieten die Moglichkeit, die Struktur von RNA-Molekiilen in
einer groberen Auflosung zu untersuchen. Ihr Studium liefert wertvolle In-
formation fiir die Vorhersage von 3D-Strukturen und fiir das Verstandnis bio-

chemischer Vorginge .

RNA-Sekundérstrukturen kénnen als planare Graphen beschrieben werden.
Neben der thermodynamisch optimalen Sekundarstruktur existieren noch weit-
ere suboptimale Sekundarstrukturen, die ebenfalls eine biologische Funktion
haben konnen. Friiher entwickelte Algorithmen zur Berechnung suboptimaler
Sekundarstrukturen werden beschrieben und miteinander verglichen. Ein neuer
Algorithmus zur Berechnung aller Sekundarstrukturen von RNA-Sequenzen
innerhalb eines bestimmten Energiebandes oberhalb der minimalen freien En-
ergie wurde entwickelt und implementiert. Der Algorithmus benutzt die Meth-

ode des dynamic programming.

Mit der Moglichkeit, simtliche suboptimale Sekundarstrukturen berechnen
zu konnen, wurde die Rolle der modifizierten Basen in natiirlichen tRNA-
Sequenzen von FE.coli untersucht. Es zeigte sich, dal die modifizierten Basen
einen signifikanten stabilisierenden Einflul auf die Definiertheit der RNA-
Struktur haben. Weiters wurde die “Lower Density of States” (LoDoS) einiger
tRNA-Sequenzen untersucht. Die Ergebnisse zeigen, dal die natiirlichen tRNA-
Sequenzen im Vergleich zu anderen Sequenzen, welche dieselbe Sekundarstrukt-
uren ausbilden, weniger Zustande in der Umgebung des Grundzustandes auf-
weisen, der Abstand vom Grundzustand zum ersten angeregten Zustand héher
ist und diese Zustdnde strukturstabiler sind. Ebenfalls konnte gezeigt wer-
den, dafl ein direkter Zusammenhang zwischen Mutationsstabilitat einer Se-
quenz, ihrer thermodynamischen Stabilitdt und Wohldefiniertheit ihrer Struk-

tur besteht. Die Zustandssumme einer RNA-Sequenz kann aus den tiefer
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liegenden Zustdnden ohne Kenntnis aller Strukturen in guter Naherung berech-

net werden.
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Abstract

RNA molecules do not serve as carriers of information only, but also as func-
tionally active units. The three-dimensional shape of tRNA molecules plays a
crucial role for a wide variety of biological processes. Secondary structures pro-
vide a convenient form of coarse graining, and their study yields information
useful in the prediction of the full 3D structures and in the interpretation of
the biochemical function of the molecules. Furthermore, secondary structures

are discrete and therefore well suited for computational methods.

RNA secondary structures can be represented as planar, vertex-labeled graphs.
Beside the thermodynamic optimal secondary structure there exist further
suboptimal structures providing also a biological function. Algorithms for
calculating suboptimal secondary structures derived previously were compiled
and presented. A new algorithm for calculating all acceptable suboptimal
structures of RNA sequences within a given energy range above the minimum

free energy based on dynamic programming was developed and implemented.

With the possibility to calculate all acceptable suboptimal structures the role
of modified bases occuring in natural tRNA sequences of E.coli was investi-
gated. The results show that the modified bases have a significant stabilizing
effect on the well-definedness of the structure. Also the Lower Density of
States (LoDoS) of these tRNA sequences was investigated. The results show
that original tRNA sequences in comparison to sequences providing the same
secondary structure have less states in the vicinity of the ground state, the
energy gap is usually larger and the structures contained by these states are
better conserved. A direct correlation between stability against mutation of a
sequence, their thermodynamical stability and well-definedness of their related
structure was observed. Furthermore the partition function of a RNA sequence
was calculateable in a good approximation using the lower states without the

knowledge of all structures.
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1 Motivation 1

1 Motivation

RNA molecules serve not only as carriers of information, but also as func-
tionally active units. The three dimensional shape of tRNA molecules plays a
crucial role in the process of protein synthesis. RNA is known to exhibit cat-
alytic activity [5, 11, 12, 23]. While the activity of these so called “ribozymes”
is usually restricted to cleavage and splicing of RNA itself, recent evidence
suggests that RNA also plays a predominant role in ribosomal translation.
These discoveries have given much support to the idea that an RNA World
[10, 20, 21, 22| stood at the origin of life, in which RNA served both as carrier
of genetic information as well as catalytically active substance. RNA may not
necessarily have been the first step in prebiotic evolution, but the idea that
RNA preceded not only DNA, but also the invention of the translational sys-
tem, seems widely accepted. Furthermore, RNA provides an ideal, currently
the only, system to study genotype-phenotype relationships. Following Sol
Spiegelman [40], the phenotype for an RNA molecule can be defined as its
spatial structure.

Although RNA offers a limited repertoire of catalytic functions, ribozymes
gain importance for biotechnological applications, since these molecules are
suited for evolutionary design: Large scale synthesis of RNA molecules under-
lying mutation and selection experiments, in which the ribozymes are screened
for positive catalytic functions, are spreading in use.

In many biologically evolved RNA molecules such as viral genomes and
tRNA, the structure seems to be more conserved than the sequence. Viruses
belonging to the same family show often little sequence similarity, yet exhibit
strongly conserved structural motifs in terminal regions. The wide variety of
tRNA sequences provided by databases fit into almost ident cloverleaf patterns.

RNA secondary structures can be represented as planar vertex-labeled
graphs. Dynamic programming algorithms for calculation of the minimum
free energy structure [47, 53] as well as combinatorial algorithms [7] both based
on graph enumeration have been available now for some time. Naturally the

algorithms yield only the ground state structure; there is of course an expo-
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nentially high number of other configurations, and even though the ground
state is more probable than any other state, the probability within the whole
ensemble of structures may be negligible. An elegant solution for this problem
was suggested by John McCaskill [26], who proposed an algorithm to compute
the partition function and the matrix of base pairing probabilities of an RNA
molecule. The Vienna RNA Package [16] provides an efficient implementation
of both the minimum free energy and the partition function algorithm, which
makes calculations even for large sequences possible.

Paul Higgs [14, 15] presented thermodynamic studies on the stability of
tRNA molecules, based on an algorithm for the density of states, i.e., the dis-
tribution of energies of all possible secondary structure configurations. From
the density of states all thermodynamic parameters can be derived. While the
partition, too, yields the frequency of the ground state in the thermal equilib-
rium, specific information about suboptimal structures can only be obtained
from the density of states. Higgs algorithm is based on compiling compatible
stems of minimum length 3 and uses a rather simlified energy model [14].

In our research group Jan Cupal [6] introduced a dynamic programming
algorithm for the computation of the distribution of states of RNA secondary
structures in his diploma thesis. The algorithm implements the energy pa-
rameter set used within the Vienna RNA Package and is not restricted to any
minimum stem length. He showed that the recursions underlying all dynamic
folding algorithms are accessible from a single basic recursion for the enumer-
ation of secundary structure graphs. This algorithm can be extended to yield
the complete density of states. The observation that the density of states of
a sequence can be obtained from the density of states of smaller subsequences
is fundamental in this work. However the algorithm is quite demanding both
in terms of memory and CPU time. Thus the possibilities of application are
restricted to an upper bound sequence length.

For many purposes it is not necessary to get the whole information of the
density of states, but of a certain energy range above the minimum free en-
ergy. Also there may exist several suboptimal structures providing a biological

function. There exist already combinatorial [28, 50] and dynamic program-
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ming approaches [51] to find all secondary structures within this window of
the density of states. However, these algorithms feature either a high amount
of approximation or simply do not find all secondary structures within the
considered range of energy.

In this work we introduce an algorithm capable to calculate all secondary
structures of an RNA sequence within a desired energy range above the mini-
mum free energy, which implements the energy parameter set used within the
Vienna RNA Package. Finding near-optimal paths between a specified origin
and destination in an acyclic network, which is based on a idea of Waterman
[46] is firstly applied to the “maximum matching” problem originally imple-
mented by Nussinov [30]. This part is a kind of test of the applicability of that
idea. Afterwards this idea will be applied to the energy folding problem.

With the possibility to calculate all secondary structures of a RNA se-
quence within a certain energy range it is possible to gain new insights in the
well-definedness of a RNA structure. With this tool we were able to investigate
the stabilizing role of modified (i.e. non-pairing) bases contained in RNA se-
quences. As example we used the natural tRNA sequences of E.coli. An insight
into the relation between neutrality of RNA sequences, their thermodynami-
cal stability and well-definedness of the related structures is given. The ability
to calculate the Lower Density of States (LoDoS) within an energy range en-
ables us to characterise the different states of natural RNA sequences of F.coli.
Also the partition function of an RNA sequence using the lower states without

knowing all structure energies can be calculated in a good approximation.
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2 RNA Secondary Structures

RNA molecules consist of ribonucleotides linked together by covalent chemical
bonds. Each ribonucleotide contains one of the four bases adenine, cytosine,
guanine or uracil. The specific sequence of bases along the chain is called the
primary structure and determines the kind of the molecule.

In biological systems RNA chains bend and twine about themselves, and
bases in close vicinity form weak chemical hydrogen bonds with a complemen-
tary base: A binds with U, G with C (Watson-Crick base pairs).

Much like DNA, RNA can form stable double helices of complementary

GCGGGAAUAGCUCAGUUGBUAGAGCACGACCUUGCCAAGBUCGERERUCCCGAGUUCGAGUCUCGUUUCCCGCUCCA

Figure 1: Folding of an RNA sequence into its spatial structure. The process is
partitioned into two phases: in the first phase only the Watson-Crick-type base
pairs are formed which constitute the major fraction of the free energy, and in the
second phase the actual spatial structure is built by folding the planar graph into
a three dimensional object. The example shown here is phenylalanyl-transfer-RNA

tRNAPPe whose spatial structure is known from X-ray crystallography.
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strands. Since RNA usually occurs single stranded, formation of double he-
lical regions is accomplished by the molecule folding back onto itself to form
Watson-Crick G-C and A-U base pairs or the slightly less stable G-U pairs.
Base stacking and pairing are the major driving forces for RNA structure for-
mation. Other, usually weaker, intermolecular forces and the interaction with
the aqueous solvent shape its spatial structure.

Since the number of degrees of freedom in the RNA chain is very high
and exeeds that in polypeptides, the full structural prediction problem is hard
to solve. However, for RNA it has seen to be possible to focus initially on
an intermediate level representation of the folding. This secondary structure
representation contains only information on what base pairs are formed and
relegates more detailed and additional information to a later and subsequent
stage of analysis. The resulting secondary structures are useful in the pre-
diction of the full 3D structures and in the interpretation of the biochemical

function of the molecules for several reasons:

(1) The conventional base pairing and the base pair stacking cover the major

part of the free energy of folding.

(2) Secondary structures are used successfully in the interpretation of RNA

function and reactivity.
(3) Secondary structures are conserved in evolutionary phylogeny.
At the same time the secondary structure representation is very convenient:
(1) Secondary structures are discrete and therefore easy to compare.
(2) They are easy to visualize since they are planar graphs.
(3) Efficient methods exist for the computation of secondary structures.

In the following section we will give a formal definition of secondary structures
as graphs: RNA secondary structures can be represented as planar vertex-

labeled graphs or as trees. Note, that our definition ranks pseudo-knots as a



2 RNA Secondary Structures 6

tertiary interaction. Although pseudo-knots seem to be important for biolog-
ical function, their inclusion would complicate the mathematical and compu-

tational treatment unduly.
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3 Secondary Structure Graphs

3.1 Definitions

Definition 3.1. [45, 47] A secondary structure is a vertex-labeled graph on

n vertices with an adjacency matrix A fulfilling
(1) aijp1 =1for 1 <i<m;
(2) For each i there is at most a single k£ # ¢ — 1,7 + 1 such that ay = 1;
(3) Ifajj =am=1and i< k <jtheni<l<j.

We will call an edge (i,k), | — k| # 1 a bond or base pair. A vertex i
connected only to i —1 and 7+ 1 will be called unpaired. Condition (3) assures
that the structure contains no pseudo-knots. A vertex i is said to be interior
to the base pair (k,[) if & < ¢ < [. If, in addition, there is no base pair (p, q)
such that p < 1 < g, we will say that ¢ is immediately interior to the base pair
(k,1). A base pair (p,q) is said to be (immediately) interior, if p and ¢ are
(immediately) interior to (k,1).

nni@ g

®

Figure 2: An example for an RNA secondary structure with free dangling ends,

stems and loops.
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Definition 3.2. A secondary structure consists of the following structure

elements:

(1) A stem consists of subsequent base pairs (p,q), (p+1,q—1), ..., (p+
h—1,g—h+1), (p+ h,g — h) such that neither (p — 1,¢ + 1) nor
(p+h+1,g—h—1)is a base pair. h+1 is the length of the stem, (p, q)

is the terminal base pair of the stem.

(2) A loop consists of all unpaired vertices which are immediately interior to

some base pair (p, q), the “closing” pair of the loop.

(3) An external vertez is an unpaired vertex which does not belong to a loop.
A collection of adjacent external vertices is called an external element.

If it contains the vertex 1 or n it is a free end, otherwise it is called joint.

Lemma 3.3. Any secondary structure ® can be uniquely decomposed into
stems, loops, and external elements.

Proof. Each vertex which is contained in a base pair belongs to a unique
stem. Since an unpaired vertex is either external or immediately interior to
a unique base pair, the decomposition is unique: Each loop is characterized

uniquely by its “closing” base pair.

Definition 3.4. A stem [(p,q),..., (p+k,q—Fk)] is called terminal, if p—1 = 0

or g+1 = n+1, or if the two vertices p—1 and g+ 1 are not interior to any base

p-1 p p+1 pth  p+th+1
—0 -
7 1 )
-0 L
gtl (¢ g1 c g-h g-h-1

f— terminal basepair (p,q)

Subsequent base pairs (p, q), (p+1,9—1), ..., (p+h,qg—h) form a stem such that neither
(p+h+1,g—h—1) nor (p—1,q+1) is a base pair. h+ 1 is the length of the stem, (p,q)
is the terminal base pair. (p+h,g—h) is the closing pair of a loop. Base pairs (p,q) to
(p+h—1,g—h+1) can be seen as closing base pairs of minimal loops of size z = 0 and
degree k = 2.
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free end Jjoint Jjoint free end

roy ' ¢ fo

O O
L L

-

L
component 1 component 2 component 3

Figure 3: An example for an RNA secondary structure consisting of three compo-

nents and six external vertices (2 joints and 4 free ends).

pair. The substructure enclosed by the terminal base pair (p, q) of a terminal
stem will be called a component of ®. We will say that a structure on n vertices

has a terminal base pair, if (1,n) is a base pair.

Lemma 3.5. A secondary structure may be uniquely decomposed into com-
ponents and external vertices. Each loop is contained in a component.
The proof is trivial. Note that by definition the open structure has 0 compo-

nents.

Definition 3.6. The degree k of a loop is given by 1 plus the number of
terminal base pairs of stems which are interior to the closing bond of the loop.
A loop of degree 1 is called hairpin (loop), a loop of a degree larger than 2 is
called multi-loop. A loop of degree 2 is called bulge if the closing pair of the
loop and the unique base pair immediately interior to it are adjacent; otherwise

a loop of degree 2 is termed interior loop.

Definition 3.7. The size z of a loop is given by the number of unpaired
vertices immediatly interior to the closing base pair (p,q) of the loop. If a
stem ends in a base pair (p, ¢) with no unpaired vertices immediately interior
to it, we speak of a loop with size zero. m denotes the minimum number of
unpaired digits in a hairpin loop (minimal loop size).

It is often useful to lump loops of all degrees together into one class and to
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interior base pair

G U -~
5--- -—7 N

3--- --- ’

4

closing base pair

stacking pair

interior base pair

G|
5 G A___/“‘\\
\
1
| _—— /
3 C U AR
(RS
closing base pair
interior loop

closing base pair

closing base pair

-

-

hairpin loop

closing base pair

PN

A

interior base pair

10

Figure 4: The classification of loops for the decomposition of RNA secondary

structure.

consider, for example, the total number of loops

n;, = Ng + ng + N + Ny

which must be identical to the number of stems, n;, = ng.
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3.2 Representation of Secondary Structures

A string representation S can by obtained by the following rules:
(1) If vertex i is unpaired, then S; =’ .
(2) If (p,q) is a base pair and p < ¢, then S, =>(* and S, =")’

These rules yield a sequence of matching brackets and dots called bracket
notation.

Secondary structure graphs as defined above can be drawn by placing the
bases of a sequence equidistant to one another on a line. Pairing bases are

connected by arcs.

Figure 5: The secondary structure of tRNAF*® in linked graph representation.

A particularly easy way to draw secondary structure graphs was suggested by
Ruth Nussinov [30]. The bases of the sequence are placed equidistant to one
another on a circle and for each base pair a chord is drawn between the two
bonded bases. Since the structures are unknotted by definition, no two chords
will intersect. See Figure 6 for circular representation of tRNA".

Paulien Hogeweg and Danielle Konings conceived a related graphical method
for the comparison of RNA secondary structures called mountain representa-
tion [17, 24, 25] by identifying *> (*, ’)’, and ’>.’, with “up”, “down”, and
“horizontal”, respectively. See Figure 7 for mountain representation.

e Peaks correspond to hairpins. The symmetric slopes represent the stems

enclosing the unpaired bases in the hairpin loop, which appear as a

plateau.

e Plateaus represent unpaired bases. When interrupting sloped regions

they indicate bulges or interior loops, depending on whether they occur
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Figure 6: The secondary structure of tRNAF*® in Circular representation.

alone or paired with another plateau on the other side of the mountain

at the same height respectively.

e Valleys indicate the unpaired regions between the branches of a multi-
stem loop or, when their height is zero, they indicate unpaired regions

separating the components of secondary structures.

The height of the mountain at sequence position £ is simply the number of
base pairs that enclose position k; i.e., the number of all base pairs (i, j) for
which 7 < k£ and 7 > k. The mountain representation allows straightforward
comparison of secondary structures and inspired a convenient algorithm for

alignment of secondary structures [25].
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15
10 8
B
5 -
0 n n 1 n
0 20 40 60 80
Position
Figure T: The secondary structure of tRNAP"™ in  mountain
representation. The same structure in string representation is
1)) (CCCCnnnns )DDDD INNAN (CCCCannnnn 200000000 ...

CCCCCCC . CCCCaeeenns
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4 Previous Solutions and Approaches

4.1 Combinatorial Algorithms

Before an outline of combinatorial approaches to suboptimal folding is given,
the basic ideas of those combinatorial folding algorithms will be described in

this subsection.

4.1.1 Some basic facts

Combinatorial algortithms first develop a list of all helices that can be formed
from a sequence, then determine the combination of these helices that gives
the lowest free energy [3]. Two advantages of these helices are that, in prin-
ciple, they can include knotted structures and they can include non-nearest-
neighbour interactions. However, the number of possible helix combinations
grows as 2F, where L is the number of helices. In turn, L increases approxi-
mately as N2, where N is the length of the considered sequence. Since it is
usually necessary to include helices as short as 2 or 3 base pairs, the num-
ber of combinations quickly becomes enormous. Thus it has been necessary
to devise algoithms that do not have to compute every possible combination.
The most successful such algorithm assigns to each helix a free energy and a
list of other helices that are compatible with it. A “tree search” procedure is
used to generate combinations of compatible helices. As each helix is added
to a combination, the number of other helices compatible with the combina-
tion decreases. To avoid computation of every compatible combination, the
program also maintains lists of mutually incompatible helices. These lists are
called incompatibility islets introduced by Dumas et al. [7]. Only one helix
from a given islet can occur in a secondary structure. At each branch point
in the development of a combination the most favourable helix free energy
associated with each remaining islet is added to the free energy of the growing
combination. If this sum is not as favorable as that already calculated for a
complete secondary structure, then there is no reason to explore this branch of

combinations further. In practice, combinations within a certain increment of
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the current best structure are explored to account for approximations. Thus it
is possible to find suboptimal structures within any desired window of free en-
ergy. The algorithms are practical for sequences up to about 200 nucleotides.
This limit is not likely to increase greatly with advances in computer speed

because of the 2 dependence of the number of combinations.

4.1.2 Combinatorial Approaches to Suboptimal Folding

Yamamoto et al. proposed a computer program for prediction of optimal and
suboptimal secondary structures in 1985 [50]. Based on a work of Yamamoto
et al. [49] all the possible folding structures are generated. Thus for each
stem-loop its occurence, which is weighted by the free energy of the stem,
in all the possible structures is computed. The frequency of occurence will
reflect the probability of stem-loop formation. The probability is converted
to the information value, which is merely the logarithm of the probability.
The algorithm can be applied to RNA sequences of any length. However,
it is an approximation. Quite apart from that the algorithm calculates only
such suboptimal solutions which have more or less the same free energy but a
different structure as the optimal structure.

In 1995 Nakaya et al. introduced a computer program for prediction of
optimal and suboptimal secondary structures using highly parallel computers
[28]. Their goal was to get all suboptimal structures fulfilling the follwing
condition:

‘Ei — Eoptimal‘ < AK. (1)

Here E; is the free energy of a suboptimal structure and Eypimq is the free
energy of the optimal structure. AK is a given positive number. Their work is
widely based on the work of Dumas et al. [7] mentioned above. However, the
size of problems solved by Dumas’ method is still restricted. So, exploitation
of parallelism can promote further pruning of the tree. As thermodynamic
parameters of stacking regions Salser’s energy matrix is employed [35].

The algorithm consists of 2 phases:

e Phase 1: Starting point is finding all pairs of nucleotide sequences that
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could possibly form stacking regions of a given RNA sequence. These
pairs are ordered in their free energy order. At the same time incom-
patibility islets as mentioned above are constructed. All stacking regions
can not co-exist in a single feasible secondary structure, due to their
structural restrictions. Hence these regions will be called stacking region

candidates. These candidates are the actual units of computation.

e Phase 2: The algorithm checks, if candidates obtained in phase 1 can co-
exist in a secondary structure by generating a search tree. The number
of its leafs is O(2L) with L being the number of candidates. Thus this
tree is generated gradually by adding nodes to the interim tree. The
nodes of the nth level of the tree correspond to the candidates with the
nth free energy. Following the left branch of the nth level node means

that the nth branch is selected and vice versa.
Prior to generating branches two decision must be made:

e Can the new left branch be generated? If a candidate is not compatible
with all the candidates already selected as part of a secondary structure

this branch can not be generated.

e (Can secondary structures more stable than a threshold value exist under

the non-leaf node? If they do not, that branch is not generated.
The following values are used for pruning:

e A good lower bound value of the free energies of secondary structures

under a node.

e A threshold value that is compared with the lower bound calculated

before.

The lower bound of the free energies of secondary structures under a node is
calculated using the incompatibility islets. Under a node x with depth n from
the root of a search tree the selectable candidates must be compatible with the

already selected candidates on the path from the root to node x. The already
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selected candidates are the left branches of the tree on this path. In order
to calculate the lower bound of the free energies firstly the free energy of all
already found candidates is sumed up (p kcal). Due to finding islets, where no
candidates are selected, the most stable and compatible candidates are picked
in these islets, and their free energy is also sumed up (¢ kcal). The sumation
of p and ¢ can be used as the lower bound of the free energies of the secondary
structures under node zx.

At every leaf node firstly the lower bounds of a secondary structure at
the left and right branch are calculated as outlined above. Only the branch
whose lower bound is smaller than threshold + AK is generated, otherwise
pruned. According to the first case this threshold will be denoted as Epes- In
this algorithm the initial value of Fj., is calculated by iterating selection of
candidate 7 as long as it is compatible with all the already selected candidates
of the secondary structure. The free energy of this secondary structure is
denoted as the initial value of Ej;.

This threshold value Ej.s: is updated at every leaf node by evaluating the
free energy of the secondary structure at this node as long as it is smaller than
Eest.

The stacking region candidates as outlined in this section are the units of
computation. If base pairs were treated as a basic computation unit, this algo-
rithm could eventually find all the feasible secondary structures. Computation
time, however, grows prohibitively due to combinatorial explosion. Obviously
the motivation of the authors was obtaining a good number of suboptimal sec-

ondary structures in a reasonable time, even if they are highly approximated.

4.2 Recursive Algorithms
4.2.1 Some basic facts

Minimum energy foldings can also be computed with recursive or dynamic pro-
gramming algorithms. Such programs work in two stages. The first part, called
fill algorithm, computes and stores minimum folding energies for all segments

of the sequence. The process begins with all pentanucleotides and builds up to
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larger fragments in a recursive fashion. The second part, called backtracking,
computes a minimum energy structure by searching systematically through the
matrix of stored energies. The main advantages over combinatorial algorithms
are speed and the ability to fold relatively large RNA sequences. By examining
possible base pairs in the context of what neighboring base pairs might be, the
algorithm escapes an exponentially growing number of structures. The mean
weakness of the recursive folding algorithms is that by design they yield only
a single solution. More details about that kind of folding algorithms will be

given in the following sections.

4.2.2 The Zuker Algorithm

Zuker and Stiegler described a recursive folding algorithm in 1981 [53] com-
puting and storing the minimum folding energy for each subsequence of the
given RNA sequence. Also, for each subsequence, they calculated the mini-
mum folding energy for the fragment with the ends constrained to form a base
pair with each other if possible. For a fragment [i, j| this number is denoted
by V(i,7) and is needed for proper function of the algorithm.

In 1989 Zuker introduced a recursive algorithm for finding all suboptimal
foldings of an RNA molecule [51]. The key observation is that in a circular
molecule composed of ribonuleotides 1,79, ..., 7, a base pair linking r; and r;
divides the secondary structure into two parts. There is a folding of the “in-
cluded fragment” from r; to r;, and another folding of the “excluded fragment”
from r; through the origin to r;. The additivity assumption characteristic of
recursive algorithms implies that the total folding energy is the sum of the
energies of the two foldings.

The procedure for circular RNA generalizes to linear RNA. The linear
molecule is handled as if it were circular, provided that the first and last bases,
now regarded as adjacent, be allowed to pair with each other if necessary.
The recursive algorithm is now extended by computing additional numbers
V'(j4,1), analogous to V (i, j), but referring to the “excluded fragments” instead.

These numbers can also be computed recursively. The observation was that
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V(i,7) + V(4,17) is the minimum free energy of a structure containing the base
pair (7, 7) and that the minimum value of V (4, j) +V (j, ) over all possible base
pairs is the minimum folding energy FE, ;.

Instead of merely identifying a base pair (i, j) that gives E;, and comput-
ing an optimal folding, the strategy is to identify all base pairs, for which the
sum V (i,5) + V(j,9) is “close” to Ep,. If P is a number between 0 and 100,
then a “P-optimal” base pair is a base pair (7, j) for which

P
100

Thus a P-optimal base pair is contained in at least one folding within P

V(Z:J) + V(]:Z) > (1 )Emm (2)

percent of the minimum free energy. Such a folding is defined as a P-optimal
folding. Recursive summation over all feasible (i,j) pairs gives all the P-
optimal secondary structures. However, we will see, that this algorithm does
not compute really all P-optimal secondary structures.

Energy rules used are those set by Freier et al. [9]. This rules add single-
base stacking energies for dangling bases adjacent to helices as well as for
mismatched pairs adjacent to closing pairs of interior and hairpin loops. Also
Ninio’s correction for loopsided interior loops is used [31].

Nevertheless the authors wanted to present a typical set of P-suboptimal
secondary structures of a given RNA sequence by introducing a distance mea-
sure. The procedure may generate a large number of foldings within 5 or 10
percent of the minimum free energy. Many of them will be very similar to each
other. For this reason, a distance function was developed as a way of measur-
ing topological differences between two structures. The distance between two
foldings is the smallest whole number d such that for every base pair (i, j) of

one, there is a base pair (h, k) of the other satisfying
li —h| < dand |j — k| <d. (3)

This dimensionless quantity is zero, if and only if the two structures are iden-
tical. With this measure, in order to gain a set of typical P-suboptimal struc-
tures of a RNA sequence, the deficit regarding the total number of secondary

structures within P percent of the minimum free energy has not such a big
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effect. However, there is no guarantee, to find all typical secondary structures

using this method.
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5 Maximum Matching as Illustration of Wa-

terman’s Concept

5.1 The Idea of “Maximum Matching”

Before a description of the energy suboptimal folding is given in this subsec-
tion the basic ideas regarding the algorithmic implementation are shown with
the “maximum matching” problem. “Maximum matching” is concerned with
finding the structure providing the maximum number of basepairs. The first
algorithmic solution was given by Nussinov [30] and was based on a dynamic
programming consideration of Waterman [47] providing the assumption that
the number of base pairs can be written as a sum of base pairs of noninter-
acting parts. The algorithm works by calculating optimal structures for all
subsequences of the sequence I to be folded, proceeding from smaller to larger
fragments. Let F;; be the maximum number of base pairs possible on the
substructure I; ;, then

P, = max { Pij-1, max {[Pur+ 14 Pyja] pla, ay) }} (4)

i<I<j~

where a;,a; € {A,U,G,C} and

1 : when g; and a; can pair,
p(ai’ aj) = .
0 : otherwise.

Figure 8 gives a schematic representation of this procedure. Following these
equations, the P j-matrix is filled up. In table 1 a pseudo code of this pro-
cedure is given. The algorithm outlined so far calculates only the maximum
number of basepairs, but no related structures. Typical dynamic program-
ming implementations first calculate all entries in the P array starting with
the smallest subsequences and then construct the structure in a second pass
proceeding from the largest to the smallest substructures. This technique,

typical for dynamic programming, is called backtracking.
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SRS

[ 1

P

If the newly added base does not pair,
the number of base pairs in part 4,J
equals the number of base pairs in part
1,7 — 1.

G ® ®
[ . [ ’

P, 1 \'flPl+1,j—1//

If the base [ pairs with j, the number
of basepairs is the sum of all basepairs
in the remaining part ¢,/ —1 and the
newly formed component [ — 1,5 — 1.

Figure 8: Schematic representation of the “maximum matching” problem.

for(i = 1...length)
for(j = i...length)
for(l = 1i...j)

\\ i: [1 <-- length]

\\ j: [i --> length]

\\ 1,j is the
considered pair

temp = MAX(i <= 1 <= j: P[i,1-1]1+1+P[1+1,3]))
P[i,j] = MAX(P[i,j-1], temp)

max_number = P[1,length]

Table 1: Pseudocode for the dynamic programming of the max-
imum matching problem: P[i,j] denotes the maximum number of
basepairs for the subsequence consisting of bases i through j. length
denotes the length of the given sequence.

5.2 Backtracking and Waterman’s Concept

When the procedure of dynamic programming is finished, P, ,, gives the maxi-

mum number of basepairs, if n denotes the length of the considered sequence.

Starting with the segment [1,n] the combination of segments [1,] — 1] and

[l +1,n — 1] yielding the value of P, is found. The same procedure is per-

formed for each new segment thus obtained.
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5.2.1 Waterman’s Algorithm

Waterman and Byers suggested a dynamic programming algorithm to find
all solutions in the neighbourhood of an optimum [46]: The object of the
“shortest path problem” is to locate the shortest path from node 1 to node N
in an acyclic network of N nodes and A arcs. Each arc (4, j) has an associated
weight t(i,7). Nodes i are labeled with f(i), the length of the shortest path
from node i to node N. Provided Bellman’s insight of optimality [2] “subpaths

of optimal paths are themselves optimal” the recursion
f@) = min{t(i,j) + f(j) : (i, 5) an arc} (5)

follows. The idea is, that to reach ¢ from N, the last step is from some node
j. The node j must be reached in an optimal manner, if 7 is an optimal path
from N to i. Note, that f(N) = 0 is required to start the recursion. So far
nothing else than the procedure of dynamic programming and backtracking was
outlined. The new algorithm requires an interval e above the optimal length
f(1) from the user. All paths less than or equal to the quantity f(1)+ e should
then be found by the algorithm. The node labels f(j) are found by working
backwards from node N until node 1 is labeled. The new algorithm then
performs a depth-first search with stacking, starting at node 1 and continuing
until all near-optimal paths are found. Consider a node x not equal to the
destination. Some path P with cumulative distance d led to node x from node
1. The test for entry of the arc (z,y) and distance d onto the stack now takes
the general form for all (z,y) € A

d+t(x,y) + fly) < f(1) +e, (6)

where d is the cumulative distance to node z from node 1 by path P (not
necessarily the shortest path!), ¢(z,y) is the distance from node z to node
y, and f(y) is the optimal remaining distance to node N from node y. The
algorithm constructs a path P of length d from node 1 to node N. Then P
and d are output and the stack is examined to see, if other near-optimal paths

exist. Hence the algorithm performs a last in, first out or depth first search.
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5.2.2 Application of Waterman’s Concept to the Maximum Match-

ing Problem

The model of the algorithm outlined above can be applied to RNA maximum
matching to find all structures , whose number of base pairs lies within P, ,, and
P, , — . Starting with the segment [1, n] the combination of segments P;;_;
and Pji1p,—1, which fulfill this condition is found. The found combination of
intervals [1,/ — 1] and [l + 1,n — 1] is written to an interval stack. Also the
found base pair (I,n) is written to a separate base pair stack. Both stacks
are contents of a separate state stack. In the next round of the algorithm the
last state is taken from the state stack and the last interval, in general [3, j],
from the interval stack within that state (last-in, first-out). Again within
the interval [i, j] those combinations of P;; ; and P, 1 are traced, whose
number of base pairs lies within P, and P,, — §. However, this time also
the already found basepair and the best possible number of basepairs of the
intervals remaining on the stack denoted by P, , must be taken into account,

so that the condition reads as

Nbp + I)i,lfl +1+ Pl+1,ij + Z Pp,q > Pl,n — 0. (7)
P
in analogy to
d+t(z,y)+ fly) < f(1)+e. (8)

Ny, denotes the number of all already found basepairs and p, g the several yet
unconsidered intervals remaining on the interval stack. The state containing
the interval stack the interval [i, j] was taken from is copied and the new
found basepair and intervals are written to the related stack within the state.
The state is pushed back to the state stack. That happens to every new found
combination of segmentations, which accomplish the condition outlined above.
If no basepair, which accomplish the condition, can be found, the remaining
state is pushed back to the state stack. The iteration goes on by taking out
the first state of the state stack and following the first interval of the interval
stack. If the interval stack is empty, a solution i.e. a structure, is found, and

the state is skipped. The iteration continues until no state remains on the
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while (pop STATE)
pop INTERVAL [i,j]
rest = sum_of_pairs [STATE->BASEPAIRS]

if (P[i,j-1] + rest >= P[1,n] + delta) \\ j unpaired
copy STATE
push INTERVAL [i,j-1]
push STATE

for (1 = i...j)
if (P[i,1-1] + 1 + P[1+1,j-1] + rest >= P[1,n] + delta)
\\ if positive, 1,j are a basepair, otherwise not
copy STATE
push BASEPAIR [1,j]
push INTERVAL [i,1-1]
push INTERVAL [1+1,j-1]

if (nothing_is_pushed)
push STATE

else
free STATE

free INTERVAL

Table 2: Pseudo code for backtracking of the maximum matching prob-
lem including Waterman’s algorithm: P[i, j] denotes the maximum num-
ber of basepair for the subsequence consisting of bases i through j. rest is the
optimal number of basepairs the remaining intervals on the interval stack con-
tain within a state. STATE denotes the last entry in the state stack. One STATE
consists of a interval stack and a basepair stack. INTERVAL and BASEPAIR denote
the last entries in the interval and basepair stack respectively. push and pop
denote the subroutines writing and taking away the last entry from the various
stacks.

stack. A summary of this procedure is given with the pseudo code of this kind

of backtracking in table 2.
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5.3 Check for Reliability of the new Algorithm

With Cupal’s density of states there exists a tool to check the results of the

Table 3: Check for reliability of the new algorithm: The Density of States algorithm
and the new algorithm yield identical results for the number of structures of the

shown sequences.

Number Number
Sequence of of
Base pairs | Structures
ACUGAUCGUAGUCAC 4 142
AAGGCGAAAACCGCACCCCAAAAGGGAAC 7 7232
GGGGACCCUUUGGGAGGGAAACCCACCCC 10 1201833
GGGGGGACCCUUUGGGAGGGAAACCCACCCCC 12 11208028

new algorithm [6]. With his algorithm it is possible to calculate the number
of all possible structures of a given sequence. Hence the results of the new
algorithm with ¢ equal to the maximum number of basepairs can be compared
to the results of a density of states calculation. The Density of States algorithm

and the new algorithm yield identical results for the number of structures of

sequences shown in table 3 as far we were able to check.
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6 Structure Prediction

Before an idea of the computational implementation is given the underlying

energy model is illustrated in the upcoming section.

6.1 Thermodynamic Nearest Neighbor Parameters

Base-base interactions in nucleic acids are of three kinds: (a) base pairing in
the plane of the bases (horizontal) due to hydrogen bonding, (b) base stacking
perpendicular to the plane of bases stabilized by London dispersion forces and
hydrophobic effects [33, 34] and (c) entropic contributions, which get lost by
closing a multi-loop. While hydrogen bonding is fundamental to the genetic
code, all kinds of interactions play a significant role in determining the spatial
structure and energy state of an RNA molecule.

The results of both quantum chemical calculations and thermodynamic
measurements suggest that base pairing contributions to the total energy de-
pend exclusively on the base pair composition, whereas base stacking contri-
butions depend on base pair composition and base sequence i.e. the upstream
and downstream neighbors along the chain [34]. The nearest neighbor model
introduced by Borer et al. [4] makes the assumption that the stability of a base
pair or any other structural element of an RNA depends only on the identity of
the adjacent bases and/or base pairs. The model is justified by the major con-
tribution of short-range interactions (hydrogen bonding, base stacking) to the
overall stabilizing energy of nucleic acid structures. In addition, it is natural
to assign loop entropies to entire loops instead of individual bases. Treating
stacks as a type of loops of degree 2 and size 0, one assumes therefore that
the energy of an RNA secondary structure ® is given by the sum of energy

contributions € of it’s loops L.
E(®@) =Y e(L)+ e(Lea), (9)
Led

where L.;; is the contribution of the “exterior” loop containing the free ends.

In the following we shall discuss the individual contributions in some detail.
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The current work uses the compilation of [9, 13, 42], who performed mea-
surements of melting curves of oligonucleotides at 37°C in 1 M NaCl.

Stacked pairs, Watson-Crick and G-U pairs contribute the major
part of the energy stabilizing a structure. Surprisingly, in aqueous solution
parallel stacking of base pairs is more important than hydrogen bonding of
the complementary bases. By now all 21 possible combinations of A-U, G-C
and G-U pairs have been measured in several oligonucleotide sequences with
an accuracy of a few percent. The parameters involving G-U mismatches were
measured more recently in Douglas Turner’s group [13] and brought the first
notable violation of the nearest-neighbor model: while all other combinations
could be fitted reasonably well to the model, the energy of the gi%:g g: stacked
pair seems to vary from +1.5kcal/mol to —1.0 kcal/mol depending on its
context.

Unpaired terminal nucleotides and terminal mismatches: Unpaired
bases adjacent to a helix may also lower the energy of the structure through
parallel stacking. In the case of free ends, the bases dangling on the 5 and 3’
ends of the helix are evaluated separately, and unpaired nucleotides in multi-
loops are treated in the same way. For interior and hairpin loops the so called
terminal mismatch energy depends on the last pair of the helix and both
neighboring unpaired bases. While stacking of an unpaired base at the 3’ end
can be as stabilizing as some stacked pairs, 5’ dangling ends usually contribute
little stability. Terminal mismatch energies are often similar to the sum of the
two corresponding dangling ends. Typically, terminal mismatch energies are
not assigned to hairpins of size three. Few measurements are available for the
stacking of unpaired nucleotides on G-U pairs, and for this reason they have
to be estimated from the data for G-C and A-U pairs.

Loop energies are destabilizing and modeled as purely entropic. Few
experimental data are available for loops, most of these for hairpins. The
parameters for loop energies are therefore particularly unreliable. Data in the
newer compilation by Jaeger et al. [19] differ widely from the values given
previously [9]. Energies depend only on the size and type (hairpin, interior or

bulge) of the the loop. Hairpins must have a minimal size of 3. Turner et al.
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[42] extrapolated values for large loops (k > 30) logarithmically:
H(k) = H(30) + const. * log(k/30) (10)

Asymmetric interior loops are furthermore penalized [31] using an empirical
formula depending on the difference |u; — us| of unpaired bases on each side

of the loop
AF1ninio = min {AFmaxa ‘Ufl - U'2| * AF’ninio [m1n{40, Uy, u?}] } (11)

For bulge loops of size 1 a stacking energy for the stacking of the closing and
the interior pair is usually added, while larger loops are assumed to prohibit
stacking. Finally, a set of eight hairpin loops of size 4 are given a bonus energy
of 2kcal/mol. These tetraloops have been found to be especially frequent in
rRNA structures determined from phylogenetic analysis. Melting experiments
on several tetraloops [1] show a strong sequence dependence that is not yet
well reflected in the energy parameters.

No measured parameters are available for multi-loops, their contribution
(apart from dangling ends within the loop) being usually approximated by the
linear ansatz

M = Mg + Mj - degree + Mp - unpaired, (12)

where M denotes the multi-loop closing energy, M denotes the energy con-
tribution related to the number of stems (= loop degree), and Mg the desta-
bilizing energy per unpaired base (size of the loop). Good results have been
achieved using M¢c = 4.6, M; = 0.4 and Mg = 0.1 kcal/mol by Jaeger et
al. [19]. While a logarithmic size dependency of loop energies would be more
realistic following the Jacobson-Stockmayer theory, the linear ansatz allows
faster prediction algorithms. Since all energies are measured relative to the

unfolded chain, free ends do not contribute to the energy.

6.2 Assigning Energy Parameters to Graphs

The energy contributions described above result in nearest neighbor parame-

ters for the individual types of loops. Assigning energy values to secondary
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structure graphs depending on the degree k£ and size z of each loop, we distin-

guish the following cases:

(1)

(2)

(3)

(4)

6.3

Stacking Pairs (k = 2, z = 0): The energy Z(i,i+1,7—1,j) depends on
the identity of the bases i, 1+1, j—1, j

Interior Loops and Bulges (k = 2): The energy Z(i,k,l, j) depends on
the identity of the bases i, k, [, j and on the size z of the loop with
z=k—(C+1)+j5—-(1+1).

Hairpin Loops (k = 1): The loop energy #(z) depends on the size z of

the loop with z = j — 7. m is the minimal loop size with m = 3.

Multi-loops (k > 2): Multi-loop energies M are modeled by the linear
ansatz
M = Mg + Mj - degree + Mp - unpaired, (13)

where M denotes the multi-loop closing energy, M denotes the energy
contribution related to the number of stems (= loop-degree) and Mg the

destabilizing energy per unpaired base (size of the loop).

Terminal Mismatches: The mismatch energy mm(i,i+1, j—1, j) depends
on the identity of stacking first unpaired bases i + 1,7 — 1 adjacent to

the last base pair (4, j) of a helix within interior loops and hairpins.

Dangling Ends: The dangling end energies d® (i, j,i—1) and d® (4, J, j+1)
respectively, depend on the identity of stacking last unpaired bases 7 — 1
and j 4+ 1 adjacent to the first base pair (7,7) of a helix in multi-loops

and hairpins.

Further Works

Energy parameters for the contributions described above have been derived

mostly from melting experiments on small oligonucleotides. The first compila-

tion of such parameters was done by Salser [35]. The parameters most widely

in use today are based on work of Turner and coworkers. More recently the
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differences between symmetric and asymmetric loops have been reported to be
only half the magnitude suggested by Papanicolau et. al. [31] and of higher

sequence dependence [32]. Thus equation 11 was simplified to
AF = min {3.0, 0.3 % up — UQ\} (14)

depending on the difference |u; — uy| of unpaired bases on each side of the
loop. Serra et al. found a dependence of hairpin loop energies on the closing
base pair [39] and presented a model to predict the stability of hairpin loops
[38]. Walter and coworkers suggested a model system for the coaxial stacking
of helices [43]. SantaLucia et al. [36] investigated the influence of hydrogen
bonding between GA mismatches in interior loops by substitution of functional
groups. The work was extended to consecutive A-C, C-C, G-G, U-C and U-U
mismatches finding evidence for stable hydrogen bonded U-U and C-C pairs
[37]. Wu and Walter studied the stability of tandem GA mismatches and found
them to depend upon both sequence and adjacent base pairs [44, 48]. Ebel and
coworkers measured the thermodynamic stability of RNA duplexes containing
tandem G-A mismatches [8]. Morse and Draper presented thermodynamic
parameters for RNA duplexes containing several mismatches flanked by C-
G pairs. Mismatches are reported to have a wide range of effects on duplex
stability. The nearest neighbor model is considered not to be valid for G-
A mismatches [27]. These results are, however, not yet included into the

parameter set used in this work.

6.4 Dynamic Folding Algorithm

The additive form of the energy model in eqation 9 allows for an elegant solu-
tion of the minimum free energy problem through dynamic programming first
realized and exploited by Waterman [45], [47]. The algorithm outlined below
is based on an implementation by Zuker and Stiegler [53], [52]. Analogously to
the maximum matching problem the algorithm works by calculating optimal
structures for all subsequences of the sequence I to be folded proceeding from

smaller to larger fragments. An additional feature is the formal construction of
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multicomponent structures from smaller fragments. Let C;; be the minimum
energy possible on the substructure I;; provided that 7 and j pair. Since the
energy of some substructure S; ; with 7 and j paired is given by the energy of

the loop closed by (i, j) plus the energy of any loops directly interior to it,

Cij = ,ggisnL {E(L)+ Z Cpa) (15)
closed by ,j interior pairs
(pg) € L

and Cj;; = 0o. Three subsets are contributing to this set of structures, depend-
ing on the number of base pairs immediately interior to (4, 7). The minimum
energies of these three subsets are (recursively) obtained from smaller frag-
ments:

Ci; = min {H(i,j), min ] {Cp,q +Z(i,4,p,q) },

PE[i+1,j—m—2
g€[p+m+1,j—1]

. M M1 5 3
ke[iff]l{lmﬁ] {Fi+1,1c—1 +Fjoitdy it dy g+ MC}} (16)

H(i,j) denotes the free energy of a hairpin loop closed by (i,7). The second
element is the minimum energy of all structures, where (7, j) close an interior
loop; their minimum energy equals the sum of the minimum energy of the
smaller fragment, C, ,, and the energy of the closing loop, Z(z, j,p, ¢). Multi-
loop structures enclosed by (4,7) are obtained by constructing the multi-loop
from two parts, F;Af1,k_1 and F ,%1_1, plus the multi-loop closing energy M
and the contributions of dangling ends on the 5’ and the 3’ side of the pair
(1,7)- di’;f)’j)fl’(iﬂ) denotes the energy contribution of the 5’ (3’) dangling end
indicating the (4, j)-pair and the ¢ — 1 (j + 1) unpaired end. Note, that the
dangling end contributions are added in every case even though the adjacent
bases are paired. FZ]‘;’ ! denotes the minimum free energy of the rightmost stem
plus an arbitry number of unpaired bases at the right side. FZA;I 1is obtained
from the sum of the minimum energy of the stem, Cj;, the multi-loop base
energy, Mp(j — ), which is added for each unpaired base, and the multi-loop
internal energy, M.

= min LGt Mp(— )+ B+ dlga + M} (1)

leli+m+1,5
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P
]
For a given base pair (i, j) there is only = Base pair (i, j) closes an interior loop, base
a single possibility to form a hairpin  pair (p,q) is immediatly interior to (i, ).
loop. Minimal loop size is 3. The number of structures for all possible
values of p and ¢ are considered.

Base pair (i,7) closes a multi-loop, base
pairs (p,q), (p',¢') ... are immediatly in-
terior to (4,7). Multi-loop structures are
divided into substructures containing the
rightmost stem and the remaining struc-
ture. The energy FM iv1k_1 of arbitrary
structures on the 5’ part is again deter-
mined from smaller fragments. Dangling
end contributions df;? 1,(i+1) and multi-
) i loop energy contributions M, M and
! J Mp are not detailed for simplicity.

Figure 9: Schematic representation of the different terms yielding C; ; and FZ{\;I L

Fji]\—fl,k—lﬁ equ. (16), denotes the minimum free energy of the remaining section
of a multi-loop structure. This section may contain one ore more stems. Figure
9 gives a schematic representation of the different terms yielding C; ; and F}!

in equation 16 and 17. We derive for the minimum free energy

FM  — mij { mi 18
b i ke[i—l—m—l—%g—m 1] { tk— 1+ ’ ( )
mi FMY 4 Mg(k —1i } 19

ke[i,j—lgz—l]{ eg +Ms(k—1) } (19)

The first element yields the minimum energy of all multi-loop sections con-
taining at least 2 stems. The second element treats all substructures, which
contain only a single stem. The energy of such a structure is obtained from the
sum of the minimum energy of the stem plus the bases at the right side, i.e.

FM ] , see equ. (17), plus the energy of the unpaired bases at the left side of the
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M1
By

The energy of such remaining sections of a multi-loop structure can either be obtained
from FM! plus the unpaired bases at the 5 end of the stem, if there exists one stem,

M ' M1
Fi Fk,j

or from the sum of Fi%_l, if the section contains at least 2 stems, plus the energy of
the stem and the unpaired bases at the 3’ end of the stem, i.e. F,ﬁwjl

Figure 10: Schematic representation of the different terms yielding the energy of
remaining sections of a multi-loop structure.

stem, M p(k—1). Note, that the distinction of F}{ and F* ensures, that there
is only one decomposition of a structure into substructures. It avoids identical
multi-loop decompositions while backtracking. A schematic illustration of the
terms yielding the energy of multi-loop sections gives figure 10.
Let F) denote the minimum free energy on the segment/1,jj. F} can be
constructed recursively using
Fjs - le[lgl—i%—l] {Fjs_l’ Fly+ Gyt dls’j’l_l + d?’j’jﬂ} (20)

with being C; ; defined in equation 16. The first term represents the case, that
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base j is unpaired. When [ is paired with some base 7, F;’ is given by the

second term. A schematic representation of these terms is given in figure 11.

) )

j-1

SRS

j
®

Qe

5
Fp_y

If the base j does not pair, the energy

of section [1, j], Fjr’a equals FJ'5—1‘

1 |

G ® ®
'F1l—1 \\\\ Cl:.] >

If the base [ pairs with j, the energy of

section [1, 7] is the sum of section [1,l-

1], F? ,, and the section closed by the

base pair (I,5), Ci,;.

Figure 11: Schematic representation of the different terms yielding Fj5. Dangling
end contributions have been neglected for simplicity.

Table 4 summarizes the algorithm for the computation of the minimum

free energy.
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Cij = min{#H(ij), _min  {Cu+T6jk D)},
L€ Tk+m41,j—1]

min {PM L+ B+ Me}

keli+1,j—m—2]

FMI' =  min {Czl+dzlz1+dzll+1+MB(j_l)+MI}
lefi+m+1,5]

M — min{ke[ min { k1+Fk] }’

i+m+1,j—m—1]

min  {FY + Mp(k )}}

keli,j—m—1]
5 .
Fy o= le[lfgn_lg—u{F v 1+Cl9+dl1l 1+d119+1}

Table 4: Recursion for the calculation of the minimum free energy:
Calligraphic symbols denote energy parameters for different loop types: hairpin
loops #(i, j), interior loops, bulges and stacks Z(, j, k,[); the multi-loop energy
is modeled by the linear ansatz M = M¢ + My - degree + Mp - unpaired. The
minimum free energy C; ; of substructures on the substring [¢, j], subject to the
condition that ¢ and j form a base pair, is determined recursively from smaller
fragments. The contributions depend on the type of the secondary structure
element as a consequence of the energy model. The base pair (7,j) can be the
closing pair of a hairpin, it may close an interior loop (or extend a stack) or it
might close a multi-loop. The auxiliary variables FM and FM! are necessary
for handling the multi-loops. The minimum free energy of the substring [1, j] is
stored in F;".

6.5 Backtracking

After the procedure of dynamic programming is finished, F?° gives the min-
imum free energy, denoted as mfe, since n is the length of the considered
sequence. However, we still don’t know, which structure gives rise to this op-
timal energy. Now we try to construct the optimal structure by using a so
called backtracking strategy. The mechanism is roughly the same as of the

maximum matching problem. In the following setion we give an outline of
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the backtracking procedure for calculating the mfe structure. In the second

section this concept will be extended by Waterman’s concept.

6.5.1 Common Features

While calculation of the mfe proceeds from smaller to larger segments, back-
tracking progresses from the full length fragment [1,7n] to smaller ones. For
any segment [z, j| the task is to find all base pairs immediately interior to i, j.
The same procedure is performed for each new segment thus obtained. This
strategy indicates a last in, first out or depth first search and will hold until
there is no segment left to investigate.

Given a segment [1, j], i.e. asegment not enclosed by any base pair, we have
to find the outermost base pair at the 3’ end. The base j is either unpaired,

in which case
F;" = Fj5_1 (21)

holds, yielding a new segment [1,5 — 1]. Otherwise, we have to find a k, such
that
Fj5 = Fl?—l + Ck,j + dz,j,k—l + dz,j,j+1 (22)

yielding a base pair [k, j], which defines a new segment and the exterior segment
1,k —1].

Backtracking in the F'M array starts with the condition

Flf‘;f =FM |+ Msp. (23)

%] —

If this condition is fulfilled, no base pair is found and the 3’ end is nibbled

creating the segment [i, j — 1|. The condition
Fz]\;[ = Cij + d?,j,ifl + d?,j,j+1 + Mg (24)

explores the base pair (7,7), which delimits a multi-loop and the segment
[i+1,j —1]. Using the F™ array multi-loop decompositions can be performed

accomplishing the condition

F;J,\;I = F;],\l/g + Crir + d2+1,j,k + d2+1,j,j+1 + My, (25)
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if the segment [, j] contains more than one stack. This condition finds a base
pair (k + 1,7) and generates the segments [i, k] and [k + 2,5 — 1]. If the
considered segment contains only one stack, the condition turns to

Fz],\;[ = Cht1,5 + dz—l—l,j,k + d2+1,j,j+1 + M+ (k—i+1)- Mp (26)

finding the base pair (k + 1, 7) and the segment [k + 2, j — 1]. Both conditions
hold for i < k < j.

If the current segment is formed by a base pair (i, j), then the pair (i, 7)
could be either part of a stack, bulge, internal loop or multi-loop. If (i, )

closes a loop of degree 2,
Civj = Cp,q + H(Za ja D, Q) (27)

and 7 < p < ¢ < j. This condition finds the base pair (p, ¢) and therefore a new
segment [p,q|. Alternately (i,7) might close a hairpin. As a last possibility

(1, 7) might close a multi-loop, in which case we have to find a k& accomplishing
Cij = F;A—i/—fl,k + FI?—/IH,J'—I + d?,j,iﬂ + d?,j,j—l + Mg, (28)

and ¢ < k < j. This condition finds two new segments [i+1, k] and [k+1, j—1].
Note, that in this part there is no use of the FM! array, which will be just
taken into account in the upcoming section. FZJ‘;[ ! ensures that there is only one
decomposition of a structure into substructures. It avoids identical multi-loop
decompositions while backtracking.

With these conditions we have the necessary tools to trace back through

the filled arrays in order to get the mfe structure.

6.5.2 Extension of Backtracking by Waterman’s Concept

The model of Waterman’s algorithm can be applied to the RNA energy folding
in order to find all suboptimal structures within a given energy range above the
mfe. Subsequently, we will call this the “SUBOPT” algorithm. The conditions
for tracing back through the various arrays are extended analogously to equa-

tion 6. That is the conditions of the previous section modified to something
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like

Ey+ Ei; + Z Eyy < Eip+59, (29)
kol

where E is the sumed energy of all already found substructures. E;; denotes
the energy of the considered segment [i, j] and ) | Ej; is the best possible energy
of all remaining uninvestigated segments. F , is the optimal energy, whereas
0 is the given energy range. In order to handle this amount of information, the
data management used in the maximum matching algorithm was implemented.
All found base pairs and segments are written to seperate base pair and interval
stacks, which are contained by states. States are written to a state stack. This
strategy will hold until there is no state left on the state stack to investigate.

Given a segment [4, j] the SUBOPT algorithm starts with the condition of
finding the outermost base pair at the 3’ end with

Ef+F ,+) Epy <F}+¢ (30)
k,l

yielding a new segment [1,j — 1]. Otherwise we have to find a k, such that

Ef+F 1+ Cij+ dz,j,kfl + dz,j,j+1 + Z En <F>+6 (31)
Py,

yielding a base pair (k, j), which defines also a new segment and the exterior
segment [1,k — 1]. Backtracking in the FM and FM! arrays starts with the

condition
Ey+ F;{\_;{—l + Mp + Z Ey, <FE>+6 (32)
k.l
and
Ef+FM' +Mp+ ) Epy <Fp+6. (33)
k.l

If these conditions are fulfilled, no base pair is found and the 3’ end is nibbled

creating the segment [i, j — 1]. The condition

Ef+Cij+ dlji + iy + M+ Bry < FJ+6 (34)
k,l
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explores the base pair (i,7), which delimits a multi-loop, and the segment
[i+1,j—1]. Using the FM array multi-loop decompositions can be performed

accomplishing the conditions

Ep+ Fj o+ Crrg + iy o+ digr gy + Mi+ ) By <F+6 (35)

k.l
if the segment [i, j] contains more than one stack. This condition finds a base
pair (k + 1,7) and generates the segments [i, k| and [k + 2,5 — 1]. If the

considered segment contains only one stack, the condition turns to

Ep+Crsrgtdyyptdi it Mit(k—it1) Mp+>  Epy < F3+6, (36)
k,l
finding the base pair (k + 1, 7) and the segment [k + 2,j — 1]. Both conditions
hold for i < k < j.
If the current segment [i, j] is formed by a base pair (,7), then the pair
could be either part of a stack, bulge, internal loop or multi-loop. If (i, )

closes a loop of degree 2, we have
Ef +Cpyq +I(i,j,p,q)+ZEk,l < F;Z’—I-(S (37)
k,l
provided ¢ < p < g < j. This condition finds the base pair (p, ¢) and therefore
the new segment [p, g]. Alternately the base pair (i,j) might close a hairpin

or a multi-loop, in which case we have to find a k£ such that

Ep+ FY e+ P+ d i +d,  + Mo+ Z By <F;+46 (38)

k,l
with 4 < k < j. This condition finds two new segments [i+1, k] and [k+1,j—1]
such that there is only one decomposition of a structure into substructures.
It avoids identical multi-loop decompositions. A detailed summary of this

procedure is given with the pseudo code of the SUBOPT algorithm in table 6.

6.6 Check for Reliability of the SUBOPT Algorithm

Taking the results of Cupal’s density of states in the previous subsection we
checked the results of the SUBOPT algorithm. Desireable is the same number
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of structures of a given sequence received by the SUBOPT algorithm as well
as by the Density of States algorithm. Both algorithms yield identical results
for the number of structures of sequences shown in table 5 as far we were able
to check.

Table 5: Check for reliability of the SUBOPT algorithm: The Density of States
algorithm and the SUBOPT algorithm yield identical results for the number of
structures of the shown sequences.

Number
Sequence of
Structures
ACUGAUCGUAGUCAC 142
AAGGCGAAAACCGCACCCCAAAAGGGAAC 7232
GGGGACCCUUUGGGAGGGAAACCCACCCC 1201833
GGGGGGACCCUUUGGGAGGGAAACCCACCCCC || 11208028
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while
pop STATE [Basepairs, Intervals, partial_energy)
pop INTERVAL [i,j, array_flag]
if (array_flag = external)
if (F5[j-1] + best_energy <= threshold)
push INTERVAL [i,j-1,external], STATE
for (k = 1...j)
if (F5[k-1] + C[k,j] + d5 + d3 + best_energy <= threshold)
partial_energy += db + d3
push INTERVAL [k,j,2loop], STATE
if (C[1,j] + d3 + best_energy <= threshold)
partial_energy += d3
push INTERVAL [1,j,2loop], STATE
if (array_flag = 2loop)
if (hairpin [unpaired] + best_energy <= threshold)
partial_energy += hairpin [unpaired]
push PAIR [i,j], STATE
for (p = 1...1)
for (q = 1...3)
if (I(i,j,p,q) + Clp,q] + best_energy <= threshold)
partial_energy += I(i,j,p,q)
push PAIR [i,j],[p,ql,INTERVAL [p,q,2loop], STATE
for (k = i...j)
if (FM[i+1,k] + FM1i[k+1,j-1] + d3 + d5 + best_energy <= threshold)
partial_energy += d3 + db
push INTERVAL[i+1,k,mloop], [k+1,j-1,mloop] ,PAIR[i,j],STATE
if (array_flag = FMiloop)
if (FM1 [i,j-1] + Mb + best_energy <= threshold)
partial_energy += Mb
push INTERVAL [i,j-1,FMiloop], STATE
if (array_flag = mloop)
if (FM[i,j-1] + Mb + best_energy <= threshold)
partial_energy += Mb
push INTERVAL [i,j-1,mloop], STATE
for (k = i...j)
if (FM[i,k] + C[k+1,j] + Mi + d6 + d3 + best_energy <= threshold)
partial_energy += Mi + d5 + d3
push INTERVAL [i,k,mloop], [k+1,j,2loop], STATE
for (k = i...j)
if (C[k,j] + Mi + (k-i)*Mb + d5 + d3 + best_energy <= threshold)
partial_energy += Mi + (k-i)*Mb + d5 + d3
push INTERVAL [k,j,2loop], STATE
if (nothing_is_pushed)
push STATE
else
free STATE, INTERVAL

Table 6: Pseudocode for the SUBOPT algorithm: The arrays, contribu-
tions of multi-loops and dangling ends are denoted as in the text. I(i,j,p,q) de-
notes the energy contents of either stacks, bulges or interior loops. best_energy
is the sum of the optimal energy of the remaining intervals on the interval stack
and the already found substructures (partial energy). STATE is the last entry
in the state stack. One STATE consists of an interval stack, a base pair stack and
the partial_energy entry. INTERVAL and BASEPAIR denote the last entries in
the interval and base pair stack. Every INTERVAL wears an array_flag directing
the considered interval to the relevant conditions. push and pop denote writing
and taking away the last entries from the stacks. threshold means mfe plus d.




7 Performance of the SUBOPT Algorithm 43

7 Performance of the SUBOPT Algorithm

7.1 CPU and Memory Requirements

In the following section we will have a look on the CPU and memory re-
quirements of the SUBOPT algorithm considering calculations of suboptimal
structures of RNA sequences of variable length within various ranges of en-
ergy. As test sequences we took 4 sequences with 25, 50, 75 and 100 bases
length. Energy ranges were taken in multiples of kT (~ 0,61 kcal/mol). The
test sequences are shown in figure 12. Table 7 shows the results of the CPU
and memory requirements of the SUBOPT algorithm. Also the number of

GGACCCUUUGGGAGGGAAACCCACC

AGGGGCGGAAAGGGEEGAAAACCCCCAAACCCCAAAAGGGAAAACCCCCCC
GCGGAUUUAGCUCAGDDGGGAGAGCGCCAGACUGAAYAUCUGGAGGUCCUGUGT PCGAUCCACAGAAUUCGCACC
CCCCACCCAAAGGGAGGEEUUUCCGCGEAUUUAGCUCAGDDGGGAGAGCGCCAGACUGAAY AUCUGGAGGEUCCUGUGT PCGAUCCACAGAAUUCGCACCAC

Figure 12: Test sequences used for providing performance data regarding CPU and

memory requirements of the SUBOPT algorithm.

Table 7: Data of CPU and memory requirements of the SUBOPT algorithm us-
ing sequences and energy ranges of variable size. Also the number of calculated
suboptimal structures are shown.

sequence range of energy/kT

length 5 [ 10 ] 12 [ 15 [ 17 | 20
17 | 187 441 1299 2569 6048 structures
25 0.01 | 0.02 | 0.05 0.12 0.22 0.49 MByte
0 0 0 0 0 0 CPU secs
9 108 254 900 2178 6477 structures
50 0.02 | 0.03 | 0.05 0.11 0.23 0.65 MByte
0 0 0 0 0 2 CPU secs
86 | 1664 | 5056 | 24299 | 67601 | 295722 | structures
75 0.06 | 0.25 | 0.69 3.16 8.70 34.11 MByte
0 1 2 10 34 201 CPU secs
121 | 4439 | 16567 | 103935 | 341054 | 1864633 | structures
100 0.09 | 0.78 | 2.75 16.70 54.21 295.92 MByte
1 6 10 54 169 1815 CPU secs

calculated suboptimal structures of the considered sequences found within the
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various ranges of energy are also shown. The calculations were performed on
the Alpha-Cluster at the Rechenzentrum of the University of Vienna. The clus-
ter consists of sixteen DEC AlphaServers 2100 5/375 with four CPUs each.
Interestingly the number of structures, CPU and memory requirements in-
crease with growing length of the considered sequence and range of energy as
well. The data show a highly exponential behaviour. However, such a growth
of the memory requirement with increasing length of sequence and range of
energy exhausts the memory recources quickly. Having a glimpse on the cor-
relations of memory and CPU requirements one might expect both scaling

approximately linearly with the number of calculated suboptimal structures.

7.2 Performance in Comparison to Zuker’s Algorithm

In section 4.2.2 we maintained that Zuker’s algorithm is not able to find all
suboptimal secondary structures of a RNA sequence within a given range of
energy. In this subsection we want to compare the results of Zuker’s algorithm
with those of the SUBOPT algorithm.

Table 8: Performance of Zuker’s algorithm in comparison to the SUBOPT algo-
rithm. Within 10 percent of the mfe all suboptimal structures were calculated with
both algorithms. Percentage denotes the part of the number of suboptimal struc-
tures calculated by Zuker’s algorithm to this found by the SUBOPT algorithm.

Number of | Number of
Sequence Structures | Structures | percentage
(ZUKER) | (SUBOPT)
RH1660 (modified) 2 7 40.0
RH1660 (unmodified) 9 19 474
RI1660(modified) 4 7 57.1
RI1660 (unmodified) 17 79 21.5
RV1660(modified) 6 11 54.6
RV1660 (unmodified) 24 131 194
RS1661 (modified) 17 73 23.3
RS1661 (unmodified) 15 91 16.5
RE1660 (modified) 7 30 23.3
RE1660 (unmodified) 10 40 25.0
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Within 10 percent of the minimum free energy the number of suboptimal
structures of 10 sequences were calculated using both algorithms. The result
obtained is the percentage of the number of suboptimal structures calculated
by Zuker’s algorithm to this found by the SUBOPT algorithm. As sequences
we chose 5 natural tRNA sequences of F.coli. The other 5 sequences were the
same unmodified by translating the modified nonpairing bases to the natural
pairing ones (see section 8.2 and Appendix A for further information).

In Table 8 the results are shown. Obviously the SUBOPT algorithm finds
much more suboptimal structures within a given range of energy than Zuker’s

algorithm does.
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8 Results

8.1 What is “Well-definedness” ?

“well- definedness” of a sec-

In this section we want to find measures of the
ondary structure. Previous definitions [18] of the well-defindness are restricted

to a certain region of the structure with
d(k) = max { max { Py, Py}, 1 — Z Pi,k}- (39)

P, \, is the base pair probability of base pair (i, k), whereas d(k) is the proba-
bility of the most probable base pair involving £ or the probability that £ is
unpaired, whichever is larger. The base pair probability is defined as the prob-
ability of a base pair (i,7) in a Boltzmann weighted ensemble of structures:

_E@®)

e~ kT
Py= Y P@®) =3 (40)
i,jqécb i,jq;CP

with P(®) being the probability of a structure ® with energy E(®) and Z being
the partition function. This equation implicates a measure of well-definedness
for the whole structure. If P(®) denotes the probability of the structure &
in a Boltzmann weighted ensemble, we can define the mfe structure as the
most probable and best “defined” one. Subsequently the fraction of the mfe

structure in the Boltzmann ensemble will be denoted as f,,s. with

Em]e

e~ kT

fmfe = 7 (41)

Using energetical terms the equation turns to
kT In fmfe =F— Emfe (42)

with F' being the free energy of the ensemble. In the following sections we try

to find additional measures of well-definedness.
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8.2 FE.coli tRNA Sequences

A number of tRNA sequences from EMBL tRNA Database, based on a com-
pilation of Steegborn [41], were analyzed in the following section. In this
subsection a short introduction of the treatment of tRNA sequences is given
(See Appendix A for the sequences and sequence numbers referred to in the
text). tRNAs differ to some extent from other types of RNA: tRNAs contain
a large variety of modified bases in addition to the four standard bases A, C,
G, and U. There are, however, no experimentally measured parameters avail-
able for non-standard bases. It is therefore necessary to develop a consistent
method for dealing with these bases. Since it seems plausible, that some of
these bases are modified to prevent bonding, a class of non-bonding bases is
introduced. This method was first suggested by Ninio [29]. In 1993 Higgs,
following Ninio, treated the following bases as non-bonding: Dihydrouridine
(D), 7-methyl guanosine (7), N2-methyl guanosin (L), 1-methyl guanosine (K),
queuosine (Q), wybutosine (Y) and 3-methyl cytidine (’). All other bases were
treated as the standard base to which they most resemble [14]. A slightly
different method was described by Higgs in 1995 [15]: Since the majority of
all tRNA sequences fit the well-known cloverleaf folding pattern, it is possible
to identify a class of modified bases, which never occur in a paired position.
These bases are treated as non-bonding. All other bases are translated to their

standard base analogue. This leads to the following assignments:

H - — A
<BM? — C
; L#R - G
NJP]Z — U

all other symbols — N

For the purpose of comparison, a second set of “natural” tRNA sequences was
obtained by translating all modified bases to the corresponding unmodified

ones (See Appendix A for further details of translation).
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8.3 Gapstatistics
8.3.1 Definitions

A pool of 2000 inverse folded sequences whose mfe structure is identical to
those of selected natural tRNA sequences were generated. In addition a pool
of inverse folded sequences of these selected tRNA structures were generated
with nonpairing bases (N) at sites of the sequence, where they occur in the

natural tRNA sequences. Figure 13 shows the typical tRNA structure and their

RI1660 AGGCUUGUAGCUCAGGDGGDDAGAGCGCACCCCUGAU6AGGGUGAG7XCGGUGGTPCAAGUCCACPCAGGCCUACCA
RI1661 AGGCUUGUAGCUCAGGUGGDDAGAGCGCACCCCUGAU6AGGGUGAG7XCGGUGGTPCAAGUCCACPCAGGCCUACCA
RR1661 GCAUCCG4AGCUCAGCDGGADAGAGUACUCGGCUICG/ACCGAGCG7XCGGAGGTPCGAAUCCUCCCGGAUGCACCA
RV1660 GCGUCCG4AGCUCAGDDGGDDAGAGCACCACCUUGACAUGGUGGGG7XCGGUGGTPCGAGUCCACUCGGACGCACCA
RV1661 GCGUUCA4AGCUCAGDDGGDDAGAGCACCACCUUGACAUGGUGGGG7XCGUUGGTPCGAGUCCAAUUGAACGCACCA
RD1660 GGAGCGG4AGUUCAGDCGGDDAGAAUACCUGCCUQUC/CGCAGGGG7UCGCGGGTPCGAGUCCCGPCCGUUCCGCCA

Figure 13: Structure and related natural sequences of a E.coli tRNA. This structure
was used to generate pools of inverse folded sequences.

related natural F.coli tRNA sequences used for generating those pools. The
algorithm yields all secondary structures within a given interval of energy above
the mfe of a given sequence. Hence it was possible to calculate the structures

and energies of the first and the second best structures; i.e. the energy gap
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between the ground state and the two first “excited” states. Subsequently the
first and second gap of energy will be denoted as AG; and AG5. The fraction
of AG| and AG5 in the mfe can be plotted against their frequency in the pools.

In order to gain an idea of how “well defined” a structure is, the fraction of the

Figure 14: Cross shaped structures A (left) and B (right) similar to the cloverleaf
structure of tRNAs. These structures were used to generate pools of 2000 inverse
folded sequences.

mfe structure in the partition function, denoted as f, e, is plotted against the
frequency. Subsequently we try to find a connection between f,r. and AGs.
Additionally pools of 2000 inverse folded sequences, whose mfe structure is
identical to those cross shaped structures shown in figure 14, were generated

and investigated in the same manner.

8.3.2 Results

In figure 15 we show the comparison of the distributions of AG; and AG,
regarding the pools of tRNA sequences. The distributions pertaining the mod-
ified sequences are much broader than those of the unmodified sequences. It is

interesting to note, that these distributions of modified sequences are shifted
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Figure 15: Comparison of the energydistributions of 1% (up) and 2" (down) gap
energies regarding pools of 2000 inverse folded modified and unmodified tRNA se-
quences. Arrows indicate the position of the natural 6 tRNA sequences.

to higher values of gap energies. Obviously the nonpairing modified bases have

a strong influence on the distribution of gap energies. In figure 16 we show the
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fraction of mfe in the Boltzmann ensemble, f, ., plotted against its frequency
in the pool of natural tRNA sequences. Interestingly these distributions are
similar to the distributions of first gap energies. There seems to be a correla-
tion of the energy gap between the ground state and the 1% “excited” state
(AG) and the fraction of the mfe in the Boltzmann ensemble (fy,f.). Strictly
speaking a higher AG| is related to a higher f, ., which means a better defined
structure. In order to show this fact, AG is plotted against f, . regarding the
pools of tRNA sequences in figure 17. Note, that the natural logarithm of f,, .
in multiples of KT (~ 0.61 kcal/mol) is the difference of the free energy of the

ensemble and the mfe as outlined in equation 42. Compared to the modified
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Figure 16: The abscisse shows the fraction of the mfe structure in the Boltzmann
ensemble (fp,re). The ordinate shows the frequency with which that fraction was
realized in the modified and unmodified tRNA pools. Arrows indicate the position
of the 6 natural tRNA sequences.

tRNA sample the data points belonging to the unmodified tRNA sequences
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Figure 17: Distribution of 15 gap energy (AG1) and frequency of mfe in the Boltz-
mann ensemble (KT In fy,r.) regarding the pools of unmodified (up) and modified
(down) tRNA sequences.

are more grouped at smaller first gap energies and are shifted accordingly to

smaller frequencies of mfe. Obviously the nonpairing bases have a strong in-
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fluence on the distributions of AG; and f,r.. As mentioned before there is
a correlation between AG; and fi, .. Hence the modified bases strength the
“definition” of the structure.

In order to distinguish between “well defined” und “less well defined” struc-
tures, another two examples will be considered. In Figure 14 we showed two
cross shaped structures similar to the tRNA cloverleaf structure. Although
both structures show a very similar structure, the plots of f.,s. distributions
of inverse folded samples look completely different. This is shown in figure 18.
As before there is a correlation between f,, ;. and AG,. Figure 19 shows the
distributions of the 1 gapenergies of both structures. The distributions per-
taining the B structure are broader than those of the A structure. Again the
distribution of the B structure is shifted to higher values of first gap energies.
In order to confirm our assumption of a correlation between f, . and AGH,
figure 20 shows AG, plotted against k7' In f,, s, regarding the pools of inverse
folded sequences of both structures. Again the data points belonging to the
pool of structure A sequences are grouped at smaller first gap energies and
accordingly at smaller frequencies of mfe in contrast to the pool of structure
B. Hence structure B shows the (expected) better defined structure than struc-
ture A. Although both structures show a very similar structure, the plots of
fmpe and AG, distributions of inverse folded samples look completely different
as shown in figures 18, 19 and 20. Given the similarity of the two structures
A and B (Fig. 14) the difference in the f,s. distribution is rather surpris-
ing. It is explained as follows. Both pools of first suboptimal structures have
some common structural features. In most cases the first suboptimal structure
lacked the first base pair of the multi-loop stem, or contained an additional
base pair in the other stacks. The occurence of a completely different structure
is rather rare. For the first suboptimal stacks of structures A and B this means
that one of the hairpin loops often shrinks to size 4 and 3, respectively. In the
currently used energy model the unpaired bases adjacent to a stack contribute
some stabilizing mismatch energy, which is not the case, if the loopsize is 3.
This effect is shown by generating pools of inverse folded sequences with hair-

pin structures containing loops of size 6 and 5. In Figure 21 these two hairpin
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Figure 18: Distributions of f,, . for pools of 2000 inverse folded sequences with
structure A (up) and B (down).

structures are shown. The influence of dangling-end contributions is larger

than the mismatch energies. Hence, it is neccessary to exclude dangling-end
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contributions. Figure 22 confirms our expectation. There exists a difference

between the f, ;. distribution of these two structures. The f, ;. distribution
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of the A’-sample (loopsize 5) is shifted to higher values than the one of the

B’-sample (loopsize 6). Obviously the contributions of mismatch energies have
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Figure 21: Hairpin structures A’ and B’. This structures were used to generate
pools of 2000 inverse folded sequences, each without contributions of dangling-end
energies in order to show the influence of mismatch-energies on the f, . plots.
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Figure 22: Distributions of fy,t. for pools of 2000 inverse folded sequences with
structure A’ (left) and B’ (right).

a significant influence on the definition of the structure A’. This observation
explains the differences in the f,, s, distributions of cross shaped structures A

and B.
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8.4 Structure Distances

8.4.1 Definitions

Here we consider the diversity of structures in the LoDoS by means of various
measures of structural distance. One such distance is the so-called base pair
distance. The base pair distance counts the number of basepairs, in which
two structures are different. In figure 23 we show distributions of base pair
distances between first and second gap structures respectively and the mfe
structure regarding the pools of tRNA sequences. The influence of the modified
bases is easily to see. As expected the distributions of the samples of modified
sequences are shifted to lower values of base pair distance. We will consider

the mean base pair distance, given as
<dy>= Y dp0,i) p;, (43)
i

where dj, denotes the base pair distance between the mfe structure (0) and
the 7th suboptimal structure. p; denotes the probability of the ith suboptimal

structure in the ensemble

¢ 44
pi=— (44)

An energy distance is defined by the mean gap energy
<dg>= Y (E; — Emnse) p;. (45)

1

8.4.2 Results

All structures and their energies of modified and unmodified natural tRNA
sequences were calculated within an interval of 10 £7". As ground state of the
tRNA sequences the well known cloverleaf structure was assumed. In the con-
sidered energy model almost all modified tRNA sequences have the cloverleaf
as mfe structure. On contrast the unmodified tRNA sequences often have a
different structure. We take, therefore, as our reference state the lowest ly-

ing suboptimal state providing the cloverleaf structure. Additionally a pool
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Figure 23: Distributions of base pair distances, dp,, between 1% gap structures
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the pools of tRNA sequences. Arrows indicate the position of the 6 natural tRNA
sequences.



8 Results 60

of randomly modified tRNA sequences was generated: Firstly the modified
bases of the natural tRNA sequences were translated into the corresponding
unmodified ones (see Appendix A). Next the same number of modified bases
(non-pairing) was inserted at random positions, such that the cloverleaf struc-
ture was retained. Figure 24 shows the results. Note, that < dg > and
< dp, > were calculated within 10 k7" and are therefore only good approx-
imations. Again the influence of nonbonding modified bases is quite strong.
While the data points of the unmodified sequences seem to be spread widely,
those of the modified bases are largely restricted to a specific area correspond-
ing to higher mean gap energies and smaller base pair distances. These two

features are indicative for the well-definedness of a structure as we suggested
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Figure 24: Plot of the mean gap of energy < dg > vs. mean distance of basepairs
< dpp > regarding the pools of modified, unmodified and randomly modified E.coli
tRNA sequences.
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Figure 25: Plot of the mean gap energy < dg > vs. mean base pair distance
kT In < dp, > regarding the pools of inverse folded sequences of crosshaped struc-
tures A (up) and B (down).

before. Some data points relating to unmodified sequences lie in the negative

quadrant. That means that the mfe structure of these sequences is not the
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cloverleaf structure. For these one of the suboptimal structures was chosen to
be the reference state of our calculations (see above).

The data points of randomly modified sequences are in the neighbourhood
of modified sequences. However, they are shifted to higher mean gap energies
and mean base pair distances. Hence, the definition of the tRNA structure is
dependent on the position of modification.

Pools of inverse folded sequences of the cross shaped structures A and B
(Figure 14) were analyzed in a similar fashion. In figure 25 the plots of the
pools are compared. Note, that the mean base pair distance, < d, >, is given
as its natural logarithm in multiples of £7" in order to show a better correlation
to < dg >. Again, compared to the A-sample the points belonging to the
better defined structure B are more grouped at smaller base pair distances
than computed mean gap energies. Similar results are obtained with samples
of inverse folded modified and unmodified sequences of tRNA structures. We
conclude that < dy, > is a more reliable indicator of well-defindness than
<dg >.

8.5 Partition Function Plots

The partition function is defined as
By
Z=> et (46)

with E; being the energy of the ¢th suboptimal structure in the Boltzmann
ensemble. An approximation to Z will be calculated with LoDoS ensembles of
various sizes, AG' = —kT In Z'. As a value of reference AG is also calculated
by McCaskill’s partition function algorithm [26]. This algorithm calculates
Z. With the possibility to calculate all structures and their related energies
strictly within a given energy band, Z’, i.e. AG’, will be obtained by suming
over the Boltzmann factors of all structures in the LoDoS. The sumation
over the Boltzmann factors stops, when 99,9 percent of AG (Z) are obtained.

Figure 26 shows the course of such calculations. Interestingly the number of
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needed structures and related energies increases, the more “undefined” the mfe
structure of a given sequence is.

The base pair probability is defined as the probability of a base pair (i, 7)
in a Boltzmann weighted ensemble of structures following equation 40. The

calculation of the base pairing probabilities F; ; leads to the construction of a
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Figure 26: Course of the approximation of AG' (Z') to 99,9 percent of AG (Z)
related to the number of required states of energy. As contrasting examples the
modified and unmodified tRNA-sequences RI1662 and RW1660 were chosen.

top left: RI1662/unmodified GGCCCCUUAGCUCAGUGGUUAGAGCAGGCGACUNAUAAUCGCUUGGUCGCUGGUUCAAGUCCAGCAGGGGCCACCA
AG(Z) = -33,366 kcal/mol, number of structures: 48

top right: RI1662/modified GGCCCCUNAGCUCAGUGGNNAGAGCAGGCGACUNAUNAUCGCUUGNNCGCUGGNUCAAGUCCAGCAGGGGCCACCA
AG(Z) = -31,482 kcal/mol, number of structures: 3

bottom left: RW1660/unmodified AGGGGCGUAGUUCAAUUGGUAGAGCACCGGUCUCCAAAACCGGGUGUUGGGAGUUCGAGUCUCUCCGCCCCUGCCA
AG(Z) = -25,077 kcal/mol, number of structures: 57285

bottom right: RW1660/modified AGGGGCGNAGUUCAANNGGNAGAGCACCGGUCUCCANAACCGGGUNUUGGGAGNUCGAGUCUCUCCGCCCCUGCCA
AG(Z) = -23,657 kcal/mol, number of structures: 388
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base pairing matrix. The different base pair probabilities I ; obtained from
the LoDoS are compared with those from the full partition function Z. This
is shown in figures 27 for the tRNA sequences used in Figure 26. The dots
corresponding to base pairs occuring with a probability of less than 1075 are
suppressed. The plot is divided into two triangles. While the upper left triangle
contains the base pairing probability matrix obtained with the full Z the right

ACCACCGGGGACGACCUGAACUUGGUCGCUGGUUCGCUAAUANUCAGEGGACGAGAUUGGUGACUCGAUUCCELAS ACCACCGGGGACGACCUGAACUNGGUCGCNNGUYCGCUANUANUCAGEGGACGAGANNGGUGACUCGANUCCECES
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Figure 27: Dot Plots of selected tRNA sequences. Upper left triangle contains base
pairing probabilities (P; ;) obtained with the full Z. Lower right triangle displays
the base pairing pI‘ObabilitleS yie]ded Wlth Zl.top left: RI1662/unmodified top right: RI1662/modified

bottom left: RW1660/unmodified bottom right: RW1660/modified
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triangle displays the matrix obtained with the Z' from the LoDoS up to 10
kT above the mfe.

8.6 Coarse Grained Approaches

Within a certain energy width all suboptimal structures and related energies of
a tRNA sequence were calculated. The energies were discretized in increments
of 0,1 and binned accordingly. For each energy interval several features were
investigated. For the case of the modified and unmodified tRNA sequence
RK1660 the LoDoS of the unmodified sequence was calculated up to 15 kT
while that of the modified sequence had to be calculated up to 30 £7T'. For
each interval the arithmetic mean of the base pair distance of the structures
contained in it to the mfe structure was calculated. In addition every subopti-
mal structure contained in the interval was “coarse grained”. A coarse grained
structure is derived from the known secondary structure by ignoring size and
length of loops and stacks. The number of different coarse grained structures
was counted. The results are shown in figure 28. The diversity, the number
of different coarse grained structures, increases faster in the unmodified case.
Strikingly, the arithmetic mean base pair distance in the unmodified case is
much higher than that of the modified case. The same holds for any other
tRNA sequence (data not shown).

8.7 Neutrality

Neutrality is defined as the percentage of neutral mutations among all 1-error-
mutants of a given sequence. In Figure 29 the mean base pair distances <
dy, >, frequencies f,r. and mean gap energies < dg > are plotted against
the neutrality. As sample the pools of inverse folded modified and unmodified
sequences of the tRNA structure are used. As we saw in previous subsections,
the modification of some bases increases the mean basepairdistance < dp, >,
the frequency fy,r. and the mean gap energy < dg >. Modified sequences are

shifted to higher amounts of neutrality.
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The same calculations were performed using the pools of inverse folded se-
quences of the crosshaped structures A and B. The results are shown in figures
30 and 31. In agreement with the tRNA case the data points of structure B,
the well defined structure, are shifted to higher values of neutrality, to higher
values of frequency fy, s, to higher values of mean gap energy < dg > and
to lower values of mean base pair distance < dj, >. It is interesting to note,
that using the natural logarithms of the mean base pair distances < dy, >,
frequencies f,,r. and mean gap energies < dg > in the diagrams yield a good

correlation to the neutrality.
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number of different coarse

grained structures, and arithmetic mean of the base pair distance regarding the
modified and unmodified sequence of tRNA RK1660. LoDoS of the unmodified
sequence was calculated up to 15 KT while the LoDoS of the modified sequence
had to be calculated up to 30 kT

RW1660/modified: GGGUCGUUAGCUCAGNNGGNAGAGCAGUUGACUNUUNAUCAAUUGNNCGCAGGNUCGAAUCCUGCACGACCCACCA
GGGUCGUUAGCUCAGUUGGUAGAGCAGUUGACUUUUAAUCAAUUGGUCGCAGGUUCGAAUCCUGCACGACCCACCA

RW1660/unmodified:
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Figure 29: Distributions of the frequency f, ., mean base pair distance < dp, >
and mean gap energy < dg > against neutrality regarding the pools of inverse folded

modified and unmodified tRNA sequences.
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Figure 30: Distributions of the frequency f, ., mean base pair distance < dp, >
and mean gap energy < dg > against neutrality regarding the pools of inverse folded

sequences of crosshaped structure A.
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and mean gap energy < dg > against neutrality regarding the pools of inverse folded

sequences of crosshaped structure B.
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9 Conclusions and Outlook

RNA structures play a significant role in a great variety of different problems.
Secondary structures provide a convenient form of coarse graining, and their
study yields information useful in the prediction of the full 3D structures and in
the interpretation of the biochemical function of the molecules. Furthermore,
secondary structures are discrete and therefore well suited for computational
methods.

To understand the biological role of an RNA molecule, it is not necessary to
know the complete density of states. For many purposes it is sufficient to know
the LoDoS accounting for all states within a certain energy range above the
minimum free energy. There may exist several suboptimal structures providing
the sam or a different biological function.

The representation of RNA secondary structures as vertex-labeled, planar
graphs are discussed. There exist already combinatorial and dynamic pro-
gramming approaches to find all secondary structures within this window of
the density of states. However, these algorithms feature either a high amount
of approximation or simply do not find all secondary structures within the
considered range of energy. Such algorithms derived previously were compiled
and presented.

In this work we introduced an algorithm capable to calculate all secondary
structures of a RNA sequence within a desired energy range above the min-
imum free energy, which implements the energy parameter set used within
the Vienna RNA Package. Finding near-optimal paths between a specified ori-
gin and destination in an acyclic network was firstly applied to the maximum
matching problem intended as a kind of test of the applicability of that con-
cept. Afterwards this idea was applied to the energy folding problem.

With the possibility to calculate all secondary structures of a RNA sequence
within a certain energy range it is possible to gain new insights in the well-
definedness of a RNA structure. This investigations lead to the discovery of the
size of the gap between the energies of the minimum free energy structure and

the first suboptimal structure as new measure of well-definedness in comparison
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to the frequency of the minimum free energy within the partition function.
With this new tool we were also able to investigate the structure stabilizing
role of modified (i.e. non-pairing) bases. As example we used the natural
tRNA sequences of F.coli showing higher first gaps than the unmodified tRNA
sequences.

An investigation of structural distances of suboptimal structures to the
minimum free energy structure of well defined structures showed also lower
base pair distances and higher gap energies in contrast to less well defined
structures.

The partition function of an RNA sequence without knowing all free en-
ergies can be calculated in a good approximation using the lower states. It
appeared, that due to the size of the first gaps 99,9 percent of the partition
function of modified tRNA sequences, i.e. well defined structures, can be
calculated with much less suboptimal structures than unmodified ones.

The ability to calculate the LoDoS within an desired energy range enabled
us to characterise the different states of natural RNA sequences of FE.coli. The
results show that original tRNA sequences have less states in the vicinity of
the ground state and the energy gap is usually larger. Also the mean base pair
distances and the number of coarse grained structures within the states are
much smaller than within the states of the unmodified tRNA sequences.

An insight into the relation of neutrality of RNA sequences and well-
definedness of the related structures is given. It turned out that the features
of well-definedness are related to a higher amount of neutrality.

A problem arising with long sequences and high ranges of energy is the
exponential growth of memory requirements of the algorithm. As a future
consideration the programming of a more efficient memory management of the
various stacks must be taken into account.

With the possibility to calculate all acceptable suboptimal structures within
a desired energy range an insight into transition states of secondary structures
can be probably obtained. In combination with kinetic folding algorithms
available in our research group interesting perspectives on folding dynamics

of RNA secondary structures must be receivable. Mentioned above we found
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a naturally occuring example of increasing well-definedness of a structure by
inserting nonpairing bases in tRNA sequences. With this algorithm we have
a tool for showing the effects of modified bases contained in further natural
sequences. The good correlation between stability against mutation and ther-
modynamic stability should be investigated in that sense to point out to which
extent thermodynamic stability of a RNA sequence and RNA structure implies
stability against mutation and vice versa. This feature can be strengthened
by searching for natural occuring examples either stabilized against mutation

or thermodynamically stabilized.
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A EMBL tRNA Database

All tRNA sequences are from the compilation of Steegborn [41], which can be
obtained via anonymous ftp from EMBL Heidelberg, ftp.embl-heidelberg.de,
in directory /pub/databases/trna/.

Abbreviation of Modified Bases

The one-letter code and the abbreviation for all modified bases in the tRNA

database:

U (W uridine

c (© cytidine

A (B) adenosine

G (@) guanosine

T (T) thymine (for sequences of tRNA genes only)

H (74) unknown modified adenosine

" (m14) 1-methyladenosine

/  (m24) 2-methyladenosine

+ (i64) N6-isopentenyladenosine

* (ms2i6A) 2-methylthio-N6-isopentenyladenosine

= (m6A) N6-methyladenosine

6 (t6A) N6-threonylcarbamoyladenosine

E (m6t6A) N6-methyl-N6-threonylcarbamoyladenosine

[ (ms2t64) 2-methylthio-N6-threonylcarbamoyladenosine
(Am) 2’-0-methyladenosine

I (D inosine

0 (miI) 1-methylinosine

~ (Ar(p)) 2’-0-ribosyladenosine (phosphat)

¢ (106A) N6-(cis-hydroxyisopentenyl)adenosine
y yisop y
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h

o H*H =N

= < ©O© 00 O ~ N

< W L =, & P o N A=

(?C)
(s2C)
(Cm)
(ac4C)
(m5C)
(m3C)
(£5C)

(G)
(m1G)
(m2G)
(Gm)
(m22G)
(m22Gm)
(m7G)
(£a7d7G)
@
(manQ)
(galQ)
(yW)
(02yW)

(?0)
(mnm5U)
(s2U)
(Um)
(s4U)
(ncm5U)
(mcm5U)
(mnm5s2U)
(mcm5s2U)
(cmo5U)

unknown modified cytidine
2-thiocytidine
2’-0-methylcytidine
N4-acetylcytidine
5-methylcytidine
3-methylcytidine
5-formylcytidin

unknown modified guanosine
1-methylguanosine
N2-methylguanosine
2’-0-methylguanosine
N2,N2-dimethylguanosine
N2,N2,2’-0-trimethylguanosine
7-methylguanosine
archaeosine

queuosine
mannosyl-queuosine
galactosyl-queuosine
wybutosine

peroxywybutosine

unknown modified uridine
5-methylaminomethyluridine
2-thiouridine

2’-0-methyluridine

4-thiouridine
5-carbamoylmethyluridine
5-methoxycarbonylmethyluridine
5-methylaminomethyl-2-thiouridine
5-methoxycarbonylmethyl-2-thiouridine

uridine b5-oxyacetic acid
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5 (mo5U)

I (cmnm5U)

$ (cmnm5s20)
X (acp3U)

,  (mchm5U)

3

(cmnm5Um)
~  (ncm5Um)
(D)

(psi)
(mlpsi)
(psi m)
(m50U)
(m5s2U)
(m5Um)

~ T 4 N — "W O

5-methoxyuridine
5-carboxymethylaminomethyluridine
5-carboxymethylaminomethyl-2-thiouridine
3-(3-amino-3-carboxypropyl)uridine
5-(carboxyhydroxymethyl)uridinemethyl ester
5-carboxymethylaminomethyl-2’-0-methyluridine
5-carbamoylmethyl-2’-0-methyluridine
dihydrouridine

pseudouridine

1-methylpseudouridine
2’-0-methylpseudouridine

ribosylthymine

5-methyl-2-thiouridine

5, 2’-0-dimethyluridine
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Bases are translated as suggested by Higgs [15]: Modified bases in pairing re-

gions were translated to their non-modified analogues; Bases exclusively found

in loop regions were treated as non-bonding bases.

E. Coli tRNA Sequences

All E. Coli tRNA sequences from the EMBL tRNA Database used in this work

are given. The sequence number codes as follows: First letter is D or R for

DNA or RNA respectively. Second letter gives the one-letter symbol of the

amino acid. In addition to the commonly used one-letter amino acid code, Z

means seleno cysteine and X stands for initiator tRNA. The four digit number

codes for organism and isoacceptor (see manual.txt in the database).

Sequence Anti-
Number Codon
RA1660 GGC

Organism Kingdom

E.COLI EUBACT

GGGGCUANAGCUCAGCDGGGAGAGCGCUUGCAUGGCAUGCAAGAG7UCAGCGGTPCGAUCCCGCUUAGCUCCACCA

RA1661 VGC

E.COLI EUBACT
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GGGGGCA4AGCUCAGCDGGGAGAGCGCCUGCUUVGCACGCAGGAG7UCUGCGGTPCGAUCCCGCGCGCUCCCACCA
RA1662 VGC E.COLI EUBACT
GGGGCUAUAGCUCAGCDGGGAGAGCGCCUGCUUVGCACGCAGGAG7UCUGCGGTPCGAUCCCGCAUAGCUCCACCA
RC1660 GCA E.COLI EUBACT
GGCGCGU4AACAAAGCGGDDAUGUAGCGGAPUGCA*APCCGUCUAGUCCGGTPCGACUCCGGAACGCGCCUCCA
RD1660 Quc E.COLI EUBACT
GGAGCGG4AGUUCAGDCGGDDAGAAUACCUGCCUQUC/CGCAGGGG7UCGCGGGTPCGAGUCCCGPCCGUUCCGCCA
RE1660 SucC E.COLI EUBACT
GUCCCCUUCGUCPAGAGGCCCAGGACACCGCCCUSUC/CGGCGGUAACAGGGGTPCGAAUCCCCUGGGGGACGCCA
RE1661 SucC E.COLI EUBACT
GUCCCCUUCGUCPAGAGGCCCAGGACACCGCCCUSUC/CGGCGGUAACAGGGGTPCGAAUCCCCUAGGGGACGCCA
RE1662 SucC E.COLI EUBACT
GUCCCCUUCGUCPAGAGGCCAGGACACCGCCCUSUC/CGGCGGUAACAGGGGTPCGAAUCCCCUAGGGGACGCCA
RF1660 GAA E.COLI EUBACT
GCCCGGA4AGCUCAGDCGGDAGAGCAGGGGAPUGAA*APCCCCGU7XCCUUGGTPCGAUUCCGAGUCCGGGCACCA
RG1660 cce E.COLI EUBACT
GCGGGCG4AGUUCAAUGGDAGAACGAGAGCUUCCCAAGCUCUAUACGAGGGTPCGAUUCCCUUCGCCCGCUCCA
RG1661 GCC E.COLI EUBACT
GCGGGAAUAGCUCAGDDGGDAGAGCACGACCUUGCCAAGGUCGGG7UCGCGAGTPCGAGUCUCGUUUCCCGCUCCA
RG1662 NCC E.COLI EUBACT
GCGGGCAUCGUAUAAUGGCUAUUACCUCAGCCUNCCAAGCUGAUGAUGCGGGTPCGAUUCCCGCUGCCCGCUCCA
RH1660 QUG E.COLI EUBACT
GGUGGCUA4AGCUCAGDDGGDAGAGCCCUGGAUUQUG/PPCCAGUU7UCGUGGGTPCGAAUCCCAUUAGCCACCCCA
RI1660 GAU E.COLI EUBACT
AGGCUUGUAGCUCAGGDGGDDAGAGCGCACCCCUGAUBGAGGGUGAG7XCGGUGGTPCAAGUCCACPCAGGCCUACCA

RI1661 GAU E.COLI EUBACT
AGGCUUGUAGCUCAGGUGGDDAGAGCGCACCCCUGAUB6AGGGUGAG7XCGGUGGTPCAAGUCCACPCAGGCCUACCA
RI1662 AU E.COLI EUBACT

GGCCCCU4AGCUCAGU#GDDAGAGCAGGCGACU}AUBAPCGCUUG7XCGCUGGTPCAAGUCCAGCAGGGGCCACCA

RK1660 SUU E.COLI EUBACT
GGGUCGUUAGCUCAGDDGGDAGAGCAGUUGACUSUUSAPCAAUUG7XCGCAGGTPCGAAUCCUGCACGACCCACCA

RL1660 HAA E.COLI EUBACT
GCCCGGA4GGUGGAADC#GDAGACACAAGGGAPUHAA*APCCCUCGGCGUUCGCGCUGUGCGGGTPCAAGUCCCGCUCCGGGUACCA
RL1661 CAG E.COLI EUBACT
GCGAAGGUGGCGGAADD#GDAGACGCGCUAGCUUCAG ; PGPUAGUGUCCUUACGGACGUGGGGGTPCAAGUCCCCCCCCUCGCACCA
RL1662 GAG E.COLI EUBACT
GCCGAGGUGGUGGAADD#GDAGACACGCUACCUUGAG ; PGGUAGUGCCCAAUAGGGCUUACGGGTPCAAGUCCCGUCCUCGGUACCA
RM1660 MAU E.COLI EUBACT
GGCUACG4AGCUCAGDD#GDDAGAGCACAUCACUMAUGAPGAUGGG7XCACAGGTPCGAAUCCCGUCGUAGCCACCA

RN1660 Quu E.COLI EUBACT
UCCUCUG4AGUUCAGDCGGDAGAACGGCGGACUQUU6APCCGUAU7UCACUGGTPCGAGUCCAGUCAGAGGAGCCA

RQ1660 CuG E.COLI EUBACT
UGGGGUA4CGCCAAGC#GDAAGGCACCGGAJUCUG/PPCCGGCAUUCCGAGGTPCGAAUCCUCGUACCCCAGCCA

RQ1661 NUG E.COLI EUBACT
UGGGGUA4CGCCAAGC#GDAAGGCACCGGUJUNUG/PACCGGCAUUCCCUGGTPCGAAUCCAGGUACCCCAGCCA

RR1660 ICG E.COLI EUBACT
GCAUCCG4AGCUCAGCDGGDAGAGUACUCGG/UICG/ACCGAGCG7XCGGAGGTPCGAAUCCUCCCGGAUGCACCA

RR1661 ICG E.COLI EUBACT
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GCAUCCG4AGCUCAGCDGGADAGAGUACUCGGCUICG/ACCGAGCG7XCGGAGGTPCGAAUCCUCCCGGAUGCACCA
RR1662 {cu E.COLI EUBACT
GUCCUCUUAGUUAAAUGGADAUAACGAGCCCY%U{CUBAGGGCUAAUUGCAGGTPCGAUUCCUGCAGGGGACACCA
RR1663 {CU E.COLI EUBACT
GCGCCCUUAGCUCAGUUGGAUAGAGCAACGACYU{CU6AGPCGUGGGCCGCAGGTPCGAAUCCUGCAGGGCGCGCCA
RR1664 CcCaG E.COLI EUBACT
GCGCCCGUAGCUCAGCDGGADAGAGCGCUGCCY,UCCGKAGGCAGAG7UCUCAGGTPCGAAUCCUGUCGGGCGCGCCA
RS1660 CGA E.COLI EUBACT

GGAGAGAUGCCGGAGC#GCDGAACGGACCGGUCUCGA*AACCGGAGUAGGGGCAACUCUACCGGGGGTPCAAAUCCCCCUCUCUCCGCCA

RS1661 GCU E.COLI EUBACT

78

GGUGAGG4GGCCGAGAGGCDGAAGGCGCUCCCYUGCUBAGGGAGUAUGCGGUCAAAAGCUGCAUCCGGGGTPCGAAUCCCCGCCUCACCGCCA

RS1662 GGA E.COLI EUBACT

GGUGAGGUGUCCGAGU#GCDGAAGGAGCACGCCUGGAAAGPGUGUAUACGGCAACGUAUCGGGGGTPCGAAUCCCCCCCUCACCGCCA

R51663 GGA E.COLI EUBACT

GGUGAGG4GUCCGAGU#GDDGAAGGAGCACGCCUGGAAAGPGUGUAUACGGCAACGUAUCGGGGGTPCGAAUCCCCCCCUCACCGCCA

RS1664 VGA E.COLI EUBACT

GGAAGUG4GGCCGAGC#GDDGAAGGCACCGGUBUVGA*AACCGGCGACCCGAAAGGGUUCCAGAGTPCGAAUCUCUGCGCUUCCGCCA

RT1660 GGU E.COLI EUBACT
GCUGAUAUAGCUCAGDDGGDAGAGCGCACCCUUGGUEAGGGUGAG7UCGGCAGTPCGAAUCUGCCUAUCAGCACCA
RT1661 GGU E.COLI EUBACT
GCUGAUAUGGCUCAGDDGGDAGAGCGCACCCUUGGUEAGGGUGAG7UCCCAGTPCGACUCUGGGUAUCAGCACCA
RV1660 GAC E.COLI EUBACT
GCGUCCG4AGCUCAGDDGGDDAGAGCACCACCUUGACAUGGUGGGG7XCGGUGGTPCGAGUCCACUCGGACGCACCA
RV1661 GAC E.COLI EUBACT
GCGUUCA4AGCUCAGDDGGDDAGAGCACCACCUUGACAUGGUGGGG7XCGUUGGTPCGAGUCCAAUUGAACGCACCA
RV1662 VAC E.COLI EUBACT
GGGUGAU4AGCUCAGCDGGGAGAGCACCUCCCUVAC=AGGAGGGG7UCGGCGGTPCGAUCCCGUCAUCACCCACCA
RW1660 CcCA E.COLI EUBACT
AGGGGCG4AGUUCAADDGGDAGAGCACCGGUBUCCA*AACCGGGU7UUGGGAGTPCGAGUCUCUCCGCCCCUGCCA
RX1660 CAU E.COLI EUBACT
CGCGGGG4GGAGCAGCCUGGDAGCUCGUCGGGBUCAUAACCCGAAGAUCGUCGGTPCAAAUCCGGCCCCCGCAACCA
RX1661 CAU E.COLI EUBACT
CGCGGGG4GGAGCAGCCUGGDAGCUCGUCGGGBUCAUAACCCGAAG7UCGUCGGTPCAAAUCCGGCCCCCGCAACCA
RY1660 QuAa E.COLI EUBACT
GGUGGGG4UCCCGAGC#GCCAAAGGGAGCAGACUQUA*APCUGCCGUCAUCGACUUCGAAGGTPCGAAUCCUUCCCCCACCACCA
RY1661 QUA E.COLI EUBACT
GGUGGGG4UCCCGAGC#GCCAAAGGGAGCAGACUQUA*APCUGCCGUCACAGACUUCGAAGGTPCGAAUCCUUCCCCCACCACCA
RZ1665 UCA E.COLI EUBACT

_AAGAUCGUCGUCUCCGGDGAGGCGGCUGGACUUCA+AUCCAGUUGGGGCCGC_GCGGUCCCGGGCAGGTPCGACUCCUGUGAUCUU_GCCA
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B SUBOPT man page

SUBOPT(I) SUBOPT(I)

NAME
subopt - calculate suboptimal secondary structures of RNAs

SYNOPSIS
subopt [-s] [-g] [-d] [-] number] [-e range]

DESCRIPTION
subopt reads RNA sequences from stdin and calculates all suboptimal secondary structures within a user
defined energy range above the minimum free energy (mfe). It returns the suboptimal structures in bracket
notation, its energy, the degeneracy related to the free energy, the energy difference to the preceding struc-
ture and the energy difference to the mfe structure to stdout.

OPTIONS
=S Calculate the Lower Density of States. It returns the mfe, the degeneracy related to the free energy,
the energy difference to the preceding structure and the energy difference to the mfe structure to
stdout.

-g Calculate gapstatistics. Read a set of RNA sequences from stdin and generate files struc.1st and
struc.2nd containing the first and second suboptimal structure, their corresponding mfe, the free
energies of the suboptimal structures, the energy difference to the preceding structure and the
energy difference to the mfe structure.

-d Don’t give stabilizing energies to single stacked bases in free ends and multiloops (dangling ends).

=l number
Input the number of desired energy levels in the output of the program. Default is 2.

—e range

Input the number of the desired energy range from the ground state in percent of the mfe. Default
is 15%.
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