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Abstract

Real life systems were recently found to demonstrate scale-free and small-world
behavior instead of random graph characteristics. In this study, the topology of
some biological networks is discussed.

Protein domain networks are studied which treat domains as nodes and their co-
occurrence in sequences as edges. It is found that these networks exhibit small-
world and scale-free topologies with a high degree of local clustering accompanied
by a few far distance connections. Moreover, these observations apply not only to
complete databases but also to the domain distributions in proteomes of different
organisms. The extent of connectivity among domains reflects the evolutionary
complexity of the organisms considered.

Henceforth, data of currently available protein-protein interaction sets and pro-
tein domain sets of Saccharomyces cerevisiae are used to set up protein and
domain interaction and domain sequence networks. In a comparison, they all
turn out to be sparse and locally well clustered indicating scale-free and par-
tially small-world topology. Frequently, triangles of connected nodes are found
in these topologies which represent short cuts in the networks. Their amount
is measured by a newly introduced transitivity coefficient. Fairly small sets of
highly connected proteins and domains shape the topologies of the underlying
networks emphasizing a kind of backbone the nets are based on. The biological

nature of these particular nodes is further investigated. Since highly connected
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proteins and domains accumulated a significant higher number of links by their
important involvement in certain cellular aspects, their mutational effect on the
cell is considered by a perturbation analysis. A comparison of the domain and
domain interaction networks of Saccharmoyces cerevisiae considers the factors
which force domains to accumulate links to other domains in protein sequences
of higher eukaryotes.

The abundance of sequenced genomes enabled the investigations of genomic ho-
mogeneity and heterogeneity emphasizing segments of varying lengths. Network
based approaches to provide a common perspective on nucleotide segments are
presented. A segmentation of sequences to equal lengths results in adjacent
pieces. So, these segments are treated as nodes and their mutual adjacency
as edges. For comparison purposes, analyses are carried out on exon and intron
sequences as well as on randomly generated sets of equal size. Regardless of
the origin of sequences, a transition from Gaussian distributions of connectivity
to real power-laws which indicate scale-free topology towards increasing segment
sizes is observed. Relative entropy is applied as a divergence measure to networks
which were set up by natural sequences and their corresponding randomly sam-
pled pendants revealing that network topologies differ strongly over a very narrow
range of segment sizes. The tendency that segments preferably occur either in
exons or introns with increasing size indicates the opportunity to use them as
probes for the detection and investigation of exons and introns. Consequences
from a biological and evolutionary perspective and conclusions with regard to
already published works are discussed.

Finally, conformational spaces of a tRNA set up by suboptimal structures and
a move set which defines transitions between them are discussed from the per-
spective of small-world networks. Henceforth, the enhancing influence of modifi-
cations on typical small-world network properties and the shape of energy land-

scapes thus obtained is considered.



Zusammenfassung

In den letzten Jahren wurde mehrmals gezeigt, dafl reale Netzwerke eher Charak-
teristika von sogenannten Scale-Free- und Small-World-Netzwerken besitzen als
von Zufallsgraphen. In der vorliegenden Arbeit wird die Topologie von einigen
biochemischen Netzwerken untersucht.

Zuerst werden Netzwerke betrachtet, die Proteindoménen als Knoten und deren
gemeinsames Auftreten in Proteinsequenzen als Kanten behandeln. Diese Net-
ze zeigen starke Scale-Free- und Small-World-Eigenschaften, die sich durch ein
hohes lokales Clustering auszeichnen. Diese Cluster sind durch wenige weitrei-
chende Kanten untereinander verbunden. Diese Beobachtungen gelten nicht nur
fiir komplette Datenbanken von Proteindoménen, sondern auch fiir die Proteome
von einzelnen Organismen. Der Grad, wie stark Doménen untereinander verbun-
den sind, spiegelt die Komplexitit des zugrundeliegenden Organismus wieder.
Als Weiterfithrung dieser Ideen werden Netzwerke von Saccharomyces cerevisiae
verglichen, die auf Proteininteraktionen, Proteindoméneninteraktionen und den
soeben erwihnten Proteindoménen basieren. Alle diese Netzwerke zeigen Charak-
teristika von Scale-Free-Netzen. Teilweise konnen auch Eigenschaften von Small-
World-Netzwerken gefunden werden. Diese Topologien basieren auf Dreiecken
von Knoten, die als Abkiirzungen (’short cuts’) betrachtet werden kénnen. Die-
se Eigenschaft wird von einem neuen Transitivitdtskoeffizienten gemessen. Al-

len diesen Netzwerken liegt zugrunde, dafl deren Topologien von einigen weni-

vii
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gen stark verkniipften Proteinen und Doménen dominiert werden, die eine Art
Riickgrat bilden. Die biologische Natur dieser Knoten wird weiter untersucht. Da
stark verkniipfte Knoten eine deutlich héhere Anzahl von Kanten durch deren
bestimmenden Einflufl auf zellulire Aspekte besitzen, wird deren Effekt auf die
Storungsanfilligkeit der Netzwerke untersucht. Mit einem Vergleich der Netzwer-
ke von Doméneninteraktionen und Domé&nen wird untersucht, welche Einfliisse
Doménen veranlassen, Verbindungen zu anderen Doménen zu akkumulieren.
Sequenzierte Genome ermoglichen die Untersuchungen der genomischen Homo-
und Heterogenitit mit Segmenten unterschiedlicher Linge. Um eine einheitliche
Perspektive auf Sequenzsegmente zu ermoglichen, werden in dieser Arbeit netz-
werkbasierende Ansétze behandelt. Betrachtet man Sequenzsegmente gleicher
Liange als Knoten und deren unmittelbare Lage zueinander als Kanten, ergeben
sich interessante Topologien. Um eine Vergleichsmoglichkeit zu haben, werden
diese Netzwerke aus Segmenten sowohl von Exons, Introns als auch von voéllig
zufillig generierten Sequenzen aufgebaut. Es stellt sich heraus, daf§ unabhéngig
vom Ursprung der Sequenzen mit wachsender Linge der Segmente ein Uber-
gang von einer Gauflverteilung der Verbindungen zu einem Power-Law, das auf
ein Scale-Free-Netzwerk deutet, in Verteilungen der Kantenanzahl pro Knoten
festgestellt werden kann. Als Maf fiir die Divergenz der Topologien von Netz-
werken, die aus Segmenten von natiirlichen und zufilligen Sequenzen bestehen,
wird die relative Entropie verwendet. Es zeigt sich, dafl starke Unterschiede in
den Netzwerktopologien nur iiber einen engen Bereich von Segmentldngen exi-
stieren. Schliellich wird die Tendenz der Segmente, eher zu einem bestimmten
Satz von Exons oder Introns zu gehoren, behandelt. Diese Tendenz eroffnet die
Moglichkeit, Segmente als Sonden zur Detektion und Untersuchung von Exons
und Introns einzusetzen. Diese Resultate werden von der Warte bereits verdffent-
lichter Arbeiten diskutiert.

Suboptimale Strukturen einer tRNA und ein Move-Set, das die Uberginge zwi-
schen den Strukturen definiert, ermoglichen die Darstellung des zugrundeliegen-
den Strukturraums. Graphen, die die Konformationen der tRNA behandeln, er-
weisen sich als Small-World-Netze. Der verstiarkende Einflufl von Modifikationen
auf die typischen Eigenschaften der Small-World-Netzwerke und auf die zugrun-

deliegenden Energielandschaften wird diskutiert.
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CHAPTER 1

Introduction

The study of various networks is currently pervading all of science, ranging from
physics to biology. The most important issues are the structures of the networks.
How can one characterize the connections of the Internet or the metabolic net-
work of F.coli? Are there any fundamental principles which made the networks
emerge? How does the procedure of setting up networks reflect features of evo-
lution especially in biological systems? Thus, we would like to understand how a
tremendous network of interacting entities like proteins, metabolites or domains
behave collectively given their coupling architecture. Currently, we witness the
begin of unraveling the structure and henceforth the functions and properties of

complex biological networks.

Often the connection topology of networks was assumed to be either completely
regular or random (Erdés and Rényi 1960). However, these network types proved
to be ill suited to describe the topology of many real and especially biological
systems. Thus, it is necessary to conceive new ways to model topologies in order

to explain features of networks better.

Watts and Strogatz revealed a new class of network topologies that lies some-



where between these two extremes. Originally, these small-world networks were
generated by randomly rewiring nodes in a regular network. Small-world networks
combine the local clustering of connections characteristic of regular networks with
occasional long-range connections between clusters, as can be expected to occur
in random networks. By defining measures that distinguish these three types
of networks, the authors showed that several biological, technological and social
networks are of the small-world type (Watts and Strogatz 1998). A small-world
graph is formally defined as a sparse graph which is much more highly clustered
than an equally sparse random graph (Bollobds 1998). Small-world graphs were
first illustrated with friendship networks (Milgram 1967) in sociology, often re-
ferred to as ’six degrees of separation’ (Guare 1990). The architecture of the
power grid of the western United States, the structure of some sociological net-
works dealing with mathematical collaborations on publications, and the casting
of actors in movies were found to be small-world graphs (Watts and Strogatz
1998).

Barabési et al. introduced a theoretical model that generates graphs demon-
strating a connectivity distribution which decays as a power-law. This feature

was found to be a direct consequence of two generic mechanisms:

I. Networks are allowed to expand continuously by the addition of new ver-

tices.

II. These newly added nodes attach preferentially to sites that are already well
connected (Barabdsi and Albert 1999).

Since this feature is independent of the actual size of the network, they called this
class of inhomogeneous networks scale-free networks. The topology of the World
Wide Web was investigated by considering HTML documents as vertices which
are connected by links pointing from one page to another (Albert et al. 1999;
Barabdsi and Albert 1999; Barabdsi et al. 2000). The latter net, as well as the
Internet which emerges from connecting different servers, demonstrate scale-free

properties. Both nets display a high degree of robustness against errors (Albert



et al. 2000; Albert and Barabési 2002). However, these networks are highly vul-

nerable to perturbations of the highly connected nodes.

Recently, scale-free and small-world behavior have also been found in biolog-
ical networks. Watts and Strogatz reported the architecture of the C.elegans
nervous system to show significant small-world behavior (Watts and Strogatz
1998). Fell and Wagner assembled a list of stoichiometric equations that rep-
resent the central routes of the energy metabolism and small-molecule building
block synthesis in E.coli (Fell and Wagner 2000). A substrate graph was con-
structed defined by a vertex set consisting of all metabolites that occur in the
network. Two metabolites were considered to be linked if they occur in the same
reaction. Most recently, Jeong et al. comparatively analyzed metabolic networks
of organisms representing all three domains of life (Jeong et al. 2000). The
metabolic network is represented by nodes, the substrates, connected by directed
edges symbolizing the actual reaction. The topology of these networks are best
described by a scale-free model. Furthermore, the diameters of the nets remain
the same for all these networks regardless of the number of substrates found in
the given species. Interestingly, the ranking of the most connected substrates
is largely identical for all organisms. These highly linked nodes dominate the
topology which are suggested by the scale-free model as the immediate result of
repeated preferential attachment. Considering the latter procedure as a rough
abstraction of evolution, the set of most connected substrates was treated as an
evolutionary core. Like the technical networks, the E.coli network theoretically
has high tolerance to random errors but severe sensitivity towards the removal of

the highly connected nodes.

In this study, several biological networks will be investigated towards the emer-

gence of these topologies.

Protein domain networks generated with data from the ProDom, Pfam, Prosite
and InterPro domain databases is studied. It is found that these networks ex-
hibit small-world and scale-free topologies with a high degree of local clustering

accompanied by a few far distance connections. Moreover, these observations



apply not only to the complete databases but also to the domain distributions
in proteomes of different organisms. The extent of connectivity among domains

reflects the evolutionary complexity of the organisms considered.

Subsequently, data of currently available protein-protein interaction sets and pro-
tein domain sets of Saccharomyces cerevisiae are used to set up protein and do-
main interaction and domain sequence networks. All of them are far from being
random or regular networks. In fact, they turn out to be sparse and locally well
clustered indicating scale-free and partially small-world topology. Frequently, tri-
angles of connected nodes are found in these topologies which represent short cuts
in the networks. Their amount is measured by a newly introduced transitivity
coefficient. Fairly small sets of highly connected proteins and domains shape the
topologies of the underlying networks emphasizing a kind of backbone the nets
are based on. The biological nature of these particular nodes is further investi-
gated. Since highly connected proteins and domains accumulated a significant
higher number of links by their important involvement in certain cellular aspects
their mutational effect on the cell is considered by a perturbation analysis. A
comparison of the domain and domain interaction networks of Saccharmoyces
cerevisiae considers the factors which force domains to accumulate links to other

domains in protein sequences of higher eukaryotes.

Domain networks were found to display these topologies which immediately sug-
gested their evolutionary meaning. So, it might be interesting to also investigate
networks which are set up by genomic sequence segments. A segmentation of
sequences to equal lengths results in adjacent pieces. These segments are treated
as nodes and their mutual adjacency as edges. For comparison purposes, analyses
are carried out on exon and intron sequences as well as on randomly generated
sets of equal size. Regardless of the origin of sequences, a transition from a
Gaussian-shaped degree distribution to a power-law towards increasing segment
size is observed. Applying relative entropy as a measure of divergence, topologies
of natural and corresponding random segments prove to vary significantly over
a narrow range of segment sizes. The tendency of segments to occur preferably

either in exons or introns indicates the opportunity to distinguish exons from



introns by relatively short segments. Similarly to the domain networks, the de-
gree of connectivity displays the evolutionary complexity of the organism. Con-
sequences from a biological and evolutionary perspective and conclusions with

regard to already published works are discussed.

Finally, a closer look to the conformational space of a typical tRNA is taken
which is set up by sets of suboptimal structures from the perspective of small-
world networks. The enhancing influence of modifications on typical small-world

network properties and shapes of energy landscapes is discussed.

This study is organized as follows: Chapter 2 reviews relevant network topologies
providing information which are necessary to understand the conclusions based
on the results of the upcoming parts. The other chapters are organized in the
order they were addressed above. Since the latter chapters are intended to be
self-containing, they can be read independently from each other. Finally, chapter

7 considers some future ideas.



CHAPTER 2

Connected! - Network topologies

Growing amounts of empirical, theoretical and especially biological data about
the topologies of large complex networks indicate the emergence of several net-
work types. Basically, these types are classified by the connectivity distribution
of nodes, P(k) ~ k™7ek/¢, where e¥/¢ denotes a cut-off at some characteristic scale
. Three classes can be defined (Amaral et al. 2000):

I. If ¢ is very small, P(k) ~ e*/¢. Thus, the distribution is single scaled.
Typically, this distribution would correspond to a Gaussian or exponential
distribution. Prominent protagonists of this type are the random graph
model (Erdés and Rényi 1960) and the small-world model (Watts and Stro-
gatz 1998). Both lead to fairly homogenous networks with nodes comprising
approximately the same number of links & ~ (k) (Barabasi et al. 1999).
Small-world graphs adopt sparse topologies but remain more highly clus-

tered than equally sparse random graphs (Watts and Strogatz 1998).
II. Provided that & grows, a power-law with a sharp cut-off is obtained;

III. If £ is large, a proper power-law, P(k) ~ k™7, occurs which is typical for

scale-free networks (Barabdsi and Albert 1999). Compared to exponential
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networks, the probability that a node is highly connected (k > (k)) is

statistically significant in scale-free networks (Barabdsi and Albert 1999).

In the following, the main types of network topologies will be reviewed. Special

emphasis will be put on their set-up, features and relevance for biological systems.

2.1 Erdoés-Rényi model

The most frequently investigated random network model was first introduced
by Erdos and Rényi (Erdés and Rényi 1960; Bollobds 1998). This model starts
with N vertices and no edge. With a distinct probability p, each pair of vertices
is connected which leads to the emergence of a random network. Interestingly
enough, many features of this network type appear quite suddenly at a threshold
value p(N). A significant property of this topology is the emergence of trees and
cycles. A tree of order k is a connected graph with k& vertices and k£ — 1 edges.
A cycle of order k is a cyclic sequence of k edges, so that every consecutive edge
has a common vertex. It has been demonstrated that almost all vertices belong
to isolated trees if p ~ ¢/N with ¢ < 1. Abruptly, cycles of all orders appear at
p ~ 1/N. The Erdés-Rényi model proves to be important in percolation analyses.
In this context, p. ~ 1/N is the percolation threshold of a system. Significantly,
the system breaks into many small clusters for p < p.. At p., large cluster form

which contains all vertices in the asymptotic limit.

In the Erdos-Rényi model, the probability that a vertex has k edges follows the
Poisson distribution
Pk)y=e"— (2.1)

where

A= (N - 1) (1) (2.2

It is easy to show that increasing numbers of p lead to broader distributions. The

expectation value of the Poisson distribution proves to be (N — 1)p.
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2.2 Small-world model

2.2.1 The model

The description of a transition from a locally ordered system to a random network
revealed an interesting new topology that is often referred to as the small-world
model which was first observed by Watts and Strogatz (Watts and Strogatz 1998).

The algorithm is based on a two level process:

I. Start with order: 1t starts with a number of N vertices which are initially
linked to its adjacent and next-adjacent neighbors (Generally, the model

could also include neighbors up to an order of n).

IT. Randomize : Subsequently, each vertex is rewired with probability p which
means that one end of the vertex is shifted to an other randomly chosen
vertex. This rewiring process has to meet some criteria. First, no two
vertices are allowed to share more than one edge and, second, no vertex is

allowed to have an edge with itself.

The graphs considered are sparse but not so sparse that they would become

disconnected. Specifically, graphs have to fulfill the qualification
N>k>1In(N)>1 (2.3)

where £ > In(N) guarantees that a random graph does not get disconnected
(Bollobas 1998).

The structural properties of the networks are quantified by two parameters. The
mean path length (L) is defined as the number of edges in the shortest path
between two vertices averaged over all pairs of vertices. The mean clustering
coefficient is defined as follows: Provided that node 7 has k; neighbors, then at
most k;(k; — 1)/2 edges can exist between them which obviously proves if all &;

neighbors are also connected to each other. Thus, C' determines the fraction of
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allowable links which indeed exist by

2F;

@:mw—n’

(2.4)

where F; is the number of edges which actually exists between these k; nodes.
(C) is defined as the average of C over all i. Obviously, L determines global

properties while C' measures the cliquishness of a typical neighborhood.

Obviously, a probability p = 0 would leave the graph regular while p = 1 would

convert the networks topology to a random one. In this regime, it was found that
L~n/2k>1,C~3/4ifp—0, (2.5)

while
L = Lygndom ~ In(N)/In(k) , C = Crandgom ~ k/n < 1if p — 1. (2.6)

So, the regular graphs emphasize a high clustered topology leading to linearly
growing mean path lengths between pairs of nodes. In contrast, random net-
works provide a poor clustered topology and show a logarithmic dependency of

the mean path length.

It was found that in the interval 0 < p < 0.01 the model exhibits so-called
small-world properties. The network thus obtained is sparse and preserves ap-

proximately the same mean path lengths through the network,

<L> > <L>random; (27)

but prove to be much more clustered than a random graph of equal size,

2.2.2 Features

The connectivity distribution of the small-world model depends strongly on p.
p = 0 leads to distributions P(k) = 6(k — z), where 7z is the coordination number

of the lattice. Finite p generates distributions which still peak around z but
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prove to be broader. With p — 1, the connectivity distribution approaches to
that obtained for the random graph model with p = z/N. It has been shown
that the connectivity distribution of the small-world model for p > 0 and large

N corresponds to

f(k,K) k—K/2-n
P(k)= Y Cp,(1—p)rp" Ek _/K)/2 gl PK/2 (2.9)
n=0 :

for £ > K/2, where f(k,K) = min(k — K/2, K/2) (Barrat and Weigt 2000; Al-
bert and Barabdsi 2002). In this equation, K denotes the average degree of nodes
and C™ the clustering coefficient of respective n nodes. As already mentioned,
the shape of the degree distribution is similar to that of a random graph. It has
a pronounced peak at (k) = K and decays exponentially for large k. The topol-
ogy is thus mainly homogenous considering nodes which have approximately the

same number of nodes.

The average path length (L) reveals some interesting properties. The small-
world model immediately suggests a drastical change in (L) which depends on
increasing values of the fraction p of rewired edges. For small p, (L) scales lin-
early while for large p a logarithmic dependency is observed. The reason for the
rapid drop is the appearance of shortcuts between nodes. Thus, this shortcuts
connect even remote parts of the network resulting in significantly decreased path
lengths. Apparently, a so-called crossover length which depends on p might ex-
ists. Numerical simulations and analytical considerations suggest that the mean

path length obeys the general form
N d
(L)(N,p) ~ 2= f(PENY), (2.10)

where f(u) is a universal scaling function that is constant if u < 1 and is In(u)/u
if u > 1. d denotes the dimension of the original lattice (Barrat and Weigt 2000;
Barthélémy and Amaral 1999; Newman and Watts 1999; de Menezes et al. 2000;
Watts 1999).

The dependence of C'(p) can be estimated using a slightly different definition
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of the clustering coefficient

3 x Ntriangles

C' = (2.11)

Nconnected triples

Here triangles are trios of nodes in which each node is connected to both of the
others . Connected triples refer to trios in which at least one is connected to both
others . Thus, the factor 3 corresponds to the fact that each triangle contributes
to 3 connected triples. To calculate C'(p), consider the regular lattice which
exhibits C'(0). For p > 0, two neighbors of a node i that were initially connected
at p = 0 remain neighbors of 7 and connected by an edge with probability (1 —p)?
since there are 3 edges which have to remain intact (Barrat and Weigt 2000;
Newman et al. 2001) . Thus,

C'(p) = C(0)(1 —p)*. (2.12)

It has been verified that the deviation of C'(p) from this expression is small and
goes to 0 as N — oo (Barrat and Weigt 2000).

2.2.3 Examples

Small-world graphs were first illustrated with friendship networks (Milgram 1967)
in sociology, often referred to as ’six degrees of separation’ (Guare 1990). The
architecture of the power grid of the western United States, the structure of some
sociological networks dealing with mathematical collaborations on publications,
and the casting of actors in movies were found to be small-world graphs (Watts
and Strogatz 1998; Newman 2001; Newman et al. 2001; Amaral et al. 2000).

Recently, small-world behavior has also been found in biological networks. Watts
and Strogatz reported the architecture of the C.elegans nervous system to show
significant small-world behavior (Watts and Strogatz 1998). Fell and Wagner
assembled a list of stoichiometric equations that represent the central routes of
the energy metabolism and small-molecule building block synthesis in E.coli (Fell
and Wagner 2000; Wagner and Fell 2001). A substrate graph was constructed

defined by a vertex set consisting of all metabolites that occur in the network.
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Two metabolites were considered to be linked if they occur in the same reac-
tion. They found the substrate graph to be sparse with glutamate, coenzyme A,
2-oxoglutarate, pyruvate and glutamine having the highest degree of connectivity.
This sample of metabolites might be viewed as a core of F.coli metabolism which

was found without any subjective criteria.

Most recently the conformation space of a lattice protein was found to exhibit
small-world topology (Scala et al. 2001) . Conformations refer to nodes which
are linked if both structures are able to switch to each other by an elementary

move.

2.3 Scale-free model

2.3.1 The initial model

Commonly, both network models described above emphasize connectivity distri-
butions, P(k), which provide an exponential cut-off and a characteristic size, (k),
depending on the respective p. However, many real-life systems have the common
property that P(k) is free of scale over broad orders of magnitude. Strikingly,
the models previously discussed emphasize a constant number of nodes, N. It is
clear, however, that many systems are not limited to this assumption. In fact,
they are dynamic and show a constant increase of the total number of nodes, IV,
throughout the life time of the system. Consequently, a common feature of real
life systems is the continuous expansion of the networks by the addition of newly

introduced nodes which attach to already existing ones.

A second incompatibility of the network models described previously is the uni-
form probability, p, that two vertices are connected. In contrast, real systems tend
to link nodes preferentially. Thus, the probability, p, that vertices are linked is
not uniform but exhibit a higher probability of a newly introduced node to be

attached to an already existing, well connected one.
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Thus, the emergence of scale-free network topology which leads to a scale in-

variant connectivity distribution, P(k), is essentially based on two major points:

I. Growth: Starting with a small number of nodes, mq, at every time step a

new node will be added which is allowed to set m (< mg) edges.

I1. Preferential attachment: The choice of the node to which the newly in-
troduced one will be connected depends on the connectivity, k;, of this

particular node. Thus, L
i

ijj.

[(k;) = (2.13)
After ¢ time steps the model leads to a random network with N = mg+mt nodes
and mt edges. Henceforth, the networks evolves into a scale-invariant state. The
connectivity distribution proves to be a power law, P(k) ~ k=7 with v ~ 3. Ob-
viously, the scaling exponent is either independent of m, ¢ and subsequently of
the network size, N = mg+t. Hence, the network organizes itself into a scale-free
stationary state despite its continuous growth. A schematic survey of the ideas

described so far is given in Figure 2.1.

The combination of growth and preferential attachment leads to interesting dy-
namics of the individual vertex connectivities. The vertices which provide the
most links are those that entered the network at an early stage since vertices
grow proportionally to their connectivity relative to the rest of nodes. Since
some of the oldest nodes had a long time to aquire links, they are responsible for
the high-k part of P(k).

In order to get an analytical result for the connectivity of a particular vertex,
Barabdsi et al. suggested a mean-field approach (Barabdsi et al. 1999).
If k£ is continuous the probability to attach newly introduced nodes preferentially,

IT = k;/ >, kj, can be treated as a continuous rate of change of k;. Thus,

Ok; ki

j=1 j

(2.14)
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Exponential

PK)

Scale—free

g P(k)

Ig k

Figure 2.1: Models of exponential and scale-free networks. Diameters of circles indicate the
number of connections respective nodes have. P(k) is the frequency that nodes have k con-
nections. Top: Exponential networks consist of nodes which show similar numbers of links to
other nodes. Thus, the frequency distribution peaks at an average and decays exponentially.
Bottom: In fact, biological networks adopt scale-f ree topology. A fairly small amount of highly
connected nodes which show much higher numbers of connection than the aver age shapes a
straight line in the log-log plot of the connectivity distribution.

Recalling that > ;k; = 2mt and the change in connectivities at a time step is
Ak = m, it follows that A = m. Thus,
ok; ki
ot 2t

The solution of this equation provided that vertex i was added to the system at

(2.15)

time ¢; with connectivity k;(t;) = m, is

Mﬂzmvg. (2.16)

Obviously, older (i.e. smaller ¢;) nodes increase their connectivity at the expense

of the younger (i.e. larger ¢;) nodes leading to highly connected nodes. Such
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a 'rich-gets-richer’ phenomenon can easily be detected in real life systems. The
latter expression can easily be used to calculate the power-law exponent v analyt-
ically. Thus, the probability that a vertex has connectivity ;(¢) which is smaller
than &, P(k;(t) < k) can be written as
P(ki(t) < k)= P(ti < m—2t> (2.17)
k2
Provided that vertices are add uniformly at each time increment to the system,

the probability density of ¢; is

1
Pi(t;) = . 2.18
(t) = —— (218)
Substituting into equation 2.14 it follows that
m2t m2t m2t
Plti>—|=1-Plt; <—)=1— —F—. 2.19
(o) =P (o< ) =1y @9

The probability density for P(k) is obtained using
_OP(ki(t) <k) _ 2m’ 1
B ok  mg +tk3

suggesting v = 3 which is in good agreement with the experimental results ob-

P(k) (2.20)

tained. Obviously, v proves to be independent of m.
The latter expression additionally predicts the coefficient of the power-law dis-

tribution, P(k) ~ Ak™7, to be proportional to m?, ie. A ~ m?.

2.3.2 Features

Real networks provide the coexistence of clustering and short path lengths. Thus,
it is interesting to note if the scale-free model contributes some small-world prop-

erties.

It can be shown empirically that the mean path length(L) of the scale-free model

depends on the network size in a logarithmic manner. Thus,
(L) = Alog(N — B)+C (2.21)

as a generalized logarithmic form applies to this distribution. Although there is

no analytical expression which provides a good estimate of the path length in
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scale-free models there were some first steps which emphasized the n-loop struc-

ture of the underlying networks (Gleiss et al. 2001).

The same conclusion holds for the clustering coefficient (C'). Similarly to the
decay in random graphs, (C,) = (k) /N, the clustering coefficient decreases albeit
slowlier in the same manner. However, there is also no analytical expression of
(C) available (Albert and Barabdési 2002).

2.3.3 Examples

There is a bunch of technological, social and biological systems scale-free topology
appears in. The topology of the World-Wide Web was investigated by consider-
ing HTML documents as vertices which are connected by links pointing from one
page to another (Albert et al. 1999; Barabasi and Albert 1999; Barabdsi et al.
2000; Huberman and Adamic 1999; Kleinberg and Lawrence 2001; Lawrence and
Giles 1998). The latter net, as well as the Internet which emerges from connect-
ing different servers, demonstrate scale-free properties. Both nets display a high
degree of robustness against errors (Albert et al. 1999; Albert et al. 2000; Ama-
ral et al. 2000). However, these networks are highly vulnerable to perturbations

of the highly connected nodes.

Social networks such as citation and collaboration networks as well as the web
of human sexual contacts turn out to be scale-free (Liljeros et al. 2001; Vazquez
2001; Barabasi et al. 2002).

Most recently, Jeong et al. comparatively analyzed metabolic networks of or-
ganisms representing all three domains of life (Jeong et al. 2000). The metabolic
network is represented by nodes, the substrates, connected by directed edges sym-
bolizing the actual reaction. The topology of these networks are best described
by a scale-free model. Furthermore, the diameters of the nets remain the same
for all these networks regardless of the number of substrates found in the given
species. Interestingly, the ranking of the most connected substrates is largely

identical for all organisms, thus indicating hubs which dominate the topology
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of the nets. Like the technical networks, the FE.coli network theoretically has
high tolerance to random errors but severe sensitivity towards the removal of the

highly connected nodes.

Also protein-protein interaction networks display this topology. Jeong et al.
showed that the degree distribution of the physical protein interaction map
of Yeast follows a truncated power-law with an exponential cut-off P(k) ~
(k + ko) ~ve~(k+ko)/ke with kg = 1,k, = 20 and v = 2.4.

2.3.4 Limitations of the scale-free model

Despite the good results obtained so far, some brief thoughts should be taken
about limiting cases of the scale-free model. Clearly, continuous growth and
preferential attachment are necessary for the emergence of a power-law scaling.
However, what will happen if both ingredients work separately from each other?
Consider a network which keeps the growing character of scale-free network but

attaches newly introduced nodes uniformly. Thus, the model is defined as:

I. Growth: Starting with a small number, mq, of nodes, at every time step a

new node will be added which is allowed to set m (< my) edges.

I1. Uniform attachment: Every new node connects with equal probability to
the vertices which are already present in the system, i.e. II(k;) = 1/(mo +
t—1)

Analogously to the procedure already introduced, the connectivity distribution

takes the form L
e
P(k) = — - 2.22
()= e (-5). (222)

with e being a constant.
Thus, the absence of preferential attachment eliminates the occurrence of the

typical power-law (Barabési and Albert 1999).

The second model tests the opposite scenario:
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I. No growth: The total number of nodes, N, in the system remains constant.

I1. Preferential attachment: At each time step, one node is selected randomly
which is connected with the probability IT = k;/ Zj k; to node 7 in the

system.

Since N is constant and the number of edges increases in time, all vertices are
connected at least after 7'~ N? time steps.
The time-evolution of the individual connectivities can also be calculated using

the mean field approach stating that

ki(t) ~ %t. (2.23)

Obviously, this result indicates that after a transient time of duration, t ~ N,
the connectivity increases linearly with time. Thus, the mean-field approxima-
tion predicts that after a transient period the connectivities of all vertices have
the same value given by equation 2.23. Thus, the connectivity distribution P(k)

changes from an initial power-law to a Gaussian distribution as time increases.

Obviously, the loss of continuous growth and preferential attachment are nec-

essary for the emergence of scale-free topology (Barabasi and Albert 1999).

2.3.5 Further works on scale-free graphs

It is easy to see that the initial scale-free model has its limitations if it is com-
pared to real life systems. It predicts a power-law degree distribution with a fixed
exponent. However, most real networks provide exponents which vary between 1
and 3. Furthermore, the degree distribution might show a truncated power-law or
a saturation for small k. Thus, it is necessary to mention briefly some interesting
approaches resulting in different scaling exponents which might be more suitable

to describe real systems.

Measures of the preferential attachment of real systems which is clearly the
main ingredient for the emergence of scale-free properties revealed that rather

a nonlinear preferential attachment, II(k;) ~ £k, applies to the Internet, citation
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and collaboration networks (Albert and Barabdsi 2002). An analytical calcu-
lation resulted in a complete disappearance of scale-free properties for a # 1
(Krapivsky et al. 2000). Contrasty, asymptotically linear preferential attach-
ment, [1(k;) ~ axk, as k — oo indicates a power-law exponent v — 2 if a5, — 00
and 7 — o0 if a, — 0 (Krapivsky et al. 2000). Similarly, IT(k;) might also be
dependent of an initial attractiveness, considering II(k;) ~ A + k;. It turns out
that y =2 if A =0 and v — oo if A — oo (Dorogovtsev and Mendes 2000a;
Dorogovtsev and Mendes 2000b).

An approach which suits the demands of networks better and extends the initial
model by incorporating new edges between existing nodes and the rewiring of
edges is discussed in (Albert and Barabasi 2000). m new edges are added to
the system with probability p, m edges are rewired with probability ¢ and fi-
nally 1 — p — ¢ denotes the probability to add a new node to the system. After
some analytical calculations, the power-law exponent turns out to be v = 2 if
g=(1-p+m)/(142m) and v — oo if p,q,m — 0. This approach was applied
successfully to the degree distribution of the World Wide Web.

It is clear that real life systems also demand the disappearance of nodes. Accord-
ingly, mechanisms were conceived to fulfill this requirement too (Dorogovtsev and
Mendes 2000c).

Also network topologies were already considered which emphasize different fit-
ness values of nodes. Thus, preferential attachment modifies to II(k) ~ n;k;
resulting in a connectivity distribution P(k;) ~ k717™/Ink, where m is a con-

stant(Bianconi and Barabdsi 2001).

Obviously, there is a growing amount of different approaches to describe net-
works which provide a power-tail in their connectivity distributions. A good in
depth survey about different types of emerging scale-free networks can be found
in (Albert and Barabdsi 2002).



CHAPTER 3

Domain networks

3.1 Introduction

It was already noted that scale-free and small-world behavior also occurs in bi-
ological networks. In metabolism, the network topologies introduced illustrated
their significance for evolutionary phenomenons. In this chapter, a biochemical
network is formed by sets of domains which are linearly arranged in protein se-
quences. This might generate graphs comprising interesting features. Since the
topology of graphs thus generated is still unknown it is worth considering this

way of treating domain architectures.

3.2 Domain organisation

Protein crystallography reveals that the fundamental unit of protein structure is
the domain. Independent of neighbouring sequences, this region of a polypeptide
chain folds into a distinct structure and mediates biological functionality (Janin

and Chothia 1985). Most proteins contain only one single domain (Doolittle

20
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1995). Some sequences appear as multi-domain proteins adopting different lin-
ear arrangements of their domain sets. On average, such domain architectures
comprise two to three domains; however, some human proteins contain up to 130
domains (Li et al. 2001).

Similar to the discussion about the role of certain metabolites in the emergence
of metabolism, there has been a debate about the actual number of existing
domains and their origin. One view treats all past and present proteins as the
result of shuffling a large set of primordial polypeptides (Dorit and Gilbert 1991).
These are assumed to result from splicing events involving exons separated by
introns (Gilbert and Glynias 1993). The other view deals with the existence
of a few small polypeptides in early stages of life; these are the predecessors of
most contemporary proteins (Doolittle 1995). Gene duplication and subsequent
modification were employed to form the latter molecules from this small set of
polypeptides. Independent of the timing for the introduction of introns, recombi-
nation in introns provides a mechanism for the exchange of exons between genes.
This mechanism for the acquisition of new functions by eukaryotic genes is com-
monly known as ’exon shuffling’. It was assumed that primitive proteins were
encoded by exons that were spliced together (Seidel et al. 1992). However, such
shuffling events take on biological significance only if the exons involved carry a
functional or structural domain. Although many examples of exon shuffling have
been found, no significant correspondence between exons and units of protein
structure has been detected (Stoltzfus et al. 1994).

It is common to find that newly sequenced proteins are homologous to some
other known proteins over parts of their lengths. Thus, most proteins may have
descended from relatively few ancestral types. The sequences of large proteins
often show signs of having evolved by the joining of preexisting domains in new
combinations. Such a mechanism is commonly known as ’domain shuffling’ and
appears as two types: domain duplication and domain insertion (Doolittle 1995).
Domain duplication refers to the internal duplication of at least one domain in
a gene. Domain insertion denotes the process by which structural or functional

domains are exchanged between proteins or inserted into a protein. Shuffling of
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domains has more biological significance than exon shuffling because domains are

real structural and functional units in proteins while exons are often not.

Functional links between proteins have also been detected by analysing the fusion
patterns of protein domains. Two separate proteins A and B in one organism may
be expressed as a fusion protein in other species. A protein sequence containing
both A and B is termed a Rosetta Stone sequence. However, this framework only

applies in a minority of cases (Marcotte et al. 1999).

3.3 Protein databases

Currently, there is a large variety of databases each collecting protein domain

information in completely different ways.

The Prosite database (available at http://expasy.proteome.org.au/prosite/) con-
sists of biologically significant motifs and profiles determined and formulated with
appropriate computational tools. Uncharacterised proteins are assigned to cer-
tain protein families by the aid of weight matrices and profiles (Hofmann et al.
1999). The majority of Prosite documentation refers to motifs thus providing
combined motif and domain information. Release 16.0 of Prosite contains 1374

different patterns, rules and profiles.

Another database is Pfam (http://www.sanger.ac.uk/Software/Pfam/index.shtml)
which is a large collection of multiple sequence alignments of protein families and
profile hidden Markov models (Bateman et al. 2000). Moreover, Pfam contains

curated documentation for all 2478 families in version 5.5 covering nearly 65% of
Swiss-Prot release 38 and SP-TrEmbl release 11.

Much more protein families are however found in the database ProDom (available
at http://www.toulouse.inra.fr/prodom.html) (Corpet et al. 2000) which con-
tains all protein domain families that can be generated automatically from the

Swiss-Prot and TrEmbl sequence database (Bairoch and Apweiler 2000). Expert-
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validated families are extended by using Pfam seed alignments to build new
ProDom families with the Psi-Blast database searching algorithm (Altschul et al.
1997). Other families are generated by recursive usage of Psi-Blast. ProDom
version 99.2 has 157648 domain families covering almost 95% of Swiss-Prot re-
lease 37 and TrEmbl release 10. ProDom comprises higher coverage than Pfam.
However, ProDom tends to over predict the number of protein families which can

be discovered as subsets of larger families.

Finally, InterPro (available at http://www.ebi.ac.uk/interpro) (Apweiler et al.
2001a) is an integrated documentation resource of protein families, domains and
functional sites rationalising the complementary efforts of the Prosite, Pfam,
ProDom and Prints (Attwood et al. 2000) database projects. InterPro contains
manually curated documentation and diagnostic signatures from these databases
and uses these to create a unique, non-redundant characterisation of protein fam-

ilies, domains and functional sites.

3.4 Proteome databases

The advent of fully sequenced genomes of various organisms has facilitated the
investigation of proteomes. The Proteome Analysis database (available online
at http://www.ebi.ac.uk/proteome) (Apweiler et al. 2001b) has been set up
to provide comprehensive statistical and comparative analyses of the predicted
proteomes of fully sequenced organisms. The analysis is mainly compiled using
InterPro and CluSTr (Kriventseva et al. 2001) and is performed on the non-
redundant complete proteome sets of SWISS-PROT and TrEMBL entries. The
latest release provides 41 non-redundant proteomes of genomes of archaea, bac-

teria and eukaryotes.

Most recently, SWISS-PROT and Ensembl have prepared a complete non redun-
dant human proteome set consisting of 30585 sequences. It is the combination
of the SWISS-PROT/TrEMBL non redundant human proteome set (15691 se-
quences) and additional non-redundant peptides predicted by Ensembl (14894
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sequences). Ensembl (http://www.ensembl.org) provides complete and consis-

tent annotation across the human genome.

In the following, domain networks generated with data from ProDom, Pfam
and Prosite domain databases will be presented. Furthermore, InterPro domain
networks of different species that are generated with complete proteome sets pro-
vided by the Proteome Analysis database will be considered. Subsequently, the
topology of these networks will be investigated and biological and evolutionary

consequences discussed.

3.5 Material and Methods

A domain graph Gp = (Vp, Ep) is formally defined by a vertex set Vp consist-
ing of all domains found within proteins. Two domains are regarded as being
adjacent if they occur together in one protein at least once. An undirected edge
connecting these two vertices indicates this relationship. Such connections define
the edges set F'p. This graph will be investigated towards the emergence of small-
world and/or scale-free properties. Thus, the degree k of a vertex is the number
of other vertices to which it is linked. The mean path length L from a vertex to
any other vertex of the graph is defined as the average of the path lengths to all
other vertices. Another important quantity is the clustering coefficient C'(v) of a
vertex v. It measures the fraction of the vertices connected to v which are also
connected to each other. In extension, the clustering coefficient C of the graph

is defined as the average of C'(v) over all v.

In this study protein domain information was retrieved from the ProDom, Prosite
and Pfam databases. 65% of all ProDom sequences correspond to families con-
taining 10 or more members. In order to restrict the size of the network, the sam-
ple of ProDom domains focuses on these families. Thus, 5995 ProDom domains
were obtained. The Prosite database declares false negative entries which were
filtered out of the sample used for the network construction. Sequence entries of

each database provide Swiss-Prot annotation. Thus, every protein sequence was
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itemised with each domain that it contains. This was done for each database
separately. Domains which were listed due to their occurrence in one protein se-

quence represent vertices which are connected to each other in the domain graphs.

Complete proteome data sets of different species were retrieved from the Pro-
teome Analysis database which uses InterPro annotation of protein domains.
Such proteome data sets adopt Swiss-Prot, TTEMBL, TrEMBLnew and Ensembl
annotation of proteins. Analogously, InterPro domains which appear along with
other ones in a protein sequence represent vertices which are connected to each
other in the domain graphs. The numbers of links to other domains in such
graphs were logarithmically binned and frequencies thus obtained. Such pairs of

values were subjected to a linear regression procedure.

PAJEK (the Slovene word for spider), a program for large network analysis and
visualisation, was used for the calculation of the latter values (Batagelj and Mrvar
1998) (available at http://vlado.fmf.uni-1j.si/pub/networks/pajek/).

3.6 Results

The domain graphs are sparse with small average degrees (Table 3.1) compared
to the maximal possible degree k¥ = n — 1 where n is the number of vertices. In
this respect, the results of Figure 3.1 are interesting. The vertices which denote
Prosite domains were ranked by their frequency of their connectivity. The curve
is similar to a generalised Zipf’s law curve in which it is observed that the fre-
quency of occurrence of some event f(z) as a function of the rank z is a power-law
function f(x) = a(b+x) ¢ with the exponent c close to unity. The plot of Prosite
domains in Figure 1 satisfies the latter condition with ¢ = 0.89. We are thus
dealing with relatively few highly connected domains and many rarely connected
ones. Essentially, the frequency distributions of ProDom and Pfam domains are
similar. However, they fit the generalised Zipf’s law less well. Distributions fol-
lowing Zipf’s law have also been observed in the context of literary vocabulary
(Zipf 1949; Miller and Newman 1958), frequency of secondary structures of RNA
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(Schuster et al. 1994), lattice proteins (Bornberg-Bauer 1997) and hits per web
page in the World-Wide Web (Huberman et al. 1998). This observation is in
accordance with the picture of scale-free networks which are topologically domi-

nated by a few highly connected hubs.

ProDom | Pfam | Prosite
Ny 5995 2478 | 1360
(ky) 2,33 1,12 | 0,77
Neconn.comp. 1394 1396 | 809
Nunconn.dom. || 97D 1316 | 577

Table 3.1: Some basic data of the ProDom, Prosite and Pfam graph

As illustrated in Figure 3.2, frequency distributions of vertices with degree & fol-
low a distribution comparable to a power-law distribution. Although the shape
of the distribution curves are different they share an area of linearity. Regarding
these latter areas the frequency distribution of links from ProDom domains fol-
lows P(k) =~ k=7 with v = 2.5. By contrast, the distributions of degrees of Pfam
and Prosite domains follow the same law with v = 1.7. Although the curves
do not follow exactly the proposed curvature of the frequency of degrees in the
original scale-free model one can observe a type of scale-free dependence even
if the scale-free model is a raw approximation of the real situation. Obviously,
the topology of such domain graphs is better described by a highly heterogenous

scale-free or small-world model than by an exponential model.

In Table 3.2 it can be observed that the domain graphs partially satisfy the
structural properties of small-world graphs. While clustering coefficients C,, of
the domain graphs by far exceed the respective coefficients of corresponding ran-
dom graphs, the characteristic path lengths L, do not accomplish the demanded
qualifications of a small-world graph. Emphasising the observation that the vast
majority of proteins contains only one domain (Marcotte et al. 1999), the domain

networks contain a huge amount of unconnected vertices (see Table 3.1).

This feature of domain distribution among protein sequences illustrates in par-
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Figure 3.1: The frequency distribution of Prosite domain connectivity. The number of links to
other domains are ranked by their frequencies, which follow a generalised Zipf’s law: f(z) =
a(b+ )¢ with z being the rank and f(z) its frequency. Parameter values of the best fit
(dot-dashed curve) are a = 0,21,b= 7,93 and ¢ =0, 89.

ticular the high number of connected components in domain graphs. Although
domain graphs are thus highly scattered, every graph contains a major subnet
among its connected components which gathers the majority of domains. These
major components feature values of L, and C, values that satisfy the demand of
small-world graphs by exceeding the respective values of random graphs of equal
size. Thus, this study focuses on the analysis of the major components exhibit-
ing small-world and scale-free behaviour. In order to clarify the graph topology,

Figure 3.3 displays the major component of the network which was generated by

“ llactual ‘ llrandonw ‘ (7actual ‘ (7randorn
ProDom || 4.96 5.81 0.51 0.0008
Pfam 4.54 9.05 0.15 0.0003
Prosite 5.44 6.46 0.33 0.0044

Table 3.2: Mean path length L and mean clustering coefficient C' of ProDom, Pfam and Prosite
domain nets
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Figure 3.2: The frequency distribution of domain connections within protein sequences. Domain
data were obtained from ProDom, Pfam and Prosite protein database.

proteome data of Saccharomyces cerevisiae.

The investigations carried out so far consider all domains without taking care
of their origin. Presumably, the degree of connectivity is different if one focuses
on different species. All domain connections of 6 species which developed dif-
ferently in the course of evolution were extracted from the complete proteome
sets provided by the Proteome Analysis database. As illustrated in Figure 3.4,
the frequency distributions of links regarding Human, C. elegans, Drosophila,
Yeast, E.coli and Methanococcus still follow the expected power-law. However,
the slopes of the lines are slightly different. Interestingly, the slopes of Human
and Drosophila nearly coincide in Figure 3.4. Moreover, the regression lines show
almost the same interception in comparison to C.elegans. In Figure 3.4 the situa-
tion changes slightly. While the slopes in comparison to Human are significantly
steeper, the regression lines of Yeast, F.coli and Methanococcus run nearly paral-
lel. Thus, it is tempting to assume a trend which guides multicellular organisms

to higher domain connectivity.
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Figure 3.3: Major component of the domain network of Saccharomyces cerevisiae comprising
204 vertices and 347 edges

Interestingly, the majority of highly connected InterPro domains appear in sig-
nalling pathways as the list of the 10 best linked domains of different species in
Table 3.6 reveals. Obviously, the evolutionary trend towards compartmentalisa-
tion of the cell and to multicellularity demands a higher degree of organisation.
Therefore, more emphasis is put on the maintenance of inter- and intracellular
signalling channels, cell-cell contacts and integrity. Hence, proteomes have to
provide protein sets which cover such cellular demands. The growing number
of highly linked domains of signalling and extracellular proteins by comparing

archae, prokaryotes and eukaryotes confirms this assumption.
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Figure 3.4: The frequency distribution of domain connections within protein sequences of
C.elegans, Drosophila and Human (upper panel) and Methanococcus, E.coli, Yeast and Human
(lower panel). The domain data were obtained from Proteome Analysis database. The numbers
of links to other domains were logarithmically binned and frequencies thus obtained. These
pairs of values were subject to a linear regression procedure. Regression lines of Drosophila and
Human coincide.
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Methanococcus E.coli Yeast
domain k, || domain k., domain ke,
SAM 13 || NAD-BINDING 20 || pkinase 18
ferd 11 || ESTERASE 16 || P-KINASE-ST 18
FMN-ENZYMES | 10 || SAM 15 || PH 16
NAD-BINDING |9 || fer4 13 || zf-C3HC4 14
AA-TRNA-LIG-1 | 8 || AA-TRNA-LIG-IT | 12 || AA-TRNA-LIG-II 14
intein 7 || FMN 12 efhand 14
pyr-redox 7 || HIS-KIN 11 || C2 13
ATP-GTP-A 6 || AA-TRNA-LIG-I |11 CPSase-L-chain 13
CBS 6 || HIS REC 10 || GATase 13
N6-MTASE 6 || PAS 9 WD40 12
C.elegans Drosophila Human
domain k, || domain k., domain ks,
pkinase 57 || PRICHEXTENSN | 101 || ATP-GTP-A 169
EGF 57 || pkinase 70 || GPCRRHODOPSN | 162
PH 46 || zf-C2H2 53 || PRICHEXTENSN | 110
efhand 45 || ank 52 || EGF 98
ank 37 || EGF 50 pkinase 89
P-KINASE-ST 35 || SH3 48 || ig 79
EGF-CA 34 || ANTIFREEZEI 46 || PH 72
zf-C3HC4 33 || efhand 45 || ethand 64
ig 30 || PH 45 || SH3 61
SH3 30 || P-KINASE-ST 44 || zf-C2H2 o8
Table 3.3: 10 most highly connected InterPro domains of Methanococcus E.coli, Yeast,

C.elegans, Drosophila and Human.
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3.7 Discussion

What might be the functional, phylogenetic or bioinformatic implications of the
power-law distribution of the connectivity of domains and the small-world be-

haviour of the domain networks studied?

3.7.1 Completeness and quality of data

Regardless of whether Pfam, Prosite or ProDom domain information is used,
the qualitative topology of domain networks remains unchanged. Since these
databases differ significantly in size and methodology, the argument is tempting
that even though the current domain data are far from complete, the topology
of domain networks will not change significantly with the growing amount of
domain data. This assumption is supported by the characteristics of scale-free
networks leading to domain graphs which are independent of the actual size of
the underlying networks. Hence, the major observation that the topology of
domain graphs is mainly dominated by few highly linked domains will not be
changed entirely with the incorporation of new protein domain data. InterPro
gathers and streamlines mostly distinct domain information from the above men-
tioned domain databases providing a centralised annotation resource to reduce
the amount of duplication between the database resources. Hence, scale-free
characteristics of InterPro domain networks which were generated with the aid of
complete proteomes of different species do not change significantly in comparison
to networks generated with domain information from a single database. However,
it should be noted that the acquisition of protein domain information is biased
to a certain extent since eukaryotic and mammalian proteins are far better stud-

ied and documented in databases on average than archeae or prokaryotic proteins.

Another import consideration regards aspects of acquisition of proteome informa-
tion. Proteome data which were entirely extracted by genome translation might
not explain sufficiently the set up of all cellular processes. Domain networks were
generated with the aid of translated genome databases which do not cover effects

that include alternative splicing and domain usage. Alternative pre-mRNA splic-
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ing is an important mechanism for regulating gene expression in higher eukaryotes
(Smith et al. 1989). By recent estimates, the primary transcripts of ~ 30% of
human genes are subject to alternative splicing. Thus, the connectivity of do-

mains found in higher eukaryotes might be significantly higher than it is ’in silico’.

In addition, the differences in frequency distributions between higher eukary-
otes, bacteria and archae in Figure 3.4 might also be related to the number of
domain architectures that were found in the different organisms. Since eukaryotes
and mammals developed much more distinct domain architectures (International
Human Genome Sequencing Consortium 2001), the respective distributions of
domain connections are statistically more reliable than those of prokaryotes and
archae. Therefore, future studies should clarify, if the low number of domain
architectures leads to slight artefacts in the slope of prokaryotic and archeal or-

ganisms.

3.7.2 Evolutionary aspects

Are the observed topologies the direct consequence of domain evolution? The
model of Barabasi and Albert generates scale-free networks by preferential at-
tachment of newly added vertices to already well connected ones. Consequently,
Fell and Wagner argued that vertices with many connections in a metabolic net-
work were metabolites originating very early in the course of evolution (Fell and
Wagner 2000) and which shape a core metabolism. Analogously, highly con-
nected domains could also have originated very early. If one compares the lists of
the most highly linked domains in Table 3.6 this assumption does not hold. The
majority of more highly linked domains in Methanococcus and E. coli are mainly
concerned with the maintenance of metabolism. Given that in Methanococcus
and FE. coli nearly none of the highly linked domains in the higher organisms
can be found, and vice versa, the focus of domain connection shifts to domain
hubs involved in signal transduction, transcription and cell-cell interactions. In
addition, helicase C has roughly similar degrees of connections in all organisms.
However, the ankyrin repeat motif (ank) is one of the few domains which can be

found to be unlinked in E. coli, whereas it possesses a growing degree of connec-
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tivity in higher eukaryotes.

Apparently, the majority of highly connected domains seems to have arisen late
in eukaryotes of larger proteome size. The evolutionary trend towards multicel-
lularity requires proteomes which feature new and additional complex cellular
processes like signal transduction or cell-cell contacts. One way of accomplishing
growing demands is the expansion of already existing protein sets. Indeed, many
protein families are expanded in Human relative to Drosophila and C.elegans.
These are mainly involved in inter- and intracellular signalling pathways, apop-
tosis (Aravind et al. 2001), development, immune and neural functions (Interna-
tional Human Genome Sequencing Consortium 2001; Venter, J., M. Adams, E.
Myers et al. (271 co-authors) 2001). Although many protein families of these or-
ganisms exhibit great disparities in abundance, C2H2-type zinc finger motifs and
eukaryotic protein kinase (pkinase) are among the top 10 most frequent domain
families (Rubin, G., M. Yandell, J. Wortmann et al. (52 co-authors) 2000; Tupler
et al. 2001) and of the best connected domains in Table 3.6. At least in higher
eukaryotes both domains tend to increase their connections to other domains in

a similar way to the already mentioned ankyrin repeat motif (ank).

Although the human phenotypic complexity exceeds the respective ones of C.
elegans and Drosophila by far, proteome dimensions remain considerably low.
Thus, combinatorial aspects of domain arrangements might have a major impact
on the preservation of cellular processes. Among chromatin-associated proteins,
transcription factors and especially apoptosis proteins, a significant portion of
protein architecture is shared between Human and Drosophila. However, sub-
stantial innovation in the creation of new protein architectures was significantly
detectable (International Human Genome Sequencing Consortium 2001). Ap-
parently, expansion of particular domain families and accompanying evolution
of complex domain architectures from presumably preexisting domains coincides
with the increase of organism’s complexity. In this regard the different slopes
in Figure 3.4 indicate this evolutionary trend to higher connectivity of domains
(e.g. pkinase, SH3 and EGF in Table 3.6) as well as a growing complexity in

the arrangement of domains within proteins. In comparison to non-eukaryotic,
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Drosophila developed more complex domain architectures. Thus, the frequency
distribution of the latter organisms can be clearly separated in Figure 3.4, where
lower complexity in domain architecture is indicated by steeper slopes. The first
point is well reflected by the slightly different slopes of Human, Drosophila and
C'.elegans in Figure 3.4.

In conclusion, a variety of arguments point to an increase in the complexity
of the proteome from the single-celled yeast to multicellular vertebrates such as
Human. Essentially, the expansion of protein families coincides with the increase
of connectivity of the respective domains. Extensive shuffling of domains to in-
crease combinatorial diversity might provide protein sets which are sufficient to
preserve cellular procedures without dramatically expanding the absolute size
of the protein complement. Hence, the relatively greater proteome complexity
of higher eukaryotes and especially human cannot be simply a consequence of
genome size but, to a certain extent, of innovations in domain arrangements.
Thus, highly linked domains represent functional centres in various different cel-
lular aspects. They could be treated as evolutionary hubs which help to organise
the domain space by occasionally linking them to numerous other functionally

related domains.

3.7.3 Quality of the basic models

The view that new protein architectures can be created by shuffling, adding and
deleting domains, resulting in new proteins from old parts, is well reflected by
the emergence of such domain hubs. However, there exist a variety of domain
arrangements which contradict the ideal image of continuous addition of new
domain links to already existing hubs in the sense of scale-free networks. The
S1 RNA binding domain is linked to helicase C in F.coli, while it is found to be
connected to RNB, KH domain and RNAse PH in Human. Neither the procedure
of generating a small-world graph in the original sense nor the scale-free model
provide the deletion of vertices. However, the assumption that domains emerge
and dissappear occasionally is a basic demand of protein evolution. Thus, scale-

free and small-world models can obviously only be a rough approximation to the
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real situation.



CHAPTER 4

Interaction and domain networks of Yeast

4.1 Introduction

Tremendous amount of biological data currently available emphasize the neces-
sity to investigate the mutual relationships of genes, proteins and metabolites.
The latter were the starting point of considering metaboloms of prokaryotes as
complex networks (Fell and Wagner 2000; Wagner and Fell 2001; Jeong et al.
2000). Quite similarly, proteomes offer an opportunity to examine domain ar-
chitectures of their protein sequences from this perspective (Wuchty 2001; Apic
et al. 2001). Furthermore, efforts were made to enlighten interactions between
families of protein domains. Structural domain data were mapped to a network
linking interacting domain structures (Park et al. 2001). Finally, protein-protein
interaction networks emerged by employing sets of protein interactions of H. py-
lori (Rain et al. 2001) and S. cerevisiae (Ito et al. 2000; Uetz et al. 2000; Ito
et al. 2001; Schwikowski et al. 2000; Jeong et al. 2001).

In this chapter, the use of protein interaction data to generate an interaction
network of Saccharomyces cerevisiae will be reported. Using the known nonre-

dundant complete Yeast proteome, domain information is used to set up domain

37
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sequence and domain interaction networks. Since a comparison of these three
types of networks is currently undone, the topologies of these networks will be

comparatively studied and biological consequences discussed.

4.2 Materials and methods

4.2.1 Definition of networks

A protein-protein interaction graph, G,_,, is defined by a set of nodes which
contains a set of interacting Yeast proteins. In order to complete the definition of

the network protein-protein interactions are denoted by a set of undirected edges.

In a coarse grained way, a protein sequence can be computed as a linear ar-
rangement of the domains it contains. Thus, a domain sequence graph, Gp, is
formally defined by a set of nodes consisting of all domains which occur in the
protein sequences of the Yeast proteome. Two domains are regarded as being
undirectedly linked if they co-occur in one of these protein sequences (Wuchty
2001).

Since ~ 95% of all Yeast proteins carry only one type of domain the construc-
tion of a domain interaction graph, G4, focuses on interactions involving these
particular proteins. Thus, the set of nodes consists of domains which appear in
interactions of single sorted domain proteins. Obviously, ambiguity arising from
multi-domain interactions is thus avoided. An undirected edge between these

domains indicates this relationship.

4.2.2 Sources of protein-protein interaction data

Sets of Yeast protein-protein interactions were collected from several overlap-
ping data compilations (Ito et al. 2000; Uetz et al. 2000; Ito et al. 2001;
Schwikowski et al. 2000) which employed Yeast two-hybrid experiments exten-

sively. Other relevant interaction data was retrieved from several other protein
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interaction databases. The database of interacting proteins (DIP, http://dip.doe-
mbi.ucla.edu) scans the literature in order to provide a collection of all functional
linkages of proteins obtained by experimental methods (Xenarios et al. 2001).
The MIPS Yeast Genome Database (MYGD, http://www.mips.biochem.mpg.de/)
(Mewes et al. 2000) is a collection of genetic data from literature which relies
on the results of micro array expression experiments. Additionally, MIPS also

contains data from Yeast two-hybrid and co-immunoprecipitation experiments.

The protein nomenclature of these data is inconsistent, therefore, the terms were

translated to Swiss-Prot/TrEMBL annotations.

4.2.3 Proteome specific data

Yeast specific proteome and protein domain information came from the Inter-
Pro database (http://www.ebi.ac.uk/interpro) (Apweiler et al. 2001a) and the
Proteome Analysis database (http://www.ebi.ac.uk/proteome) (Apweiler et al.
2001b). Since InterPro employs Swiss-Prot annotation every protein sequence is

itemized with each of its domains.

4.2.4 Network properties

From a theoretical point of view, network topologies set up very differently as was
already shown. From the results of chapter 3, it is conjectured that all networks
considered show a considerable amount of small-world and scale-free characteris-

tics.

In order to unravel the topology of an otherwise unknown network, different
characteristic values have been defined. In the networks the degree k; of a node

1 is the number of other nodes to which it is connected.

The mean path length of a node i, L;, is defined as the average of all short-
est paths from node ¢ to all other nodes. Accordingly, the mean path length L of

the whole network is represented as the average of L; over all i.
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The clustering coefficient of a node i, C;, measures the fraction of nodes con-
nected to ¢ which are also connected to each other. By extension, the clustering

coefficient C' of the graph is defined as the average of C; over all :.

Provided that there exists a sequence of edges a — b — ¢, one might ask to which
extent edge a—c are undirectedly linked in the graph. The transitivity coefficient,
T;, represents the mean fraction of neighboring nodes of ¢ which obey this rela-
tion. Accordingly, the mean transitivity coefficient, 7', is defined as the average

of all T; over all v.

4.2.5 Lethal and viable proteins

Information about lethality and viability of proteins was retrieved from the YPD
database (http://www.proteome.com) (Costanzo et al. 2001). Obviously, if one
protein proves to be lethal all links in the protein-protein interaction network
have to be considered as lethally affected. For the domain-related networks, only
fractions of connections prove to be lethal or viable depending on the protein
under consideration. Since these networks map protein specific information to a
domain dependent space, every link between protein domains does not have to
be inevitably proven either lethal or viable. If there exists a domain link which
occurs both in one lethal and one viable protein fraction of lethal connections
turns out to be 0.5. Hence, these nodes and edges are interesting objects to

investigate in regards to their influence on network properties.

4.2.6 Domain fusion events

Since the domain interaction graph focuses on interactions of proteins which
carry only one type of domain, the superposition of the protein domain sequence
network onto the domain interaction network enables detection of all interac-
tion processes which are accompanied by a domain fusion event on the sequence

level. The extent to which domain interactions in Yeast coincide with domain
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fusions in higher eukaryotes is of particular interest. Species dependent proteome

information was retrieved from Proteome Analysis database.

4.2.7 Graph tools

Graph analysis tools were written in C++ using the LEDA library of data types
(Mehlhorn and Naeher 1999).

4.3 Results

4.3.1 Network topologies

It is the intention of this work to provide a comparison of these three networks
types. Thus, some already known results are addressed partially in order to pro-

vide a thorough view.

All networks emerge as sparse networks providing mean numbers of edges per
vertex (k,) which are far smaller than the maximal possible degree per vertex as
shown in Table 4.1.

Gp Gaa Gpp
T 1196 394 3212
(ky) 1,49 3,06 3,79
Neonn. comp. || 653 19 89

Table 4.1: Some basic data of the domain sequence, G p, domain interaction, G4_4 and protein-
protein interaction graphs, G,_p.

Frequency distributions of links immediately reveal the presence of scale-free
topology. Thus, frequency distributions follow a power-law P(k) ~ k=7 (Jeong
et al. 2001; Park et al. 2001; Wuchty 2001). Figure 4.1 compares the fre-

quency plots of the networks considered. As a result of this analysis, the curves



4.3. RESULTS 42

of frequency distributions of InterPro domain interactions and protein-protein in-
teractions almost coincide. Thus, the assumption that ~ 95% of the interacting

proteins carry only one domain is well reflected.

L/L, C/C, T/T,

Gp | 5,25/13,33 | 0,1989/0,0012 | 0,0401/4 x 10~*
Ga_q || 4,01/5,18 | 0,0816/0,0031 | 0,0296,/0.0031
Gpp || 4,85/6,18 | 0,0806/4 x 10™* | 0.1288/9 x 10~*

Table 4.2: Mean path lengths, L, clustering coefficient, C, and transitivity coefficient, T' of
the domain sequence, Gp, domain interaction, G4_4, protein-protein interaction graphs, Gp_p,
and respective random graphs ().

Additionally, InterPro domain sequence networks have been found to exhibit
small-world properties (Wuchty 2001). Addressing the relevant parameters of
small-worldedness, the clustering coefficient C' of InterPro domain sequence net-
works far exceeds the respective one of an equally sized random graph. How-
ever, the definition of small-world networks additionally demands L > L,undom-
It turns out that the major component of the domain sequence network which
covers the majority of domains fulfills this demand. As a result, protein and
domain interaction networks both feature clustering coefficients which fulfill the
definition of small-world networks (Table 4.2). However, respective numbers of
L fail. Although protein interaction and domain interaction networks both fea-
ture huge 'major’ components neither of them satisfies this structural demand of

small-world networks.

4.3.2 Biological hubs

Scale-free topology suggests that only a minority of the highly connected nodes
shape the topology of the underlying network. Since highly connected hubs play
a crucial role for information processing and integrity of networks, it is interest-
ing to see which role these nodes play in biological networks. Table 4.3.2 shows

the 15 most highly connected nodes of each network. Highest linked InterPro
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Figure 4.1: The frequency distribution of the protein-protein interaction graph, G,_,, domain
interaction graph, G4_4 and domain sequence graph, Gp. The numbers of links to other vertices
were logarithmically binned and frequencies thus obtained.

domains in domain sequence networks of Yeast were already found to be involved
in signal transduction pathways. Other high linked domains appear in transcrip-

tional/translational activities and energy maintenance (Wuchty 2001).

In this analysis, the significance of signalling pathways is strongly emphasised
in the domain interaction network by WD40 and zinc-finger motifs which are

among the highest interacting domains.

Strongest interacting proteins are involved in nucleus related transportation pro-
cesses. These include subunits of Importin and nucleoporins. Furthermore, cell-
cycle regulating (MEC3, TEM1) and transcription processing proteins appear
highly interacting.
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pGe-» ke pGi—d k, || v&P k.,
JSN1 230 || WD40 53 || zf-C3HC4 21
Importin « subunit | 123 || RRM 46 || pkinase 19
ATP14 108 || Zn2-CY6-fungal 39 || Ser-Thr-kin-actsite | 19
TIR1 precursor 107 || snRNP-Sm 28 || AAA 19
NUP116/NSP116 107 || vATP-synt AC39 |24 || PH 18
SRB4 92 || zf-C2H2 22 || EF-hand 16
TFIIB 81 || cyclin 20 || C2 15
YHR4 72 || Ser/Thr-phosphat. | 18 || WD40 14
VMAG6 71 || TPR 16 || DEAD 14
PGDH 69 || SH3 15 || helicase C 14
MEC3 65 | bZIP 12 || ATP-GTP-A 14
TEM1 protein 61 | TFIID 11 || AA-tRNA-ligase-1I | 14
SOH1 protein 50 || Myb-DNA-bind 11 || CPSase 14
LYS14 protein 50 || zf-CCHC 11 || GATase-1 13
Importin 8-1 sub. | 40 || Histone-core 11 || FMN-binding enz. | 12

Table 4.3: The 15 most highly connected nodes of the protein-protein interaction graph, G,—p,
the domain interaction graph, G4_4, and the domain sequence graph, Gp.

4.3.3 Transitivity

Since scale-free and small-world networks were found to be sparse but highly
clustered, the degree of transitivity can be questioned. The mean transitivity
value, T', measures the extent to which indirect links are accompanied by di-
rect ones. Such a ’back-up’ of links reinforces the clustered nature of biological
(sub)networks. Table 4.2 shows statistics of the networks under this considera-
tion. Similarly to the behavior of C, T exceeds the respective number of random
graphs of equal size, 7;, by far. However, it should be noted that the values are

reasonably low.
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Figure 4.2: Scatterplot of mean clustering coefficient C, vs. mean transitivity coefficient C,
concerning the protein-protein interaction graph, Gp_p, domain interaction graph, G4_q4, and
domain sequence graph, Gp.

It might be tempting to assume that 7" is closely related to C' since an edge
a — ¢ implies an increase of C'(b). In order to investigate the mutual relation of T
and C' Figure 4.2 shows a scatterplot of T" against C' concerning all three types
of networks. Considering Figure 4.2, symbols indeed arrange around the median

axis. However, they are far from indicating a strong correlation.

From a biological point of view, it is interesting to discover the role of proteins
which are involved in such a transitive organisation. Table 4.3.3 shows a compila-
tion of proteins and domains exhibiting highest 7;,. Strikingly, the list of interact-
ing proteins is headed by proteins which form enzymatic protein clusters. Among
them are PMT and OST proteins setting up Dolichyl-Diphosphooligosaccharide-
protein glycosyltransferase protein complex. Similarly, the interacting domains
with the highest T-values are protagonists of functional clusters involved in tran-
scription (TFIID-proteins and RNA pol /3 subunit) and signal transduction. How-

ever, the T-values of interacting domains are lower than those of interacting
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vGrr | T, pGa-—d T, v@o T,
WBP1 | 0,92 || STT3 0,50 || DNAtopI-DNA-bind 1,0
PMT3 | 0,91 || DAD 0,50 || DNAtopl-ATP-bind 1,0
PMT4 | 0,91 || RNA pol 5 s.u. 0.44 || DNA pol -like 1,0
PMT2 | 0,91 || MCM 0,40 || Interleukin-1 1,0
OST5 | 0,90 || WD40 0,39 || RNA-polll-repeat 1,0
OST3 | 0,90 | T-SNARE 0,38 || ATPase-a-f3 1,0
OST2 | 0,90 | Ribosomal-S12 0.36 || Tubulin 1,0
STT3 | 0,90 || BK-channel-« 0,33 || CytC-heme-bind 1,0
SWP1 | 0,89 || TFIID-31 0,31 || 6-P-fructo-2-kinase 1,0
UBC5 | 0,80 || Synaptobrevin 0,31 || RNA-pol-A 1,0
UBC4 | 0,80 || TFIID-18 0,28 || Gluc-transporter 1,0
OST4 | 0,79 || Znf-CCHC 0,28 || Dynamin 1,0
ALG5 | 0,76 || Histone-core 0,28 || Helix-hairp.-helix motif cl. 2 | 1,0
VPS16 | 0,75 || Znf-C2H2 0,27 || Middle domain of elF4G 1,0
PEP3 | 0,75 || DNA-RNApol-7kD | 0,25 || GHMP-kinase 1,0

Table 4.4: The 15 most transitive nodes of the protein-protein interaction network, Gp,_p,
domain interaction network, G4—_4, and domain sequence network, Gp.

proteins. The picture changes drastically if 7T-values of the domain sequence

network are considered since these tend to be shifted to higher values.

4.3.4 Lethality and Viability

The separation of viable and lethal proteins allows one to observe protein inter-
action networks and domain related networks from a different perspective. The
frequency distributions of both lethal and viable proteins in the protein-protein

interaction network are shown in Figure 4.3.

Initially, it was suggested that strongly interacting proteins can be assigned a
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Figure 4.3: Frequency distributions of the degree, k (upper panel), and mean transitivity
coefficient, T, (lower panel), which are set up by interactions of lethal and viable proteins. The
compilation of lethal and viable proteins was retrieved from the YPD database.
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lethal role (Jeong et al. 2001). In fact, it appears in this analysis that this
assumption is misleading since the latter plot indicates merely a slight trend of
lethal proteins to accumulate higher numbers of interactions than viable ones.
Since the transitivity coefficient takes the existence of alternative paths into ac-
count, it might be interesting to check if 7" is more suited to explain the latter
correlation. Figure 4.3 shows a frequency plot of 7" regarding lethal and viable
proteins. Confirming the latter assumption lethal proteins indicate a slight trend
to higher T. Regarding higher values of T, it clearly appears that lethal pro-
teins tend to accumulate more alternative interaction paths. However, it should
be noted that frequencies are considerably low. A similar view holds for lethal
and viable fractions of domains in the respective networks. Figure 4.4 displays
frequency distributions of fractions of lethal and viable domain interactions and
domain connections in the respective graphs. Analogously, the plots suggest a

slight shift to lower fractions of lethal connections in Figure 4.4.
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Figure 4.4: Frequency distributions of fraction of lethal and viable links per domain in domain
interaction and domain sequence networks. The compilation of lethal and viable proteins was
retrieved from the YPD database.
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Observing the mutational effects from a different perspective, Figure 4.5 dis-
plays frequency distributions of the mean path lengths L and mean clustering
coefficients C' of the protein-protein interaction network. Results were obtained
by deleting separately lethally and viably mutated proteins and subsequent calcu-
lation of these network properties. Both types of distributions are normally dis-
tributed. The distributions of lethally perturbed networks generally show slightly
increased standard deviations. These observations also hold for domain related
networks which were considered analogously by clipping fractions of links affected
by lethal or viable mutations of the respective proteins.
Clegend
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Figure 4.5: Distributions of the mean path length L, and mean clustering coefficient C,, of the
protein-protein interaction network. Lethally and viably mutated proteins were clipped and
network parameters thus obtained. Protein information was retrieved from the YPD database.

4.3.5 Domain interactions and fusion events

Functional links between proteins have also been detected by analyzing fusion

patterns of protein domains. Separate proteins A and B in one organism are
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found to be expressed as a fusion protein in other species. A protein sequence
containing both A and B is termed a Rosetta Stone sequence (Marcotte et al.
1999). The comparison of pairwise domain interactions and pairwise domain fu-
sions in higher organisms enables an estimation of the extent to which domain
interactions are indeed accompanied by a domain fusion event. Pairs of domain
interactions and domain links correspond to edges in the respective networks.
Considering every domain separately edges in the Yeast domain interaction net-
work are counted which co-occur in the domain sequence networks of A. thaliana,
C. elegans, Drosophila, H.sapiens and Yeast, respectively. Subsequently, fractions
of domain fusion per domain interaction of the mentioned organisms are calcu-
lated. Figure 4.6 summarizes as a result an increasing extent of domain fusions

in the latter row of eukaryotes.

0,
/Ofusion/interaction
N

Yeast A. thaliana Worm Fly Human

Figure 4.6: Histogram of domain fusion events per domain interaction. The co-occurrence of do-
main interactions found in S.cerevisiae and domain fusion events were detected in S.cerevisiae,
A. thaliana, C.elegans, Drosophila and H.sapiens. Domain information was obtained from
InterPro domain database.
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4.4 Discussion

4.4.1 Completeness and quality of data

The protein-protein interaction data used for the set up of the interaction net-
work are widely based on yeast two-hybrid analyses. However, yeast two-hybrid
data are significantly flawed by high rates of false positive signals (Hazbun and
Fields 2001). Moreover, many of the interactions identified merely rely on posi-
tive signals from one single technique and result from indirect observations. The
observation that Importin o subunit protein (SRP1) (Table 4.3.2) interacts with
that number of proteins is merely a result of the two-hybrid screen employed

since a very small fraction of those interactions were shown by other methods.

The discovery of scale-freedom in protein and domain related networks alleviates
the insurmountable problems arising from the current extent of incompleteness.
Even though the current interaction data are far from complete and are some-
what noisy, these findings reinforce the argument that the topology of interaction

networks will not change significantly as the amount of interaction data grows.

Strictly speaking, the set up of the domain interaction network is an indirect
one since interactions are inferred from protein interactions and domain sequence
information. In contrast to other approaches, no structural information of do-
mains was taken into account. Thus, it should be noted that domain interaction
networks mediate a certain degree of simplification. However, even though the
domain interaction network is simplified to a certain degree scale-freeness of the
network confirms the assumption that the topology will not change with increas-

ing amount and quality of domain and protein interaction data.

Analogously, this assumption also holds for domain sequence networks since the
proteome data have been far better compiled and studied with the release of
the complete genomic sequence of Saccharomyces cerevisiae. The assumption of
scale-free characteristics leads to interaction and domain sequence graphs inde-

pendent of the actual size of the underlying networks. Although the generation
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and compilation of interaction data is still at a basic level these interaction graphs

give tentative insights of the underlying network topology.

4.4.2 What do these network architectures tell?

The observation of scale-freedom in all three networks confirms the appearance
of sparse but highly clustered nets. As a consequence, highly connected nodes
emerge which predominantly shape the topology of the underlying network. Con-
sidering the shortest ways through the network, it will become immediately clear
that these routes always pass highly connected nodes. Thus, these hubs illustrate
crossways helping to transport information quickly to even remote parts of the

network.

So, sparsity and strong local clustering of the scale-free nets offer a different view
on the organization of the networks considered. Pathways defined by protein
and domain interactions might be treated as highly clustered subnets which are
sparsely interlinked to other ones. Accordingly, highly interacting proteins and
domains can be considered as the 'backbone’ of the networks which interconnect
pathways in the respective networks. Otherwise, these nodes might be central
proteins and domains which shape a particular pathway. Thus, it is possible to
get a good flavor of the general characteristics of the underlying networks without
the knowledge of all interactions. This idea intuitively becomes important since
the current interaction data are from being complete as already mentioned in the

latter section.

In order to get a flavor how frequent sequences of edges a — b — ¢ are accompa-
nied by co-occuring edges a — ¢, a new measure, mean transitivity coefficient 7,
was introduced. Similarly to mean clustering coefficient C', T-values of scale-free
and small-world networks exceed the respective numbers of equally sized random
graphs strongly emphasizing a tendency to reinforce clustering. However, the
T-values of all three networks of Yeast indicate the assumption that indirect or
alternative linkage might be rather an exceptional than common feature. How-

ever, the latter point crucially depends on the set up of networks. Since domain
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networks were generated by considering domain nodes linked if they co-occur
with other ones in proteins, 7" is subject to a shift to higher values. Nevertheless,
this value reflects the extent to which particular sequences of nodes are ’backed
up’ by an inserted direct link. As already mentioned, proteins which are mainly
involved in enzymatic clusters display a high degree of transitivity. Obviously,
this result is based on the observation that these proteins nearly interact with
each other in the respective protein clusters. Otherwise, two nodes - although
already linked - might be connected indirectly by adding an intermediate node.
Considering protein and domain interactions, intermediate proteins and domains
might be considered as the entry to alternative pathways. Analogously, inter-
mediate domains in domain sequence networks might display access to different
domain architectures. Thus, high values of 7" imply domains which frequently
co-occur with the same domains. Since a crucial role for the networks topology
coincides with connectedness, highly transitive nodes might be among the sets
of highly connected nodes of the networks considered. However, no evidence to
support this assumption was found. In fact, it turns out that rather the opposite
is the case since frequent interacting proteins like JSN1 or YHR4 show transitivity
coefficients around 0.03. The same holds for highest connected domains in the
domain sequence network emphasizing pkinase and WD40 representing transitiv-
ity coefficients of 0.49 and 0.09, respectively. In contrast, domains of the domain
interaction network apparently contradict this particular trend since highly in-
teracting domains show reasonable high transitivity more frequently. WD40 and
RRM which lead the list of highly interacting domains in Table 4.3.2 emerge as
fairly transitive with values of 0.39 and 0.29, respectively. However, this appar-
ent contradictory trend seems to be more the result of the small sample than a

characteristic of interacting domains.

4.4.3 Evolutionary aspects

Compared to the Yeast proteome, domain fusions in the proteomes of higher or-
ganism are more frequent (Marcotte et al. 1999). On the one hand, proteome
complexity is particularly assumed to be the consequence of protein innovations.

On the other hand, proteomes are generated by expansion of protein families
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and subsequent combinatorial arrangements of domains. Combinatorial diversity
provides protein sets which are sufficient to preserve cellular procedures without
dramatically expanding the absolute size of the protein complement. The list
of highly connected domains in domain sequence networks immediately reveals
a substantial lack of overlap in the compilation of single interacting domains.
Although the ratios of fusions grow constantly towards organisms of increasing
complexity they remain considerably low. Subsequent fusion of interacting do-
mains seems to be rather an exceptional than a common feature. Accordingly,
single domain interactions seem to be no driving force for fusing domains in one
sequence. Naturally, one might argue that the number of fusions will be sub-
ject to tremendous change when the Yeast interactome will be further explored.
Since the knowledge about the Yeast interactome is far from being complete, the
overall trend of increasing numbers of fusions per domain interaction will still be

reflected by improved numbers.

Considering highly connected domain nodes in Table 4.3.2, the abundance of
domains involved in signal transduction pathways like kinases and zinc-finger
motifs is conspicuous. Proteins which emerged by fusion of domains or com-
binatorial diversification of domain architectures are important parts of signal
transduction and cell-cell communication pathways of Yeast emphasizing its role
as a single cellular organism leading the way to multicellularity. Domains which
proved to be fit in different cellular aspects of Yeast are rewarded with an increas-
ing degree of connections in higher eukaryotes emphasizing a sort of ’fit-get-rich’
regime (Wuchty 2001). Thus, it might be expectable that these partially highly
connected proteins and domains identify as very crucial for the survivability of
the cell. However, it turned out that this is not the case. Although perturbation
analysis of all three types of networks indicates a tendency of lethal proteins and
domains to slightly assemble more crucial effects on the networks the results are
far from offering a clear distinction between lethal and viable sets of proteins and
domains. However, it should be kept in mind that this results might be based
on the low complexity of Yeast and absence of highly comprehensive data sets.

With protein specific data of higher organism this question will be revisited.



CHAPTER b

The large scale organization of genomic sequence segments

5.1 Introduction

The abundance of fully sequenced genomes of different organisms inspired re-
searchers to ask for genomic homogeneity and heterogeneity in terms of multin-
ucleotide relative abundances and compositional extremes. In the recent years,
many contributions to these questions have been published. Henceforth, the cur-
rent presence of completely sequenced eukaryotic genomes adds additional weight
to the impact of such investigations. Comparative studies have mostly focused
on short oligonucleotides such as dinucleotides (Burge et al. 1992; Karlin and
Ladunga 1994; Karlin and Burge 1995; Blaisdell et al. 1996; Karlin and Mrazek
1997; Karlin et al. 1997; Nakashima et al. 1998), trinucleotides (Burge et al.
1992; Karlin and Ladunga 1994; Karlin et al. 1994; Karlin and Mrézek 1997;
Karlin et al. 1997) and tetranucleotides (Karlin and Ladunga 1994; Karlin et al.
1997). Differences of motifs up to eight nucleotides were investigated using chaos
game representation (Deschavanne et al. 1999). The tremendous amount of
results supported the looming pattern that intergenomic differences are higher
than intragenomic ones (Karlin and Ladunga 1994; Karlin et al. 1994; Blaisdell
et al. 1996; Karlin and Mréazek 1997; Karlin et al. 1997; Gentles and Karlin

95
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2001; Nakashima et al. 1998; Deschavanne et al. 1999). The abundance and
constantly varying frequencies of oligonucleotides at different sites in genomic se-
quences inspired researchers to introduce the notion of characteristic dinucleotide
genomic signatures of every organism (Karlin and Ladunga 1994; Gentles and
Karlin 2001). Essentially, it is constant in both coding and noncoding sequences
and does not depend on knowledge of individual genes. Furthermore, the ex-
istence of specific genomic signatures for all motif lengths has been indicated
(Deschavanne et al. 1999).

Beyond the biological scope, there have also been a variety of works which ad-
dressed statistical implications of genomic sequence composition. One of the
pioneering works suggested introns to show long-range correlations in contrast
to exons (Peng et al. 1992). The presence of these correlations in introns and
noncoding sequences nourished the presumption that these sequences rather fea-
ture linguistic properties than exons or coding sequences (Mantegna et al. 1994;
Mantegna et al. 1995; Martindale and Konopka 1996). Henceforth, genomic se-
quences were investigated emphasizing linguistic methods (Mantegna et al. 1995;
Stanley et al. 1999) leading to the emergence of coding potentials of genomic se-
quences (Grosse et al. 2000; Holste et al. 2000; Fickett and Tung 1992).

Most recently, a method was suggested to classify the genomic origin of bac-
terial sequences. Based on relative frequencies of oligonucleotides, a Bayesian
classifier was set up which - interestingly enough - enhances its predictive power

with increasing length of oligonucleotides (Sandberg et al. 2001).

However, one might have the impression that the works which consider prop-
erties of segmentwise composition of DNA provide rather patchwork character
than a compact view of DNA features. Although there have been so many inves-
tigations up to the present time a more common perspective is still lacking which

considers the features segmentations of different lengths mediate.

Obviously, the length of sequences opens just as many opportunities to start

the segmentation if shifts of one nucleotide are considered. Essentially, each seg-
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mentation process of length [ results in [ sets of overlapping segments. Since
there exists a distinct 5 — 3’ reading direction on genomic sequences, immediate
subsequent segments in each of the underlying [ segments sets are regarded as
adjacent. This approach of segments resembles the set up of a graph. Thus, a
genetic segments graph, Gg = (Vs, Es), is formally defined by a nodes set, Vs,
consisting of all segments of length [ found within a set of genomic sequences.
Since two segments are found to be subsequently adjacent in 5 — 3’ direction at
least one time, a new directed link is added to the set of links, Fs. In a directed
network, the degree k;, of a node is the numbers of other nodes to which it points.
The same notion applies for the degree k,,; denoting the number of nodes which

themselves point to this particular one.

In the following, I will present results which treat segmental composition of exons
and intron sequences of different organisms from a networks standpoint. Results
thus emerging will be discussed from the perspective of already mentioned find-
ings. Finally, classification power of exon and intron segments segmented to
different lengths will be addressed.

5.2 Materials and methods

5.2.1 Genomic sequence data

As a source of well curated samples of eukaryotic exon and intron sequences, the
Exon-Intron-Database (EID, http://golgi.harvard.edu/gilbert/eid/) was chosen
which is based on GenBank 115 entries. EID provides exhaustive data about
eukaryotic protein-coding and intron-containing genes (Saxonov et al. 2000). In
order to emphasize differences which separates natural occurring sequences clearly

from random ones, random pendants of natural sequence sets were generated.
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5.2.2 Network density

An inverse measure of sparseness, the network density (i Cancho and Solé 2001),

is defined as
E

= m’
where FE is the number of edges and N is the number of nodes.

p (5.1)

5.2.3 Measures of divergence

The relative entropy, also known as Kulback-Leibler divergence, is a measure how
different two probability distributions over the same event space are (Manning
and Schiitze 1999). Consider

o put

Zj kyput

as the frequency of the number of links pointing from node 7 over the total number

P(k™) = (5.2)

of outgoing links in the underlying graph. Analogously, a distribution P, (k*')
can also be obtained for the respective node in a genetic segment graph which
was set up with random sequences of the same sample size. Thus, the relative

entropy,
P( kiout)

B (k) o

H(PI|P) = 3" P(k™) log

measures the distance between the natural and random distribution of genomic

segments.

5.2.4 Classification of segments

Segments of different length raise the question if there exists a common distinction
of exon and intron sequences at this level. So to speak, are there segments which
can more or less clearly classified to an exonic or intronic origin?

Thus, there is the interest in the a posteriori probability that the exon model
applies for a certain segment, P(E |s). This treatment is inspired by Bayesian
statistics. Thus,

P(s|E)P(FE)

(s|E)P(E)+ P(s|I)(1— P(E))’ (5.4)

P(E|s) = 7
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applies where s is a segment of particular length. E and [ are the samples of
segments from exon and intron sequences which specify P(F) and P(I) =1 —
P(E) being the frequencies of all segments in the respective samples. Obviously,
this terms reflect a priori expectations that segments are related to exon and
intron sets before they are actually seen. Henceforth, P(s|E) and P(s|I) denote
the frequencies that a particular segment s occurs in the set of exon or intron

sequences (Durbin et al. 1998).

5.3 Results

5.3.1 Connectivity distributions

Considering sequences from the perspective of networks which are set up by their
subsequent segments of variable length, raises the hope to get new insights in the
different composition of exon and intron sequences. Networks thus set up exhibit
different distributions of outgoing links depending on the segments size. Intrigu-
ingly, networks of exon segments of Yeast display a transition from an Gaussian
distribution via a truncated power-law to a real power-law shaped connectivity

distribution towards increasing segment size (Figure 5.1).

The same procedure was applied to a set of equally sized set of random sequences.
Even more interestingly, the same sequence of transitions is observed albeit ex-
plicit differences in the distributions parameters are visible. Qualitatively, the
same finding also holds for networks of intron segments of Yeast and their equal
sized random pendant (Figure 5.2). However, it is conspicuous that especially
connectivity distributions of small sized natural segments are more scattered than

the respective random ones.

Coincidentally, this transition is accompanied by a rapid decrease of network
densities towards increasing size of segments as Figure 5.3 shows.

Essentially, what can be observed and generalized easily to segment networks of
other organisms is the transition from a Gaussian distribution of a dense graph to

a sparsely connected scale-free network which is characterized by a real power-law
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towards increasing size of segments. Since the cross-over to completely opposi-
tional network shapes is clearly not sharp, the intermediate level is represented

by a truncated power-law.
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Figure 5.3: Network density distributions of segments networks of Yeast exons, introns and ran-
domly sampled pendants. Natural sequence data were retrieved from EID database. Networks
are based on segments sizes which range from 4 to 12.

5.3.2 Divergence of segment networks

Relative entropy is a measure of divergence of two distributions over the same
event space. Connectivity distributions of segments networks combined with the
respective ones of randomized exon and intron sequences represent such compa-
rable event spaces. Since sets of intron sequences especially of higher eukaryotes
have tremendous sizes, the analysis is restricted to a representative random sam-
ple. Hence, 10 % of each complete sequence sets size were randomly picked,
segmented and networks thus generated. The respective randomized samples of
equal size underwent the same procedures of segmentation and network genera-

tion. Although networks which were set up by natural and randomized sequences
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comprise transitions from random to scale-free network topology with increasing
segments size Figure 5.4 unveils reasonable differences with a certain set of seg-
ment sizes. Strikingly, these particular segment sizes group around those sets

which indicate topology transition.

5.3.3 Classification of exons and intron segments

Segments of different length raise the question if segments can more or less clearly
classified to an exonic or intronic origin. The analysis is carried out on the natural
and random sequence sets of Yeast and Human. In order to keep computational
demands in a reasonable frame but to preserve natural occurring relationships
of sample sizes, the same sets of randomly picked exon and intron sequences as
well as their randomly generated pendants were chosen for this analysis. Figure
5.5 shows histograms of probability frequencies that segments of different size
belong to sets of exon sequences and random exon sequences, respectively. The
set size of Yeast exons exceeds the respective intron one while sizes of the human
sequence sets behave the other way round. These size effect are detectable with
small segment sizes but diminish at latest with segment size 12. Essentially, this
observation also holds for the respective random sets of sequences. Regarding seg-
ment sizes, histograms clarify that sets of random sequences approach increasing

quality of classifications 'faster’.

5.3.4 Connectivity distributions of different eukaryotic or-
ganisms

In a recent paper, weak correlations between nucleotides 10-11 units apart were
reported (Herzel et al. 1998; Herzel et al. 1999). Size 11 was chosen as segment
length to investigate networks of exon and intron sequences of different eukaryotic
organisms. Again the sets of randomly picked sequences was used for this analysis.
Figure 5.6 shows the results. Both distributions show different slopes for different
organisms depending on the organisms complexity. Interestingly, this finding
holds for exons as well as for introns although introns show significantly much

more irregularities.
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5.4 DISCUSSION

5.4.1 Transition from Gaussian to power-law distribution

Interestingly enough, segmentations of sequences towards increasing size of seg-
ments and subsequent set up of graphs constitutes a shift in network topology
which is indicated by a transition from a Gaussian distribution of connectivity to
a real power law. This finding is accompanied by a sharp decline of the networks
density. This observation holds for exon and intron sequences as well as for their

randomized pendants.

The presence of power-laws in the connectivity distributions indicates the ex-
istence of scale-free networks which were initially found to be sparse but highly
clustered networks. The emergence of scale-free networks is based on constant
addition of new nodes which are preferentially attached to already well connected
sites. Thus, a small subset of highly linked nodes determines the topology of the
network. Accordingly, how does the presence of a transition from a Gaussian to
a power-law distribution fit to this picture? The key lies in the densities of net-
works. Since it was observed that the Gaussian distribution of links corresponds
to high network densities, the constant addition of new nodes appears to have a
neglectable influence compared to preferential linkage of already existing nodes to
present nodes. Obviously, this emphasize of preferential attachment with almost

no growth depicts a limiting case of scale-free topology (Barabasi et al. 1999).

Surprisingly, segmentations of all sequence samples proceed to power-law dis-
tributions although natural and randomized distributions of small segment sizes
differ considerably. Presumably, this behavior is the consequence of the sample
size of sequences. The number of possible combinations of nucleotides increases
with 4 and their pairwise combinations with 42V if N is the segment size. Thus,
the capacity to find all combinations in a finite sample of sequences falls off
rapidly with increasing N resulting in the random emergence of highly connected
segments in the case of randomized sequences. In contrast, natural sequences,

provide evolutionary significant segments which thus were copied and combined
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repeatedly.

One might argue that investigations carried out on sets of randomly picked natu-
ral sequences might be an oversimplification. However, scale-free topology suggest
networks which are actually independent of their network size. So, characteristics

of networks will not change with increasing amount of information.

5.4.2 Divergence of network topologies

Obviously, relative entropies of networks set up by natural and randomized se-
quences reveals considerable differences over a broad range of segments. In the
latter section, it was found that sufficiently small and large segments generate
very dense and sparse graphs, respectively. Thus, these degrees of network den-
sity cause these networks to adopt very similar topologies. However, the broad
range between segment sizes 4 and 12 shows considerable divergence between
natural and random networks which indicates concise differences in the underly-
ing network shapes. Coincidentally, these particular set of segment sizes covers
roughly the section of transition. Obviously, this area seems to be the appropriate
section to investigate the differences of sequence compositions between natural
and random sequences as well as between exon and intron sequences. Regarding
Figure 5.4, it is obvious that the sequence composition of exon sequences ob-
served regardless of the organism is far more regular than the respective one of
introns. Thus, it might be reasonable to argue that introns underwent different

compositional procedures than exons.

5.4.3 Classification of segments

Segments of different length raise the hopes to find some of them exclusively in
exon or intron sequences. Results clearly indicate that increasing segment size
enhances the probability that a distinct segment belongs to the set of exons. The
classification rule also takes the relative sizes of the exon and intron sets into
account. It is well known that the size of these sets can differ tremendously be-

tween organisms. However, considerable size effects diminish fast with increasing
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size of segments. Essentially, these findings also hold for randomized sequences.
Since the random generation procedure ensures a broader variety of sequential

composition, the convergence of classification runs even faster.

A good classification that a certain segment occurs either in exons or introns,
respectively, can be achieved with reasonable small segment sizes. So, these
small segments thus classified might be used as probe for the detection of rele-
vant coding and noncoding sequences. Furthermore, segments could also be set
up as combinations which might find relevant coding and noncoding sequences

more efficiently and properly.

5.4.4 Evolutionary aspects

Since scale-free networks grow continously by constant addition of new nodes
which are preferentially attached, these networks remain sparse but preserve a
high degree of local clustering. This latter observation immediately suggests a
core of nodes which turn out to be essential for the evolution of the network.
Metabolic networks and domain networks identified such centers which proved
to be the starting points for the evolution of metaboloms and proteomes (Jeong
et al. 2000; Wagner and Fell 2001; Wuchty 2001). Similar findings also hold for
those networks which segments are sufficiently long in order to gain scale-free
topology. However, in this analysis segments do not fulfill the requirements of
biological entities as is the case in the mentioned examples. Although the frame
applied is clearly generic and does not mediate immediate biological meaning,
the latter statements can still be made. Obviously, cores in networks of segments
are spanned by repeatedly copied and combined segments. The idea that a cer-
tain biological entity such as a gene or domain is copied, subsequently modified
and recombined is a very familiar pattern of genome and proteome evolution.
These considerations about segment cores imply the perception that increasing
sparseness of networks is accompanied by a decreasing degree of local clustering
towards larger segments. Thus, cores diminish as the size of segments grows.
Hence, significant cores presumably might be obtained with segment sizes which

already were found to set up highly divergent network topologies (Figure 5.4).
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Revisiting the idea of using segments as probes, core segments which also prove
to be highly associated to exon sequences as well as their combinations might be
the best choice for investigating otherwise unknown genomic sequences in terms

of detecting genes.

Connectivity distributions of networks which were obtained from exon and intron
sequences of some eukaryotes also have to be considered from the perspective of
evolution. Figure 5.6 displays connectivity distribution of networks set up by
11-mers of exons and introns which were obtained from eukaryotic organisms.
This particular length was chosen for clarity reasons. Especially, this particular
segment size emphasizes strongly connectivity distributions which differ in their
slopes. A similar result was obtained for connectivity distributions of domain net-
works. Due to the organisms complexity, different slopes were obtained (Wuchty
2001). Essentially, the repeatedly copying segments coincides with the increase
of connectivity of the respective segment. Similarly to the results of proteomes,
different slopes indicate the combinatorial requirements in order to set up sets
of exons which are capable to maintain all cellular aspects of the underlying or-
ganism sufficiently. In order to avoid dramatical expansions of genomes, exon
shuffling enabled the combinatorial emergence of different genes. Although seg-
ments are a rough abstraction of genetic entities evolution acts on, highly linked
segments could be treated as evolutionary hubs which help to organize the ge-
nomic space by occasionally linking them to numerous other related segments.
However, this observations also hold for introns albeit their distributions are far
more fuzzy than the exons ones. Furthermore, distributions of introns decline
slowlier. Thus, these observations might indicate the possibility that introns as
well as exons undergo these evolutionary constrains although introns are cur-
rently not assumed to be that essential for the survivability of the cell. However,
the result that introns of higher eukaryotes generate shallow connectivity distri-
butions of segments might be a combinatorial consequence of their tremendous

amount of intron sequences.
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5.4.5 Revisiting former investigations

The results so far clarify some reports of recent time. If Sandberg et al. report
a better performance while classifying sequences by segments of increasing size
(Sandberg et al. 2001) this event coincides with the transition to a scale-free
regime in an analogously generated network. As already shown, this observation
accompanies improving quality of segments classification. Thus, the naive classi-
fier which is based on the predictive power of Bayesian probabilities allows better
prediction if centers of high probability i.e. highly connected segments, start to

evolve with increasing length of segments.

Recent works emphasized the occurrence of di-, tri- and tetranucleotides which
would set up regular graphs or at least networks providing a Gaussian distribution
of links. It would be far presumptuous that these methods detect random noise
albeit the scope was precisely the discovery of sections which clearly exaggerate
noise and provide a characteristic genomic signature of the underlying organism.
The results so far suggest that networks set up by segments of latter lengths do
not exhibit scale-free properties. Since it was already found that certain ranges of
segment sizes causes network topologies to diverge significantly and improves the
quality of classification, it would be reasonable to apply the methods addressed

to these values.

Investigating the abundance of di-, tri- and tetranucleotides, it was found that in-
tergenomic differences are higher than intragenomic ones. It might be expectable
that a comparison of genomes applying the approaches and methods which were

introduced in this paper would yield new interesting results.



CHAPTER 6

Small Worlds in RNA

6.1 Introduction

Structures of RNA molecules can be discussed at an empirically well established
level of resolution known as secondary structure which rather refers to a topology
of binary contacts that arise from specific base pairings (Watson-Crick and GU,
see Figure 6.1) than a geometry cast in terms of coordinates and distances. The
driving force behind secondary structure formation is the stacking of contiguous
base pairs. However, any formation of an energetically favorable double-stranded
region implies the simultaneous formation of an energetically unfavorable loop.
This “frustrated’ energetics lead to vast combinatorics of helix and loop arrange-
ments which span the structural repertoire of an individual RNA sequence.

A secondary structure can be conveniently discretized as a graph which represents
a pattern of base pair contacts (Figure 6.1). This yields a formally well-defined
combinatorial object that can be subject to mathematical treatment. Of par-
ticular interest are secondary structures which satisfy some extremal condition,
such as having largest number of admissible base pairs or minimal free energy.
Structures of these kinds can be computed by dynamic programming (Nussinov
et al. 1978; Nussinov and Jacobson 1980; Waterman and Smith 1978; Zuker and

72
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Figure 6.1: A RNA secondary structure graph. Unpaired positions not enclosed by base pairs,
such as free ends or links between independent structure modules, are called ’external’.

Stiegler 1981; Zuker and Sankoff 1984; Hofacker et al. 1994; Zuker 2000). RNA
thermodynamic folding algorithms have been extended to compute all subopti-
mal conformations (Wuchty et al. 1999; Zuker 1989).

The kinetics of RNA folding are controlled by the structure of the underlying
free-energy landscape. These were recently investigated using folding algorithms
capable of tracing the kinetic folding trajectories of RNA (Flamm et al. 2000;
Isambert and Siggia 2000). Theoretical calculations predict some cases which in-
dicate low barrier heights in free-energy landscapes of RNA (Flamm et al. 2002).
Thus, the diffusion of a RNA’s conformation on its energy landscape may be
determined mainly by the structure and connectivity of its conformational space.
Efforts have been done to model and investigate the structure and properties of

the conformational space (Flamm et al. 1999).

All suboptimal RNA secondary structures within a certain energy range above
the minimum free energy were computed in order to investigate the statistical
properties of tRNA structures. It was found that base modification considerably
sharpens the definition of the ground state structure by constraining energetically

adjacent structures to be adjacent to the ground state (Wuchty et al. 1999).
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Most recently, the conformational space of a simple lattice polymer chain was
mapped to a network (Scala et al. 2001). Thus, conformations are connected if
they switch by a single step out of a predefined move set of elementary conforma-
tional changes. The geometric properties of the network were found to be similar

to those of small-world networks.

Since it was found that tRNA sequences and related sets of suboptimal struc-
tures have uniform properties, I consider the conformational spaces of a typical
RNA sequence, E.coli tRNAP"¢ In order to study the properties of tRNAP"¢ the
conformational spaces of the naturally and randomly modified and unmodified
sequences will be mapped onto networks. Subsequently, the topology of these

networks will be investigated and results discussed.

6.2 Material and methods

6.2.1 Secondary structures

A RNA sequence is denoted by a string | = (z1, s, ..., z,,) of n positions over
the familiar nucleotide alphabet, z; € A = {A,U,G,C} . The bases z; and z,
are the nucleotides at the 5’ and 3’ ends, respectively. The usual formalization
(Waterman 1995; Zuker and Sankoff 1984) views a secondary structure S as a
graph (Figure 6.1) whose nodes represent nucleotides at positions i = 1,...,n of
an RNA sequence of length n. The set of edges connecting the nodes consists of
two disjoint subsets. One is common to all secondary structure graphs, while the
other is specific to each sequence. The common set represents the covalent back-
bone connecting node ¢ with node ¢ + 1, Vi = 1,...,n — 1. The sequence specific
part consists of a set IT of edges i-j, [I = {i-j | i # jandj # i+1 }, representing
admissible hydrogen bonds between the bases at positions i and j, such that (i) ev-
ery edge in Il connects a node to at most one other node, and (ii) the pseudoknot
constraint is met. The latter states that if both -5 and k-l arein II, theni < k£ < j
implies that ¢+ < [ < j. Failure to meet this constraint results in interactions which
are considered to be tertiary contacts (pseudoknots). A sequence S is called com-

patible with a secondary structure &, whenever positions that pair in the spec-
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ification of S(i - j € TI(S)) are occupied by nucleotides which can actually pair
with each other: i -j — [z;,z;] € B = {AU,UA,GC, CG, GU,UG},Vi- j € II(S).
In other words, the set of admissible base pairs which we shall consider consists
of the Watson-Crick pairs {AU,UA,GC,CG} and {GU,UG}. A sequence | specifies
a set of structures S with which it is compatible, S(I) = {Sy, S1, ..., S} U {0},
where Sy is the minimum free energy structure (mfe) and Si,...,S,,, are sub-
optimal conformations ordered with respect to their energy. 0 denotes the open

chain conformation.

6.2.2 RNA folding algorithms

Considering all possible secondary structures one RNA sequence of length n can

3/2 o

adopt, one would roughly estimate the total number of structures to S,, ~ n~
1.85™ (Schuster et al. 1994). Thus, it is computationally expensive to calculate
all secondary structures and henceforth to set up the respective conformational
space. So, the set of conformations was restricted to suboptimal structures within
a certain energy range above the minimum free energy structure. These structures
were easily computed with the program RNAsubopt (Wuchty et al. 1999) which is
part of the Vienna RNA package (http://www.tbi.univie.ac.at/ ivo/RNA/) (Ho-
facker et al. 1994). Essentially, RNAsubopt extends the standard RNA folding
algorithm which emphasizes dynamic programming by an extended backtracking
procedure. This admits the alternative arrangement of secondary structure ele-
ments in conformations which are within a certain energy range above the energy

of the energetically most stable structure.

In order to obtain and investigate structures which are local energy minima and
saddle points which connect minima by a downhill walk starting from them, the
program barriers was used (http://www.tbi.univie.ac.at/ ivo/RNA /Barriers/)
(Flamm et al. 2002). Taking the output of RNAsubopt, barriers starts to scan
the vicinity of the minimum free energy structure in order to detect adjacent
structures which might either be transient structures on the way to other optima,

local minima or saddle points connecting them. This procedure is repeated for
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the whole set of suboptimal structures. Energy barriers are the energy difference

between a local minima to its saddle points.

6.2.3 Conformational space

The set S forms the conformational space G¢(Ve, Ec) which considers its struc-
tures as the set of vertices V. The set of undirected edges E¢ represents elemen-
tary moves between conformations which are restricted to the formation, removal
and shift or flip move of base pairs. Figure 6.2 gives a schematic overview of these
conformational changes. These can be considered from the perspective of a base
pair based metric. Removal and formation of a base pair would cause d = 1 as
the base pair distance between the respective merging conformations since one
base pair is immediately affected. Analogously, a shift or flip move of base pairs
would result in base pair distance d = 2, since two base pairs have been changed

in the underlying conformation.

In this graph, the degree k; of a vertex 7 is the number of other vertices to
which it is linked. In other words, k; represents the number of adjacent struc-

tures which are reachable with one elementary move from the given one.

The mean path length L from a vertex to any other vertex of the graph is defined

as the average of the path lengths to all other vertices.

Another important quantity is the clustering coefficient C; of a vertex i. It
measures the fraction of the vertices connected to v which are also connected to
each other. In extension, the clustering coefficient C' of the graph is defined as

the average of C; over all i.

6.2.4 Graph tools

Graph analysis tools were written in C++ using the LEDA library of data
types (Mehlhorn and Naeher 1999). PAJEK (the Slovene word for spider), a

program for large network analysis and visualization, was used for the illustra-
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Figure 6.2: Elementary moves in the conformational space of RNA. Secondary structures are
shown in circle representation. Base pairs which are going to change are indicated bold. Base
pairs after a move are shown dot-dashed. Removal and formation of a base pair cause d = 1 as
the base pair distance between the conformations since one base pair is immediately affected.
Analogously, a shift or flip move of base pairs results in base pair distance d = 2, since two
base pairs have changed the underlying conformations.

tions of the graphs (Batagelj and Mrvar 1998) (available at http://vlado.fmf.uni-
1j.si/pub/networks/pajek/).

6.2.5 tRNA sequences

It was already found that tRNA sequences constitute similar statistical proper-
ties (Wuchty et al. 1999). Hence, the E.coli tRNAPE sequence (EMBL acc.no.
RF6280) was exemplarily chosen as a typical protagonist of tRNAs from the com-
pilation of Sprinzl et al. (http://www.uni-bayreuth.de/departments/biochemie/sprinzl/trna/)
(Sprinzl et al. 1998). Bases are translated as suggested by Higgs (Higgs 1995).
Some of these modifications still prevent the respective bases from pairing. The
same number of such modifications was randomly distributed over the sequence

in order to get the randomly modified sequence. Figure 6.3 gives a schematic
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impression.

tRNAPhe ;
naturally modified:
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA
unmodified:
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA
randomly modified:
GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

Figure 6.3: Secondary structure of tRNAP"¢ (RF6280) and its sequences used throughout the
analysis. The structure was obtained with the RNAfold algorithm. Modified bases are indicated
red.
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Sets of suboptimal structures within an energy range of 117, where T =
310.15K, above the respective minimum free energies of all sequences were com-

puted and conformational spaces thus obtained.

6.3 Results

The conformational spaces of the three tRNA sequences are sparse with small
average degrees compared to the maximal possible degree £k = n — 1 where n is
the number of vertices (Table 1). Although just fractions - albeit the most impor-
tant ones since they provide the global and the lowest local energy minima - of
each conformational space is considered, the number of structures differs strongly
(Table 6.1). Obviously, this is a consequence of modifications which restricts the

number of structures and conformational transitions. The comparison of prop-

H natural none random

Ty 1163 5853 2531
(ky) 9,77 13,15 10,54
nconn.comp. 21 167 69

Table 6.1: Basic data of the conformational spaces of the naturally modified, unmodified and
randomly modified E.coli tRNAPP® sequence.

erties of the conformational graphs and respective random graphs of equal size

reveals interesting results. Joint aspects will be discussed first.

H L L’random C Crandom
natural || 5,72 2.70 0.5564 0.0161
none 6.85 2.94 0.1660 0.0016
random || 5.89 2.86 0.2504 0.0044

Table 6.2: Characteristic path lengths, C, and mean path length, L, of the naturally modified,
unmodified and randomly modified E.coli tRNAPP® sequence.

Mean path lengths L of all conformational spaces considered show that values of
rough equal size and always exceed the respective numbers of equal sized ran-

dom networks slightly (Table 6.2). Furthermore, Figure 6.4 shows a correlation
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between the number of nodes, NV, and the logarithm of the mean path lengths,
L ~ log N, of the underlying conformational networks which is typical for ran-
dom graphs (Bollobds 1998) as well as for small-world networks (Barabdsi et al.

1999). Regarding Figure 6.4, it is obvious that this correlation only holds for
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Figure 6.4: Total number of structures vs. mean path length of the underlying conformational
space. Modified, unmodified and randomly modified sequences of E.coli tRNAP"® were consid-
ered. Large symbols refer to these data points. Suboptimal structures lie within 117 above
the respective minimum free energy. Analogously, the respective numbers of random graphs of
equal size were plotted which refer to the small symbols.

a sufficient large number of nodes and is roughly independent of the modifica-
tions superimposed onto the tRNA sequence. Also the respective numbers of
the random graphs of equal size were plotted which show the logarithmic cor-
relation too. However, the slope of the curves is far lower than the ones of the
natural occurring graphs. Proceeding with joint features of these graphs, Fig-
ure 6.5 shows connectivity distributions of the conformational spaces considered.
Regardless of the tRNA modifications, the exponentially decaying connectivities
remind to Poisson distributions which are typical for random graph topology as
well as for small-world networks. Differences between conformational and random

graphs are intriguing with respect to mean clustering coefficients, C'. Table 6.2
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Figure 6.5: Connectivity distribution of the conformational spaces. Modified, unmodified and
randomly modified sequences of E.coli tRNAP"® were considered. Suboptimal structures lie
within 11T above the respective minimum free energy. Connectivity numbers were binned
and frequencies thus obtained.

shows that the numbers regarding the conformational spaces greatly exceed the
respective ones of the random graphs. This portrays the existence of small-world
topology in conformational spaces of RNA. Furthermore, it is important to note

that this finding is apparently independent of the degree of modification.

Considering properties which are characteristic for small-world networks, the
mean path length, L, and the mean clustering coefficient, C', should be com-
pared. Figure 6.6 shows histograms of these properties regarding the conforma-
tional spaces under consideration. Table 6.2 suggested the conformational space
of the modified sequence to be distinctively more clustered than the other ones.
However, it should be noted that in comparison to the unmodified sequence the
randomly modified generates a more clustered conformational space. These ob-
servations will go to more detail in the histograms of Figure 6.6. Obviously, the

distinct natural modifications of the tRNA shift clustering coefficients, C,, to
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Figure 6.6: Histograms of mean clustering coefficient, C, and mean path lengths, L. Confor-
mational spaces of modified, unmodified and randomly modified sequences of E.coli tRNAPhe
were considered.
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higher values. In principle, this observation also holds for the numbers of the
randomly modified sequence. On the other hand, Table 6.2 suggests mean path
lengths, L,, of the modified sequences to lower numbers. This trend is confirmed
in Figure 6.6 which indicates that natural modifications drive the distribution of
L to smaller values. Furthermore, the latter distribution proves to be narrower
than the respective ones of conformational spaces which were generated by ran-
domly and unmodified sequences.

In a Boltzmann weighted ensemble, the probability of the ¢th suboptimal struc-

ture to occur is defined as
o~ Fi/kT
pi = Wa (6.1)
1

where the sum over all suboptimal structures defines the partition function.
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Figure 6.7: Probability of a certain structure against arithmetic mean number of adjacent
structures. Conformational spaces of modified, unmodified and randomly modified sequences
of E.coli tRNAPP® were considered.

Figure 6.7 and 6.8 show some correlations which are related to this ensemble
probability of structures. Interestingly, regardless of the degree of modification
all conformational spaces show a positive power-law dependency of the probabil-

ity of structures to the arithmetic mean number of transitions to other structures.
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Figure 6.8: Probability of a certain structure against arithmetic mean fraction of links which
point to structures of lower energy. Conformational spaces of modified, unmodified and ran-
domly modified sequences of E.coli tRNAPP® were considered.

In other words, the more probable (i.e. stable in thermodynamic terms) the struc-
ture in the ensemble, the higher the probability to find it frequently in the vicinity
of other structures. In contrast, the more frequent one structure occurs in the en-
semble, the lower the probability to find a structure of lower energy in its vicinity
which is indicated by its mean fractions. Since modifications prevent the bases
affected from binding, a considerable amount of conformations can not occur
which shifts distributions of modified sequences to higher ensemble probabilities.
Interestingly, power-law coefficients prove to be approximately the same for all
distributions. So, modifications prevent conformations from folding but leave the
structure of the underlying conformational spaces essentially unchanged. In order
to construct a more comprehensive image of the conformational spaces, Figure
6.9 takes a look on the impact of modifications to barrier heights which separates
local minima energetically. Interestingly, a partly exponential behavior can be
found in these frequency distributions. Nevertheless, Figure 6.9 suggests that the
distribution of barrier heights is not influenced saliently by tRNA modifications
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Figure 6.9: Frequency distributions of barrier heights which occur in conformational spaces of
modified, unmodified and randomly modified sequences of E.coli tRNAPPe.

since all distribution tend to coincide in ranges of high frequency.

6.4 Discussion

6.4.1 Data of conformational spaces

It was already mentioned that the total number of structures estimated was
tremendous. Thus, I only considered cutouts of the respective conformational
spaces. Table 6.1 shows that these small cutouts comprise high numbers of con-
nected components which are strongly subjected to modifications. One might
argue that this perspective on conformational spaces might be too simple. How-
ever, the complete knowledge of the whole structure space is not necessary in
order to comprehend its fundamental properties since it was explicitly shown
that modifications which considerably reduces the number of structures do not

change the underlying topology of the conformational space.



6.4. DISCUSSION 86

6.4.2 Aspects of small-worldedness

The topology of small-world networks uncovers nodes which prove to be more
highly linked than the average nodes. In other works, these particular nodes
were credited a special role. This particular set of nodes were identified as an
evolutionary ’core’ in metabolic networks (Fell and Wagner 2000; Wagner and Fell
2001). Similarly, some protein domains were found to serve as starting points of
proteome evolution (Wuchty 2001). Obviously, highly linked structures can be
credited a similar role. They prove to be energetically stable and frequently occur-
ring in the thermodynamic ensemble which denote a local minima in a reasonable
amount of cases. Since these conformations show high numbers of structures in
their vicinity, they have to comprise a structural and energetical disposition which
enable them to transit from one structure to the other. However, it should also
be kept in mind that this observation is subject to the move set which essentially

shapes the conformational space.

The most salient features of small-world topology in conformational spaces of
RNA is the high degree of local clustering. Results indicate that natural mod-
ifications influence the degrees of local clustering far more than random or no
modifications. The immediate result is a shift towards high numbers of the mean
clustering coefficient, C' (Figure 6.6). Thus, the natural modifications have a

subtle streamlining effect on the shape of the conformational space.

The second feature of small-worldedness is the mean path length through a net-
work, L. The influence of the topology on L is not as thorough as it is on the
mean clustering coefficient. However, subtle differences between the degrees of
modifications can still be detected. Coincidently, high degree of local clustering
is accompanied by a streamlined mean path length distribution. Obviously, this

finding is also subject to modifications.

To conclude, modifications leave the nature of small-world topology untouched
albeit natural modifications have a reasonable enhancing and streamlining effect

on the features of this topology.
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6.4.3 Imagination of energy landscapes

Modifications of any kind do not alter the barrier heights between local min-
ima. However, the influence on the landscape is a different one. Since modi-
fications inhibit the folding of some structures, the underlying conformational
space remains more sparse than conformational spaces of unmodified sequences.
Henceforth, modifications also prevent partly energetically unfavorable barriers
from emergence leading to energy minima which might be traps for the folding
process. Thus, conformational spaces of unmodified RNA sequences show a sculp-
tured landscape with considerably more possibilities to slow the folding process
by getting trapped preferentially in an energetically unfavorable energy minimum
(Figure 6.10). The probability that the folding process stops in a particular min-
imum in this smooth landscape depends essentially on the barrier heights. The
kinetic folding process can thus be simulated stochastically (Flamm et al. 2000)
and is beyond the scope of this work. Focusing on conformational spaces which
were shaped with the aid of modifications, the topology is substantially modified.
Figure 6.11 sums the results of this study. Since the folding opportunities and
transitions between them are substantially limited, certain folding funnels emerge
and lead more frequently to distinct kinetically favorable structures. Considering
stochastic simulations of tRNA conformation spaces, they frequently prove to be
the biological meaningful ones (Flamm et al. 2000). This observation coincides
with a increased degree of connectivity and local clustering which enhances the
relevance of folding funnels and focuses the mean number of steps through the

conformational space.
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Figure 6.10: Merged landscape of the unmodified E.coli tRNAPP® sequence. Black dots char-
acterize local minima, light grey ones denote saddle points. Secondary structures indicate the
minimum free energy structure and structures of some important local minimas.
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Figure 6.11: Merged landscape of the naturally modified E.coli tRNAPR® sequence. Black
dots characterize local minima, light grey ones denote saddle points. The secondary structure
indicates the minimum free energy structure.



CHAPTER 7

Conclusions and outlook

The discovery of small-world and scale-free properties in various biological net-
works sheds a new light on the discussion about the significance of their topolo-
gies. Networks of protein domains, protein and domain interactions, genomic
segments and RNA structure spaces turn out to be sparse but remain locally well
clustered providing occasional long-range connections between these clusters.

The scale-free and small-world model explain the evolutionary emergence of these
biological networks particularly well. In these models, evolutionary relevance is
rewarded with an increasing degree of connectivity. Regarding scale-free topol-
ogy, this is the immediate result of continuous addition of nodes and their sub-
sequent preferential attachment. The set up of small-world networks emphasizes
randomly rewiring of an initially regular graph as the most crucial point. In
contrast to scale-free networks, the total number of nodes remains constant. Al-
though the results are very encouraging, it has to be kept clearly in mind that

both models are a considerable simplification of the real situation.

Domain distributions in proteomes reflect the underlying organisms complex-
ity indicating an evolutionary trend to higher connectivity of domains towards

multicellular eukaryotic organisms. Thus, the emergence of multicellularity re-
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quires proteomes which feature complex cellular processes like signal transduction
or cell-cell contacts. Expansion of particular domain families, domain accretion
and extensive shuffling of domains leads to increasing combinatorial diversity
which imitate the essential processes of the scale-free and small-world model. So,
protein sets are provided which are sufficient to preserve cellular procedures with-
out dramatically expanding the absolute size of the protein complement. Thus,
highly connected domains display the emerging importance of the cellular pro-
cesses mentioned and denote functional centers which contribute essentially to
the large scale organization of the domain space.

In this study, the connectivity of nodes was taken as a measure of centrality.
Since this value does not reflect the complexity of the network on the whole and
the influence of a single node in particular, other measures of centrality might be
applied. Such measures might be used as tools to dissect proteomes of organisms
in order to identify the occurrence of key domains, their combinations and the

emergence of their functions in evolution.

The comparison of protein, domain interaction and domain networks of Sac-
charomyces cerevisiae significantly shows that there is merely a weak correlation
between lethality and transitivity of nodes as well as their degree of connectivity.
Thus, the idea that lethal proteins and domains accumulated considerably more
connections which was stated elsewhere recently does not hold. Furthermore,
domain interactions do not prove to be the driving force of domain fusions.

In contrast to the interaction networks, domain networks have been found to ex-
hibit considerable small-world properties which might have been the consequence
of ’domain rewiring’ processes during the proteomes evolution.

The set of protein interactions is determined by the set of domains the proteins
provide. Since the amount of interaction data grows constantly and the quality
of domain information still improves, both sources of information can be com-
bined in order to provide a framework which enables the reliable prediction of

interactions of otherwise unknown proteins.

A segmentation of sequences to equal lengths results in adjacent pieces which

resemble a network structure. The consideration of a series of increasing segment
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sizes constitutes a shift in network topology which is indicated by a transition
from a Gaussian distribution of connectivity to a real power-law. This finding
is obviously an immediate consequence of decreasing sparsity of networks. In-
terestingly, this observation holds for exon and introns as well as for randomly
generated sequences albeit distributions of natural and random sequences differ
significantly. Similarly to the domain networks, natural sequences provide evo-
lutionary significant segments which thus were copied and combined repeatedly.
So, the connectivity distributions reflect the biological complexity of the under-
lying organisms. In contrast to protein domains, segments are a rough treatment
of biological entities.

Considering differences of network topologies which were set up by natural and
random sequences, relative entropy as a measure of divergence was applied. Thus,
a comparison proved that network topologies differ significantly with segment
sizes ranging from 4 to 12. This areas seem to be the appropriate sections to
investigate the differences of sequence compositions between natural and random
sequences as well as between exon and intron sequences.

A reasonable classification that a certain segment occurs either in exons or in-
trons, respectively, can be achieved with relatively small segment sizes which
might be used as effective probes for the detection and investigation of exon and
intron sequences.

The idea of segmenting sequences resembles the emergence of a language. How-
ever, segments of equal length are a very rough abstraction of words. In order
to obtain a 'DNA language’ that helps to get insights into e.g. sequential com-
position of exons and introns and protein structure, it is necessary to define new

words of different lengths.

Conformational spaces of tRNA set up by sets of suboptimal structures and a
move set defining transitions between them were discussed from the perspective
of small-world topology. On the one hand, independent from any modification
which inhibits distinct structures from folding, the conformational spaces adopt
small-world topology which emphasizes local clusters of structures and a few
transitions between them. On the other hand, modifications prove to enhance

these typical small-world network properties. They influence the shape of the
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energy landscape considerably showing a good correlation between mean num-
bers of adjacent structures and some degrees of connectivity in the underlying

conformational space.

Summarizing, the study of the topologies of biochemical networks resulted in
an insight into their evolution and function in a very effective way. The un-
derstanding, how networks of a certain topology emerge, gives us an increased
knowledge about biological history. Moreover, functional aspects of information

flow and robustness can be inferred.
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