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Abstract

Non-coding RNAs (ncRNAs) are transcripts that function directly as RNA molecule without

ever being translated to protein. Facing the ever-growing list of newly discovered ncRNAs,

it can be expected that further types of ncRNAs are still hidden in recently completed

genomes. Unlike protein coding genes, ncRNAs lack any statistically significant characteris-

tics in primary sequence that could be exploited for reliable prediction. Therefore, de novo

prediction of ncRNAs is still one of the most challenging (but largely unsolved) problem in

bioinformatics. Since many functional ncRNAs depend on a defined secondary structure,

algorithms based on secondary structure prediction seem to be the most promising.

In the first part of the thesis, we show that thermodynamic stability is a characteristic

feature of functional ncRNAs but, if computed for a single sequence, generally not signifi-

cant enough to reliably distinguish native ncRNAs from the genomic background. However,

functional structures are often evolutionary conserved. Using a comparative approach, we

could demonstrate that the prediction of a consensus secondary structure of homologous

sequences, which considers thermodynamical stability and covariance information, can be

a significant measure. We introduced a novel method to assess multiple sequence align-

ments for thermodynamically stable and evolutionary conserved RNA secondary structures.

The method is highly accurate but since it depends on a time-consuming random shuffling

algorithm it is not suitable for screens of large genomes.

We therefore developed an alternative algorithm in the second part of the thesis. It consists

of two basic components: (i) a novel measure for structure conservation based on consensus

structure prediction and (ii) a measure for thermodynamic stability, which, in the spirit of

a z-score, is normalized with respect to both sequence length and base composition but can

be calculated without sampling from shuffled sequences. With the help of a support vector

machine learning algorithm, both scores are combined into a composite score that efficiently

detects functional secondary structures in sequence alignments. Our approach was imple-

mented in the program RNAz. Benchmarking tests showed that RNAz clearly outperforms

any other available programs both in terms of accuracy and speed.

In the last part of the thesis, we used RNAz to conduct the first comprehensive screen for

conserved RNA structures in the human genome. We screened alignments of conserved

non-coding DNA of several mammals/vertebrates and predict more than 30,000 putative

structural RNA elements throughout the human genome. Our screen recovers hundreds

of known structural ncRNAs, it identifies additional members of known ncRNA families,

and detects previously undescribed conserved structural elements in some known ncRNAs.

Most of the detected RNA structures, however, are of completely unknown function. Our

computational results point to thousands of previously undetected functional ncRNAs in the

human genome. It provides a strong basis for further theoretical and experimental studies.
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Zusammenfassung

Als nicht-kodierende RNAs (ncRNAs) bezeichnet man Transkripte, die im Gegensatz zu

mRNAs nicht in Protein übersetzt werden, sondern direkt als RNA-Molekül ihre Funktion

ausüben. Die immer länger werdende Liste von neu entdeckten ncRNAs lässt vermuten,

dass in vorhandenen Genomdaten noch viele weitere, bisher unbekannte ncRNAs zu finden

sind. Im Gegensatz zu Protein-kodierenden Genen haben ncRNAs jedoch keine charakteris-

tischen Eigenschaften in ihrer Primärsequenz, die man für einen effizienten Suchalgorithmus

ausnützen könnte. Die Vorhersage von ncRNAs ist daher immer noch eine der größten

Herausforderungen der Bioinformatik.

Im ersten Teil der Dissertation wird gezeigt, dass thermodynamische Stabilität der Sekundär-

struktur eine charakteristische Eigenschaft für viele funktionelle ncRNAs ist. Die Berech-

nung der Stabilität einer einzelnen Sequenz reicht jedoch im Normalfall nicht aus, um

ncRNAs vom genomischen Hintergrund zu unterscheiden. Funktionelle Sekundärstrukturen

sind in vielen Fällen evolutionär konserviert. Basierend auf der Berechnung einer Konsensus-

Sekundärstruktur mehrerer homologer Sequenzen, die sowohl die Thermodynamik als auch

Covarianz Information berücksichtigt, wurde eine neue Methode entwickelt, um multiple

Sequenzalignments auf funktionelle RNAs zu testen. Dieser vergleichende Ansatz führt im

Gegensatz zu Einzelsequenzanalysen zu statistisch signifikanten Resultaten. Die Methode

beruht jedoch auf einem rechnerisch aufwändigen Zufallsalgorithmus und erscheint daher

nicht geeignet für die Analyse großer Genome.

Im zweiten Teil der Dissertation wurde daher ein alternativer Algorithmus entwickelt. Er

basiert auf zwei Komponenten: (i) Eine neues Maß für strukturelle Konservierung und (ii) ein

Maß für thermodynamische Stabilität, das — gleich einem z-score — normalisiert bezüglich

Länge und Basenzusammensetzung ist, aber ohne Zufallsalgorithmus effizient berechnet wer-

den kann. Mit Hilfe eines Support Vector Machine Algorithmus werden beide Komponenten

zu einer Größe kombiniert, welche schließlich verwendet wird, um funktionelle RNAs in Se-

quenzalignments zu detektieren. Die Methode wurde im Programm RNAz implementiert.

Tests zeigen, dass RNAz sowohl in Bezug auf Geschwindigkeit als auch Genauigkeit anderen

Programmen klar überlegen ist.

Der letzten Teil der Dissertation beschreibt die erste umfassende Suche nach konservierten

RNA Strukturen im menschlichen Genom. Mit Hilfe von RNAz wurden Sequenzalignments

konservierter nicht-kodierender DNA von Säugetier-/Vertebratengenomen analysiert und

30,000 potentielle strukturelle RNA Elemente vorhergesagt. Die Vorhersage beinhaltet hun-

derte bekannter ncRNAs, neue Vertreter bekannter ncRNA Klassen und bisher unbeschriebene

konservierte RNA Strukturen in einigen bekannten ncRNAs. Die meisten der vorhergesagten

RNAs sind jedoch nicht zuordenbar. Die Resultate dieser theoretischen Analyse geben Hin-

weise auf tausende bisher unbekannte funktionelle ncRNAs im menschlichen Genom und

bieten eine gute Grundlage für weitere theoretische und experimentelle Analysen.
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1 Introduction

1.1 Motivation

About twenty years ago, when the plan was announced to determine the complete DNA

sequence of the human genome, this ambitious goal was considered to be one the major

scientific endeavors in the history of mankind. With the first draft sequence of human

published in 2001, the goal was reached much faster than anticipated and it soon became

clear that having a complete mammalian genome in hand raises far more questions than

it answers. Today, after some years of the “post-genomic” era being reality, we face new

challenges. The identification and characterization of all functional elements encoded in a

genome has moved into the focus and “functional genomics” has become an important new

discipline in current biology. Using both high-throughput experimental and computational

techniques, the goal is to find protein-coding genes, non-coding RNA genes (ncRNAs), gene

regulatory elements, sequences that mediate chromosome structure/dynamics, and, possibly,

functional elements which have not been described so far.

The subject of this thesis is to detect ncRNAs in genomic data. ncRNAs are transcripts

that function as RNA molecules without being translated to protein. In the past years, we

have seen a series of studies with partly striking and unexpected results. In particular, we

want to mention the following observations which have motivated this work:

i. The number of protein-coding genes in human is much smaller than estimated

For more than twenty years, the number of protein coding genes in the human genome has

been estimated to be in the order of 100,000. Even in the late 1990s, estimates of up to

150,000 genes were discussed. The first analysis of the draft sequence in 2001 predicted

only 35,000 genes and, since then, the number has constantly declined. At the time this

thesis was written, 22,000–25,000 proteins were estimated [213], a number which is now

well-founded and generally accepted. It shows that the protein repertoire of highly complex

organisms like human is comparable to that of much simpler organized organisms. The

nematode Caenorhabditis elegans, for example, has approximately 20,000 protein genes.

ii. The number of described functional ncRNAs is constantly growing

“Classical” ncRNAs such as tRNAs, rRNAs, or the signal recognition particle RNA, have

been known for a long time. Recently, new classes of ncRNAs have been discovered in

various organisms suggesting that ncRNA function is much more widespread than believed.

For example, the discovering of microRNAs [121, 126] has led to a new paradigm of RNA-

directed gene expression regulation. Databases of ncRNAs [70, 139, 174, 69] are constantly

growing and ncRNAs are implicated in many cellular pathways and diseases.
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iii. The mammalian transcriptome is much more complex than expected

Several independent lines of evidence (cDNA cloning [24], tiling micro-arrays [31], mapping

of transcription factor binding sites [27]) indicate that a much higher fraction of the mam-

malian genome is transcribed than one could explain by known protein-coding genes. The

latest large scale cDNA sequencing project reports a striking number of 62.5% of the mouse

genome to be transcribed [24]. The vast majority (98% as estimated in reference [156]) does

not code for proteins and consists of intronic sequences and other non-coding transcripts.

Moreover, detailed analysis of newly detected transcripts show that transcriptional patterns

are generally much more complex than previously thought. Extensive use of alternative

splicing, different transcriptional starts and ends, and antisense transcription make up an

interlaced network of transcription [31, 107, 24, 60] blurring our traditional understanding

of a “gene”.

iv. Highly conserved non-coding regions await functional annotation

The fast progress in sequencing technology has it made possible to systematically sequence

closely related species of all major model organisms such as bacteria, yeasts, nematodes,

insects and even mammals. The power of “comparative genomics” [78] opens new perspec-

tives which can help to better understand the relevant parts in a genome. One of the first

results of comparative genomic studies showed that there is a large number of non-coding

regions which are highly conserved in evolution. The evidence for purifying selection implies

that these regions have some function. This observation has excited lots of interest in the

community, probably best reflected in the number of papers and different names describing

such regions: Ultra conserved elements (UCE, [10]), highly conserved elements (HCE, [204]),

multiple species conserved sequences (MCS, [214]), conserved non-coding sequences (CNS,

[77], conserved non-genic sequences (CNG, [48]). The criteria for defining such regions are

rather arbitrary but they have at least one thing in common: their function remains enig-

matic. One must expect that these conserved non-coding regions correspond to different

classes of functional elements, including ncRNAs.

All these points make clear that a complete understanding of the biological processes that

constitute a complex organism is impossible if we only consider proteins as important func-

tional entities. A picture is emerging that the complexity we see for example in mammals is

the result of the non-coding RNA output which forms a hidden layer of regulation [156, 157].

There is need for experimental and computational techniques to detect and analyze ncRNAs.

In this thesis, we develop and apply computational methods to predict ncRNAs in large-

scale genomic screens. More precisely, we use comparative sequence analysis techniques to

detect evolutionary conserved RNA secondary structures, which are characteristic signals

for functional ncRNAs and also regulatory elements in mRNA.
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In contrast to protein-gene prediction, de novo prediction algorithms for ncRNAs are still

in their infancy. We are convinced that a new generation of such algorithms will be helpful

to address currently widely discussed questions. Are the thousands of newly discovered

non-coding transcripts functional or are they just “transcriptional noise”? Which of the

conserved non protein-coding sequences are candidates for functional RNAs? Are there new

classes of ncRNAs?

1.2 This thesis

This thesis is based on the following four journal articles as well as unpublished observations.

Tables, figures and text passages taken from these articles are used throughout the thesis

without further notice.

• Washietl S., Hofacker I.L. Consensus folding of aligned sequences as a new measure for

the detection of functional RNAs by comparative genomics. J. Mol. Biol. 342:19-30

(2004)

• Washietl S., Hofacker I.L., Stadler P.F. Fast and reliable prediction of noncoding

RNAs. Proc. Natl. Acad. Sci. U. S. A., 102:2454-2454 (2005)

• Washietl S., Hofacker I.L., Lukasser M., Hüttenhofer A., Stadler P.F. Genome wide

mapping of conserved RNA secondary structures predicts thousands of functional non-

coding RNAs in human. Nat. Biotech., in press

• Bompfünewerer A.F., Flamm C., Fried C., Fritzsch G., Hofacker I.L., Lehmann J.,

Missal K., Mosig A., Müller B., Prohaska S.J., Stadler B.M.R., Stadler P.F., Tanzer

A., Washietl S., Witwer C. Evolutionary patterns of non-coding RNAs. Theor. Biosci.

123:301-369 (2005).

The thesis is organized as follows. In section 2, we give a short introduction into the topics

relevant for this work. We describe formal aspects of RNA secondary structure and predic-

tion algorithms, we review the current knowledge on ncRNAs, and explain the theory behind

support vector machine algorithms. In section 3, we describe the development, benchmark-

ing and implementation of novel algorithms for the detection of conserved RNA secondary

structures. This section basically consists of two parts describing two different approaches,

which resulted in the two programs Alifoldz and RNAz. In a first large-scale application,

we used RNAz to screen the human genome for conserved RNA secondary structures. This

screen and the results are described in section 4. Some other applications of our programs

were published while this thesis was being written. Five of these papers are briefly reviewed

in section 5. We close with a discussion of our methods and the results of the human screen

(section 6).
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2 Background

2.1 RNA secondary structure and its prediction

The computational biology of RNA structure has a long tradition. First attempts to predict

RNA structure were made more than 30 years ago [217]. In this section, we want to give a

short overview of the formal aspects of RNA secondary structure and the algorithms for its

prediction. We focus on the topics most relevant for this work, namely energy based folding

algorithms and their variants. We follow, in part, the presentation of Hofacker & Stadler

[84].

2.1.1 General aspects of RNA structure

RNA is a polymer made of covalently linked ribonucleotides. The succession of the four

different types of ribonucleotides (adenine, guanine, cytosine and uracil) defines the primary

structure of the molecule. RNA is generally single stranded but complementary regions in

the molecule can fold back onto itself and form double helices similar to DNA. In RNA,

we usually find Watson-Crick pairs CG and AU as well as GU “wobble pairs”. Although all

other combinations of non-standard base pairs can occur, they are generally neglected for

the purpose of secondary structure prediction. The intra-molecular base pairing results in

a pattern of double helical stretches interspersed with loops which is called the secondary

structure. The arrangement of secondary structure elements in space finally forms the three-

dimensional tertiary structure.

The folding of an RNA molecule into its spatial structure can be seen as hierarchical process

(Fig. 1). Most of the stabilizing energy of the structure is contributed by secondary structure

interactions. Secondary structure forms before and independently of tertiary structure.

Tertiary structure usually does not induce changes in secondary structure.

Although the function of an RNA molecule is ultimately dependent on its tertiary structure,

secondary structure can be seen as a coarse-grained approximation and is thus a useful level

on which to understand RNA function.

2.1.2 Formal definition and representation of RNA secondary structures

A secondary structure is a list of base pairs (i, j) fulfilling the following constraints:

1. A base may participate in at most one base pair.

2. Paired bases must be separated by at least 3 bases
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Fig. 1. Hierarchical folding of a tRNA molecule. Complementary regions in the primary
sequence (left) can form intra-molecular base pairs which define a pattern of loops and helices,
the secondary structure (middle). Secondary structure elements interact with each other in
space and form the tertiary structure, the three-dimensional spatial structure of the molecule
(right).

3. No two base pairs (i, j) and (k, l) “cross” in the sense that i < k < j < l

The first condition excludes tertiary structures motifs such as base triplets and G-quartets.

The second constraint defines a minimum loop size of three, which takes into account that

the RNA backbone cannot bend too sharply. The third condition excludes pseudoknots.

Although pseudoknots are important structural elements in many natural RNAs, they are

here (rather arbitrarily) classified as tertiary structure mainly because dynamic program-

ming algorithms cannot deal with them.

With no pseudoknots allowed, a secondary structure can be represented as an outer-planar

graph. This means one can draw the secondary structure by placing the backbone on a

circle and drawing a chord for every base pair such that no two chords intersect (Fig. 2 a).

The most frequently used secondary structure representation is only a more realistic layout

of this outer-planar graph (Fig. 2 b).

The so-called mountain representation is another form of drawing a secondary structure,

which is in particular well suited for large structures and comparison of structures (Fig. 2 c).

In the mountain representation, a single secondary structure is represented in a two dimen-

sional graph, in which the x-coordinate is the position k of a nucleotide in the sequence and

the y-coordinate the number m(k) of base pairs that encloses nucleotide k.

In a dot plot representation, each base pair (i, j) is represented by a dot or box in row i and

column j of a rectangular grid. This kind of plot can be used to visualize thermodynamic

ensembles of a structure. Equilibrium base pair probabilities pij as computed by McCaskill’s

algorithm (section 2.1.5) are usually shown as boxes in the matrix with area proportional
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to pij (Fig. 2 d).

Finally, secondary structures can be represented in a very simple and compact string format

(Fig. 2 e). For any pair between positions i and j (i < j) we place an open bracket “(” at

position i and a closed bracket “)” at position j, while unpaired positions in the molecule are

represented by a dot “.”. Since base pairs may not cross, the representation is unambiguous.
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Fig. 2. Representation of RNA secondary structures. (a) Circle plot (b) Conventional sec-
ondary structure graph representation (c) Mountain plot (d) Dotplot (e) “Dot/bracket” string
notation. The structure shown is a purine riboswitch. Adopted from [84].

2.1.3 The loop based energy model

RNA secondary structures can be uniquely decomposed into loops, i.e. the faces of the planar

drawing of the structure. More formally, we call a position k immediately interior of the

pair (i, j) if i < k < j and there exists no other base pair (p, q) such that i < p < k < q < j.

A loop then consists of all positions immediately interior of (i, j).

Fig. 3 shows the major types of loops that occur in RNA secondary structures. A loop is

characterized by its length, i.e. the number of unpaired nucleotides in the loop, and its

degree, given by the number of base pairs delimiting the loop (including the closing pair).

Loops of degree 1 are called hairpin loops, interior loops have degree 2, and loops with degree

> 2 are called multi-loops.

The loop decomposition forms the basis of the standard energy model for RNA secondary

structures which assumes that the energy E of a structure S can be obtained as the sum

over the energies of its constituent loops.

E(S) =
∑

l∈S

E(l)
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Fig. 3. Classification of loop types in RNA secondary structures.

Qualitatively, the major energy contributions are base stacking, hydrogen bonds and loop

entropies. While hydrogen bonds and stacking energies can in principle be computed using

quantum chemistry, the secondary structure model is solely based on empirically established

energy parameters. Essentially, it considers energy differences between folded and unfolded

states which are measured by melting experiments. To date, an extensive collection of

standard energy parameters measured in a buffer of 1M NaCl at 37oC has been made

available [153, 235, 152].

Stacked base pairs confer most of the stabilizing energy to the secondary structure. Stacking

energies are the most carefully measured parameters and tabulated for all possible base pair

combinations. With the exception of some other small loop types which are tabulated

exhaustively, a simplified model is used for most other loop types. To keep the number of

parameters manageable, loop energies are generally split in two terms, describing the size

and sequence dependency, respectively. The sequence dependent part only considers the base

pairs delimiting the loop and unpaired positions adjacent to these pairs. The size dependent

part is extrapolated logarithmically for hairpin loops. In the case of interior loops, loop

asymmetry is also taken into account. Multi-loops are modeled linearly in loop size and

loop degree to allow for efficient dynamic programming algorithms (see section 2.1.5).



2. Background 8

2.1.4 Nussinov algorithm for maximizing base pairs

First attempts to predict secondary structure tried to find the structure having the maxi-

mum number of base pairs. Although this approach rarely yields reasonable predictions, it

captures the important concepts that current algorithms are built on.

Based on earlier work by Waterman [228, 229], Nussinov proposed the first dynamic program-

ming algorithm solving the maximum base pair problem [168]. Denote Ei,j the maximum

number of base pairs in a secondary structure of a subsequence x[i..j]. One can calculate

Ei,j in a simple recursive manner. There are only two distinct ways on how the optimal

structure of x[i..j] can be formed from a shorter subsequence x[i + 1..j]:

i jj i i+1 j i i+1 k−1 k k+1
|=

Either the newly added nucleotide does not pair, in which case the maximum number of base

pairs in x[i..j] is the same as in x[i + 1..j], or the newly added nucleotide pairs with some

partner base k. In the latter case, the maximum number of base pairs in [x..j] is the sum of

the base pairs in the two subsequences x[i + 1..k − 1] and x[k + 1..j] plus the newly added

pair. Since base pairs may not cross, the two sub-sequences can be treated independently.

One can write this recursion as follows:

Eij = max

{

Ei+1,j , max
i+1≤k≤j

Πik=1

{Ei+1,k−1 + Ek+1,j + βik}

}

where Π is a base pairing matrix with the entries Πij = 1 if sequence positions i and j can

form a base pair, i.e., if (i, j) is in the set of allowed base-pairs B = {GC, CG, AU, UA, GU, UG},

and Πij = 0 if positions i and j cannot pair. In addition, one can assign a weight βij to a

base pair depending on the type of the base pair (i, j). In the simplest case of finding the

maximum number of base pairs, one simply sets βij = 1 for all types of pairs.

Finding the optimal structure is a two step process. First, the recursion rules are used to

incrementally fill a matrix with the optimal values for all subsequences which eventually

leads to the maximum number of base pairs for the whole sequence. In the second step,

the optimal structure is found by a backtracking procedure. In essence, the path through

the matrix which leads to the optimum is reconstructed building up the corresponding

structure. The algorithmic complexity of this procedure is O(n2) and O(n3) in memory and

CPU, respectively.
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2.1.5 Energy minimization algorithm in the loop based energy model

In order to achieve reasonable prediction accuracies it is essential to use the more sophisti-

cated loop based energy model as described in section 2.1.3. Since loop energies are additive,

the optimal structure, now in the sense of the structure of minimum energy, can also be found

using a recursive dynamic programming algorithm. Zuker & Stiegler [241] first formulated

the recursions for the loop based energy model. Although the recursions are substantially

more complicated as for the simple base pair rules, the memory and CPU requirements of

the algorithm are still O(n3) and O(n2). Fig. 4 illustrates the rationale behind the recursive

loop decomposition. Unlike in the simple case of base pair dependent energies where a single

matrix is filled, four matrices are required for loop-based energies to find the minimum free

energy.

At room temperature, the folding of an RNA molecule is not restricted to a single structure.

The molecule will fluctuate between many alternative conformations forming an ensemble

of structures. Although the minimum free energy structure will be the most likely structure

in the ensemble, one generally should not neglect suboptimal structures. The minimum free

energy algorithm outlined in Fig. 4 can be extended to calculate also suboptimal structures

within a defined range of energy as shown by Zuker [239] and Wuchty et al. [234]. More-

over, McCaskill [158] demonstrated that the partition function over all secondary structures

Z =
∑

S exp(−∆G(S)/kT ) can be calculated by dynamic programming as well. From the

partition function, one can calculate the frequency of a base pair occurring in the Boltz-

mann weighted ensemble of all possible structures, which can conveniently be visualized in

a dot-plot (see Fig. 2 d).

Various implementations of the here described prediction algorithms exist. We want to

mention the currently most popular ones, the mfold package [240] and the Vienna RNA

package [88]. In this work we used the programs and libraries of the latter one.

2.1.6 Consensus secondary structure prediction

Functional RNA secondary structures are often conserved in evolution. If we have an align-

ment of related sequences that share a common fold but have diverged in sequence, co-

variation can be used to improve secondary structure prediction. Hofacker et al. elegantly

extended the standard energy based algorithm by covariance information yielding fast and

accurate consensus structure predictions [87]. The methods developed in this thesis make

use of the these algorithms, and it is therefore explained in detail here.

Assume that we are given a multiple sequence alignment A of N sequences. By Ai we

denote the i-th column of the alignment, while aα
i is the entry in the α-th row of the i-th

column. The length of A, i.e. the number of columns, is n. Furthermore, let fi(X) be the
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Fij =min

{

Fi+1,j , min
i<k≤j

Cik + Fk+1,j

}

Cij =min

{

H(i, j), min
i<k<l<j

Ckl + I(i, j; k, l), min
i<u<j

Mi+1,u + M1
u+1,j−1 + a

}

Mij =min

{

min
i<u<j

(u − i + 1)c + Cu+1,j + b, min
i<u<j

Mi,u + Cu+1,j + b, Mi,j−1 + c

}

M1
ij =min

{

M1
i,j−1 + c, Cij + b

}

Fij free energy of the optimal substructure on the subsequence x[i..j]

Cij free energy of the optimal substructure on the subsequence x[i..j] subject to

the constraint that i and j form a basepair

Mij free energy of the optimal substructure on the subsequence x[i..j] subject to

the constraint that that x[i..j] is part of a multiloop and has at least one

component.

M1
ij free energy of the optimal substructure on the subsequence x[i..j] subject

to the constraint that that x[i..j] is part of a multiloop and has exactly one

component, which has the closing pair i, h for some h satisfying i ≤ h < j.

Fig. 4. Recursive structure decomposition in the loop-based energy model. The main dif-
ference to the simple base pair dependent rules, is that we now have to distinguish between
different types of loops (top). Thus we have to further decompose the set of substructures
enclosed by the base pair (i, k) according to the loop types: hairpin loop, interior loop, and
multi(branched) loops. The hairpin and interior loop cases are simple since they reduce again
to the same decomposition step. The multiloop case is more complicated, however, since
the multiloop energy depends explicitly on the number of substructures (“components”) that
emanate from the loop. We therefore need to decompose the structures within the multiloop
in such a way that we can at least implicitly keep track of the number of components. To this
end we represent a substructure within a multiloop as a concatenation of two components: An
arbitrary 5’ part that contains at least one component and a 3’ part that starts with a base pair
and contains only a single component. These two types of multiloop substructures are now
decomposed further into parts that we already know: unpaired intervals, structures enclosed
by a base pair, and (shorter) multiloops substructures. It is not too hard to check that this
decomposition really accounts for all possible structures and that each secondary structure has
a unique decomposition. Given the recursive decomposition of the structures, the associated
recursion formulas (middle) for the energy minimization algorithm can be derived which uses
four different matrices (bottom). H(i, j) denotes the energy of a hairpin loop closed by the
pair (i, j), I(i, j; k, l) denotes the energy of an interior loop determined by the two base pairs
(i, j) and (k, l). Multiloop energies are assumed of the form EML = a + b · degree + c · size.
Adopted from [84].
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the frequency of base X at aligned position i and let fij(XY) be the frequency of finding X

in i and Y in j.

The most common way of quantifying sequence covariation for the purpose of RNA secondary

structure determination is the mutual information score [33, 74]

Mij =
∑

X,Y

fij(XY) log
fij(XY)

fi(X)fj(Y)
(1)

This score is useful if a large set of sequences is available. It does not rely on base pairing

rules and, therefore, also non-canonical base pairs or tertiary structural interactions are

considered. However, if available data sets are sparse, the signal from the mutual information

score is usually too weak. In particular, mutual information does not account for consistent

non-compensatory mutations (e.g. GC → GU) which also indicate stabilizing selection on

the structure. Hofacker et al. introduced a new covariance score Cij considering both

compensatory and consistent mutations.

Cij =
1

(

N
2

)

∑

α<β

dα,β
ij Πα

ijΠ
β
ij (2)

with

dα,β
ij = 2 − δ(aα

i , aβ
i ) − δ(aα

j , aβ
j ) (3)

where δ(a′, a′′) = 0 if a′ = a′′ and 0 otherwise. Thus dαβ
ij = 0 if the sequences α and β

coincide in both aligned positions i and j, dαβ
ij = 1 if they differ in one position, and dαβ

ij = 2

differ in both positions. Π is again a base pairing matrix with the entries Πij = 1 if sequence

positions i and j can form a base pair and Πij = 0 if positions i and j cannot pair.

One can write Cij as

Cij =
1

(

N
2

)

∑

XY,X′Y′

fij(XY)DXY,X′Y′fij(X
′Y′) (4)

where the 16 × 16 matrix D has entries DXY,X′Y′ = dH(XY, X′Y′) if both XY ∈ B and

X′Y′ ∈ B and DXY,X′Y′ = 0 otherwise. This equation can be reformulated as a scalar

product, Cij = 〈fijDfij〉, and hence efficiently evaluated.

This score rewards compensatory and consistent mutations but it does not penalize inconsis-

tent mutations, i.e. sequences in the alignment that do not form a base pair at the positions
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i, j. RNAalifold uses a score dealing with inconsistent mutation as follows

qij = 1 −
1

N

∑

α

Πα
ij (5)

This simply counts the number of inconsistent mutations, where a nucleotide paired with a

gap is counted as inconsistent and gap/gap combinations are ignored.

This score qij is combined with Cij to

Bij = Cij − φ1qij (6)

where φ1 is a scaling factor controlling the contribution of inconsistent mutations relative

to the covariance contribution.

Bij can now be used to extend the minimum free energy folding algorithm with covariance

information. For the sake of simplicity, we show this for the simple base pair dependent

energy rules (see section 2.1.4). The procedure of finding the optimal consensus structure of

the alignment is essentially the same as finding the optimal structure for a single sequence.

In the case of a single sequence, each possible base pair is assigned a weight dependent on

the type of the base pair. In the case of folding an alignment, a weight is assigned to each

pair of columns by averaging the contributions of the single sequences and considering the

covariance score described above:

βA

ij =
1

N

∑

α

ǫ(aα
i , aα

j ) − φ2Bij (7)

where ǫ(aα
i , aα

j ) is the contribution for a (aα
i , aα

j ) pair in sequence α. φ2 is another scaling

factor controlling the energy contribution relative to the covariance contribution.

The folding algorithm depends on a pairing matrix to decide which columns in the alignment

can pair and which not. In a multiple sequence alignment we have to expect alignment or

even sequencing errors. Also non-standard base pairs cannot be excluded. It would be

too restrictive to simply mark a pair of columns as non-pairing if a single sequence in the

alignment cannot pair. Therefore, a threshold value B∗ for Bij is used resulting in pairing

matrix of the form

ΠA

ij =

{

0 if Bij < B∗

1 if Bij ≥ B∗
(8)
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This approach of consensus folding is implemented by RNAalifold for the full loop-based

energy model. RNAalifold calculates a consensus MFE which is not a free energy in a

strict physical sense, but rather a “pseudo-MFE” which consists of an energy term and a

covariance term. Only three additional parameters (φ1, φ2, B∗) must be set. Using the

standard configuration, one compensatory mutation has approximately the same effect as

extending a helix by one base pair.

RNAalifold performs well in benchmarking tests [61] and, together with Pfold [116], it is

probably one of best algorithms for predicting consensus secondary structures at present.

2.2 Secondary structure prediction using stochastic context free gram-

mars

All prediction algorithms we have discussed so far are based on energy minimization. Al-

though we exclusively use these methods in our work, it must be mentioned that there also

exist different approaches. Stochastic context free grammars represent an alternative and

also widely used framework to model RNA secondary structures. We introduce the concept

of SCFGs briefly (and rather informally) in this section.

A grammar consists of a number of symbols and production rules. There are two kind of

symbols: abstract nonterminal symbols and terminal symbols that actually appear in an

observed string. The production rules build up a string which conforms to the grammar. For

example, the production rules of a simple “palindrome grammar” that generates palindromic

words of as and bs can be written as: S → aSa, S → bSb, S → ǫ. There is one nonterminal

S and two terminals a and b. ǫ is a “null string” used as and ending production. The

palindrome aabbaa is generated by the production series: S ⇒ aSa ⇒ aaSaa ⇒ aabSbaa ⇒

aabbaa. This special kind of grammar which allows nested pairwise correlations between

terminal symbols is called context free grammar (CFG).

In a similar way, we can write the production rules for a simple RNA secondary structure

CFG1:

S → aSu | uSa | cSg | gSc (base pair)

S → aS | cS | gS | uS | Sa | Sc | Sg | Su (single nucleotide)

S → SS (bifurcation)

S → ǫ (end)

A sequence can be generated in different ways by these rules, corresponding to different

secondary structures. The alignment of a sequence to the production rules of CFG can be

1To save space, alternative productions are written in one line, where “|” means “or”
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represented as parse tree (Fig. 5).

Fig. 5. CFG parse tree of a simple RNA structure element. The grammar is described in
the text. Each node in the tree corresponds to a production rule of the grammar, which in
turn corresponds to a structure element of the RNA (base pair, single nucleotide, bifurcation).
Since the grammar is structurally ambiguous, the parse tree shown here is only one possible
way to produce this RNA structure within the rules of this grammar. Adopted from [51].

Simple CFGs can only decide if a sequence can be produced by the production rules or not.

This is useful for example in pattern matching applications but much more powerful models

can be generated by enhancing CFGs with probability information. In the case of stochastic

context free grammars (SCFGs) each production rule is assigned a probability. Each parse

tree has thus a different overall probability. Using various standard algorithms, which we

will not discuss here, the RNA folding problem can be solved by probabilistic “machine

learning”:

1. Formulate a SCFG describing the RNA folding model.

2. From a trusted training set of sequences/structures (e.g. tRNAs or rRNAs) estimate

the optimal probability parameters for the SCFG.

3. Calculate the maximum probability parse tree of a sequence to the parameterized

SCFG.

Since a parse tree corresponds to a secondary structure, we get the optimal secondary

structure in step 3. A variety of grammars of different complexity have been developed,

including a SCFG counterpart of the complete loop-based energy model [186]. Some of the

grammars have prediction accuracies near the performance of current energy minimization

programs [116, 51].

Within the framework of SCFGs one can address other RNA structure related problems. Co-

variance models [52] have become popular to describe RNA families with sequence/structure
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profiles. Pfold [116], the probabilistic counterpart to RNAalifold, predicts consensus sec-

ondary structures for aligned sequences. In addition, SCFG based methods were used for

structure based alignments [93] and, most notably, ncRNA gene finding [187] which will be

discussed in more detail later.

2.3 Well known classes of ncRNAs

The number of observed ncRNAs described in the literature is constantly growing. Most of

the newly discovered ncRNAs could not be assigned a function. In the rare cases a function

is known, the underlying molecular mechanisms are often poorly understood. In this section,

we want to give an overview over the current knowledge on ncRNAs. We briefly review all

major classes of ncRNAs with the focus on the “classical” ncRNAs which have been known

for some time and therefore are best characterized.

2.3.1 Transfer RNAs and ribosomal RNAs

Transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) are the basic components of the

protein synthesis machinery and can be found in all domains of life.

Specific types of tRNAs transfer amino acids to the growing polypeptide chain during trans-

lation. Comparative sequence analysis of tRNA by means of statistical geometry provides

strong evidence that tRNA sequences diverged long before the divergence of archaea and

eubacteria [54]. Multiple copies of functional tRNA genes, the existence of numerous pseu-

dogenes and tRNA-derived repeats are general characteristics of tRNA evolution [59].

The ribosome is a high molecular complex made of proteins and rRNAs. In prokaryotes,

there are three different rRNAs, the 23S and the 5S rRNA in the large, and the 16S rRNA

in the small ribosomal subunit. In eukaryotes, we find four types of rRNAs. The 28S and

the two short 5S and 5.8S rRNAs are components of the large subunit, while the 18S rRNA

is the RNA component of the small subunit. Evidence from both in vitro studies [167] and

the analysis of the atomic structure [183] reveals that the ribosome is in fact a ribozyme

in which only rRNA is involved in the positioning of the A- site and P-site substrates, and

only RNA is in a position to chemically facilitate peptide-bond formation [207]. Due to its

ubiquity, size, and generally slow rate of evolution, the small-subunit ribosomal RNA has

become the most sequenced of all genes and an invaluable tool for molecular phylogenetics

[171].

Most organisms have multiple copies of their rRNA genes. In Escherichia coli, for instance,

there are seven operons encoding rRNAs 16S, 23S, and 5S. Typical Eukaryotes contain

tandemly repeated arrays of rRNAs genes each of which contains three of the four ribosomal
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RNA components separated by two “internally transcribed spacers” (18S/ITS1/5.8S/ITS2/28S).

In most species the fourth rRNA gene, 5S rRNA, is also contained in this array.

One can observe that paralogous genes in the same sequence are more similar than ortholo-

gous sequences of different species [66]. This is the result of “concerted evolution”, i.e. the

tendency of different genes in a gene family cluster to evolve “in concert”. This phenomenon

can be explained by different molecular mechanisms, for example gene conversion events or

frequent duplications and losses with the gene family.

2.3.2 Spliceosomal RNAs

Most genes in higher eukaryotes contain introns that must be excised from the primary

transcript to yield a mature mRNA. Intron removal and ligation of the exons occurs in

a massive ribonucleoparticle (RNP), the spliceosome. Recently, there has been mounting

evidence that main catalytic function in the spliceosome are indeed performed by its RNA

components, i.e., that the spliceosome, like the ribosome, is essentially a ribozyme [221].

The spliceosomal RNA U1 has an additional function in the regulation of transcriptional

initiation [120].

There are three distinct splicing mechanisms that are all dependent on a small set of

RNA components of the spliceosome: The major-spliceosome (U1, U2, U4, U5, and U6)

is the predominant mechanism e.g. in vertebrates, plants, and yeasts, which splices introns

with the “canonical” GT-AG boundaries. The minor-spliceosome (U11, U12, U4atac, U5,

U6atac) processes introns with non-canonical boundaries [176], predominantly AT-AC. In

some species “trans-splicing” is observed, a mechanism that joins a small non-coding exon

derived from the SL RNA to each coding exon of the pre-mRNA and to produce multiple

mature mRNAs from a single poly-cistronic pre-mRNA [180].

Both the pol-II transcribed spliceosomal RNAs U1, U2, U4, and U5 and the pol-III tran-

scribed U6 snRNA appear in multiple copies in many vertebrates and are known to be

subject to concerted evolution in some species [134, 166]. Divergent paralogs are also known

in some species: For example, Xenopus has distinct embryonic and somatic classes of U1

snRNAs [43].

2.3.3 Other snRNA-like molecules

U7 RNA Replication dependent histone pre-mRNAs, in contrast to all other mRNAs, are

not polyadenylated. Instead, their 3’-end is cleaved by a ribonucleoprotein (RNP) complex,

which consists of the U7 snRNA and three protein components [198]. The U7 snRNA is

relatively short (60–70 nt) and forms a well-conserved stem-loop. This ncRNA is specific
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for the metazoan lineage.

SRP RNA The signal recognition particle (SRP) is responsible for targeting nascent pro-

teins to the ER membrane [109]. The SRP RNP can be found in all three domains of life

[189] and contains a ncRNA component which in higher metazoan is also known as 7SL

RNA. The secondary structure of SRP RNAs is highly conserved between eukarya and ar-

chaea and consists of two domains, the Alu- and S-domain. Protozoan and fungal SRP

RNAs deviate considerably, and only the S-domain is present in most bacterial sequences

[190].

RNAse P and RNAse MRP The RNase P and RNase MRP RNAs are the catalytically

active components of their respective RNPs, which both act as endonucleases. RNase P is

essential for the maturation of tRNAs in Bacteria, Eukarya, and Archaea [181]. MRP RNA,

in contrast, has been found only in Eukarya where it cleaves the primers necessary for the

initiation of mitochondrial DNA replication [165], but also has nuclear functions. RNase P

and MRP appear to be ancient paralogs, albeit it remains unclear whether MRP RNA is a

eukaryote innovation or an older invention [38]. The absence of structural homology between

bacterial and archaeal/eukaryotic RNase P proteins suggests that RNase P once was a pure

ribozyme that pursued completely different strategies in the recruitment of protein subunits

in the two different lineages [80].

7SK RNA Despite its abundance in mammalian cells, the function of the 7SK RNP has

remained unknown until recent studies implicated 7SK RNA as component of the splicing

apparatus [120] as well as in the regulation of transcriptional elongation [15]. The 7SK RNA

is well conserved across vertebrates but divergent homologues have been also reported in

some invertebrate species [118].

Y RNAs Y RNAs are small eukaryotic RNAs that are part of the Ro ribonucleoprotein

(Ro RNP) complex, whose function is not known at present. Four families of Y RNAs, Y1,

Y3, Y4, and Y5, have been described in human and frog. Their secondary structure is very

well conserved among vertebrates [169, 212]. It consists of at least three stems, two of which

form a stem-loop structure separated by a relatively short interior loop. The sequences in

the stems, as well as parts of the loop regions, are highly conserved and probably serve as

binding sites to the Ro60 protein in the Ro RNP complex and/or other cellular nucleic acids.

Vault RNAs Vault RNAs belong to a class of pol-III transcribed RNA genes with poorly

understood function. Vaults are cytoplasmic ribonucleoprotein particles believed to be

involved in multidrug resistance. The complex contains several small untranslated RNA
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molecules [222]. So far, vault RNAs have been described only for a few vertebrate species.

Vault particles, however, are known also in the slime mold Dictyostelium discoideum [223],

suggesting that vault RNAs are at least as old as Eukaryotes. The human genome contains

at least 4 distinct vaultRNA genes, three of which are located in a small cluster and share

external promoter elements [222].

2.3.4 Small nucleolar RNAs

Nascent rRNA transcript are matured in both eukarya and archaea [47, 172] with the help

of a large number ribonucleoparticles that modify bases and direct cleavage. The human

rRNAs, for instance, together contain more than 200 modified nucleotides [147]. The position

of the snoRNA function is determined by the formation of a local snoRNA-rRNA duplex.

Two major classes of snoRNA can be distinguished: The C/D box snoRNAs direct 2’-O-

methylation of the ribose, while the H/ACA box snoRNAs guide the conversion of uridine

nucleotides to pseudouridine. Both classes are characterized by typical primary sequence

motifs. H/ACA box snoRNAs fold into a characteristic bipartite stem-loop structure while

the secondary structure of C/D box snoRNAs is less pronounced and usually limited to a

short base paired region connecting the 3’- and 5’-ends [7].

Besides their canonical roles in rRNA maturation, snoRNAs also target spliceosomal RNA.

These snoRNAs perform their function in the Cajal bodies; for this reason they are sometime

referred to as scaRNAs (“small Cajal-body associated RNAs”) [114]. Most recently, three

novel C/D box snoRNAs targeting U2, U4, and U12 snRNAs were identified, that, in contrast

to all other known metazoan snoRNAs are independently transcribed [218]. In archaea,

tRNAs are also targeted for modification [210], in trypanosomatids the spliced leader SL

RNA is modified as well [133, 219]. An intriguing representative of this group is U85, a

hybrid snoRNA that has both a functional C/D box and a functional H/ACA box domain

that simultaneously modify the U5 snRNA [103]. Some snoRNAs lack complementarity to

rRNAs or snRNAs. A small group of “orphan snoRNAs” (U3, U8, U22 and yeast snR10)

directs rRNA cleavage instead of modification. The C/D box snoRNA U14, as well as the

H/ACA box snoRNAs U17 (also called E1, and homologous to yeast sn30), E2 and E3,

are both functional modification guides and play an additional role in pre-rRNA cleavage

[56]. An increasing number of recently identified snoRNAs exhibits tissue-specific expression

patterns in contrast to all snoRNAs that are known to modify rRNA or snRNA [26]. The

genes of these, mostly brain-specific, RNAs are subject to genomic imprinting.

2.3.5 MicroRNAs

MicroRNAs (miRNAs) are a class of small, typically 22–25 nt long single stranded RNAs

regulating gene expression [126, 136, 122]. miRNAs function as part of a general RNA
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mediated silencing pathway. Long, primary miRNA transcripts (pri-miRNAs) are recognized

by the nuclear RNase Drosha and processed to a hairpin precursor form (pre-miRNAs),

which are then exported from the nucleus to the cytoplasm by exportin-5. The RNase Dicer

produce the mature single-stranded miRNA, which is then loaded into the RNA-induced

silencing complex (RISC). The miRNA mediates sequence specific interaction of the RISC

complex with target mRNAs resulting in translational inhibition or mRNA degradation.

The family of miRNAs is currently rapidly expanding not only in terms of the number of

newly discovered members. A wealth of new functions are described for this family implicat-

ing miRNAs in development, proliferation, apoptosis, and stress response. To date, miRNAs

have been found in animals and plants but also in some viruses (see the miRNA Registry, a

dedicated database collecting all described miRNAs [69]). All aspects of miRNAs are cur-

rently under heavy research. This includes evolution, biogenesis, molecular functions and

genomics (detection of miRNAs and their targets). At this place, we only refer to some

recent reviews on these topics [175, 209, 42, 19, 81].

2.3.6 Other classes of ncRNAs

Telomerase RNA Telomeres are specialized protein-DNA complexes that cap chromosome

ends that are essential for genome stability and cellular proliferation [58]. Sequence loss

during replication is counteracted by specialized mechanism(s) in organisms with linear

chromosomes [138]. In most organisms, the telomerase RNP extends chromosome ends

by iterative reverse transcription of its RNA template, the telomerase RNA [111]. The

secondary structures of the telomerase RNAs from vertebrates, ciliates, and yeast vary

dramatically in sequence composition and in their size but share a common core structure

[30, 44] that hints at an ancient origin. The vertebrate telomerase RNA apparently has

co-opted a H/ACA box snoRNA domain [163] during its evolution, shares evolutionary

conserved proteins with H/ACA snoRNPs, and contains a Cajal body specific localization

signal that is shares with a Cajal body specific subclass of H/ACA snoRNPs [102].

Guide RNAs in trypanosomes RNA editing in trypanosome mitochondria is a unique post-

transcriptional maturation process in which uridine residues are inserted and/or deleted at

precise sites of mitochondrial mRNAs [67]. Guide RNAs which are usually transcribed from

the kinetoplast DNA minicircles [94], provide the information for the editing. A phylogenetic

analysis of U-insertion editing [124] suggests that extensive editing is a primitive genetic

phenomenon that has disappeared in more modern organism [205].

tmRNA Probably the best-understood bacteria-specific non-coding RNA is the tmRNA,

which is part of a ribonucleoprotein complex and combines the functions of tRNAs and
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mRNAs in order to rescue stalled ribosomes [75]. Usually tmRNA is a single molecule. At

least three isolated clades in alpha-proteobacteria [110], cyanobacteria [63, 231], and beta-

proteobacteria [203] have two-component tmRNAs, while jakobids have lost the mRNA-like

region in their mitochondrial tmRNAs [101].

Prokaryotic sRNAs Prokaryotes contain a diverse set of small non-coding sRNAs. For

example, a number of small (40–400 nt) RNAs that neither encode proteins nor function

as tRNAs or rRNAs, have been characterized in E. coli [83, 224]. The functions of many

of these RNAs remain to be determined, while some of them are known to play crucial

regulatory roles. There appear to be three general mechanisms: some are integral parts of

RNP complexes, such as the 4.5S component of the signal recognition particle and RNase

P RNA. A few, such as the 6S RNA, which regulated RNA polymerase activity [164], and

the CsrB and CsrC RNAs mimic the structures of other nucleic acids, while a third class,

reviewed in [208], acts by specific base pairing with other RNAs. The co-evolution of the

small RNA micF and its target mRNA ompF in enterobacteria was studied in some detail

[45]. A curious case are the MCS4 RNAs in mycoplasmas, which have a sequence similarity

with eukaryotic U6 snRNAs. Homologs in other bacteria do not seem to exist [220], so

that horizontal gene transfer from the host organism is a plausible explanation. Otherwise,

very little is know about the origin and evolutionary relationships of the small ncRNAs in

prokaryotes.

Viral ncRNAs An increasing number of viral noncoding RNAs have been reported as well.

Examples include the recently discovered viral microRNAs [12, 173, 179], the well-known

VA1 RNA of adenoviruses [154], which is capable of inhibiting RNAi in human cells [142],

the pRNA component of the packaging motor in some bacteriophages [8, 73]. One might

suspect that at least some of the conserved RNA structure elements that were discovered

in computational surveys of RNA virus genomes [91, 216, 232] are also non-coding RNAs

rather than cis-acting elements.

2.3.7 mRNA-like ncRNAs

mRNA-like ncRNAs are RNA transcripts that are polyadenylated and spliced. In contrast

to translated genes, they lack long ORFs. This class of ncRNAs is rapidly expanding and

many new examples of mRNA-like ncRNAs are collected in ncRNA databases [139, 174].

The best-known mammalian representatives are H19 and Xist. Some of these large ncRNAs,

including mammalian Xist and Air, and roX in Drosophila, have distinct roles in epigenetic

gene regulation they are performed by means of chromatin modifications. A number of plant

specific mRNA-like ncRNAs are known experimentally; additional candidates were detected

in a computational survey of Arabidopsis thaliana ESTs [145].
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2.3.8 Antisense RNAs

Antisense RNAs predominantly act as post-transcriptional downregulators of gene expres-

sion [127]. Indeed, some of the RNA families discussed above can be viewed as antisense

RNAs since they exert their function by binding complimentary to their target RNAs; exam-

ples are the microRNAs, snoRNAs, as well as many of the bacterial small RNAs [225]. The

analysis of genomic sequence data, however, has revealed that a substantial fraction of tran-

scribed DNA does not code for proteins and often derives from the anti-sense strand [237].

Antisense transcripts thus emerge as a common mechanism of regulating gene expression in

eukaryotic cells [127].

Mechanistically, there are three major pathways: The formation of double-stranded RNA

may trigger the RNAi pathway and lead to degradation of the sense transcript [76]. Binding

of sense and anti-sense transcript may prevent the binding of other trans-acting factors

(RNA masking). Transcriptional interference is the inhibition of transcriptional elongation

due to a collision of the RNA Pol-II complexes on overlapping transcriptional units located

at opposite strands [182]. Antisense RNAs are transcribed either in cis from the opposite

strand, or in trans from a different genomic locus.

2.3.9 Natural ribozymes

Until about 20 years ago, it was believed that proteins were the only catalytic macromolecules

in biology. The discovery of the first catalytic RNA molecules, or ribozymes, in the early

1980s, however, has changed this picture considerably. We have already encountered several

examples: RNase P, the spliceosome, and the ribosome are essentially ribozymes. In most

cases, ribozymes serve an RNA-processing function using RNA as substrates.

A number of natural ribozymes are not independently stable ncRNAs but rather are part of

larger RNA molecules. For example, there are four distinct groups of nucleolytic ribozymes:

hammerhead and hairpin ribozymes are mostly found in plant viruses, the Varkud satellite

(VS) ribozyme was found in fungal mitochondria, and hepatitis delta virus contains another

ribozyme. A recent study suggests a common origin of hammerhead, hairpin, and hepatitis

delta ribozymes [79], although convergent evolution cannot be ruled out.

The second large class of naturally occurring ribozymes is involved in the self-splicing of

introns in a wide range of species; these molecules belong to one of two structural classes

known as group I and group II ribozymes. All these ribozymes perform different kinds of

phosphoryl transfer reactions, in which a transesterification reaction results in breakage of

the backbone in the first step [135].
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2.3.10 Functional RNA motifs in UTRs of mRNAs

Cis-acting elements in the untranslated regions of mature mRNA bind trans-acting factors

and control in this way translational efficiency, mRNA stability and subcellular localization

[160]. These elements represent an important group of “functional ncRNAs” albeit they are

not independent ncRNAs in the sense of an “RNA-gene”. Since secondary structures are

involved in various known UTR-elements, they are of interest for our work. A selection of

examples of such regulatory motifs in UTRs will be given here.

Iron response elements (IRE) IRE elements are short hairpin structures with an inter-

nal loop and a conserved sequence in the hairpin loop, which are observed in 5’-UTRs of

ferritin mRNAs in 3’-UTRs of of transferrin receptor mRNAs [82]. They can be classi-

fied in two slightly different instances, the first containing an internal loop of length three,

which is replaced by a bulge loop in the second. Both have the primary consensus motif

CNNNNNCAGWGH [178]. The IRE motif can be readily described with regular grammars;

because of the highly redundant sequence pattern and frequent, simple secondary structure

one has to expect a large number of false positives, however.

Internal ribosome entry site (IRES) IRES elements were first described in the 5’-untranslated

region of picornavirus RNA [104]. The IRES element enables cap-independent initiation of

translation starting at an internal initiation codon. In addition to several types of viruses,

which contain an IRES element, a small group of eukaryotic mRNA can be translated by

internal ribosome entry. IRES-containing mRNAs mostly encode regulatory proteins such

as, e.g., growth factors and transcription factors. Several studies have reported that under

stress conditions, where cap-dependent translation is blocked, translation of specific mRNAs

is enabled through IRES elements [151]. Another function of IRESs involves the control of

alternative initiation of translation. For example, the human fibroblast growth factor 2

contains 5 translation initiation codons. Translation initiation of the codon proximal to the

5’-end is initiated by a cap-dependent process, whereas initiation of the remaining codons

depends on the IRES [16]. IRES elements are defined by functional criteria and cannot

yet be predicted by the presence of characteristic RNA sequence or structural motifs. In

general, there are no significant similarities between individual IRESs unless they are from

related sources.

Selenocysteine insertion sequences (SECIS) SECIS elements can be found in the coding

region of some eubacterial mRNAs and in 3’ untranslated regions of some mRNAs in archaea

and eukaryotes [119]. In eubacteria, it forms a hairpin structure of conserved length with the

selenocysteine codon in the outer helix. In archaea, the primary rather than the secondary

structure is conserved. The consensus is a hairpin structure that differs in stem length,
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occurrence of internal loops and size of the hairpin loop, but it has a very conserved sequence

motif in the helix beneath the apical loop. In eukaryotes, the secondary structure contains

most of the information while only small sequence motifs are conserved. The core secondary

structure is composed of a long hairpin structure consisting of two (type 1) or three (type

2) consecutive helices [57, 119].

2.4 Genomics of ncRNAs

2.4.1 Experimental detection of new ncRNAs

Large scale approaches to characterize the transcriptional output of complete genomes have

uncovered a large number of ncRNA candidates. In mouse and human, extensive cDNA

libraries derived from the poly-A RNA fraction have been sequenced mainly with the goal

to describe the complement of coding mRNAs in these organisms [170, 99]. The analysis

of these cDNAs revealed, however, that a substantial fraction does not contain a long open

reading frame. The “Fantom” project in mouse described 15,000 of such cDNAs with reduced

coding capacity. The “Human Invitational-Project” reports more than 2,000 transcripts with

ORFs <80 that passed several additional filters designed to exclude likely protein-coding

genes.

In addition, tiling arrays [106] have been used to directly map the transcriptional output of

genomes. Also these studies find a significant fraction of transcription not associated with

known protein coding genes. To mention only one recent example, Cheng et al. constructed

a map of 10 human chromosomes at 5 nucleotide resolution from 8 different cell lines [31].

More than 10% of the non-repeat regions in the human genome was represented in the polyA

fraction of one or more cell lines. More than 50% of these regions do not overlap with well

annotated coding exons, mRNAs or ESTs.

Using a similar tiling array technique in combination with chromatin immunoprecipitation it

is possible to map transcription factor binding sites. A detailed map of human chromosomes

21 and 22 suggest that the human genome contains tens of thousands non-coding genes that

are bound by common transcription factors and regulated by common environmental signals

[27].

All these large scale transcriptional studies are not specifically designed to detect novel

ncRNAs. Most of them are limited to polyA transcripts and small ncRNAs are likely to

get lost in the experimental procedure. More suitable cDNA cloning techniques for small

non-mRNA like ncRNAs have been developed [96]. This approach was applied to various

model organisms and in all cases dozens of new species of small (< 500) ncRNAs could

be sequenced and verified by northern blot analysis [97, 149, 224, 238, 46]. However, one

must suspect random cDNA sequencing to be biased towards strongly expressed ncRNAs.



2. Background 24

It appears impossible to quantitatively fish underrepresented RNA species from a pool of

highly abundant rRNAs, tRNAs and snoRNAs, even if enrichment strategies are used [46].

2.4.2 Computational detection of ncRNAs

Detection of ncRNAs of known classes Large, highly conserved ncRNAs, in particular

ribosomal RNAs, can easily be found using Blast. Similarly, Blast can be used to find

orthologous ncRNAs in closely related species, e.g. [211, 230]. In most cases, however,

this approach is limited by the relatively fast evolution of most ncRNAs. Since RNA se-

quence often evolves much faster than structure, the sensitivity of search tools can be greatly

improved by using both sequence and secondary structure information.

The simplest class of search tools uses regular or context free grammars to describe RNA

motifs that are explicitly known to the user. There is no possibility to adapt the model to

variations of the instance, and it is also very difficult for a user to define production rules

for complicated motifs with a large number of exceptions.

With probabilistic models, such as SCFGs (section 2.2), the user is able to assign probability

distributions to production rules; noise in the dataset is handled easily because the model

can adapt itself to variations. The main drawback of stochastic context free grammars is

that most of the available implementations demand large computational resources.

Hybrid languages, like HyPaL [68] or the language used in RNAMotif [146], connect pattern

languages with user defined approximative rules, which rank the results according to their

distance to the motif. Their advantage lies in a faster processing compared to SCFG.

Nevertheless, the definition of approximative rules also requires explicit knowledge, at least

to some extent.

ERPIN [64] is an example of tools that do not need an explicit definition of a descriptor to

search for homologs of a motif. From a sequence alignment annotated with helix regions

it extracts frequencies of nucleotides in single strands and base pair frequencies in helices.

Those frequencies are compared to expected base frequencies in the target database by

calculating log-odds ratios. The sum of log-odds ratios over all positions of a target sequence

gives the final score.

A number of large-scale surveys have been performed using one of the general purpose tools

mentioned above. An non-exhaustive list includes a microRNA survey using ERPIN [131], a

search for U5 snRNA and RNase P using RNAmotif [37], and a survey of RNase P RNAs in

bacterial genomes [132].

Specialized programs have been developed to detect members of particular ncRNA families.

Examples of this approach include miRseeker for microRNAs [123], BRUCE for tmRNAs [125],
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tRNAscan for tRNAs [140], snoScan for box C/D snoRNAs [141], fisher for box H/ACA

snoRNAs [53], as well as a heuristic for SRP RNAs [184, 190]. An improved method for

box C/D snoRNAs was recently presented by Accardo et al. [2]: starting from yeast rRNA

methylation sites, they first identified homologous positions in D. melanogaster rRNAs and

then use snoScan [141] to search for putative snoRNAs with binding motifs complementary

to the putative methylation sites.

De novo prediction Detecting novel ncRNAs without any prior knowledge of sequence

or structure is still a largely unsolved issue. In contrast to protein-coding genes, which

show strong statistical signals like open reading frames or codon bias, ncRNAs lack any

comparable signals in primary sequence that could be used for reliable detection.

Only in very special cases can ncRNAs be identified based on a significant bias in base

composition. AT-rich hyper-thermophiles were successfully screened for ncRNAs simply

by searching for GC rich regions [115, 194]. MicroRNAs can be detected based on their

increased thermodynamic stability [17]. Carter et al. used machine learning techniques to

extract common sequence features of known ncRNAs including GC content in E. coli [25].

Most ncRNAs do, however, depend on a well-defined structure for their function. This has

led to various attempts to predict functional RNAs using predicted secondary structures.

It was first suggested by Maizel and co-workers that functional RNA elements should have

a more stable secondary structure than expected by chance [128, 29]. However, Rivas and

Eddy had to conclude in an in-depth study on the subject that thermodynamic stability

alone is generally not statistically significant enough for reliable ncRNA detection [186].

Some other characteristic measures derived from secondary structure predictions have been

proposed [197, 130, 129] which, however, are also of limited value in the context of genome

wide ncRNA prediction. A combination of gene expression data and high level sequence

conservation was successful in discovering novel ncRNAs in the intergenic regions of the E.

coli genome [227].

The reason for the limited success of these approaches is that the presence of secondary

structure in itself does not indicate any functional significance, because almost all RNA

molecules form secondary structures. In fact, most compelling evidence for functional sig-

nificance comes from comparative studies that demonstrate evolutionary conservation of

structure.

Extensive computer simulations [199, 71, 72, 98], showed that a small number of point

mutations is very likely to cause large changes in the secondary structures. It follows that

structural features will be preserved in RNA molecules with less than some 80% of sequence

identity only if these features are under stabilizing selection, i.e., when they are functional.

This fact is exploited by the Alidot [86] algorithm for searching conserved secondary struc-
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ture patterns in large RNAs. Secondary structures are predicted independently for each

sequence, typically using McCaskill’s algorithm [158], which yields a list of thermodynami-

cally plausible base pairs with their equilibrium probabilities. Next, a conventional multiple

sequence alignment is computed, e.g. using ClustalW. By copying the gaps from the multiple

sequence alignment into the predicted structures, a list of homologous base pairs is obtained.

This list is then sorted by means of hierarchical credibility criteria that explicitly take into

account both thermodynamic information and sequence covariation. A detailed description

of the method can be found in [86, 90]. A similar approach is taken by the ConStruct tool

[144, 143], which also features a graphical tool for manipulating the sequence alignment in

order to achieve a better consensus structure. Alidot does not pre-suppose the existence of

a global conserved structure. It is therefore particularly well suited when the sequences are

expected to contain only small structurally conserved regions, as is the case for example in

RNA viruses. Alidot does not provide a measure of significance for its predictions, making

it difficult to use it for scanning large non-viral genomes.

There are a few other programs available for the detection of conserved RNA secondary

structures. QRNA [187] is the most widely known program of this kind. It classifies pairwise

sequence alignments as ncRNA, protein coding, or anything else. This program compares

the score of three distinct models of sequence evolution to decide which one describes best

the given alignment: a pair SCFG is used to model the evolution of secondary structure,

a pair hidden Markov model (HMM) describes the evolution of protein coding sequence,

and a different pair HMM implements the null model of a non-coding sequence. QRNA was

successfully used to predict ncRNAs candidates in E. coli and S. cerevisiae [188, 159], some

of which could be verified experimentally.

MSARi [40] uses McCaskill’s algorithm to detect probable base paired regions in the single

sequences of an alignment and then employs a statistical procedure to asses the significance

of reverse complementarity.

ddbRNA [49], in contrast, does not rely on secondary structures predicted by energetic rules

or SCGFs. It simply counts the compensatory mutations in all possible conserved stem loops

in the alignment and compares it to a background signal obtained from shuffled alignments.

In this thesis, we adapt and extend the RNAalifold approach (section 2.1.6) for the detection

of conserved secondary structures resulting in the new program RNAz.
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2.5 Machine learning with Support Vector Machine algorithms

2.5.1 Introduction

Machine learning algorithms automatically improve by the analysis of data sets, i.e. they

“learn” by experience. Speech or handwriting recognition are typical applications of machine

learning approaches. Also in computational biology various machine learning techniques

have been successfully used, for example neural networks for detection of signal peptides in

proteins [11], Hidden Markov models for protein homology detection [108] and, as briefly

discussed in section 2.2, stochastic context free grammars for modeling and prediction of

RNA secondary structures [52].

In the past years, Support Vector Machines (SVMs), a new class of learning algorithms, have

become increasingly popular in computational biology [22]. SVM algorithms come with a

number of attractive features:

• Since the training involves optimization of a convex cost function, there is no problem

of local minima and the optimal solution can always be found.

• The algorithms are computationally efficient and perform well on noisy and high di-

mensional data.

• SVM algorithms are modular in their design which simplifies their implementation and

analysis.

• SVM algorithms are properly motivated by learning theory.

There exists a large body of literature on SVMs, e.g. [41, 196, 13, 21]. In this work we used

SVM techniques for classification and high-dimensional regression tasks. Therefore, we give

here a brief overview on the theoretical principles of SVMs.

2.5.2 Hyperplane classifiers

Assume a binary classification task. We have a set of l training points {xi, yi} with i =

1, . . . , l, xi ∈ R
n, yi ∈ {−1, +1}. Each training point consists of a vector of n features and

belongs to the positive or negative class. We want to find a classification function f(x) such

that x is assigned to the positive class if f(x) ≥ 0, and otherwise to the negative class.

In the simplest case, if the the training points are linearly separable, a hyperplane

f(x) = 〈w · x〉 + b with w ∈ R
n, b ∈ R (9)
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can be constructed which separates the positive from the negative training examples (Fig. 6).

However, an infinite number of such hyperplanes exist. Which one will best classify unseen

examples, i.e. generalizes well? Intuitively, one will choose the hyperplane with the maxi-

mum margin between any training point and the hyperplane (Fig. 7). There are arguments

from learning theory supporting this intuition.

yi = +1yi = −1

Fig. 6. A binary classification problem. The goal is to find a decision function which optimally
separates black circles from open diamonds. In the linearly separable case (as shown here), a
linear decision function in the form of a hyperplane can be found that classifies all examples
without error. There exists an infinite number of such hyperplanes. Two possible hyperplanes
are shown (drawn as solid and broken lines). It is plausible that the solid line represents a
better classifier because it has a wider “margin” (this is the distance of the closest point to
the hyperplane).

To find the hyperplane with the largest margin, one implicitly rescales w and b such that the

points closest to the hyperplane satisfy 〈w·xi〉+b = 1 (i = 1, . . . , l) and thus yi(〈w·xi〉+b) ≥

1 for all data points i = 1, . . . , l. In this case, the margin equals 2/‖w‖. Maximizing the

margin is equivalent to the following constrained optimization problem:

minimize
w∈Rn,b∈R

τ(w) =
1

2
‖w‖2 (10)

subject to yi(〈w · xi〉 + b) − 1 ≥ 0 for all i = 1, . . . , l (11)

Optimization problems of this kind are dealt with using Lagrangian theory. The constraint

equation is multiplied by positive Lagrange multipliers αi ≥ 0, i = 1, . . . , l and subtracted

from the objective function yielding the Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

l
∑

i=1

αi(yi(〈w · xi〉 + b) − 1) (12)

The Lagrangian L has to be minimized with respect to w and b and maximized with re-
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〈w · xi〉 + b = 0

〈w · xi〉 + b = −1 〈w · xi〉 + b = +1

yi = −1

yi = +1
2/‖w‖

Fig. 7. Constructing the optimal separating hyperplane. Three “canonical” hyperplanes are
shown which define the maximum margin of the classification problem. They are scaled in
a way that the maximum margin is 2/‖w‖. The points nearest to the optimal separating
hyperplane are called the “support vectors” (drawn larger than the other points).

spect to αi. This type of quadratic optimization problem has been studied extensively and

numerous algorithms are available offering efficient numerical solution. Although one could

directly solve this form of the optimization problem, for the effectiveness of SVM algorithms

it is crucial to transform the problem into its so-called dual form. To this end, the primal

Lagrangian function is differentiated with respect to the primal variables w and b which

must vanish: ∂
∂b

L(w, b, α) = 0 and ∂
∂w

L(w, b, α) = 0

This leads to

l
∑

i=1

αiyi = 0 (13)

and

w =

l
∑

i=1

αiyixi. (14)

Substitution of (13) and (14) into the Lagrangian (12) eliminates the primal variables w

and b yielding the dual optimization problem that is usually solved:

W (α) =
l

∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj〈xi · xj〉 (15)
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subject to αi ≥ 0 for all i = 1, . . . , l and

l
∑

i=1

αiyi = 0. (16)

Maximizing W is equivalent to minimizing the primal Lagrangian L. This reformulation,

however, unveils important properties of the SVM algorithm. Each training point has a

corresponding αi. The solution vector w is an expansion in terms of a subset of the training

points (14). Only those training points with non-zero αi contribute to the solution, all

other training points are not relevant. The hyperplane is thus completely determined by

the data points closest to it, the so-called Support Vectors. More precisely, the SVs lie on

the margin which can be seen through the Karush-Kuhn-Tucker complementary condition

which is satisfied in this kind of constrained optimization problem:

αi[yi(〈w · xi〉 + b) − 1] = 0 for all i = 1, . . . , l (17)

Furthermore, the training data only appears in the form of dot products between the vectors

in the optimization problem. This property allows for the elegant extension to non-linear

problems as described in the next section.

Finding the solution for our initial problem of binary classification in the linearly separable

case can be summarized as follows: (i) Solve the optimization problem in (15) (i.e. find the

optimal α using the training data and an appropriate numerical algorithm. (ii) Recover b by

making use of the condition in equation (17). (iii) Rewrite the hyperplane decision function

(9) as:

f(x) =

l
∑

i=1

αiyi〈x · xi〉 + b (18)

In practice, the training data will not always be linearly separable and the algorithm will

fail to find a separating hyperplane. A simple modification that allows classification errors

can help. One introduces slack variables ξi ≥ 0 for all i = 1, . . . , l in order to relax the strict

constraints in (11). Any training point falling on the wrong side of its supporting hyperplane

is considered to be an error. Now we want to find the hyperplane with the largest margin

and the smallest error arriving at a new optimization problem:

minimize
w,ξ∈Rn,b∈R

τ(w, ξ) =
1

2
‖w‖2 + C

l
∑

i=1

ξi (19)

subject to yi(〈w · xi〉 + b) − 1 ≥ ξi for all i = 1, . . . , l (20)
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The constant C > 0 determines the trade-off between margin maximization and training

error minimization. The dual form of this optimization problem turns out to be exactly the

same as before (15). The constraints of the Lagrange multipliers, however, have an upper

bound bound 0 < αi < C for all i = 1, . . . , l. This variant of the hyperplane classifier is

generally used in SVM algorithms and known as soft margin classifiers.

2.5.3 The kernel trick

Learning algorithms based on hyperplane classifiers as outlined in the previous section have

been known since the 1950s [191]. However, this type of classifier cannot be used if there

is no linear relationship between the data points (Fig. 8). In combination with another

rather old mathematical method, the so-called kernel trick [3], hyperplane classifiers can be

extended to non-linear problems in a surprisingly straightforward way. This combination

was introduced as Support Vector Machine in 1992 by Vapnik and co-workers [18].

Input space Feature space

φ

Fig. 8. Mapping input data in to a higher dimensional features space. Problems that are not
linearly separable in input space can be linearly separable in feature space.

A linear classification algorithm can be converted to a non-linear algorithm by adding addi-

tional attributes to the data that are non-linear functions of the original data. In the example

in Fig. 8, introducing a quadratic term could solve the classification problem. More gener-

ally, one needs to map the data from the original input space X into a higher dimensional

feature space F : Φ : X 7→ F : x 7→ φ(x).

The training algorithm (17) and the resulting decision function (18) is unaffected by this

mapping. The decision function (18) with mapped input data:

f(x) =

l
∑

i=1

αiyi〈φ(x) · φ(xi)〉 + b (21)
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The only major drawback is that the algorithm becomes computationally infeasible if the

data has to be explicitly mapped to a high dimensional feature space. An important feature

of the dual representation is that the training vectors only appear as dot product in the

algorithm. So we only need to evaluate 〈φ(x) ·φ(xi)〉.Through the use of a kernel function it

is possible to compute this dot product in feature space directly as a function of the original

input points.

A kernel function is a function K, such that for all x, z ∈ X

K(x,y) = 〈φ(x) · φ(z)〉,

where φ is a mapping from the input space X to a (dot product) feature space F .

By substituting the dot products 〈φ(x) · φ(xi)〉 in the learning algorithm (17) by a kernel

function K(x,xi) we can now solve a non-linear classification problem by using a linear

algorithm which works in a high (probably infinite) dimensional feature space. Since we do

not need to explicitly map the data into feature space (we do not even need to know the

map φ) the high dimensionality does not impose a performance problem.

Without going into detail, one can show that essentially each function that gives rise to a

positive matrix (K(xi,xj))ij is a kernel of some feature space. For specific applications one

can design kernel functions which best represent the properties of the particular data. In

practice, standard kernel functions yield good results for most types of applications. Some

commonly used kernel functions are listed here:

• linear: K(x, z) = 〈x · z〉

• polynomial: K(x, z) = (γ〈x · z〉 + c0)
d

• radial basis: K(x, z) = exp(−γ‖x− z‖2)

2.5.4 Support vector machine regression

The idea of finding a hyperplane as decision function for classification tasks can be easily

generalized to regression estimation, which we only discuss briefly here.

In the case of regression, the training points are of the form (x, y) with y ∈ R. The algorithm

tries to construct a linear function f(x) = 〈w ·x〉+ b such that the training points lie within

a specified distance ε > 0 (Fig. 9). Points that lie outside this “ε-tube” are penalized similar

to the soft margin classifier (cf. equation 19).

Again, this can be formulated as constrained optimization problem that can be solved using

kernel functions. The ε bound has to be specified a priori. In a more recent formulation
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of the algorithm, which we will use in section 3.4.4, a parameter 0 ≤ ν ≤ 1 can be set as

the fraction of points allowed to lie outside the “tube” and the corresponding ε is computed

automatically.

ξ

ξ

+ε

−ε

Fig. 9. Principle of SVM regression. A hyperplane is constructed that fits the training data.
Points within a specified range ǫ are not penalized while any points outside this range are
considered as training errors and penalized with a cost proportional to ξ.

2.5.5 Support vector machines in practice

The application of SVM algorithms to every-day problems has been facilitated considerably

by various easy-to-use software packages. We used Libsvm [28] throughout this work. The

Libsvm package provides a C and Java library which implements all major algorithms for

classification and regression. There are language bindings for all major scripting languages

such as Perl, as well as plugins for mathematical and statistical software packages (e.g.

Matlab and R). For standard applications, one can get reasonable results by following these

guidelines (this assumes that one of the standard kernels described above is used):

1. Compile a representative test set of positive and negative examples.

2. Define the input vector, i.e. choose characteristics of the examples which are relevant

for classification and, if necessary, convert them to real values.

3. Uniformly scale all elements of the input vector (e.g. linearly to an interval [0,1]).

4. Choose a kernel and optimize C and the kernel parameter(s) by self-consistency tests.

5. Apply the model to unknown examples.

The first two points are problem-specific. Finding a reasonable large test set is not always

easy if available data is sparse. Depending on the application, defining and extracting the
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characteristic features can either be straightforward, or one of the most challenging problems

in the whole process (e.g. image recognition). The other steps are problem-independent and,

in some SVM packages, partly automatized. Choosing the kernel and the parameters is an

essentially empirical process which can be guided by self-consistency tests. Self-consistency

tests give an impression of the performance of a model in terms of sensitivity and specificity.

Given that the test set is representative, one can expect similar classification performance

also for new examples.
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3 Development, benchmarking and implementation of new

algorithms

3.1 Free energy of single sequences for detection of ncRNAs

In previous chapters we highlighted that many known functional RNAs are tied to a de-

fined secondary structure and we presented well established algorithms for their prediction.

Intuitively, MFE predictions appear to be a straightforward measure also for the detection

of functional RNAs. However, prediction programs readily calculate MFE structures for

arbitrary random sequences. The question arises, if natural RNAs are more stable (have

lower MFE) than random sequences.

A simple statistical procedure can be used to address this question. To assess the significance

of a MFE for a given sequence, we generate a number of randomized sequences by shuffling

the positions [117]. This gives us sequences of the same length and base composition. We

calculate the mean µ and standard deviation σ of the MFEs of these random sequences

and compare it to the MFE m of the native sequence by calculating a normalized z-score

z = (m− µ)/σ. Negative z-scores indicate that the native sequence is more stable than one

could expect by chance.

We tested six structural RNA families (tRNA, 5S rRNA, Hammerhead ribozyme type III,

Group II catalytic intron, Signal recognition particle RNA, U5 spliceosomal RNA). We

used RNAfold with standard parameters for the MFE prediction and calculated z-scores

from a sample of 100 random sequences. The results are shown in Tab. 1. On average,

the structural RNAs have all z-scores clearly below zero, meaning they have lower folding

energy than the random samples. Is this significant enough to reliably distinguish single

sequences from the random background? Fig. 10 illustrates this for the tRNA test set. The

histogram shows the distribution of z-scores for 579 tRNAs together with the z-scores of

579 random sequences (one shuffled version for each tRNA). If we use a conservative limit

of −4 to define a significant z-score, we can only detect 2% of the tRNAs. To detect half of

all tRNAs we would have to lower the cutoff to −1.8. Then, however, we would encounter

4% of false positives. For genome-wide screens where a huge number of candidates has to

be scored, the specificity is too low (especially for a corresponding sensitivity of only 50%).

Some of the tested families form more stable structures (e.g. Group II catalytic intron:

average z=−3.88, Hammerhead ribozyme III: z=−3.08) but generally the native sequences

are not efficiently separated from the bulk of random sequences.

An additional point seems noteworthy regarding these experiments. Workman & Krogh [233]

pointed out that dinucleotide content influences secondary structure predictions, because of

the energy contributions of stacked base pairs. A correct randomization procedure should,
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Tab. 1. z-scores of MFEs of various functional RNAs

ncRNA Type n zmono zdi

tRNA 579 −1.84 −1.71
5S rRNA 606 −1.62 −1.71
Hammerh. III 251 −3.08 −3.17
Gr. II Intron 116 −3.88 −3.77
SRP RNA 73 −3.37 −3.09
U5 199 −2.73 −2.38

-6 -5 -4 -3 -2 -1 0 1 2 3 4
z-score

0
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Fig. 10. Distribution of MFE z-scores of 579 tRNAs. Solid bars: native RNAs, dashed line:
random controls. Only 2% of the tRNAs have significant z-scores below −4.
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therefore, generate random sequences of the same dinucleotide content. It is impossible to

consider this in the randomization of multiple sequence alignments (see section 3.3). For

single sequences, however, we performed the z-score calculations with both mono- and din-

ucleotide shuffled random sequences. For dinucleotide shuffling we used a recent implemen-

tation [36] of an algorithm developed by Altschul & Erickson [4]. The results (Tab. 1) show

that a systematic bias is not recognizable for our test sets. The values differ only minimally

and the mononucleotide-shuffled z-scores are not necessarily below the dinucleotide-shuffled

score. Thus, while dinucleotide composition was important in the study of Workman &

Krogh where mRNAs are tested for an (obviously non-existent) subtle bias towards lower

folding energies, it can be neglected in our case.

We can conclude from these results, that folding energy is indeed a characteristic signal of

(structural) ncRNAs, but is in itself not sufficient for a reliable detection. This finding is

consistent with similar studies on the subject [186, 36] and the reason why any efforts to

build a general RNA gene finder based only on MFE predictions have failed so far.

3.2 Well-definedness of secondary structure for detection of ncRNAs

Since thermodynamic stability alone is not significant enough, we have to look for addi-

tional characteristics of ncRNAs. Various measures have been proposed to capture such

characteristics of naturally evolved, functional RNA structures [130, 129, 197]. However,

none of them appeared to be a useful measure efficiently complementing the simple MFE

calculations described above.

Here we briefly address the question whether a measure for “well-definedness” as defined by

Hofacker (2003, unpublished) can be used for detection of functional RNAs.

At room temperature an RNA molecule will fluctuate between different secondary structures.

In equilibrium (i.e. given there are no high energy barriers in the landscape) the ensemble

of visited structures is described by the Boltzmann distribution. For some sequences this

ensemble will be dominated by the ground state, MFE structure, in which case we call

the structure well-defined, for other sequences the ensemble contains several dis-similar

structures with near equal frequencies.

The simplest measure of well-definedness is given by the probability of the MFE structure

Smin in the ensemble

P (Smin) = exp(−Emin/RT )/Z. (22)

This measure, however, does not take into account whether the structures in the ensemble
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are diverse or just trivial variations of one another. Ideally, we would like to measure the

structural variety of the ensemble as the mean distance between structures in the ensemble.

There are many possible distance measures. One of the simplest is the so-called base pair

distance which counts the number of base pairs that are either in S1 or in S2 but not in

both. This measure is especially well-suited for comparing structures on the same sequence

(as in our case), since it corresponds to the minimal number of base opening/closing moves

necessary for re-folding from one of the structures to the other. As demonstrated by Ho-

facker, the mean base pair distance in the ensemble 〈D〉 can be computed directly from the

pair probabilities as:

〈D〉 =
∑

i<j

pij − p2
ij (23)

The concept of “well-definedness” is illustrated in Fig. 11 which shows the base pair proba-

bility dotplots of a two secondary structures with different mean base pair distance.
well-defined (mean distance = 3.27)

G A U A G G G C A U G G G U G A U G C G G U C G U U C G C C G U C A G U A G A G A U G G G G A A A G C U G U U U U C C U C C C U C C U U A U U C

G A U A G G G C A U G G G U G A U G C G G U C G U U C G C C G U C A G U A G A G A U G G G G A A A G C U G U U U U C C U C C C U C C U U A U U C

G
A

U
A

G
G

G
C

A
U

G
G

G
U

G
A

U
G

C
G

G
U

C
G

U
U

C
G

C
C

G
U

C
A

G
U

A
G

A
G

A
U

G
G

G
G

A
A

A
G

C
U

G
U

U
U

U
C

C
U

C
C

C
U

C
C

U
U

A
U

U
C

G
A

U
A

G
G

G
C

A
U

G
G

G
U

G
A

U
G

C
G

G
U

C
G

U
U

C
G

C
C

G
U

C
A

G
U

A
G

A
G

A
U

G
G

G
G

A
A

A
G

C
U

G
U

U
U

U
C

C
U

C
C

C
U

C
C

U
U

A
U

U
C

not well-defined (mean distance = 15.7)

G G G A U G G A U C U C C A G A A G A G G U U A U G G U A U G U C C G A G C G C U C A A G U G G U U C C U U C C G G G C G U C C U U U A U U G C

G G G A U G G A U C U C C A G A A G A G G U U A U G G U A U G U C C G A G C G C U C A A G U G G U U C C U U C C G G G C G U C C U U U A U U G C
G

G
G

A
U

G
G

A
U

C
U

C
C

A
G

A
A

G
A

G
G

U
U

A
U

G
G

U
A

U
G

U
C

C
G

A
G

C
G

C
U

C
A

A
G

U
G

G
U

U
C

C
U

U
C

C
G

G
G

C
G

U
C

C
U

U
U

A
U

U
G

C

G
G

G
A

U
G

G
A

U
C

U
C

C
A

G
A

A
G

A
G

G
U

U
A

U
G

G
U

A
U

G
U

C
C

G
A

G
C

G
C

U
C

A
A

G
U

G
G

U
U

C
C

U
U

C
C

G
G

G
C

G
U

C
C

U
U

U
A

U
U

G
C

Fig. 11. “Well-definedness” of a secondary structure. Base pairing probabilities for two
artificial sequences of the same length were calculated by McCaskill’s algorithm. The pairing
probabilities are shown in the upper right triangle of the dot plot while the lower right triangle
shows the pairing matrix of the MFE structure. Both structures have similar MFE structures.
The left structure is rather well-defined in a sense that there a relatively few alternative
structures in the ensemble. In contrast, the right structure is not well-defined because many
partly completely different structures exist in the ensemble with reasonable probabilities. The
left and right structures have mean base pair distances of 3.27 and 15.7, respectively.

In analogy to the statistical tests of MFEs described in the previous section, we calculated

z-scores of mean pair distances (Tab. 2). Also here, the z-scores are below zero in all

cases indicating that natural ncRNAs have on average a lower mean base pair distance in

their thermodynamical ensemble than the random controls. However, the effect is not as

pronounced as in the case of MFE z-scores. Moreover, we observed that to some degree

both measures, MFE and well-definedness, are correlated as exemplified in Fig. 12 again
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on the tRNA test set. The scatter plot shows that the native sequences are clearly better

separated from the controls on the MFE axis than on the mean base pair distance axis.

Without elaborating on statistical details, we concluded that also the measure of well-

definedness is not of immediate interest for the purpose of developing an efficient ncRNA

gene finding algorithm. Therefore, we did not pursue this topic any further.

Tab. 2. z-scores of mean base pair distances for various functional RNAs

ncRNA Type n z

tRNA 579 −0.5
5S rRNA 606 −0.7
Hammerh. III 251 −1.5
Gr. II Intron 116 −1.2
U5 199 −2.73
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Fig. 12. Scatter plot of z-scores of MFE and mean base pair distances on the tRNA test set.
The mean base pair distance measuring the “well-definedness” is partly correlated with the
MFE and does not significantly improve the classification.

3.3 Consensus folding as a new measure for detecting ncRNAs

The results so far show that single sequence predictions are of limited statistical significance.

Given the wide availability of comparative data mentioned in the introduction, we wondered

how to efficiently make use of this information. We use the program RNAalifold, which

was originally developed to predict consensus secondary structures of aligned sequences

(section 2.1.6). RNAalifold calculates an averaged MFE for the alignment, incorporating

covariance information into the energy model. We consider RNAalifold-MFEs to be a good

measure for the existence of a conserved fold and a good alternative for the probabilistic
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approach implemented in QRNA. RNAalifold makes use the standard energy model for RNA

secondary structures, and thus reduces to simple MFE structure prediction in the case

of single sequences. For an alignment of several sequences the energy model is augmented

through covariance information. RNAalifold is not limited in the number of input sequences.

It seems to be straightforward to apply the ideas described in the previous sections and

to calculate z-scores of RNAalifold-MFEs in order to test whether ncRNAs can be more

efficiently detected by including comparative information from homologous sequences. To

this end, we developed an algorithm for randomizing multiple sequence alignments and

created test sets from sequences in Rfam, as described in the next two sections.

3.3.1 Randomizing multiple sequence alignments

The randomization procedure is of crucial importance for the calculation of meaningful z-

scores. A straightforward algorithm would simply shuffle the columns of the alignment. This

would result in an alignment of the same length, the same base composition and the same

overall conservation. However, the gap structure and the local conservation pattern would be

different. Possible consequences for consensus folding and z-score calculations are illustrated

in Fig. 13. If there is for example a gap of length 10 in the alignment, the shuffling probably

would produce 10 gaps of length 1. This can result in artefactual low z-scores since many

gaps spread over the complete alignment can remarkably impair the consensus folding, while

one long gap probably does not. The same is true for local conservation patterns, meaning

that a well conserved column AAAAAGG should not be shuffled with a less conserved column

AGUACUA, but rather with a column CCCCCAA of the same pattern. We considered this in

our shuffling algorithm: First we collect all columns which have the same gap structure and

local conservation pattern into individual groups of columns. We memorize which column

of the initial alignment has which pattern. Subsequently, we shuffle the groups individually

using a standard procedure [117]. Finally, we reassemble the alignment. Since the shuffling

procedure of the individual sets is provably random and independent from each other, all

possible alignments are sampled with the same probability.

It must be pointed out that we here only shuffle columns with exactly the same pattern of

nucleotide succession (i.e. we shuffle AAAAAGG with CCCCCAA but no with CCAAAAA).

Alternatively, one might shuffle columns of the same degree of conservation but different

pattern (this option is implemented in the program Shuffle-aln, see section 3.3.8). While

we cannot think of a possible scenario where this could introduce randomization artifacts,

we decided to use the more restrictive version here.

As the conservative shuffling procedure restricts the possible number of permutations, the

question arises if it is effective enough to destroy a secondary structure. It is known that

if only a small fraction (around 10%) of a sequence is randomly mutated this leads almost
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certainly to unrelated structures [199]. These theoretical considerations, as well as our

computational results, suggest that the shuffling procedure is effective enough to destroy

any native secondary structures.

3.3.2 Creation of test sets

Most of the RNA sequences used in this work were taken from the Rfam database release

5.0 [70]. We took the sequences from the full alignments of Hammerhead ribozyme III

(RF00008), Group II catalytic intron (RF00029) and U5 spliceosomal RNA (RF00020). For

tRNA (RF00005) and 5S rRNA (RF00001) we used the sequences from the seed alignment.

In the case of tRNA, the number of the sequences in the seed alignment was reduced to 579

(we removed every second of the 1161 sequences). The signal recognition particle RNA test

set was taken from the SRP database [189]. We used the 73 eukaryotic sequences that could

be found in the database as of January 2004.

To get a reasonable number of non-redundant alignments of different size N (2 to 4 se-

quences) within a defined range of mean pairwise identity (65% to 85%) and ideally with

all sequences of the test set equally represented, we used the following procedure: First, we

roughly clustered the sequences using BlastClust and created clusters with approximate

pairwise identities between 60% and 95%. Within those clusters we computed all possible

combinations for a given N . From each cluster we randomly chose a varying number of

combinations taking into account the size of the cluster. This should avoid that the result-

ing alignments are made up just by a fraction of the sequences of the initial test set (which

can easily happen because the number of possible combinations can get very large). In the

next step, the collected sequence combinations were realigned using ClustalW [215] and the

mean pairwise identities were calculated. For the experiments shown in Tab. 3 and Figs. 15

and 14, we eventually used alignments with mean pairwise identities between 65% and 85%.

To estimate the false positive rate, we generated a shuffled version of each of the alignments.

Here we used all alignments generated by the procedure above. This set consisted of 5930

alignments with mean pairwise identities between 30% and 100%, GC-content between 30%

and 70% and length between 50 and 350 columns. The test set included 3280 pairwise

alignments, 1701 alignments with N=3 and 949 alignments with N=4.

3.3.3 Results on Rfam test sets

The results for the z-score calculations using our randomization algorithm are summarized

in Tab. 3 and Fig. 15. If we compare the average z-score from the single sequences to the

average z-scores of the pairwise alignments (N=2), we observe in all cases that the average

z-score drops by almost 2. It further drops for the alignments consisting of three and four

sequences. We want to recall that the units of z-scores are standard deviations, so that even
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A

B

C

....(((((((((((....................)))))....))))))..

TAGGTGAGCTAGGCCCTCTATGATTCGTGCATCAGGGTCTAATCGGTTCGAG

TAGGTGAGCTAGGCCCTCT--------------GTGGTCTAACCGGTTCGAG

TAGGTAAGCTAGGCCCTCT--------------CCGGTCTAACCGGTTCGAG

TAGGTGAGCTAGGCCCTCGGCTCAGTAGCGGCAGTGGTCTAACCGGTTCAAA

***** ************                 ******* ****** *

↓
....................................................

GCGTAGATGGGTTGTTGGTTCAGTCGCTGAGAACTGCTTGCCAAGACCTCAT

GCG--T-TGG--T-TTG---C-GTCGCTGGGAAC-G-CTGC-AAGA-CTCAT

GCG--C-TGG--T-TTG---C-GTCGCTGCGAAC-G-CTAC-AAGA-CTCAT

GCGGGTGTGGCATATTGTCCCCGTCACTGGGAACGAACGGCTAAGAGCTCAT

***    ***  * ***   * *** *** ****      * **** *****

.......((.....(((((((((((...)))))....))))))......)).

TCGTGTATGATAGGTGAGCTAGGCCCTCGGTCTAATCGGTTCGAGTCATCAG

GCGTTCGCACTAGGTGAGCTAGGCCCTCGGTCTAACCGGTTCGAGTCGATGT

ACGTTTAGACTAGGTAAGCTAGGCCCTCGGTCTAACCGGTTCGAGATGTTCC

GTAGCGGCTCTAGGTGAGCTAGGCCCTCGGTCTAACCGGTTCAAAAGGCAGA

***** ******************* ****** *

↓
.((((...............))))............................

AGGCGACCTGTGTTTCTTCGCGCCGCGTGGACAGCCGTAGATTGTGAACGCT

AGGCAACCTATGATTCATTGCGCCGCGCGGACCACGGAAGTGTGTGAACGGT

AGGCGATATGTGGTTTCTCGCGCCTCAGGGACTGCTGTAAGTTGTAAACGCT

AGGCGAGCTGTGCTTCTTCGCGCCACCTGGACTGCTGAAGATTATAAACGTT

**** *  * ** **  * ***** *  ****  * * *   * * **** *

....(((((((((((....................)))))....))))))..

TAGGTGAGCTAGGCCCTCTATGATTCGTGCATCAGGGTCTAATCGGTTCGAG

TAGGTGAGCTAGGCCCTCT--------------GTGGTCTAACCGGTTCGAG

TAGGTAAGCTAGGCCCTCT--------------CCGGTCTAACCGGTTCGAG

TAGGTGAGCTAGGCCCTCGGCTCAGTAGCGGCAGTGGTCTAACCGGTTCAAA

***** ************                 ******* ****** *

↓
..((((((((...((((..(((.....)))....))))))))))))......

CGTGGGTGGTAGAGTTCCGTCCGTTCTGGAAATGAAGCACTGTCCAATTTCG

CGTGGGTGGTAGAGTTCCG--------------TGAGCACTGCCCAATTTCG

CGTGGATGGTAGAGTTCCG--------------CCAGCACTGCCCAATTTCG

CGTGGGTGGTAGAGTTCCAGTACCCGGTACGGATGAGCACTGCCCAATTGCA

***** ************                 ******* ****** *

-7.56

0.00

-8.39

-4.06

-7.56

-6.65

Fig. 13. Randomization of multiple sequence alignments. Three examples of shuffled align-
ments are shown. In A and B, the alignments are randomized by simply shuffling the columns.
In C, only columns of the same gap pattern and local conservation pattern are shuffled. The
degree of conservation is illustrated by black bars of varying size and asterisk for perfectly
conserved columns. Each alignment was folded using RNAalifold. The consensus secondary
structure prediction is shown in dot/bracket-notation in the first line. The RNAalifold-MFE
is shown next to the alignment. (A) The alignment has one long gap in the middle which is
spread over the whole length of the alignment after shuffling. In the resulting random align-
ment, RNAalifold cannot predict a consensus secondary structure (MFE=0.0). This results
in significant low z-scores (−4.1 in this special case) although there is no unusually stable
structure in the initial alignment (see C). (B) A highly conserved block is embedded in a less
conserved region. Shuffling destroys this block and the consensus structure of the resulting
random alignment is thus more unstable. Artifacts of this kind can lead to low z-scores and
thus false positives. (C) The same alignment as in A is shuffled using our conservative algo-
rithm. The randomized alignment retains the gap pattern and local conservation pattern of
the initial alignment. It has a comparable MFE although the consensus structure is completely
different (they do not have a single base pair in common). Using this shuffling procedure, we
obtain a meaningful z-score of −0.8.
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small changes shift the sensitivity significantly (for fixed z-score threshold). In Tab. 3 we

calculated detection sensitivities for a threshold of −4. In Fig. 14 the z-score distribution is

shown for the tRNA alignments with varying N . Folding of pairwise alignments instead of

single sequences improves sensitivity from 2.1% to 71.1%. For N = 4, the native alignments

are completely separated from the random alignments and almost all score below −4 (98.4%).
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Fig. 14. Distribution of z-scores for the tRNA test sets. The distribution of native z-scores
are shown as bars. The distribution of z-scores of the corresponding random sequences are
shown as dashed line. N is the number of sequences in the alignment. N = 1 means RNAfold
predictions for single sequences. The sensitivity (percent of native alignments with a z-score
below a threshold of −4) and the false positive rate (percent of random alignments with
z-scores below −4) are shown for each set.

3.3.4 Distribution and significance of z-scores

Sensitivity and specificity depend on a predefined z-score threshold. To estimate the false

positive rate for our test set, we also scored a shuffled random control for each alignment in

the set. The distribution of 5930 random z-scores is shown in Fig. 16. Three alignments had

z-scores below −4. This means that the sensitivities shown in Tab. 3 have a corresponding

false positive rate of 0.05%. The form of the distribution is of particular interest. It can
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Tab. 3. z-scores and detection sensitivities for single and aligned sequences of various functional RNAs

Number of sequences in alignment

Single sequence 2 3 4

ncRNA Type n zmono zdi S n ID z S n ID z S n ID z S

tRNA 579 -1.84 -1.71 2.24 329 76.60 -5.15 71.12 479 73.29 -6.13 84.47 244 75.65 -6.76 98.36
5S rRNA 606 -1.62 -1.71 5.11 87 77.34 -3.89 40.23 81 80.03 -5.26 70.37 102 79.24 -5.12 69.61
Hammerh. III 251 -3.08 -3.17 8.80 94 76.07 -5.50 80.85 120 78.44 -6.10 93.33 130 79.74 -6.11 98.46
Gr. II Intron 116 -3.88 -3.77 44.82 109 75.98 -5.79 89.91 138 76.26 -7.00 94.20 134 76.06 -7.03 96.27
SRP RNA 73 -3.37 -3.09 34.24 135 77.29 -6.52 89.63 55 78.42 -7.09 90.91 50 78.75 -7.59 92.00
U5 199 -2.73 -2.38 17.58 110 74.32 -4.36 49.09 125 74.88 -5.14 64.80 127 74.57 -5.43 71.65

n . . . number of sequences/alignments scored, ID . . . average mean pairwise identity, z . . . average z-score, S . . . sensitivity (% below −4).
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Fig. 15. Mean z-scores of various RNA types dependent on the number of sequences in the
alignment. N = 1 means RNAfold predictions for single sequences. Mean pairwise identities
of the alignments are between 65% and 85%. See Tab. 3 for more details.

be fairly well approximated by a standard normal distribution. However, the distribution

is slightly skewed with a negative tail: There are apparently more z-scores below −3 than

z-scores above +3. This tail is not due to our shuffling algorithm. Single sequences (whether

mono- and dinucleotide shuffled) show the same skew in the distribution (not shown), as

noted also in other studies [186]. A possible explanation might be that we select the minimum

free energy from random sequences and one could therefore expect behavior similar to an

extreme value distribution. We also attempted a fit to an extreme value distribution but

our data can much better be explained by a normal distribution although it underestimates

the negative tail.

In any case, the significance of a given cutoff has to be estimated empirically. Especially for

genome-wide studies it cannot be assumed that the genomic background behaves exactly

like random alignments and it might be possible that various inhomogeneities cause more

false positives than experienced here. The false-positive rate will depend on preparation

of the data (e.g. masking of repeats and low complexity regions) and the quality of the

alignments. This is exactly what we find for automatically generated yeast alignments (see

section 3.3.7) where the −4 cutoff has a much higher false-positive rate (0.25%) compared

to our test set of ClustalW alignments of Rfam sequences.

3.3.5 Dependence on sequence divergence and alignment method

RNAalifold takes a multiple sequence alignment as input. It can predict an existing consen-

sus structure only if the sequence alignment reflects common structural properties. Ideally,

one would like to feed RNAalifold with structurally aligned sequences. However, existing

algorithms [193, 85], are much too slow to make this a feasible alternative for a large number
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Fig. 16. Frequency distribution of random z-scores. The solid bars show the distribution of
z-scores of 5930 random alignments (mean 0.003 and standard deviation 0.989). The dashed
line shows a standard normal distribution.

of alignments, so that typically alignments based on sequence similarity alone will be used.

To test to which extent the performance of our method depends on the alignment method,

we did the following experiment: We took 73 eukaryotic SRP-RNAs and generated 2083

pairwise alignments with a wide variety of pairwise identities. For this test set, manually

curated structural alignments exist [189]. We calculated z-scores for structurally aligned

pairs and for ClustalW aligned pairs (Fig. 17). The detection performance for the struc-

tural alignments constantly increases with increasing sequence divergence over the full range

of pairwise identities. This is exactly what could have been expected, since higher sequence

divergence means more information-rich covariances. From appr. 60% to 100% pairwise

identity, the z-scores of the sequence based alignments are essentially the same. Below 60%,

the detection performance drops remarkably. Extrapolating from this example, we can con-

clude that there is obviously no need for structural alignments above 65% pairwise identity

and that our method scores best somewhere between 60% and 70%.

Although the sensitivity will vary at different degrees of conservation, the practicability of

our method is not limited to a specific interval of pairwise identities. Since the z-score

combines both energy contribution and the covariance contribution, we can detect stable

structures even at 100% conservation. On the other hand, structures which are not ex-

ceptionally stable can be detected on the basis of covariance information if there is enough

variation in the sequences. It must be pointed out that the specificity is constant in any case

and for all pairwise identities. In contrast, QRNA for example shows good performance around

85% pairwise identity, but above this value the false positive rate increases dramatically.
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Fig. 17. Average z-scores of structural and sequence-based pairwise alignments of SRP RNAs
versus pairwise identity. 2083 alignments were scored and average z-scores where calculated
for seven intervals of pairwise identities between 30% an 100%. The average z-scores are
plotted against the average pairwise identities calculated for each interval.

3.3.6 Tests on ncRNAs from Caenorhabditis elegans

The results so far show that detection sensitivity highly depends on the quality of the

available data. A large number of homologous sequences with high divergence (but still

alignable) is desirable. However, in real-life applications, such ideal data sets will not always

be found. To test our method on more realistic data we created pairwise alignments of

known ncRNAs from C. elegans [23] and C. briggsae [206].

We tried to take one example of each ncRNA family (excluding tRNAs and rRNAs) reported

in reference [206]. If available, sequences were simply taken from the respective Rfam family.

C. elegans RNA genes which could not be found in Rfam were taken from Wormbase release

117 (www.wormbase.org) and the corresponding C. briggsae homologs were searched using

Blast. We could not find annotated sequences of RNase P and U3 snoRNA although they

have been reported to exist [206].

We calculated the z-scores for this test set (Tab. 4). For scanning whole genomes it will

not be feasible to predict structures longer than appr. 200 nucleotides. We therefore scored

alignments longer than 150 columns using a sliding window (size 150, slide 20) and report

the lowest z-score obtained. To estimate the contribution of secondary structure stability

alone, we also scored single sequences from C. elegans alone.

We found that the ncRNA sequences are highly conserved between C. elegans and C. brig-

gsae. Pairwise identities are above 90% in most cases. Still, most genes score well below

−4. Some of them (e.g. SRP RNA or let-7 pre-miRNA) form exceptionally stable struc-

tures that can also be detected by single sequence predictions without problems. However,

www.wormbase.org
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the alignment scores are more significant in all cases with values below the single scores

in the order of appr. one standard deviation. Only the spliceosome RNAs U4 and U6

cannot be detected. This shows the inherent limitation of this method. U6 for example

is known to form extensive intermolecular interactions with U4 rather than forming a sta-

ble intramolecular secondary structure. U6 only features a short 5’-stem loop. Although

predicted by RNAalifold in the native alignment, this loop is too short to be significantly

different from the random background.

Tab. 4. z-scores of ncRNAs in C. elegans aligned to homologs of C. briggsae

z-score

ncRNA Type No. of Seqs. Identity (%) Length Single Alignment

SRP RNA 2 83.8 296 −5.5 −7.9
U1 spliceosome RNA 2 91.5 165 −4.6 −5.0
U2 spliceosome RNA 2 94.5 193 −5.0 −5.9
U4 spliceosome RNA 2 99.3 139 +0.7 +0.2
U5 spliceosome RNA 2 92.7 123 −2.3 −5.0
U6 spliceosome RNA 2 98.0 102 −0.8 −0.4
let-7 pre-miRNA 2 89.0 73 −7.5 −8.4
lin-4 pre-miRNA 2 90.0 70 −4.1 −4.8
SL2 RNA 2 91.3 103 −2.5 −3.6

3.3.7 Tests on ncRNAs from Saccharomyces cerevisiae

Pairwise alignments can easily be obtained by Blast. However, if more than two genomes

are available, multiple sequence alignments have to be generated. The generation of high

quality multiple sequence alignments on a genome wide scale is a difficult task and still

subject of heavy research. We evaluated the performance of our method on automatically

generated alignments on the genome of S. cerevisiae to draft sequences of six related yeast

species [35, 112]: S. paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii and

S. kluyveri.

We chose MultiPipMaker [200] to generate the alignments. At the time these experiments

where conducted this was the only program available capable of aligning a reference sequence

to unassembled contigs on a genome wide level off-the-shelf.

To estimate the sensitivity for screening the yeast genome we used the following procedure:

We generated multiple sequence alignments of all 16 chromosomes. We then extracted the

regions of annotated ncRNAs according to the annotation table from the Saccharomyces

Genome Database (www.yeastgenome.org, July 2003). Since MultiPipMaker could not find

homologous sequences in all species for all ncRNAs and sometimes only dubious fragments

could be found, the alignments were automatically refined before scoring. The pairwise

identity of the reference sequence from S. cerevisiae to all other sequences in the alignment

www.yeastgenome.org
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was calculated. If it was below 60% the sequence was dropped. We included the gap

character in the calculation of the similarity and thus excluded sequences that did not

have a match in the region (i.e. only gaps) and also sequences that had only some short

fragments aligned by MultiPipmaker. After this selection, we removed the gaps in the

remaining sequences and re-aligned them using ClustalW. Finally, we calculated the z-

scores for the re-aligned window. Since there is no sense to calculate a z-score if there is

no stable secondary structure even in the native alignment, we only considered alignments

which had a RNAalifold MFE below −15.

As before, we scanned the rough alignments in windows of size 150 and slide 20. If we

encountered a window (after the refinement steps) having a z-score below −4 we regarded

the ncRNA as detected.

Tab. 5 summarizes the results for the different ncRNA classes. Tab. 6 shows detailed pre-

dictions for selected ncRNAs. The alignment characteristics and z-scores are shown for the

best scoring 150 column window in each of the genes.

Only a small fraction of the tRNAs can be found. This is due to the high conservation

(> 95%) of this class of RNAs. As expected, also the ribosomal RNAs are highly conserved

between the closely related yeast species. Still, the large 18S and 25S subunits, which have

obviously extremely stable local secondary structures, can be detected even at 100% conser-

vation. As seen for C. elegans, RNA genes lacking a stable secondary structure are missed.

This is true for some small nuclear RNAs and all C/D-type small nucleolar RNAs. The

H/ACA type snoRNAs on the other hand have a typical two stem loop secondary structure

and therefore 14 of 20 can be detected. The six ones that are missed score around −3. Also

here, the high conservation (around 90%) probably hinders a more efficient detection.

All other known RNAs (SRP-, RNaseP-, RNase MRP-, and Telomerase-RNA) can be de-

tected. Also the RNAs of unknown function (RUF) that have been identified by a QRNA

screen [159] can be found with our method. Initially, 8 RUFs have been detected. However,

in additional experiments the expression of RUF4, RUF6, RUF7 could not be verified and

RUF8 has been found to be a coding mRNA (a correction has been issued for the original

paper2). This is consistent with our predictions: Only RUF1, RUF2, RUF3 and the two

copies of RUF5 have z-scores below −4. We do not find significantly conserved secondary

structures in RUF4, RUF6, RUF7 and RUF8.

To conclude, our method has good sensitivity in this test screen. Most of the structured

RNAs which show some variation in sequence (i.e. which are not too conserved) could be

detected.

To assess the false-positive rate for the cutoff of −4 in this experiment, we repeated the

2ftp://ftp.genetics.wustl.edu/pub/eddy/papers/2003-mccutcheon-yeast/correction_long.pdf

ftp://ftp.genetics.wustl.edu/pub/eddy/papers/2003-mccutcheon-yeast/correction_long.pdf
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screen in exactly the same way, but shuffled the windows before calculating the z-score. In

the 313 genes, we scored 807 randomized windows and encountered two windows scoring

below −4. This is a false positive rate of 0.25% per alignment.

To estimate the false positive rate not only on known ncRNAs but also on coding genes

and other conserved regions, we randomized the complete chromosome 5 by shuffling the

alignment in non-overlapping windows of length 150. We then scanned the random chromo-

some also in non-overlapping windows of length 150 in the same way as before. We scanned

both the forward direction and the reverse complement. We finally found 2217 conserved

blocks which have a RNAalifold MFE below −15 after the re-alignment step. Out of these,

five had a z-score below −4, which is a false positive rate of 0.23% per alignment. This is

approximately the same as we found for the randomized ncRNAs. The chromosome 5 is

574,860 base pairs long. So we can expect around 8 to 10 false positives per megabase of

the yeast genome in such a screen. However, this number of statistical false positives will

also depend on how many overlapping windows we score.

This number also does not include biological false positives as for example inverted repeats

which could be interpreted as stable hairpins. Also pseudogenes could be a problem here.

However, we expect our method to be quite robust to distinguish real ncRNAs from pseudo-

genes. Unlike other methods which search for sequence patterns, our method only relies on

the conservation of a secondary structure. It is known that only a small number of random

mutations destroy secondary structures [199] and it is thus unlikely that pseudogenes retain

a conserved structure without evolutionary pressure.

Tab. 5. Sensitivity on known ncRNAs in S. cerevisiae

ncRNA Type Annotated genes Detected genes (z < −4) Sensitivity

tRNA 275 28 10.2%
rRNA 11 6 55.5%
snRNA 6 4 66.7%
C/D snoRNA 46 5 10.9%
H/ACA snoRNA 20 14 70.0%
other ncRNAs of known function 4 4 100.0%
ncRNAs of unknown function (RUF) 5 5 100.0%

3.3.8 Perl implementation: Alifoldz and Shuffle-aln

The algorithms described in the previous sections were implemented in the Perl 5 script

Alifoldz. The script takes an alignment in ClustalW or Fasta format and calculates z-

scores for the whole alignment or in sliding windows. Fig. 18 shows a sample output of

Alifoldz.

Also the shuffling algorithm was implemented in a Perl script. The script Shuffle-aln is
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Tab. 6. z-scores of selected ncRNAs in S. cerevisiae

z-score

ncRNA Type Gene Name No. of Seqs. Identity (%) Single Alignment

Signal recognition particle RNA SCR1 4 85.6 −2.2 −4.2
RNAase P RNA RPR1 4 85.0 −3.7 −6.5
RNAse MRP RNA NME1 6 69.1 −4.8 −11.1
Telomerase RNA TLC1 3 71.1 −4.5 −7.4
U1 spliceosomal RNA snR19 6 74.3 −3.4 −8.5
U2 spliceosomal RNA LSR1 3 74.9 −6.3 −6.5
U4 spliceosomal RNA snR14 6 87.0 −1.8 −3.0
U5 spliceosomal RNA snR7-L 5 80.6 −3.6 −5.5

snR7-S 5 79.4 −3.4 −4.4
U6 spliceosomal RNA snR6 6 90.9 −1.9 −2.3
RNAs of unknown function RUF1 4 75.8 −4.4 −7.3

RUF2 4 80.9 −4.0 −8.9
RUF3 4 77.3 −3.9 −6.7
RUF5-1 4 66.8 −3.0 −4.5
RUF5-1 4 66.7 −2.4 −4.4

used throughout this thesis to generate randomized alignments.

3.4 An efficient algorithm without shuffling

Despite the promising results, the limitations of the shuffling approach are obvious. To

calculate one z-score, we have to fold the sequences 100 times to estimate the random

background. This of course imposes a serious performance problem. Moreover, since the

algorithm depends on a random variable, the results vary from run to run.

Ideally, a program that is used in every-day sequence analysis, should calculate a determin-

istic score within reasonable time. In the next sections we describe the development of a

more efficient approach that meets these criteria. We first demonstrate the basic concepts

using simplified models and mathematical methods, which are then optimized using sup-

port vector machine approaches that, eventually, lead to the final implementation of our

structural RNA finding program RNAz.

3.4.1 The structure conservation index

It is clear by now that the consensus MFE calculated by RNAalifold is not only a useless by-

product in the process of predicting a consensus secondary structure, but provides valuable

information on whether there is a conserved fold in a sequence alignment or not. However,

it is difficult to interpret such a consensus MFE in absolute terms, since it depends on the

alignment length, the base composition, the degree of conservation and the gap-pattern. To

devise a reasonable ad hoc measure which considers all these factors seems impossible. The

only remedy so far was the time-consuming shuffling approach.
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###################################################################

# alifoldz.pl

#

# Input: 4 sequences of 342 columns

# Sample Number: 100

# Window: 120

# Slide: 40

# Strand: forward and reverse

# MFE threshold: -3

# Re-alignment: OFF

# Random control: OFF

# Program call: RNAalifold

#

###################################################################

From To Strand Native MFE Mean MFE STDV Z

------------------------------------------------------------------

1 120 + -24.68 -16.14 3.05 -2.8

1 120 - -16.25 -10.50 3.02 -1.9

41 160 + -23.40 -9.64 2.65 -5.2

41 160 - -15.02 -6.17 2.50 -3.5

81 200 + -18.42 -4.77 2.26 -6.0

81 200 - -9.60 -2.11 1.90 -3.9

121 240 + -10.81 -3.22 2.29 -3.3

121 240 - -1.11

161 280 + -7.94 -2.23 1.67 -3.4

161 280 - -0.57

201 320 + -6.18 -4.47 2.25 -0.8

201 320 - -3.75 -4.42 2.03 0.3

241 342 + -3.64 -3.41 1.81 -0.1

241 342 - -4.07 -5.93 2.21 0.8

-6.0

Fig. 18. Output of Alifoldz on an alignment of four RNAseP sequences. Both strands are
scanned in overlapping windows and for each window a z-score is calculated.
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A much more efficient normalization can be achieved, however, by comparing the consensus

MFE with the MFEs of each individual sequence in the alignment. To this end, we fold the

alignment and calculate the consensus MFE EA of the alignment using RNAalifold. If the

sequences in the alignment fold into a conserved common structure, the average Ē of the

individual MFEs will be close to the MFE of the alignment, EA ≈ Ē. Otherwise, the MFE

of the alignment will be much higher (indicating a less stable structure) than the average

of the individual sequences, EA ≫ Ē. We therefore define the structure conservation index

(SCI) as

SCI = EA/Ē

A SCI close to zero indicates that RNAalifold does not find a consensus structure while

a set of perfectly conserved structures has SCI ≈ 1. A SCI larger than 1 indicates a

perfectly conserved secondary structure which is in addition supported by compensatory

and/or consistent mutations, which contribute a covariance score to EA.

We tested the SCI on a simple test set of alignments with three sequences each and mean

pairwise identities between 60%–90%. The test set was created as described in section

3.3.2 and consisted of 1344 alignments from six ncRNA families of different length and base

composition: tRNA (741), 5S rRNA (100), Group II catalytic intron (148), U5 spliceosomal

RNA (134), SRP-RNA (68) and Hammerhead III ribozyme (143). For each native RNA

alignment one random alignment was generated as control. The SCI was calculated for the

native alignments and the random alignments. Fig. 19 shows the frequency distribution of

the SCIs. The native alignments are clearly separated from the random controls. Fig. 19

resembles the z-score histograms shown before. It must be emphasized that here we do not

calculate z-scores depending on a sampled random background, but simple calculate one

measure which normalizes for length and base composition.
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Fig. 19. Distribution of the SCIs for a test set of 1344 alignments. Solid bar: native RNAs,
dashed line: random control
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3.4.2 Empirical estimation of z-scores using linear regression

The SCI is obviously a suitable measure to assess a multiple sequence alignment for a con-

served fold. However, it does not give information on whether this fold is exceptionally

stable or not. In section 3.1 we demonstrated that natural ncRNAs are indeed more stable

than one could expect by chance. Although we had to conclude that this is not statistically

significant enough for reliable detection of ncRNAs, it is valuable additional information

that should be included in a search algorithm. The impressive results we obtained by calcu-

lating z-scores of RNAalifold MFEs can only be explained by the fact the both structure

conservation and thermodynamical stability are combined in one score.

Since the aspect of structural conservation is now covered by the SCI, there is need for

an additional score measuring the thermodynamic stability. However, the time-consuming

calculation of z-scores by random sampling is currently the only available method for this

purpose. This approach was introduced 16 years ago [128] and it is still widely used today

[17, 10, 9]. Here we ask whether it is possible to empirically estimate z-scores.

A z-score is calculated from the mean µ and the standard deviation σ of MFEs of a large

sample of random sequences of the same base composition and length. To obtain a z-score

without sampling we need to know the mean and the standard deviations which are, by

construction, functions of length and base composition.

To model these functions we generated 800,000 synthetic random sequences of different

length (50–300 nucleotides) and GC-content (30%-70%). In a single-stranded RNA sequence

not only GC-content matters but also how the number of As/Us and Gs/Cs are distributed.

For the sake of simplicity, we here focused on the GC content, and sampled the other

distributions uniformly between 40% and 60%. MFEs were calculated for all sequences

using RNAfold. Fig. 20 shows the mean and standard deviation of the MFEs in dependence

on the length for different GC-intervals (appr. 300 samples for each length where evaluated).

For a given GC-interval, mean and standard deviation are linearly dependent on the length.

Therefore, for a given GC-interval the behavior can easily and accurately be approximated by

linear regression. The behavior of mean and standard deviation with respect to GC-content

is not linear (Fig. 21) but also shows a predictable behavior. For the time being, we do not

perform multidimensional regression but rather calculate different linear regressions for eight

GC-content intervals. Using this simplified approach, a z-score for a given sequence can be

estimated by first determining the GC-content and the corresponding regression parameters,

and then calculating mean and standard deviation from the length.

To compare this empirical estimation procedure with the traditional sampling method, we

estimated and sampled (N=1000) z-scores of 200 ncRNAs of different length and families

(Fig. 22). We find that this simple procedure based on linear regression can approximate

z-scores with fair accuracy.
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Fig. 20. Mean and standard deviations of MFEs for random sequences of different length and
intervals of GC content.
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length intervals.
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In practice it is of interest if the estimated z-scores, which can now be seen as a deterministic

measure for the stability of a sequence, can distinguish real RNAs from random controls.

Using the same test set as before, we calculated the average z-score of the sequences in

each of the alignments. Fig. 23 shows the distribution of the averaged z-scores in the 1334

alignments. Also here, the real RNAs are clearly separated from the random control.
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Fig. 22. Empirically estimated z-scores vs. traditionally sampled z-scores (N = 1000) of 200
ncRNAs.
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Fig. 23. Distribution of empirically estimated z-scores for a test set of 1344 alignments. Solid
bar: native RNAs, dashed line: random control

3.4.3 Combining SCI and estimated z-scores

We now have two measures characteristic for functional RNA secondary structures: (i)

evolutionary conservation and (ii) thermodynamic stability. A scatter plot of the two scores

on our test sets indicates that the scores are independent of each other (Fig. 24). The point
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clouds are separated in two dimensions, which means that together both scores can much

more efficiently distinguish the functional RNAs from the random controls.
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Fig. 24. Two dimensional separation of native RNAs from random controls based on SCI and
estimated z scores.

In practice, it will be necessary to combine both scores into a composite score which can be

used as a decision criterion in course of classification. Finding an optimal combination of

both scores corresponds to the problem of finding the separatrix between functional RNAs

and the random controls in the SCI/z-score plane. In an naive approach, one could consider a

linear classification function. The slope of the linear function has an intuitive interpretation;

it corresponds to the weighting of conservation vs. stability in the classification.

To demonstrate that even simple linear rules can result in effective classification, we used

a linear score which roughly weights both components equally: combined score = (−z) +

4×SCI. The distribution of this score for our test-set is shown in Fig. 25. For a cutoff of

5 one can observe a sensitivity of 84.0% at at specifity of 99.2%. Cutoff 6 has still 62.1%

sensitivity at a specificity of 99.9%. Although less accurate than the sampling method (93.5%

sensitivity at 99.6% specificity for this test set), the results show that it is worthwhile to

elaborate this approach in a more systematic manner.

3.4.4 Accurate estimation of z-scores using SVM regression

The mean µ and standard deviation σ which are needed to calculate the z-score, are functions

of the length and base composition. To accurately estimate these functions, we have to solve

a five dimensional regression problem:

µ, σ(N,
N

nG + nC

,
nA

nA + nT

,
nC

nG + nC

)
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Fig. 25. Distribution of the combined scores (see text) for the test set of 1344 alignments.
Solid bar: native RNAs, dashed line random control.

where N is the length of the sequence and nX the number of Xs in the sequence. Here we

do not only consider GC content but the frequencies of all nucleotides.

We generated a large test set of synthetic sequences of different length and base composi-

tion. The length ranged from 50 to 400 nucleotides in steps of 50. The base composition

ratios ranged from 0.25 to 0.75 in steps of 0.05. This resulted in 10,648 points in the

four-dimensional space of the independent variables. For each of these points we calculated

the mean and standard deviation of the MFE of 1,000 random sequences, representing the

dependent variables in our regression.

We trained a SVM regression model on this test set. We used the Libsvm library and chose

the ν variant of regression (section 2.5.4) and a radial basis function kernel (section 2.5.3).

Empirical testing of different parameter combinations in self-consistency tests found ν = 0.5,

C = 5 and γ = 1 to yield the best results for both the mean and standard deviation model.

The accuracy of our SVM model was verified by comparing z-scores from the SVM approach

with z-scores obtained by standard sampling (Fig. 26). As test sequences we chose 100

sequences from random locations in the human genome and 100 known ncRNAs from the

Rfam database. We found that the correlation between sampled values and SVM values

was as good as two independently sampled z-scores at a sample size of 1,000. This is a

marked improvement compared to the simple approach shown before (Fig. 22). Moreover,

this result clearly shows that we can replace the time-consuming sampling procedure by the

SVM estimate without any loss of accuracy, while saving about a factor of 1,000 in CPU

time.
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Fig. 26. z-scores calculated by SVM regression in comparison to z-scores determined from
1000 random samples for each data point. Upper panel: Correlation of z-scores from two
independent samplings (mean squared error: 0.00990). Lower panel: Correlation of calculated
z-scores and sampled z-scores (mean squared error: 0.00998)
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3.4.5 SVM classification based on SCI and z-scores

Also the classification problem can be much more efficiently solved using a SVM algorithm.

SVMs have been developed exactly for this kind of problems.

We therefore trained a binary classification SVM on test sets from 12 Rfam families encom-

passing all major classes of ncRNAs. Test alignments with mean pairwise identity between

appr. 50% and 100% and 2–6 sequences per alignment were generated as described in sec-

tion 3.3.2. For each of the native alignments we created one shuffled random control. Our

final test set consisted of 4101 positive and 4101 negative examples.

Fig. 27 shows the z-score/SCI scatter plots for the 12 ncRNA classes. For the SVM classi-

fication, we did not only use z-score and SCI as input parameters but also included mean

pairwise identity and the number of sequences in the alignment. This refinement is necessary

because the information content of a multiple alignment strongly depends on these param-

eters: in the extreme case, an alignment of identical sequences has SCI = 1 but does not

contain any information about structural conservation at all. In this case, the classification

algorithm should not trust the high SCI but rather give more weight to the stability score.

On the other hand, if there is high sequence divergence in an alignment, say six sequences

with 60% mean pairwise identity, even a low SCI of about 0.5 can indicate structural conser-

vation. Since we use a randomized control which has the same number of sequences and the

same pairwise sequence conservation together with each positive example, the calibration

process is not biased by these additional variables.

We scaled all parameters linearly from −1 and 1. Again using Libsvm, we trained a binary

SVM with a radial basis kernel and the parameters γ = 2 and C = 32. For the final

calibration of the SVM in the current implementation of RNAz (see section 3.4.8) we used

all classes of ncRNA with the exception of tmRNAs and U70 snoRNAs.

The significance of SVM classification is generally quantified by an abstract “decision-value”,

the result of the decision function which corresponds to the distance of a test point to the

hyperplane (cf. section 2.5.2). Libsvm implements a method to estimate class probabilities

from decision values. We make use of this option of the package and, from now on, use the

class probability p as significance measure. Fig. 28 illustrates the SVM approach we follow

to accomplish non-linear classification and significance estimation.

3.4.6 Benchmarks on Rfam alignments

We tested the accuracy of the classification on all Rfam families in our test set. We emphasize

that, although we use here a machine learning approach for classification, we do not train

the SVM on specific sequences, sequence patterns, structure motifs, conservation patterns,
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or base-compositions. We use the SVM solely as a guide to interpret the SCI and z-score

which represent two diagnostic features that do not contain any information that is specific

for a particular class of ncRNAs. In fact, it would be interesting to replace the SVM by a

direct statistical model.

In order to demonstrate that our classification procedure is generally applicable and not

biased towards ncRNA classes of the training set, we used here a “one-leave-out” strategy

for all benchmarking tests. We trained the SVM excluding particular classes of ncRNAs

and used those models to classify the excluded ncRNAs and their randomized controls.

The results are summarized in Tab. 7 shows the sensitivity and specificity for detecting

different ncRNA classes at different probability cutoffs. We used alignments with mean

pairwise sequence identities between 60% and 100% and 2–4 sequences per alignment. At a

cutoff of p = 0.9, we can detect on average 75.27% at a specificity of 98.93%.

The accuracy of the classification depends quite strongly on the type of the ncRNA. We can

find most RNA classes with high sensitivities in the range of 80%–100%. Only two of the

twelve classes in our test set (U70 snoRNA and tmRNA) are difficult to detect. The scatter-

plots in Fig. 27 show that the U70 is quite stable but not very well conserved, whereas the

tmRNA has a conserved secondary structure that is obviously not very stable and moreover

contains pseudo-knots. Alignments with more sequences are needed to detect also these two

RNA classes quantitatively.
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Fig. 27. Separation of native alignments (green) from random controls (red) for various
classes of ncRNAs. The test sets are the same as used in Tab. 7 with mean pairwise identities
between 60% and 100% and 2–4 sequences per alignment.
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Fig. 28. Classification based on z-scores and SCI using a support vector machine. Alignments
of tRNAs and 5S-rRNAs with 2–4 sequences per alignment and mean pairwise identities
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represent shuffled random controls. The background color ranging from red to green indicates
the RNA-class probability for different regions of the z–SCI-plane.
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Tab. 7. Detection performance for different classes of ncRNAs

Cutoff

0.5 0.9 0.99

ncRNA Type N Sens. Spec. Sens. Spec. Sens. Spec.

5S ribosomal RNA 297 81.48 (242) 96.63 (10) 68.69 (204) 99.33 (2) 33.00 (98) 100.00 (0)
tRNA 329 94.83 (312) 93.62 (21) 90.27 (297) 97.87 (7) 75.68 (249) 99.70 (1)
SRP RNA 464 100.00 (464) 96.55 (16) 96.55 (448) 98.92 (5) 66.16 (307) 100.00 (0)
RNAse P 291 98.97 (288) 96.22 (11) 84.19 (245) 99.31 (2) 56.70 (165) 100.00 (0)
U2 spliceosomal RNA 351 98.58 (346) 97.72 (8) 95.44 (335) 99.15 (3) 66.67 (234) 99.72 (1)
U5 spliceosomal RNA 285 91.58 (261) 98.25 (5) 81.75 (233) 100.00 (0) 70.53 (201) 100.00 (0)
U3 snoRNA 277 83.75 (232) 98.56 (4) 62.82 (174) 99.28 (2) 44.40 (123) 99.64 (1)
U70 snoRNA 363 61.16 (222) 96.69 (12) 35.54 (129) 98.90 (4) 17.91 (65) 99.72 (1)
Hammerhead III ribozyme 271 100.00 (271) 95.20 (13) 98.15 (266) 98.89 (3) 89.67 (243) 99.26 (2)
Group II catalytic intron 407 78.62 (320) 96.31 (15) 76.90 (313) 98.53 (6) 25.31 (103) 100.00 (0)
tmRNA 386 24.87 (96) 96.37 (14) 18.65 (72) 98.19 (7) 8.55 (33) 99.48 (2)
micro RNA mir-10 380 100.00 (380) 95.26 (18) 97.63 (371) 99.21 (3) 62.37 (237) 100.00 (0)

Total 4101 84.17 (3452) 96.42 (147) 75.27 (3087) 98.93 (44) 50.18 (2058) 99.80 (8)

Results for alignments with 2–4 sequences and mean pairwise identities between 60% and 100% are shown. N is the number of alignments in the test set. For each
native alignment, one randomized alignment was produced, and randomized alignments classified as ncRNA were counted as false positives. Sensitivity and specificity
are shown in percent for three cutoffs of the RNA class probability predicted by the SVM. Absolute numbers of true positives and false negatives are shown in brackets.
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3.4.7 Comparison to other methods

RNAseP and SRP RNAs have repeatedly been used for benchmarking ncRNA detection

algorithms [187, 40]. We therefore use these datasets here as well. For the comparison to

QRNA and ddbRNA we used pairwise and three-way alignments with mean pairwise identities

between 60% and 90%, respectively. In contrast to the previous section we exclude align-

ments with identities higher than 90% since both QRNA and ddbRNA are known to perform

poorly on such input data. We used a cut-off of p = 0.9 for our method and chose the

cut-offs for the other programs in a way that the specificity is at least 90%. Results are

summarized in Tab. 8. We find that our approach is substantially more sensitive on both

pairwise and three-way alignments than QRNA and ddbRNA and at the same time has a larger

specificity.

We also tested our method on larger alignments with 10 sequences as used for benchmarking

MSARi. We generated 150 alignments which had mean pairwise identities between 50% and

70%. Our SVM classification model is currently trained only for up to six sequences so we

did not use it for the classification of this test set. It turns out, however, that the simple rule

SCI ≥ 0.3 and z ≤ −1.5 perfectly separates the native alignments from the controls with

100% sensitivity and 100% specificity using either of the two scores without help of a SVM.

Although the alignments produced by ClustalW are, at this level of sequence similarity,

structurally not perfectly correct, our consensus folding algorithm still finds the correct

common structure and the SCI is still significant, albeit at lower levels.

At the time this thesis was written, no executable version of MSARi was available so we can

only cite the published results: according to [40] MSARi achieves at best a sensitivity of 56%

at 100% specificity for ClustalW alignments of N = 10 RNAseP or SRP sequences.

3.4.8 C Implementation: RNAz

The procedure described here was implemented in the ANSI C programming language using

the Vienna RNA and the Libsvm libraries. The current version of the program RNAz takes

a ClustalW formatted sequence alignment of up to 6 sequences and 400 columns in length.

It calculates the SCI from the MFEs of the single sequences and the consensus MFE. From

the length and base composition, the z-scores of the sequences (without gaps) are calculated

using the SVM regression model. Finally, The SCI, the mean z-score of the sequences, the

mean pairwise identity and the number of sequences are used to classify an alignment as

functional RNA or not. Fig. 29 shows the output of RNAz on an alignment 4 tRNA sequences.

The time complexity of the program is O(N ×n3), where N is the number of sequences and

n is the length of the alignment. Tab. 9 compares the runtime for pairwise alignments of

different lengths between RNAz and the alternative methods: RNAz is not only more accurate
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Tab. 8. Detection performance (Sensitivity/Specificity) for SRP- and RNAseP-alignments
with mean pairwise identities between 60% and 90%

Number of sequences in alignment

Program 2 3 10

QRNA 42.9/92.9 — —
ddbRNA 45.4/98.5 58.0/94.5 —
MSARi — — appr. 56/100
RNAz 87.8/99.5 94.1/99.6 100/100

########################### RNAz 0.1.1 #############################

Sequences: 4

Slice: 1 to 74

Columns: 74

Strand: forward

Mean pairwise identity: 74.38

Mean single sequence MFE: -33.10

Consensus MFE: -30.98

Energy contribution: -27.72

Covariance contribution: -3.25

Mean z-score: -2.68

Structure conservation index: 0.94

SVM decision value: 3.87

SVM RNA-class probability: 0.999672

Prediction: RNA

######################################################################

>AF041468.1-40566_40494

GGGGGUAUAGCUCAGUUGGUAGAGCGCUGCCUUUGCACGGCAGAUGUCAGGGGUUCGAGUCCCCUUACCUCCA

(((((((..((((........)))).(((((.......))))).....(((((.......)))))))))))). ( -31.60)

>X54300.1-105_177

GGGGGUAUAGCUUAGUUGGUAGAGCGCUGCUUUUGCAAGGCAGAUGUCAGCGGUUCGAAUCCGCUUACCUCCA

(((((((..((((.((.(((((....)))))...)).)))).......(((((.......)))))))))))). ( -27.90)

>L00194.1-685_756

GGGGCCAUAGCUCAGUUGGUAGAGCGCCUGCUUUGCAAGCAGGUGUCGUCGGUUCGAAUCCGUCUGGCUCCA

(((((((..((((........))))(((((((.....)))))))...(.(((.......))).)))))))). ( -32.50)

>AY017179.1-1528_1601

GGGCCGGUAGCUCAGCCUGGGAGAGCGUCGGCUUUGCAAGCCGAAGGCCCCGGGUUCGAAUCCCGGCCGGUCCA

((((((((...((((((((((...((.((((((.....))))))..)))))))))).))......)))))))). ( -40.40)

>consensus

GGGGCUAUAGCUCAGU_UGGUAGAGCGCCGCCUUUGCAAGGCAGAUGUCAGCGGUUCGAAUCCCCUUACCUCCA

(((((((..((((.........)))).((((((.....)))))).....(((((.......)))))))))))). (-30.98 = -27.72 + -3.25)

Fig. 29. Output of RNAz on an alignment of four tRNAs.
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but also significantly faster than the other methods. (A comparison with MSARi was not

possible since no implementation was available. It should have similar run times as RNAz,

however, since it also uses the RNA folding routines of the Vienna RNA package as the rate

limiting step.)

Tab. 9. CPU-time in seconds for 1000 alignments on an Intel 2.4 GHz Pentium 4

Alignment length

Program 100 200 300

QRNA 485 4044 14777
ddbRNA 741 921 1522
RNAz 163 375 754
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4 Screening the Human Genome

4.1 Overview

As a first application of RNAz, we screened the human genome for conserved RNA secondary

structures. With the availability of several mammalian/vertebrate genomes and a method

showing reasonable accuracy, a screen of this kind has come into reach. Recently, high levels

of sequence conservation of non-coding DNA regions have been reported [201, 202, 148,

48, 204]. Here we screen the complete collection of conserved non-coding DNA sequences

from mammalian genomes and provide a first annotation of the complement of structurally

conserved RNAs in the human genome. We limit our screen to the “most conserved” regions

as annotated by the PhastCons program [204]. This program tries to estimate by a two-

state phylogenetic hidden Markov model whether a region is under purifying selection or

not. It has been estimated that about 5% of the human genome is under selective pressure

[100, 39] (but may be even higher [202]). The PhastCons program was tuned in such a way

that about 5% of the human genome was annotated as “most conserved”. Since we are

interested in non-coding RNAs, we removed all annotated coding exons from this set and

retained only regions which are conserved at least in the four eutherian mammals (human,

mouse, rat, dog). These regions were screened using RNAz. Fig. 30 illustrates our strategy

with some screenshots from the UCSC genome browser [113]. In the next section we describe

the technical details of our screen.

4.2 Methods and screen design

4.2.1 Selection of most conserved regions

We started from the “Most Conserved” track generated by the PhastCons program. This

track was edited as follows:

1. Adjacent conserved regions that are separated by <50 nucleotides were joined because

many known ncRNAs are not conserved over the full length but only contain shorter

fragments of highly conserved regions (in microRNA precursors, for example, the two

sides of the stems are detected as conserved while the loop region in between is not).

2. Conserved regions (after the joining step) with a length <50 nucleotides were removed

because shorter RNA secondary structures are below the detection limit of RNAz.

3. All regions with any overlap with annotated coding exons according to the “Known

Genes” and “RefSeq Genes” annotation tracks were removed.
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Fig. 30. Overview of our annotation strategy. We filter the 5% of the most conserved non-
coding DNA for potentially functional RNAs using RNAz. (a) A 10 MB region on chromosome
13 is shown with all conserved elements in black and the predicted RNAs (for two levels of
confidence) in red. The RefSeq protein-coding genes of these region are shown at the bottom.
The detected RNAs contain many known ncRNAs as shown here for a cluster of miRNAs
(b) and a snoRNA cluster on chromosome 11 (c). In the process of ncRNA detection also
a consensus secondary structure model is generated which allows further analysis. Here we
show the typical hairpin secondary structure of a microRNA.
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The initial set of alignments consisted of all Multiz alignments corresponding to regions

in the modified “Most Conserved” track. After the processing steps described below, we

only considered alignments which were conserved at least in the four mammals (“input

alignments”).

4.2.2 RNAz screen

The input alignments where screened for structural RNAs using RNAz. Alignments with

<200 columns were used as a single block. Alignments with length >200 were screened in

sliding windows of length 120 and slide 40. This window size, on the one hand, appears

long enough to detect local secondary within long ncRNAs and, on the other hand, is small

enough to detect short ncRNAs (appr. 50–70 nucleotides) without loosing the signal in a

much too big window.

The individual alignment block presented to RNAz were further processed in the following

way:

1. We discarded alignments in which the human sequence contained masked positions

by RepeatMasker. The vast majority of repeats was already filtered out in the input

alignments: either they were not aligned by Multiz or not detected by PhastCons.

2. Some alignments in the input set contained a large fraction of gaps resulting from

a documented problem of PhastCons when treating missing data. We therefore fur-

ther edited the alignments and removed sequences with more than 25% gaps. The

region was regarded as not conserved in this species. If the human reference sequence

contained more than 25% gaps, the complete alignment was discarded.

3. The classification model of RNAz is currently only trained for up to six sequences.

Therefore, we removed one sequence from alignments which were conserved in all

seven species. One of the two sequences in the most similar pair of sequences in the

alignment was removed because this pair provides the least comparative information.

For the same reason only one representative was retained if two or more sequences in

the alignment were 100% identical.

4. Columns of gaps were removed from the reduced alignments.

The resulting alignments were scored with RNAz using standard parameters. All alignments

with classification score p > 0.5 were stored. Finally, overlapping hits (resulting from hits

in overlapping windows and/or hits in both the forward and reverse strand) were combined

into clusters. The corresponding region in the human sequence was annotated as “structured

RNA” with the maximum p-value of the single hits in the cluster.
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4.2.3 Estimating specificity

The specificity of RNAz tested on shuffled alignments was found to be ≈ 99% and ≈ 96%,

for p = 0.9 and p = 0.5, respectively (Tab. 7). For benchmarking RNAz we used a defined

set of high quality ClustalW alignments of 2–4 sequences and 60%–100% mean pairwise

identity. In this screen, however, we used automatically generated genome-wide alignments

essentially based on Blast hits. It was therefore not clear if the specificity is the same on

these alignments and how other parameters (e.g. the sliding window) affects the false positive

rate. We therefore estimated the false-positive rate for this particular special screen. To this

end, we repeated the complete screen in exactly the same manner on randomized alignments.

Alignments <200 columns were randomized as a whole, alignments >200 were randomized in

non-overlapping windows of 200 before they were sliced in windows for scoring as described

above for the true data.

Our shuffling procedure is very conservative and we found that it cannot remove the signal

in all cases. The number of possible permutations is reduced if all relevant alignment char-

acteristics are strictly preserved. Furthermore, the typical mutation pattern of non-coding

RNAs is not removed by shuffling of the columns. The number of “compatible” columns

which can form a base pair in the consensus structure remains the same. This might be one

reason why we observe a number of random hits overlapping with native hits (Tab. 12). An-

other reason for this effect might be that some alignments display special properties which

cause an increased false positive rate. We observe this for highly conserved alignments with

little covariance information.

4.2.4 Estimating sensitivity on microRNAs and snoRNAs

We used the “sno/miRNA” track created from the microRNA Registry [69] and the snoRNA-

LBME-DB maintained at the Laboratoire de Biologie Moléculaire Eucaryote. The track

contained 207 unique microRNA loci, 86 H/ACA snoRNA, and 256 C/D snoRNAs. We

compared our predictions with the annotation tracks using the “Table browser” feature of

the UCSC Genome Browser. Loci overlapping with our predictions were counted as detected.

Loci that did not show any overlap with our input alignments were counted as “Not in input

set”.

4.2.5 Non-coding RNA annotation

We compared all hits to available databases of non-coding RNAs:

• Rfam (release 6.1, August 2004) [70]
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• RNAdb (August 2004) [174]

• NONCODE (release 1.0, March 2004) [139]

• microRNA registry (release 5.0, September 2004) [69]

• UTRdb (April 2004) [178]

We generated Blast libraries for each of the databases and matched the human sequence of

all the detected RNAz clusters against them. In case of the UTRdb we used the EMBL for-

matted files from ftp://bighost.ba.itb.cnr.it/pub/Embnet/Database/UTR/data/ and

extracted all annotated UTR elements >20 with flanking regions of 30 to build the Blast

library. We considered Blast hits with E-values E < 10−6 (see Tab. 15).

4.2.6 Annotation relative to protein coding genes

For annotating the RNAz hits relative to known protein coding genes (Fig. 35 d) , we used

the “Known Genes” and “RefSeq Genes” annotation tables from UCSC genome browser.

The UTR annotation is partly ambiguous. As a result, some hits in the second pie chart

in Fig. 35 d are classified both as intron of a coding region and UTR. Counting only un-

ambiguous annotations, 9825, 2095 and 1987 hits are annotated as intron of coding region,

3’-UTR and 5’-UTR, respectively.

4.2.7 Comparison with tiling array transcriptional maps

We compared our results with recently published tiling array data from [31]. We downloaded

the 11 “transfrag” annotation tracks for all cell-lines and RNA fractions from

http://transcriptome.affymetrix.com. The annotation tracks were combined into one

and the coordinates were converted from the “hg15” assembly to “hg17” using the LiftOver

tool and chain-files provided by UCSC (http://hgdownload.cse.ucsc.edu/downloads.html).

We then compared our annotation (Set 1, p >0.9) on chromosomes 6, 7, 13, 14, 19, 20, 21, 22,

X and Y with the transcription map using the “Table browser” and determined the fraction

of overlapping annotations. To estimate the significance, we generated randomized anno-

tation tracks: For each predicted structural RNA we randomly chose a non-repeat region

of the same length, on the same chromosome with the same annotation. We distinguished

the following three annotation types: intergenic <10 kb from the nearest gene, intergenic

>10 kb from the nearest gene and intronic. We did not consider regions in UTRs for this

comparison. We compared five of such random tracks with the transcriptional map and

found on average 29.6% overlapping annotations (the maximum overlap of all five tracks

was 30.0%). To assess the detection performance on known miRNAs and snoRNAs we used

the annotation tracks described above.

ftp://bighost.ba.itb.cnr.it/pub/Embnet/Database/UTR/data/
http://transcriptome.affymetrix.com
http://hgdownload.cse.ucsc.edu/downloads.html
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4.3 An integrated database system

The large amount of data that is generated and that needs to be analyzed in such a large-

scale screen requires appropriate computational means for storing and processing. For this

task we developed an integrated system based on a relational database (Fig. 31).

A MySQL database (www.mysql.com) stores the downloaded raw data (sequences and align-

ments) as well as the pre-processed data (e.g. slices of most conserved regions). RNAz is used

to score the pre-processed alignments and the results are stored in the database. To speed

up the computation we used a client/server approach that distributes the RNAz processes

over many cluster computers which are connected to the database by TCP/IP. The complete

screen took appr. 7 hours on 20 processors of different speed (Intel Pentium 3/4, 700 MHz–

2.8 Ghz). The results were annotated according to the UCSC annotation tables. The UCSC

tables could be directly imported since the UCSC genome browser is also based on MySQL

and dumps of the tables are freely available for download. In addition, the results of the

Blast queries against the RNA databases were stored in custom-made annotation tables.

The results can be retrieved from the database in different ways. Either the database is

directly queried by SQL commands or the functions from a Perl module are used. On top

of the Perl module, a web-interface was developed making it possible to interactively browse

and query the database in an intuitive manner (Figs. 32–34). This web-interface is tightly

linked to the UCSC genome-browser and one can analyze the detected hits immediately in

the context of the wealth of genomic annotations available through the UCSC browser.

The system can be easily adapted/extended to annotate different organisms whenever align-

ments and annotation data are available. However, the system was mainly conceived as a

tool to facilitate the screening process and the analysis of the results. It is, in its current

form, not publicly available because we do not consider it to meet the requirements of a

stable and reliable database resource for the community. Issues like security, performance

and future maintenance could not be adequately addressed as part of this thesis.

However, we have made publicly available a static “snapshot” of our database which can be

accessed from within the UCSC browser through a “custom track” (http://genome.ucsc.edu)

or directly from our website: http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/ncRNA/.

Some screenshots of the database are shown in Figs. 32–34.

www.mysql.com
http://genome.ucsc.edu
http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/ncRNA/
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UCSC sequence data/alignments

UCSC genome annotation
 - known Genes (e.g. RefSeq)
 - gene structure (CDS,UTR, intron/exon)
 - predicted Genes (e.g. Genescan)
 - expression data (e.g. ESTs)

RNA annotation
 - Rfam
 - NONCODE
 - RNAdb
 - miRNA registry, 
 - UTRdb

RNAz results

Relational Database

Computing Cluster

Database query
 - SQL
 - Perl Module
 - Web-Interface UCSC Genome Browser

Fig. 31. Schematic overview of the analysis and annotation pipeline. For details see text.

4.4 Results

4.4.1 General statistics and specificity

We started from the PhastCons most conserved regions which cover 4.81% of the human

genome. The filtering process reduced this initial set to 438,788 alignments covering 82,64

MB or 2.88% of the genome (Tab. 10). These alignments were screened as described. The

results are summarized in Tab. 11 and Fig. 35 a,b. In the complete genome, we detected

91,676 (15.1% of the conserved sequence) independent RNA structures on the p = 0.5 level

and 35,985 (6.6%) structures on the p = 0.9 level.

The specificity of RNAz is generally high, ≈ 99% for the p = 0.9 cutoff. Due to the large

number of input alignments, however, we have to expect a non-negligible number of false

positives. We therefore repeated the complete screen with shuffled alignments (Tab. 12).

We obtain a false positive rate of 28.9% (p = 0.5) and 19.2% (p = 0.9), respectively. As

expected, the hits in the randomized dataset are on average smaller than the native ones,

reducing the false positive rates to 25.7% (p = 0.5) and 16.3% (p = 0.9) in terms of sequence

length. The estimate for the false positive rate implies lower bounds of 65, 000 (p = 0.5)

and 29, 000 (p = 0.9) for the number of structural RNA elements in the human genome. On

average, we predict 21 (p = 0.5) and 10 (p = 0.9) structural elements per megabase.

Furthermore, we observed that many of the hits in randomized alignments overlap with

native predictions. This might indicate that our shuffling process does not effectively remove

the signal in all cases. We also observed that the random hits are clearly enriched in highly

conserved alignments. The false positive rate of RNAz is higher in this case, because these

alignments contain little covariance information so that the classification is dominated by
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Fig. 32. Screenshot of the database web-interface. The query form is shown which allows to
formulate sophisticated database queries. The hits can be filtered and sorted by significance,
phylogenetic distribution and genomic annotations.



4. Screening the Human Genome 76

Fig. 33. Screenshot of the database web-interface. The results of a database query is shown.
All hits that matched a query are listed together with the most important annotation infor-
mation.
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Fig. 34. Screenshots of the database web-interface. Two detailed results page are shown
that summarize the characteristics of the detected structures (left) and the annotation of the
corresponding genomic location (right).
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Tab. 10. Genomic coverage and filtering steps of input alignments

Genome Coverage Alignments
Size Fraction Number

(MB) (%)

Human genome 3,095.02 100.00 –
PhastCons most conserved 137.85 4.81 1,601,903
without coding regions 110.04 3.84 1,291,385
without alignments < 50nt 103.83 3.33 564,455
Set 1: 4 Mammals 82.64 2.88 438,788
Set 2: + Chicken 24.00 0.85 104,266
Set 3: + Fugu or zebrafish 6.86 0.24 30,896

Tab. 11. Results on the native alignments

Set clusters size % of % of cluster length
(MB) input genome average maximum

A: Set 1 p > 0.5 91,676 12.47 15.09 0.44 136 1320
B: Set 1 p > 0.9 35,985 5.48 6.62 0.19 152 1320
C: Set 2 p > 0.5 20,391 2.80 11.52 0.10 137 665
D: Set 2 p > 0.9 8,802 1.34 5.50 0.05 152 665
E: Set 3 p > 0.5 2,916 0.38 5.57 0.01 131 488
F: Set 3 p > 0.9 996 0.14 2.03 0.00 139 488

Set 1: human/mouse/rat/dog, Set 2 = Set 1 + chicken, Set 3 = Set 2 + fugu or zebrafish

“cluster” refers to clustered regions of overlapping RNAz.

Tab. 12. Results on the randomized alignments

Set clusters Overlap size % of % of Cluster length
native A (MB) input genome average maximum

Set 1 p > 0.5 26,508 9039 3.20 3.87 0.11 121 496
Set 1 p > 0.9 6,898 2555 0.89 1.08 0.03 130 496
Set 2 p > 0.5 6,551 2158 0.81 3.35 0.03 124 394
Set 2 p > 0.9 2,281 881 0.31 1.26 0.01 134 394
Set 3 p > 0.5 795 179 0.096 1.40 0.00 121 338
Set 3 p > 0.9 208 63 0.026 0.38 0.00 127 279
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the thermodynamic stability alone. Since many known ncRNAs are contained in this set we

decided against removing highly conserved alignments from our survey despite the increased

false positive rate.

4.4.2 Detection performance on known ncRNAs

A comprehensive annotation of ncRNAs in the human genome is not available, thus it is

impossible to determine the overall sensitivity of our screen. For miRNAs and snoRNAs,

however, a comprehensive annotation is provided in the UCSC browser.

There are 207 annotated miRNA loci of which 45 loci are not in our set of input alignments.

We detect 157 (96.9%) of the remaining 162 miRNAs. The effective sensitivity is 75.8% for

miRNA precursors, which are among the most easy-to-find ncRNAs (Fig. 35 c).

22 of the 86 annotated H/ACA-box snoRNAs are not included in the input set mostly

because they are not detected by PhastCons. We recover 55 of the remaining 64 sequences

(85.9%). We can thus relatively accurately detect this class of ncRNAs which have resisted

computational prediction so far. (Effective sensitivity: 64.0%)

Our screen performs poorly on C/D-Box snoRNAs, however. Out of the 256 known C/D

snoRNAs about a half (129) are missing in the input alignments. Even though we detect

39.4% of C/D snoRNAs in our set, the effective sensitivity is only 19.5%. C/D-Box snoRNAs

are hard to detect computationally even with specialized approaches [2].

From these examples we estimate that the overall sensitivity of the combination of the

Multiz/PhastCons alignments and RNAz is on the order of 30%.

We found that most of the miRNAs and snoRNAs are missed in our screen because they are

not in our input set. To optimize future screens, and in particular sub-screens for miRNAs

and H/ACA snoRNAs, we investigated in detail why miRNAs and H/ACA snoRNAs were

missed in our selection of input alignments (Tabs. 13 and 14). miRNAs are mainly missed

because they overlap with repeats or because they are not strictly conserved in all four

mammals (It is more likely that the corresponding sequences are simply missing in one

of the unfinished draft assemblies, in particular of the rat genome.) H/ACA snoRNAs

are not well conserved on sequence level and PhastCons cannot detect conserved regions

>50 nucleotides in many of them. In the case of C/D snoRNAs the problem is even more

pronounced. Out of the 129 C/D snoRNAs not in our set, 63 are completely missed by

PhastCons, in most of the other cases only short regions <50 are detected. Moreover, many

snoRNAs which are contained in our set are not conserved over the full length. Given the

fact the C/D snoRNAs in general do not exhibit very stable structures, the detection for

RNAz is even more difficult if significant portions of the structure are missing in the input

alignments.
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Fig. 35. Statistical analysis of predicted structural RNAs. (a) Observed and expected fraction
of structural RNAs in the complete set of conserved non-coding elements. (b) Observed and
expected number of structural elements for different phylogenetic distributions. (c) Detection
performance on known miRNA and snoRNA genes. (d) Comparison with current protein-gene
annotations.
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We compared all hits with available databases of known ncRNAs (Tab. 15). Most of the

“classical” structured ncRNAs, such as tRNAs and most snRNAs, are not contained in the

input alignments because they are marked as repetitive DNA by RepeatMasker and were

therefore excluded from the Multiz alignments. We do, however, detect all snRNAs of the

minor spliceosome (U4atac, U6atac, U11, and U12), as well as very well conserved (although

not very stable) structures within the RNAse P. We miss RNAse MRP and telomerase RNA,

presumably because of the pseudoknotted structures [32, 137], which are not taken into

account by RNAz.

We find local secondary structure motifs in various other documented ncRNAs which do

not appear to have conserved global structures (Tab. 16). The Xist gene, a 17 kb ncRNA

which plays a key role in dosage compensation and X chromosome inactivation [5] contains

three independent conserved RNA secondary structures. Intriguingly, we find 8 RNAz hits

in the human genome with significant sequence similarity to the Air RNA. This antisense

transcript regulates imprinted gene expression in mouse [192] but is not conserved over its

full length (≈1000 kb) in human. 7 of the 8 hits correspond to the same local secondary

structure motif in Air. One of them can be found in an intron of HERC2, a locus located

near the Prader-Willi imprinting center which in turn is regulated by antisense transcripts.

The RNAdb [174] compiles collections of expressed sequences with reduced protein coding

capacity. A comparison of our RNAz hits with the RNAdb identifies conserved structured

elements in many of these transcripts, thereby supporting that they function as ncRNAs

(Tab. 15).

4.4.3 New members of known ncRNA families

A number of signals are novel ncRNAs that can be associated with known ncRNAs or ncRNA

families through sequence similarity. Some of these are additional paralogs or orthologs of

known RNA genes. For example, we found more than 100 hits with sequence similarity to

snoRNAs. Some of these are most likely functional snoRNAs since they are human homologs

of mouse snoRNAs described in reference [97].

Another class of signals are novel members of one of the large, well-described classes of

ncRNAs. A simple subscreen was performed to identify putative H/ACA box snoRNAs.

We selected all RNAz hits with two stems at least 15 pairs in length and separated by an

unpaired hinge, which in addition have the motif ACA in the consensus sequence in the

last 20 nt. We found 137 structures, of which 28 were known snoRNAs. Visual inspection

shows that 30–40 additional clusters have typical H/ACA snoRNA-like secondary structure

of which 15 also have the canonical H-box sequence ANANNA (Fig. 36 c,d). In many known

snoRNAs, only short parts of the stem are conserved in the predicted consensus structure

and/or only parts of the complete structure are detected as conserved structural element.
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Tab. 13. microRNAs missing from the input set of alignments

Name Conservation Repeat Other

hsa-let-7g rat missing
hsa-let-7i gap in dog
hsa-mir-9-1 simple Repeat
hsa-mir-15a rat missing
hsa-mir-16-1 rat missing
hsa-mir-22 overlap with coding region
hsa-mir-23a PhastCons artifact1

hsa-mir-28 LINE
hsa-mir-95 LINE
hsa-mir-130b SINE
hsa-mir-133a-2 overlap with coding region
hsa-mir-135a-1 part of rat sequence missing
hsa-mir-138-1 mouse missing
hsa-mir-147 PhastCons region <50
hsa-mir-148a rat missing
hsa-mir-149 rat missing
hsa-mir-150 overlap with coding region
hsa-mir-151 LINE
hsa-mir-155 rat missing
hsa-mir-182 part of rat sequence missing
hsa-mir-197 long gap in mouse
hsa-mir-198 rat missing
hsa-mir-199b rat missing
hsa-mir-203 PhastCons artifact1

hsa-mir-205 overlap with coding region
hsa-mir-212 low complexity
hsa-mir-302a rat missing
hsa-mir-302b rat missing
hsa-mir-302c rat missing
hsa-mir-302d rat missing
hsa-mir-321 tRNA
hsa-mir-325 LINE
hsa-mir-326 Arthur 1
hsa-mir-328 PhastCons region <50
hsa-mir-330 SINE
hsa-mir-335 rat missing SINE
hsa-mir-337 dog missing
hsa-mir-340 rat missing MARNA
hsa-mir-345 SINE
hsa-mir-367 rat missing
hsa-mir-370 SINE
hsa-mir-371 PhastCons region <50
hsa-mir-372 PhastCons region <50
hsa-mir-373 rat and mouse missing
hsa-mir-374 gaps in mouse and rat LINE

1 PhastCons region extends into the very gap-rich surrounding of the miRNA. Alignment discarded because it

contains too many gaps.
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Tab. 14. H/ACA snoRNAs missing from the input set of alignments

Name Conservation Repeat Other

ACA2A gap in mouse and rat
ACA5 PhastCons region <50
ACA5b PhastCons region <50
ACA10 PhastCons region <50
ACA11 gap in mouse
ACA29 alignment artifact1

ACA33 PhastCons region <50
ACA39 PhastCons region <50
ACA42 not detected by PhastCons

ACA48 not detected by PhastCons

ACA56 rat missing
ACA59 (Chr. 1) SINE
ACA59 (Chr. 17) SINE
ACA67 PhastCons region <50
U17a other
U17b other
U64 alignment artifact1

U66 PhastCons region <50
U71a PhastCons region <50
U71b rat missing
U98b PhastCons region <50

1 The sequence in chicken is much longer and opens up long gaps in the other sequences, which are thus discarded.

Tab. 15. Comparison of predicted RNAs with ncRNAs from the literature

Database Ref. p > 0.5 p > 0.9

Rfam [70] 267 189
NONCODE [139] 273 177
RNAdb [174] 446 327
miRNA Registry [69] 176 168
UTRdb [178] 388 159

Curated 984 563
hinv [99] 478 205
Fantom [170] 1908 781
chr7 [195] 180 90
antisense pipeline [174] 149 59

cDNA collections 2539 1056

Total 3441 1585
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Tab. 16. Selected ncRNAs from literature with conserved RNA structures

Name Type max p hits Comment

U11 snRNA 0.98 1
U12 snRNA 0.94 2
U4atac snRNA 0.71 3
U6atac snRNA 0.98 12
RNAseP Ribozyme 0.57 1
UM 9(5) Transcript of unknown function 1.0 8 Transcript was found to be differentially

expressed in the brain, 7 of the 8 hits
match the same region of this long (1241nt)
transcript

HUC-1 Other functional transcript 0.95 1 Tissue specific transcript that enhances
H19 transcription (an antisense transcript
for imprinting)

MALAT-1 transcript of unknown function 1.0 3 three independent hits along this 8 kb tran-
script, which was identified in lung cancer
cells as ncRNA

NCRMS Other functional transcript 0.90 3 three independent hits in this 1.8 kb tran-
script; identified in rhabdomyosarcoma
(RMS); host gene of mir-135a-2

BCMS Other functional transcript 0.71 1 B-cell neoplasia associated transcript
aHIF antisense transcript 0.98 1 aHIF is complementary to the 3’ untrans-

lated region of HIF1alpha mRNA, which
encodes a protein known to stabilize p53
protein during hypoxia and to act as a
transcription factor for hypoxia inducible
genes

Air Antisense transcript 0.96 8 Classical mouse model for imprinted anti-
sense transcription.

CNS1 Other functional transcript 0.83 1 Expression of CNS1 accompanies the in-
duction of the hyperacetylation of histone
H3 on nucleosomes associated with the in-
terleukin (IL)-4, IL-13 and IL-5 genes in
developing Th2 cells

HOXA11 AS Antisense transcript 0.53 1
GA3824 Transcript of unknown function 0.74 1 Homo sapiens noncoding RNA GA3824

implicated in autism
Xist Other functional transcript 1.0 3 Three independent hits in the long tran-

script responsible for X-inactivation in
mammals

TTTY11 Transcript of unknown function 0.98 12 Identified in testis
TTTY3 Transcript of unknown function 0.86 1 Identified in testis
TTTY23 Transcript of unknown function 0.54 1 Identified in testis
His-1 Transcript of unknown function 1.0 2 Two independent hits on the same tran-

script; activation of this transcript leads
to carcinogenesis
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As a consequence, this subscreen is not exhaustive and a more detailed analysis can be

expected to bring up even more candidates.

Berezikov and co-workers [14] identified 975 miRNA candidates in mouse/human and mouse/rat

comparisons by means of a combination of phylogenetic shadowing and selection of stable

stem-loop structures. Our set of input alignments contains 642 of these candidates, 472

overlap with our predictions (p > 0.9). Not all these stem-loops, which are stable as sin-

gle sequences, are structurally conserved in all four mammals: some of them lack a stable

consensus structure. A simple filter requiring a stem with at least 20 base pairs in the con-

sensus structure, a mean z-score < −3.5 and a 22nt window with more than 0.95% pairwise

sequence identity (the prospective mature miRNA sequence) retains 312 candidates, among

them 109 known human miRNAs. Some of the unknown candidates show the typical muta-

tion pattern of miRNA, see Figure 36 a,b. Others exhibit clear structural conservation but

show a very different mutation pattern. We speculate that these sequences are not miRNAs

but belong to different, so far undescribed, classes of ncRNAs.

4.4.4 Structures conserved across all vertebrates

The most highly conserved structures are of particular interest. We find 996 RNAz signals

that are conserved in all 4 mammals, chicken and at least one of the two fish genomes

(fugu, Takifugu rubripes, and zebrafish, Danio rerio). Of these, 152 can be at least partially

annotated: 52 are miRNAs, 16 are snoRNAs, 28 are known elements in untranslated regions

(UTRs), and 56 are similar to other described RNAs. 42 detected regions are contained

within one of the different cDNA collections. 38 overlap with one of the 481 “ultraconserved

elements” (segments longer than 200 base pairs that are identical between human, mouse

and rat genomes) reported by Bejerano et al. [10]. A few of these can be identified as

potential RNAs because of the substitution pattern in the fish and chicken sequences. For

most of them, however, we cannot give a definitive classification because there is too little

sequence variation in this special set of extremely conserved sequences.

4.4.5 Comparison with protein-gene annotations and transcriptional maps

The majority of the 35,989 structured RNA features detected with p > 0.9 is of completely

unknown function (see Fig. 37 for a few selected examples). We compared the location of

the hits with the protein coding gene annotations provided by the UCSC genome browser.

About half of the predicted structures are located far away from any known protein coding

gene, the other half is associated with known genes. Two thirds of the latter are located in

introns. One sixth can be mapped to annotated UTRs.

In a recent study, sites of transcription of polyadenylated and non-polyadenylated RNAs
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Fig. 36. Examples of microRNA and H/ACA snoRNA candidates detected with p > 0.9.
The miRNA candidates (a,b) exhibit several characteristic features: (i) a stable hairpin con-
sensus structure; (ii) the sequence of one arm of the stem is highly conserved over 22 nt
(the putative mature miRNA); (iii) the opposite stem is also conserved but not that strictly;
(iv) the loop sequence is diverged due to the absence of functional constraints in this region;
(v) compensatory, or at least consistent, mutations are found in the outer parts of the stem
where only structure but not sequence is important for function. The sequence in a is located
on human chr.20 (pos. 33,041,857) in an intron of a mysine protein gene (AB040945). The
position of candidate b is chr.15:43,512,536, in the UTR region of FOAP-11 (AF228422).
The H/ACA snoRNA candidates (c,d) fold into the typical bipartite hairpin secondary struc-
ture. We observe H-box motifs ANANNA in the hinge regions and ACA motifs in the tail
regions. Candidate c is located at chr.9:92,134,300 in an intron of Isoleucine-tRNA synthetase
(D28473). Candidate d is located at chr16:2,786,411 and not associated with any known pro-
tein coding gene. Primary sequence motifs and secondary structure strongly suggest a role as
classical pseudouridylation guides for these RNAz hits. Both candidates could be experimen-
tally verified by Northern blot analysis [226]. Species abbreviations: hg17 human, mm5 mouse,
rn3 rat, canFam1 dog, galGal2 chicken, fr1 fugu, danRer1 zebrafish.
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for 10 human chromosomes were mapped at 5-bp resolution in eight cell lines using tiling

array technology [31]. We compared our predictions located on the 10 chromosomes with the

cumulative “1 in 8” map, in which a positive probe need appear in at least one of eight cell

lines. We found 40.7% of the predicted RNAs to overlap with detected sites of transcription

(45.0% including signals in exons or introns of known UTRs). This is significantly (appr.

10%) higher than the background (see Methods) and comparable to the detection rate of well

known ncRNAs: 45.2% of known microRNAs and 56.7% of known snoRNAs are detected

on this transcriptional map.

A list compiling 50 examples of RNAz hits that are transcribed according to the tiling ar-

ray experiment and that are strong candidates for independent ncRNAs can be found here:

http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/ncRNA/lists/affy.html. All these

conserved RNA structures are at least 10 kb away from the nearest known gene and also do

not appear to be part of other plausibly predicted protein coding genes.

http://www.tbi.univie.ac.at/papers/SUPPLEMENTS/ncRNA/lists/affy.html
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Fig. 37. Selected examples of candidates for novel structural RNAs detected with p > 0.9. For
more examples see http://www.tbi.univie.ac.at/Papers/SUPPLEMENTS/ncRNA. Struc-
ture a is conserved across all vertebrates. It is located near an intron/exon boundary and
EST data suggests alternative splicing events in this region. The sequence of structure b has
similarity to a transcript in the Chr. 7 set of RNAdb and is conserved in mammals. We found
more than 50 conserved secondary structures throughout the genome with sequence similarity
to this transcript. Within these hits, we could identify this structural motif 7 times by visual
inspection. Structures d and e form highly conserved stem loops. Structure d is located in an
intron of a coding gene and conserved across all vertebrates. The stem loop is longer than a
typical microRNA precursor and also shows a different mutational signature. Additional RNAz
hits in the close vicinity suggest that this is a local substructure of a longer RNA. Also the stem
loop in structure c is almost twice as long as a typical microRNA precursor. Structures c,f,g are
locally highly structured. Element c is conserved in mammals, f and g are conserved across all
vertebrates. Genomic locations of all examples: (a) chr.22:18,488,478 (in intron of RAN bind-
ing protein 1, D38076) (b) chr.12:74,595,654 (intergenic), (c) chr.7: 133,840,516 (intergenic),
(d) chr.2: 104,445,752 (intergenic), (f) cqhr.8:57,457,661 (intergenic), (h) chr.5:32,415,412,
(intron of zinc finger RNA binding protein, AJ314790) (g) chr.10:32,739,292 (intergenic)

http://www.tbi.univie.ac.at/Papers/SUPPLEMENTS/ncRNA
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5 Review of other applications

5.1 Alifoldz prediction and verification of cyanobacterial ncRNAs

Ilka Axmann, Philip Kensche and colleagues conducted a computational screen coupled with

experimental methods to detect and characterize ncRNAs in marine cyanobacteria [6]. Using

Blast they generated alignments from the intergenic regions of four sequenced strains and

scored them with Alifoldz. The analysis was focused on the highest scoring regions and

7 novel ncRNAs were detected and described in detail. The new ncRNAs were designated

Yfr1–7 (Yfr for cyanobacterial functional RNA-coding gene). The authors note a very high

rate of verification in this set of highly scoring elements and expect additional ncRNAs

among the hits with lower scores that have not been tested.

Some ncRNAs could only be detected in two or three of the four strains, whereas Yfr2–Yfr5

are structurally highly related and are encoded by a rapidly evolving gene family as their

genes exist in different copy number and at different sites in the four strains. Yfr7 has

been shown to be present in at least seven other cyanobacteria and the authors suspect it

to be a homologue of the γ-proteobacterial 6S RNA on the basis of structural similarities.

Although no direct function for the novel ncRNAs was shown in this paper, the authors

assume regulatory roles for most of the ncRNAs similar to the regulatory small ncRNAs

that could be detected in other eubacteria. This could explain how the few regulatory

proteins in the compact genomes of cyanobacteria can efficiently sustain the lifestyle of an

ecologically successful marine microorganism.

In addition to the characterization of the ncRNAs, the analysis revealed evidence for control

elements for several ribosomal operons as well as riboswitches for thiamine pyrophosphate

and cobalamin.

5.2 Benchmarking of sequence alignment programs upon structural RNAs

The use of multiple sequence alignments is an essential step for many RNA sequence analysis

methods, including RNA structure analysis, RNA homology search, RNA based phyloge-

netic inference and, of course, ncRNA detection as described in this thesis. There exist a

large number of different alignment programs. The performance of alignment programs are

carefully benchmarked on proteins. However, the results of these benchmarks are not nec-

essarily informative for somebody who is interested in optimally aligning structural RNAs.

Together with Paul Gardner and Andreas Wilm, a comprehensive benchmark of multiple

sequence analysis programs was conducted [62]. This study was inspired by the effect of

alignment accuracy on consensus structure prediction as shown in Fig.17 (page 47).
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Using the same methodology as described in section 3.3.2, we generated a large representative

test set of alignments of several structural ncRNAs families. We then used 14 different

alignment programs to align the test cases. The accuracy of the alignment was assessed by

two scores: The SCI and the sum-of-pair score (SPS), which measures the accuracy of a

given alignment against a reference alignment (in our case manually curated seed alignment

from Rfam). The results of this benchmark study can be summarized as follows:

• The two independent measures of global alignment accuracy SPS and SCI are generally

in agreement. The SCI is independent of a reference alignment. Since the SCI does

not consider the alignment quality of the sequences in the loops (they are not relevant

for the consensus structure), the SPS is preferable if trusted structural alignments are

available as reference.

• The relative performance of multiple sequence alignment programs on RNA alignments

can differ remarkably from the performance observed on protein alignments.

• The multiple sequence alignment algorithms, such as ClustalW, MUSCLE, PCMA, POA,

ProAlign and Prrn perform well on high- to medium-homology datasets.

• ClustalW, ProAlign and POA consistently ranked in the top 10 across all homology

ranges.

• The “twilight zone” of ncRNA alignment is in the 50%–60% sequence-identity range.

• Below this limit, algorithms incorporating structural information (Dynalign, Foldalign,

PMcomp and Stemloc) outperform pure sequence-based methods. However, these algo-

rithms are computationally demanding which severely limits their use in practice.

The test sets have been made available online (http://www.binf.ku.dk/users/pgardner/bralibase/).

The standardized test sets and accuracy measures provided there, can help to test new align-

ment programs and optimize existing ones.

5.3 RNAz predicted miRNA precursors in the miRNAMap database

Wei-Che Hsu et al. developed an integrated database that collects miRNAs genes, miRNA

targets and their regulatory relationships [95]. The database contains miRNAs from the

miRNA registry as well as predicted miRNAs from our human screen. The candidate

miRNA precursors that where identified in our simple subscreen (see section 4.4.3) where

used as starting point for further analysis. Using a machine learning approach, mature

miRNAs were predicted in the candidate stem loops. 464 human mature microRNAs were

predicted from the the initial set of 2681 putative miRNA precursors. Using miRanda [105],

potential targets of the known and predicted miRNAs in conserved UTRs were predicted.

http://www.binf.ku.dk/users/pgardner/bralibase/
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This information is augmented with expression profiles of known miRNAs, cross-species

comparisons, gene annotations and various cross-links to other biological databases.

5.4 RNAz screens of urochordate and nematode genomes

Kristin Missal, Dominic Rose and Peter F. Stadler used RNAz to screen urochordate and

nematode genomes for functional RNAs [161, 162].

Urochordates can be regarded as the sister group of vertebrates. This lineage is of partic-

ular interest because it does not share the genome duplications that shaped the vertebrate

genomes [92]. One cannot simply include urochordate sequences in the ncRNA screen for

vertebrates because the large evolutionary distance makes reliable sequence alignments im-

possible. However, the the complete genomes of two ascidians Ciona intestinalis and Ciona

savignyi as well as incomplete shotgun traces of the larvacean Oikopleura dioica made an

independent comparative study possible. Using a Blast based alignment protocol, pairwise

and three-way alignments were generated and screened with RNAz. In the pairwise compar-

ison of the two ascidians, about 15 MB of non-coding sequence could be aligned with an

E-value cut-off of 10−3. 3332 hits (2.6% of the input sequences) and 2109 hits (1.7% of the

input sequences) were predicted as ncRNA candidate on the p > 0.5 and p > 0.9 significance

levels, respectively. The authors estimate a false-positive rate of 17.1% (p > 0.5) and 11.4%

(p > 0.9) based on similar shuffling controls as in our human screen. Data on ncRNAs is

sparse in these organisms, which makes it difficult to annotate the predicted RNAs. Us-

ing tRNAscan-SE [140], about 300 hits could be annotated as tRNAs. In addition, some

100 snRNAs, a few microRNAs and snoRNAs could be identified in the prediction set by

sequence similarity searches.

A similar screen was conducted for the nematodes Caenorhabditis elegans and Caenorhab-

ditis briggsae [162]. Here, about 13 MB of noncoding DNA could be aligned by Blast and

3672 hits (3.2% of the input sequences) and 2366 hits (2.1% of the input sequences) were

predicted by RNAz on the p > 0.5 and p > 0.9 significance levels, respectively. The false

positive rate was estimated to be 49% (p > 0.5) and 33% (p > 0.9). 679 hits can be identi-

fied as known ncRNAs or as clear homologs of known ncRNAs. Most of the known ncRNAs

were tRNAs (483). Further analysis of the results found several predicted ncRNAs to be

associated with characteristic upstream motifs. In addition, clustering of the hits on basis

of sequence similarity could identify several interesting sequence families some of which also

cluster with respect to the genomic location. Based on the sensitivity on known ncRNAs

and the false positive rate, the authors estimate that there are 3000–4000 RNA with evo-

lutionary conserved secondary structures in nematode genomes. This is in the same order

of magnitude as other estimates. In a recent study of small ncRNAs in C. elegans, Deng et

al. [46] estimated between 1600 and 4100 ncRNAs based on different considerations (intron
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conservation, upstream motif conservation, cloning frequencies/northern signals).
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6 Discussion

6.1 Protein prediction vs. ncRNA prediction

6.1.1 Protein prediction, a standard procedure in genome annotation

Today, a number of protein-gene finders are available built on well established algorithms.

Although these programs come with their own sets of problems, protein-gene prediction has

become an invaluable tool for genome annotation. The problem of predicting protein genes

is by no means trivial, but at least rather well defined: Given a genomic sequence, find

those regions which correspond to open reading frames coding for a protein. Computational

solutions for this problem have grown historically together with the available data. Long

before complete genomes were sequenced, GenBank had already collected large numbers of

sequenced mRNAs and genomic regions. Protein-gene prediction did always benefit from the

detailed biological knowledge on proteins and their genes. Also in the post-genomic era with

complete genomes available, large scale projects like extensive cDNA or EST libraries provide

reasonable amounts of experimental data to constantly improve the methods. In organized

collaborations, computational biologists team up with experimentalists to critically assess

these methods and test predictions of novel genes [1, 55].

6.1.2 The “RNA revolution” and the need for ncRNA prediction

ncRNA finders are still in their infancy. Only a few years ago, the existence of ncRNAs

beyond the well known text-book examples was not a subject of mainstream biology. Re-

searchers and their experimental methods were focused on protein biology in a way that

evidence for ncRNAs encountered in an experiment was simply ignored or excluded by the

experimental setup from the beginning. For example, standard genetic experiments based

on mutagenesis which work fine for a protein-gene where a single point mutation can com-

pletely destroy function, may fail for ncRNAs where a single substitution or deletion may

have no effect. Most cloning protocols discard any RNAs which are not polyadenylated and

thus exclude ncRNAs from many functional screens. With the discovering of new ncRNAs

in various organisms, in particular microRNAs, the situation has changed. As outlined in

the introduction, different lines of evidence ranging from simple theoretical considerations

[157] to multi-million dollar experiments [31, 24] suggest that ncRNAs are much more preva-

lent than previously assumed. This “RNA revolution” hit the community unprepared. Our

understanding of ncRNA biology is limited and we cannot rely on a large body of research

which has grown over the past decades. Instead we face fundamental questions which can-

not be definitely answered by any currently available approaches. How many ncRNAs are
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there and what are their functions? The recent finishing of the human genome sequence em-

phasizes the “need for reliable experimental and computational methods for comprehensive

identification of non-coding RNAs” [213].

6.1.3 ncRNA prediction, an ill-defined problem

The main reason that hinders systematic computational screens for ncRNAs as seen for

protein-coding genes is that there are no common statistically significant features in pri-

mary sequence. There are no start/stop codons, no open reading frame, no codon bias,

no typical splicing signals. It is even not clear what we define as “ncRNA”. There is no

doubt that independent “RNA genes” with a defined molecular function such as tRNAs

or microRNAs should be called ncRNAs. But the situation is not always that clear. The

transcriptional activity of at least mammalian genomes is much more complex than antici-

pated and in the light of recent studies the concept of a gene becomes blurred [60]. We see

mRNA-like ncRNAs, non-polyadenylated RNAs from both intronic and intergenic regions,

overlapping transcripts, extensive antisense transcription, and transcribed pseudogenes. In

addition there is a recent example of a ncRNA that only is expressed to interfere with and

downregulate the transcription of a neighboring gene but the produced RNA molecule itself

does not have any obvious function [150]. There is even an example of a functional RNA

encoding a protein [34]. The spectrum of ncRNAs and their mode of action is very hetero-

geneous. One can safely assume that the full spectrum of functions is not yet discovered.

6.2 Predicting structural ncRNAs

We have to accept that a general ncRNA finder is an unrealistic goal even in the long term.

In this work, we focused on a more precisely defined problem. We set out to predict ncRNAs

for which the secondary structure is of functional importance. Although this group covers

only a subset of all ncRNAs, we are convinced that RNA secondary structure is currently

the only known feature of ncRNAs which allows reasonable computational prediction.

6.2.1 Limitations of available structural ncRNA finders

We have shown in section 3.1 that the stability of RNA secondary structure is of limited

statistical significance if only single sequences are considered. Also measures other than pure

thermodynamic stability (e.g. “well-definedness”, section 3.2) cannot help and, therefore, we

soon moved our focus to comparative approaches, i.e. finding evolutionary conserved RNA

secondary structures. A few programs for this task already existed or were introduced while

this thesis was written (see section 2.4.2). None of them, however, appeared to meet the

requirements for automatic annotation of large eukaryotic genomes. The ddbRNA algorithm
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only relies on the existence of compensatory mutations and does not consider any RNA

folding model beyond complementary regions. The sensitivity of ddbRNA is low on realistic

datasets, where the number of compensatory mutations is not high enough to generate a

meaningful signal. Similarly, MSARi depends on a large number of sequences (10–15) of

high divergence to perform well. To our knowledge, none of both programs have been used

for any real-life applications so far. The most established program is without doubt QRNA,

which was successfully used to detect ncRNAs in prokaryotic and yeast genomes. However,

based on the published results and our own tests we found that the QRNA approach will

not easily scale to large genomes. Specificity is low if the input sequences lie outside of

the optimal range of evolutionary distance, it is somewhat slow and hence requires high

computational resources, and it is limited to pairwise alignments. A new version, eQRNA,

has been released recently which uses a more sophisticated evolutionary model [185] and one

can expect significant better classification accuracy. However, it is still limited to pairwise

alignments and therefore it cannot make use of the additional information contained in a

multiple alignment of more than two sequences.

6.2.2 A next generation of structural ncRNA finders

There is need for a next generation of ncRNA prediction algorithms which can handle

multiple sequence alignments and make use of an accurate folding model. One could consider

to extend available SCFG approaches. Based on previous work [116], Pedersen and colleagues

work on a program called EvoFold which combines probabilistic models of RNA secondary

structure and primary sequence evolution. EvoFold was not available and unpublished at

the time this thesis was written.

We chose the alternative, energy-based approach. MFE algorithms for the prediction of

secondary structure are well established and still most accurate. With RNAalifold, there

is an effective extension for consensus folding of alignments. In the first part of the thesis,

we showed that the RNAalifold score, an averaged energy score augmented with covariance

information, cannot only be used to predict a consensus secondary structure but also to

detect conserved RNA secondary structures in multiple sequence alignments. We observed

an impressive improvement in the detection performance compared to single sequence pre-

dictions. To assess the statistical significance, we used a shuffling approach and calculated

z-scores normalized for all relevant parameters such as length, base composition, and mean

pairwise-identity. Although a properly normalized score combining both stability and con-

servation is exactly what is needed, the sampling procedure that is necessary to calculate

the score, makes it impractical for general use.

In the second part of the thesis, we proposed an alternative approach which overcomes

the limitations of the shuffling approach but, as it turned out, shows comparable accuracy.
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Although conceptually simple, the SCI proved to be a convenient and effective measure of

structural conservation. Moreover, as a consensus of several independent sequences in an

alignment, also stability can be a significant measure. In this context, we have demonstrated

that a properly normalized stability measure can be directly calculated without the need

for time consuming sampling of shuffled sequences. We used a SVM regression algorithm

and could solve the problem for mononucleotide shuffled sequences almost perfectly, i.e.

without loss of accuracy compared to the traditional sampling method. Interestingly, Clote

and colleagues independently developed the concept of approximating z-scores [36]. In

particular, they proved a theorem of the existence of an asymptotic limit for mean and

standard deviation of minimum free energy per nucleotide for random RNA. By proving

this basic assumption, which we took for granted, our regression approach is now put on

solid theoretical grounds.

6.2.3 Limitations of RNAz

Our program RNAz shows unprecedented accuracy in the benchmarking tests and clearly

outperforms any other available programs. However, there are still a number of limitations

which should be addressed in future versions.

The SVM classification of RNAz is limited to alignments of up to six sequences. In principle,

it is of course possible to train a SVM on alignments with more than six sequences. We

failed, however, to generate reasonable test sets of non-redundant alignments from the cur-

rently available sequences in Rfam. For many current applications this limit will not cause

any problems, but with more and more genomes sequenced much larger data sets can be

expected. We want to mention the ENCODE project [55], with one of its goals to sequence

targeted regions from the human genome in dozens of related species. For such applications

RNAz is currently not prepared.

Another major problem is that RNAz scores a given alignment globally. Large alignments

are scanned in overlapping windows. Ideally, one likes to detect conserved RNA secondary

structures locally by scanning smoothly over large alignments and reporting the most sig-

nificant local structures. For single sequences, a local MFE folding program RNAlfold [89]

is available. One could consider to apply this simple variant of the standard folding al-

gorithm to RNAalifold/RNAz. Due to the quality of current genome-wide alignments this

is, unfortunately, not straightforward. Missing data, spurious and gap-rich matchings, and

low complexity regions are characteristics of typical genome-wide alignments. In our hu-

man screen, we found it essential to filter and pre-process the alignments before any efforts

to predict a consensus secondary structure make sense. Although a local version of RNAz,

which scans over megabases of automatically generated alignments, is highly desirable, much

additional work needs to be done to achieve this goal.
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Finally, we want to mention a more fundamental limitation of our approach, especially com-

pared to SCFG based methods. Our strategy to detect conserved RNA secondary structures

does not consider any model of sequence evolution and no direct statistical interpretation of

the results is possible. Phylogenetic-SCFGs aim to describe the problem by combining full

probabilistic models of sequence evolution and RNA folding. Of course, also these methods

depend on training data and ad hoc assumptions in their models, but they provide a rigorous

mathematical framework for the complete problem. In contrast, our work is a combination

of several independent components. It depends (i) on the MFE folding algorithm which in

turn depends on hundreds of empirically found energy parameters, (ii) a covariance score

which incorporates structural conservation, and (iii) a SVM learning algorithm for classi-

fication. It is obvious that there is no mathematical framework which could describe our

strategy as a whole.

A phylogenetic component is still missing, although the performance of RNAz could probably

be enhanced by considering an underlying phylogenetic tree. Especially for unbalanced

data, for example in cases where we have three closely related mammalian and one distant

vertebrate sequence in an alignment, a weighting of the sequence contributions according to

a phylogenetic tree is desirable. Preliminary work has been done by Hofacker et al. [87] but

these ideas have not been elaborated in this thesis.

6.3 A prototype screen for ncRNAs of the human genome

We decided not to go into too much theoretical details without testing RNAz in large scale

screens. Only in a realistic scenario the performance and probably even more shortcomings

can become evident. Moreover, we felt that, even in the very first version, RNAz has the

potential to give important biological insights. As a prototype study we conducted a screen of

the human genome. Indeed, screening a large mammalian genome is not an easy undertaking

but, for obvious reasons, it is one of the most attractive and challenging goals. With four

mammalian and two additional vertebrate genomes available, such a screen has become

possible.

6.3.1 Pre-selection of candidates on the basis of sequence conservation

The first crucial step of our screen was the pre-selection of the regions which should be

scored. Only a fraction of the 3,000 megabases in the human genome can be aligned to the

other genomes. We chose the most conserved non-coding regions. A large body of literature

is available on the theory of evolutionary sequence conservation. There is an ongoing debate

over the fraction of conserved regions in the human genome and whether these regions

are functional or not. Following the most common consensus in the community, one can
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note that at least 5% of the human genome is more conserved than one could expect by

some reasonable model of neutral sequence evolution. These regions might appear only

“conserved” because of reduced mutation rates, but as the main reason for the effect one

assumes purifying selection, immediately implying some function.

We did not question any of these assumptions and used the results of the new PhastCons

program which was the best program available to detect conserved regions in complete

genomes.

6.3.2 Promising results on known ncRNAs

The most conserved non-coding DNA was screened with RNAz for functional RNAs. At the

highest significance level, we predict structural RNA elements in 6.6% of these regions (appr.

36,000 structural elements throughout the genome). The initial analysis underlines the value

of this prediction. Our screen recovers hundreds of known structural RNAs (both ncRNAs

and structural elements in UTRs of mRNAs), it identifies additional members of known

ncRNA families, and detects previously undescribed conserved structural elements in some

known ncRNAs. To our knowledge this is the first attempt of a genome wide annotation of

ncRNAs in human. At the time this thesis was written, we could not think of any alternative

approaches which could yield comparable or even better results.

The most intriguing but, at the same time, also the most arguable result of our study is

the number of predicted structures which could not be assigned to known RNAs. In this

context two questions arise (i) What is the true false positive rate not covered by our simple

null-hypothesis of shuffled alignments (ii) What are the functions of the detected structures?

6.3.3 The real false-positive rate remains uncertain

We tried to estimate the false-positive rate using randomized controls. We estimate a false

positive rate of 1.1% and thus observe an overall signal-to-noise ration of 6:1, implying that

the majority of the predictions are biologically relevant. Clearly, any such approach can only

approximate the true genomic background and hence cannot rule out the possibility that non-

random sequence patterns could cause spurious hits resembling stable and conserved RNA

structures. It is conceivable that local inhomogeneities of base composition or low complexity

regions (e.g. repeats of single nucleotides) could bias the z-score calculation. Such “dubious”

alignments usually did not pass the filtering steps through RepeatMasker and PhastCons.

Nevertheless, there are alignments where the significance of the PhastCons prediction and/or

our RNAz prediction is highly questionable. We also observed that inhomogeneities in the

degree of conservation can cause an increased rate of false positives. For example, a highly

conserved block with nearly 100% mean pairwise identity is flanked by two gap-rich regions
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of low identity. On average, the identity will be, say 70%. The highly conserved block

results in a high SCI, which can then be mis-interpreted as significant due to the low overall

mean pairwise identity. This is an obvious reason of false positives but should be covered

in our false positive estimate which considers such types of artifacts in the randomization

procedure (cf. Fig. 13, page 42). The same is true for alignments which are highly conserved

over the full length. Here the missing covariance information can cause an increased false

positive rate. In most of the cases, however, we cannot find obvious sources of false positives.

In absence of any other plausible explanation we have to trust our procedure and suspect

functional RNA secondary structures. Again, we cannot exclude that there exist effects

which we are currently not aware of. We regard our predictions as a working hypothesis and

note that the estimated number of false positives must be seen as a lower bound.

6.3.4 Can experimental verification help?

Any experimental working molecular biologist would immediately suggest to do expression

studies for example by northern blot analysis to decide which fraction of the predictions

is “true”. In the case of compact genomes of single cellular organisms, an experimental

follow-up of the predictions by northern blot analysis can be without doubt insightful. This

was demonstrated for example by Rivas et al. for enterobacteria [188] and, recently, by

Axmann and Kensche et al. who experimentally verified Alifoldz predicted ncRNAs in

cyanobacteria.

However, not primarily because this thesis reports purely computational biology, we do not

consider northern blots or similar techniques an adequate means to validate a genome-wide

annotation of a large mammalian genome. Without a careful evaluation of the sensitiv-

ity/specificity of the experimental procedure itself, such experiments will have little to add.

In a multicellular organism, tissue specific expression and low concentrations make experi-

mental detection of ncRNAs challenging. Nevertheless, some of our predictions were tested

experimentally by Melanie Lukasser and Alexander Hüttenhofer (unpublished). We selected

six candidates with strong RNAz signals for northern blot analysis in HeLa cells. One could

observe two positive signals (one of them was very strong). The experiment was repeated

and the second time only one signal was observed. What we could learn from these ex-

periments is that (i) our predictions indeed contain northern detectable ncRNAs. (ii) The

specificity of the experiment is not necessarily better than the specificity of the prediction

(at least 1/6 false positives). (iii) A negative result is not definitive; it simply means that

a northern on HeLa cells could not detect the RNA. Tests on different tissues with more

sensitive methods like RT-PCR could give other results. However, tiling arrays and random

cloning already found evidence for a relatively large fraction of the mammalian genome to

produce transcripts. For example, more than 40% of our hits overlap with “transfrags”

signals. Many of the transfrags can be readily “verified” by PCR based methods [31]. In
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the light of these results, it is questionable what information we gain from such expression

experiments at all. Defining a “true” ncRNA solely on the basis of a positive northern blot

(i.e. on the basis of high levels of transcription) is problematic. One can argue that this

definition is useful since it applies to most known ncRNAs. On the other hand, such a

definition might not include many important ncRNAs we do not know yet (probably simply

because they do not meet the requirements of strong transcription). Ultimately, the most

interesting question is whether a ncRNA is functional or not. Here both expression studies

and computational methods can currently only give indirect evidence. A strong transcribed

distinct RNA species detected on a northern blot is a good candidate for a functional RNA.

Likewise, a highly conserved RNA secondary structure should not arise by chance and is

thus likely to be part of some sort of functional RNA. Both experiment and computational

analysis follow completely different paths. Ideally, they supplement each other, but one

must not forget that also computational biology can live on its own. Provided that the

results are sensibly interpreted, we are convinced that the analysis of RNA structures on a

genome-wide scale can be fruitful without any direct experimental support.

6.3.5 Potential functions of newly discovered RNA structures

The detected structured elements can have different functions. If there is no obvious similar-

ity to known ncRNA, however, a functional assignment is almost impossible. The mapping

to available genomic annotations can give some insights.

Approximately one sixth of our hits can be mapped to UTR regions of known protein-coding

genes (this includes the hits in introns of UTR regions). Those hits represent potential

regulatory elements of the mRNA.

A third of our hits are located in introns of protein coding genes. This finding strongly

supports the notion that a plethora of functional RNAs are expressed from intronic DNA

[155, 157]. It is an interesting scenario, that intronic ncRNAs might have regulatory function

and interact with the genomic region, the mRNA, or the protein product of the gene from

which they were produced. This way of RNA based regulation allows more flexible and

complex regulation networks which could not be accomplished with protein regulators alone.

MicroRNAs are probably the best example of such regulatory ncRNAs. Most microRNAs

are encoded in introns. Chen et al. [31] report many non-polyadenylated transcripts derived

from introns further supporting this hypothesis.

It is also conceivable that the intronic structures play a regulatory role in the pre-spliced

mRNA. There is evidence that many pre-mRNA sequences contain selected regions folding

in vivo into well-defined secondary structures [20]. Recently, for example, a well conserved

RNA secondary structure was shown to regulate alternative splicing in the homothorax gene

in drosophila [65].
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In our study we excluded annotated coding regions. However, we cannot rule out the possi-

bility that undiscovered coding exons showing signs of stable secondary structures are among

our hits. We compared our predictions with protein-gene prediction programs (Geneid and

Genscan). Only a minor fraction (6%) of all hits overlap with coding sequence predictions.

Among the 996 hits conserved across all vertebrates, the fraction of predicted coding exons

was higher (17%). Some of them are likely to be coding exons but, interestingly, also several

known ncRNAs (including expressed pseudogenes and miRNAs) are predicted to be coding

exons in this set. The observation that protein gene finders call ncRNAs and vice-versa, can

be interpreted as indirect evidence that they share some common features. We speculate

that many ncRNAs evolved from coding mRNAs. Expressed pseudogenes are probably the

best example because they represent an intermediate stage where we see ncRNA features

(expressed but not translated, in some cases shown to be functional [236]), but also still

clearly see the remnants of the mRNA. The connection of coding sequences and functional

RNAs is definitely a topic which needs further exploration.

One half of the detected structures are located in intergenic regions at least 10 kb away

from any known protein-coding gene. Given that the current protein gene annotation of the

human genome is fairly complete, one can assume that most of these hits are unrelated to

mRNAs of protein coding genes and thus are candidates for independent functional ncRNAs.

In this context, the question arises on the number of ncRNAs which we estimate from our

data.

6.3.6 How many ncRNAs in human?

Gene numbers have always been a fascinating topic for the biological community. The history

of protein coding-gene estimates shows, however, that one should be very careful before

attempting (and in particular publishing) any quantitative estimate [177]. The situation is

even worse in the case of ncRNAs. Our data is notoriously difficult to be interpreted in

terms of gene numbers for several reasons: As mentioned before, the real false-positive rate

remains uncertain. It is also unclear how many ncRNAs genes in the sense of a genetic unit

correspond to one detected structure. It is possible that one detected structure contains

several ncRNA genes (e.g. a miRNA cluster). On the other hand, a spliced mRNA-like

ncRNA can have several independently conserved structures (e.g. Xist). Moreover, the way

the input data is processed depends on many rather arbitrary parameters some of which are

embedded in third party programs (Multiz, PhastCons). We predict that the overall results

will vary considerably if these parameters are changed. This is also the reason why it is not

easily possible to directly compare the number of detected hits in our human screen with

screens in other species (e.g. those described in section 5.4) which follow different protocols.

Taken together, it would not be scientific sound to give any prediction on the number of

functional ncRNAs which goes beyond an order-of-magnitude estimation. We estimate the
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number of functional ncRNAs in the order of ten-thousands.

6.4 Conclusion

In this work we addressed the problem of computational de novo prediction of non-coding

RNAs, one of the most challenging problems in current bioinformatics. We used the power of

comparative genomics and RNA secondary structure prediction and devised new algorithms

that can detect evolutionary conserved and thermodynamically stable RNA secondary struc-

tures in multiple sequence alignments. Our program RNAz outperforms any other available

programs and was used for a first comprehensive annotation of conserved RNA secondary

structures in the human genome. We found evidence for a large number of previously un-

described RNA structures which we predict to be part of functional ncRNAs (independent

ncRNAs or regulatory elements of mRNAs).

Despite the promising results, our work only describes the very first step which is necessary

to elucidate ncRNA function by means of sequence analysis. In the world of protein bioin-

formatics and proteomics, we would have now reached a point where we can predict ORFs

as candidates for potential proteins and observed that ORFs occur more frequently than one

could expect by chance. For proteins, there is a big arsenal of programs to further classify

and analyze the candidates. A classification of all the RNA secondary structures encoded

within a genome, anticipated and dubbed “structural RNomics” few years ago [50], will be

the next logical step following our analysis. This is a big challenge and we think that also

here a set of new generation RNA algorithms will be necessary to handle the vast amounts

of data. We hope that our programs and results also stimulate the field of experimental

RNomics by helping to rationally devise new experiments.

In conclusion, we believe that our algorithms represent an important step towards reliable

prediction of structural ncRNAs. We also consider the application of these algorithms to

the human genome as an important contribution to its functional annotation. Although the

full implications of these resuls are not yet clear, there is no doubt that they have opened

a new perspective for both computational and experimental RNomics. Our results indeed

challenge these fields but, at the same time, promise them a bright future.
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102. Jády BE, Bertrand E, and Kiss T. Human telomerase RNA and box H/ACA scaRNAs share a

common Cajal body specific localization signal. J Cell Biol, 2004. 164:647–652.
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