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Abstract

We investigate eigenvectors of a graph Laplacian and their nodal do-
mains. We consider the adjacency, Laplacian, and generalized Laplacian (a
symmetric matrix with non-positive off-diagonal elements) of a graph. The
generalized Laplacian is also called a discrete Schrodinger operator. We as-
sociate a graph with a real vector. A nodal domain of a vector is a connected
component of the maximal induced subgraph of the associated graph on
which the vector does not change sign. A nodal domain is also called sign
graph. The discrete analogue of Courant’s nodal domain theorem provides
upper bounds on the number of nodal domains of an eigenvector depending
on the location of the corresponding eigenvalue in the spectrum. This bound
is not sharp in general. We consider the problem of finding minimal and
maximal numbers of nodal domains for some graph classes.

We present the relationship between nodal domains and hyperplane ar-
rangements.

We consider a generalized Laplacian of a tree. We characterize for a tree:
the maximal number of the strong nodal domains of an eigenvector corre-
sponding to the k-th eigenvalue. We give an O(n?) time algorithm finding an
eigenvector with maximum number of the strong nodal domains, which cor-
responds to the k-th eigenvalue. We show that to find an eigenvector of the
k-th eigenvalue, which has minimum number of the strong nodal domains, is
NP-complete.

For the Laplacian matrix of a hypercube, we show that each eigenvalue
except the largest one has an eigenvector with two weak nodal domains.
We also show that the first half of the eigenvalues have an eigenvector with
two strong nodal domains. We give a lower bound for the number of nodal
domains of eigenvectors belonging to the second largest eigenvalue.

We consider the Laplacian matrix of a cograph. A graph is called cograph
if it has no path with four vertices as an induced subgraph. We give an
algorithm for finding the minimum or maximum number of nodal domains
of a cograph in O(n?) time. Finally we prove the conjecture that the rank of
the adjacency matrix of a cograph is equal to the number of distinct nonzero
columns of the adjacency matrix.



Zusammenfassung

Wir beschaftigen uns mit den Eigenvektoren von Graph-Laplace-Operato-
ren und ihren Knotengebieten. Wir betrachten Adjazenzmatrix, Laplacema-
trix und verallgemeinerte Laplacematrix (eine symetrische Matrix mit nicht-
positiven nicht diagonal Elementen). Eine verallgemeinerte Laplacematrix
heisst auch diskreter Schrodinger-Operator. Wir assoziieren einen Graphen
mit einem Vektor. Ein Knotengebiet eines Vektors ist ein maximal zusam-
menhangender Teilgraph, auf dem der Vektor nicht das Vorzeichen wech-
selt. Ein Knotengebiet heisst auch ein Vorzeichengraph. Die diskrete Ver-
sion von Courant’s Knotengebiettheorem gibt eine obere Schranke fiir die
Anzahl der Knotengebiete eines Eigenvektors in Abhéingigkeit von der Lage
des zugehorigen Eigenwertes im Spektrum an. Diese Schranke ist im all-
gemeinen nicht scharf. Wir betrachten minimale und maximale Anzahl an
Knotengebieten fiir einigen Graphklassen.

Fiir eine verallgemeinerte Laplacematrix eines Baumes charakterisieren
wir die maximale Anzahl an starken Knotengebieten eines Eigenvektors zum
k-ten Eigenwert. Wir geben einen Algorithmus an, der einen Eigenvektor
mit maximaler Anzahl an starken Knotengebieten in O(n?) Zeit findet. Wir
zeigen, dass das Finden eines Eigenvektors zum k-ten Eigenwert mit mini-
maler Anzahl an starken Knotengebieten NP-vollstindig ist.

Fiir die Laplacematrix eines Hyperwiirfels zeigen wir, dass jeder Eigen-
wert (ausser dem grossten Eigenwert) einen Eigenvektor mit zwei schwachen
Knotengebieten hat. Wir zeigen auch, dass fiir die erste Halfte der Eigenwerte
ein Eigenvektor mit zwei starken Knotengebieten existiert. Wir geben auch
eine untere Schranke fiir die Anzahl an Knotengebieten des Eigenvektors des
zweitgrossten Eigenwert an.

Wir berachten auch Laplacematrizen von Cographen. Wir geben einen
Algorithmus an, der die minimale und maximale Anzahl der Knotengebiete
in O(n?) Zeit findet. Wir beweisen, dass der Rang einer Adjazenzmatrix des
Cographen gleich der Anzahl der paarweise verschiedenen Spalten ist.
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1. INTRODUCTION

The foundations of spectral graph theory were laid in the fifties and sixties
of the last century. Since then, spectral methods have become standard
techniques in (algebraic) graph theory. The eigenvalues of graphs, most
often defined as the eigenvalues of the adjacency matrix, have received much
attention over the last thirty years as a means of characterizing classes of
graphs and for obtaining bounds on properties such as the diameter, girth,
chromatic number, connectivity, etc. [5, 20, 21, 45, 47]. More recently, the
interest has shifted somewhat from the adjacency spectrum to the spectrum
of the closely related graph Laplacian, see e.g., [18, 50, 68, 69]. Again, the
dominating part of the theory is concerned with the eigenvalues.

Kac [58] asked whether one could hear the shape of a drum. Consider
an elastic plane membrane whose boundary is fixed. If small vibrations are
induced in the membrane, it is not unreasonable to expect a point on its
surface to move only vertically. If the effects of damping are ignored, the
motion of the point is given (at least approximately) by a wave equation. By
the assumption that the membrane is elastic and the vibrations are small,
we get the classical solution of a Dirichlet problem which involves a count-
able sequence of eigenvalues (the human ear hears the spectrum, i.e., the
frequencies of the tones, produced by the membrane). Kac’s question is:
Can nonisometric drums afford the same eigenvalues? The answer is: We
can’t hear the shape of a drum [48].

Fisher [38] considered the discrete analogue to Kac’s problem. In his
model the membrane consists a set of atoms which in the equilibrium state
lie on the vertices of a regular lattice graph embedded in a plane. Each
atom acts on its neighboring atoms by elastic forces. The discretization of
the vibration of a membrane is the Laplacian matrix of the graph with its
eigenvalues corresponding to the frequencies of the membrane. We also can’t
hear the discrete shape of a drum, because the eigenvalues of a graph don’t
determine the graph uniquely (see e.g., [21]).

The eigenvectors of graphs, on the other side, have received only sporadic
attention on their own. Even the recent book on Eigenspaces of Graphs [22]
contains only a few pages on the geometric properties of the eigenvectors
which are mostly used as a convenient proof technique.
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Eigenvectors of graphs have been used to design heuristics for some com-
binatorial optimization problems such as graph partitioning [52, 71, 72] and
graph coloring [3]. Their application in graph drawing is discussed in [40,
49, 61, 70]. The cost functions of a number of prominent combinatorial opti-
mization problems, among them the TSP, graph bi-partitioning, and certain
spin glass models, are eigenfunctions of graphs associated with search heuris-
tics for these problems [51, 55, 77]. This observation was one of the starting
points of the algebraic theory of fitness landscapes which is reviewed in [73].
In this section we briefly review some of the applications of eigenvalues and
eigenvectors of a graph.

The second smallest eigenvector of a Laplacian can be used for graph
bipartitioning. By graph bipartition, we want to find a vertex separator S
of a graph G such that S has few vertices and S disconnects G — S into
two parts A, B with nearly equal numbers of vertices. Pothen et al. [71]
give the following heuristic method for the bipartition: Compute the second
smallest eigenvector x of the Laplacian. Assign each vertex the value of its
corresponding entry in . Compute the median of elements of z. Bipartition
the vertices as follows: the vertices whose values are less than or equal to
the median form one part; the rest of the vertices form the other part. The
quality of this heuristics is given by Guattery and Miller [52]. Alpert et al.
[1] give a multiple eigenvector extension of this heuristics.

Eigenvectors can be used to obtain a coloring of a graph. Aspvall and
Gilbert [3] used the sign pattern of an eigenvector of the adjacency matrix
for a heuristics graph coloring algorithm. The following idea is used for this
method. For a collection of eigenvectors, the vertices u and v belong to
the same color class (partition) if and only if v and v have the same sign
patterns of the collection (with the zero entries considered positive). We add
new eigenvectors to the collection (if necessary) to get a valid coloring.

Eigenvectors are also used for graph drawing. An embedding of a graph in
R* is a map from vertices of a graph into R¥, in other words an embedding
consists of the positions of the vertices in an k-dimensional drawing of a
graph. The second, third, and fourth (sometimes fifth) smallest eigenvectors
of a Laplacian can be used for an embedding of a graph in R®. For a better
embedding of fullerenes, the eigenvectors of the adjacency matrix are also
used (see [49, 61]). Pisanski and Taylor [70] give a method for drawing
a graph in any number of dimensions: Compute an orthonormal basis of
eigenvectors x!,..., 2" of the Laplacian matrix of a graph with n vertices.
The eigenvectors z2, . .., 2%t yields the columns of the embedding in R¥ with
minimum energy (energy is defined as the sum of the square of the Euclidean
distance of two adjacent vertices).

Eigenvalues and eigenvectors have applications to chemistry. Accord-
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ing to quantum theory, the properties of micro-objects (electrons, atoms,
molecules) in a stationary state are described by wave functions ¥, represent-
ing solutions of Schrodinger’s equation S¥ = EW, in which S is the energy
operator and F is the energy of the object under consideration. For a certain
class of compounds of carbon and hydrogen, the conjugated hydrocarbons,
the approximate solutions of the Schrodinger’s equation are as follows. The
skeleton of the molecule can be represented in a natural manner by a simple
graph. The molecular orbitals are determined by approximation in quan-
tum chemistry as an eigenvalue problem. The eigenvalues represent possible
values for the energy of electrons, and the coordinates of the correspond-
ing eigenvectors determine the molecular orbitals which are characterized by
such energies. For details see, e.g., [79]. These approximations form the ba-
sis of the so-called Hiickel theory [56]. In this way the task of determining
molecular-orbital energies is reduced to the determination of the spectrum of
the corresponding molecular graph. We refer to [4, 10, 79] for presentations
of the chemical graph theory.

Maas [65] showed that the Laplacian eigenvalues of a graph determine the
kinematic behavior of a liquid flowing through a system of communicating
pipes. The second smallest eigenvalue determines the behavior of the flow.

Another application of graph eigenvectors is used in economics. Maslov
[66] gives a simple measure of the level of financial globalization of a given
country based on the analysis of cross-correlations between stock market in-
dices in different countries and regions of the world. He studies the empirical
correlation matrix (this matrix is symmetric, non-negative definite but in
general it is not a graph Laplacian) of index price fluctuations in a large
number of individual countries. The three largest eigenvalues and the corre-
sponding eigenvectors are used for the observation of the influence of world
index dynamics.

Organization of the Thesis

In chapter 2, we recall some notions from graph theory, linear algebra
and complexity of algorithms. We give a brief introduction to the graph
Laplacians that we use throughout this thesis.

Our main interest concerns the nodal domains, so chapter 3 gives an
introduction to this topic. We associate a graph G with a real vector. A
nodal domain of a vector is a connected components of the maximal induced
subgraph of G on which vector does not change sign. The discrete analogue
of Courant’s nodal domain theorem and some other results are presented
which were known before. Finally we present the relationship between nodal
domains and hyperplane arrangements.

In particular, we investigate maximum or minimum number of nodal do-
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mains of eigenvectors belonging to an eigenvalue of a graph Laplacian.

In chapter 4, the nodal domains of a tree is studied. We consider a
generalized Laplacian of a tree. We characterize for a tree: the maximal
number of the strong nodal domains of an eigenvector corresponding to an
eigenvalue \;. We give an O(n?) time algorithm to find an eigenvector with
maximum number of the strong nodal domains, which corresponds to an
eigenvalue Ay (see [6]). Finally we show that to find an eigenvector of an
eigenvalue \;, which has minimum number of the strong nodal domains, is
NP-complete (see [6]).

In chapter 5, the nodal domains of a hypercube is studied. We consider
the Laplacian matrix of a hypercube. We show that each eigenvalue except
the largest one has an eigenvector with two weak nodal domains. We also
show that the first half of the eigenvalues have an eigenvector with two strong
nodal domains (see [7]). Finally we give a lower bound for the number of
nodal domains of eigenvectors belonging to the second largest eigenvalue (see
[7D)-

In chapter 6, the nodal domains of a cograph is studied. A graph G =
(V, E) is called cograph if G has no induced subgraph P,. We consider the
Laplacian matrix of a cograph. We give an algorithm that find the minimum
or maximum number of nodal domains of a cograph in O(|V|+ |E|) time (see
[8]). Finally we study the conjecture that the rank of the adjacency matrix
A(Q) of a cograph G is equal to the number of distinct nonzero columns of
A(G). We prove this conjecture (see [8]).

In the last chapter we present some counterexamples and open problems
on nodal domains.



2. GRAPH LAPLACIANS

2.1 Basic Definitions

In this section we recall some notions from graph theory, linear algebra and
complexity of algorithms.

Graphs

We briefly give the terminology in graph theory needed in this thesis. For
standard graph theoretical terms not defined here we refer to [29, 83].

A graph G = (V, E) is a pair with V' a nonempty finite set called the
vertices and an edge set E, where an edge is an unordered pair of distinct
vertices. We also use V(G) and E(G) to denote the vertex set and edge set of
G, respectively. We denote the cardinality of a set S by |S|. An edge e = uv
connects the vertices v and v, and we say that u and v are adjacent or u is
a neighbor of v.

Graphs as we have defined them above are sometimes referred to as simple
graphs.

The number of neighbors of v is called the degree of v and denoted by d,.
If all the vertices of a graph G have the same degree k, then G is k-reqular,
or simply regular.

The complement G¢ of a graph G has the same vertex set as G, where
vertices u and v are adjacent in G° if and only if they are not adjacent in G.

A graph is called complete if every pair of vertices are adjacent, and the
complete graph with n vertices denoted by K.

A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). A
subgraph H of G is an induced subgraph if two vertices of V (H) are adjacent
if and only if the are adjacent in G. If U C V(G), then G[U] denotes the
induced subgraph of G with vertex set U. If U is any set of vertices of G, we
write G — U for G|V \ U]. We write G — v rather than G — {v}. For a subset
F of E(G) we write G — F := (V,E\ F). Instead of G — {e} we write G — e
and we say deleting edge e.

A clique is a subgraph that is complete. A set of vertices is independent
if no two of its elements are adjacent.
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A path with k vertices from u to v in a graph is a sequence of £ distinct
vertices starting with v and ending with v such that consecutive vertices are
adjacent. We denote a path with & vertices by Py. If there is a path between
any two vertices of a graph G, then G is connected, otherwise disconnected. A
maximal connected induced subgraph of G is called (connected) component
of G.

A cycleis a connected graph where every vertex has exactly two neighbors.
A graph containing no cycles is called a forest. A connected forest is called
a tree.

A graph G = (V, E) is called k-partiteif V' admits a partition into £ classes
such that vertices in the same partition class must not be adjacent. Instead
of 2-partite one says usually bipartite. An k-partite graph in which every two
vertices from different partition classes are adjacent is called complete and
denoted by K, _ .,-

Let e = uv be an edge of G = (V, E). By G/e we denote the graph ob-
tained from G by contracting the edge e into a new vertex v, which becomes
adjacent to all the former neighbors of u and of v. We delete any multiple
edges or loops.

A graph H that can be obtained from G by series of deletions and con-
tractions of edges and deletions of isolated vertices is called a minor of G.

Linear Algebra

We recall the main results of the linear algebra of symmetric matrices over
the real numbers, which is the basis for the subsequent chapters.

Let M be areal nxn matrix. An eigenvalue of M is a number A satisfying
Mzx = Az for a nonzero vector z. Any such vector z is called an eigenvector
of the matrix M belonging (affording, with) to the eigenvalue lambda. The
space of all eigenvectors of M belonging to A together with the null vector,
is called the eigenspace of . The dimension of the eigenspace is called the
geometric multiplicity of X\. If M is symmetric, the geometric multiplicity
is equal to the multiplicity of A as the root of the characteristic polynomial
det(M — M) of M. The eigenvalues of a real symmetric matrix are real
numbers. Let M be an n X n real symmetric matrix. Then R™ has an
orthonormal basis consisting of eigenvectors of M.

The spectrum of a matrix is the list of its eigenvalues together with their
multiplicities.

The trace of a square matrix A is the sum of the diagonal entries and is
denoted by tr(A). The trace of a square matrix is also equal to the sum of
its eigenvalues. Therefore, tr(L(G)) =Y 1 di=> 1 A

The spectral radius p(A) of a matrix is the maximum of the absolute value
of its eigenvalues.
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GersSgorin Theorem. Let M be an n x n matriz and let r; = 37, | My,
fori=1,...,n. Then every eigenvalue of M lies in at least one of the discs
|z — My;| <y, fori=1,...,n in the complezr plane. Furthermore, if a union
of k disks has no point in common with the remaining n — k disks, then there
are precisely k eigenvalues of M in this union.

Algorithms and their Complexity

In the analysis of an algorithm, first of all we are interested in its complezity,
which is measured by the number of elementary operations of an algorithm.
The complexity of an algorithm depends on the size of its input. An algorithm
is an O(g(n)) algorithm for some function g(n) of its input size if the running
time of its input size n never exceeds cg(n) for some constant ¢ and a positive
integer n. An algorithm is a polynomial algorithm if g(n) is a polynomial in
n.

There are many interesting algorithmic problems concerning graphs for
which no polynomial algorithm are known. Many of those problems belong
to the class of NP-complete problems. For a detailed introduction to the class
of NP-complete problems, see [43].

A problem is a decision problem if it requires the answer ’yes’ or 'no’. A
problem is understood as a family of instances. For example, we consider
the Hamilton cycle problem: given a graph, decide whether or not it has a
Hamilton cycle. Every graph provides an instance of this problem.

A decision problem S belongs to the complexity class P if and only if
there exits a polynomial algorithm which, given any instance of S, produces
answer 'yes’ or 'no’ such that the answer of the algorithm on input x is ’yes’
if and only if x is a ’yes’ instance for S.

A decision problem belongs to the complexity class NP if, for every ’yes’
instance of the problem, there exists a short 'proof’, called a certificate, of
polynomial size such that, using the certificate, one can verify in polynomial
time that the instance is indeed a ’yes’ instance.

Given a pair of decision problems S, T, we say that S is polynomially re-
ducible to T if there is a polynomial algorithm A that transforms an instance
x of S into an instance A(z) of T such that the second instance has the same
answer as the first one. That is, z is a ’yes’ instance of S if and only if A(x)
is a ’yes’ instance of T'.

A decision problem is NP-hard if all problems in NP can be polynomially
reduced this problem. If the problem is NP-hard and also belongs to NP
then it is NP-complete. Polynomial transformations are transitive. Hence,
in order to prove that W is in NP-hard, it is sufficient to prove that there is
some NP-complete problem which is polynomial reducible to W.
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2.2 Graph Laplacians

There are various matrices that are associated with a graph. Here we in-
troduce the adjacency, Laplacian and generalized Laplacian matrices of a
graph.

Let G = (V, E) be a simple graph with vertex set V = {1,...,n} and
edge set E. The entries of the adjacency matriz A(G) of G are Ay, = 1 if
the vertices u and w are adjacent and 0 otherwise. The degree matrix D(G)
of G is diagonal with D,, being the degree of vertex v. The Laplacian matriz
of G is the matrix

L(G) = D(G) — A(G).

We also say graph Laplacian or Laplacian and we use L as shorthand for
L(G) when G is clear from the context or unimportant (analogously, A for
A(Q@)). Similarly, we refer to the eigenvalues, eigenvectors etc. of G for the
eigenvalues and eigenvectors and so on of the associated matrix of G. The
graph Laplacian is symmetric.

The Laplacian L(G) can be viewed as a proper discretization of the fa-
miliar Laplacian differential operator.

Now we show the basic fact that the graph Laplacian is non-negative
definite (i.e., 'L(G)x > 0 for vector z in R"). Let G be a graph with n
vertices and x be a vector in R").

(Lz)y, = dyz, — Z z;,

vjeR
_ t
Lz = (diz — E Tjy ..oy dyly — E x;)’, and
1j€eE njekE
'Ly = E d;x? —25 T = g z; — z;)° > 0.
ijeER ijelE

If G is a connected graph with n vertices then the constant vector e, =
(1,...,1) is the unique eigenvector with eigenvalue 0, Le, = 0 (for a proof
see Corollary 2.1). Each eigenvector x of L(G), which is orthogonal to e,
has at least two entries with opposite sign and of course >, z; = 0.

In particular, we are interesting in the eigenvectors of a Laplacian. Merris
[67] considers several eigenvector principles for a Laplacian. We review here
some of them.

Proposition 2.1. [67] Let G be a graph with n vertices. If 0 # X\ < n is
an eigenvalue of L(Q), then any eigenvector affording A takes the value 0 on
every vertex of degree n — 1.
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Proof. Let v be a vertex of degree n—1. (Lx), = (n—1)zy — >, Ti = ATy,
hence nx, = Az, and z, = 0. O

Proposition 2.2. [67] Let A be an eigenvalue of L(G) afforded by eigenvector
z. If x, = z,, then X is an eigenvalue of L(G") afforded by x, where G’ is
the graph obtained from G by deleting or adding the edge e = uv depending
on whether or not e = uv is an edge of G.

Let G = (V, E) be a graph. Fix a nonempty subset W of V. Delete all
the vertices in V' \ W that are not adjacent to a vertex of . Then remove
any remaining edges that are not incident with a vertex of W. The resulting

graph is called reduced graph G{W}.

Proposition 2.3. [67] Let G = (V, E) be a graph. Fiz a nonempty subset W
of V.. Suppose x is an eigenvector of the reduced graph G{W} that affords A
and is supported by W in the sense that if x, # 0, then u € W. Then the
extension ' = (z,0) is an eigenvector of G affording A.

Proposition 2.4. [67] Let G be a graph with n vertices and x an eigenvector
affording A\. Let N, be the set of neighbors of v. Suppose x, = x, = 0, where
N, NN, =0. Let G' be the graph on n — 1 vertices obtained by coalescing u
and v into a single vertex, which is adjacent in G' precisely to those vertices
that are adjacent in G to u or to v. The vector obtained from x by deleting
uth coordinate of x is an eigenvector of G' affording \.

If G is a regular graph, then the eigenvalues of the Laplacian are deter-
mined by the eigenvalues of the adjacency matrix.

Proposition 2.5. Let G be a k-reqular graph. If the adjacency matrix
A(Q) has eigenvalues A1, ..., \,, then the Laplacian L(G) has eigenvalues
k—X,....k—)\,.

Proof. If G is k-regular, then L(G) = D(G) — A(G) = kI — A. Thus every
eigenvector of A with eigenvalue A is an eigenvector of L(G) with eigenvalue
k— A O

The next well-known result describes the relation between the Laplacian
spectrum of GG and the Laplacian spectrum of its complement G¢. The matrix
J is the n X n matrix each of whose entries is 1.

Proposition 2.6. If G is a graph with n vertices, x is orthogonal to e, and
x is an eigenvector of L(G) with eigenvalue A\, then x is an eigenvector of
L(G°) with eigenvalue n — \.
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Proof. We start observing that L(G) + L(G®) = nlI — J and Jz = 0. Then,
nz = (nl — J)x = L(G)z + L(G®) = Ax + L(G°)x.
Therefore, L(G®)x = (n — A\)z. O

Let A be an n x n real matrix. The underlying directed graph of A has
vertex set {1,...,n}, with an arc from vertex u to vertex w if and only if
Ayw # 0. (Note that this directed graph may have loops). A square matrix is
irreducible if its underlying graph is strongly connected (i.e., any two vertices
u, s can be joined by a directed path).

Perron-Frobenius Theorem. Let A be a real nonnegative n X n matriz
whose underlying directed graph is strongly connected. Then

(i) p(A) is a single eigenvalue of A. If x is an eigenvector for p, then no
entries of © are zero, and all have the same sign.

(#) Let Ay be a real nonnegative n X n matriz such that A — Ay is nonneg-
ative. Then p(A;) < p(A), with equality if and only if A; = A.

There are many generalized Laplacians associated with each graph, which
at first glance seem only tenuously related.

Chung [18] defined a general and normalized form of the Laplacian matrix,
which is consistent with the eigenvalues in spectral geometry and in stochastic
processes. She defined the Laplacian matrix as follows:

1 ifu=wvandd, #0,
My, = _\/lezv if u and v are adjacent,

0 otherwise.

Another graph Laplacian comes from quantum mechanics. The approxi-
mations of Schrodinger’s equation give the following eigenvalue problem for
organic molecules (see for details, e.g., [79]).

Hr=(a— ANz, H=(8-Mo)A,

where A is the adjacency matrix of the graph representing the organic molecule,
and «, 3,0 are constants which are assumed to be known. The matrix H
is also called Hiickel matriz. These approximations form the basis of the
so-called Hiickel theory [56].

Fiedler [35] considers a more general matrix for a tree. He called a
real symmetric n X n matrix M acyclic if for any mutually distinct indices
ki,...,ks (s > 3) the equality My, g, My, - - - My k, = 0 is fulfilled.
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We generalize the Laplacian matrix of a graph as follows. Let G be a
graph with n vertices. We call a symmetric matrix M a generalized Laplacian
of G if My, < 0 when uw is an edge of G and M,,, = 0 when u and w are
distinct and not adjacent. There are no constraints on the diagonal entries
of M. The ordinary Laplacian is a generalized Laplacian, and if A is the
adjacency matrix of G, then —A is a generalized Laplacian. A generalized
Laplacian matrix is also called a discrete Schrodinger operator associated
with G, see e.g. [25]. Colin de Verdiere’s famous graph invariant p is closely
related to this class of operators [24].

The generalized Laplacian M (G) can be viewed as a linear operator on
the space of a function f:V(G) — R which satisfies

Mf(w) = Myfv) = > Myf(u).

vu€E(G)
We consider the smallest eigenvalue \; of a generalized Laplacian of G.

Corollary 2.1. Let G be a connected graph with a generalized Laplacian M.
If G is connected, then the smallest eigenvalue Ay of M is simple and the
corresponding eitgenvector can be taken to have all entries positive.

Proof. If M is a generalized Laplacian of G, then for any ¢, the matrix M —cl
is a generalized Laplacian of G with the same eigenvectors as M. We choose
a constant ¢ such that all diagonal entries of M — ¢l are nonpositive. By
Perron-Frobenius Theorem, the largest eigenvalue of —M + ¢l is simple and
the associated eigenvector may be taken to have only positive entries. O



3. NODAL DOMAINS

In the previous chapter we have seen that by the Perron-Frobenius Theo-
rem the eigenvector of the first eigenvalue A; have all entries positive for a
generalized Laplacian matrix M of a connected graph G. In this chapter
we see that something similar holds for eigenvectors belonging to the other
eigenvalues of M. We investigate nodal domains of an eigenvector, i.e., the
connected components of the maximal induced subgraph of G' on which an
eigenvector does not change sign. The analogue of Courant’s nodal domain
theorem provides upper bounds on the number of nodal domains depending
on the location of the eigenvalue in the spectrum.

3.1 Nodal Domains

We associate a graph G = (V, E) with vertex set V = {1,...,n} vertices with
a real vector x = (r1,...,%,). A positive (negative) strong nodal domain is
a maximal connected induced subgraph of G on vertices 1 € V with z; > 0
(z; < 0). Analogously, a positive (negative) weak nodal domain is a maximal
connected induced subgraph of G on vertices i € V with z; > 0 (z; < 0).
Let SND(z) denote the number of strong nodal domains of the vector x and
WND(z) the number of weak nodal domains of the vector z. Obviously,
WND(z) < SND(z). A strong or weak nodal domain is also called sign
graph (see [23]). E.g., for the graph G in Fig. 3.1 with vector z, the vector
x has two positive and three negative strong nodal domains, respectively.
The vector z has also one positive and two negative weak nodal domains,
respectively. Hence SND(z) =5 and WND(z) = 3.

In other words, we consider a function f: V — R on G = (V, E). Such
a function is called a landscape on G in [73]. A strong nodal domain (weak
nodal domain) of f is a maximal connected induced subgraph G[W] of G
with vertex set W such that f(u)f(v) >0 (f(u)f(v) > 0) for all u,v € W.

By the definition of weak nodal domains, each zero vertex belongs to
exactly one weak positive nodal domain and exactly one weak negative nodal
domain. If two different weak nodal domains 57, Ss of a vector overlap, then
they must have opposite signs except zero vertices.
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Fig. 3.1: The strong and weak nodal domains of the vector
z=(-1,-45,3,2,7,-1,3,-2,0,3.2,-2.5,0)

For a graph G, it is easy to see that the number of strong nodal domains
is at most the number of vertices of the induced bipartite subgraph of G' with
maximum number of vertices. To find such an induced bipartite subgraph of
G is a well known NP-complete problem (see, e.g., [43]).

Similarly, there exists an upper bound for weak nodal domains of an arbitrary
vector.

Proposition 3.1. [63] Let G = (V,E) be a connected graph and G* =
(V*, E*) be a bipartite minor with a mazimum number of vertices of G such
that edges are only contracted in G and multiple edges and loops are deleted in
the resulting graph, if necessary. Then WND(z) < |V*|, for any real vector
x.

Proof. By contraction all edges uv for which z,, z, > 0 and all edges uv with
Ty, Ty < 0 we get a bipartite minor of G. Thus every weak positive nodal
domain and every strong negative nodal domain of z collapses in to a single
vertex. This minor is bipartite and the result follows, since G* is bipartite
minor with maximum vertices. ]

We remark that finding maximal bipartite minors is also an NP-complete
problem!. The upper bound according to maximal bipartite minor does
not hold for strong nodal domains. For the graph in Fig. 3.2 the eigenvector
(1,-1,0,1, —1) has four strong nodal domains, but maximum bipartite minor
has at most three vertices.

1T thank H. Miiller for this note.
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1 -1
X
1 -1

Fig. 3.2: A counterexample to the maximum bipartite minor

Instead of arbitrary vectors let us now consider the nodal domains of an
eigenvector of a generalized Laplacian.

Proposition 3.2. Let M be a generalized Laplacian of a graph G and let x be
an eigenvector of M. Then any vertex v with x, = 0 either has all neighbors
u with x, = 0, or has two neighbors v and w with x, > 0 and z,, < 0.

Proof. Let v be a vertex with z, = 0. Then

(Mx)v Mz, + Z My, = Z My,z, =0

vu€eE(G) vu€E(G)

Since M, < 0 when v is adjacent to u, either z,, = 0 for all vertices adjacent
to v, or the sum has both positive and negative terms. O

We say two different strong (weak) nodal domains Si, Sy of a vector are
adjacent if there exit vertices v; € S1,ve € Sy such that vivy € E(G). By the
definition, if two different strong (weak) nodal domains are adjacent, then
they have opposite signs.

Proposition 3.3. [23] Let = be an eigenvector of a generalized Laplacian
M(G). Suppose Si, Sy are adjacent weak nodal domains of x. There is a pair
of vertices vy, vy such that vi € Sy, and vy € Sy \ S1 and v1vy is an edge of

G.

We focus our attention on the k-th eigenvalue \; of a generalized Laplacian
M, and suppose that it has multiplicity r, so that

AL S S < A=A = = M1 < Mg S S A

Throughout this manuscript we assume that the eigenvalues are numbered in
non-decreasing order.

Theorem 3.1. Discrete Nodal Domain Theorem [23]
Let M be a generalized Laplacian of a connected graph with n vertices. Then
any eigenvector x corresponding to eigenvalue N, with multiplicity r has at

most k + r — 1 strong nodal domains and at most k weak nodal domains. It
means SND(z) < k+r —1 and WND(z) < k.
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Sketch of the proof. Let = be an eigenvector of Ay and x has m strong
nodal domains S;, i = 1,...,m. We define m vectors ¢, i = 1,...,m such
that y} = z; if v; € S;, and gy} = 0 otherwise. Thus z = > ", »*. Now we
form a new vector z =", ¢;y'. Since 3 are not identically to zero and are
disjoint, their span has dimension m. It follows that there exist nonzero real
coefficients ¢;, ¢ = 1,...,m such that z is nonzero and is orthogonal to the
first m — 1 eigenvectors of M (i.e., eigenvectors belonging to the eigenvalues
ALy Ame1). Without loss of generality we can take 2’z = 1. By the
minmax theorem and using straightforward algebra (for details see [23]), we
get

Mz >\, (3.1)
and
1 & o
Mz — N\ = ) 2:(0Z - cj)2ythyJ. (3.2)
ij=1

A term y* My’ is nonzero only if 3¢ and 3/ correspond to adjacent nodal
domains. The adjacent nodal domains have opposite signs and they are
disjoint. Therefore y**My? > 0. Thus Equation (3.2) gives y'My — A, < 0.
This combined with (3.1) states that A\, < Az. Therefore we have m <
k+r—1,ie, SND(z) <k+r—1.

For the proof of the weak nodal domain theorem we use a continuation
result for the coefficients ¢;, which is a discrete analogue of the unique con-
tinuation principle for eigenfunctions.

Suppose that = has s > k weak nodal domains W;, 7+ = 1,...,s. We
choose ¢;, i = 1,...,s, not all zero, to make z orthogonal to the first s — 1
eigenvectors of M as we did above. If two weak nodal domains W; and W;
are adjacent, then ¢; = ¢; (for details see [23]).

Suppose s > k. Since (G is connected, W; must be adjacent to at least one
other nodal domain, which we label W5. Then ¢; = ¢o. If s > 3, one of W;
and Wy must be adjacent to one of the remaining nodal domains, say Wj,
otherwise GG is not connected. Therefore ¢; = ¢ = ¢3. In s — 1 steps we

conclude that ¢, = ¢,_1 = --- = ¢;. Hence z = ¢;x. This is a contradiction
to the claim that z is orthogonal to the first s — 1 eigenvector. Therefore
s < k. O

This is the graph version of Courant’s celebrated Nodal Domain Theorem
for Riemannian manifolds, see e.g. [15, 17]. Various versions of the nodal
domain theorem for graphs and partial proofs were obtained independently
by different authors [25, 31, 41, 72, 80], beginning with the work of M. Fiedler
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who proved the following two results that are corollaries of the nodal domain
theorem:

Corollary 3.1. [34, 35] The eigenvector x affording to the smallest non-zero
eigenvalue of any connected graph has WND(z) = 2 weak nodal domains.

Corollary 3.2. [36] The eigenvector affording A\, has at most k — 1 positive
weak nodal domains for k > 1.

The eigenvector affording the second eigenvalue is often called a Fiedler
vector of G. The associated eigenvalue )y is the algebraic connectivity of G,
which is closely related to the vertex and edge connectivities of G:

o < V(G) < e(G)

As for manifolds, the nodal domain theorem for graphs does not provide
a sharp inequality for all graphs. For manifolds equality for every eigenvalue
holds only in dimension one, i.e. for a string. For spheres with the standard
metric a sharp lower bound on the number of nodal domains exists [62] but
so far no sharp upper bounds are available, see e.g. [2, 59, 60, 64]. For graphs
the situation is similar. There only exist improved upper bounds for trees,
cographs, and hypercubes. In coming chapters we look at the nodal domains
for trees, hypercubes, and cographs. These results show that the “Courant
bounds” are not sharp on non-trivial graph classes.

The number of nodal domains can be much smaller than the bound ob-
tained from the Nodal Domain Theorem. An example are the so-called Faria
vectors [33]: A vector z is called a Faria vector, if x has only two non-zero
elements z, = —x, = 1. Two vertices u and v are called twins if every vertex
w ¢ {u,v} is either adjacent to both u and v or to neither one of them.

Proposition 3.4. A Faria vector x is an eigenvector of the Laplacian of the
graph G if and only if u and v are twins or they are twins except the edge
uv.

Proof. Tt is easy to see from (L(G)),. O

We refer to [11] for a more detailed discussion of twin vertices. Obviously,
Faria vectors exist for arbitrarily large graphs if there is a vertex that is
adjacent to at least two vertices of degree 1.

Proposition 3.5. If a graph with n vertices has a verter v with degree n—1,
then each eigenvector of an eigenvalue A # 0 of Laplacian has two weak nodal
domains.
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Proof. Let v be a vertex of G with degree n — 1. By Proposition 2.1 z, = 0,
for eigenvector x of eigenvalue \ # 0. O

Proposition 3.6. Let x and y be eigenvectors affording eigenvalue A of L(QG)
and L(H), respectively. Let Zg and Zg be the vertices with x, = 0 and y, =
0, respectively. If we add some edges between Zg and Zy, then z = (z,y)
is an eigenvector affording eigenvalue X\ of the new graph G'. Of course
SND(z) = SND(z) + SND(y).

Proof. 1t is easy to see from (L(G")z),. O

Research on the sign properties of the eigenvectors goes back to the re-
search of tridiagonal matrices with negative off-diagonals (see e.g., [42]).

Lower bounds are unknown with the exception of the trivial bound SND(x)
> 2 for A\g, k > 1, and the following result on the largest eigenvalue of a bi-
partite graph.

Theorem 3.2. [74] Let G = (VLU Vs, E) be a connected bipartite graph with
n = |ViUVa| vertices and let M be a generalized Laplacian of G. Then there is
an eigenvector x to the largest eigenvalue of M, such that x is positive on V;
and negative on Va or vice versa and hence satisfies WND(z) = SND(z) = n.

Theorem 3.2 generalizes an analogous result for the the smallest eigen-
value of the adjacency matrix A(G) [3].

By Proposition 2.6 and Corollary 2.1, the largest eigenvalue of the Lapla-
cian matrix is simple for a connected bipartite graph. In general, this is not
the case for generalized Laplacian.

The upper bound for the number strong nodal domains is the number
of vertices of maximum induced bipartite subgraph. Now we show that this
upper bound also holds for some generalized Laplacian.

Theorem 3.3. Let G be a connected graph and H be the mazimum induced
bipartite subgraph of G, then there exits a generalized Laplacian M(G) such
that M(G) has an eigenvector x with |V (H)| strong nodal domains.

Proof. Let H be the maximum induced bipartite subgraph of G with compo-
nents Cf,...,C, and let R be the remaining vertices of G. Let My,..., My
be the generalized Laplacians of C,...,Cy such that diagonal elements of
M; are positive. By Theorem 3.2 the largest eigenvalue A\(M;) of M; has an
eigenvector z° with SND(z?) = |V (C;)|. Eigenvalues \(M;) are positive, since
tr(M;) > 0. Without loss of generality, A\(M;) = b;A(My), for i = 1,...,k.
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The generalized Laplacian of G has the following form:

M, 0 0 At
0 1/byM, 0 0 Al
M = 0 0 : :
0 0 1/byM, AL
A, A Mg

Each vertex v of R has two neighbors u, w in one of C; such that z? and z?
have opposite sign, otherwise we get a new bipartite graph with more vertices
then H. Thus we can choose A, ..., A such that A;z! +--- + Aga* = 0.
Now we show that the vector z = (z¢,...,2%, 0)! is an eigenvector of M,
where z, = 0 for every vertex v of R.

Mz = (Myz', ..., Mya®, Ayt + - 4+ Aga®) = N(M) (2, ..., 2%, 0)

One of the open questions is to find a similar result for the weak nodal
domains with respect to the maximum bipartite minor.

Question 3.1. Let F' be a mazximum bipartite minor of a graph G as defined
in Proposition 8.1. Is there a generalized Laplacian matriz M(G) such that
an eigenvector of M(G) has |V (F)| weak nodal domains?

In the case of degenerate eigenvalues the situation for nodal domains
becomes even more difficult because the number of nodal domains may vary
considerably depending on which vector from the r-dimensional eigenspace
of A\ is chosen.

Hence, given a fixed graph G = (V, E) and an eigenvalue )\, three ques-
tions immediately arise:

What is the “typical” number of nodal domains of a corresponding eigenvec-
tor z?

What is the minimal number of nodal domains of x?

What is the maximal number of nodal domains of x?

3.2 Nodal Domains and Hyperplane Arrangements

It is easy to compute the number of nodal domains for a given eigenvector.
Thus it is no problem to compute the possible number of nodal domains, when
all eigenvalues are simple. The situation changes completely in the case of
degenerate eigenvalues because then the number of nodal domains may vary
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considerably depending on which vector from the r-dimensional eigenspace
of )\, is chosen. To handle this situation we choose an orthonormal basis
ul,...,u" for the eigenspace of \;. Every eigenvector z to the eigenvalue A

is then given by
T
o= ajul = (a,u(v))
j=1

where a = (ai,...,a,), and u(v) = (ul,...,u") is the vector that contains
the values of the basis at the vertex v. The term (a,u(v)) = a’u(v) is the
inner product. Notice that if U is the matrix containing the basis vectors u’
as its columns then u(v) forms the v-th row of U.

The convex hull of the vectors u(v), for v € V, forms a polytope in R",
which is called the eigenpolytope of the graph, see e.g. [14, 46].

It is obvious that the number of nodal domains only depends on the signs
of the eigenvector on each vertex. There is a one-to-one relation between the
eigenvector x and its “coordinate vector” a. The sign at vertex v is given
by the sign of (a,u(v)). The set of eigenvectors that vanish on vertex v
corresponds to the set

H, ={a € R":{a,u(v)) = 0}

which is either a hyperplane through the origin in R" or, if u(v) = 0, H, = R".
The set of all proper hyperplanes forms a hyperplane arrangement

H={H,jveV}

in R", see e.g. [32, 84]. The union of all these hyperplanes creates a cellular
complez in R” or (if we look at normalized eigenvectors) in the sphere S7—1.
A cellular complex consists of disjoint cells, where each cell is either home-
omorphic to an open disc Dy = {a € R%:||a|l; < 1} or a single point. In
the former case we say that the cell has dimension d and the cell is called a
d-cell. In the latter case we have a 0-cell. Additionally, a cellular complex
satisfies the following properties: (i) The union of all cells is the entire space
R" (or S™!); (ii) The boundary of a d-cell consists of the union of cells of
dimension less than d.

Each of the hyperplanes H, splits the R" into three pieces: the hyper-
plane H, itself and the two open half-spaces {a € R"[{(a,u(v)) > 0} and
{a € R"|{a,u(v)) < 0}. Hence, for each vector a € R" we may introduce the
covector or position vector c,. The coordinate c,(v) is the sign of (a,u(v)).
The covector c, is constant in each cell of the cellular complex and it uniquely
determines each cell. Moreover, it corresponds to the sign pattern of the asso-
ciated eigenvector. The co-vectors represent an oriented matroid [9]. Finding
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Fig. 3.3: Hyperplane arrangement (Lh.s.) and the corresponding cells on the
sphere (r.h.s.) of eigenvalue 4 for the hypercube K3. We have r = 3 and
|V(G)| = 8. The vectors u(v) are given by the eight vectors (£1,+1,+1).
Due to symmetry we only have the following cells

dim shape SND WND
2 rectangle 4 4
2 triangle 3 3
1  edge 4 3
0 point 3 2

on the sphere S2. This is easily checked using Mathematica.

all possible values for the number of nodal domains is equivalent to finding all
cells of this complex. However the number of cells explodes with the number
of vertices and the multiplicity r of the eigenvalue. Using a general upper
bound for hyperplane arrangements [32] we have the asymptotic behavior

number of d-cells ~ [V (G)|". (3.3)

An exact and sharp upper bound is given, e.g., in [32].

The following observations will simplify our task. Assume that we go
along a path within a cell towards its boundary. As long as we stay inside the
cell nothing happens and the number of nodal domains remains unchanged.
But if we reach the boundary the eigenvector vanishes on some (but at least
one) of the non-zero vertices whereas all other remain unchanged. This has
two consequences.

If we look at weak nodal domains, then their number is either decreasing
or remains constant, since zero vertices do not separate weak nodal domains.
So we have to look at 0-cells if we want to minimize WND(z) and to cells of
highest dimension if we want to maximize WND(z), for the eigenvector z of
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Ak

If we look at strong nodal domains the situation is much more compli-
cated. Because then zeros separate nodal domains, and SND(z) may in-
crease. However, if the eigenvector vanishes on too many vertices when we
reach the boundary, it might happen that nodal domains disappear which
decreases SND(z). This happens for example with some eigenvectors to the
second eigenvalue of stars (connected graphs where all but one vertex have
degree 1), or more generally with some eigenvectors to eigenvalues where
Faria vectors exist. Figure 3.3 illustrates the situation.

Because of equ.(3.3) it is in practice impossible to calculate all cells of a
hyperplane arrangement for any reasonably sized graph. We have therefore
devised a hillclimbing algorithm to search for the minimum (or maximum)
number of strong (or weak) nodal domains. This algorithm is based on the
above observations, moving from a cell to neighboring cells in search of an
improved number of nodal domains.

Briefly, the algorithm works as follows. Starting from some random
point @ in the hyperplane arrangement with corresponding eigenvector z, =
(a,u(v)). Pick a second random point a’ and move into the direction of this
second point until a boundary in the cellular complex is crossed (i.e., at least
one of the coordinates of the position vector has changed sign and a neigh-
boring cell is entered). To this end we define §(v) = <<$’Z((?)>>, and find the
vertices vy and vq such that §(v;) is smallest with §(v) > 0 and §(vo) is small-
est with d(v) > d(v1). Then set 6 = (6(v1) + 6(v2))/2 and move from a to
a* = a — §d, with corresponding eigenvector z!, = {(a’, u(v)). If the number
of (strong) nodal domains of this new cell is less than or equal to that of
the cell that was moved from, accept this move (i.e., make the new point the
current one). Otherwise, return to the original point (i.e., do not update the
current point). Now repeat this sequence of picking a random second point,
moving towards it from the current point until a cellular boundary is crossed,
and determining whether the move is accepted or not, until some stopping
criterion is reached.

Notice that the algorithm also accepts neutral moves, i.e., moves to neigh-
boring cells that have an equal number of nodal domains. This way, getting
stuck in the middle of some plateau is avoided. Since it is not obvious with
this “random move” algorithm when a local optimum is reached, we termi-
nate the search when the number R of moves without improvement exceeds
a user-defined upper bound.

In practice, one wants to avoid moving back to the cell out of which a move
was just made. This can be easily achieved by either explicitly excluding this
cell from consideration when calculating ¢ for the next step, or by multiplying




3. Nodal Domains 22

the randomly picked o’ with —1 if it turns out that it causes a move back into
the previously visited cell. We use the latter solution in our implementation
of the algorithm.

Obviously this algorithm can be used for maximizing the number of nodal
domains as well. The maximum number R of unproductive moves and the
probability distribution from which the random vectors a and a' are sampled
are parameters of the algorithm.

It must be noted here that this algorithm only deals with coordinate vec-
tors in cells of highest dimension correctly, i.e., the corresponding eigenvec-
tors have no vanishing vertices (except those vertices where all eigenvectors
to the given eigenvalue vanish). It can be adopted such that it also includ-
ing searching on cells of lower dimension. However, there are some difficult
numerical problems that require sophisticated methods from computational
geometry for their solution.

We have made use of this algorithm in Chapter 5 to get an idea of possible
numbers of nodal domains of a hypercube.



4. NODAL DOMAINS OF A TREE

In general it is unknown, whether the upper bound relating to the order
of the eigenvalues is sharp for an arbitrary graph. Moreover, no method
is known to construct an eigenvector to the eigenvalue \; with maximal or
minimal number of the strong (or weak) nodal domains. In this chapter we
characterize for a tree: the maximal number of the strong nodal domains of
an eigenvector corresponding to an eigenvalue \;. We give an O(n?) time
algorithm to find an eigenvector with maximum number of the strong nodal
domains, which corresponds to an eigenvalue \;. We show that to find an
eigenvector of an eigenvalue A\;, which has minimum number of the strong
nodal domains, is NP-complete.

Gantmacher and Krein [42] show that Discrete Nodal Domain theorem is
sharp for paths.

Proposition 4.1. [42] Let M be a generalized Laplacian matriz of a path.
The eigenvalues of M are all simple, and the eigenvector belonging to the
etgenvalue A\, has exactly k strong nodal domains and exactly k weak nodal
domains.

4.1 The Maximal Number of Nodal Domains of a Tree

In the following we say that y is a A-eigenvector (of A) if Ay = \y.
We begin with a special simple case.

Theorem 4.1. Let G be a tree and let M be a generalized Laplacian of G.
If y is a Ax-eigenvector without a vanishing coordinate, then Ay is simple and
y has exactly SND(y) = k strong nodal domains.

The following lemma plays an important role in the proof of the Theorem
4.1.

Lemma 4.1. [35] Let M be a generalized Laplacian of a tree. If y is a Ag-
eigenvector without a vanishing coordinate, then X\, is simple and there are
evactly n — k edges ij, for which M;;yy; < 0.
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Proof of Theorem 4.1. By Lemma 4.1, )\ is simple and there are exactly
n—k edges 7, for which y; and y; have the same sign. Note that M;;y;y; <0
if and only if 7 and j are adjacent and y; and y; have the same sign. We
divide V in three disjoint sets in the following way:

P={ieV : y >0, and there is an edge ij € E, s.t. y; > 0},

S={ieV :y <0, and there is an edge ij € F, s.t. y; < 0}. C is the set
of remaining vertices. The induced subgraphs G[P] and G[S] are forests. Let
p and s are the number of components of G[P] and G|S], respectively. G[P]
and G[S] have |P|—p edges and |S|— s edges, respectively. Since {P,S,C'} is
a partition of V' and using Lemma 4.1, we see |P| —p+|S|—s=n—k. Now
we show that SND(y) = k. Let ¢ and j be vertices of C. If y; and y; have
the same sign, then ¢ and j are not adjacent. Let C_ ={i € C : y; < 0}
and C, = {i € C : y; > 0}. By the definition of P and S, there exist
no edges between C'_ and S and no edges between C, and P, respectively.
Consequently the number of strong nodal domains of y is equal to |C|+p—+s.
Thus

SND(y) = [C|+p+s=n—|P|— S|+ |P|+|S| —n+k=k.
]

Remark. We remark that by Theorems 3.2 and 4.1, the largest eigenvalue of
a generalized Laplacian of a tree is simple.

Next we consider eigenvectors of trees with vanishing coordinates.
Let G = (V, E) be a connected graph, and let M be a generalized Laplacian
of G. Let Z be a subset of V, let G4,...,G,, be the components of G —
Z and let My,..., M,, be generalized Laplacians of Gy,...,G,,. We say
(My,..., My, Az) is a rearrangement of M, if we rearrange the matrix M
with permutation similarity operations in the following way:

Ml M12 MIZ
M= Do

Mml e Mm MmZ

MZl MZm MZ

Theorem 4.2. Let G be a tree with n vertices and let M be a generalized
Laplacian of G. Let A be an eigenvalue of M with multiplicity r > 2. Then
there exists a rearrangement (M, ..., My, Mz) of M such that the following
statements hold:

(i) X is a simple eigenvalue of My,..., My,. The matric M; has a A-
eigenvector without vanishing coordinates, for j =1,...,m.



4. Nodal Domains of a Tree 25

(1) Let ki,..., ky be the positions of \ in the spectra of My,..., My, in
non-decreasing order. Then the number of strong nodal domains of an
eigenvector of A is at most ki + - - - + k,,,

(#i) There exists an eigenvector of X with ki+- - -+k., strong nodal domains.
Such an eigenvector can be found in O(n?) time.

For the proof of Theorem 4.2 we need the following two Lemmas. We
shall prove Lemma 4.3 after the proof of Theorem 4.2.

Lemma 4.2. [35] Fach eigenvector corresponding to a multiple eigenvalue
of a generalized Laplacian of a tree has at least one vanishing coordinate.

We remark that Fiedler [35] proved the results of Lemmas 4.1 and 4.2 for
a more general matrix of a tree.

Lemma 4.3. Let z*, ..., 2" be linearly independent vectors in R" and k < n.
If all linear combinations of ', ..., z* have a vanishing coordinate, then the
vectors x', ..., z* have a common vanishing coordinate.

Proof of Theorem 4.2. Let A\ be an eigenvalue of M with multiplicity » >
2. Let 4',...,y" be linearly independent \-eigenvectors. Let Z be the set of
all common vanishing coordinates of y',...,y". By lemmas 4.2 and 4.3, Z
is not empty and the choice of 4, ...,y" has no influence on Z. The graph
G — 7 is a forest with components T4, ..., T,,. Let My, ..., M,, be generalized
Laplacians of 71, . . ., Tp,. According to the rearrangement (M, ..., M,,, M)
the matrix M has the following form:

M, 0 0 Mz
0 M2 0 MQZ
M = 0o - 0
0 0 M, M,z
Mz Mzm Mz

(1) We write each eigenvector y of A as y = (yny,...,¥r1,,0,...,0), where yr,
denotes the coordinates of eigenvector y belonging to the tree T;. By the
definition of Z, the coordinates of eigenvector y belonging to Z are equal to
zero. Thus the vector My has the following form:

My = (Myyry, ..., Mpyr, %, ..., %) = (Aypy, -+, Ayr,,0,...,0) = Ay

for each A-eigenvector y. Therefore X is an eigenvalue of the matrices M, ...
M,,.

)
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Now we prove that A is a simple eigenvalue of M; and the matrix M; has a
A-eigenvector without vanishing coordinates, for j =1,...,m.

We show that the number of linearly independent vectors of yqle Yoy yglj is
equal to one, for j = 1,...,m. Note that y}j, cen y}j are the restrictions of
the eigenvectors y!, ..., y" to the subtree T;. Assume that there are linearly
independent vectors y%j, e y%j, h > 2. Then the vectors y}j, e y%j are lin-
early independent A-eigenvectors of M;. By Lemmas 4.2 and 4.3 the vectors
y}j s y%, have a common vanishing coordinate. Hence yql} ;-3 Y, have a
common vanishing coordinate, a contradiction to the definition of Z.

We denote by b; the only one linearly independent vector of yilp] yenn ,y{"pj, for
Jj = 1,...,m. The vector b; is a A-eigenvector of M;, for j = 1,...,m.
The eigenvector b; has no vanishing coordinate, for j = 1,...,m. We sup-
pose that b; has a vanishing coordinate. Then y}j, ey y}j have a common
vanishing coordinate, a contradiction to the definition of Z.

(17) Let ki, . .., kn be the positions of A in the spectrum of M, ..., M,, in
non-decreasing order. The number of strong nodal domains of an eigenvector
y = (Bib1,- .-, Bibm,0,...,0) is equal to the sum of the number of strong
nodal domains of £1b1,..., Bmbn. By Theorem 4.1, SND(b;) = k;, for j =
1,...,m. Therefore, SND(y) < ki + - - - + ky,.

(#31) Now we construct an eigenvector x of A with SND(z) = k1 +-- -+ &y,
in following way: By the definition of b;, the linearly independent eigenvectors
y',...,y" are of the form y* = (Bibi, ..., Bimbm,0,...,0), for i = 1,...,7,

where the coefficients (1, ..., B;» are real numbers.
.
Ti=y
fori:=2,...,r do

T =1+ oy,
choose a;: a; # 0 and aigé{—% cyr #0,5=1,...,n}.
J

After this iteration we obtain z = (/1b1, ..., ,.bm,0,...,0). The coefficients
Bis- .-, By, are nonzero numbers. Assume that there exists a 3; = 0. By the
choice of «;, then all 3y5,. .., 3,; are equal to zero. This is a contradiction to
the definition of Z. Therefore, SND(z) = SND(f1b1) + - - - + SND(8/,br) =
ki + -+ + ky. It is easy to see that we need O(n?) operations to find an
eigenvector x with SND(z) = k; + - - - + k,,, from an arbitrary eigensystem of
M. O

Finally, we complete the eigenvalues of a tree.

Corollary 4.1. By Theorem 4.2, if we replace the multiple eigenvalue \
by the simple eigenvalue A\ with an eigenvector y, which has at least one
vanishing coordinate, then the statements of Theorem 4.2 also hold.



4. Nodal Domains of a Tree 27

Proof of Lemma 4.3. Let z!,..., z* be linearly independent vectors in R,
k < n such that all linear combinations of z!,...,z* have a vanishing co-
ordinate. We prove that the vectors z!,...,2* have a common vanishing
coordinate.
If £ = 1, this is trivial. Let £ > 2. Let y be a linear combination of
a', ... 2kl Let Z, = {j : y; = 2¥ = 0}. Without loss of generality let the
first d coordinates of z* be zero and all others elements of 2* be nonzero.
Claim 1: y and z* have a common vanishing coordinate, i.e. Z, is not empty.
Suppose that y and 2* have no common vanishing coordinate. Then the first
d elements of y are nonzero. Now we construct a new vector ¢t = y + BxF.
We choose 3 in the following way: 8 # 0 and 8 # —, fori =d +1,...,n.
Then ¢ has no vanishing coordinate. This is a contradiction.
Claim 2: If u and y are linear combinations of z*, ..., 2% !, then ZyNZy # 0.
Suppose that there exists u and y, such that Z,NZ, = (. By claim 1, Z, and
Z, are not empty. Without loss of generality, the first d elements of u and
y are look like: u = (0,...,0,%,...,+), y = (&,...,£,0,...,0,+,...,+).
Now we construct a new vector ¢ = u + Sy. We choose § such that: 3 # 0
and 8 # _y:”, for i = 1,...,d and y; are nonzero. Then ¢t and z* have no
common zero coordinate. This is a contradiction to claim 1.

Now we define new vectors %° in the following way:
y' =z, y'=y""+ Oifz'l‘i, for i =2,...,k — 1. We choose «; such that:

a; # 0 and o; # —yii' , for all x; nonzero elements, for j =1,...,d.
Claim 3: Z,: is not e]mpty and Zyi = ZpN---NZy, fori=1,...,k—1.
By Claim 1, Z,: is not empty. We prove the other argument with induction
on i. Fori =1, y* = z'. By Claim 1, ' and z* have a common zero
coordinate. We suppose that the claim holds for 3!,..., 3" !. Now we show
that it holds for 4* = 3" ! 4+ a;a*. We choose «; as defined. By Claim 2,
Zyi-1 N Zyi # 0. By the choice of a4, 3} = 0 if and only if j € Z,-1 and
J € Zyi. It means that j € Z,;-1NZ,:. By induction Zyi-1 = Z;N0---NZgi_q.
Then j€ Z, N NZgi_1 N Z:i.

By Claim 3, Zx-1 is not empty and Zye-1 = Zy1 N -+ - N Zye-1. Therefore
z',..., 2% have a common vanishing coordinate. O

We remark that to find the minimum (or maximum) number of weak
nodal domains of a tree is an open problem.
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4.2 The Minimal Number of Nodal Domains

In this section we show that the following problem is NP-complete.
MINIMUM NUMBER OF NODAL DOMAINS
Instance: An n X n matrix M, where M is a generalized Laplacian of a tree,
an eigenvalue A of M with multiplicity r > 2.
Question: Find an eigenvector y of A such that the number of strong nodal
domains of ¥ is minimal.

Let M be a generalized Laplacian of a tree and A is an eigenvalue of M
with multiplicity » > 2. In Theorem 4.2 we proved that linearly indepen-

dent eigenvectors y!,...,y" of A\ have common vanishing coordinates Z and
y* = (Birby, - - -, Bimbm, 0, ...,0), for i =1,...,r, where by,..., b, are vectors
without vanishing coordinates and S, ..., Bim are real numbers. m is the

number of components of G — Z.
Let B=(B;),i=1,...,m, j=1,...,7r. Then an eigenvector y of A has the
following form: y = ((Bx)1by, ..., (Bx)mbm,0,...,0), where z = (zy,...,z,)

is a real vector. Let ki,...,k, be the number of strong nodal domains of
b1, ..., by, respectively. Now we define new variables ¢;(z), i = 1,...,m as
follows:

ci(z) _{ 1, if (Bz); #0.

Then SND(y) = kici(z) + - - - + ke (). Therefore MINIMUM NUMBER
OF NODAL DOMAINS is equivalent to the following minimization problem:

min kici(x) + - - - + k()
x = (z1,...,7,) is a nonzero real vector.

Consequently the decision problem of MINIMUM NUMBER OF NODAL
DOMAINS is the following problem:

MIN(SND)

Instance: An (m X r) matrix B with real entries, positive integers ki, ...,k
and a positive integer s.

Question: Is there a nonzero rational vector x = (z1,...,%,), such that

kicy(x) + - + kpem(x) < 87

Lemma 4.4. The (m X r) matriz B of decision problem MIN(SND) can be
arbitrary large.

Proof. The required example is constructed from the following result by Faria
[33]. Let p be the number of vertices of G with degree one. Let ¢ be the
number of vertices, which are adjacent to a vertex with degree one. Then
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A =1 is an eigenvalue of the Laplacian L(G) with multiplicity » > p — gq.

We consider a binary tree with n vertices and n/2 endvertices. Therefore
A = 11is an eigenvalue of L(G) with multiplicity » > n/4. It is straightforward
to show that m is at least the number of endvertices. Thus m > n/2. O

Now we show that MIN(SND) is NP-complete. For the proof we give
another NP-complete problem. Let x = (z1...,z,) be a real vector. We
denote by support(z), the number of nonzero elements of x.

MINIMUM SUPPORT

Instance: An (m X r) matrix B with rational entries, a positive integer s.
Question: Is there a nonzero rational vector x = (z1,...,x,) such that
support(Bx) < s 7

Lemma 4.5. MINIMUM SUPPORT is NP-complete.
Theorem 4.3. The decision problem MIN(SND) is NP-complete.

Proof. 1t is easy to see that MIN(SND) is in NP. We reduce MINIMUM
SUPPORT to MIN(SND) in following way. We choose ky = -+ = k,, = 1.
The matrix B is the same matrix. We have the bound s. We assume that
there is a vector = such that ¢;(z) + --- 4+ ¢n(z) < s. By the definition of
c1(x), ..., cn(z), the inequality ¢;(z) + - - - + ¢n(z) < s holds if and only if
support(Bx) < s. Therefore we have the solution of MINIMUM SUPPORT.
Thus MIN(SND) is NP-complete. O

Proof of Lemma 4.5. It is easy to see that MINIMUM SUPPORT is in
NP. The following problem is NP-complete:

ONE-IN-THREE

Instance: Set X with n elements and a subset 7" of X x X x X.

Question: Is there a subset Y of X, such that each triple ¢t = (¢1,%2,t3) in T
has exactly one element in Y ?

ONE-IN-THREE is a variant of [LO4] in Garey and Johnson [43] page 259.
We reduce ONE-IN-THREE to MINIMUM SUPPORT in following way. For
each element of X we give a variable z;, for + = 1,...,n. We add a new
variable z,,.1. We introduce rows z; + z,+1 and x; — 2,41 in the matrix B,
for i = 1,...,n. For each triple ¢t = (¢;,t;,¢) in T we introduce the row
Zi +; + Xk + Tpy1, n+ 1 times in B. We set the bound s = n. We assume
that support(Bxz) < n. Then each variable z; is equal t0 T, 11 Or —Zp,1,
for i = 1,...,n and each expression z; + x; + 2y + 2,41 is equal to zero.
Otherwise support(Bz) > n. Now we put the variables z; = x,,1 in Y. It is
easy to see that each triple t = (¢1, 2, t3) in T" has exactly one element in Y if
and only if x; + x4+ 2, + 2,41 is equal to zero. Therefore we have the solution
of ONE-IN-THREE. Thus MINIMUM SUPPORT is NP-complete. O



5. BOOLEAN HYPERCUBES

In this chapter we study the nodal domains of boolean hypercubes. They are
special graph products. Given two non-empty graphs G = (V, E) and H =
(W, F) the Cartesian product GOH has vertex set V x W and (x4, z2) (1, y2)
is an edge in F(GOH) iff either zo = yo and x1y; € E(G) or if x; = y; and
xoy2 € H(E). One may view GUH as the graph obtained from G replacing
each of its vertices of with a copy of H and each of its edges with |V (H)| edges
joining corresponding vertices of H in the two copies. The graph product is
a commutative, associative binary operation on graphs, see e.g. [57].

The Kronecker product, also known as tensor product or direct product, of
two matrices A and B of sizes m x n and s x t, respectively, is the ms x nt
partitioned matrix

anB apB -+ a,B
A 2 B GQ?B CLQ?B . . CLQT.LB
U,mlB amgB s a’mnB

Let G and H be graphs with n, s vertices, respectively. The Laplacian matrix
L(GOH) = L(G)®I;+ 1, L(H). If z is an eigenvector of L(G) affording the
eigenvalue A and y an eigenvector of L(H) affording the eigenvalue y, then
x ®1y is an eigenvector of L(GOH) affording the eigenvalue A+ p. Therefore
the eigenvalues of L(GOH) is the multiset of sum of the eigenvalues of L(G)
and L(H), see e.g. [67]. By the definitions of GOH and Kronecker product,

SND(z ® y) < SND(z)SND(y).

The hypercube K7 is the graph with vertex set V = {(v1,va,...,v,)|v; =
+1} and edges connecting two vertices that differ in a single coordinate, i.e.,
uwv € E iff u; = v; for all but one index j for which we then have u; = —wv;.
The number n of coordinates is usually called the dimension of K3. The
graph has |V| = 2" vertices and |E| = n2"~! edges. It is not hard to verify
that the hypercube is a bipartite graph and it is is equivalently defined as
n-fold Cartesian product of Ky, the graph consisting of a single edge and its
two end vertices.
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The Walsh functions [37, 81]

pr(v) = HUk

kel

where I C {1,2,...,n} are a complete set of eigenvectors of the Laplacian
of the hypercube. These functions satisfy the eigenvalue equation

Lor = 2I|¢;

and the orthogonality relation

(or,00) =Y @1(v)ps(v) = 61,4V

veEV

Thus there are m = (|’}|) eigenvectors with eigenvalue 2|I|. It is customary
to call p = |I| the order of the Walsh function ¢;.

The Walsh functions satisfy the following important recursion w.r.t. the
number n of coordinates:

Pr(Wivnn) = @r(v)  and  Qhyg, (V) = Vnpar(v)  (5.1)

It is sometime more convenient to write equ.(5.1) as a tensor product:

! 1 ! 1
vr=1,)®%r and  @rynyny = ) @

Clearly, ¢}, 1) is an eigenvector of K3t with eigenvalues 2(|I| +1). Tt
follows that all Walsh functions can be obtained recursively in this way. For
more details and further applications of this construction see e.g. [21, 30].

Equ.(5.1) of course holds for any eigenvector z of K% with eigenvalue 2p:
The vector z+ = G) ® x is an eigenvector of K3*! with eigenvalue 2p, while
T = (711) ® = is an eigenvector of K3 ! with eigenvalue 2(p + 1).

It follows immediately from Theorem 3.1 that an eigenvector x with eigen-
value 2p has at most

P p—1
SND(z) < SNDp = > <Z) WND(z) < WND,, =1+ (Z) (5.2)
k=0

k=0

strong and weak nodal domains, respectively. Numerical values are listed in
Table 5.1.

We can use the recursive construction of the Walsh functions in equ.(5.1)
to obtain bounds on the number of nodal domains. The following technical
result will be used repeatedly:
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Tab. 5.1: Upper bounds on the number of strong and weak nodal domains as
function of n and p = |I| as given in equ.(5.2).

= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
n SNDy, »
2 1 3 4
3 1 4 7 8
4 1 5 11 15 16
5 1 6 16 26 31 32
6 1 7 22 42 57 63 64
7 1 8 29 64 99 120 127 128
8 1 9 37 93 163 219 247 255 256
9 1 10 46 130 256 382 466 502 511 512
1 11 56 176 386 638 848 968 1013 1023 1024
1 12 67 232 562 1024 1486 1816 1981 2036 2047 2048
1 13 79 299 794 1586 2510 3302 3797 4017 4083 4095 4096
1 14 92 378 1093 2380 4096 5812 7099 7814 8100 8178 8191 8192
1 15 106 470 1471 3473 6476 9908 12911 14913 15914 16278 16369 16383 16384
WND»
1 2 4
1 2 5 8
1 2 6 12 16
1 2 7 17 27 32
1 2 8 23 43 58 64
1 2 9 30 65 100 121 128
1 2 10 38 94 164 220 248 256
1 2 11 47 131 257 383 467 503 512
1 2 12 57 177 387 639 849 969 1014 1024
1 2 13 68 233 563 1025 1487 1817 1982 2037 2048
1 2 14 80 300 795 1587 2511 3303 3798 4018 4084 4096
1 2 15 93 379 1094 2381 4097 5813 7100 7815 8101 8179 8192
1 2 16 107 471 1472 3474 6477 9909 12912 14914 15915 16279 16370 16384

Lemma 5.1. Let f be any vector on K} and let f+ = G)@f and f~ = (_11)®
f be vectors on Kyt Then WND(f*) = WND(f), SND(f*) = SND(f),
WND(f") <2 WND(f), and SND(f~) =2 SND(f).

Proof. Let W be a connected vertex subset of K7 and denote its boundary
by
oW ={ueV\W|FveW: :uv e FE}

We write (W, v,11) = {v' € Ki v = (v,vp41),v € W} and W' =
(W, +1) U (W, —=1). Clearly, W' is connected and its boundary is oW’ =
(OW, +1)U(0W, —1). Furthermore (OW, +1)N(0W, —1) = 0 and O(W, v,11) =
(OW, vn—H) (I/Va vn+1)-

Now let P be a positive strong nodal domain of f. Then f* is positive
on both (P,+1) and (P,—1) and hence on P’, while f* is non-positive
on 0P, i.e., P’ is a positive strong nodal domain of f*, and consequently
SND(f*) = SND(f). The same argument works analogously for weak nodal
domains.

If P is a strong positive nodal domain of f then f~((P,+1)) > 0, f~((P,—1))
< 0, f7((0P,+1)) < 0, f~((0P,-1)) > 0. It follows immediately that
(P, +1) is a strong positive nodal domain while (P, —1) is a strong negative
nodal domain. Hence SND(f~) = 2SND(f).

Finally, suppose P is a weak positive nodal domain. Then analogously to
the case of strong nodal domains we find WND(f~) < 2WND(f). However
it might happen that P contains a vertex v with f(v) = 0. Then there exists
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a weak negative nodal domain @) that also contains v. Then (P,+1) and
(Q, —1) are weak positive nodal domains that are connected by the vertices
(U: +1) € (P,+1) and (U: _1) € (Q: _1)a since f_((Pa +1)) = f_((Q: _1)) =
0. Thus WND(f~) < 2WND(f). O

Remark. The same results also holds for the Cartesian product of an arbitrary
graph with K.

5.1 The Typical Number of Nodal Domains

In order to define more what we mean by the “typical number of nodal
domains” we must be precise about which vectors in the eigenspace {z|Lx =
Axx} we want to consider. Since we have

Ty = Z arpr(v) (5.3)

L|I|=p

for hypercubes this amounts to specifying a distribution of the coefficients
ar.

From a physics point of view it is most natural to assume that a; are
independent identically distributed Gaussian random variables. In this case
equ.(5.3) defines Derrida’s p-spin models [26, 27] which form an important
and well-studied class of spin glasses which also play an important role in
the theory of fitness landscapes [78].

If we use the hyperplane arrangement described above we might be inter-
ested in the volume of the cells that correspond to a given number of nodal
domains. Computing this volume is very hard to compute, but it can be
done approximately using Monte Carlo integration (see e.g. [39]). For this
purpose the coefficient vectors are sampled from a uniform distribution on
the corresponding sphere.

Fortunately these two pictures are equivalent. Normalizing random vec-
tors that follow a multivariate Gaussian law (as in the first approach) gives
uniformly distributed points on the sphere (see e.g. [28]).
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Fig. 5.1: Distribution of SND(¢) with Walsh coefficients ar, |I| = p drawn inde-
pendently from a Gaussian distribution.
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123456 7 8 9101112131415

Average Number of Strong Nodal Domains

Fig. 5.2: Average number of nodal domains for the eigenvectors of the hypercubes
with n = 2 to 15 as a function of p. The Lh.s. panel gives an overview of
the numerical survey. Black squares denote (n,p)-pairs for which all of
the 1000 randomly generated instances had exactly 2 nodal domains, X
denotes the 2" nodal domains for p = n and the gray boxes scale denote
average numbers of strong nodal domains in the ranges 2 — 3, 3 — 10, and
larger 10.

The r.h.s. panel displays the k-th largest eigenvectors as a function of n.
Note that the largest eigenvalue is unique and has the maximally possible
number of |V| = 2" strong nodal domains.
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5.2 The Minimal Number of Nodal Domains

In the case of weak nodal domains the situation is remarkably simple as the
following result shows:

Theorem 5.1. For all1 < p < n—1 there is an eigenvector x of the Boolean
Hypercube with eigenvalue A = 2p such that WND(z) = 2.

Proof. We will proceed by induction. The hypercube K2 is a cycle with
four vertices. It is straightforward to check that x§2) = (0,1,0,—1) is an
eigenvector with eigenvalue A = 2 and WND(a;gQ)) = 2.

We construct eigenvectors of K3 recursively, for n > 3:

371(3 = <1) ® CCZ(, ) = (a:z() )" forp<n-—1 (5.4)
]‘ n n N
gt = <_1> ®al) = (fcsl_)1> (5.5)
where we use the notation of Lemma 5.1. We recall that xénﬂ) is an eigen-

vector of Ki™' with eigenvalue 2p. By Lemma 5.1 we find for p < n,
WND(z{"™) = WND(z{™) = 2, where the second equality holds by as-
sumption of induction.
Now consider x,@l Assume by induction that WND(fol) = 2. For an
arbitrary vector f we write Vy(f), Vi (f) and V_(f) for the sets of vertices
v where f(v) =0, f(v) > 0, and f(v) < 0, respectively. Let V;" be a copy
of Vo(x;@l) in K3*! with coordinate v,,; = +1 while V, is the copy with
Up+1 = —1. The sets Vi, V.7, V* and V_ are defined analogously. We have
Vo™ = Vit Vg, Vi (@) = Vir UV and Vo (e = v u v

By induction hypothesis V. (z\,)UVy(z"™,) and V_(z™,) UV, (2", ) are
connected, thus the sets V.;FUVyH, VZUVEH, Vo UV, and V2 UV, are also
connected. For each vertex in V" there is a neighboring vertex in V, and
vice versa, hence

Vi(ad ) up(egty) = ViuVtuvy uvz

n

Vo (™Y U V(2" = VIUVFuVuvs

are connected sets, i.e., WND(x%nH)) =2. O

The eigenvector to the highest eigenvalue (which is simple) always has |V/|
nodal domains, hence a hypercube is a bipartite graph and by Theorem 3.2.

For strong nodal domain theorems the situation is much more complicated
(see Tab. 5.2). We can obtain at least a partial result.
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Fig. 5.3: The sign pattern of the eigenvector z(%).

Theorem 5.2. For all 1 < p < n/2 there is an eigenvector x of the Boolean
Hypercube with eigenvalue A = 2p such that SND(z) = 2.

Proof. We will recursively construct eigenvectors z(™ for even n with eigen-
value n and SND(z(™) = 2.

Suppose y, € {—1,1} forallv € V and }_ ., 4, = 0, i.e., half of the
vertices have value +1, the others —1. Such a vector y is an eigenvector of
the Laplacian with eigenvalue n if and only if for each vertex v € V half of
its neighbors v have y, = +1 and the other half satisfies y, = +1. Figure 5.3
shows that such a vector 2*) exists on Kj.

The following notation will be convenient. A sign pattern X is a map
V — {+, —} that assign a sign to each vertex of the hypercube. Given two
sign-patterns X and ) on K% we obtain the sign pattern X|Y on Kyt =
K3OK, by labeling the vertices (v,+1) according to X and the vertices
(v,+1) according to Y, see Fig. 5.3. We write —X for the pattern with
reversed signs.

Let us call a sign pattern Z on K7 admissible if:

(i) There is a product decomposition K = K5 '00K, with sign patterns
X and Y on each of the two copies of K7~' that have half of their
vertices labeled +;

(ii) The subgraph I'} of K7 induced by +labeled vertices of X|) is n/2-
regular. Of course the same holds for the subgraph I'” induced by
+labeled vertices.

Fig. 5.3 shows that the sign pattern of () is admissible.
From (X|Y) we construct the sign pattern

MY = (X)) [Y]X)) | (Y] = X) (=X =D)) (5.6)
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Fig. 5.4: The sign pattern on K;H'Q is built up from the sign sign patterns X and
Y on two copies K57~ ! that together form a KJ. The negative patterns
—X and —) are shown with black and white exchanged.

on K52 which is composed of eight copies of K7~' labeled H; through Hg
as in Fig. 5.4. Each of the four copies K7 labeled HiHy, HsH,, H5Hg, and
H;Hg has either the sign pattern X’|) or the sign pattern —X’|—) and hence
is admissible. Furthermore both (X|Y)|(Y|X) and (—=Y|—X)|(—X|—Y) have
half of their vertices labeled +.

Now fix an arbitrary vertex v of H; and consider its neighbors v' and v”
in Hy and Hj, respectively. These neighbors are of course uniquely defined.
Since Hj has sign pattern ) while Hy has sign pattern —) we conclude that
v" and v” must have the opposite sign, and hence v has n/2 +1 = (n +2)/2
positive neighbors. The same argument can be made for any vertex in each
of the n — 1 dimensional cubes. Thus the subgraph PTQ of K3*? induced by
the +labeled vertices is (n + 2)/2-regular. Therefore X'*|)* is an admissible
sign pattern on K52 and the corresponding vector z("*?) is a Laplacian
eigenvector with eigenvalue n + 2.

Next we show that FTQ and FTQ are connected. Again we proceed by
induction. The sign pattern of z(*) in Fig. 5.3 is such that there are edges
with all four sign combinations ++, +—, —+, and —— between the two
copies of K3 with the sign patterns X and Y, i.e., '} and I'* are connected.

Now assume that edges with all sign combinations between A and Y on
KZ. Then edges with all sign combinations exist also between X and —)
on, say, the cube (Hi, H3) and between —X and ) on (Hjs, H7). It follows
that ['":"? and T™*? are connected, and we see that SND(z("+?)) = 2.

Finally we construct for each p < n/2 the vector

™) if p=n/2
yg(;n) = 1 (n—1) .
(1) ®yp if p<n/2

We know that yz(,") is an eigenvector with eigenvalue p by construction.
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Furthermore, Lemma 5.1 implies that SND(y,(,")) = SND(y},"fl)) = ... =
SND(y5™)) = SND(z(?)) = 2. O

Remark. In general, if we find a partition (A, B) of K} = (A, B) with
|A| = |B| such that the induced subgraphs G[A] and G[B] are connected
and k-regular, then the eigenvalue A = 2(n — k) has an eigenvector = with
SND(z) = 2. This can be constructed by setting z, = 1 for v € A and
z, = —1 for v € B. In the proof of Theorem 5.2 we have found such a
partition for k = n/2. Whether such a partition exists for 3 < k < n/2is an
open problem.

From an extensive numerical survey we conclude that probably a much
stronger result than Theorem 5.2 holds:

Conjecture 5.1. For all 1 < p < n — 2 there is an eigenvector x of the
Boolean Hypercube with eigenvalue X = 2p such that SND(z) = 2.

For the second largest eigenvalue we can find a lower bound:

Theorem 5.3. For every eigenvector y of the Hypercube K}, n > 3, with
eigenvalue A = 2(n — 1) we have SND(y) > n.

Proof. In order to prove this theorem we first need the following technical
result:

Lemma 5.2. Let x be a Laplacian eigenvector to the eigenvalue 2(n — 1)

that satisfies x, # 0 for all v € V and that has positive coefficients a;y > 0

for all I with |I| = n — 1 in its Walsh ezpansion equ.(5.3) and define x|, =
n

$u€0{1,...,n}(v) = Zy H v;. Then:

=1

;L ' . : : :
(1) ' = 32, j—n_1 Vi;ar, where iy is the unique coordinate not contained
in I

(2) x' is monotonically decreasing on every path of length n from 1 =
(1,...,1) to =1 = (=1,...,-1).

(8) For every path of length n from 1 to —1 there is exactly one edge where
x does not change sign.

Remark. z' is an eigenvector to eigenvalue 2.
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Tab. 5.2: Upper and Lower Bounds on the number of nodal domains as functions
of n and p found by numerical experiments using hillclimbing algorithm.

p=11 2 3 4 5 6 7 8 9 10 11 12 13 14
n Upper Bounds on Minimal Number of Strong Nodal Domain
212 4
312 3 8
412 2 4 16
512 2 2 8§ 32
612 2 2 2 14 64
712 2 2 2 2 24 128
812 2 2 2 2 2 44 256
912 2 2 2 2 2 2 84 512

1012 2 2 2 2 2 2 2 160 1024

1112 2 2 2 2 2 2 2 2 314 2048

1212 2 2 2 2 2 2 2 2 2 620 4096

13 |2 1280 8192
14 | 2 2446 16384
n Lower Bounds on Maximal Number of Weak Nodal Domain’
212 4

312 4 8

412 4 8 16

5(2 4 10 16 32

62 4 8§ 18 32 64

712 4 4 15 34 64 128

812 2 12 57 128 256

9|2 72 261 512

t Numbers in bold are bounds that are better then Corollary 5.1. Entries
in italics are numerical value that are known to be underestimates because

of Lemma 5.1.
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Proof of Lemma 5.2. (1) From the definition we obtain

n n n
T =1, HU]' = Z ar p1(v) H:L"j = Z ar Hvk ij
=1 =1

1,/I|=n—1 LiI|=n—1 kel  j=1

n n
= E ar Vg, H’Uk HUj: E Vi ag -
k=1 j=1

I,|I|=n—1 L|I|=n-1

(2) On any path from 1 to —1 the number of negative coordinates of v is
strictly increasing. The result follows since a; > 0 by assumption.

(3) By (2) there is exactly one edge e in every such path where z’ changes sign.
Since []}_, v; has alternating signs on every path, the sign of z, = z;, [[}_, v;
changes except along the edge e. O

First assume that y does not vanish on any vertex. Then using Lemma 5.2
it is easy to show that for every path of length n from the absolute maximum
of y to its antipodal point, y changes sign exactly (n — 1) times. Since every
such path is isometric in K7, vertices of the same sign that are not adjacent
in this path cannot belong to the same nodal domain. Thus such a path
intersects exactly n (different) nodal domains and the proposition follows.
If y, = 0 for some vertex v € V then we can use the same idea as in the proof
of Lemma 5.2. However we find on this path (at most) one vertex v where
y vanishes. Now on each edge of this path y either changes sign or joins v
with a vertex of positive of negative sign. Again the result follows. O

Our experiments show that this bound is not sharp, see Table 5.2.

5.3 The Maximal Number of Nodal Domains

Much less can be said on the maximal number of nodal domains a function
of p. It follows from Lemma 5.1 that the maximum number of strong nodal
domains (listed in the lower part of Table 5.2) must be non-decreasing with n
for fixed p. A hypercube is a bipartite graph and by the trivial consequence
of Theorem 3.2 we have therefore

Corollary 5.1. The eigenvalue 2p has an associated eigenvector x with at
least SND(x) > WND(x) > 2? nodal domains for all n > p.

For reasons that we do not fully understand maximizing the number of
nodal domains on a given eigenspace seems to be much harder than mini-
mizing.
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5.4 Open Questions

We suspect that the bounds in Tab. 5.2 for the minimum number of strong
nodal domains for the 2nd largest eigenvalue are sharp at least for n < 10.
However, the sequence 2, 3, 4, 8, 14, 24, 44, 84, 160, ...does not appear to
be a known integer sequence.

A direct computational approach for the maximum number of strong
nodal domains fails because we would have to compute all cells of dimension
0; this is not only numerically difficult but the number of 0O-cells is also too
large. A completely different approach is therefore required.

The difference in difficulty between minimizing and maximizing the num-
ber of nodal domains deserves an explanation.

It would be interesting to know whether the lower bound WND(z) = 2
for almost all eigenvectors is sharp for e.g. for all expander graphs.



6. COGRAPHS

In the previous chapters we see that it is not always easy to find the maximum
or minimum number of nodal domains. In this chapter we see that this
problem is easy for cographs.

A graph G is called cograph if G has no induced subgraph P,. Cographs
arise in many disparate areas of mathematics and computer science. In this
chapter we consider the Laplacian and adjacency matrices of cographs. We
characterize the number of nodal domains of cographs with respect to the
Laplacian matrix, and the rank of the adjacency matrix of a cograph.

6.1 Nodal Domains of a Cograph

Cographs have several characterizations. The following tree representation
with join and disjoint union operations is more suitable for our purpose.

Let G1 = (V4, E1) and Gy = (Va, E») be graphs on disjoint sets of r and s
vertices, respectively. Their disjoint union G, + G4 is the graph Gy + Gy =
(V1 U Vs, By U Es), and their join Gy *x Gy is the graph on n = r + s vertices
obtained from (1 + (G5 by inserting new edges from each vertex of G; to each
vertex of G.

Lemma 6.1. [19] To each cograph G = (V, E), one can associate a unique
rooted tree T', called the cotree of G'. Each leaf node of T' corresponds to a
(unique) vertex of V. Fach internal node is labeled with a x or a +. Children
of nodes labeled with + are labeled with x, and vice versa. It is possible to
associate a cograph with each node of the cotree T'. Leaf nodes correspond to
the cograph with the one vertex they represent. Internal nodes labeled with
*(+) correspond to the join (disjoint union) of the cographs, corresponding
to the children of the node (see Fig. 6.1). G equals the cograph corresponding
with the root of T. Cographs can be in O(|V| + |E|) time recognized, and in
the same time the corresponding cotree can be buailt.

It means that each cograph G is the disjoint union of two disjoint cographs
G, and Gy, G = G + G4 or G is the join of two disjoint cographs G; and
GQ, G = G1 * GQ.

The following Lemma invites to look for the nodal domains of cographs.
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Fig. 6.1: The cograph G and the cotree T of G

Lemma 6.2. [67] Let Gy and G5 be graphs on disjoint sets of r and s vertices,
respectiwvely. If p < --- <y, and vy < --- < v, are eigenvalues of Laplacian
of G and Gy, respectively. Then the eigenvalues of Gy x Gy are n = r + s;
Mo+ Sy by + S, Vo +1,...,0s+71; and 0. Suppose y is an eigenvector of
GG that is orthogonal to e.. Extend y to G x Gy by defining it to be zero on
V(G2). If y affords the eigenvalue u, the extension of y is an eigenvector of
G1 x Gy affording p+ s. Similarly an eigenvector of Gy affording v extends
to an eigenvector of G1 * Gy affording v + r. The eigenvalue N\ = r + s
corresponds to an eigenvector whose value is —s on each of the r vertices of
G1 and r on each of the s vertices of Go. Finally, the trivial eigenvalue is
afforded by e, .

Obviously, the eigenvalues of the Laplacian L(G; + G9) are the union
of eigenvalues of L(G1) and L(G3) (respecting multiplicity). It follows from
Lemmas 6.1 and 6.2 that the Laplacian eigenvalues of a cograph are integers
and easy to compute from its cotree.

Let T be a rooted tree and let v be a node of T. A subtree at v is the
induced tree by v and all descendants of v. Similarly, a subtree of v is the
subtree at one of the children of v.

Theorem 6.1. For each eigenvalue of the Laplacian of a cograph G = (V, E)
we can find an eigenvector with maximum or minimum number of strong
nodal domains in O(|V |+ |E|) time.

Proof. By Lemma 6.1 a cograph G has a unique cotree 7'. Let v be a node of
the cotree T with subtrees 771, ...,7T; and G4, ..., G} the respective cographs.
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Let G, be the cograph corresponding with v as root. Now we show that
the number of strong nodal domains of G, can be expressed in terms of
the number of strong nodal domains of Gy,...,Gg. Let MaxND()\) and
MinND(\) be eigenvectors of the eigenvalue A with maximum and minimum
number of strong nodal domains, respectively.

If v has the label + (disjoint union), then the eigenvalues of G, are
the union of eigenvalues of Gi,...,G;. Let x',... 2% be the eigenvec-
tors of A with maximum number of strong nodal domains. Then x =
(x1,...,2%) is the eigenvector of A of cograph G, with maximum num-
ber of strong nodal domains and SND(z) = >_7 SND(z*). Similarly let
y',...,y* be the eigenvectors of A\ with minimum number of nodal domains.
Then y = (0,...,0,%%0,...,0) is the eigenvector of A and MinND(\) =
min{SND(y!),...,SND(y*)}.

If v has the label * (join operation), then an easy induction gives that
the eigenvalues of G, are |V(G,)| and g, + >_,; [V(G))|, where Ag, >
0 is an eigenvalue of G; for 7+ = 1,...,k. By Lemma 6.2 the extension
(0,...,0,2%0,...,0) of the eigenvector z* of Ag, is an eigenvector of y =
A+ |V (Gj)|. The eigenvectors {(0, ..., 0, z,0,...,0),...,(0,...,0,z%
,0,...,0)} span the eigenspace of u # |[V(G,)| with respect to the choice
of the basis of Ag,,...,Ag,,, where p = Ag, + 3, V(G| = --- =
AGi, T4, |V (Gj)|. The eigenvectors ™, ..., 2" have at least two vertices
with opposite sign. By join operation all linear combinations of
0,...,0,2,0,...,0),...,(0,...,0,2%,0,...,0) have two nodal domains.
Therefore MaxND(p) = max{MaxND(Ag; ), ..., MaxND(A¢, )}. Similarly,
MinND(p) = 2 for p > 2 and MinND(y) = MinND()g, ) for p = 1.
For the eigenvalue y = |V(G,)| by Lemma 6.1 the children of the node
v are labeled with +. Therefore each of the graphs Gi,...,Gj is either
not connected or a single vertex. Let c¢y,...,c; be the number of con-
nected components of G1,...,G,. By Lemma 6.2 it is easy to see that
MaxND(p) = max{ci, ..., cx} + 1 when the node v has more than two chil-
dren and MaxND(u) = ¢; + ¢ when v has two children.

We have shown that it is enough to build the cotree of a cograph to
find MaxND(X) or MinND(\). By Lemma 6.1 we can build the cotree of
G = (V,E)in O(|V|+ |E|) time. O

Corollary 6.1. The Laplacian eigenvalues of a complete k-partite graph
Ky,..n, withng > --- > ng are 0; n = ny + ---+ ng; and n — n;, for
1 =1,..., k. The marimum number of nodal domains of eigenvalues n and
n — n; are equal to nq + ny and n;, respectively. The minimum number of
nodal domains of all eigenvalues are equal to two.

Corollary 6.2. Let G be a connected cograph with n vertices. Every eigenvec-
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Us—2

U

Fig. 6.2: The typical structure of a threshold graph. A line between cells K; and
Uj indicates that each vertex in K; is adjacent to each vertex of Uj.

tor affording the eigenvalue 0 < XA # n of the Laplacian L(G) has WND(z) =
2 weak nodal domains.

For the WND(z) of an eigenvector = of A = n, see the Proof of Theorem
6.1.

For an important subclass of cographs, namely threshold graphs, we can
directly compute the number of nodal domains without using Theorem 6.1.
A graph G = (V, E) is called as a threshold graph, if G does not contain one
of the three forbidden induced subgraph graphs, Ks+ Ky, C4, or P;. Another
useful characterization of threshold graph is the following.

Lemma 6.3. [16] G is a connected threshold graph if and only if G = (K,U),
where K is a complete graph with a partition of non empty cliques K1, ..., K
and U is an independent set with a partition of non empty independent sets
Ui,...,Us. All vertices of K; are adjacent with all vertices of Uy, for 1 <
h<iandfori=1,...,s. (see Fig. 6.2)

In the next section we use this lemma to characterize the rank of a co-
graph.

By Lemmas 6.2 and 6.3 the Laplacian eigenvalues of a threshold graph
are obtained easily by induction; for a similar procedure see [53].

Corollary 6.3. Let G = (K,U) be a connected threshold graph with the
partitions K; and U;, fori=1,...,s. The eigenvalues of the Laplacian L(Q)
are 0; Z?Zl Uil + 3750 | K| for b= 1,...,8; 375, |KG| for ho = 2,....s;
Z;Zl |K;| when |Uy| > 2. The bounds for the number of strong nodal domains
are:



6. Cographs 47

(i) IFA=30 [Uil + 325, |K;l, then
1. 2 < SND(z) < |Up| + 2 when h > 2,
2. 2<SND(z) < |Uy| +1 when h = 1.

(i) If X =>25_, |K;l, then

1. 2 < SND(z) < |Uy| + 1 when h > 2,
2. SND(z) < |Uy| when h =1 and |Uy| > 2.

These bounds on SND(x) are sharp. The special case G = K, is trivial.

6.2 The Rank of a Cograph

In this section we prove the following conjecture of T. Sillke about the rank
of cographs [76]: The rank of the adjacency matrix A(G) of a cograph G is
equal to the number of distinct nonzero columns of A(G).

First we characterize cographs G, where all columns of A(G) are different.
We prove that adjacency matrices of such cographs have also full rank.

By Lemma 6.1 we know that each cograph G has an associated rooted
cotree T. It is easy to see that we can get a new tree 7" from 7" such that
the leaf nodes of 7" correspond to the set of threshold graphs. We look the
threshold mazimal tree T' with leaf nodes By, ..., B,, that means 7" has no
internal node with children B; and B, such that the corresponding cograph
of B; x B; (B; + B;) is a set of threshold graphs (see Fig. 6.3). We call 7" as
threshold cotree of G.

Proposition 6.1. Let G = (V, E) be a cograph and T its (threshold) cotree
T. Let v be a node of T and L the subtree at v. Let F' be vertices of G which
correspond to leaf nodes of L. Then the vertices of F' have same neighbors
inV —F (we say also outside of F' or outside of the subtree L).

Proof. 1t is easy to see by induction from leaves to the root. O

Lemma 6.4. Let G be cograph and A(QG) its adjacency matriz. All columns
of A(G) are distinct and nonzero if and only if G has a threshold cotree T
with leaves By, ..., B,, where B; are a set of threshold graphs and it holds:

(i) Each independent set U; of a threshold graph of Bj has at most one
vertezx.

(i1) All internal nodes of T with label + have at most one subtree L such
that the corresponding cograph of L has at most one isolated vertex.
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Fig. 6.3: The cotree T' and the threshold cotree T" from T with leaves By, ..., By.

Proof. Let all columns of A(G) be distinct and nonzero. Let T be a threshold
cotree of G with leaves B,,...,B,. B, are set of threshold graphs. We
assume that B, has a threshold graph with |U;| > 2. By Proposition 6.1 all
vertices of U; have the same neighbors. Therefore the columns of vertices
of U; are equal, a contradiction. Let v be an internal node of T" and v has
at least two subtrees with corresponding cographs with isolated vertices. By
Proposition 6.1, the corresponding vertices of these isolated vertices have the
same neighbors outside of these subtrees. Therefore their columns are equal.
The sufficiency part is easy to see by induction from leaves to the root. [

Theorem 6.2. Let G = (V, E) be a cograph and let A(G) be its adjacency
matriz. The rank of A(QG) is equal to the number of distinct nonzero columns

of A(G).

Proof. We show by induction on the number of vertices of G. The case
[V(G)| < 2is trivial. We assume that the assertion holds for [V (G)| < n—1.
We first consider the case that A(G) has at least two equal columns. Without
loss of generality we may assume that A(G) = [a1, .., Gn_2, Gp_1, Gy = Ap_1],
where a; are the columns of the A(G) and the last two columns are equal.
Then rank(A(G)) = rank(A(G — v,)). G — v, is a cograph and by induc-
tion hypothesis, rank(A(G — v,)) is equal to the number of distinct nonzero
columns of the A(G — vy,).

It remains to consider the case that all columns of A(G) are different and
nonzero. This is the main part of the proof. We show that if all columns of
A(G) are different, then all columns of A(G) are linearly independent. Let
a1, ..., 0y, be the coefficient of columns ay, ..., a, such that Y., a;a; = 0.
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We have to show oy = - = a, = 0. Let T be the threshold cotree of G with
leaves Bi,...,B,. The B; are the set of threshold graphs. By Lemma 6.4,
each independent set U; of a threshold graph of B; has at most one vertex,
i.e. the adjacency matrix of such a threshold graph has the form

K Ky K, U U Us

K, A(K)) 1 - 1 1 0 --- 0

Ky 1 AK,) 1 1 1 1 0 0

: 1 1 ' 1 1 1 0

K, 1 o1 AWK, 1 - 1

Uy 1 1 1 0 0 0

U, 0 1 1 0 O 0

: 0 0 . 1 Do o

U, 0 0 1 o -~ --- 0
Claim: Let v be the node of the threshold cotree 7" and L be the subtree
at v. Let aq,...,ar be the columns of vertices of corresponding cograph of
the subtree L. It exists a coefficient a;, where 1 < h < k such that «; are

either a; = cjap, ¢; > 0oro; =0for j=1,... k.

Before we prove the claim, let us apply the claim to the root of the
threshold cotree T'. Then «o; = cjop, ¢; > 0or o =0 for j =1,...,n. From

the row of an arbitrary vertex x of the cograph G, we have

Z o = ¢; =0, then o), = 0.
zjEE(G) zj€E(G)

Hence all coefficients are equal to zero. Therefore all columns of A(G) are
linearly independent.

We prove the claim by induction from leaves to the root of 7. Let H
be one of the threshold graphs of the leaf B; (for A(H) see above). By
Lemma 6.3, H = (K,U) and K; are cliques and U; are independent sets
forv =1,...,s. It is easy to show that the coefficients of the vertices of
the clique K; are equal for 7 = 1,...,s. By Proposition 6.1 each vertex of
threshold graph H has the same neighbors outside of H. Let Ry be the sum
of the coefficient of these neighbors. By using the row belonging to U, the
coefficients of K;,..., K;_; are zero. By the rows belonging to Us_4,..., U,
the coefficients oy, = -+ = o, , = 0. By one of the rows of K; and U, we
get ay, = ak, where ay, is the coeflicient of each vertex of Ky, since

8

a’Ks(|Ks| — 1) +C¥Us + RH =0= CYKS|K5| + RH
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Therefore we are finished for each threshold graph of B;. By Proposition 6.1
each threshold graph of B; has the same neighbors outside of B;. Hence we
are also finished for the leaves B;. Let us now consider an internal node v
of T. Let L, and L, be the subtrees of v and GG; and G5 the corresponding
cographs (we argue analogously to more subtrees). Let aq,...,ax_1 and
ak, - - -, a, be the columns of corresponding vertices of the cographs of L,
and Lo, respectively. By induction hypothesis, o; = b;ap, b; > 0 or o; = 0
fori = 1,...,k— 1, where 1 < h < k-1 and o = cjan,, ¢;j > 0 or
aj=0forj=k,...,r, where £k < p <r. Then Zf;ll a; = ap Zi:ll b; and
> -k = ax Y i, c;. By Proposition 6.1 all vertices of the corresponding
cographs of L; and L, have the same neighbors outside of L; U Ly and let
R be the sum of the coefficients of these neighbors. If v has the label *, we
look at the rows of the vertices h and p and obtain

r k—1
Z biah+Zc]~ap+R:0: Z cjap—#ZbiahnLR.
hi€E(G1) j=k PIEE(G2) i=1

If v has the label 4, then G; and G, are connected. We look at the rows y
and z such that yh € E(G;) and zp € E(G3) (otherwise a; = 0 or oy = 0)

and we have
Z bz-ah+R=0: Z CjOfp+R.

yi€E(G1) zj€E(G2)

For both labels * and + it follows that oy = cay and ¢ > 0, and hence
induction is complete. O

During the final stages of the preparation of this manuscript we became
aware that G.F. Royle [75] has recently found a quite different proof for
Sillke’s conjecture. Royle’s proof is based on properties of the characteristic
polynomials, while we exploit here the structure of cographs with respect to
cotree and threshold graphs.



7. OPEN PROBLEMS AND COUNTEREXAMPLES

Traditionally, there are more open problems in graph theory than answers.
We follow this tradition. We present miscellaneous results, negative results
and open problems. We hope that presenting counterexamples and negative
results prevent unnecessary repetitions and show where intuitions lead to
wrong assumptions.

We have seen that the nodal domains of multiple eigenvalues are difficult
to handle, therefore we desire for simple eigenvalues of a Laplacian.

Question 7.1. [54] Which graphs have only simple (Laplacian) eigenvalues?

For the Laplacian L(G), by Proposition 3.4 such a graph has neither
twins u,v nor twins except the edge uv. By GerSgorin Theorem, we can
always choose the diagonal elements of a generalized Laplacian M (G) such
that M (G) has always simple eigenvalues®. It is also interesting to consider
the influence of these choices of diagonal elements to the number of nodal
domains. If we combine the choice of diagonal elements and Theorem 3.3,
maybe it is possible to get good heuristics for finding an induced bipartite
subgraph with maximum vertices.

On the other hand, there exists no closed relation between the number of
nodal domains and the induced bipartite subgraph with maximum vertices
of G (MIB(G)) with respect to the Laplacian matrix. Let SNDy(G) be the
number of strong nodal domains of an eigenvector of the Laplacian L(QG)
with maximum number of strong nodal domains. SND/(G) can be far from
MIB(G), e.g., we take a path Py, and two new vertices u and v. We add the
edges between u and the first n vertices of P,, and add the edges between
v and the last n vertices of P,,, finally add the edge uv, see the graph G
in Fig. 7.1. For the graph G in Fig. 7.1 it holds SND.(G) < n + 2, but
MIB(G) = 2n — 2.

If graph H is a minor of G, then MIB(H) < MIB(G). However, this is not
the case for the number of nodal domains. It can happen that SNDz(H) >
SND[(G). For example, if we contract the edge uv of graph G in Fig. 7.1,
then SND,(G/uv) = 2n > SND(G).

LT thank P. Spellucci for this note.
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Fig. 7.1: An example for MIB(G) > SND(G) < SND.(G/e)

For the cartesian graph product GUH, the elementary observation
SND(z) < SND(z) - SND(y) holds, when z = z ® y. This upper bound
does not hold for all eigenvectors of A\. The graph K,[1G in Fig. 7.2 is
a counterexample for such a bound. K, has the eigenvalues § = 0 and
B = 2 with eigenvectors (1,1) and (1, —1), respectively. G has the eigenval-
ues p = 1 with multiplicity two with the eigenspace of (0,0,0,0,1,—1,0) and
(0,0,0,0,0,1,—1). SND(z) < 3, for each eigenvector x of p = 1. G has also
the simple eigenvalue p = 3 with the eigenvector (1,—1,0,0,0,0,0). There-
fore K5[0G has the eigenvalue A = 3 with multiplicity three. SND(z) < 6,
for each eigenvector z = x ® y affording A = 3. However, the eigenvector
s=(1,-1,0,0,2,-1,-1,1,—-1,0,0,—2,1,1) affording A = 3 has eight strong
nodal domains.

It can be of interest to characterize the graph products such that the
elementary upper bound holds.

Question 7.2. For which graphs G, H,
SND.(GOH) < SND.(G) - SND(H)?

We conjecture that it holds if the Discrete Nodal Domain Theory is sharp
for the eigenvalues of G and H. Specially, we conjecture that it holds for
P.OP,.

K,00G

Fig. 7.2: A counterexample to SND;(GOH) < SND(G)SND(H)

In chapter 6 we have seen that a cograph has a tree representation.
Chordal graphs also have tree representation. A graph is a chordal graph
if it has no induced cycles larger than triangles. A tree T is a clique tree of
a graph G if there is a bijection between V(T') and the maximal cliques of G
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such that for each vertex v of V(@) the cliques containing v induce a subtree
of T (see Fig. 7.3).

Theorem 7.1. [82, 44, 13] A graph is a chordal graph if and only if it has a
clique tree.

It seems that the tree representation of a chordal graph G give an lower
bound on the maximum number of nodal domains.

Conjecture 7.1. Let G be a connected chordal graph and T be the clique
tree of G. Then SNDL(G) > |V(T)| + 1.

This lower bound is not sharp, e.g., the graph G in Fig. 7.3 has more
strong nodal domains than the number of vertices of its clique tree.

The vector z = (1,—1,0,1, —1) is an eigenvector affording A\ = 3, for the
graph G in Fig. 7.3. By Proposition 3.6 H is the k-bundle of G (see Fig.
7.3) has an eigenvector with 4k strong nodal domains and the clique tree of
k-bundle of G has 3k — 1 vertices.

e I X

G H

Fig. 7.3: The graph G, H is the 3-bundle of G, and clique tree of H

In chapters 5 and 6 we have seen that we can easily deal with eigenvectors
with respect to graph product and the join operation.

Question 7.3. Which graph operations are suitable for eigenvectors of (gen-
eralized) Laplacian of graphs?

It is also interesting to find out, for which graphs the Discrete Nodal Do-
main Theory is sharp at least for two non-trivial eigenvalues or for all eigen-
values. In chapter 4 we see that it is sharp for paths and for some specific
simple eigenvalues of a tree. Similarly, for which graphs do the eigenvec-
tors of A\, with multiplicity r have at most k£ strong nodal domains? The
trivial example is a complete graph. After some numerical experiments it
seems reasonable to expect that Andrasfai graphs are another example. The
Andrdsfai graph has the vertex set V{1,...,3n — 1}, for n > 1. The vertex
1 is adjacent the vertices congruent to 2 modulo 3. Let A, B, C be the set of
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vertices congruent to 0 modulo 3, congruent to 2 modulo 3 and congruent to
1 modulo 3, respectively. The vertex 1 is adjacent to the vertices congruent
to 2 modulo 3. For other vertices a € A,b € B,c € C hold: ab € F iff b < a,
ac € Eiff a < ¢, and ab € E iff ¢ < b (see for another definition of Andrasfai
graph [47]). For example, the Andrésfai graph with five vertices is Cs, see
Fig. 7.4 for the Andrasfai graph with eight vertices.

Conjecture 7.2. Let \; be an eigenvalue of Laplacian of an Andrdsfai graph.
Then the eigenvectors of A\p with multiplicity v has at most k strong nodal
domains.

Fig. 7.4: The Andrasfai graph with eight vertices

Till now we look at the nodal domains of the (generalized) Laplacian of a
graph. Another aspect is to give for each vertex of a graph a sign {+, —, 0}.
The resulting nodal domains are nodal domains which we want and try to
find a generalized Laplacian with desired nodal domains. This problem is
an eigenvalue problem of sign-solvable linear systems. We refer to [12] for
sign-solvable systems.

Question 7.4. Let G be a graph and S be a sign pattern of the vertices
of G. Can we find a generalized Laplacian M(G) such that M(G) has an
etgenvector x with the same sign pattern as S?



GLOSSARY OF SYMBOLS

cardinality of set S

inner product of z and y
adjacency matrix of G

Kronecker product of two matrices
degree of vertex v

degree matrix of G

constant vector (1,...,1) of lengt n
edge set of GG

induced subgraph of G with vertex set U
complement of graph G

deletion of edge e

deletion of vertex v

contraction of edge e

reduced graph

Cartesian product of two graphs
disjoint union of two graphs

join of two graphs

identity matrix

matrix of all ones

complete graph with n vertices
complete k-partite graph

n dimensional hypercube
Laplacian matrix of G

generalized Laplacian matrix of G
path with &k vertices

number of strong nodal domains of vector x

trace of matrix A

edge with incident vertices u and v
vertex set of GG

number of weak nodal domains of vector x
spectral radius of matrix A
Walsh function
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