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Abstract

In this work we investigated the folding of RNA sequences into secondary
structures from different perspectives. One way to describe the relation be-
tween single RNA molecules and their secondary structures is the mapping
of sequence into structure. In this mapping the preimage is the set of all
possible sequences of a given length and alphabet, the image is the set of
secondary structures adopted by the sequences. When viewed in the context
of biological evolution the sequence is the object under variation, whereas
the structure is the target of selection. Thus RNA sequence to structure
mapping provides a suitable mathematical model to extract robust statisti-
cal properties of the evolutionary dynamics based on RNA replication and
mutation.

Within the last years RNA sequence structure maps were analyzed in great
detail by the group of Peter Schuster. In the first part of my thesis the results
of this analysis were reevaluated by exhaustive folding and enumeration of
the sequence spaces I(ℓ=9)

AUGC and I(ℓ=10)
AUGC , where {A,U,G,C} is the alphabet

and ℓ the sequence length. We were able to prove the results of previous
studies by considering only the set of sequences that fold into stable sec-
ondary structures, i.e. structures with negative free energies: As expected
there are more sequences than structures. The frequency distribution of sec-
ondary structures is highly biased. The majority of sequences fold into few
common structures. Common structures form extended neutral networks.
We examined the topology I(9)

AUGC and I(10)
AUGC by partitioning sequences into

components defined by neighbourhood relation and structural criteria. Using
stepwise less stringent criteria for the construction of components, we could
show that one extensively connected network exists in each of the two se-
quence spaces. This fact is remarkable because an overwhelming percentage
of sequences does not fold at all and we have to expect that the sequences
forming stable structures are embedded in a sea of sequences having the
open chain as image. The explanation of the apparent paradox is the high
dimension of sequence space, nine for I(9)

AUGC and ten for I(10)
AUGC : Distances

are short in high-dimensional spaces and connected preimages of structures,
which are infrequent compared to the open chain, can readily span distances
of the diameter of sequence space. Furthermore we could demonstrate that
shape space covering, which says that it is sufficient to screen a high dimen-
sional sphere around an arbitrarily chosen sequence in order to find at least
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one sequence for every common structure, holds in I(9)
AUGC and I(10)

AUGC .

The role of structure neutral networks in evolutionary dynamics has been
studied by Peter Schuster’s group using computer simulations of RNA pop-
ulation in a flow reactor. We examined relay series of different evolutionary
trajectories of the alphabet {A,U,G,C} to extract common features of RNA
structure optimization. We found that relay series may not only be mono-
tonic sequences of structures with increasing fitness converging to a target
structure but may contain structures that are visited more than once in the
process of evolutionary optimization. Such structures differ from structures
visited only once during the optimization process by having a restricted set
of common neighbors showing the same fitness. Furthermore the accessibility
relations between common neighbors are highly symmetric, favoring an easy
conversion between these structures.

In the last years the importance of sequence specific interaction between two
RNA molecules in the regulation of gene expression became increasingly ap-
parent. We developed a method to study significant aspects of RNA-RNA
interaction. By applying a modified version of McCaskill’s partition func-
tion algorithm to RNA co-folding we can provide detailed information about
the location of an RNA-RNA interaction, about the structural context of
the binding site and also about the energetics of an RNA-RNA interaction.
The application of the partition function to this problems allows not only a
compensation of errors resulting from an inherent imprecision of secondary
structure prediction algorithms but also a more exact description of the in-
teraction than provided by sampling methods.
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Zusammenfassung

Der Schwerpunkt dieser Arbeit ist die Faltung von RNA Sequenzen in Sekundär-
strukturen. Eine Möglichkeit, die Relation zwischen RNA Sequenzen und
ihren Sekundärstrukturen zu beschreiben, ist die Abbildung von Sequenzen
auf Strukturen. In dieser Abbildung stellt die Menge aller möglichen Sequen-
zen einer bestimmten Länge und eines bestimmten Alphabets das Urbild dar,
die Bildmenge umfasst alle Strukturen, in die diese Sequenzen falten können.
Aus evolutionärer Sicht ist die Sequenz das Objekt unter Variation, während
die Struktur der Selektion unterworfen ist. Die Abbildung von Sequenzen
auf Strukturen liefert daher ein ideales mathematisches Modell, um robuste
statistische Eigenschaften der evolutionären Dynamik, die auf RNA Replika-
tion und Mutation basiert, vorherzusagen.

In den letzten Jahren wurde die Abbildung von Sequenzen auf Strukturen
in der Gruppe von Peter Schuster eingehend analysiert. Im ersten Teil
meiner Doktorarbeit reevaluieren wir die Ergebnisse dieser Analysen durch
vollständige Faltung und Aufzählung der Sequenzräume I(ℓ=9)

AUGC und I(ℓ=10)
AUGC ,

wobei {A,U,G,C} das Alphabet und ℓ die Sequenzlänge ist. Wir beschränken
uns in dieser Arbeit auf die Menge der Sequenzen, die eine stabile Sekundär-
struktur bilden, d.h. eine Sekundärstruktur mit negativer freier Energie.
Durch die Einengung der Datenmenge können wir zeigen, dass die Ergebnisse
vorhergegangener Analysen den Tatsachen entsprechen: Wie erwartet gibt es
mehr Sequenzen als Sekundärstrukturen. Die Mehrzahl der Sequenzen faltet
in wenige häufige Strukturen. Häufige Strukturen bilden ausgedehnte neu-
trale Netzwerke. Wir untersuchen die Topologie der Sequenzräume I(9)

AUGC

und I(10)
AUGC durch die Partitionierung der Sequenzen in Komponenten, die

durch Nachbarschaftsbeziehungen und Strukturkriterien definiert sind. Durch
die schrittweise Anwendung immer weniger stringenter Kriterien für die Def-
inition einer Komponente, können wir zeigen, dass in beiden Sequenzräumen
ein einziges ausgedehntes Netzwerk von stabilen Sequenzen existiert. Dieses
Ergebnis ist bemerkenswert, da der überwiegende Anteil der Sequenzen keine
stabile Sekundärstruktur bildet, was zu der Annahme berechtigt, dass Se-
quenzen mit stabiler Sekundärstruktur in einem Ozean von Sequenzen, die in
die offene Kette falten, eingebettet sind. Die Erklärung für dieses scheinbare
Paradoxon liegt in der hohen Dimension der betrachteten Sequenzräume.
I(9)

AUGC hat eine Dimension von 9, I(10)
AUGC eine Dimension von 10. In solch

hochdimensionalen Räumen sind Distanzen kurz und die verbundenen Ur-
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bilder von Strukturen, die selten im Vergleich zur offenen Kette sind, können
problemlos Abstände wie den Durchmesser des Sequenzraumes umfassen.
Weiters konnten wir für die Sequenzräume I(9)

AUGC und I(10)
AUGC die Gültigkeit

des Prinzips des “shape space covering” beweisen, welches besagt, dass es
ausreicht eine hochdimensionale Kugel um jede beliebige Sequenz zu durch-
suchen, um mindestens eine Sequenz für jede häufige Struktur zu finden.

Die Rolle neutraler Netzwerke in der evolutionären Dynamik wurde von Peter
Schusters Arbeitgruppe durch Computersimulationen von RNA Populatio-
nen im Flußreaktor studiert. In dieser Arbeit untersuchen wir Relay Serien
unterschiedlicher evolutinärer Trajektorien des Alphabets {A,U,G,C}, um
gemeinsame Eigenschaften der RNA-Struktur Optimierung zu finden. Wir
haben herausgefunden, dass Relay Serien nicht nur als monotone Abfolge
von Strukturen mit zunehmender Fitness, die zu einer gemeinsamen Ziel-
struktur konvergiert, vorliegen, sondern auch Strukturen, die im Prozess der
evolutionären Optimierung mehr als einmal auftauchen, enthalten können.
Diese Strukturen unterscheiden sich von Strukturen, die im Laufe des Opti-
misierungsprozesses nur einmal gefunden werden, durch eine limitierte An-
zahl häufiger Nachbarstrukturen mit gleicher Fitness. Ausserdem ist die
Erreichbarkeitsrelation zwischen den häufigen Nachbarn hochgradig sym-
metrisch, was eine leichte Umwandlung dieser Strukturen ineinander un-
terstützt.

In den letzen Jahren wurde die Bedeutung der sequenzspezifischen Wech-
selwirkungen zweier RNA Moleküle in der Regulation der Genexpression
erkannt. Wir haben eine Methode entwickelt, mit der man bedeutende
Aspekte von RNA-RNA Wechselwirkungen untersuchen kann. Durch die
Anwendung einer modifizierten Version von McCaskills “partition function”
Algorithmus können wir detailierte Informationen bezüglich der Lage einer
RNA-RNA Interaktion, bezüglich des strukturellen Kontexts der Bindestelle
und bezüglich der Energetik der RNA-RNA Wechselwirkung geben. Die An-
wendung der Zustandssumme auf unser Problem ermöglicht nicht nur eine
Kompensation von Fehlern, die aufgrund der inhärenten Ungenauigkeit von
Sekundärstrukturvorhersagealgorithmen auftreten, sondern erlaubt auch eine
exaktere Vorhersage der Interaktion als statistische Methoden.
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1 Introduction

Biological evolution formed and still forms the shape of the biosphere as we

perceive it today. It deals with the effects of changes in the environment and

the heritable information of organisms that result in the alternation of their

appearance and leads to a diversity of biological species.

The current theory of biological evolution originates from two epochal con-

tributions by Charles Darwin and Gregor Mendel. In 1865 Gregor Mendel

published a paper describing how traits are passed through generations. He

realized that many traits are passed to the next generation as pairs of dis-

crete units, which he called genes. In 1985, Charles Darwin proposed natural

selection as the basic mechanism for the origin of phenotypic variants and,

ultimately, new species. However one great unsolved problem in Darwin’s

work was the question of how and why species originate. Darwin and his fol-

lowers were confronted with a seeming paradox: Evolution was described as

a continuous process, as a gradual change over time. But obviously distinct

species show differences from each other, which suggests that some mecha-

nism had created a discontinuity between them.

A solution was provided by Ernst Mayr, Theodosius Dobzhansky and others

by achieving the “neo-Darwinian” synthesis. The neo-Darwinian synthesis

brings together Charles Darwin’s theory of the evolution of species by natural

selection with Gregor Mendel’s theory of genetics as the basis for biological

inheritance [16,49]. Mayr proposed that species originate when a population

of organisms become isolated from the main group by time or geography.

During the period of isolation these organisms evolve traits that are different

from the main group and the two groups can no longer interbreed [48]. In

addition to offering an explanation for the mechanism of specification the

neo-Darwinian synthesis incorporates genetics and population biology into

studies of evolution, recognizing the importance of mutation and variation

within a population. The inclusion of genetics provided the knowledge of

how information is carried from one generation to the next. At the begin-

ning of the 20th century Morgan and his colleagues developed the notion
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of mutation. They found that genes can change and that these mutations

are permanent changes in genes, causing different phenotypes. In 1952 the

Hershey-Chase experiments provided the proof that DNA (deoxyribonucleic

acid) was the genetic material responsible for the hereditary transfer of infor-

mation. In 1953 Watson and Crick determined the structure of DNA as two

helical chains each coiled round the same axis [84]. Francis Crick also coined

the term “Central dogma”, which describes the theory that DNA encodes

RNA (ribonucleic acid) which encodes proteins, but that information does

not flow from proteins to DNA. According to the Central dogma the flow

of genetic information can be described in the following way: The genetic

information of a cell is contained within its DNA, where the sum of the DNA

of an organism is called its genome. The genome is organized into chromo-

somes that come in pairs. Each pair contains functionally similar but not

identical alleles at corresponding loci. An allele is a variant of a gene, the

smallest unit of genetic information that is sufficient for the generation of a

functional product. The DNA serves as the template for its own reproduction

in a process termed replication. Genes are transcribed into RNAs, which are

the templates for the production of proteins in a process called translation.

The Central dogma postulates that proteins fulfill most structural, catalytic

and regulatory functions within the cell. The inclusion of population biology

in the neo-Darwinian synthesis results in the description of selection as a

process that alters the frequency of genes in a population.

“More recently the classic Neo-Darwinian view has been replaced by a new

concept which includes several other mechanisms in addition to natural se-

lection. Current ideas on evolution are usually referred to as the Modern

Synthesis” [55]. Futuyma [24] provided an abstract of the tenets of the

evolutionary synthesis: In short he states that populations contain genetic

variation that arises by random (i.e. not adaptively directed) mutation and

recombination. Populations evolve by changes in gene frequency brought

about by random genetic drift, gene flow, and especially natural selection.
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Phenotypic changes are gradual and diversification comes about by specia-

tion. The last sentence states that speciation is a gradual accumulation of

small genetic changes. Today the theory of speciation as a gradual process is

in contrast to the theory of “Punctuated Equilibrium”, that states that long

periods of stasis are followed by rapid speciation. However both models of

evolution are able to explain important aspects of the evolutionary process

and the debate focuses on questions about the relative contributions of grad-

ual versus punctuated change, the average size of the punctuations, and the

mechanism.

Another dogma of Neo-Darwinism has also been challenged in the last decades.

The central dogma states that genetic information flows from the DNA via

RNA to proteins and establishes proteins as the catalytically and regula-

tory active components of the cell. Today a vast amount of studies supply

evidence that RNA is catalytically as well as regulatory active [2,3,47]. Fur-

thermore the unidirectional flow of information from DNA to RNA to protein

has been proven wrong [31, 56].

1.1 General context

According to the modern synthesis heritable alternations of the genome oc-

cur by random mutation. Random molecular variation in proteins and DNA

frequently results in changes that have no influence on the fitness of the

individual organism, in other words are selectively neutral [39]. Neutral evo-

lution facilitates adaptive evolution by increasing the number of phenotypes

that can be reached with a single mutation from an original phenotype [35].

In this way neutral evolution supplies a mechanism for the maintenance of

genetic diversity in natural populations, where diversity allows a paralleliza-

tion of the search for better adapted variants. Additionally neutrality offers a

mechanism of shielding the phenotype (i.e. the sum of traits of an organism

exposed to selection) from alternations of the genotype (i.e. the genome)

which allows even more variation within a population. The following pages

give a short overview of the contributions to the neutral theory of evolution.
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In the late 1960s Motoo Kimura introduced the neutral theory of molecular

evolution [39]. According to Kimura the vast majority of single-nucleotide ex-

changes in the genomes of existing species are selectively neutral, i.e. have no

influence on the fitness of an individual. As a result, fitness-neutral variants

are not subjected to natural selection but spread in a population by genetic

drift. Genetic drift is a stochastic process resulting from random sampling

in the production of offsprings. Therefore neutral variants, by shielding the

phenotype from genotypic diversity, provide a mechanism to maintain the

diversity of a population. During the 1970s and 1980s Manfred Eigen, Pe-

ter Schuster and John McCaskill proposed a theory for optimization and

maintenance of nucleotide sequences under error prone replication. Man-

fred Eigen introduced the quasi-species theory that describes the evolution

of a finite population of asexual replicators at high mutation rates [12, 14].

The quasi-species theory states that the only prerequisite for evolution is an

open system with replication far from thermodynamic equilibrium that lives

on limited resources. In such a system every sequence is associated with a

spectrum of mutants, called the molecular quasi species, which is completely

defined by the sequence, assuming a sequence specific fitness distribution and

a fixed mutation rate [13]. In this process selection itself assures the mainte-

nance of variability, as selection of a sequence is tantamount to selection of

a quasi-species.

In the 1980s and 1990s RNA was studied as a model system for molecular

evolution. RNAs are biologically active nucleotide sequences that can fold

into well defined structures, enabling them to specifically interact with other

molecules and to catalyze biochemical reactions. The secondary structure

of RNA molecules, which is the main determinate of their tertiary structure

and therefore their function, is readily approximated by different folding algo-

rithms [33,46,93]. Walter Fontana et. al. studied the evolutionary optimiza-

tion of RNA molecules by selecting for specific features of secondary struc-

tures generated from different RNA sequences. They found that structure
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neutral sequence variants play a key role in evolutionary optimization [19–22].

In the 1990s the group of Peter Schuster studied the importance of neutral

variants for molecular evolution. They showed analytically that increasing

neutrality leads to an increase of the phenotypic error threshold [23, 62].

The phenotypic error threshold puts a limit on the amount of information

maintainable in Darwinian evolution where the important parameter is the

average number of neutral base substitutions per replication. This leads to

the concept of a neutral network. A neutral network is defined as the set

of all genotypes that are neutral with respect to some phenotype. Together

with the neighborhood relation “accessible by one mutation” the neutral set

is turned into a graph. Walter Grüner et. al. [27, 28] studied the struc-

ture of neutral networks for the mapping of RNA sequences into secondary

structures using binary alphabets by exhaustive folding and enumeration.

Together with the statistical evaluation of RNA networks over the natural

alphabet [78, 79] the following picture emerged: The RNA sequence space,

constructed by connecting each sequence with all its one-error neighbors, is

percolated by extensive structure neutral networks. The sequences of a pop-

ulation may diffuse over this network without loosing the currently optimal

structure, until a non neutral mutant with increased fitness is found. The

population will then switch to the neutral network of that structure. In this

way neutral networks convey an ideal combination of search capacity and

robustness to mutation.

To describe the evolutionary process it is important to define accessibility re-

lations between phenotypes. Evolutionary modification of phenotypes, how-

ever, requires the modification of the underlying genotype. In the case of

RNA, accessibility relations between sequences are readily provided using the

Hamming distance (i.e. the number of point mutations between sequences

of fixed length) as a natural metric. Accessibility relations between struc-

tures, on the other hand, cannot be quantified by a distance but have to be

described using weaker notions of neighbourhood. Fontana et.al. [22] pro-

vided a measure for the accessibility between RNA structures by using the
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probability that one step away from a random point in the neutral network

of a structure Sα results in a sequence folding into a structure Sβ. This

accessibility distribution is not symmetric and therefore no distance. The

accessibility distribution is converted into the binary attribute of nearness

by defining the neighbourhood of a shape Sα as the set containing Sα and

all shapes accessible from Sα above a certain likelihood [18]. The definition

of structure neighbors obtained this way is consistent with the formalization

of the neighbourhood concept in topology.

One consequence of the shape space topology described above is the fact that

pairs of neutral networks approach each other closely at intersection points

of the compatible sets in which they are embedded. Where the compatible

set of a structure is the set of all sequences that can form all base pairs of

this structure [78].The intersection theorem guarantees that for any two pre-

scribed secondary structures there is always a non-empty set of compatible

sequences [17].

A direct proof for the existence of extended neutral networks and the inter-

section theorem was provided by the experimental data from Schultes and

Bartel [68]. Starting from two phylogenetically unrelated ribozymes with

different catalytic activities, whose RNA-conformations had no base pair in

common, Schultes and Bartel constructed a RNA sequence that is compati-

ble with both secondary structures and showed both catalytic functionalities.

Thus the authors were not only able to track neutral paths of constant struc-

ture and full ribozyme function from the mutants to the parents but also

showed that two neutral networks approach each other very closely in the

surrounding of the chimeric molecule.

1.2 Organization of this work

This work elaborates on different aspects of RNA sequence to secondary

structure relations. In section 3.1 and section 4.1 the relation between single

RNA sequences and their secondary structures is studied from an evolu-
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tionary point of view. Section 3.1 addresses generic features of evolutionary

dynamic of RNA molecules using a sequence to secondary structure mapping

of RNA molecules. By exhaustive folding and enumeration of the sequence

spaces I(9)
AUGC

and I(10)
AUGC

we can demonstrate that the results obtained by

Schusters group hold for this sequence spaces, if a hamming distance of one

(dh = 1) and dh = 2 are used as variation operators.

In Section 4.1 we examine common features of RNA structure optimiza-

tion by simulating the evolution of a population of replicating and mutating

RNA molecules in a flow reactor. The course of the evolutionary optimiza-

tion process is represent by a series of phenotypes leading from the target

structure to an initial shape, called the relay series. We find that relay series

of a population of RNA sequences may not only be monotonic sequences of

structures with increasing fitness converging to a predefined target structure

but may contain structures recurring in evolutionary optimization process,

even within one and the same relay series. We can show that this recurrence

of specific structures in the evolutionary optimization process is governed by

the neighborhood context of the recurring structures.

In section 3.2 we approach RNAs from a functional point of view. In the

last year it became increasingly apparent that RNA-RNA interactions play

an important role in the regulation of gene expression trough sequence spe-

cific interactions between RNA molecules. We introduce an variation of Mc-

Caskill’s partition function algorithm that provides information about the

location, the structural context and the free energy of the interaction be-

tween a small RNA and its target RNA.
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2 Sequence-Structure Mapping of RNA

2.1 RNA secondary structure

Biopolymers as DNA, RNA and Proteins are linear strings composed of

several distinct monomers. The monomers of nucleic acids are termed nu-

cleotides, each nucleotide consists of a nitrogenous heterocyclic base (a purine

or a pyrimidine), a pentose sugar and a phosphate group. Two classes of

nucleic acids are distinguished according to the type of sugar present in

the nucleotides: A nucleic acid that contains riboses as sugar residues is

termed ribonucleic acid (RNA), a polymer composed of nucleotides includ-

ing 2-deoxyribose is named deoxyribonucleic acid (DNA). RNA and DNA

also differ partially in their base composition. Whereas RNA contains ade-

nine (A) and guanine (G) as purine compounds and the pyrimidine bases

cytosine (C) and uracil (U), DNA contains thymine (T) instead of uracil.

Especially RNA but also DNA, often incorporates so-called rare, modified

base. In DNA and RNA the atoms of the sugar residues are marked by a ’

to distinguish them from the atoms of bases.

Nucleic acids polymers consist of nucleotides that are linked by phosphodi-

ester bonds (polynucleotides). The process of polynucleotide synthesis is a

polymerization where a pyrophosphate residue is split off. Nucleic acids are

synthesized within the cell in a template dependent process, in which the

polynucleotide chain grows from the 5’ to the 3’ terminus. The process of

DNA synthesis, during which a double stranded DNA molecule is copied, is

termed replication. However, in a process called reverse transcription DNA

can also be synthesized using RNA as a template. The process of RNA syn-

thesis is termed transcription, where the template is generally DNA.

The biological function of a biopolymer, such as an RNA molecule or a

protein, is mostly determined by its three-dimensional structure. A single

stranded nucleic acid sequence generally contains complementary region that
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Figure 1: Sequence, secondary structure and schematic representation of the tertiary

structure of tRNAphe.

are able to form double helices. This results in a pattern of double helical

regions interspersed with loops termed the secondary structure of an RNA or

DNA. The 3-dimensional arrangement of this secondary structure elements is

called the tertiary structure. As an example of RNA sequence to structure re-

lation the first structure experimentally determined, the yeast tRNAphe [77],

is shown in figure 1. The energetic contributions of tertiary interactions are

weaker than the contributions of the interactions generating the secondary

structure. RNA folding can therefore be viewed as a hierarchical process in

which secondary structure formation precedes the formation of the tertiary

structure.

The assembly of RNAs into biologically functional structures is specified no

only by the sequence of the RNA. In addition, counter ions are needed to

neutralize the negative charge of the phosphates and to enhance the speci-

ficity of the RNA interactions. Multivalent metal ions such as Mg2+ stabilize

RNA structure more efficient than monovalent ions, because the number of

ions that must be localized around the RNA is smaller [88]. Other parame-
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ters that influence RNA stability are temperature and the pH value.

Except in some viruses RNA molecules are single stranded. In RNA double

helical regions consist mainly of Watson-Crick (GC and AU) base pairs or the

slightly less stable GU pairs. The stacking energy of these allowed base pairs

is the major driving force for RNA structure formation. Other combinations

of pairing nucleotides, which are called non-canonical pairs and occur espe-

cially in tertiary structure motifs, are not considered in secondary structure

prediction [32].

2.1.1 Loop decomposition of secondary structures

As discussed in the preceding section the secondary structure of RNA molecules

contributes the dominant part of the three dimensional folding energy. It can

be successfully used in the interpretation of RNA function and reactivity and

is frequently conserved in evolution. [40, 43]. In this work we will describe

the structure of an RNA molecule by its secondary structure.

From a mathematical point of view a secondary structure is defined as a set

S of base pairs (i, j) where i < j. Two base pairs (i, j) and (k, l) with i ≤ k

are compatible with a secondary structure S if

(i) i = k iff j = l, and

(ii) i < k implies i < k < l < j

In the classical definition of an RNA secondary structure [83] each base in-

teracts with at most one other nucleotide, which is stated in (i). Condition

(ii) specifies that base pair are not allowed to cross, excluding pseudo-knots.

Any secondary structure S can be uniquely decomposed into stems, loops,

and external elements. A vertex i is called interior to the base pair (k, l) if

k < i < l. If there is no base pair (p, q) k < p < q < l such that p < i < q



2 Sequence-Structure Mapping of RNA 13

we will say that i is immediately interior to the base pair (k, l). A base pair

(p, q) is said to be (immediately) interior if p and q are (immediately) interior

to (k, l).

5

5

5

closing base pair

5

3

3

5

closing base pair

closing base pair

stacking pair

interior loop

G A

UC

G
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5

3

closing base pair

multi loop

exterior loop

U G CA CU AA
3

Figure 2: Basic loop types of RNA secondary structure. The different loop types in RNA

are distinguished by their degree, where the degree of a loop is given by 1 plus the number

of terminal base pairs of stems which are interior to the closing pair of the loop. A loop

of degree 1 is called hairpin (loop), a loop of a degree larger than 2 is called multiloop.

A loop of degree 2 is called bulge if the closing pair of the loop and the unique base pair

immediately interior to it are adjacent; otherwise a loop of degree 2 is termed interior

loop. Two stacked base pairs form an interior loop with size 0.

A stem consists of subsequent base pairs (p − k, q + k), (p − k + 1, q + k −
1), ..., (p, q) such that neither (p− k − 1, q + k + 1) nor (p+ 1, q − 1) form a

base pair. The length of the stem is (k + 1), (p − k, q + k) is the terminal

base pair of the stem. Notice that isolated single base pairs are considered

as stems of length one.
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A loop consists of all unpaired vertices which are immediately interior to

some base pair (p, q), which is termed the “closing” pair of the loop. The

size of the loop is given by the number of vertices immediately interior to

the closing pair (p, q). Figure 2 gives an overview of the basic loops types in

RNA secondary structures.

A vertex is termed external if it is unpaired vertex and does not belong to a

loop. An external element is a collection of adjacent external vertices. If it

contains the vertex 1 or n it is a free end, otherwise it is called joint.

2.1.2 RNA secondary structure representation

RNA secondary structures can be depicted using a variety of different rep-

resentation forms, see Fig.3. Conventionally RNA secondary structures are

draw as a planar graph constructed from combinations the of different loop

types shown in figure 2.

Secondary structure graphs are outer-planar, i.e., they can be drawn in such

a way that the backbone forms a circle and all base pairs are represented by

chords that must not cross each other.

An alternative representation method for RNA secondary structures is the

dot-bracket or string notation: The secondary structure is encoded as a lin-

ear string with balanced parentheses, ’(’ and ’)’, representing base pairs and

dots, ’.’, representing unpaired positions. The “dot-bracket” notation is used

as a convenient notation in input and output of the Vienna RNA Package, a

software for folding and comparing RNA molecules [33].

Secondary structures can also be represent as a dot plot. A base pair (i, j)

is indicated by a square in row i and column j in the upper right side of the

dot plot, the area of the square is proportional to the predicted base-pairing

probability. A square in row j and column i in the lower left side of the

dot plot indicates a base pair (i, j) which is part of the minimum-free-energy

structure of the sequence. The mountain-representation (or mountain plot)
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is especially useful to compare large structures [34]. The three symbols of

the string representation ’.’, ’(’ and ’)’ are assigned to three directions “hor-

izontal’, ’up’ and ’down’ in the plot. The structural elements match certain

secondary structure features. Peaks correspond to hairpins. The symmet-

ric slopes represent the stems enclosing the unpaired bases in the hairpin

loop, which appear as a plateau. Plateaus represent unpaired bases. When

interrupting sloped regions they indicate bulges or interior loops. Valleys

indicate the unpaired regions between the branches of a multi loop or, when

their height is zero, they indicate external vertices.
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Figure 3: Different representations of RNA secondary structure. All drawings show the

same structure and use the same colors to mark the different stems.
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2.1.3 Calculation of the minimal free energy

The prediction of the secondary structure of a single RNA molecule is a clas-

sical problem in computational biology. The simplest approach to predicting

the secondary structure of RNA molecules is to find the configuration with

the greatest number of paired bases. A dynamic programming algorithms

for RNA folding using this simple approach was introduced by Nussinov [59].

The basic idea is that each base pair in a secondary structure divides the

structure in an interior and an exterior part that can be treated separately,

see figure 4. The problem of finding, say, the optimal structure of a subse-

quence [i, j] can thus be decomposed into the subproblems on the subsequence

[i+ 1, j] (provided i remains unpaired) and on pairs of intervals [i+ 1, k− 1]

and [k + 1, j] (provided i forms a base pairs with some position k ∈ [i, j]).

l

i j

k

looped region

looped region

of (k,l)

of (i,j)

i+1 j−1

l−1k+1

Figure 4: Looped regions in RNA secondary structures are defined by their corresponding

closing base pair. Each base pair divides the structure into distinct parts: In the figure

base pair (k, l) divides the structure into a part interior to (k, l), indicated in green, and

an exterior part, shown in black.

In the more realistic “loop-based” energy model the same approach is used.

The simplest loop considered in this model are two adjacent stacked base
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pairs. These stacked pairs confer most of the stabilizing energy to a sec-

ondary structure, whereas most other loop types destabilize the structure by

entropic contributions. In addition, one has to distinguish between the pos-

sible types of loops that are enclosed by a base pair because hairpin loops,

interior loops, and multiloops all come with different energy contributions.

The energy parameters for small loops are strongly dependent on the se-

quence of the loop, these parameters are tabulated exhaustively [44]. For

larger loops sequence dependence is conferred only through the base pairs

closing the loop and the unpaired bases directly adjacent to the closing pair.

For these loops the energy is given by

FL = Fmismatch + Fsize + Fspecial

where Fmismatch is the contribution from unpaired bases inside the closing pair

and the base pairs immediately interior to the closing pair. The last term is

used e.g. to assign bonus energies to unusually stable tetra loops. Polymer

theory predicts that for large loops the size should grow logarithmically.

The energy contribution of multiloops, FLm
, is approximated by a linear

decomposition to keep the recursive scheme tractable.

FLm
= a+ b(x− 1) + cu, (1)

where u is the number of unpaired bases in the loop and x the degree of

the loop, a, b and c are constants. The “loop-based” energy model assumes

that stacking base pairs and loop entropies contribute additively to the free

energy of an RNA secondary structure [45, 46, 80]. The free energy F (S) of

a given secondary structure S is thus the sum of the terms for its loops.

F (S) =
∑

L∈S

FL

For the computation of the minimum free energies, we use the following

recursion: Let Fij be the minimum free energy of the sequence interval [i, j],

and let Cij be the minimum free energy under the condition that (i, j) form
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a base pair, FM
ij holds the minimum free energy given that [i, j] lies within

a multi loop and contains at least one helix, while FM1 includes one and

only one helix. For easier comprehensibility, dangling end contributions are

neglected in these formulas.

Fij = min

{

Fi+1,j

mini<k≤j {Cik + Fk+1,j}

Cij = min







H(i, j)

mini<k<l<j {Ckl + I(i, j; k, l)}
mini<k<l<j

{
FM

i+1,k−1 + FM1
k,j−1 + a

}

FM
ij = min

{

FM
i+1,j + c

mini<k≤j

{
Cik + b+ FM

k+1,j

}

FM1
ij = min

{

FM1
i,j−1;Cij + b

(2)

The free energy for a Hairpin loop closed by base pair (i, j) is given byH(i, j),

the free energy of an interior loop closed by pairs (i, j) and (k, l) is given by

I(i, j; k, l) and a, b and c are contributions for closing a multi loop, extending

it by one stack and one base, respectively, see equation (2.1.3).

This recursion isO(n4), but by restricting the length of allowed Interior loops,

which is a physically reasonable constraint, the time complexity is reduced to

O(n3). Thermodynamic folding algorithms used for free energy minimization

were originally conceived by Zucker, Stiegler and Sankoff [81, 93, 94] and are

based on an application of dynamic programming to the RNA problem [83].

2.1.4 Equilibrium partition function

As discussed in subsection 2.1.3 the approximate decomposition of the free

energy of a secondary structure into a sum of terms involving adjacent stacked

pairs and constrained loops allows the prediction of a single optimal free en-

ergy secondary structure. It is, however, also possible to examine the full
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ensemble of probable alternative equilibrium structures. Mc Caskill [50] in-

troduced an algorithm for the calculation of the full equilibrium partition

function by dynamic programming, which scales as O(n3), where n is the

length of the sequence. The knowledge of the equilibrium ensemble of struc-

tures allows the computation of the matrix of base pair binding probabilities

between all nucleotides in the RNA sequence. This base pair binding prob-

abilities represent the sum over all equilibrium weighted structures in which

a selected base pair occurs. Consequently the base pair probability matrix

summarizes the information about the global ensemble of structures in equi-

librium.

In this section we will discuss the dynamic programming algorithm for the

calculation of the partition function and the back-summing calculation for

base pair probabilities. Algorithms that are designed to enumerate all struc-

tures (with a below-threshold energy) [89], that compute averages over all

structures [50], or that sample from a (weighted [9] or unweighted [79]) en-

semble of secondary structures, need to make sure that the decomposition of

the structures into substructures is unique, so that each secondary structure

is counted once and only once in the dynamic programming algorithm.

For the dynamic programming calculation of the partition function Z we

will apply the same notation as in chapter 2.1.3. The partition function Z is

given by

Z =
∑

S

e−[F (S)β] (3)

where β = 1/kT and FL is the contribution of a given loop. To convert

the recursions for the calculation of the minimal free energy in equation (2)

into recursion permitting the calculation of the partition function the max-

ima are transformed into sums and the additive contributions in products.

Equation (2) is phrased in a way that ensure that each secondary structure

is counted once and only once in the dynamic programming algorithm.

The sum over all structures S involves an exponentially increasing number
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of terms as the sequence length increases. To handle the increasing num-

ber of terms, Mc Caskill [50] introduces the restricted partition function,

Zb[i, j]. Zb[i, j] is the sum over all possible loops closed by the base pair

(i, j), including the contributions of their sub-loops, it corresponds to Cij in

equation (2). The calculation of the full partition function for the segment

[i, j] is then given by:

Z[i, j] = 1.0 +
∑

i≤k≤j

Z1[i, k]Z[k + 1, j]. (4)

where the ancillary quantities Z1[i, j] are defined as

Z1[i, j] =
∑

i≤l≤j

Zb[i, l], (5)

with the initial conditions Zb[i, i] = 0, Z[i, i] = 1.0 and Z[i+1, i] = 1.0. Start-

ing with the shortest segments one proceeds iteratively to calculate Zb[i, j]

and Z[i, j] until one reaches Z[1, N ], which is the full partition function

Z [50].

The number of base pairs in a loop closed by (i, j) increases exponentially

with the size of the loop. A further decomposition of the free energy, FL, of

a loop closed by (i, j) is therefore necessary. To keep the recursive scheme

tractable the energy contribution of multiple loops, FLm
, is approximated by

a linear decomposition:

FLm
= a+ b(x− 1) + cu. (6)

where u is the number of unpaired bases in the loop and x the degree of

the loop, a, b and c are constants. The partition function over all possible

loops closed by the base pair (i, j), Zb[i, j], can then be partitioned into

the contributions of all possible hairpin loops, all kinds of interior loops and

multiple loops within region [i, j], see equation (7) and figure 5.
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Zb[i, j] = e−[H(i,j)β] +
∑

k,l

i<k<l<j

e−[I(i,j,k,l)β]Zb[k, l]

+
∑

i<k<j

Zm[i+ 1, k − 1]Zm1[k, j − 1]e−[(a)β] (7)

A reduction to a cubic algorithm may be obtained if the calculation of the

free energy of large interior loops, in which the number of unpaired bases

u > um, only depends on u and not on the position of the pair (h.l) within

the loop.

∑

k,l

e−[I(i,j,k,l)β] =
∑

k,l
u≤um

e−[I(i,j,k,l)β]

+
∑

u>um

e−[I(i,j,u)β]. (8)

The calculation of the multiloop contribution to the partition function can

be reduced to order O(n3) by introducing ancillary quantities. The first

ancillary quantity is the restricted partition function Zm1[i, j], which yields

the partition function over all segments [i, j] that contain one and only one

structured section.

Zm1[i, j] = Zm1[i, j − 1] + Zb[i, j]e−b (9)

The second ancillary quantity Zm[i, j] comprises the partition function over

all segments [i, j] that contain one or more structured sections. The partition

of the multiloop contributions into Zm1[i, j] and Zm[i, j] furthermore ensure

that no multiloop contribution is counted twice.

In summary the partition function Z = Z[1, N ] can be calculated with a

dynamic programming algorithm of cubic order by a recursive application of

equation (4) to equation (9) [50].
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Figure 5: The partition of Zb[i, j], the partition function over all possible loops closed

by base pair (i, j), into the contributions of the different loop types is illustrated in more

detail: H(i, j), a and I(i, j, k, l), b, are functions that compute the loop energies of hairpin

and interior loops given their enclosing base pairs. The contribution shown in c is for the

calculation of multiloops. The computation of multiloop requires two additional types of

restricted partition functions: Zm[i, j] is the partition function of all conformations on the

interval [i, j] that are part of a multiloop and contain at least one component, i.e., that

contain at least one substructure that is enclosed by a base pair. Zm1 counts structures

in multiloops that have exactly one component, see text for details.
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The probability of a give structure S can be calculated once the partition

function is know.

P (S) =
1

Z
e−[F (S)β]. (10)

In biological systems, however, not only the mfe-structure of a RNA but

also sub-optimal structures play a functional role, e.g. [37]. In order to get

an overview of biological relevant structural properties of a specific RNA

we have to focus on the equilibrium probabilities of substructures that are

common to a whole class of related structures. The formation a given base

pair is such a substructure that displays the most significant features of the

equilibrium ensemble.

The probability P [kl] that base k is bound to base l in the equilibrium en-

semble of structures is given by [50]:

P [k, l] =
∑

S∈(k,l)

P (S). (11)

For the computation of P [k, l] the situation that base pair (k, l) is not en-

closed by any other base pair has to be distinguished from the situation that

(k, l) is enclosed by a base pair (i, j) with i < k < l < j, see figure 6.

If (k, l) is a non enclosed base pair then the partition function for segment

[1, k − 1], is independent from the partition function for region [l + 1, N ]. If

base pair (k, l) is enclosed by a base pair (i, j), the contributions of structures

involving (k, l) in buldge, interior and multiple loops with closing pair (i, j),

summed over all possible pairs (i, j), have to be considered. The contribu-

tions to P [k, l] from structures with enclosed pairs (k, l) and exterior pairs

(i, j) with i < k < l < j can be computed recursively:
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k l
ji 

k l

A B

Figure 6: The figure shows the two situations that has to be distinguished for the calcula-

tion of P [k, l]. In A base pair (k, l) is exterior to all loops. In B base pair (k, l) is enclosed

by a pairing (i, j) with i < k < l < j.

The calculation of P [k, l] is in principle of order N4, since summation over

i, j, h and l are required. However, it is possible to reduce the calculations

to order N3 by using ancillary arrays and a careful distortion of the order

in which the sums are performed. As for the calculation of the partition

function, interior loops with u > um are only dependent on u. For the

calculation of multiloops the sum over i and j is reduced to a single sum by

introducing ancillary arrays

Pm[i, l] =
∑

j>l

P [i, j]

Zb[i, j]
Zm[l + 1, j − 1] (12)

and

Pm1[i, l] =
P [i, j]

Zb[i, j]
e((j−l−1)c)β (13)

These sum have to be calculated at the appropriate point in the recursion,

when P [i, j] has been defined. Since they are independent of k, they do not

need recalculation if the values are stored. These modifications of the calcu-
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k l1 n k li j

P [k, l] =
Z[1, k − 1]Zb[k, l]Z[l + 1, n]

Z[1, n]
︸ ︷︷ ︸

(a)

+
∑

u<um
i<k<l<j

P [i, j]
Zb[k, l]

Zb[i, j]
e−[I(i,j,k,l)β]

︸ ︷︷ ︸

(b)

i jj−1l+1k l

+
∑

i<k Z
b[k, l]e−[(a+b)β] ∗

(

e−[((k−i−1)c)β]Pm[i, l]
︸ ︷︷ ︸

(c)

i jk−1i+1 lk i jk−1i+1 j−1l+1k l

+ Zm[i+ 1, k − 1]
(
Pm1[i, l]
︸ ︷︷ ︸

(d)

+ Pm[i, l]
︸ ︷︷ ︸

(e)

))

.

Figure 7: In a base pair (k, l) is not enclosed. In the contribution shown in b the enclosed

base pair (k, l) is part of an interior loop. Contributions c, d and e show the possible

conformations in which (k, l) is enclosed by a multiloop with closing pair (i, j).
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lation of P [i, j] permit recursion 14, which is of order N3 [50]. Recursion 14

is shown in more detail in figure 7.

P [k, l] =
Z[1, k − 1]Zb[k, l]Z[l + 1, n]

Z[1, n]

+
∑

u<um
i<k<l<j

P [i, j]
Zb[k, l]

Zb[i, j]
e−[I(i,j,k,l)β]

+
∑

i<k

Zb[k, l]e−[(a+b)β]
(

e−[((k−i−1)c)β]Pm[i, l]

+ Zm[i+ 1, k − 1]
(
Pm1[i, l] + Pm[i, l]

))

(14)
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2.2 RNA sequence-structure mapping and neutral net-

works

Essential aspects of evolutionary dynamics were studied by means of evolving

populations of RNA molecules, e.g. [7, 71]. RNA combines both genotype

and phenotype in a single molecule. This functional dichotomy makes RNA

suitable as a model system for evolution. The genotype is the sequence, which

is subjected to mutation. In what follows the secondary structure represents

the phenotype, which is the target of selection [7]. Thus the folding of the

RNA sequences into secondary structures establishes a set of rules describing

how the genotype is converted into the phenotype, i.e. the sequence-structure

map equals the genotype-phenotype map. In a second step the phenotype is

evaluated to derive fitness values [70].

In the next section models for this mapping will be presented, which are

suitable for analysis and exploration by computationally efficient algorithms

and sufficiently realistic to incorporate important features of the evolutionary

process [71].

2.2.1 Genotype-phenotype mappings

A RNA sequence can be described as a point in the space of all 4n sequences

with a fixed length n. The RNA sequence space, I, has a natural metric 1

induced by one-error (point) mutants, known as the Hamming distance [30].

The Hamming distance between two end-to-end aligned sequences Ii and Ij ,

dh
ij, is defined as the number of positions in which the sequences differ [71].

For the definition of selection criteria the distance between shapes, dS
ij , can

be described in terms of formal “edit” operations on secondary structure rep-

resentations. This definition of shape-distance is not adequate for explaining

patterns of phenotypic evolution, since there exist no physical operations that

inter-converts structures heritably [18, 76]. The relation between sequences

1A metric on a set A is a map D : A × A → R with the following properties: for all

a, b, c ∈ A holds D(a, b) = 0⇐⇒ a = b, D(a, b) = D(b, a) and D(a, c) ≤ D(a, b) +D(b, c).
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(genotypes) and structures (phenotypes) may be formulated as a mapping

from genotype space, I, into phenotype space, S, see figure 8 and equa-

tion (15).

neutral network

neutral network

neutral network

shapes

sequences

Figure 8: The figure shows a map from sequence (genotype) space to shape (phenotype)

space. This mapping is many-to-one and hence non-invertible. Sequence and structure

space are both high dimensional objects.

Equation (15) states that the sequence space I, with the Hamming distance

dh
ij as distance measure is opposed by the shape space S, with dS

ij being the

distance between phenotypes:

Ψ : {I; dh
ij} ⇒ {S; dS

ij} or Sk = Ψ(I). (15)

The equation implies that a unique phenotype Sk is assigned to every geno-

type, while the inverse is not true. Generally a set of different sequences folds

into the same secondary structure Sk. The many to one relationship between

sequences and shapes is indicated by the fact that only the structure Sk has

a fully specified subscript, whereas the set of sequences adopting Sk is de-

noted as ’I’ [7,71]. In evolution, the phenotype is evaluated according to its

fitness value, where the fitness values are functions of evolutionary relevant

properties of the phenotype [70]. The resulting mapping from shape space

into the real numbers is called a landscape:
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f : {S; dS
ij} ⇒ R or f. = f(Sk). (16)

As before many phenotypes may have the same fitness and again this map-

ping is non-invertible. Realistic fitness landscapes are complex objects with

a very large number of local peaks and steep valleys [71].

A deeper understanding of the phenotype-genotype map is important for the

examination of evolutionary mechanisms. In the equations introduced above

fitness is a property of phenotypes, which are generated from genotypes using

a set of predefined rules. A set of properly chosen rules makes it possible to

extract relevant properties from real systems.

Currently a direct mathematical analysis of the prediction of phenotypes and

their corresponding fitness values from the underlying genotypes is exceeding

the computational scope. Therefore suitable mathematical models extracting

robust statistical properties pertaining to the genotypephenotype mapping

have been established [71, 72]. This model as described in the following

sections, enables us to derive evolutionary relevant generalizations.

2.2.2 Generic properties of RNA folding

The simplest known example of evolutionary dynamics is RNA replication

and mutation in vitro [75]. The genotype-phenotype map represents the re-

lation between sequence and structure. RNA sequence-structure maps were

analyzed by different techniques: construction of mathematical models based

on random graph theory [63], exhaustive folding and enumeration of all se-

quences of a given chain length [27,28], statistical evaluation by inverse fold-

ing and random walks in sequence space [19, 73] and by means of computer

simulation of evolutionary dynamics [21, 22, 36, 82]. From these studies fol-

lowing generic results were derived:

More sequences than structures. An upper bound on the number of mfe

structures of a fixed chain length n can be obtained recursively by counting
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only those planar secondary structures that contain hairpin loops of size three

or more and that include no isolated base pairs. The loop size constraint

results from the fact that loops smaller than three nucleotides are unstable

because of high steric strain energies. Single base pairs are often unstable

since the dominating stabilizing contribution comes from base pair stacking.

For large chain lengths ℓ the numbers of secondary structures, NS(ℓ), are

asymptotically approximated by the expression [7]:

NS(ℓ) ≈ s(ℓ) = 1.4848l−3/2(1.8488)ℓ. (17)

The number of shapes computed from this expression is consistently smaller

than the number of sequences, which is, for example, 4ℓ, for the natural alpha-

bet A = {A,U,G,C} [73]. Exhaustive folding and statistical evaluation of

large sample of random RNA sequences of varying length, nucleotide alphabet

and composition showed that the number of actually realized shapes is con-

siderably smaller than the upper bound, NS(ℓ), given in equation (17), [27].

The relation between RNA sequences and their structures is therefore highly

degenerate.

Few common and many rare shapes. The frequencies of occurrence of in-

dividual structures in sequence space were obtained by folding large samples

of random sequences of fixed chain length [27]. Analysis through exhaus-

tive folding showed that the frequency of shapes is strongly biased. Ranking

according to decreasing frequencies yields a distribution which obeys a gener-

alized Zipf law, f(r) = A(B+r)−γ, see figure 9. The rank of a shape is given

by r (the most common structure has rank 1) and f(r) denotes the fraction

of sequences folding into the shape of rank r. The constants A, B and γ

depend on sequence length and nucleotide alphabet. The Zipf-distribution

assigns a high abundance to a tiny number of structures compared to those

in the power tail [18]. This is best illustrated by an example: In the case

of GC-sequences of length ℓ = 30 more than 93% of all sequences fold into

common shapes, which comprise only 10.4% of all shapes. A frequent shape

may therefore be defined as one realized by more sequences than the average,
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Figure 9: A log/log plot of the rank ordered structures in the boundary of tRNAphe. Where

the boundary Bα of a structure Sα consists of all sequences at hamming distance 1 from

any sequence in the neutral set of structure Sα, see page 33 for a definition of neutral set.

28% of the neighbors of 2199 sequences folding into the clover-leaf structure formed the

same shape than their reference sequence and thus belong to the neutral network. Curve

a (right ordinate) shows the rank ordered frequency of occurrence ϑ(β, α), which describes

the total number of occurrences of structure Sβ in the boundary of structure Sα, Bα. The

neighborhood frequency ν(β, α) is plotted in curve b (left ordinate). The neighborhood

frequency reflects the likelihood of finding structure Sβ in the one-mutation neighborhood

of a randomly chosen sequence of Sα. The exact definition of ϑ(β, α) and ν(β, α) is given

in section 2.2.3. The dotted vertical line separates the frequent structures in the boundary

of tRNAphe (right) from the hardly reachable shapes on the left. This is typical for a

scaling according to Zipf’s law, which implies that the log(frequency)/log(rank)-plot is a

straight line [92].
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4ℓ/NS(ℓ). In the limit of long chains a vanishingly small fraction of shapes is

frequent, but these are realized by almost all sequences [7]. Recapitulating,

there are relatively few common structures and many rare ones.

Shape space covering. Sequences forming common structures are dis-

tributed (almost) randomly in sequence space. Schuster et al. [73] showed

that it is sufficient to screen a (high-dimensional) sphere around an arbitrar-

ily chosen reference sequence in order to find at least one sequence for every

common structure. The radius of this shape space covering sphere, rcov(ℓ)

is much smaller than the radius of sequence space (ℓ/2). For example, for a

chain length ℓ = 100 about 15 mutations are sufficient to find at least one

sequence that folds into one of the common shapes [69]. The fact that all

frequent structures are realized within a small neighborhood of any arbitrar-

ily chosen sequence is referred to as “shape space covering”.

Common structures form extended neutral networks. To discuss

properties of a neighborhood in context of the RNA sequence - structure

map, we have to start with some terminology. A n-error neighbor is a se-

quence that differers from a given reference sequence by n point mutations.

A neutral mutation is a nucleotide substitution that preserves the mfe shape.

The term neutral neighbor is used for an one-error neighbor that preserves

the mfe-shape of its reference sequence. The neutrality of a sequence is de-

fined as its fraction of neutral one-error neighbors [18].

Sequences folding into common shapes typically have a significant fraction

of neutral one- or two-error neighbors. Such sequences form an extensive,

mutationally connected network, that was termed neutral network [73]. The

distribution of sequences belonging to a neutral network in sequence space

was analyzed using random graph theory [62]. The set of all sequences, Ij ,

folding into a given structure, Sk, is termed the neutral set
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Gk = Ψ−1(Sk) = {Ij|Ψ(Ij) = Sk}.
The neutral set Gk of a structure Sk can be converted in a graph by assigning

sequences Ij to the vertices and drawing edges between all pairs of sequences

with Hamming distance dh
ij = 1. Modeling neutral networks described by

Gk using random graph theory identified the average degree of neutrality of

a given network λ(Gk) = λj as the parameter determining global network

properties [63], where

λj =

∑

Ij∈Gk
λk(Ij)

|Gk|
.

λk(Ij) describes the local connectivities of a network, in case of Gk it is the

number of neutral nearest neighbors at individual nodes divided by the total

number of nearest neighbors, |Gk| is the number of vertices in the neutral

network.

“Neutral networks show a king of percolation phenomenon. They are con-

nected and span the entire sequence space if λj exceeds a critical threshold

value λcr. Below the threshold the networks are partitioned into many com-

ponents with one dominating ’giant component’ and many small islands” [7]:

Gk =

{

connected : λj > λcr = 1− κ− 1
κ−1 ,

partitioned : λj < λcr = 1− κ− 1
κ−1 ,

where κ is the size of the alphabet (A = A,U,G,C : κ = 4; A = G,C : κ =

2;). Connected areas on neutral networks define regions in sequence space

that are accessible to populations through genetic drift [36].

Neutral networks offer an ideal combination of search capacity and robust-

ness to mutations: “the genotypes may diffuse over the network by single

nucleotide exchanges without loosing the currently optimal structure, until

a non neutral mutant is encountered with increased fitness. The population

will then switch to the network of this structure” [22, 35, 36]. Neutral net-

works are of maximal use, if they comprise connected graphs and a maximal
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number of new phenotypes is available in the 1-error neighborhood of the

network or even a single sequence.

In RNA, a small number of mutations can result in a new secondary struc-

ture by destabilizing the parental fold and supporting one of the numer-

ous alternative ones. As a result of this any single RNA sequence has a

“neighborhood” of secondary structures that become favorable upon a few

mutations [73]. On the other hand many RNA sequences can fold into the

same secondary structure, or as Motoo Kimura stated, the vast majority

of genetic change at the level of a population must be neutral, rather than

adaptive [39]. The experimental data from Schultes and Bartel [68] provide

a direct proof for the existence of extended neutral networks. Starting from

two phylogenetically unrelated ribozymes with different catalytic activities,

whose RNA-conformations had no base pair in common, Schultes and Bar-

tel constructed a RNA sequence, that is compatible with both secondary

structures and showed both catalytic functionalities, although with lower ef-

ficiency than the parent ribozymes. The chimeric molecule was afterwards

optimized for both catalytic activities by mutation and selection: “Minor

variants of this sequence are highly active for one or the other reaction, and

can be accessed from prototype ribozymes through a series of neutral muta-

tions” [68]. The authors were not only able to track neutral paths of constant

structure and full ribozyme function from the mutants to the parents. Ad-

ditionally this work shows, that two neutral networks approach each other

very closely in the surrounding of the chimeric molecule. Thus this work can

be viewed as an experimental example of the intersection theorem, that will

be discussed in the next section.

2.2.3 Shadows and Intersections

For the evolutionary process it is important to understand which phenotypes

are accessible from which genotypes. This notion of accessibility can be used

to define a relation of nearness among phenotypes. The genotype-phenotype

map, discussed in the previous sections, is ideally suited to implement these
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concepts: The folding of RNA sequences induces a “statistical topology ” on

the set of mfe structures. The statistical topology organizing the set of RNA

shapes explains why neutral networks in sequence space and neutral drift on

these networks play a key role in evolutionary optimization” [22].

For situations conserving chain length where point mutations are the exclu-

sive source of variation the Hamming distance, see page 28, is a natural metric

for sequences. The definition of a natural metric for structures, however, is

difficult. Evolutionary modification of a structure requires modifying its un-

derlying sequence, therefore any definition of a metric based on a syntactic

notion of (dis)similarity between structures is bound to be artificial. Fontana

et al. [22] devised an accessibility relation between structures, that does not

quantify a distance but expresses a weaker notion of neighborhood: They

pointed out that “a structure Sβ which is highly dissimilar from a structure

Sα on syntactic ground might nonetheless be “near” to Sα on the count of

being accessible from Sα by a small mutation in Sα’s sequence. Alternatively,

among two syntactically highly similar structures, one might nonetheless fail

to be evolutionary “accessible” from the other.”

Fontana et al. [22] defined the “boundary” Bα to consist of all sequences at

hamming distance 1 from any sequence in Gα, where Gα is the neutral set

of structure Sα, see page 33 for an exact definition of Gα. Similarly, they

called the set of sequences at distance d from Gα its “d-boundary” and let

boundary stand as a shorthand for 1-boundary. To obtain
∑

α ⊂
∑

, the set

of all 1-accessible structures of Sα, all sequences in Bα are folded into their

mfe -structure.
∑

is the set of all mfe structures of fixed length over a given

alphabet.

Even for moderate chain length, it is not possible to completely identify the

set of structure neutral neighbors, Gα, for a given structure Sα [22]. To

determine which structures are accessible from the neutral set Gα, one has to

resort to sampling. This is done by fixing a secondary structure Sα of length
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n and generate a sample of x sequences, that have Sα as their mfe structure

by inverse folding [33]. For each sequence in this sample all the 3n neighbors

of this sequence are folded, in this way the 3nx sequences in the boundary

of Sα are generated. The structures of these sequences constitute a sample

of
∑

α [22], we will call this sample a local shadow of structure Sα.

A structure Sβ occurring in the shadow of a given structure Sα is accessible

from Sα, that is Sβ ← Sα, if there exists a pair of sequences Ia, Ib ∈ I with

dh
Ia,Ib

= 1 and Ψ(Ia) = Sα and Ψ(Ib) = Sβ. In this notation the set of

structures accessible from Sα is written as
∑

α = {Sβ|Sβ ← Sα} [22].

We are not just interested in the structures, that occur in the 1-error neigh-

borhood of sequences adopting structure Sα, but also in how often they occur.

“Each structure Sβ ← Sα has two multiplicities associated with it. One mul-

tiplicity, N(Sβ , Sα), counts the total number of sequence-neighborhoods of

Sα in which structure Sβ occur-es at least once. We normalize it by the size

Nα of Gα, and call it the neighborhood frequency:

ν(Sβ, Sα) =
N(Sβ, Sα)

Nα
. (18)

The neighborhood frequency, ν(Sβ , Sα), reflects the likelihood of finding

structure Sβ in the one-mutation neighborhood of a randomly chosen se-

quence of Sα.

The other multiplicity refers to the total number of occurrences, Nt(Sβ, Sα),

of structure Sβ in Bα. Each neighborhood of a sequence Sα is, therefore,

weighted with the actual size of Sβ in that neighborhood. We normalize it

by 3nNα, and call it the occurrence frequency:

ϑ(Sβ, Sα) =
Nt(Sβ, Sα)

3nNα

. (19)

ν(Sβ, Sα) and ϑ(Sβ, Sα) are estimated by sampling as mentioned above” [22].

Recapitulating the information provided above, ν(Sβ, Sα) and ϑ(Sβ , Sα) are

measures of the probability that one step away from a random point in the
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neutral network of structure Sα results in a sequence folding into structure

Sβ. The accessibility relation defined by ν(Sβ, Sα) and ϑ(Sβ , Sα) is not sym-

metric and therefore not a distance [18,22]. An example for this asymmetry is

the loss and formation of a stack. A stack in shape Sα will be only marginally

stable in most sequences realizing Sα. Therefore, the loss of the stack in the

one-error neighborhood of sequences folding into Sα is very likely. In con-

trast, the reconstitution of this stack by a single point mutation in a structure

Sβ, that differs from Sα only by the absence of this stack, requires a special

sequence context. Therefore, shape Sβ may be significantly easier to access

from Sα than the other way around [18].

This accessibility distribution is converted into a binary attribute of nearness

by defining the neighborhood of structure Sα as the set containing Sα and all

shapes accessible from Sα above a certain likelihood [21, 22]. “Because ac-

cessibility is asymmetric, shape Sβ may be near (read: in the neighborhood)

of Sα, but Sα may not be near Sβ. This construction of shape-neighborhood

is technically consistent with the formalization of the neighborhood concept

in topology” [18, 76].

One consequence of the shape space topology described above is the fact that

pairs of neutral networks approach each other closely at intersection points

of the compatible sets in which they are embedded. A sequence is termed

compatible with a secondary structure if all positions in paired regions are

occupied by bases that are capable of forming a base pair [78]. The number

of compatible sequences for a given structure Sk with nu unpaired bases and

np paired bases is 4nu ∗6np. The number of compatible sequences is certainly

larger than the number of sequences that actually form the given structure

as their mfe structure [78]. The compatible set of a secondary structure Sα,

Cα, is the set of all sequences that are compatible with structure Sα.

The intersection theorem guarantees that for any two prescribed secondary

structures there is always a non-empty set of compatible sequences [17]. Ex-

tensive computational studies showed that the neutral set Gα of a structure Sα
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is approximately embedded in Cα [27, 73]. In the case of common secondary

structures Sγ, the neutral sets, Gγ are densely embedded in Cγ. Therefore,

the neutral networks of two structures Sk and Sl come very close together on

the set Ck
⋂ Cl of sequences that are compatible with both structures [63,64].

2.2.4 Computer simulations of RNA evolution

The role of neutral networks in evolutionary dynamics has been investigated

by computer simulation of RNA populations in a flow reactor [22]. The flow

reactor used to study the evolution of a population of replicating and mutat-

ing RNA species is implemented as a continuously stirred tank reactor [20].

In this setup, a continuous influx of material necessary for replication is

compensated by a homogeneous outflux of reaction mixture. The flow rate is

adjusted to obtain a population size fluctuating around an expectation value

of N with a standard deviation of
√
N [7]. Additionally to flow terms the

chemical reaction mechanism includes replication and mutation steps. Man-

fred Eigen introduced the quasispecies theory that permits the application

of of chemical reaction kinetics to molecular evolution [12]. According to

Eigen’s model, which was further developed in subsequent studies [13, 14],

populations of nucleic acid sequences drift through sequence space gaining

information by variation and selection. The distribution of genotypes in

these populations is metastable but structured around a master sequence.

Populations explore new environments through a mutation selection process,

the information gained is laid down in their genotypes [72]. In this work

the exploration of genotype space is described as a stochastic process with

a predefined target, which forms an absorbing barrier and thus sets an end

point.

The replication-mutation system introduced by Eigen can be described by

ordinary differential equations. Here xi denotes the relative frequencies of the

n different genotypes Ii in the population. Defining the number of sequences

adopting genotype Ii as Ni the population size is given by N =
∑n

j=1Ni.

The time dependence of the sequence distribution is then described by the
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kinetic equations

dxk

dt
= xk

(

Qkkak − Φ(t)
)

+

n∑

j=1,j 6=k

ajQkjxj , k = 1, . . . , n. (20)

where ak is the replication rate constant, Q = {Qij; i, j = 1, . . . , n} is the

mutation matrix and the excess production rate Φ(t) = a(t) =
∑n

j=1 aj , xj(t)

is the average fitness of the reactor population [7]. The production of iden-

tical and mutant offsprings from the actual population is equal to the excess

production leading to a constant population size
∑n

j=1 dxj/dt = 0. In the

mutation matrix Q diagonal entries stand for error free replication, while

off diagonal entries denote mutation. In this work a uniform error rate is

assumed. This implies that the probability of a mutation is independent of

the nature and position of the base exchange and different base exchanges

are independent from each other. Only point mutations are allowed, ex-

cluding indels, translocations or cross-overs [87]. Nevertheless the creation

of any RNA molecule that is part of the sequence space is possible. Qkj ,

the frequency at which a genotype Ik is synthesized as an error copy of Ij ,

is therefore defined by the replication accuracy per base q and the derived

mutation rate p = 1− q

Qkj = qℓ
(1− q

q

)dh
kj

= (1− p)ℓ
( p

1− p
)dh

kj

(21)

where ℓ denotes the length of the sequence and dh
kj is the Hamming distance

between a template sequence and its offspring.

Since biochemical systems have an important stochastic component, the

quantitative study of such systems requires stochastic simulation, which ac-

counts for random biochemical events and their consequences. Therefore the

reaction mechanism is implemented using the stochastic method for modeling

chemical kinetics conceived by Gillespie [25, 26]. Gillespie’s method is used

to numerically simulate the time evolution of the system as a kind of random

walk that is governed by the Master Equation, in this work equation (20).



2 Sequence-Structure Mapping of RNA 41

Further details of the implementation of the flow reactor used in this work

can be found in the work of Schuster & Fontana, see e.g. [7,20,72], a complete

description of the implementation of the reactor used in this work is given in

the thesis of Andreas Wernitznig [87].

Figure 10: Results of an RNA structure optimization experiment with a predefined target

structure in a flow reactor. A population size of N = 1000 and a mutation rate p = 0.001

were used. Fitness is computed as a function of the distance between current structure

Sj and target structureSτ , ds
jτ . The black curve shows the mean distance to the target

structure of the entire population, ds
jτ , plotted against time. The time scale represents

the “real time” of the simulation experiment in arbitrary units. The grey step function

indicates the relay series, where equal height indicates the same shape. The six most

important shapes of the relay series are shown at the top of the figure. Continuous

transitions between phenotypes are marked by A, discontinuous ones by B. Lower case

letters denote individual transitions. Figure taken from [7].

“Previous computer simulations confirmed three basic features of molecular
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evolution:(i) Population sizes of a few thousand molecules are sufficient for

RNA optimization, (ii) stochastic effects dominate in the sense that the se-

quence of events recorded in one particular trajectory were never observed

again in subsequent identical simulations, and (iii) sharp error thresholds as

predicted by the quasispecies concept were observed in computer runs with

different mutation rates” [7]. The trajectory of a typical simulation is shown

in figure 10. The evolutionary trajectory describes the time course of the

average distance of the population from a predefined target secondary struc-

ture. The course of the evolutionary optimization process is reconstructed

through determination of a series of phenotypes leading from the target

structure to an initial shape, called the relay series. Transitions between

the shapes in a relay series can be continuous or discontinuous. Continu-

ous transitions are the loss and formation of a base pair adjacent to a stack

and the opening of a constrained stack, while the closing of a constrained

stack and structure transformations that require the coordinated change of

several part of the molecule at once are discontinuous transitions. Discontin-

uous transitions reflect those transformations that are difficult to achieve by

the mechanisms underlying the genotype-phenotype map. These transitions

permit key innovations that enable a population to reach the target in a

particular experiment [21]. In this context discontinuous transitions can be

viewed as gateways in evolutionary optimization. Discontinuous transitions

are intimately connected with punctuation: “A population of replicating and

mutating sequences drifts on the neutral network of the current best shape

until it encounters a gateway to a networks that conveys some advantage

or is fitness neutral. That encounter, however, is evidently not under the

control of selection” [18]. An example of punctuation in evolving RNA pop-

ulation is demonstrated in figure 10: The average fitness shows periods of

stasis punctuated by sudden improvements.
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2.3 Classification on sequence-structure mapping

A variety of systems ranging from physics to biology are described by com-

plex networks. Examples include metabolic networks, networks of chemi-

cals linked by chemical reactions or the Internet, a network of routers and

computers linked by physical links. Traditionally these systems have been

modeled as random graphs, however in recent years it has been increasingly

recognized that the topology and evolution of real networks are governed

by robust organization principles [1]. As neutral network in RNA sequence

space corresponds to an undirected graph we will apply the theory described

in this section to neutral networks in sequence space.

A graph is a pair of sets G = {P,E} where P is a set of n nodes and

E is a set of k edges that connect two elements of P . The degree γ of

a vertex is the number of edges in a graph, which touch the vertex, also

called the local degree. A graph is said to be regular of degree γ if all local

degrees are the same number γ. A random graph, on the other hand, is

a collection of vertices and edges, connecting pairs of them at random. In

some cases random graphs with appropriate distribution of vertex degrees

can predict real world problems with surprising accuracy [58]. Ordinarily

the connection topology of a network is assumed to be either completely

regular or completely random. However many real networks lie somewhere

in between the extremes of order and randomness. The description of the

transition from locally ordered systems to a random network revealed the

existence of so called “small-world” networks, that are highly clustered, like

regular graphs, yet have small characteristic path length, like Erdös-Rényi

random graphs [85].

The algorithm used to interpolate between regular and random networks

is based on a two level process. It starts with a regular ring lattice with

n vertices and k edges per vertex. Subsequently, each edge is rewired at

random with probability p without altering the number of nodes or edges,

self-edges and duplicate edges are forbidden. An example of this process is
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given in figure 11. Watts and Strogatz [85] described graphs, that, at a small

rewiring probability p, are sparse but not so sparse that the graph would

become disconnected. These graphs can be highly clustered, like regular

networks, but show small characteristic path lengths, like random graphs.

Specifically, these graphs, which where termed small world networks, have to

meet the following condition:

n≫ k ≫ ln(n)≫ 1, (22)

where k ≫ ln(n) guarantees that a random graph will be connected [5].

Regular                            Small World                               Random

p = 0 p = 1

       Increasing randomness

Figure 11: Random rewiring procedure for the transition between a regular ring lattice

and a random network, figure taken from to Watts and Strogatz [85]. Details see text.

The structural properties of small-world graphs can be quantified by their

characteristic path length L(p) and clustering coefficient C(p). L is defined as

the number of edges in the shortest path between two vertices, averaged over

all pairs of vertices. The clustering coefficient of a vertex, which measures the

’cliquishness’ of the neighborhood of this vertex, determines what fraction

of the vertices adjacent to this vertex are also adjacent to each other. The

clustering coefficient Ci of a node i with ki edges is given by
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Ci =
2Ei

ki(ki − 1)
, (23)

where Ei is the number of edges that actually exist between the ki neighbors

of node i and ki(ki − 1) is the maximal number of edges that can exist be-

tween the ki neighbor of node i. C(p) is defined as the average of Ci over all i.

0.0001 0.001 0.01 0.1 1
p

0

0.2

0.4

0.6

0.8

1

C(p) / C(0)

L(p) / L(0)

Figure 12: Characteristic path length L(p) and clustering coefficient C(p) over 20 random

realizations of the rewiring process described in figure 11. Figure taken from to Watts and

Strogatz [85].

Figure 12 shows the change of L(p) and C(p) for the family of randomly

rewired graphs described in figure 11. Obviously, a rewiring probability of

p = 0 leaves the graph regular, while p = 1 results in a random network

topology. Watts and Strogatz [85] found that in the regime

L(p) ∼ n

2k
≫ 1, C(p) ∼ 3

4
if p→ 0, (24)
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while

L(p) ≈ Lrandom ∼
ln(n)

ln(k)
, C(p) ≈ Crandom ∼

k

n
≪ 1 if p→ 1. (25)

Thus the regular lattice at a rewiring probability of p = 0 is highly clus-

tered resulting in a linear growth of L(p) with the number of vertices n. In

contrast the random network at p = 1 is a poorly cluster graph where L(p)

grows logarithmically with n.

Figure 12 shows that there is an interval 0.001 < p < 0.01 in the model, that

exhibits small-world properties: The network obtained is sparse showing a

characteristic path length L(p) in the range of of random graphs Lrandom.

However, the clustering coefficient C(p) ≫ Crandom, which results in a net-

work that is more clustered than a random graph of equal size. Watts and

Strogatz [85] stated that small world networks result from the immediate

drop in L(p) which is caused by the appearance of a few long range edges.

The introduction of such ’short cuts’ connects vertices that would other-

wise be much farther apart than Lrandom. Therefore each shortcut has a

highly nonlinear effect on L, it reduces not only the distance between the

two vertices it connects, but also between their immediate neighborhoods.

On the other hand the removal of an edge from a clustered neighborhood

to make a shortcut, has, at most, a linear effect on C [85]. As a result of

their unique topology models of dynamical systems with small-world cou-

pling display enhanced signal-propagation speed, computational power and

synchronizability.
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3 Results on Sequence-Structure Mapping

3.1 Folding a single RNA molecule

RNA combines both the genotype (sequence) and the phenotype (structure)

in a single molecule. Previous studies of the genotype-phenotype map, which

is modeled by folding RNA sequences to secondary structures, yields four gen-

eral results, see section 2.2: As there are far more sequences than secondary

structures, many RNA sequences adopt the same secondary structure, which

is termed neutrality. The neutral network of a structure Sj is the set of all se-

quences of a given length, which have Sj as their minimum free energy (mfe)

structure. The neutral network of a structure Sj is connected and spans the

entire sequence space if the average number of neutral neighbors at individ-

ual nodes of the network is greater than 1 − κ(1/(κ−1)), where κ is the size

of the alphabet. A connected neutral network corresponds to an undirected

connected graph. Common structures form extended neutral networks.

We study the topological structure of neutral networks using exhaustive fold-

ing and enumeration. Furthermore we examine the emergence of small-world

properties in connected graphs corresponding to different neutral networks.

3.1.1 Exhaustive folding and enumeration of small RNA sequences

For a detailed study of the topological structure of phenotype space it is

mandatory to know the sequence of all RNA molecules of a given length that

can adopt a stable mfe structure. A mfe structure is defined as stable if it has

a negative free energy. RNA sequences are folded into secondary structures

using the Vienna RNA package. The parameter set for the calculation of the

mfe structure does not include special stabilizing energies for certain tetra

loops. Bases adjacent to helices in free ends and multiloops can participate in

all possible dangling ends. Compared to the parameter set used in previous

studies [41], these parameters reduce the number of sequences that can fold

into a stable secondary structure. Furthermore structures with lonely base
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pairs are penalized. For very short sequence lengths the exclusion of special

stabilizing energies for certain tetra-loops is necessary to avoid structural ar-

tifacts - for example structures containing only a single isolated base pair.

Figure 13: In high dimensional spaces distances are short. For example in a hybercube

of dimension five, the shortest path percolating the space has a length of 5. Distance is

measured in error classes, where one error corresponds to a hamming distance of one.

We investigate the sequence spaces I(ℓ=9)
AUGC and I(ℓ=10)

AUGC . For our studies, all

sequences of chain length ℓ = 9 and chain length ℓ = 10 and the natu-

ral alphabet A = {A,U,G,C} are exhaustively folded and enumerated. In

such small sequence spaces, the majority of sequences forms no stable sec-

ondary structure, i.e. a secondary structure with a free energy below zero.

In I(ℓ=9)
AUGC and I(ℓ=10)

AUGC only 1.3% and 3.8%, respectively, of all sequences form

a mfe structure with a free energy below zero. Despite the low percentage

of sequences forming stable structures, neutral networks may span the whole

sequence space in dimension 9 and 10. This is demonstarted in figure 13,

using the binary {G,C} alphabet as an example.
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The number of possible sequences of a chain of length ℓ and the natural

alphabet that comprises κ = 4 letters is given by κℓ. Although we only ex-

amine the properties of sequences that fold into stable secondary structures,

the number of sequences under consideration is too large for an efficient usage

of plain text file formate. We therefore need a system for storing, retriev-

ing and managing large amounts of data. PostgreSQL [54], an Open Source

database, was used to store all sequences of a given length that fold into a

stable mfe structure.

The database setup was designed to allow fast and efficient analysis of the

stored data: Each connected component of the neutral network(s) of a struc-

ture is stored in a separate table. A connected component is constructed by

drawing edges between all neighbors in sequence space, which have either a

Hamming distance of one (dh = 1) or one compensatory mutation (dc = 1).

A compensatory mutation or base pair substitution is a mutation preserving

a base pair. For easy retrieval of sequences adopting structure Sj, a list con-

taining the names of the component tables and the mfe structure that they

represent is maintained.

The setup of the database proceeds in two steps: In the first step all RNA

sequences of a given length are generated and the mfe structure of each se-

quence is determined. The program RNAfold from the Vienna RNA package

version 1.4 [33] was employ to determine the mfe of the secondary structure

for a given sequence. The Vienna RNA package version 1.4 uses the en-

ergy parameters provided by Mathews et.al. [46]. For folding we applied the

command-line-options −d2 and −4, −d2 causes bases adjacent to helices in

multiloops and free ends to give a stabilizing energy contribution, regardless

whether they are paired or unpaired, −4 prevents the usage of special sta-

bilizing energies for certain tetra loops. Sequences that fold into the same

mfe structure are collected in a table. To reduce the size of memory required

to store the sequences each sequence is encoded as a single 32 bit unsigned

integer.

In the second step we test if the sequences contained in a single table form



3 Results on Sequence-Structure Mapping 50

a connected component, or if they belong to scattered networks with many

components. Each connected component of structure Sj is written into a

separate table. The list of all component tables is automatically updated if

tables are created or deleted. This database setup keeps table size as small

as possible, while retaining the topological structure of the data set. Small

tables improve the performance of the database.

For the forthcoming discussion we shall need the following definitions:

We consider the folding of an RNA sequence Ii into a secondary structure

Sk.

Sk = ψ(Ii)

An RNA sequence Ii = {x1x2 . . . xℓ} over an alphabetA with κ letters is com-

patible with a secondary structure Sk if base-pair (i, j) ∈ Sk implies that let-

ters xixj can form an allowed base-pair. This situation is expressed by xixj ∈
B, where the set of allowed base pairs B = {AU,UA,GC,CG,GU, UC}. A

specific sequence Ii may be compatible with more than one structure. The

structure Sl with the minimal free energy, Fmin(Sl, Ii), on sequence Ii is

termed the mfe structure. Other structures S adopted by sequence Ii with a

free energy F (S, Ii) ≥ Fmin(Sl, Ii) are termed suboptimal structures.

compatible set Ck The set all of sequences that are compatible with a

structure Sk is then given by

Ck = {Ii|(i, j) ∈ Sk =⇒ xixj ∈ B}
Note that a sequence Ii can be an element of Ck if Sk is a suboptimal struc-

ture of Ii.

intersection X The set of all sequences that are compatible with more than

one secondary structure and can adopt these structures with a negative free

energy, i.e. as stable structures, intersection sequences.

X = {Ii ∈ Ck
⋂

Cl|F (Sk, Ii) < 0 ∧ F (Sl, Ii) < 0}
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neutral set Gk The neutral set of a structure Sk, Gk, is the set of sequences

Ii that fold into structure Sk = ψ(Ii) as their mfe structure, see section 2.2.2.

Gk = Ψ−1(Sk) = {Ii|Ψ(Ii) = Sk}.

Note that a sequence Ii can only be an element of the neutral set Gk if Sk is

the mfe structure of Ii.

neutral network The neutral set Gk of a structure Sk can be converted in

a graph by assigning sequences Ii to the vertices and drawing edges between

all pairs of sequences that can be converted into each other using specified

variation operators.

3.1.2 Generic features of the sequence-structure mapping for short

sequences

In the sequence spaces I(9)
AUGC

and I(10)
AUGC

the open chain is the most frequent

conformation, formed by 98.7% and 96.2% of all sequences, respectively. Out

of the 49 possible sequences of the set of all sequences of length ℓ = 9 and

the alphabet A = {A,U,G,C} only 3280 have a stable secondary structure.

These 3280 sequences fold into 4 different structures as shown in figure 14.

((....)).

73.2% 15.5%

.((....)) ((.....))(((...)))

9.9% 1.4%

Figure 14: Structures realized in I(9)
AUGC

that adopt a stable mfe structure. Below the

graph representation of each structure the dot-bracket notation is depicted. The frequen-

cies written below the dot-bracket notation are the percentage of sequences folding into

the indicated structure of all sequences with a stable structures in sequence space I(9)
AUGC

.
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As expected from the predictions of the RNA phenotype-genotype map the

frequency of shapes is biased: 73.8% of all sequences in I(9)
AUGC

adopting

a stable structure fold into secondary structure ((....))., these sequences are

contained within one giant component. For the structure component de-

composition of sequences folding in a specified structure Sk single base ex-

changes (dh = 1) and base pair substitutions (dc = 1) are used as “variation

operators”. To obtain the connected components of structure Sk we define

the neutral set Gk of structure Sk as a graph: The graph Gk is a pair of

sets Gk = {Vk, Ek} where Vk = {I|ψ(I) = Sk} is the set of vertices and

Ek = {Ii, Ij|Ii, Ij ∈ Vk ∧ (dh
i,j = 1 ∨ dc

i,j = 1)} the set of edges. We call the

connected components of Gk, Gl
k, where Gk =

⋃

l Gl
k and Gl

k is connected.

Table 1 shows the results of the decomposition of I(9)
AUGC

in Gl
k components.

Table 1: Sequences of I(9)
AUGC

folding into the same secondary structure Sk are decomposed

into mutationally connected structure components Gl
k using single base exchanges dh = 1

and base pair substitutions dc = 1 as variation operators.

number of

structure sequences Gl
k components seq. per comp.

((....)). 2400 1 2400

.((....)) 508 5 240, 220, 16, 16, 16

(((...))) 324 1 324

((.....)) 48 1 48

One of the generic results of the analysis of the sequence-structure map is

shape space covering, which states that it is sufficient to screen a (high-

dimensional) sphere around an arbitrarily chosen sequence to find at least

one sequence for every common structure. To test whether shape space

covering holds in I(9)
AUGC

, we constructed hamming distance components Hi.

Each Hi is a pair of sets Hi = (V,Eh), where the vertices are all sequences

with a stable secondary structures in I(9)
AUGC

V = {Ii ∈ I(9)
AUGC

|ψ(Ii) =

Si ∧ Fmin(Ii, Si) < 0} and the edges are Eh = {Ii, Ij ∈ V |dh
ij = 1}. Therefore
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an Hi component includes all sequences which can be accessed from each

other by a path of successive dh = 1 neighbors. A connected Hi component

is termed a hamming distance graph. Table 2 shows the decomposition of

all sequences of I(9)
AUGC

into Hi components. By combining the results of

table 1 and table 2 we can easily demonstrate that shape space covering is

realized in I(9)
AUGC

. The results of table 2 are related to table 1 by collating

theHi components of table 2 to the Gl
k components of table 1. Lets start with

the first row of table 2: This row shows that the majority of all sequences

that fold into a stable secondary structure are contained within one huge

Hi component, H1. This huge H1 component comprises about 94% of all

sequences with a stable secondary structure. Furthermore the sequences

in this component fold into all 4 structures realized in I(9)
AUGC

. Therefore

this huge H1 component contains parts of nearly all Gl
k components. It is

important to keep in mind that the variation operators used to construct the

Gl
k components are less stringent than the variation operator used for the

construction of Hi components.

Next we merged the information contained in table 1 and table 2 to show

that shape space covering also holds for the remaining Hi components. Con-

sider, e.g. structure ((....))., it is contained in one Gl
k component in table 1,

while in table 2 this structure is partitioned into two Hi components, H1 and

H8, therefore H1 and H8 merge into one component, if base pair substitu-

tions are permitted as additional variation operator. The same is true for

Hi components H2, H3 and H6, they merge with the huge H1 component,

if the variation operator includes base pair substitutions. The remaining se-

quences are partitioned into 3 small isolated Hi networks, H4, H5 and H7,

each including 16 nodes. The minimal hamming distance between sequences

in these small isolated networks and sequences that belong to the joint com-

ponent described above, is dh = 2. Therefore all sequences with a stable

secondary structure are accessible from each other within I(9)
AUGC

, if dh = 1,

dh = 2 and dc = 1 are allowed as variation operators. In other words, we

don’t need dh = 3 and dc = 2 to connect all stable sequences of I(9)
AUGC

.
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Table 2: A Hi component is defined as the set of all sequences that differ either by dh = 1

or are connected to each other by a path of sequences that are dh = 1 neighbors. We

do not consider the secondary structure of a given sequence for the construction of Hi

components. Hi differ from Gl
k components in two respects: First all sequences in a given

Gl
k component ave to fold into structure Sk as mfe structure. Second for construction of

Gl
k components two variation operators dh = 1 and dc = 1 are used.

structure components of Tab. 1

structure ((....)). .((....)) (((...))) ((.....))

No. of components 1 5.1 5.2 5.3 5.4 5.5 1 1

dh = 1 component

H1 2384 224 220 0 0 0 196 48

H2 0 16 0 0 0 0 0 0

H3 0 0 0 0 0 0 64 0

H4 0 0 0 16 0 0 0 0

H5 0 0 0 0 0 16 0 0

H6 0 0 0 0 0 0 64 0

H7 0 0 0 0 16 0 0 0

H8 16 0 0 0 0 0 0 0

To demonstrate that it is sufficient to screen a sphere around an arbitrar-

ily chosen sequence to find at least one sequence for every common struc-

ture we decompose the huge H1 component of table 2 into the different

secondary structures, see figure 15. Each colored circle symbolizes a Hi com-

ponent of structure neutral sequences, HSk

i . A HSk

i component is a graph

HSk

i = (Vhk, Ehk), where the vertex set Vhk = {Ii|ψ(Ii) = Sk} and den edge

set Ehk = {Ii, Ij ∈ Vhk|dh
ij = 1}. The size of the circle is approximately pro-

portional to the number of sequences in the corresponding HSk

i component.

The black lines indicate that two HSk

i components are connected through

dh = 1 neighbors. It is immediately obvious that the connection between se-

quences belonging to one and the same structure is only possible by passing
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((....)).

.((....))

(((...)))

((.....))

Figure 15: Decomposition of the largest hamming distance component of table 2, H1, into

the different structures. Each colored circles indicates a component of sequences that share

the same structure (indicated by the color) and are connected to each other by structure

neutral paths of sequences with dh = 1. A black line between two components implies

that these components are connected through hamming distance dh = 1 neighbors. The

colored circles, that are not connected by black lines, depict the remaining Hi components

through a neutral network of another structure, if dh = 1 is the only permit-

ted variation operator. This fact proves that within the huge H1 component

in the first row a table 2, shape space covering is fulfilled.

Through decomposition of the sequences in I(9)
AUGC

into components, which

were constructed using stepwise less stringed criteria for the definition of a

component, we have shown that the criterion of shape space covering holds

for the set of all sequences of length ℓ = 9 and the alphabet A = {A,U,G,C}
that fold into a stable secondary structure.

We next measure the accessibility between the different secondary struc-

tures in I(9)
AUGC

. Accessibility relations between secondary structures are

described in detail in Section 2.2.3. Figure 16 shows the accessibility be-

tween the four secondary structures realized in I(9)
AUGC

. The neighborhood

frequency ν(Sβ, Sα), as well as the occurrence frequency, ϑ(Sβ , Sα) are shown,

ν(Sβ, Sα) is defined in equation (18) and ϑ(Sβ , Sα) in equation (19). It is im-
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0.1% − 5%

5% − 10%

15% − 33%

50% − 55%

100%

13%

2%

5%

5%

5%

4%

0.4%

1.3%

6%

0.06%
0.5%

> 0.01%

> 0.1%

> 1%

> 10%
11%

Figure 16: Accessibility relations for RNA secondary structures in I(9)
AUGC

. The acces-

sibility between two secondary structures Sα and Sβ is measured as described by [22],

see Section 2.2.3. The neighborhood frequency ν(Sβ , Sα), shown in the upper part of the

figure, is defined in equation (18) and reflects the likelihood of finding structure Sβ in the

dh = 1 neighborhood of a randomly chosen sequence of Sα, the frequencies are shown as

percentage of structures adopting the described feature. The definition of the occurrence

frequency, ϑ(Sβ , Sα), show in the lower part of the figure, is given in equation (19) and

refers to the total number of occurrences of a structure Sβ in the boundary of Sα, Bα.
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mediately apparent from figure 16 that the accessibility relations described

by ν(Sβ, Sα) and ϑ(Sβ , Sα) are qualitatively identical. Another property of

accessibility relations in RNA structure space is also immediately visible: In

general, neighboring structures have very different frequencies of occurrence.

This causes an asymmetric accessibility relation between their neutral net-

works:

Consider for example structures ((.....)), colored yellow in figure 16, and struc-

ture .((....)), colored green. All 48 sequences folding in structure ((.....)) have

at least one dh = 1 neighbor folding into structure .((....)), which corresponds

to a neighborhood frequency ν(Sβ , Sα) = 1. The situation is different for the

set of sequences folding into structure .((....)) . In this set the 48 sequences

that have dh = 1 neighbors adopting structure ((.....)) comprise less than 10%

of all sequences in this set. The probability that an offspring of a sequence

folding into structure ((.....)) acquires structure .((....)) as a consequence of

mutation, is therefore much higher than the probability that a sequence with

.((....)) phenotype has an offspring folding in structure ((.....)) . Figure 16

also shows that the asymmetric accessibility relations between different neu-

tral networks results in unequal neighborhood contexts. Structure ((.....)),

which is the rarest structure realized in I(9)
AUGC

, is definitely nearer to all

other structures, than any of them is to structure ((.....)) . The revers is true

for the most common structure ((....))., all other structures in I(9)
AUGC

are

nearer to ((....))., than it is to any of them. As a result of this asymmetric

neighborhood relation the most common shape ((....)). is significantly easier

to access from all other shapes in I(9)
AUGC

than vice versa.

One consequence of the shape space topology induced by the genotype phe-

notype map of RNA is the fact that the neutral networks of two structures

Sk and Sl, Gk and Gl, come very close together on the set Ck
⋂ Cl of se-

quences that are compatible with both structures [63, 64]. We call the se-

quences that are compatible with more than one secondary structure and

can adopt these structures with a negative free energy, i.e. as stable struc-
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Table 3: Intersection sequences in I(9)
AUGC

, I. The first column of the table holds the

number of intersection sequences that follow the pattern given in the second column. The

subsequent columns indicate the structures that are compatible with the sequences within

each row. The negative floating-point number is the free energy of a given sequence

Ii, when folding into the indicated structure Sk, F (Sk, Ii). The free energy of the mfe

structure Sm, Fmin(Sm, Ii) of sequence Ii is indicated by bold print. If two or more

structures share the same minimal free energy bold print denotes which structure is

used for structure component decomposition. A + states, that the sequence is compatible

with a given structure, but that the free energy of this structure on the given sequence is

positive, i.e. the structure is not stable. − indicates, that the sequence is not compatible

with the given structure.

number of

sequences sequences ((....)). .((....)) (((...))) ((.....))

AAA

72 GGGU
G

U
G

U
G
CCC + + −0.9 −0.6

C C C

AAA

64 GGC U
G

U
G

U
G
GGC − − −1 −0.1

C C C

AAA

64 GCC U
G

U
G

U
G
GGC − − −1 −0.7

C C C

AA

16 GGGGU
G

U
G
ACC − −0.1 − −0.1

C C

AA

12 GGGU
−

U
G
CCCC −1.4 + −0.9 −0.6

C C

AA

12 CCC U
G

U
G
GGGG −1.9 + −0.9 −0.6

−C
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Table 4: Intersection sequences in I(9)
AUGC

, II. The first column of the table holds the

number of intersection sequences, that follow the pattern given in the second column. The

subsequent columns indicate the structures that are compatible with the sequences within

each row. The negative floating-point number is the free energy of a given sequence

Ii, when folding into the indicated structure Sk, F (Sk, Ii). The free energy of the mfe

structure Sm, Fmin(Sm, Ii) of sequence Ii is indicated by bold print. If two or more

structures share the same minimal free energy bold print denotes which structure is

used for structure component decomposition. A + states, that the sequence is compatible

with a given structure, but that the free energy of this structure on the given sequence is

positive, i.e. the structure is not stable. − indicates, that the sequence is not compatible

with the given structure.

number of

sequences sequences ((....)). .((....)) (((...))) ((.....))

AA

8 CCCC U
G

−

−
GGG + −0.9 −0.9 −0.6

C C

A

8 GGGGU
G

U
G
CCC + −0.6 −0.9 −0.6

C

A

4 CCCC U
G
GGGG −1.9 −0.9 −0.9 −0.6

C

A

4 CCCC U
G
UGGG + −0.9 −0.9 −0.6

C

A

4 GGGGU
G
ACCC −0.9 −0.6 −0.9 −0.6

C

A

4 GGGGU
G
CCCC −1.4 −0.6 −0.9 −0.6

C



3 Results on Sequence-Structure Mapping 60

tures, intersection sequences. The set of all intersection sequences is then

X = {Ii ∈ Ck
⋂ Cl|F (Sk, Ii) < 0 ∧ F (Sl, Ii) < 0}. The 272 intersection se-

quences found in I(9)
AUGC

are listed in table3 and table4. We found 12 different

combinations of compatible structures and different energy values for these

structures when adopted by different Ck sequences. 75% of the intersection

sequences are compatible with only two structures. 20, 6% of the intersec-

tion sequences are compatible with three different structures and can adopt

these structures with a negative free energy. Only 4.4% of the intersection

sequences are compatible with all four structures realized in I(9)
AUGC

and can

fold into them with a negative free energy. The majority of intersection se-

quences adopts shape (((...))) as there mfe structure, but the remaining three

shapes realized in I(9)
AUGC

are also found as the mfe structure of Ck sequences.

The set of all intersection sequences of length ℓ = 9 and the alphabet

A = {A,U,G,C} comprises a connected graph if the variation operators

are base substitutions dh = 1 and base pair substitutions dc = 1. The fact,

that all intersection sequences of I(9)
AUGC

are contained within one connected

component demonstrates that the neutral networks of two structures come

very close together on the set of their intersection sequences.

Some of the results obtained from I(9)
AUGC

were also calculated for the set of

all sequences of length ℓ = 10 and the alphabet A = {A,U,G,C} that fold

into a stable secondary structure. In case of I(10)
AUGC

, the number of sequences,

that have a stable mfe structure is of course larger. 40345 sequences out of

the 410 possible sequences of length ℓ = 10 over the natural alphabet fold

into 9 different secondary structures, see figure 17.

While the set of stable structures of length ℓ = 9 is dominated by one struc-

ture, which is formed by more than 70% of all sequences, more than 60% of

the sequences of length ℓ = 10 are nearly equally distributed between three

structures, that occur with almost the same frequency. Together with struc-

ture ((.....))., which is the fourth common structure in I(10)
AUGC

, and occurs

with a frequency slightly below that of the three most common structures,
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((....))..

22.8% 20.6%

(((....)))

19.7% 16.7%

.((....)). ((.....)).

(((...))).

7.4%

..((....)) .(((...))) .((.....)) ((......))

1.9%2.0%4.1%4.7%

Figure 17: Structures in I(10)
AUGC

that fold into a stable mfe structure in graph and dot-

bracket notation. The frequencies given are calculated as described in figure 14.

the four highest ranking structures are realized by nearly 80% of the se-

quences adopting a stable secondary structure. The fact, that the highest

ranking structures of I(10)
AUGC

occur with almost the same frequency, is in

agreement with the results obtained from large samples derived by folding

random sequences of fixed chain length [7, 22, 73].

Table 5 shows the decomposition of I(10)
AUGC

into Gl
k components. The three

largest structure components are connected networks. Some of the structure

components occupied by fewer sequences are scatted networks with many

components.

In figure 18 the accessibility relations for RNA secondary structures in I(10)
AUGC

are shown. For the majority of shapes accessibility relations are asymmetric.

In a few cases, however, the accessibility relation between two structures is

symmetric.

Next we examined the composition of the neighborhood of sequences com-

prising the different Gl
k components. We define sequence neighborhood in a

graph theoretic sense. Sequence Ii is a neighbor of sequence Ij, if Ii can be
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Table 5: Sequences of I(10)
AUGC

folding into the same secondary structure are decomposed

into mutationally connected components using single base exchanges and base pair sub-

stitutions as variation operators.

structure number of number of sequences per

sequences components component

((....)).. 9214 1 9214

(((....))) 8312 1 8312

.((....)). 7964 1 7964

((.....)). 6752 2 6624, 128

(((...))). 2996 1 2996

..((....)) 1883 5 892, 803, 64, 64, 60

.(((...))) 1656 1 1656

.((.....)) 816 5 496, 128, 64, 64, 64

((......)) 752 1 752

converted into Ij by applying one of the variation operators once. We used

dh = 1 and dc = 1 mutations as variation operators. The neighborhood of

a sequence Ii, N (Ii), is then the set N (Ii) = {Ij|dh
ij = 1 ∨ dc

ij = 1}. Using

this definition of sequence neighborhood we find two categories of sequences

within a Gl
k component. On category is the set of sequences having at least

one neighbor folding into a structure different from the mfe structure of this

Gl
k component O(Gl

k) = {Ii ∈ Gl
k|∃Iy ∈ N (Ii) : Iy /∈ Gl

k}. These O(Gl
k)

sequences, therefore, make a connection to another Gl
k component. Alterna-

tively there is the set of sequences having only neighbors within their own

Gl
k component, i.e. neighbors adopting the same mfe structure than these

sequences. Were termed the set of these sequences the interior of a Gl
k com-

ponent interior(Gl
k) = {Ii ∈ Gl

k|∄Iy ∈ N (Ii) : Iy /∈ Gl
k}.

The set O(Gl
k) of sequences having neighbors in other Gl

k components is

split in two subsets. One subset of O(Gl
k) are the intersection sequences,

intersect(Gl
k) = {Ii ∈ Gl

k|∃Iy ∈ N (Ii) : Iy /∈ Gl
k ∧ Ii ∈ X}. The other subset
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Table 6: Sequence composition of the Gl
k components of I(10)

AUGC
, I. All sequences com-

prising the Gl
k components of I(10)

AUGC
are sampled according to the secondary structures

realized in their sequence neighborhood, N (Ii) . If a structure Sk = ψ(Ii) has more than

one Gl
k component, each Gl

k component is shown separately. For the definition of the dif-

ferent neighborhood contexts see text. The columns labeled “stable neighbors” show mean

and standard deviation of the number of neighbors with a stable secondary structure.

structure neighborhood % of stable neighbors

context seq. mean σ.

((....)).. intersect 7.39 22.27 2.27

Onc
k 48.07 18.60 2.27

interior 44.54 17.51 2.28

(((...))). intersect 10.28 29.36 3.10

Onc
k 71.56 21.13 5.34

interior 18.16 13.87 0.54

.((....)). intersect 5.22 22.19 2.23

Onc
k 94.58 18.53 2.61

interior 0.20 11.00 0.00

((.....)). intersect 6.82 21.17 2.01

Onc
k 76.87 18.43 2.11

interior 16.30 18.46 2.26

Onc
k 100.00 15.69 1.29

(((....))) intersect 6.30 29.06 4.59

Onc
k 70.49 21.74 5.46

interior 23.21 15.51 1.83

((......)) intersect 8.51 19.50 1.33

Onc
k 91.49 15.98 0.91
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Table 7: Sequence composition of the Gl
k components of I(10)

AUGC
, II. All sequences com-

prising the Gl
k components of I(10)

AUGC
are sampled according to the secondary structures

realized in their sequence neighborhood, N (Ii) . If a structure Sk = ψ(Ii) has more than

one Gl
k component, each Gl

k component is shown separately. For the definition of the dif-

ferent neighborhood contexts see text. The columns labeled “stable neighbors” show mean

and standard deviation of the number of neighbors with a stable secondary structure.

structure neighborhood % of stable neighbors

context seq. mean σ.

.((.....)) intersect 6.45 17.03 0.18

Onc
k 93.55 14.01 1.14

intersect 3.12 20.00 0.00

Onc
k 96.88 13.31 0.88

Onc
k 100.00 10.00 0.00

Onc
k 31.25 10.00 0.00

interior 68.75 9.00 0.00

Onc
k 75.00 10.08 0.28

interior 25.00 9.00 0.00

..((....)) intersect 3.92 19.26 4.98

Onc
k 55.61 14.09 1.53

interior 40.47 12.02 1.04

intersect 2.37 27.05 2.01

Onc
k 59.90 15.35 2.55

interior 37.73 13.23 1.18

Onc
k 28.12 11.28 0.96

interior 71.88 9.00 0.00

Onc
k 6.25 11.00 0.00

interior 93.75 9.00 0.00

Onc
k 53.33 11.00 1.44

interior 46.67 9.00 0.00

.(((...))) intersect 10.39 23.13 1.77

Onc
k 83.57 17.88 2.20

interior 6.04 15.00 0.00
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6% to 10% 11% to 16% 29% to 34% 1% to 5%

Figure 18: Accessibility relations for RNA secondary structures in I(10)
AUGC

. The acces-

sibility between two secondary structures Sα and Sβ , is measured as described by [22],

see Section 2.2.3. For I(10)
AUGC

only the occurrence frequency, ϑ(Sβ , Sα) is shown. The

definition of the occurrence frequency, ϑ(Sβ , Sα) is given in Equation (19) and refers to

the total number of occurrences of a of structure Sβ in the boundary of Sβ , Bα. In the

figure the frequencies are shown as percentages.

Onc
k (Gl

k), comprises all sequences, that have neighbors folding into struc-

tures different from their mfe structure, but are not intersection sequences

Onc
k (Gl

k) = {Ii ∈ Gl
kl|Ii ∈ O(Gl

k)\intersect(Gl
k)} .

In the majority of the Gl
k components shown in table 6 and table 7 more

than 50% of all sequences have neighbors in other Gl
l components. In the

Gl
k component of structure ((.....)). 100% of the sequences have neighbors in

other Gl
k components. The three Gl

k components in which less than 50% of

all sequences have neighbors in other Gl
k components, form small networks

comprising maximal 64 sequences and might be an artifact of the folding

algorithm. But even these three atypical Gl
k components include sequences
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that have neighbors folding into other structures. The results of tables 6 and

table 7 clearly show, that the set of all sequences of I(10)
AUGC

that fold into a

stable secondary structure represents a densely connected network, proving

that shape space covering also holds for I(10)
AUGC

. The set intersect(Gl
k) of all

intersection sequences plays a decisive role in connecting the sequences of

I(10)
AUGC

. All intersection sequences have neighbors folding into stable struc-

tures different from their mfe structure. Furthermore, intersection sequences

have on average more stable neighbors than sequences that are interior to

one structure component.

By exhaustive folding and enumeration of all stable sequences in I(9)
AUGC

and I(10)
AUGC

we can show that the generic properties of the RNA sequence-

structure map are realized in these two sequences spaces.

3.1.3 Small world features of neutral networks

To study the emergence of small world properties within the different con-

nected components we implement a database interface for graph algorithms.

PostgreSQL databases allow to create user-defined functions written in the

C programming language. These functions are compiled into shared libraries

and loaded by the database server on demand. Another feature of the Post-

greSQL database is the Server Programming Interface (SPI), which gives

users the ability to run SQL queries inside these user-defined C functions.

We employ these features of PostgreSQL to implement an interface between

the database and the ViGl graph library, which provides a variety of funda-

mental graph algorithms.

This interface between the database and the ViGl graph library was used

to analyze the emergence of small-world features in the different structure

neutral components of I(9)
AUGC

. As discussed in section 2.3, Watts and Stro-

gatz [85] found graphs that can be highly clustered, like regular networks, but

show small characteristic path length, like random graphs. These networks,

which they termed small-world networks, have been shown to be pervasive
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in a range of networks that arise from both natural sources and man-made

technology [1, 85].

Small world properties of a connected undirected graph are quantified by two

parameters. The mean path length 〈L〉 is defined as the number of edges in

the shortest path between two vertices, averaged over all pairs of vertices. For

the calculation of L a priority-first-search algorithm is employed. The clus-

tering coefficient 〈Ci〉 of a vertex i, which measures the ’cliquishness’ of the

neighborhood of this vertex, determines what fraction of the vertices adjacent

to i are also adjacent to each other. In extension, the clustering coefficient

of a graph is defined as the average of Ci over all i. For the calculation

of C we provide functions generating all dh = 1 neighbors and all dc = 1

neighbors containing one compensatory mutation. These functions works

on unsigned integer encoded sequences using bit-shift operations. Using bit-

shift operations for the implementation of the variation operators accelerated

computation considerably. The combination of a database, which provides

optimal storage management, with a graph library enables us to study the

topological structure of large networks.

Table 8 shows the comparison of the Gl
k components of I(9)

AUGC
with random

graphs. In order to compare a Gl
k component to a random graph the number

of vertices and edges must be identical in the two graphs. Table 8 shows

that largest Gl
k component, which contains all sequences, that have structure

((....)). as their mfe structure, exhibits small world features. The mean path

length 〈L〉 of the Gl
k component of structure ((....)). is comparable Lrandom

while the average clustering coefficient 〈Ci〉 is much larger as Crandom. With

decreasing component size the properties of the Gl
k components of I(9)

AUGC

approach that of random graphs. The smallest structure component, com-

prising the set of all sequences that fold into structure ((.....)) as their mfe

structure, exhibits values for both 〈Ci〉 and 〈L〉 that are essentially indistin-

guishable from that of comparable random graphs.

A difference in the topological structure of Gk components compared to the

results from random graph theory has been described in previous studies [7].
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Table 8: Characteristic path length and clustering coefficient for the structure components,

Gl
k, of I(9)

AUGC
. The mutational operators used to construct the neutral components are

point mutations, dh = 1, and compensatory mutations, dc = 1. The rows labeled random

contain average results for 100 realizations of random graphs with the same vertex and

edge numbers as the Gl
k component directly above them. The column labeled “comp.”

contains the number of components of each structure, see table 1. σC and σL show the

standard deviation for 〈Ci〉 and 〈L〉, respectively.

structure comp. nodes 〈Ci〉 σC 〈L〉 σL

((....)). 1 2400 0.128 - 4.640 -

random 2400 0.006 .0003 3.222 0.001

.((....)) 5 240 0.188 - 3.669 -

random 240 0.037 0.003 2.678 0.003

220 0.186 - 3.383 -

random 220 0.046 0.004 2.575 0.004

16 0.400 - 1.500 -

random 16 0.406 0.053 1.545 0.026

(((...))) 1 324 0.162 - 3.591 -

random 324 0.033 0.002 2.689 0.003

((.....)) 1 48 0.250 - 2.167 -

random 48 0.170 0.017 2.000 0.013

While random graph theory predicts a single giant component, in reality one,

two, three or four large components (of almost equal frequency) were found

frequently [28]. The quintessence of these studies is that at least large Gk

components are not random graphs.
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3.2 Cofolding RNA molecules

3.2.1 Algorithm for cofolding two RNA molecules

The basis of our algorithm is a modified version of the recursions for the equi-

librium partition function introduced by McCaskill [50] as implemented in

the Vienna RNA package [33]. We assume that the interaction between two

RNA molecules is a stepwise process. In a first step, the target molecule has

to adopt a structure in which a binding site is accessible. In a second step,

the ligand molecule will hybridize with a region accessible to an interaction.

Consequently we designed our algorithm as a two step process: The first

step is the calculation of the probability that a region within the target is

unpaired, or equivalently, the calculation of the free energy needed to expose

a region. In a second step we compute the free energy of an interaction for

every possible binding site [57]. Using the partition function enables us to

consider the whole ensemble of possible structures. Our method is therefor

not only more robust against the inherent imprecision of secondary structure

prediction algorithms but also more exact than sampling methods.

3.2.2 Probability of an Unpaired Region

In the following let F (S) denote the free energy of a secondary structure S,

and write β for the inverse of the temperature times Boltzmann’s constant.

The equilibrium partition function is defined as Z =
∑

S exp(−βF (S)). The

partition function is the gateway to the thermodynamics of RNA folding.

Quantities such as ensemble free energy, specific heat, and melting tempera-

ture can be readily computed from Z and its temperature dependence.

Since the frequency of a structure S in equilibrium is given by P (S) =

exp(−βF (S))/Z, partition functions also provide the starting point for com-

puting the frequency of a given structural motif. In particular we are inter-

ested in the probability Pu[i, j] that the sequence interval [i, j] is unpaired.

Denoting the set of secondary structures in which [i, j] remains unpaired by
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Su
[i,j] we have

Pu[i, j] =
1

Z

∑

S∈Su
[i,j]

e−βF (S) (26)

Clearly, the set Su
[i,j] will be exponentially large in general. The program

Sfold [8,9] adds a stochastic backtracking procedure to McCaskill’s partition

function calculation [50] to generate a properly weighted sample of structures.

One then simply counts the fraction of structures with the desired structural

feature. This approach becomes infeasible, however, when Pu[i, j] becomes

smaller than the inverse of the sample size. Nevertheless, even very small

probabilities Pu[i, j] can be of importance in the context of interacting RNAs,

as we shall see below.

We therefore present here an exact algorithm. In the special case of an

interval of length 1, i.e., a single unpaired base, Pu[i, i] can be computed

by dynamic programming. Indeed, Pu[i, i] = 1 − ∑

j 6=i Pij , where Pij is

the base pairing probability of pair (i, j), which is obtained directly from

McCaskill’s partition function algorithm [50]. It is natural, therefore, to look

for a generalization of the dynamic programming approach to longer unpaired

stretches2.

We first observe that the unpaired interval [i, j] is either part of the “exterior

loop”, (i.e., it is not enclosed by a basepair), or it is enclosed by a base pair

(p, q) such that (p, q) is the closing pair of the loop that contains the unpaired

interval [i, j]. We can therefore express Pu[i, j] in terms of restricted partition

functions for these two cases:

Pu[i, j] =
Z[1, i− 1]× 1× Z[j + 1, N ]

Z
︸ ︷︷ ︸

exterior

+
∑

p,q
p<i≤j<q

Ppq ×
Zpq[i, j]

Zb[p, q]
︸ ︷︷ ︸

enclosed

(27)

The first term accounts for the ratio between the partition functions of all

sub-structures on the 5’ and 3’ side of the interval [i, j] and the total par-

2Note that we cannot simply use
∏j

k=i Pu[k, k] since these probabilities are not even

approximately independent.
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tition function. In the second term, Zpq[i, j] is the partition function over

all structures on the subsequence [p, q] subject to the restriction that [i, j] is

unpaired and (p, q) forms a base pair, while Zb[p, q] counts all structures on

[p, q] that form the pair (p, q). Multiplying the ratio of these two partition

functions by the probability Ppq that (p, q) is indeed paired yields the desired

fraction of structures in which [i, j] is left unpaired.

q

i j

1
N

p

lk

i

j i

j

k l

qp p q

1
N

1
N

p q

i j

1 n

i j

1 n

qp p q

i j

1 n

(a) (b’) (b”) (c) (d) (e)

Figure 19: A base pair p, q can close various loop types. According to the loop type

different contributions have to be considered. a) A hairpin loop is depicted in blue. b) In

case of an interior loop, which is shown in red, two indepent contributions to Qpq[i, j] are

possible: The unstructured region [i, j] can be located on either side of the stacked pairs

(p, q) and (k, l). c) If region [i, j] is contained within a multiloop we have to account for

three different conformations, indicated in the green structures, a more detailed description

is given in the text.

The tricky part of the algorithm is the computation of the restricted partition

functions Zpq[i, j]. The recursion is built upon enumerating the possible types

of loops that have (p, q) as their closing pair and contain [i, j], see Fig. 19.

From this decomposition one derives:
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Zpq[i, j] = exp(−βH(p, q))
︸ ︷︷ ︸

(a)

+
∑

p < i ≤ j < k or
l < i ≤ j < q

Zb[k, l] exp(−βI(p, q; k, l))
︸ ︷︷ ︸

(b)

+
∑

p<i≤j<q

Zm2[p+ 1, i− 1] exp(−βc(q − i))
︸ ︷︷ ︸

(c)

+
∑

p<i≤j<q

Zm[p+ 1, i− 1]Zm[j + 1, q − 1] exp(−βc(j − i+ 1))
︸ ︷︷ ︸

(d)

+
∑

p<i≤j<q

Zm2[j + 1, q − 1] exp(−βc(j − p))
︸ ︷︷ ︸

(e)

(28)

where H(p, q) and I(p, q; k, l) are functions that compute the loop energies

of hairpin and interior loops given their enclosing base pairs; c is an energy

parameter for multiloops describing the penalty for increasing the loop size

by one. The computation of the multiloop contributions (c-e) requires two

additional types of restricted partitions functions: Zm[p, q] is the partition

function of all conformations on the interval [p, q] that are part of a mul-

tiloop and contain at least one component, i.e., that contain at least one

substructure that is enclosed by a base pair. These quantities are computed

and tabulated already in the course of McCaskill’s algorithm. There, the

computation of Zm requires an auxiliary array Zm1 which counts structures

in multiloops that have exactly one component, the closing pair of which

starts at the first position of the interval. For the one-sided multiloop cases

(c) and (e) in Fig. 19 we additionally need the partition functions of mul-

tiloop configurations that have at least two components. These are readily

obtained using

Zm2[p, q] =
∑

p<u<q

Zm[p, u]Zm1[u+ 1, q] . (29)

It is not hard to verify that this recursion corresponds to a unique decom-

position of the “M2” configurations into a 3’ part that contains exactly one
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component and a 5’ part with at least one component.

It is clear from the above recursions that, in comparison to McCaskill’s par-

tition function algorithm, we need to store only one additional matrix, Zm2.

The CPU requirements increase to O(n4) (assuming the usual restriction of

the length of interior loops). In practice, however, the probabilities for very

long unpaired intervals are negligible, so that Pu[i, j] is of interest only for

limited interval length |j − i + 1| ≤ w. Taking this constraint into account

shows that the CPU requirements are actually only O(n3 · w).

3.2.3 Interaction Probabilities

The values of Pu[i, j] can be of interest in their own right: Hackermüller,

Meisner, and collaborators [29, 51] showed that the binding of the HuR pro-

tein to its mRNA target depends quantitatively on the probability that the

HuR binding site has an unpaired conformation. While not much is known

about the energetics of RNA-protein interactions, the case of RNA-RNA

interactions can be modeled in more detail: The energetics of RNA-RNA

interactions is viewed as a step-wise process, ∆G = ∆Gu + ∆Gh, in which

the free energy of binding consists of the contribution ∆Gu that is necessary

to expose the binding site in the appropriate conformation, and contribution

∆Gh that describes the energy gain due to hybridization at the binding site.

This additivity assumes that the energy of the original loop is unchanged by

the binding of the oligo. For an unpaired binding motif in the interval [i, j],

we have of course ∆Gu = (−1/β)(lnZu[i, j]−lnZ) = (−1/β) lnPu[i, j]. Since

the energy gain from the hybridization can be substantial, it becomes neces-

sary to deal also with very small values of Pu[i, j]. The sampling approach

thus becomes infeasible.

The computation of the hybridization part is performed similar to RNAduplex

or RNAhybrid: We assume that the binding region may contain mismatches

and bulge loops. Thus the partition function over all interactions between

a region [i∗, j∗] in the small RNA and a segment [i, j] in the target RNA is

obtained recursively by summing over all possible interior loops closed by
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Figure 20: Calculation of the probability of an interaction between a short RNA and its

target.

base pairs (k, k∗) and (j, j∗), see Figure 20.

ZI [i, j, i∗, j∗] =
∑

i<k<j
i∗>k∗>j∗

ZI [i, k, i∗, k∗]e−βI(k,k∗;j,j∗). (30)

Since we are mostly interested in the binding of miRNAs and siRNAs to

a target mRNA, we will neglect internal structures in the short RNA, and

include unfolding of the mRNA target site. Thus only ZI and Pu[i, j] are

needed to compute Z∗[i, j], the partition function over all structures where

the short RNA binds to region [i, j], and for the computation of the corre-

sponding binding probability, P ∗[i, j].

Z∗[i, j] = Pu[i, j]
∑

i∗>j∗

ZI [i, j, i∗, j∗]; P ∗[i, j] = Z∗[i, j]/
∑

k<l

Z∗[k, l] (31)

From P ∗[i, j] we can readily compute the probability P ∗
k that a position

k lies somewhere within the binding site. Note that these are conditional

probabilities given that the two molecules bind at all. Furthermore Z∗[i, j]

can be used to calculate ∆G[ij] = (−1/β) lnZ∗[i, j] the free energy of bind-

ing, where the binding site is in region [i, j]. For visual inspection ∆G[ij]

can be reduced to the optimal free energy of binding at a given position

i, ∆Gi = mink≤i≤l{∆G[kl]}. The memory requirement for these steps is

O(n · w3), the required CPU time scales as O(n · w5), which at least for

long target RNAs is dominated by the first step, i.e., the computation of the

Pu[i, j].
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3.2.4 Interactions between small RNAs and their targets

In order to demonstrate that our algorithm produces biologically reasonable

results, we compared predicted binding probabilities with data from RNA

interference experiments. Small interfering RNAs (siRNAs) are short (21-

23nt) RNA duplices with symmetric 2-3 nt overhangs [11, 52, 53]. They are

used to silence gene expression in a sequence-specific manner in a process

known as RNA interference (RNAi). Recently, there has been mounting evi-

dence that the biological activity of siRNAs is influenced by local structural

characteristics of the target mRNA [4, 42, 53, 60, 67, 90]: a target sequence

must be accessible for hybridization in order to achieve efficient translational

repression. An obstacle for effective application of siRNAs is the fact that

the extent of gene inactivation by different siRNAs varies considerably. Sev-

eral groups have proposed basically empirical rules for designing functional

siRNAs, see e.g. [15, 66], but the efficiency of siRNAs generated using these

rules is highly variable. Recent contributions [61, 67] suggest two significant

parameters: The stability difference between 5’ and 3’ end of the siRNA,

that determines which strand is included into the RISC complex [38,74] and

the local secondary structure of the target site [4, 42, 53, 60, 67, 90].

Schubert et al. [67] systematically analyzed the contribution of mRNA struc-

ture to siRNA activity. They designed a series of constructs, all containing

the same target site for the same siRNA. These binding sites, however, were

sequestered in local secondary structure elements of different stability and

extension. They observed a significant obstruction of gene silencing for the

same siRNA caused by structural features of the substrate RNA. A clear

correlation was found between the number of exposed nucleotides and the ef-

ficiency of gene silencing: When all nucleotides were incorporated in a stable

hairpin, silencing was reduced drastically, while exposure of 16 nucleotides

resulted in efficient inhibition of expression virtually indistinguishable from

the wild type.

We applied our methods to study the target sites provided by Schubert et

al. [67]. Our predictions, shown in Fig. 21, are in perfect agreement with the
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Figure 21: Probability of being unpaired Pu[i, i] (dashed line), probability of binding to

siRNA at position i, P ∗

i , (thick black line) and ∆Gi, the optimal free energy of binding in

a region including position i (thick red line) near the known target site of VsiRNA1. The

scale for the probabilities is indicated on the left side, the scale for the minimal free energy

of binding on the right side. At the bottom the protein expression levels in experimental

data [67] are indicated. The isolated 21mer target sequence, displaying the same activity

as the wild type mRNA, and 3 mutants are shown. A decreasing optimal free energy

of binding is correlated with increasing expression. In the case of the HP5 6 mutant an

alternative binding site becomes occupied as the optimal free energy of binding due to this

alternative interaction nearly equals ∆Gi at the proposed target site.

experimental results. The target site of the “VR1straight” construct has a

high probability of being unstructured, consequently ∆Gi, the optimal free

energy of binding, is highly favorable and the siRNA will bind almost ex-

clusively to the intended target site. The stepwise reduction of the target

accessibility is directly correlated to a weaker optimal free energy of binding

and decreasing silencing efficiency. In case of construct VR HP5 6 the opti-

mal free energy of binding at an alternative binding site at positions 1066 to

1078 nearly equals that at the proposed target site. Since siRNAs can also

function as miRNAs [10, 91], the siRNA might act in a miRNA like fashion
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binding to this alternative target site and contribute to the remaining trans-

lational repression of this construct. The incomplete complementarity of the

siRNA to the alternative target site should be no obstacle to functionality,

since it was shown that miRNAs can be active even if the longest continuous

helix with the target site is as short as 4 - 5 basepairs [6].

Our new accessibility prediction tool can thus be used to identify potential

binding sites as well as explain differences in si/miRNA efficiency caused by

secondary structure effects.
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4 Results on RNA Evolution

4.1 Evolutionary trajectories of A,U,G, C

We analyzed the relay series of 1200 different evolutionary trajectories to

extract common features of RNA structure optimization. The alphabet

{A,U ,G, C} was used, the length of the sequences was 76 nucleotides. The

flow reactor used for our studies was implemented by Andreas Wernitznig [87],

it is based on the stochastic method of Gillespie [25,26]. A population size of

3000 RNA sequences was chosen for the run of the reactor. The fitness which

is tantamount to the replication rate of a given sequence adopting structure

Si was calculated using following equation:

f =
1

0.01 + (
dS

iτ

ℓ
)g

(32)

where dS
iτ is the hamming distance of the dot-bracket notations between a

given structure Si and the target structure Sτ , ℓ = 76 as the length of the

sequence and g (g = 1) as the weight.

4.1.1 Emergence of families of recurrent structures

These relay series contain about 14, 000 different structures. As expected

from the stochastic nature of the simulations 80% of these structures occur

only once. A remarkable feature of the remaining structures is that they can

recur in a single relay series several times. In particular, 30% of the relay

series contain at least one family of recurring structures. This shows that

the relay series may not only be monotonic sequences of structures with in-

creasing fitness converging to the target structure but may contain structures

that are visited more than once in the process of evolutionary optimization,

see Figure 22. Relay series containing families of recurring structures are

on average longer than relay series without them. A relay series including

at least one family of recurring structures passes on average 33 structures

before reaching the target, whereas relay series without families of recurring
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structures comprise 22 structures on average.

The structures forming the family of recurring structures (for example up-

per part of Figure 22, structures Ω3,Ω4,Ω5,Ω6, ) have typically identical

hamming distances to the target structure and consequently the same fit-

ness. Therefore, selection does not discriminate between these structures.

Another property of structures in these families is their similarity: Each

structure differs from its immediate predecessor in the relay series only by

closing or opening of a single base pair. Such transitions are termed contin-

uous and occur frequently on point mutations. In the majority of the relay

series containing families of recurring structures, the target structure is diffi-

cult to access from structures in the family. The transformation to the target

structure involves simultaneous formation and cleavage of several base pairs.

The probability of such a discontinuous transition is rather low. The target is

therefore approached via a small number of “intermediate” structures, which

permit a gradual convergence to the target structure.

In the lower part of figure 22 the accessibility between structures forming a

family of recurring structures in a relay series is shown. For the determination

of accessibility relations between two secondary structures we generated the

local shadow of both structures. The local shadow of a structure Si was

obtained by enumerating the set of all secondary structures formed by all

possible one-error mutants of 2000 sequences adopting structure Si as their

mfe structure. The accessibility between two structures ̺(Si, Sj) is given as

the fraction of sequences folding into structure Sj of the 2000∗76∗3 sequences

generated to obtain the shadow of structure Si. A structure Sj was defined

as accessible from a structure Si, if Sj occurred in the local shadow of Si

with ̺(Si, Sj) ≥ 0.0001. Note that the accessibility relation between two

structures is usually not symmetric. In case of families of recurring structures,

however, highly symmetric accessibility relations support the formation of a

family. Furthermore, the accessibility of the target structure or of structures

that have to be passed on the way to the target, is low in the shadows

of members of a family of recurring structures. The low accessibility of
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Figure 22: Example of a family of recurring structures in a relay series. In the upper part

of the figure, the members of the family of recurring structures (Ω3,Ω4,Ω5,Ω6) are shown.

Structures Ω2 and Ω1 allow the transition to the target structure Ω0. In the lower part

of the figure the accessibility between the members of the family of recurring structures,

the target structure and the structures occurring between the target and the family of

recurring structures are indicated by arrows. The numbers given above an arrow pointing

from structure Si to structure Sj indicate the frequency of a structure Sj in the local

shadow of structure Si, ̺(Si, Sj).
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structures that have to be visited on the way to the target also supports the

formation of a family.

When studying the accessibility relation between the members of a family of

recurring structures we noticed that, although the accessibility between two

members of a family are highly symmetric, not every member of a family

is accessible to all other members of the family, see figure 22. For example

structure Ω4 is accessible to structures Ω5 and Ω3 and vice versa, however

structure Ω6 cannot be reached from sequences adopting structure Ω4. When

comparing the non accessible structures we noticed that two family members

Si and Sj that are not accessible to each other differ from each other by a

structure distance dS
ij of two, whereas dS

ij = 1 for family members that can

access each other. But what does a structure distance dS
ij = 2 tell us about

the relation between the sequences folding into structures Si and Sj? To

answer this question we generated local shadows that contained additional

information about the sequences that were analyzed to generate the shadow.

Remember that a local shadow is constructed in the following way. 1) Find

a sequence ISin
that adopts the input structure Sin of the shadow as its mfe

structure. 2) Generate all hamming distance dH
ISin

,Ix
= 1 neighbors of this

sequence, where we term a given neighbor as Ix. Notice that we are still

on the level of sequences! 3) Fold all dH
ISin

,Ix
= 1 neighbors Ix to obtain

their mfe structure SIx
and make your statistics. For the current example we

calculated the following quantities: For each sequence ISin
that adopts the

input structure Sin we computed

• the compatibility between ISin
and each of its dH

ISin
,Ix

= 1 neighbors

Ix. The compatibility tells us whether a neighbor Ix can fold into the

secondary structure Sin of ISin
. For a given neighbor structure SIx

the compatibility is 1 if all sequences Ix can also fold into the input

structure of the shadow Sin.

• the energy difference between the mfe of structure Sin on a given se-

quence ISin
and the mfe structure SIx

on a neighbor sequence Ix. This
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value is negative if the input structure Sin is more stable than the struc-

ture of its neighbors. It is positive if the neighbor structure SIx
is more

stable.
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Figure 23: Plot of relative stability versus compatibility for shadows of sequences in a

family of recurring structures compared to shadows of structures that occur only once

within one of the evolutionary trajectories studied. The results for shadows of family

members of recurring structures are depicted as large colored symbols. The results for

shadows of structures that occur only once within one of the evolutionary trajectories are

shows as small black dots. Only common structures that appear with a ̺(Si, Sj) ≥ 0.01

times in any shadow are considered. Note that all shadows depicted in this figure have

structures with a compatibility of 1.

Figure 23 shows a plot of the fraction of neighbor sequences Ix that are

compatible with the input structure Sin versus the relative stability of the

structure SIx
compared to Sin. The relative stability of a structure SIx

is

given as the mean energy difference between the mfe of the input structure

Sin and the mfes of each structure SIx
occurring in the shadow. Figure 23

shows that their is a clear correlation between the fraction of compatible
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sequences and the relative stability with reference to the input structure. If

all sequences, that fold into a structure SIx
are compatible with the input

structure Sin, then structure SIx
is on the average more stable than the input

structure. On the other hand if nearly no sequence adopting structure SIx
is

compatible to the input structure, the stability of the input structure is not-

edly higher. Furthermore the distribution of compatibility values is different

between members of families of recurring structures, shown as large colored

symbols in figure 23, and structures that occur only once within one of the

evolutionary trajectories, depicted as small black dots. Structures that are

found within a family have either structural “neighbors” that are highly com-

patible with and notedly more stable than the input structure. Or they have

neighbors that show nearly no compatibility and are articulately less stable.

Structures that occur only once within one of the evolutionary trajectories,

on the other hand, also have neighbors that show the same stability as the

input structure combined with an intermediate compatibility value.

In the context of families of recurring structures the direct correlation be-

tween high compatibility to and higher stability of the input structure finds

its expression in a super- to substructure relationship between accessible

structures. As an example consider structures Ω3 and Ω4 in figure 22. Ω3

is a substructure of Ω4, i.e. all base pairs in structure Ω3 are also realized

in Ω4. Every sequence in the shadow of structure Ω3 that folds into Ω4 as

its mfe structure is compatible with Ω3, that is the compatibility is one. In

accordance with the results of figure 23, structure Ω4 is more stable than

structure Ω3, an effect of the additional base pair. If we now consider the

revers relation, the properties of structure Ω3 as a neighbor of structure Ω4,

we find that these properties are reversed: Nearly no sequence that folds

into Ω3 is able to build the additional base pair necessary for formation of

structure Ω4, so the compatibility is near to zero and structure Ω3 is clearly

less stable than structure Ω4. As the shadows of recurring structures con-

tain only common structures that are in conformity with one of these two

extremes, the structural variation within the set of easily accessible structure
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is low. The variation between the common structures is limited to shrinking

or extending one of the stacks or, rarely, losing a whole stack. The majority

of the transitions are continuous. Structures that occur only once, on the

other hand, allows a broader spectrum of phenotypic variation. The set of

common structures also contains variants that can only be realized by a shift

of some base pairs, these transitions are discontinuous. This fact is also re-

flected in the cardinality of the set of common structures which is markedly

lower for recurring structures, #rec ≃ 26 than for structures accruing only

once, #once ≃ 33.

Therefore we conclude that families of recurrent structures are a phenomenon

that is based on the sequence structure map. Some Structures allow more

variation in their immediate neighborhood than others. Structures that have

a restricted set of common neighbors tend to recur in evolution, if the tran-

sitions within this set are mainly continuous, as is the case in the families we

studied. The optimization process is then confined to members of the family,

at least for a while. As a result of this the adaptive process visits more differ-

ent structures than in a trajectory without a family of recurrent structures.

However this imposes no obstacle to reaching the target structure.
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5 Conclusion and Outlook

The central topic of this work is the folding of RNA sequences into sec-

ondary structure. This process is not only important for the functionality of

biologically active RNA molecules, but also plays a role in the evolution of

functional RNAs. Since the secondary structure contributes a major portion

to the free energy of structure formation, it is an important intermediate in

the folding process. Additionally secondary structures are often conserved in

phylogenetic evolution. This facts indicate that the secondary structure of

an RNA is a target of selection.

In the first part of this work evolutionary dynamics is described by repli-

cation and mutation of RNA molecules. Replication as well as mutation

operate on the level of the RNA sequences. For a comprehensive theory of

evolution, however, the secondary structure submitted to selection, has to

be an integral part of the model. In this section the relation between se-

quence and secondary structure is formulated as a mapping from sequence

space into structure space. Sequence structure maps were analyzed in great

detail by the group of Peter Schuster [7, 18]. We could proof the results of

this studies by exhaustive folding and enumeration of the sequence spaces

of short sequences. For our studies the sequences spaces I(ℓ=9)
AUGC and I(ℓ=10)

AUGC

were used, where {A,U,G,C} is the alphabet and ℓ the sequence length.

By exhaustive folding and enumeration of all sequences that form a stable

secondary structure, i.e. a structure with a negative free energy, we showed

that there are more sequences than structures. In I(9)
AUGC 3280 sequences

with a stable structure fold into 4 different secondary structures. In I(10)
AUGC

40345 sequences adopt 11 different shapes. The frequency distribution of

sequences adopting a given structure is highly biased. In I(9)
AUGC 73.8% of

all sequences adopt structure ((....))., in I(10)
AUGC nearly 80% of the sequences

are distributed with nearly equal frequencies between the four most common

structures. This results show that there are few common and many rare

shapes.
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By constructing connected components of structure neutral sequences, i.e. se-

quences adopting the same secondary structure, we could show that common

structures form extended neutral networks. In contrast to previous studies,

we used point mutations and compensatory mutations as variation operators

for the construction of structure neutral connected components. Structure

neutral networks show a kind of percolation phenomenon. They are con-

nected and span the entire sequence space if the global connectivity of the

network exceeds a certain threshold. A phenomenon intimately connected

to this fact is shape space covering: Sequences forming common structures

are distributed almost randomly in sequence space. Shape space covering in

I(9)
AUGC was proven by constructing networks of sequences connected by paths

of hamming distance one neighbors. The secondary structure of a sequence

was not considered for the construction of these hamming distance graphs.

We found that 94% of all stable sequences of I(9)
AUGC are contained within

one huge hamming distance graph. The sequences in this graph fold into

all four secondary structures realized in I(9)
AUGC . By partitioning this huge

hamming distance graph into connected structure neutral networks we could

show that the minimal distance between hamming graphs of rare structures

and hamming graphs of the most common structure is hamming distance

one. Although the huge hamming distance graph contains nearly all se-

quences, there are isolated hamming graphs of rare structures. The minimal

distance between these isolated graphs and the huge hamming distance graph

is hamming distance two. We conclude that shape space covering is realized

in I(9)
AUGC , as the minimal hamming distance between any structure neutral

hamming graph and the hamming graph containing the common structure

is two.

The relationship between sequences and secondary structures of RNA molecules

can also be modeled using random graph theory [63]. However, detailed

studies showed differences in the topology of random subgraphs compared to

structure neutral network [28,63]. We could confirm these results by studying

small world features of structure neutral networks. In I(9)
AUGC the majority of
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the connected neutral components exhibit small world features, demonstrat-

ing that networks of structure neutral components are generally not random

graphs.

Because of limitation in processing capability the examination of sequence

spaces larger than ℓ = 10 was not possible. A solution to this problem

is parallelization. The algorithm used for the initial setup of the database

can be parallelized by dividing the data into chunks and assigning different

parallel processes one chunk of data to work on. Parallel versions for the

Bellman-Ford-Moore algorithm for the single-source shortest path problem

are available. Parallelization enhances the performance drastically and will

enable us to study larger sequence spaces.

Structure neutral networks play an important role in evolutionary dynam-

ics. Understanding the dynamics of evolution requires a model of populations

searching trough sequence space by replication, mutation and selection. This

model was provided by Peter Schusters group through simulation of the evo-

lutionary process in a flow reactor [7, 20, 87]. In this work we studied 1200

relay series of different evolutionary trajectories of the alphabet {A,U,G,C}
to extract common features of RNA structure optimization towards a pre-

defined target structure. 30% of these relay series contain structures that

occurred repeatedly within one and the same relay series. This shows that

the relay series may not only be monotonic sequences of structures with in-

creasing fitness converging to the target structure, but may contain structures

that are visited more than once in the process of evolutionary optimization.

Structures that recur in evolution have a restricted set of common neighbors.

Their common neighbors are highly similar to each other, the main differ-

ence being the opening or closing of a terminal base pair of a stack. The

transition between such structures is continuous, supporting the recurrence

of these structures within a single relay series. Evolutionary trajectories in-

cluding recurring structures visit more different structures than trajectories

in which every structure occurs only once.
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Various kinds of RNAs play important roles in the regulation of gene expres-

sion, genomic organization and post-transcriptional modifications. Recently

it has been shown that many of this processes require sequence specific in-

teractions between two RNA molecules [60, 61, 65]. We applied a modified

version of McCaskill’s partition function algorithm to study the interaction

between two RNA molecules. The interaction between two RNA molecules

was modeled as a stepwise process: In the first step the target molecule has

to fold into a conformation in which the interaction site is accessible. In a

second step the ligand interacts with a region accessible for hybridization.

Consequently we calculated the free energy needed to expose a region as a

first step. Then we proceeded by computing the free energy of an interaction

for every possible binding site. Our method provides detailed information

about the location of an RNA-RNA interaction, about the structural context

of the binding site as well as about the energetics of the interaction [57]. To

test the quality of our method we compared our predictions with data from

RNA interference experiments. There is mounting evidence that the biologi-

cal activity of small regulatory RNAs is influenced by the structural context

of the target site [4, 42, 60]. A target site within a mRNA must be acces-

sible for hybridization in order to achieve efficient translational repression.

We applied our methods to study the target sites provided by Schubert et

al. [67]. Schubert et al. observed a significant obstruction of gene silencing

caused by structural features of the target RNA. They could show a clear

correlation between the number of accessible nucleotides within a target site

and the efficiency of gene silencing. Our predictions are in perfect agreement

with the experimental results: The stepwise reduction of the target accessi-

bility is directly correlated to a weaker free energy of binding and decreasing

silencing efficiency.

In this work we assumed that the influence of the secondary structure of a

small ligand molecule can be neglected. To study interactions between two
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larger molecules, however, we have to consider the secondary structure of

both molecules. This would enable us to compute more complex interactions,

as e.g. kissing hairpins. Furthermore we implicitly assumed that the energy

change caused by binding of the ligand is a constant. A more realistic model

should give consideration to the fact that the binding of the oligo to a loop

will of course alter the energy contribution of the loop itself. A limitation

for the implementation of this more realistic model is our lack of knowledge

concerning the energetics of RNA-RNA interactions within loops. Additional

measurement along the lines of the investigation of kissing-interactions [86]

are required to improve the energy parameters for interacting RNAs.

Further improvements of our method are possible by including the kinetics

and the concentration dependence of the interaction. The hybridization be-

tween two RNA molecules is influenced by the kinetics of the interaction.

In cases where the target RNA contains two or more possible binding sites

for the small regulatory RNA, the selection of the target site is governed by

the interaction kinetics. Another factor that influences the interaction at a

possible binding site is the concentration of the small RNA and the mRNA.
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A.1 List of Symbols

Table 9: List of Symbols

symbol meaning

A an alphabet e.g. A = {A,U,G,C}
κ the size of a given alphabet

I sequence (genotype) space

Ik a particular sequence

S secondary structure (phenotype) space

Sl a particular secondary structure

Gl the set of all sequences folding into structure Sl,

that is the neutral set of a structure Sl

Bl the boundary of structure Sl

Cl set of structures compatible with Sl
∑

set of all mfe structures of fixed length over a given alphabet

dh
kl Hamming distance between two sequences

dS
ij distance between two structures

F (S) free energy of a given secondary structure S

Z equilibrium partition function
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