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Zusammenfassung

Das Modell der Faltung von RNA-Sequenzen konstanter Kettenlinge in Sekund&rstruk-
turen minimaler freier Energie wird verwendet, um Effekte neutraler Evolution in end-
lichen Populationen zu studieren. Sequenzen (Genotypen), welche die gleiche Struk-
tur (Phinotyp) ausbilden, werden als neutral bezeichnet. Der Kompatibilititsbegriff
beziiglich einer Struktur ist zentral fiir die Beschreibung der Sequenz—Sekundérstruktur—
Abbildung. In der Menge kompatibler Sequenzen formen neutrale Sequenzen ausgedehnte
Netzwerke, die in der Terminologie der Zufallsgraphen beschrieben werden kénnen. Von
eminenter Bedeutung fiir die evolutive Adaptation ist die Tatsache, dafl Schnittmengen
kompatibler Sequenzen fiir Paare von Sekundérstrukturen stets nichtleer sind und damit

Sequenzen existieren, die Uberginge zu anderen Strukturen erméglichen.

Fehlerhafte Replikation (Vererbung) unter Verwendung eines uniformen Fehlermodells
sowie ein unspezifischer Verdiinnungsflu8 (Selektion) bilden die Grundlagen der in dieser
Arbeit betrachteten Evolutionsprozesse. Drei Modelle werden untersucht, denen ver-
schiedene Fitnesslandschaften und unterschiedlichen Anzahlen von ausgezeichneten Pha-
notypen zugrundeliegen. Das erste Modell betrachtet eine vollstindig flache Landschaft
und zwei fiktive Phinotypen. Eine Rate w wird eingefiihrt, die als mittlere Wahrschein-
lichkeit interpretiert werden kann, bei einer Replikation eine Kopie zu erhalten, die der
gleichen Phinotypgruppe angehért wie ihr Template. Sie wird phenotypische Fixations-
wahrscheinlichkeit genannt. Abhdngig vom Wert w dndert sich der Charakter des evolu-
tiven Prozesses. Das zweite Modell betrachtet ein ausgew&hltes neutrales Netzwerk als
ausgezeichneten und den Rest des Sequenzraumes als weniger fitten zweiten Phanotyp.
Die Interpretation im Sinne der Zufallsgraphen erlaubt die Ableitung von Raten, die die
Kopplung der beiden Phanotypen beschreiben. Auch diese unterliegen kritischen Werten,
die das evolutive Verhalten entscheidend beeinflussen. Das dritte Modell, in dem zwei
neutrale Netzwerke einen gréferen Fitnesswert besitzen als der Rest des Sequenzraumes,
gibt Einblick in die Mechanismen der neutralen Evolution und zeigt, da neben Koexi-
stenz beider und Aussterben eines Netzwerkes ein drittes Phinomen aufkommt, das durch

abwechselnde Fixierung der beiden Strukturen in der Population gekennzeichnet ist.
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1. Introduction

The understanding of the biological world surrounding us has undergone dramatic changes
during the last century. Four concepts leading from the view of fixed, unchanging species
to contemporary biology can be formulated (i) Darwin’s idea of evolution and natural
selection [7], (ii) the basic laws of heredity discovered by Mendel [51], (iii) Weismann’s
concept of the germ plasm from which organisms grow [78], and (iv) population genetics
theory that provides insight into behavior of genes and population attributes under natural

selection [5, 18].

The comprehension of the molecular basis and the mechanism of heredity has vastly
increased since the discovery of the chemical structure of DNA by Watson and Crick
in 1953 [77]. The fact that biological information is stored in genotypes (sequences of
nucleotides) and that the mechanism of heredity is error prone gave rise to new aspects in
evolutionary biology. Comparative studies on DNA/RNA and thus on protein sequences
have exposed a high variability of nucleotide compositions in populations. In order to
explain this effect a large degree of neutrality in these alterations was claimed. In view of
nucleotide substitutions that do not have any effect on the protein sequence, and amino
acid substitutions that result in functionally equivalent products (polymorphism) there
are no doubts left about the existence of neutrality. Moreover it is surprising how little

conservation there is at the sequence level [55].

The importance of non-adaptive gene interactions and of random drift of gene frequencies
in finite populations was already stressed by Wright [79]. But the prime argument [43]
leading to the neutral theory was that the amount of genetic substitutions estimated to
have taken place during evolution could not be explained by processes caused by natural
selection. It was claimed that the genetic load, i.e., the difference of maximum and average
fitness value in a population scaled by the maximum value, that selective substitutions
would imply would be tremendous [44, 45].

”... a species consisting of a half million individuals, ... even equating one year with

one generation, the load per generation is roughly 30. This means that to maintain
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the same population number and still carry out mutant substitutions at the rate of one
substitution every two years each parent must leave e!® a2 3.27 x 10° offspring for one

offspring to survive and reproduce. ”

Wright saw genetic drift merely as a process that could improve the ”evolutionary search
capacity” whereas Kimura proposed that the majority of evolutionary changes at the
molecular level are caused by random drift and random fixation of selectively neutral or
nearly neutral mutants on the level of genotypes rather than by positive Darwinian selec-
tion. As often documented in history the introduction of new theories usually splits people
into at least two groups strictly supporting their point of view. By the same reason con-
troversies between selectionists and neutralists arised. Often the neutral theory is called
"non-Darwinian”. Kimura himself has emphasized that his theory is not antagonistic to
the view on evolution of form and function guided by Darwinian selection, but it brings a
new and non-negligible aspect into discussion. It is really worth noticing that the greatest
scholar of evolution, Charles Darwin, already saw the role of neutral variants [7]:
”... This preservation of favorable individual differences and variations, and the de-
struction of those which are injurious, | have called Natural Selection, or the Survival
of the Fittest. Variations neither useful nor injurious would not be affected by natu-
ral selection, and would be left either a fluctuating element, ..., or would ultimately

become fixed, owing to the nature of the organism and the nature of the condition.”

This clear recognition of selective neutrality and its consequences in evolution by Darwin
is remarkable. What he could not be aware of are the extent of neutrality detected in
molecular evolution [44] and the positive role it possibly plays in supporting adaptive

selection through random drift.

Initiated by Kimura the effects of neutrality have been becoming an object of study in
population genetics [5]. With this preparatory work and the arguments stated above
we believe that the investigation of neutral evolution on the molecular level by making
use of mathematical tools is an interesting field to deal with. Following the lines of
Darwin and Kimura each evolutionary process carries dynamical and stochastic elements.

Thus we claim that the theory of stochastic processes provides the proper mathematical
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framework of description. Each evolutionary path must be seen as a realization of one
stochastic process where dynamics is caused by reproduction and natural selection whereas
stochastic aspects enter by finite size of population, mutations that randomly introduce
new genotypes and random extinction of phenotypes. Therefore a model needs to be set

up that describes the behavior of a population under these circumstances.

Even at molecular level evolutionary processes are as complex as on the level of population

genetics and population support dynamics. The decisive contribution that mathematics

is able to make is that of providing models based on inherently drastic reductions. That

means we can not expect that Nature necessarily follows all closely the models we construct

but hope that they are adequately correct. To view evolutionary processes we must take

into account that

1. we neither know the initial conditions nor the course of evolution itself, but only the
results present in form of DNA and RNA sequences, and

2. the assignment of genotypes (sequences) to corresponding phenotypes (structure or
function) is far from being understood and still a major task of current biological

research.

Initially it is known that point mutations (single nucleotide exchanges in DNA) may
have all kinds of effects ranging from drastic change in properties and functions to no
change at all. The fact that point mutations do not alter the size of a genome allows
to restrict ourselves to considerations of sequences of fixed chain length. The mapping
of RNA sequences of chain length n into RNA secondary structures provides a powerful
tool accessible to mathematical description. A convincing example that RNA secondary
structures are worth looking at is the conservation of the tRNA clover leaf structure
[35, 75]. Another supporting argument for the relevance of RNA secondary structures
is provided by experiments performed on self replicating RNA molecules by Biebricher
et al. [2]. Ma and Mathews [47] have shown that the inhibitory function of a small RNA

preventing the activation of a special protein kinase depends on its structure.

RNA secondary structures are often defined in the context of minimum free energy struc-

ture fulfilling common thermodynamic condition of a molecular ground state. It has been
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shown that in case of small chain length minimum free energy structures match natural
realized structures for RNA sequences quite well [6]. The relation between RNA sequences
and their minimum free energy secondary structures have been studied intensively by ex-
haustive folding [30, 31] of all GC and AU sequences up to chain length 30. Sequences
that adopt the same structure, i.e., they are neutral with respect to this structure, form
extended networks in sequence space and facilitate optimization through adaptive walks
and random drift in the absence of more fit genotypes. The evaluation of RNA secondary
structures generates a toy landscape that is ideally suited to study neutral evolution. On
landscapes of this type evolutionary optimization follows a combined mechanism of adap-
tive walk leading to minor peaks and random drift allowing to escape from evolutionary

traps [62].

This thesis is devoted to study of the phenomenon of neutral evolution. Neutral evo-
lution will be investigated by making use of the landscape provided by RNA sequences
as genotypes and their corresponding secondary structures as phenotypes. In order to
give a detailed analysis of the investigated dynamical models we pursue a combination
of a detailed mathematical representation including analytical results and comparative

computer simulations.

Following Dobzhansky [11] who stated: ”Nothing in biology makes sense except in the
light of evolution” a brief view on evolutionary dynamics in biology as a sophisticated and

complex phenomenon is given in chapter 2.

In chapter 3 we develop the mathematical framework for studying RNA folding land-
scapes. The concepts of compatible sequences, and neutral networks as randomly induced
subgraphs are introduced. Section 3.3 is concerned with the geometric relationship be-

tween neutral networks in sequence space.

Chapter 4 deals with evolutionary dynamics. In order to work out aspects of neutral
evolution finite populations of erroneously replicating strings are investigated in land-
scapes induced by neutral networks. Networks of predefined RNA secondary structures
are either formed by sequences adopting this structure under minimum free energy con-

ditions or they are constructed using the random graph model introduced in section 3.
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Three landscapes are formulated for different numbers of specified phenotypes (secondary
structures). We are interested in the fractions of a population covering particular neu-
tral networks. The theory of stochastic processes is used to derive analytical expressions
for stationary distributions. Critical phenotypic fixation probabilities are detected which

alter the modalities of the distributions and affect the character of the evolutionary course.

In chapter 5 a number of computer experiments are performed in order to test the analyti-
cal expressions derived in section 4.3. For one pair of secondary structures two simulations
are performed firstly using minimum free energy neutral networks and secondly randomly
constructed neutral networks. Both evolutionary trajectories are compared with respect
to the applicability of the random graph ansatz to the RNA folding model. The re-
sults of another computer experiment under minimum free energy conditions are used to

demonstrate and visualize the mechanism of evolutionary searching.

Finally in chapter 6 a detailed discussion of the results obtained so far is presented.
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2. Evolutionary Dynamics

Current biology is facing a grand synthesis of knowledge from three different disciplines:
molecular biology, developmental biology, and evolutionary biology. A first step in this
direction was already taken in the late sixties by the pioneering works of Sol Spiegelman
[70]. At about the same time Manfred Eigen [12] conceived a kinetic theory of evolution
at the molecular level. Since then the study of the evolution of molecules in laboratory

systems has become a research area of its own.

The minimal conditions for a process of self-organization caused by natural selection were
proposed by Dawkins [8] in terms of his replicator concept. He argued that units (repli-
cators) which are capable of reproduction, inheritance of "genetic” information allowing
variability, and interaction causing survival of replicators to be fitness dependent, will

undergo evolution by natural selection.

Experiments with replicating molecules in the test tube furnished proof that Charles
Darwin’s principle of variation and natural selection is not a privilege of cellular life [1]:
optimization of properties related to the fitness of replicating molecules is observed readily
in vitro with naked ribonucleic acid (RNA) molecules in evolution experiments. Evolu-
tion characterized as Darwinian dynamics is often visualized as a hill climbing process
on a "surface of selective value” [79] or a fitness landscape that assigns fitness values
to genotypes or polynucleotide sequences (DNA or RNA). In terms of dynamical systems
theory Darwinian dynamics is simple in the sense that it follows a gradient and eventually
reaches a (local or global) fitness maximum. Given that the structure of a fitness land-
scape determines the evolutionary process, Darwinian dynamics was found to be just one
feature of evolutionary systems. Others being, for example, suppression of optimization
of individual fitness by (mutualistic) interaction through catalysis, predator prey or host
parasite interactions. Evolutionary optimization needs not approach a steady state but
may give rise to complex dynamical phenomena like oscillations, spatial pattern formation,
deterministic chaos in space and time. Spatiotemporal patterns cover only one aspect of

evolutionary phenomena - others being, for example, historical like the reconstruction of
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phylogenies or genetic like the fixation of alleles in populations [37]. A comprehensive
model was introduced by Schuster et al. [67] that tries to cover most of these relevant

features.

Following [67] there are three different abstract metric spaces being appropriate for illus-
trative projections of different complex evolutionary scenarios in order to elevate evolu-
tionary aspects of interest:

1. the sequence space of genotypes being DNA or RNA sequences,

2. the shape space of phenotypes, and

3. the concentration space of biochemical reaction kinetics.

The sequence space is a metric space containing all sequences. The metric is given by
the Hamming distance [33], that counts the number of positions in which two sequences
differ. The sequence space of binary sequences is a hypercube of dimension n where n is
the chain length of the genotype. In figure 1 the binary hypercube of dimension three is
shown as well as an example for the neighborhood relation in the generalized hypercube

of dimension two formed over the four letter alphabet AUGC.
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Figure 1: Sequence space. Sequences are presented by points in sequence space. Edges connect sequences
of Hamming distance one, i.e. sequences that differ in a single position. The left part shows the binary
hypercube of dimension 3. On the right hand side the one error class of sequence GG in the generalized
hypercube formed over the four letter alphabet AUGC is presented.

The shape space is an abstract space covering all possible phenotypes under consideration.

Phenotypes are formed by processing genotypes in a given context. Like sequence space,
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it is a metric space. But the definition of a meaningful distance in shape space is a task
requiring information on properties and functions of interest: meaningful comparisons of
active sites of enzymes require atomic resolution whereas studies of phylogenetic conser-
vation of structures can be done much better on the coarse—grained level of ribbon or wire

diagrams.

Concentration space, finally, is the conventional space in which chemical reaction kinetics
or changes in populations take place. It is the space chemists and population geneticists
are familiar with. Concentration space is restricted to the classes of genotypes actually
present (support). It was formalized and put into precise mathematical terms by Feinberg

[19].

Biological evolution is a phenomenon of high complexity. It can be understood and mod-
eled more easily if it is partitioned into three simpler processes, each of them highlighting

one particular aspect of evolution.

Genotype Phenotype Mapping

-

Population Support Dynamics Population Dynamics

—

Figure 2: Evolutionary dynamics. The dynamics of evolution is partitioned into three simpler processes:
(i) genotype-phenotype mapping, (i) population dynamics, and (iii) population support dynamics.

These three processes genotype-phenotype mapping, population dynamics and support

dynamics (figure 2) are best visualized in the three metric spaces mentioned above.
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The genotype phenotype mapping assigns a particular phenotype to a genotype. In molec-
ular evolution this is tantamount to folding biopolymer sequences into structures. Accord-
ingly the shape space is predestined to be used for the description. Precisely, it is the
mapping from sequences into structures and further into functions that is relevant for
evolution: genotype phenotype mapping provides the (kinetic and thermodynamic) pa-

rameters which enter population dynamics.

Population dynamics describes temporal evolution of the population variables (particle
numbers, genotype frequencies, concentrations, etc.). It is properly described in the con-
ventional concentration space of chemical reaction kinetics. The number of possible geno-
types is huge and thus the majority of them will neither be materialized in an evolution
experiment nor in nature. Only a small subset of all possible genotypes will be present
at a given instant in the population. Whenever a new variant is coming into being by
mutation or some genotype dies out the concentration space changes, a new variable de-
scribing the frequency of the new variant is added or the obsolete variable is removed,

respectively.

Population support dynamics is a process to be visualized in sequence space since it deals
with migrating sets of genotypes. Moreover, it provides the input for genotype phenotype

mapping as it defines the areas in sequence space where new genotypes appear.

The three projections of evolutionary dynamics onto the three abstract spaces form a
conceptual cycle in the sense that each of the three processes provides the input for the
next one: genotype phenotype mapping provides the parameters (fitness, for example,
being the most important of them) for population dynamics. Population dynamics deals
with temporal alterations in concentrations and thus hands the information on arriving
new and disappearing old genotypes over to the support dynamics. Support dynamics
in turn transfers changes in the population support to genotype phenotype mapping in

order to make the new parameters available for population dynamics.

~-10 -
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3. Neutral Networks of RNA Secondary Structures

Conventional biophysics considers sequence structure relations of biopolymers primarily
with respect to the folding problem: given a sequence; which structure does is form under
specified experimental conditions. Such a condition is for example the thermodynamic
equilibrium of minimum free energy structures. One biological important landscape that
has received special attention during the last few years is induced by the ”folding” of
polynucleotides (RNA). While a prediction of true 3D structures is far beyond the possi-
bilities of present-day computers, secondary structures, which are defined as a list of base
pairs in the molecules, are readily accessible. A large body of computational data has
been published [4, 21, 22, 25, 63, 73] on this example of a sequence to structure mapping.
In fact secondary structures can be regarded as a simplified version of RNA phenotypes

and at present this allows the most realistic modeling of genotype phenotype relations.

The evolution of RNA molecules in replication assays, viroids, and RNA viruses can be
viewed as an adaptation process on a fitness landscape in the sense of Wright’s imagina-
tion [79]. The scalar entities to the landscape are for example minimum free energies of

secondary structure formations [21] or functional defined properties of the structure itself.

3.1.RNA Secondary Structures and Compatible Sequences

First we give the precise mathematical definition of a secondary structure. Using the
terminology of graph theory [3] an RNA secondary structure is defined as a vertex labeled
graph on n vertices with an adjacency matrix A fulfilling [76].

(1) ajig1 =1for 1 <i<n—1;

(2) For each i there is at most one k # ¢ — 1,7+ 1 such that a; ; = 1;

(3) Ifa;; =agy=1and i <k < jtheni<l<j.

An edge (7, k), |i — k| # 1 is called a bond or base pair. A vertex i connected only to i — 1

and 7+ 1 it named unpaired. We will denote the number of base pairs and the number

- 11 -
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of unpaired bases in a secondary structure s by n,(s) and n,(s) respectively. Note that

1y (5) + 2np(s) = n is the chain length of the molecule.

There are various but equivalent representations for RNA secondary structures (fig-

ure 3):

a) b)

e) -« (CCCCCCCC- CCCCC MM Lo (CCC e DI CCCCo e CCC e IININNNN))

Figure 3: Different representations of one RNA secondary structure. Notation a) is common in biology
and shows the secondary structure as a planar graph, b) is the corresponding tree, and c) gives the the
linear string encoding for the structure.

a) In biology RNA secondary structures are commonly drawn as planar secondary struc-
ture graphs.

b) For some considerations it can be useful to translate the secondary structure into a
rooted ordered tree by mapping base pairs to internal nodes and unpaired nucleotides
to leaves [22, 25].

¢) For computer handling the string representation is usually chosen. It is obtained by the

bS]

following rules: (i) an unpaired vertex k& is denoted by z, =’.” whereas (ii) a pair [, j]

with i < j is represented by z; =’(’ and z; =’)’ . Taking into account some biophysical

- 12 -
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constraints one can easily see that the set of all secondary structure is generated over
an alphabet ’.()” by the context free grammar: G : S — .|’ | S| SS|(’S9)”, [38].
d) A more mathematical view on RNA secondary structures interprets them as a permu-

tation. The rules for this mapping are explained in detail in section 3.3 [58].

Similarities and dissimilarities of RNA secondary structures can be expressed by means
of quantitative measures with metric properties. These measures depend on the authors’
favored representations [46, 69]. Thus they compare the tree representation of RNA
secondary structures with tree-editing whereas the compare the string representation with

string-compare strategy.

A variety of algorithms [49, 50, 54, 81, 82], and different sets of thermodynamic pa-
rameters [26, 60, 74] have been used for the prediction of RNA secondary structures.
Fortunately, it has been shown recently [73] that some relevant qualitative features and
statistical properties of the sequence-structure mappings are largely independent of algo-
rithm and parameter set. Statistical characteristics of RNA landscapes on the level of
secondary structures are accessible by mathematical analysis and computer calculation.
RNA landscapes belong to the same class as well known combinatorial optimization prob-
lems (traveling salesman problem) and simple spin class systems [63, 65]. The notion of a
landscape has been extended to combinatory maps, thereby allowing for a direct statisti-
cal investigation of the sequence structure relationships of RNA at the level of secondary
structures [21, 72]. There are intrinsic properties of this mapping that can be formulated
in the following way

1. There are many more sequences than structures.

2. The frequency distribution of structures is sharply peaked. There are few common
structures and many rare ones. The distribution follows Zipf’s law [80].

3. Sequences folding into the same structure are distributed randomly on the set of ”com-
patible” sequences. There exist neutral paths in sequence space along which structures
remain unaffected by mutation.

4. Any desired secondary structure is formed by a sequence that can be found close to an

arbitrary initial sequence.

13-
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The shape space consisting of all secondary structure graphs provides an example for a
level of coarse—graining that except of physical relevance is ideally suited for mathematical

modeling.

RNA secondary structures are simple in the sense that they only distinguish unpaired and
paired regions. Pairs are formed with respect to the underlying alphabet of nucleotides.
Caused by biophysical and biochemical constraints, in general only some bases are able
to pair, i.e. in the case of the biophysical alphabet (A,U,G,C) admissible pairs are only
(AU,UA,GC,CG,GU,UQG). Hence for an alphabet A a pairing rule T1 on A is given as

a set of pairs {[z,y]} C A x A, such that [z,y] € Il implies [y, z] € 1.

At this point we proceed with an analysis of RNA secondary structures that is free from
chemical or physical restrictions. We will consider secondary structure over arbitrary
alphabets with arbitrary pairing rules. Each secondary structure s is determined by the

set of contacts of s:

N(s) 2L {[i,k]|agr=1,k#i—1,i+1}.

A sequence z is said to be compatible to a structure s if and only if the nucleotides z;
and z; form an admissible pair i.e. [2;,2;] € II, for each base pair [7, ] € II(s). C[s] is

the set of all sequences that are compatible with the structure s.

(r1,7r2,23,%4,%5, L6, T7,T8,T9, T10,T11, T12, 13, T14)

I

(w1, w6, 77, 08,79, 210) X ((v2,714), (¥3,713), (¥4, 712), (£5,211))

Bases: a =4 (A,U,G,C)
Base pairs: 3 =6 (AU,UA,GC,CG,GU,UG)

Figure 4: Partition of a sequence according to a structure. Natural RNA sequences are assembled from
a four letter alphabet and form six base pairs

— 14 -
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Remark: For the size of a compatible set we obtain |C[s]| = a"+ "» (We denote the

size of the alphabet A by a and the number of distinct base pairs by f3).

Consider the sequence to structure mapping f, : Q7 — S,,, where Q" denotes the gener-
alized hypercube of dimension n over an alphabet of size . We know a priori that the
preimage f,!(s) which consists of all sequences adopting the secondary structure s is con-
tained in the set of compatible sequences C[s]. We call the sequences = € f,;!(s) neutral
with respect to s. For any sequence = € f,'(s) neutral neighbors of z are those sequences
z' € f71(s) in the hypercube Q7 that differ in exactly one base. Consequently C[s] could
be provided with a graph-structure in which in particular sequences of Hamming distance
1 are adjacent. However, for RNA secondary structures all neutral neighbors of a sequence
z are located in the set C[f,(z)]. Unfortunately, the induced subgraph Q2[C[f,(z)]] is
not connected — it decomposes into ‘hyper-planes’ defined by a particular choice of the
base pairs. Even with GU pairs the corresponding graphs are still not connected: there
is no path of (subsequent point mutations) that would, for instance, convert a GC pair

into a CG pair.) Therefore we introduce the graph C[s]:

Let s be a secondary structure, then the graph of compatible sequences is

e Ny (s np(s)
Cls] &L Q7+ () x 9t

Remark: Obviously C[s] has the vertex set C[s] and by definition of the product of
graphs, two sequences z,y € C[s]| are neighbors, if they differ either
e in a single position ¢ which is unpaired in s, or

e in two positions i and j which form a base pair [7, j] € s.

Note that two graphs C[s], C[s'] are isomorphic as graphs iff both have the same number
of unpaired and paired bases. Accordingly, two different secondary structures s,s’ € S,

can lead to one and the same graph of compatible sequences.

— 15—
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3.2. Neutral Networks as Randomly Induced Subgraphs

In order to facilitate the understanding of the following section we shall state some basic

facts of graph theory [3]:

~ A graph is an ordered pair consisting of a vertex set v[G] and an edge set e[G].

— An edge is defined by an ordered or unordered pair of vertices. For our purposes we
consider undirected graphs whose edges are unordered tuples.

— Two vertices v and v’ are called adjacent if and only if {v,v'} € e[G].

— A graph is called finite if and only if v[G] and e[G] is finite.

— A graph G' is a subgraph of G, if v[G'] C v[G] and e[G'] C e[G].

— Let X C v[G]. The induced subgraph of X in GG, G[X], has the vertex set v[G[X]] = X
and the edge set e[G[X]] == {{v,v'} |v,v' € X and {v,v'} € v[G]}.

— Two vertices v and v’ are connected in G if a series of vertices (v = vy, v, ..., vy =)

can be formed such that {v;,v;41} € e[G] fori=1,...,m — 1.

Suppose f, : QF — &, is a prescribed sequence to structure mapping and s € S, a fixed
RNA secondary structure then following Reidys et al. [59, 56] the neutral network with
respect to s, I',[s], is the induced subgraph of f;!(s) in C[s], i.e.,

nls] <= Cls][f7 ()]

It can be shown that neutral networks constructed as random graphs are in a certain sense
dense and connected with probability one. In other words a "topology” of the network
can be expected that is ideally suited for evolutionary adaption.

The major concepts entering into the construction of neutral networks have been es-

tablished by Reidys et al. [56, 59]. We recall them briefly and state the results without

proofs.

Let H be a finite graph. Then the set of all induced subgraphs in H is denoted by G(H).
Further suppose A € R with 0 < A <1 to be given and set for G € G(H)

po(G) << MGl (1 = y)LHII=IvIG)

—16 -



NEUTRAL NETWORKS

Then evidently g, is a probability measure and together with G(H) we obtain a probability

space

where P(X) denotes the power set of a set X.

Remark: FEach graph G € G(H) can be constructed by selecting each vertex v € v[H]
with the independent probability 0 < A < 1. This yields a set V) of vertices. Then G
is the induced subgraph of V) in H, ie., G = H[V)], and G is called randomly induced

subgraph

Let G < H be a subgraph of H then the boundary of G is defined by

0G = {v e v[H]\ Vv[G] | Fv' € v[G] : (v,v") € e[H]}

and the closure of G in H is given by G =< H[0G U v[G]]. A subgraph G < H is called

dense in H if and only if G = H. Then for randomly induced subgraphs on generalized

hypercubes mathematical explorations result in the following theorems.

Theorem 1. Let (Q7), be a sequence of generalized hypercubes and I',, < Q7 a randomly

def

induced subgraph. Suppose \* ==1— ¢/a then

lim p,{l', is dense} = { (1) }CZ: :\\ z i*

Theorem 2. Let (Q7), be a sequence of generalized hypercubes and I',, < Q7 randomly

induced subgraphs. Suppose N\* =L 1 — '~{/a then

lim w,{l', is connected} =
n—odo

1 for A> X"
0 for A< ™
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O Qr==Dr==O-~~B---0----0-~~-0
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Figure 5: Connectivity and density of subgraphs. The vertices of the subgraph are indicated by black
nodes. A couple of vertices is connected (solid line) if and only if it is connected in the underlying graph.
On the left we present a graph that is dense but not connected at all. On the right side a dense and
connected subgraph is shown.

Remark: Aninduced subgraph I',, whose vertex set is selected by an uniform probability
A from the vertex set of the generalized hypercube Q7 is for A > 1— =¢/& and infinite chain
length almost surely dense and connected and almost surely non-dense and disconnected

for A <1 - '"¢/a.

In figure 5 we give two distinct examples of subgraphs in order to demonstrate the impor-
tance of density and connectivity. Note that although both properties for infinite chain
length use to have the same critical probability A, for finite chain length a subgraph does

not need to comply both attributes.

Let us now return to RNA secondary structures. We proceed by considering randomly
induced subgraphs of the graph product QI+ x Qg” that are induced by certain subsets
of vertices. A priori there is no reason why the probability of being ”"neutral neighbor”!
should be the same for both single base and base pair mutations. Therefore we construct

randomly induced subgraphs in each of the generalized hypercubes Q7+, QZ”.

Model I: lLet s be a secondary structure with corresponding graph of compatible se-

quences C[s] = Q7 X Qgp. We consider the set of all subgraphs G < C[s] such that

Here we mean by neutral neighbor an RNA sequence differing in exactly one base that has the same RNA secondary

structure as the reference sequence.
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G = C[s][V] is an induced subgraph of C[s] with V' C v[C[s]]. Fach set V C v[C[s]] will be

constructed in the following way

- For a vertex v = (vy,v,) with v, € Q% and v, € Qg” the coordinate v, is selected
with probability X\, and v, with probability X,.

- Finally a vertex v = (vy,v,) is selected if either v, or v, have been chosen.
Writing Xu,p = Ay + Ap — Ay, we set

Nn7)‘u7>\p (G) def XEI’E)G]'(I _ Xu’p)a"uﬁnp—h/[(}]l

where X, 1 a probability measure on the set of all induced subgraphs. Then we define
a neutral network I'\[s] < C[s] to be an induced random subgraph of C[s] with underlying

MEASUTE Xy p-
Before we proceed with the fundamental result on model | we introduce some terminology:

Let G1,Gy be graphs, I' a subgraph of Gy x Gy and (z,y) € v[I']. The fibers &, d),l; of

I'in Gy x G5 are the induced subgraphs in G and G;:

®T LG x Gy[{y € v[Ga]| (z,y) € v[[]}] in G and

<T>_1; LGy x Go[{z € v[G1]| (z,y) € v[I']}] in Gj.

It was shown in [56] that for randomly induced subgraphs T'l [s] < Q" x QZ” each fiber
(5]

I I
@5;[5] is isomorphic to a random graph ', and accordingly @51’” is isomorphic to I'y, .

In other words we have

V(v1,v9) € v[[L[8]] : @53'[5] ~1, and @5}[5] =T, .

This finally leads to a sufficient criterion for density and connectivity of randomly induced

subgraphs following model I.
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Corollary 1 Let I'! [s] < Q" x QZ” be a randomly induced subgraph obtained from model
I such that X\, > 1— “Va=' and X\, > 1 — #=/B~1. Then

lim p,{I'\[s]is dense and connected} = 1.
n—oc

In Model | point mutations and pair mutations are assumed to be completely uncorre-

lated. To introduce the other extreme model 1l will be developed.

Model I1:  Let s be a secondary structure with corresponding graph of compatible se-
quences C[s] = Q0 X QS”. Subgraphs T',,, and T, are constructed randomly. Therefore
a vertex set Vy, is created by selecting each vertex in Q7 with probability A, and V,,
by selecting each vertex in QZ” with A,. Then Uy, = Qp+[Vy,] and ', = QZ” Vi, ]-

Finally a neutral network T'1[s] < C[s] is defined to be T'1[s] <LT, x T, . This is equal

to I'1[s] = C[s][Va, X Wi, ].

All subgraphs constructed in this way form a probability space with probability measure

ﬂAu,Ap(Fg [s]) = ﬂnu,xu(rnu) X ﬂnp,,\p(rnp) .

where p,,  (I'n,) = )\l:/[r"'“]l(] _)em =Ml and By, 5, Tespectively.  We have
11 11
<I>51" = I, and @5;[8] = I'p, where we assume p, @, » to be the underlying

probability measures. The situation can summarized by the following diagram:

n
Qo x Qp°

]

Uy, X Up,

AN

Iy L'y

u r

11 1T
Since @5”[51 =1,,, @5"[5] = I',, analogous to model |1 we derive a criterion for density

and connectivity of a neutral networks that are randomly induced subgraphs I'll[s].
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Corollary 2 Suppose A\, > 1— “Va~' and A\, > 1 — #=/B~1, then we have

lim p,{T[s] is dense and connected } = 1.
n—od

In order to connect the random graph theory with the combinatory map arising from
folding RNA sequences into their secondary structure we need to estimate the fraction of

I, [s]|/|Cls]| is smaller than A, A, since

def

neutral neighbors A, and A,. In general A
Ay and A, are conditional probabilities, provided a sequence is folding into a specified
structure what is the average fraction of neutral neighbors separately in the unpaired
and paired regions. The effect is called buffering [39]. Therefore we have to estimate the
fraction of neutral neighbors in terms of A, and X, as well as the fraction X of neutral

sequences in C[s].

3.3. Two Neutral Networks in Sequence Space

In the previous section a model was envisaged that describes neutral networks correspond-
ing to RNA secondary structures and their intrinsic properties in terms of two parameters
Ay and A,. They simply reflect the average fraction of neutral neighbors in unpaired and
paired regions of an arbitrary compatible sequence. Thereby we are encouraged to ask for
the relationship between two and more neutral networks in sequence space which could
play another decisive role in evolutionary adaptation mechanisms. We commence to rep-
resent an algebraic view on secondary structures that has been introduced by Reidys et al.
[58, 59]:
— All RNA secondary structures adopted by sequences of chain length n can be mapped
into elements of the symmetric group S,. In other words an arbitrary secondary struc-
ture is equivalent to a permutation of n positions. The corresponding mapping is defined

as follows

TS S; sew(s) 22 ] G,k
[i,K]€T1(5)

where (i, k) stands for a transposition in S, and [i, k] for a base pair of s. By Il(s)

we denote the set of all base pairs of s. Clearly the map 7 is an embedding of the set
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S of secondary structures in the set S, of permutations. Moreover it can be verified
that 7(s)? = 1, i.e., for any secondary structure the permutation assigned by 7 is an
involution.

— In a natural way the embedding of § into the symmetric group gives rise to new metrics
on the set of secondary structures. All distance functions on S, can be applied to
secondary structures as well. One commonly used is defined by the minimum number
of transpositions that are necessary to convert 7(s) into 7(s'). To our knowledge there
is no other metric on RNA secondary structures that is equivalent to this one. However
nothing new was found concerning statistical properties [58].

— As already mentioned permutations corresponding to secondary structures are involu-
tions. A theorem of group theory [68] states that any two involutions generate a dihedral

group, D,,. Therefore 7 in a natural way gives rise to the mapping

1:8x 8 —={Dm <Sn};  (5,8) = g(s,8") == (m(s), 7 (s)).

As the key result of the above considerations the following theorem can be stated:

Theorem 3. (Intersection—Theorem) Let s and s' be two arbitrary secondary struc-

tures. Then

Cls] N C[s']#0.

Example: 1 The sequence drawn in the middle gives an example for a sequence that is

compatible with the structure to its left as well as to ils right side.

(DD DD I AGGAGGAUcCCUUUUU LN M

A primary outcome that can be directly deduced from the existence of sequences being
compatible with both structures is that any two neutral networks that are connected
and dense come very close in sequence space (Hamming distance < 4) [59]. We define

I[s,s'] =£C[s] N C[s] and call I[s,s'] the intersection or the overlap of s and s'. As

already presumed we now claim that sequences on the overlap or at least ‘close’ to it are
potential candidates for transitions between neutral networks of RNA secondary structures

in the course of evolutionary adaptation.
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Remark: Theorem 3 cannot be extended to three different structures.

If sequences on the intersection are as important as claimed one should properly ask for
their number and how they are localized in sequence space. In order to answer these

questions we firstly have to deepen our algebraic considerations:

The dihedral group given by (7(s), w(s')) is easily seen to be a semi-direct product of the

form

(r(s)om(s")).
The cyclic group (7(s) o 7(s')) operates on the set of all ‘positions’ of the sequence
z = (x1,...,%,). Any permutation induces a cycle decomposition and so does the gener-
ator 7(s) om(s') of this group, i.e. it can be represented as a minimal product of disjoint

cycles  w(s)om(s) =[[=,&  where

o0 = {(r(s) o ()" (20) | = 0,..., k) with b = max{j € N| (r(s) o (') (e) # ¢} -

In the sequel we omit the index z, of a cycle if confusion is not possible and write
& = (i1,..., 1) (where w(s) o w(s")(4;) = di41 if [ < &k —1 and 7(s) o w(s")(ix) = #1).
k is said to be the length of the cycle &.

Apart from ordering of its elements each cycle £ = (4;,,...,1;,) induced by 7(s)o 7 (s')
of length greater or equal than two is equivalent to a set z = (d1,...,ix) such that
[i1,041] € H[s]UTII[s'] for [ = 1,...,k — 1. In other words the entities of any cycle
generated by 7(s)om(s') can be reordered with respect to the pairing rules defined by

structures s and s'. Such a rearranged set z will be called orbit.

Remark: We shortly want to present the idea of the rearrangement. Let ¢; be an un-
paired position in structure s’ and 75 an unpaired position in s. Further on let [7y, 73], [i3, i4]

form pairs in s and [z, i3], [4,75] in 8’. Then starting with position #; a chain can be built

up

These five positions are included in a cycle £ induced by w(s)on(s'):

5 = <i17i37i5ai47i2>

~-93 —



NEUTRAL NETWORKS

since i3 = 7w(s')(7w(s)(i1)), 15 = 7(s')(7w(s)(d3)), ia = w(s')(7(s)(i5)), etc. . The corre-
sponding rearranged orbit is given by z = (i1, 42,13, i4,%5) where by definition [iy,142] €

T(s), [d2,i3] € TI(s'), etc.

The orbit z is called closed if additionally [iy, ;] € [[s]UII[s'] and open otherwise. Open
orbits will be denoted by z° whereas closed ones are denoted by z°. For completeness we
have to go over cycles of length one that are equivalent to fixed points of 7(s) o w(s').
This is done in the following form: Let & = (i) and & = (i) be two cycles of length
one then a orbit z = (4,¢) is defined if and only if [7,4] € TI[s] N1I[s'], i.e. [i,7] form a
common base pair of structures s and s’, otherwise two orbits are derived with z = (7)

and 2/ = (i).

The set of orbits corresponding to all cycles induced by 7(s) o w(s') defines the orbit
decomposition ® with respect to the pair of secondary structures s and s’. The following
example shall demonstrate the procedure given above

Example: 2 Let s = ‘((.((....)).)).7 and s' = . (CCCC...)) 0000

Then the corresponding permutations are given by

()_123456789101112131415
8= X14 13 3 11 10 6 7 8 9 5 4 12 2 1 15

and

71(51)—1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T\1 15 14 13 11 10 7 8 9 6 5 12 4 3 2

The product w(s) o w(s') is equal to

1 2 3 45 6 7 8 9 10 11 12 13 14 15
3 4 14 5 6 10 7 8 9 11 13 12 15 1 2

which is equivalent to

1 3 14 2 4 5 6 10 11 13 15 7 8 9 12
3 14 1 4 5 6 10 11 13 15 2 7 8 9 12

and this finally gives

&= (1,3,14) = z1 = (1,14,3)

& = (2,4,5,6,10,11, 13, 15) = za = (6,10,5,11,4,13,2,15)
&= (7) = zz3= (7)

&y = <8> = Z4 = (8)

&y = <9> = zp = (9)

G = (12) = = (1)
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In figure 6 we use the circle representation for RNA secondary structures [54] in order

to visualize the construction of orbits corresponding to the pair of secondary structures

(s,8").

15 15 Figure 6: Circle representation for RNA

secondary structures — a chord of the circle
13 corresponds to a base pair. If both struc-
tures (s,s’) are superimposed the chords
induce paths in the circle which correspond
to the orbits (dashed lines).

Now together with the orbit decomposition induced by s,s’ we are able to give a rough

approximation for the number of sequences being compatible with s and s'.

Corollary 3 Let A be an alphabet of length o and s and s’ be two secondary structures.
Suppose that A admits at least one type of complementary base pair. Then |C[s]NC[s']| >

al®l where ® is the set of orbits induced by s and s'.

For any predefined pair of secondary structures (s, s’) we now shall determine the size of
the intersection in the case of the ‘biophysical’ (AUGC)-alphabet. For that reason we
introduce alphabets of unpaired and paired bases A; == (A,U,G,C) and A, =< (AU,
UA,UG,GU,GC,CG), respectively. Let z° = (iy,...,1,) be an open orbit of length

v. Then we write N2 for the number of possible chains (ay,...,a,), @; € Ay such that
(avjoiy1) € Ay for 1 < i < v—1. Accordingly for a closed orbit z¢ = (iy,...,4,) we set NS
to be the number of chains (aq, ..., @,), a; € Ay such that (a;a;41) € Ay for1 <i<wv-1
and (o) € Ay. We immediately see that a sequence must cover all orbits induced by
s, s with sequences fulfilling the above given constraints in order to be compatible to a

pair of RNA secondary structures s and s'.
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Now the following lemma concerning N? and N/ can be stated

Lemma 1 Let z° be an open orbit of length v then

(S e

And let z¢ be a closed orbit of length v = 21 then

(= S [

Proof: The proof is an application of the explicit formula for Fibonacci numbers
n n
fn:%{(ﬁ> —(ﬁ)};fornZl,nE]N..

Given a pair (s,s') of secondary structures and the corresponding orbit decomposition
® the number of open orbits of length v is denoted by n? and accordingly the number
of closed orbits of length v by n{. Now we are in the position to evaluate the exact
cardinality of I[s, s'] representing the number of sequences that are compatible with s and

s' respectively.

Corollary 4 Let s,s' € S, be two RNA secondary structures living on the ‘biophysical’
alphabet AUGC. Then the cardinality of their intersection 1(s, s') is given by

1(s,s")| = [T (Vo)™ - (N5,)" = [] 2" (N9)™ (Ng,_s) ™
v=1 v=1

where Y v (nd + nf) =n with nf, =0 and n{, = 0 if no orbit of this kind is formed.

Example: 3 For the pair of structures defined in the previous example we immediately
derive a size of the intersection of 281600 . In this case the intersection covers more than

1 percent of C[s] and more than 3.5 percentage of C[s'].

The intersection corresponding to a pair of secondary structures in a natural way can
be equipped with a canonical graph structure. For that reason we consider the induced

subgraphs C[s][I[s, s']] and C[s'][I[s, s']] and define the intersection graph to be
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I[s,s') == (1[s, 5], e[C[s][A[s, ST U e[ C[s][I[s, s'T]]) -

Consequently two vertices z,y € Z[s,s'] are adjacent if they are either adjacent in the
subgraph C[s][I[s, s']] or in C[s'][I[s, s']]. The orbit decomposition gives some more insight
into the topology of 7. Adjacency of two sequences on the intersection graph is given
if they either differ in a common unpaired position or in positions that form a common
pair or in positions that are unpaired in one structure and paired in the other. One
can verify that these positions are located in orbits of length one or two. Due to the
number of orbits of length smaller or equal than two commensurate islands of the same
size of intersection sequences are generated on C[s] and C[s'] respectively. Orbits of length
greater than two create paths in the sets of compatible sequences C[s] and C[s'] that
connect these islands. This may be described as follows: Let z = (i1,4s,...,4,) be an
orbit induced by the secondary structures s and s’. z is arranged in the following way
[ig,igg1] € HU[s] UL[s'] with £ = 1,...,v — 1. If we restrict ourselves to structure s
then there exists a fixed £ € {0,1} such that [izx4e, tok4et1] € 11[s] with £ =0,1,2,...
all indices taken (modv) . Let o = (as,...,a,) and o' = (af,...,a)) be two different
chains such that (aja;11), (@fal, ;) € Ay Then we can transform o into o' by successive
exchanges of pairs from (@og4r02k4e41) tO (O"2k+fo‘,2k+£+1) with £ = 0,1,... all indices

taken (modv). The situation is depicted in figure 7.

Figure 7: Embedding of the intersection (grey points) in C[s]UC[s']. The intersection graph decomposes
into islands that are connected by paths in C[s] (white points) and C[s'] (black points) respectively.
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In section 3.2. two models for randomly constructing a single neutral network of an RNA
secondary structure were introduced. These models need to be modified for two neutral
networks corresponding to structures (s, s’) thereby taking into account the existence of
sequences being compatible with both structures. Therefore we propose to introduce a
joint neutrality parameter p(s,s') that gives the average probability of a sequence on the

intersection to adopt one of the structures s or s, i.e.

p(s,s") == Prob{v € T,[s]UT,[s']|v € I[s,s]} .

The value of the conditional probability p is given by

NN
Pl )= e T

Cals'TN Clsl|
|1[s, s']]

The sets I',[s] N C[s'] and 1',,[s'] N C[s] cannot be described in terms of A or A’ since more
than one network covers the subset of sequences being compatible with structure but not
adopting it. Therefore p needs to be considered as an independent and new parameter
describing the interaction between two neutral networks. For any sequence v € I[s, s'] a

random decision has to be realized according to the diagram:

v e v[l,[s]]
,u(sv's’)

/N\

vel v e v[[',[s]]

slJUv[la[s']]

Furtheron the remaining sequences are handled according to the random model introduced
in section 3.2. In the sequel we define (s, s') <= A[s]/(A[s]+A[s']). This assumption leads
to an extension in the case of two neutral networks which only requires one additional

degree of freedom.
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4. Dynamics on Neutral Networks

In molecular evolution the source of variation is the limited accuracy of replication. Copy-
ing errors, mutations, produce RNA sequences which differ from the parental template
sequence. A change in genotype can result in a change in phenotype — the RNA structure.
Mutations thus act on the nucleotides and provide the genetic reservoir from which better

adapted variants are chosen. They fall into three classes

ACGAUGGGUUACClGlAGGCAAGUCGUAG

Point mutation H
ACGAUGGGUUACCl AlAGGCAAGUCGUAG

ACGAUGlGGUUACCGlAGGCAAGUCGUAG

Insertion H
ACGAUG GGUUACCG|GGUUACCG|AGGCAAGUCGUAG

ACGAUGGGlUUACCGAGGClAAGUCGUAG

Deletion H
ACGAUGGGl AAGUCGUAG

Figure 8: Three classes of mutations. Point mutations are copying errors with single base exchanges;
they leave the chain lengths constant. In case of insertions part of the template sequence is duplicated
during replication. A deletion leads to an error copy lacking part of the template’s sequence.

While insertions and deletions alter the size of the genome, the chain length is kept
constant under point mutations. Mutational frequencies of all classes are phenotype de-
pendent. Position dependence of point mutations are much weaker than that of insertions
and deletions. Therefore a uniform error model of point mutations was conceived [12, 13,
14, 15, 16, 61, 64] and successfully applied to replication and mutation of RNA molecules

in vitro, and of viroids and RNA viruses in vivo.

Mutations can be viewed as ‘moves’ in an abstract space of configurations. This provides

a natural arrangement of the configurations in a geometrical context. Configurations that
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can be interconverted by a single move may be viewed as neighbors. Consequently the
smallest number of moves necessary to convert two configurations into each other can be

interpreted as their distance.

In this contribution we consider the most simple example of Darwinian evolution. A
population V of replicating RNA sequences are competing for a common resource. We
restrict ourselves to point mutations. This ensures that for a fixed chain length n the

configuration space can be described as a generalized hypercube Q7.

Definition 1 (population) Let Q7 be the generalized hypercube of all sequences of
length n over the alphabet o. A population V is a (finite) family of vertices (v; € Q7 |1 €

{1,...,N}) .

Following the work of Eigen et al. [15] we consider a population of asexual replication
strings (RNA sequences) of fixed length n evolving in a stirred flow reactor whose total
RNA population fluctuates around a constant capacity N. The definition of the overall
replication rate of a sequence together with the constrained population size specifies our

selection criterion.

The minimal representation of the corresponding reaction network of polynucleotides [

(k=1,...,v) is given as follows:
Ak Qi

A +T —5% L+, ik=1,..v=an"
(1)

k — % k=1,...,v=a"

where Ay is the replication rate of genotype [ and () is the matrix of mutation prob-
abilities, );x being the probability for a parent I; to have an offspring of genotype Iy,
and v is the number of possible genotypes (2" or 4™). The total population size is kept
constant over time by a flux ®(f) compensating the production of new offsprings. The
model mimics the asynchronous serial transfer. In the limit of infinite population size the

time evolution in the flow reactor is described by the quasi-species equation

i(t) :ZQkiAk(t)mk(t) —z;(£)®(t), i=1,...,.v=a" (1)
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where z;(t) denotes the concentration of genotype I; at time ¢, and ®(t) = > A (t)zx(t)
if 3" a;(t) is scaled to one. ’

i
Similar to the experiments in the laboratory the RNA populations we deal with should
be small compared to the size of the sequence space. This forces a description in terms
of stochastic chemical reaction kinetics. T'wo methods are appropriate to model the
stochastic process taking place in a stirred flow reactor.

(1) Gillespie [28, 29] has described an algorithm for numerically simulating the time evo-
lution of any spatially homogeneous mixture of chemically reacting molecules. A brief
description of this method can be found in appendix B. The implementation for the
flow reactor dynamics using this algorithm was realized by Fontana and Schuster [24].
For a population of RNA molecules evolving in a flow reactor the underlying stochas-
tic process can be seen as a birth and death process. Birth events are realized by
replication whereas death is realized by the unspecific dilution flux.

(2) While giving a complete description of the flow reactor dynamics the firstly mentioned
stochastic formulation sometimes is suitable for a detailed mathematical analysis be-
cause of the fluctuating population size. Avoiding this the quasi-species model can be
approximated by a generalized birth death process, following the lines of Nowak and

Schuster [53] (for a detailed description see appendix B).

In order to make the two methods listed above distinguishable we shall call method (1)

flow reactor dynamics and (2) the replication deletion process.

The set of replication rates {Ax}}_,; considered as a function of the genotypes {I}}_,

forms a fitness landscape f over the sequence space [79]
f:QZ—HR"'; Ip— Ay k=1,...,v=a".

However the choice of A} is somewhat arbitrary. Now the existence of neutral networks,
i.e., of sequences that share the same phenotype, motivates to define the replication rates

in the context of phenotypes such that

b:Q" = Sy f:8, = RT
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where the fitness of a genotype I} is given by f(¢([x)). Landscapes formed over extended
neutral networks show a high degree of neutrality, i.e., a large number of sequences that
have the same fitness value. They are called smooth and evolution taking place on them

is called neutral evolution.

If the phenotype of an RNA sequence is supposed to be its secondary structure in a natural
way a landscape is formed possessing a high degree of neutrality.

The next three sections we devote the study of neutral evolution. We will ask for the
time evolution not for single genotypes but for the number of sequences sharing the same

phenotype.

4.1. The Basic Model

Suppose there are only two phenotypes that also have the same fitness value, i.e., the
landscape is completely flat and the sequences space decomposes into two disjoint classes of
sequences. These classes will be denoted by GGy and G5. Let w;, be the average probability
to get a sequence on (i by a replication reaction if its template was a sequence on

G, 1,k = 1,2. For the moment we assume wyy = wy; = w and hence wy; = wyy = 1—w.

4.1.1. Constant Population Size

Now we study the evolutionary behavior of a replication deletion process acting on the
bipartition of the sequence space. Let X; be the random variable counting the number
of sequences in a population V; that belong to G;. Because of symmetry we are allowed
to restrict ourselves to G'1. We shall approximate the corresponding replication-deletion
process by a birth-death process in continuous time [42, 53]. The infinitesimal transition

probabilities are given by

A¢ b+ o(h) k=41

._ _ ) e h4o(h) k=0-1
Practh) = PriXeen =RIXe= 0= 09 0,4 ) hto(h) k=t

o(h) k#6,0£1
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with
e = %(ﬁw{-(N—l—E)(l—w))
pe = ywvem (=D —w)+ (N =fw) 0SSN

where Py ny1(h) = Py,—1(h) = 0 ensures reflecting boundary conditions. Sometimes it
can be appropriate to consider a time scale depending on the mean fitness of the population
[29]. This ansatz takes into account that a population with higher mean fitness is expected
to replicate faster in time than a population with lower fitness value. For the example
presented here the mean fitness is always equal to one and does not vary. Hence no

transformation is necessary.

First we will state an ergodic theorem [20] that implies the existence of a stationary

distribution for our birth death process.

Theorem 4. Let X; be a homogeneous Markov process with finitely many states
0,...,N. If there exists t* with 0 < t* < oo such that P;;(t*) > 0 for 0 < i,k < N
then there exists the limit

lim Pi’k(t) =pr for 0<2,k<N.

t—o00

Using the Markovian property of our process we can verify by induction on |i — &|:
i—k—1
1. if ¢ > k then Pz,k(h(z — k)) > H Pi_g’i_l_g(h) > 0,
{=0

k—i—1
2. if 2 S k then PZ’k(h(k — Z)) 2 H Pi+g’i+1+g(h) > 0.
{=0
Whence the theorem can be applied. We derive the stationary distribution by use of the

master equation®

T . _ _ B(a, N)
pe=sew o it =1 = B B N =B @

where a = (N —1)(1—w)/(—142w). It can be shown that 7 = Ty_; forall 0 < k < N/2.

Furthermore the following lemma can be stated.

def

2 B(z, 0)

=[xz +1)...(z+£-1)], z€ER,LEN
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Lemma 2 There exists a critical value w* = N/(N + 1) where the modality of the

probability distribution changes.

Proof: Using the symmetry property 7 = wy_j for all 0 < k < N/2 we consider
Tj — Tyq for any k < (N —1)/2

- . (—(N—l—?k)(N—w(N—l—l)))
PR TR+ )k —w) + (N —k— Dw) )

Thus we find

T < Tpq1 for w < N/(N+1)

Tp = Tgy1  for w= N/(N+1)

T > Tpy1 for w > N/(N +1) VE<(N-1)/2
|

Figure 9: For increasing w we plot the negative logarithm of the probability distribution for the states
0,...,100.

For increasing w the stationary probability distribution goes from an unimodal distribu-
tion over an uniform in the critical value w* to a bimodal distribution with peaks in states

0 and N. For population size N = 100 this is illustrated in figure 9.
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100
10

80 2

60 L o Lot =

state

20

2e+04 3e+04 4e+04 5e+04 0 20 40 60 80 100
generation state

Figure 10: One experiment. For w=0.9999 the results corresponding to one realization of the stochastic
process are presented. Starting with 100 elements on G the experiment is executed 5 - 10° times.
Assuming that 100 trials correspond to one generation on the left we plot the evolution of elements
on Gj. On the right applying the ergodic property of the process the results are used to estimate a
stationary distribution (circles) and this is compared with the analytical curve.

In figure 10 for w = 0.9999 we pursue one realization of the stochastic process. Starting
with 100 elements on G and executing the experiment 5. 10® times after 100 trials the
number of elements on G is reported. Then the results of the experiment are used to
estimate the stationary distribution which fits the analytical curve very well.

The parameter w is seen to act as a coupling constant between Gy and GG5. If w is chosen
above the critical value a strong decoupling of both sets is observed which is equivalent
to an increasing fixation on each of them. This corresponds to a new emerging attribute
of the evolutionary process that is characterized by sharp and fast transitions between
the states zero and N (see figure 10). A tool properly provided by the theory of birth
and death processes allows to describe this property. If state zero is considered to be
absorbing, i.e., Ag = 0, a quantity w,, giving the mean time when starting from state m

of being absorbed in state 0 can be declared. Following [42] we derive an expression for
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w=0; w —N-(N_1).§: Exzcv:ﬂk
0o =Y m = ~ i ((1=2w)i+w(N+1)-1)’

=1

m=1,...,N

where all 7’s, k =1,..., N are prescribed by equation (2).

Given a population that is completely located on G4 one might ask for the mean time
to lose all information ;. The term wy, in a direct way, gives an expected value about
the length of the corresponding time interval. For the example presented in figure 10
the length of this time interval is approximately 10197 generations. Figure 11 shows the
dependence of wy on w. It can be seen that wx has a minimum w,,;, close to w*. It is

exponentially decreasing for w < w,;, and exponentially increasing for w > wy,.

10

10 Figure 11: Mean time to extinction. For
population size N=100 and increasing w
the average number of generations to en-
Q ter state O for the first time when starting
with N elements Q =2 oy /N is plotted.
The solid line corresponds to the analyti-
10° cal curve whereas the circles indicate ex-

perimentally determined values.

10°
0.970 0.980 0.990 1.000

For completeness the case of unequal wi; and wyy needs to be considered. The results
are displayed in figure 12. For reasons of symmetry we are allowed to restrict ourselves
to wq1 < wqy and ask for the stationary distribution of Gy. For wyy < w* the unimodal
distribution exhibits a local maximum greater than zero but smaller than N/2. Setting

wy; < W < wyy the state zero, i.e., extinction of GG; becomes most probably. Again for
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w* < wyp < way, i.e., above the critical value, the stationary distribution has two local

maxima in states zero and N but always we find py to be greater than py.

Alternating

Extinction of Gy

|
|
|
| Revial & Extinction
|

-

Figure 12: Different evolutionary scenar-

ios depending on the tuple (w11, wa2)

Extinction of Gy

1
1
|
1
1
|
|
1
. |
Coexistence |
|
|
1
|
1
|
|
|

4.1.2. Fluctuating Population Size

Under the same initial conditions we now study the stochastic process corresponding to
the flow reactor dynamics. Taking into account fluctuating population size we have to
consider the two-dimensional random variable (X¢,Y;) where X; is counting the number
of sequences in a population belonging to Gy and Y; those belonging to GG3. Then the

infinitesimal transition probabilities are defined by

Aoh + o(h) d'=z+ 1,y =y
Ayh +o(h) =z, =y+1
pizh 4 o(h) '=z-1y =y
P(r,'y),(r’ y:)(h) = ,uyh + O(h) ! = x, y’ =y — 1
L= Ao+ Xy + po + py)h+o(h) 2 =2",y=1y
0 r4+y<0z<0y<0
o(h) otherwise z,y=0,...
with
zw~+ y(1 —w) (1 —w)+yw T y
= N(2,y) = ———"—— = — = —.
Al‘(w7 ) N(l’ + y) 3 y(Tay) N(m + y) 9 /'L“L‘(‘rhy) N2’ ,“y(-ray) N2

and Py ) (or) () 22 Prob{ (X e, Vi) = (2, y)| (X0, Vi) = (2, 9)}-
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(3)

The stationary distribution of the random variable (X4, Y:) is fully determined by the

def

relation

PUX,Y) = (5,9} = P(X+Y =a4y) - P(X =2[X +Y =a+y)
X; +Y; follows a birth death pro-

We immediately see that the random variable 7,
Z=z+1
Z=z-1

cess because X; and Y; are independent random variables at time ¢ and therefore the
z=12

N=1h + o(h)

infinitesimal rates are additive. Thus we find for z = 0,1, ...
2N~2h + o(h)
1— (N +2)N~2h + o(h)
otherwise

P(ZH_}L:Z,th:Z) =
o(h)
Consequently the stationary probability distribution for the random variable Z; can be
(4)

determined [42] and is seen to follow a Poisson distribution
; z2=0,1,.

Now it remains to show that tlim P(X: = 2|Z: = z) = P(X = z|Z = z) exists. Let
—00
(5)

h' = VA be a small time increment. Then the probability that there is a birth event for

random variable X; under the condition that Z; remains constant is
(Ao(@,2 = 2B + ok)) - (y (@ + 1,2 — & — D! + o(7)

z)h' +o(h")) - (Az(z,2— 2z — 1)h' + o(h'))
(222 = )y (@ + 1,2~ 7 — 1) A2, 2 — 2 — Dty (2,5 — )+ o(h)
(6)

_I_
(2(=142w) + (z = 1)(1 - w));

S
(=(z =D (=142w) + (2 = Dw);

infinitesimal birth and death rates are given by

(:“y (‘r7 (2
The same argument runs for a conditional death event of X;. Thus for 0 < 2 < z the

—__r

(e(=1+ 20) + 2(1 - w)) + y2
N3 (2=1)

2=

= N3z

(—z(=1+42w)+ zw) +

- T
~ N3z
Consequently by solving the corresponding master equation [42] we get the conditional
B(d', z)

stationary distribution
with 7(0]z) =1

_ _m(z]?)

p(ac|z) -z
2 m(@]z)
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where @' = 2(1 — w)z(z — 1)/((—=1+ 2w)(2z — 1)).
Hence the left side of equation (4) is fully determined. And finally the stationary prob-

ability for the random variable X; counting the number of elements belonging to G
(8)

becomes

For increasing w and an average population size of 100 we present in figure 13 the sta-

tionary distribution for random variable X;.

17
it

i
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W%}””
/7]

i
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Figure 13: For increasing w and N = 100 we plot the negative logarithm of the stationary probability

distribution for random variable X;.

It is much harder to give an analytical value for the critical rate w where the modality

of the probability distribution changes. The conditional probability distribution p(z|z)

shows the same behavior and its modality changes for w = (2z% — 1)/(2(2*+ 2 —1)). The

population is biased in the value N and therefore it is appropriate to assume that the

critical value is located at w* = (2N? — 1)/(2(N?* 4+ N — 1)) = N/(N +1).
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Remark: Let {G;}", be a disjoint partition of the hypercube with respect to m
different phenotypes. Let further w;; with ¢,k = 1,..., m be the average probability by a
replication reaction to get an element on G, if its template was chosen from G;. Then w;;
is called phenotypic fixation probability and w;; with i # k is called phenotypic transition

probability.

4.2.0ne Neutral Network — Single Shape Landscape

The counterpart of the single peaked landscape [16] is the so called single shape landscape
on the level of RNA secondary structures. A neutral network I',[s] defined by the shape

s induces a landscape on the complete sequence space Q7 :

1 iff 2¢T,[s
fs(x) ::{0->1 iff man%S%

A single RNA secondary structure is fixed and all sequences folding into this structure

have a superior fitness o compared to all other sequences.

A detailed analytical description of the evolution of a finite population on a single shape
landscape was already presented by Reidys et al. [56, 57]. f; always induces a bipartition

of a population V in Q7:
V, = {veV| vevlLlh V., = {veV]| vgvlls)

The elements of V, are called masters because of their superior fitness and those of V,

are called non-masters.

A crucial point that was already stressed by Nowak and Schuster [53] is seen to be the

formulation of the phenotypic fixation probabilities W, and W .
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4.2.1. Phenotypic Fixation Probabilities

We first introduce some terminology

— An alphabet A is called a x—alphabet iff
(i) A consists of complementary bases i.e., A = {4y, A, ..., A, A%} where |A| =
o = 2m, and
(i) theinduced pair alphabet B (length 3) has the form B = {(A4;, AY), ..., (An, A5},
whence § = a.
Examples for x—alphabets are (G,C) and (G,C,X,K).

— Let I',[s] be a neutral network with respect to the secondary structure s and let

v = (v1,...,v,) be a sequence. Then we define the incompatibility distance d(I',[s],v)

by

d(Un[s], v) == [{[vi, vi] | [vi, vi] @ TV [i, k] € TI(s)}|

where I1 is the pairing rule of the underlying alphabet and II(s) the set of contacts of
s [57, 56].

— By setting & := {v]|d(I's[s],v) = k} a natural decomposition of the hypercube with
respect to a secondary structure s is given that in a formal way corresponds to the
different Hamming classes studied in the case of the single peaked landscape.

~ By
Ci[s] :={v|vgv[[,[s]], d(l.[s],v)=14}, i=1,...,np

we define the i-th incompatible class with respect to the secondary structure s. And

consequently the density of the i-th incompatible class is given by

("r) @t (a0 — 1)i/(a" — Tys])); 1<i<m,

Ai = [Cils]l/(1Qa] = [Tals]l =
(@ Fme —|Tp[s]]) /(" = [Tu[s]]); i=0
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Lemma 3 Suppose I',[s] < Q7 is a fized neutral network and A is a x-alphabet. Suppose
that we have a random mapping v = (z1,...,2,) — v/ = (2{,...,2!), v,v" € v[Q"] that
is defined as follows: x; = z! with probability 1 — p and z; # z} with uniform probability

p. Then
Wou(p) = Au[l = (1 =p)™](1 = p)*" + Ap(1 = p)™@(p) + A[1 — (1= p)"] @(p) + (1 - p)"

with ®(p) = [(L1 + (1 - p)*)" — (1 - p)>"].

A proof of the above lemma was given by Reidys et al. [56]. Note that W,, =1 - W,,,.

In contrast to [56] we found for W,,, the following formula

Woulp) = A{20 [0 =p)"+ (5 +00 e

s (424 ) (e 0 -) )

Proof: An arbitrary sequence in incompatible class C;[s] can be arranged as follows

L1yT2y.0eyTn, (yhyi)v te (yﬂy;) (21721)7 T (an—iyz;p—z’)

»

Ty K3 TLp—i

An incompatible base pair has to undergo mutations to become compatible. This can be
realized in two different ways. The first is to mutate one position and to leave the others
unchanged. The probability for this to happen and to obtain a compatible base pair is
p(1=p)/(@—1). The second way is to mutate in both positions. The probability to occur
and to obtain a compatible base pair is p*(a —2)/(a — 1)*. Therefore 7 incompatible base
pairs have the probability

() () () - (R

i,=0

to become compatible with the target structure. For a compatible base pair that undergoes

mutation the probability to become compatible again is p*/(a — 1) + (1 — p)2.
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Suppose there is no incompatible base pair. Then at least one mutation is required. For

this we obtain the probability

- -pd - i - 0 -pn [y oo -0 -n)

=g [y v -] - 0-p)

-t [y ra-a]”

This completes the proof of the lemma.

In the sequel we write for short w;; for the W, with 7,k = 0,1, where 0 corresponds to

a non master, and 1 to a master on I',,[s]. Obviously for i = 0,1 holds w;y + w;; = 1.

4.2.2. Stochastic Approach

Following Reidys et al. [57] we study the random random variable X; that counts the
number of master sequences in a population V; evolving in a single shape landscape. The
replication—deletion process is approximated by a birth death process. The ansatz of the

birth and death rates is completely analogous to that of Nowak and Schuster [53].

Ao+ b+ o(h) k=041
. _ o) pe-h+o(h) k=t-1
Pox = PriXun =kl X =t) = L= (Ae+pe) - b+ o(h) k=1
o(h) k#0041
with
o= o )(]]VV;F(U_1)6)(0'w11£+w01(]\7—€—1))
o= = )(Nf_}_(a_l)f)(awm(f—1)—}—w00(N—€)) 0<(<N

Note that again 0 and N are reflecting boundaries. With the same arguments as in
section 4.1. the existence of the stationary probability distribution can be shown. Hence

by making use of the master equation one can determine py = ﬂk/(zjvo ;) with

_ B k A * B(ai, N)
mo=1 and 771:—(1‘}‘(0_1)]\7) (U—I—An) Blaz, k) - Blai, N — k) ©)
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where a; = —owi9(N—=1)/A1p and ay = wo1 (N—1)/A11 and Ay = 0 wip—wor, 1,k =0,1
and A11,A10 7£ 0.

For certain ranges of the parameter the distribution is unimodal. But there are other

shapes, and we can detect two critical values altering the modality of the distribution.

The first one is wg, = NJ\_,_}_‘;” and the second w}, = %
Proof: We consider the difference w11 — mp = m((k) with ((k) := H;\il — 1. We find

¢(k) > 0 for k > 0 if and only if

(k4+1)(N+(oc—1k)(N—-14 (o —-1)k)
N(N+(oc-1)k+o)

k(owyy — (1 — woo)) + (1 — wgg) (N — 1) >

For fixed wyy and wy; the linear function on the left hand side and the monotonously
increasing parabolic function can have at most 2 points of intersection. We consider the

inequality at the points £ =0 and £k = N — 1 and find the following scenarios

1L¢0) >0 & woo <wh =2 and ((N-1)>0 &  wn > wj =
(N=1)o41)
No+1

No intersection point exists and state N is the global maximum of the stationary
probability distribution.

2.C(0)>0 & wop<wig and ((N-1)<0 & w;<why
There exists one intersection point. We get one global maximum of the stationary
probability distribution that is located between state 0 and N.

3.(0) <0 & wop>wy and ((N-1)>0 <  w; >w)
State 0 and N become local maxima of the distribution. State N becomes the global

maximum if the following inequality holds

w11>max{ (N=1(e =)+ N)(N+0-1)(1 = woo) *}

oo + (N = 1) (0 = 1) + N)(N + 0~ 1)(1 = wgo) "

4.¢C0)<0 <& wp>wj and ((N-1)<0 < wp; <wj
There exists a bifurcation value w (wg) where the distribution switches from two

maxima in 0 and a value between 1 and N to a single maximum in state zero.
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w11 (weo) =  min k+ DN+ (c-DE)(N-1+(c-1k) (N—k—1)(1— woo)

0<k<N=1 oN(N+ (6—1)k+o0)k ok

(0.980, 0.991)

Figure 14: Different modalities of the sta-

(0999099 tionary probability distribution. For N =

~log(p)

100 and superior fitness o = 1.1 depend-

| ing on the tuple (wpo,wi1) we present the
(0.999, 0.980)
distributions for the number of masters.

\

(0.999,0.930)

(0.900, 0.900)

state

In the case of infinite population size when a completely deterministic ansatz can be
applied an error threshold p* fulfilling W,,(p*) = 1/0 was shown to exist where in the
long time limit the information of the master network is lost [57]. For a finite population
size such a threshold can be defined in consistency with Nowak and Schuster [53]. For

woo ~ 1 we derive the value p* such that

oo (BN 4 (0= DE)(N = 1+ (0 — 1)k)
Wou(p™) = oin oN(N+ (0 —1)k+o0)k

which coincides with the threshold value where for the first time stationary probability

po becomes greater than p; (i=1,...,N). It can be verified that \;im Wyuu(p™) =1/0.
N =00
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4.3. Two Neutral Networks — Double Shape Landscape

In section 3.3 we have elaborated that any two dense and connected neutral networks of
RNA secondary structures come very close in sequence space since there always exists a
set of sequences being compatible with both structures. Any evolutionary event leading
to a better adapted species requires a change in phenotype — secondary structure. A
change in secondary structure is equivalent to a transition from one neutral network to
another one. It turns out that sequences belonging to the intersection play a crucial role

in evolutionary optimization.

Beside the aspect of better adaptation evolutionary search can take place over a set of
neutral or relatively neutral phenotypes. One may ask what happens if more than one

secondary structure has the same fitness value.

For our considerations we will restrict to one pair of secondary structures. On the molec-
ular level we show that there is a nontrivial coevolution of two phenotypes in the space

of secondary structures. This phenomenon gives new insights in neutral evolution.

We define an artificial landscape as follows: Let I',[s] and T',[s'] two neutral networks.

They induce a fitness function
o; vev[l,[s]]
fs,9(v):= ¢ 07 vev[l,[s]]
L o ev[QG]\ (vIals] U vLa[s]])

where ¢ > 1. We call this landscape double shape landscape.

The fitness function f, s implies a disjoint partition of a population V of the form:

Vi = {ve V] vevlh[s]}
Vi, = {veV| vev[lh[$]]}
V, = {ve V] vév[lals]|Avgvla[s']}

whence V=V, UV, UV,. We call the elements of V,, and V,, masters because of

their superior fitness and those of V,, non masters.
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Before we study the time evolution of a population V in a double shape landscape we

have to determine the phenotypic fixation and transition probabilities.

4.3.1. Phenotypic Fixation and Transition Probabilities

First we have to recall and introduce some notations
o Let I',[s] be a neutral network with respect to the secondary structure s and let
v = (v1,...,v,) be a sequence. Then we define the incompatible distance d(I',[s],v)
by
d(U'n[s],v) := {loi, vi] | [vi, ox] € 1LV [i, k] € 11(s)}]

where 11 is the pairing rule of the underlying alphabet and Il(s) the set of contacts of
s [56].
e By setting &ix(s,s') = {v|d([,[s],v) = Ad(T,[s'],v) = k} a natural decomposition

of the hypercube with respect to two secondary structures s and s’ is given.
We can formulate the following lemma.

Lemma 4 et s and s' be two secondary structures, A be a x-alphabet. Denote the

number of common pairs in s and s' by ng. Then

Prob{o € Ey(s,s') |0 € C[s]} = ("; ; no) (a —~ 1)"c (l)";—no—k

[0 (8

For any two neutral networks I',,[s], [',[s'] we define
Cis[s]={v]ve,[s] Adl,[s],v) =i}

Then A; g [s] = |Ci s [s]|/|I'n[s]| can be called the density of distance class Ey;(s,s') in

I',[s]. Provided T',[s] and I',,[s] are regular networks it is determined by

n;—no o
Ai,sl [S] = (OA — 1)2 (l) (np . TLO)7 7 = 07 . _’n; — Ny (**)

0%

Finally we can state the following lemma
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Lemma 5 Suppose I',[s] < Q" and I',[s'] < QF are two fized neutral networks and
A is a x-alphabet. Suppose that we have a random mapping v = (z1,...,2,) — v' =
(zh,...,20), v,v" € v[Q7] that is defined as follows: z; = z! with probability 1 — p and
z; # ) with uniform probability p. Then the phenotypic fization probability on I',[s] is
given by
y

Wi (0) = (1= p)" (1 = m)Au + mpA] [1 = (1 = p)™] (1 = p)?"

HO = w2 b w0 - (G + 0= 92) =)
HO = w3+ mp (1= (=) [ (g +0=92) = =)

with A = X/ (A + X) and 7 = (1/a)" =",
b) and the transition probability from ', [s] to I',[s'] by

Wi (p) = ((L=7)X +p7'N) {Ao,s' [s] [—(1 -n)"+ (g0 p)Q)np]

+n§ N (pg_—lp) +p(zogoi—1)22))i(a1fl+(1—p)2)n _i}

1=

with \' =1— X and 7' = (1/a)"» "0,

Proof:

a) Denoting an error in the unpaired positions by (-,.) and in the paired positions by
(.,~) one has to distinguish between four types of errors. The probability for (+,+) is
simply (1 — p)". For (—,+) we get

1=y ("]:“)pf'(l M = (1= )™ 1= (1— p)™]

i=1
The probability for the new element to be a pi; is (1—7) A, for non intersection sequences
and mpA for intersection elements. Similar arguments run for (4+,-) and (4,+) and the

formulae can be computed.

b) An arbitrary sequence in I',[s] and distance class &,; with 1 <4 < n;} can be arranged

in the form

L1yT2yeey Tt (y17y4)7 R (yﬂy;) (Z17'Z{)7 . (Zn;)—hqum’p—i)
N -

(-

cey
i 7 .
n [
u ny =1
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where we have ¢ incompatible pairs and n;) — 1 compatible pairs.

An incompatible base pair has to undergo mutations to become compatible. This can
be realized in two different ways. The first is to mutate one position and to keep the
other unmutated. The probability to happen and to obtain a compatible base pair is
p(1 = p)/(a = 1). The second way is to mutate in both positions. The probability
to happen and to obtain a compatible base pair is p*(a — 2)/(a — 1)%. Therefore i

incompatible base pairs have the probability to become compatible

2::0 (zz) (p.(ml__f))io (Zfofoi_l;))i_ia _ (Pél_—lp) N p(zfoi—l;))i

Suppose there is no incompatible base pair. Then at least one mutation is required.

For this we obtain the probability

[ = (1 =p)™](1=p)" +[1= (1= p)™] { [QL—I + (1= p)2] (- p)“'ﬂ}

(1 - p)m { L +a- p)2]n;’ (- p>2”%}

1

2 "p
~(1-p)"+ [QL_I + (1~ p)2]
Taking into account that common base pairs are always compatible the sum only runs
from 1 to nj, — ng. The probability for the new elements to be a uy is (1 — A’ for
non intersection and 7'\’ for intersection sequences.

Let
Cikls, s ={v|v g v[l[',[s]]Av &v[[',[s'], d(I'[s],v) =1, d(I',[s'],v) =k}

be the (i, k) th incompatible class.

For regular networks I',,[s] and I',[s'] holds

iy o) (n —no) ntng—n,—n, (= 1)k Sff 4 k#£0

")t T (0 1)1 — D[] k=050 0

TP a0 (o 1) — [Togfs]] i =05k #£0
antno- np—n, _ |F00[ ]l _ |F00[8’]| iff 1=0;k=0

where Turfs] i= Ea(s,) (T [s]l. Now consequently Auls,] = [Culs, #11/(1Q2] -

[Tu[s]] = [Pals']]).

E
|Cixls, s']| =
(
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Lemma 6 Suppose I',,[s] and I',,[s'] to be two fized neutral networks and A is a x—alphabet.
Suppose that we have a random mapping v = (x1,...,2,) — v = (2},...,2]), v,0v" €
v[Q7] that is defined as follows: z; = z! with probability 1 — p and z; # x} with uniform
probability p. Then corresponding to Lemma 5 we find

)

o= 0w 2 st [0 (e a-07) ]
FE s (A 2L (o) T

with A\ = 5\/(5\ + 5\’).
Proof: The proof runs with the same arguments as b) in the previous lemma. g

In the sequel we write for short w;;, for the W with 7,k = 0,1,2, where 0 corresponds
to a non master, 1 to a master on I',[s] and 2 to a master on I',[s']. Obviously we have

Wi + wi + wis = 1 fore=0,1, 2.

4.3.2. Deterministic Approach

The evolutionary dynamics of a population of erroneously replicating strings can be de-
scribed by a system of ordinary differential equations if the population size N is assumed
to be sufficiently large. Let the underlying dynamics be determined by a double shape
landscape. Thus we shall not be interested in the concentration of a single sequence but
in the concentration of masters on the dominating networks and non-masters respectively.
If the rates derived in the last section give a good approximation for mutation events and
their results, the over-all system of ordinary differential equations can be reduced to a set

of three coupled ODE’s given by:
T = wo; To + Owi; Ty + Owy; Ty — 2 (1), 1=0,1,2 (10)

where zy denotes the concentration of non-masters, 2, that of masters on network I',[s],

and z, that of masters on network I',[s']. ®(t) is the non-specific dilution flux keeping
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the concentration in the flow reactor constant. It is given by zo 4+ o(z1 + 22) if Dz, = 1.
Note that the system above corresponds to a system of replication mutation equations
[71].

Substituting 29 = 1 — 2y — 29, 2 = 2; + 25 and z; = = the system (10) turns out to be

equivalent to:
T = (—1 + ocwq — an)ac — (0’ — 1)x z+ (_w01 + 0"11721)2 + woq

. 11
= —(0—1)22 + (=2 + 0+ woo — W)z + o(—wig + wag)x + (1 — woo) (11)

The range of meaningful or acceptable solutions is D = {(z,2)|0 < 2 < z < 1}. The

boundary of the domain D is
D={r=0,0<z<1Ju{0<z<l,z=1}U{e=20<z<1}

System (11) possess three fixed points but it is known that acceptable stationary solutions

have to comply with the relation 0 < z; < z; < 1. Before considering the general case we

start with investigating degenerated cases where one or more of the rates w;, 1,k = 0,1, 2

vanish.

1. Let wo1 = wgy = wiy = wy; = 0. We will call this constellation double decoupled
case because back-flow from the non-masters to the networks and flow between the

networks is eliminated. Three fixed points can be derived for the system being

fixed point eigenvalues
1. (0,0) )\] :—(1—0"11711), )\2:—(1—0"11722)
2. (o —(1 —owy) N, = Wit =Wy 1= awy
: I E— 1= e, 0 M2 T Towy,
3 —(1—owi) —(1-cwp) N o= lmowy oy — (w11 — wy)
) o—1 ! o—1 1 owyp ! 2 w11

Denoting an acceptable fixed point by a plus (+) and a non-acceptable one by a minus

(=) and furthermore asymptotically stability by a plus (+) and instability by a minus
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(=) we get for the triple of fixed points

relation acceptability stability
'w11<'w22<1/0 (+,-,-) +, , )
'w22<'w11<1/0 (+,-,-) (+, , )
1/ < wyy < wyy (+,+,4) (=,+,-)
wyy < 1/0 < wyy (+,+,-) (=,+, )
1/0 < wyy < wyy (+,+,4+) (-,-,+)
wyy < 1/0 < wyy (+,-,4) (=, ,+)

The double decoupled case never tends to coexistence of both masters. The dominating
sequences on the networks go extinct if their corresponding rates w;; are below the value
1/o. Otherwise the network having the higher rate will survive and the other one will
go extinct. If one relation given above is fulfilled by the equal sign a bifurcation occurs
and nothing can be said about stability without considering terms of higher order.

2. Let wg; = wgz = 0 and wig = wyg. Back-flow from the non-masters to the networks
is eliminated and the flow from the master networks to the non-masters is assumed to

be of the same magnitude. Then two fixed points can be found for the system being

fixed point eigenvalues
1. (0,0) Al = (O’ - 1) — oW1 — G'(‘ll)lg + ’11721),
Ay = (0= 1) — owyg
9 (U -1- leO)'wﬂ c—1—owyy h— —(wi2+wa1) Ay = —(o=1)+owio
"\ (o= 1)(wi2 + war)’ o—1 V7 T Tmwe 0 72T T o(T-w)

For 0 < wyg < (0 —1)/0 fixed point 2. is acceptable and asymptotically stable. Hence
the system tends to a coexisting state of masters on I',[s] and [',[s']. w10 = (0—=1)/0 is
a bifurcation value and nothing can be said about stability without considering terms
of higher derivation. Finally for wyg > (0 —1)/o fixed point 1. becomes asymptotically
stable, i.e., the masters go extinct.

3. Let w1 = wy = 0. According to point (1.) we will call this constellation the single
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decoupled case. Under this circumstances we find the following fixed points

fixed point

1 0 —1 = wyy + 0wy — /(=1 — woz + 0 wy)? +4(0 — Nwyy)
' : 2(c—1)

9 (0 —1 — wyy + 0 wey + \/(—1 — woy + 0 we)? + 4(0 — 1)11102))
' ' 2(c—1)

(o — 1) (w10 — wa0) ! o—1

3. —wyo(owy =1) + (1 = wy)(owy = weo) =(1 = owy)
( )

Fixed point 1. has a component smaller than zero and therefore it is non-acceptable
whereas fixed point 2. is always acceptable. It becomes asymptotically stable if one of

the following relations is fulfilled:
(i) wn <1/o or
(7))  wi1 > 1/o A woo > 0(2wyy — way) or

(1 — 'wu)(a'wu — ’woo)

(Zl’l,) w1 > 1/0’ A woo < 0'(2’11]11 — ’w22) A Wy < owr — 1

Further on fixed point 3. becomes an acceptable solution if and only if wy; > 1/ is

fulfilled and additionally one of the following inequalities holds

(1 — wi1)(owi1 — woo)

(Z)I w10 < agw — T

< wgg9 OT

(1 — wu)(awu — ’woo)

N
(13)" wye < i =1

< Wio

It is found to be asymptotically stable if and only if wio < wag and woe < 02wy —w22).
Despite neglecting back-flow to the dominant network I',[s] it is able to coexist with

the other network if its rate wyq is greater than the reciprocal value of its fitness.

Investigation of the isoclines corresponding to system (11)

(0 —1)z(1—=2)+ (1 —we)(1 — z) — owypz

_wo (1 —2) +ownz
ach(z) U(wm - wzo)

N l—z—|—a('w21—wn—|—z);

zy(2) =
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shows that there always exists an acceptable and stable fixed point. It is a single one as
long as no rate w;; becomes zero. In this case the fixed points outside the acceptable
range may move to the boundary dD. As shown for these decoupled cases always exists a
single asymptotically stable fixed point. In figure 15 we show the graphs of the isoclines
xp, x, for wiy = 0.5, wyy = 0.6, wy; = wpy = 0.0005 and w1y = wey = 0.05. Additionally
for the same parameters and increasing wiy = wq; = 0.0001 to 0.4 we monitor one fixed

point outside and the course of the stable fixed point inside the acceptable range.

Figure 15: Isoclines and fixed points. For
e w11 = 0.5, weg = 0.6, wg1 = wpz = 0.0005
s the course of the isocline zp and =z, is

i shown for wis = wo; = 0.05. For wis =
7 wso1 = 0.0001 to 0.4 the dotted lines indi-
cate (i) one fixed point outside and (ii) the
acceptable stable fixed point inside. The
long-dashed line gives the upper boundary

of the domain of meaningful solutions.

horizontal isocline

1.00

4.3.3. Stochastic Approach

In this section we intend to study the variables X; and Y; counting the number of elements
on I'y[s], I',[s] for any given time t. Therefore we shall embed X; and Y; in the context
of probability theory. A probability space is defined to be a triple (22,4, ) where in our
case Q = {(z,y)|z,y € {0,...,N},z +y < N} is the set of elementary events, A is

a o—algebra on € and p a probability measure. X; and Y; are two dependent random
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variables defined on €2 in the following way

X Q= N, X7 (z) = A, {(z,7)|i=0,...,N —z}
Vi: Q= N, Yy =A,= {(Gy]i=0,...,N -y}

such that p(A;) = P(Xy = z) and p(Ay) = P(Y: = y). Applying the theory of conditional
probability it holds

PXi=2z,Yi=y)=PXi=z|X:+Yi=z+y) - P(X:+Yi=2+y). (12)

Note that p((z,y)) = P(X: = z,Y: = y). Because of the o—additivity of probability

N-—=x N-—y
measures we obtain P(X; =2) = >, P(X¢e =2, Ys=14) and P(Ys =y) = > P(X: =

i,Y: = y). For short we write

P(z,y;t) = P(Xy =2, Yy = y),
Px(z|z;t) = P(Xy =z| X+ Ye=2) and Py(y|z;t) = P(Y: =y| X + Y: = 2).

We now shall approximate the replication deletion process acting on a double shape land-

scape by a homogeneous Markov process in continuous time with finitely many states.

Let Py o) (B) = P((Xign, Yien) = (2',9)| (X0, Vo) = (,9)) then the transition prob-

abilities are given by

0 O<z,y;2+y>N

o(z,5) h+ o(h) (@, 9) = (e +1,0)

B(z,y) b+ o(h) (z",y)=(z+1,y-1)

v(z,y) h+ o(h) (', y) = (z,y+1)

5(z,y) h+ o(h) (=", y") = (z,y— 1) (13)

e(z,y)h+ o(h) (' y)=(z—-1,y+1)

¢(z,y) h+ o(h) (z',y") = (z - 1,y)

I—(a+B+y+dteto)(@,y)h+olh) (2'y)=(y)

o(h) otherwise

with

_ N-z-y
alz,y) = V= ])(N_l_(x_l_y)(a_]))(anm—}—awgly—l—wm(N—:C—y—1))
ﬂ(xay) = (N_1)(N+%Jm_}_y)(a_1))(Uw11$+0w21(y—1)+w01(N—90—y))
v(z,y) = v — ])(jifv_;(i:_g/)(a — ]))(Uw12$+0‘w22y+w02(N —z—y—1))
0(z,y) = (N—D(N+F %Jm_}_y)(a — 1))(merc+awzo(y— 1)+ woo (N —z —y))
e(z,y) = LR mx+y)(a — 1))(aw12(m — 1)+ owepy+ we (N —z —y))
elz,y) = (N = 1)(N-|—%w-|—y)(a—1))(0w10($_1)+0w20y+w00(N_$_y))
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Figure 16 illustrates the state space where the random process is living in and its accepted

infinitesimal transitions.

N
Figure 16: State space and accepted infinites-
imal transitions. States of the stochastic pro-
cess are tuples of natural numbers (z,y) ful-
filling 0 < z,y < N and ¢ + y < N. The grid
indicates acceptable infinitesimal transitions.

2

1

09 1 2 N-1 N r

Figure 16 intuitively makes clear that for any two states z = (z,y) and 2z’ = (2,y’) there
exists a time ¢* such that P, .i)(t*) > 0. Precisely by induction on |z — z'| and |y — 3|
it be verified that:

1)ifz—2">0,y—y >0 then

r—x'—1 y—y' —1
Poa(h(z—a'+y=y)) > [ Po-toyo-torgy(t) T Plory-t) y—i-1y(h) >0
{=0 £=0
2)ifz—2"<0,y—y <0 then
o' —z—1 y' —y-1
Poa(h(@ =24y —y)) > [ Paosewyererrn B I Parwsoo gresn(h) >0
=0 £=0
3.ifz—2"<0,y—19y" >0 then
x'—z-1 y—y' =1
Pz,z’ (h (ml —r+y-— yl)) > H P(x+£,y)(x+£+1,y) (h) ' H P(x’,y—é)(x’,y—é—l) (h) >0
£=0 £=0
4) ifz—2" >0,y —y' <0 then
r—x'—1 Yy —y—1
szzl (h (.’L' - ml +y, - y)) 2 H P(r—fzy)(l‘—f—lyy) (h) ' H P(xlvy‘l"g)(rl 7y+£+1) (h) > 0
=0 =0
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From the ergodic theorem 4 stated in section 4.1 the existence of P(z,y) == tlim P(z,y;t)
—00

can be deduced. Hence the following relation can be derived from equation (12)

z+y

Px(ala+y) = P(e,y)/ Y Plirs +y - i) (14)

For further considerations it turns out to be useful to substitute z <£ a2 + y and to

introduce

P(z,z) = P(z,z—2); a(z,z) = a(z,z—z),...,0(z,2) == p(z,z2 — z)

Then for 0 < 2z < z < N the stationary master equation corresponding the defined

Markov process can be written as
T(@,2) = T(x—1,z=1)+H(z,2) —H(z — 1,2) + K(z,2) = K(z,2—1) =0  (15)

with _ _ _
J(x,z)=Ple+1,z+ 1)@z + 1,2+ 1) — P(z, 2) a(z, 2),

Summing the set of equations (15) in an appropriate way yields

Zj(x,z)-l—la(m,z)zo (16)
which is equivalent to
z+41 z
ZP(LE,Z+ Dz, z4+ 1)+ 6,24 1)) = P(z,2) (a(z, 2) + 7(=, 2)) . (17

Considering the coefficients of equation (17) we get

Pz,2) +0(z,2) = g1 (2) e+ g2(2) and  a(e,2) +7(2,2) = fi(2) @ + fa(2)

where
z = A10 - A20 zZ\Z — A20 woo N — z
g1(2) = (N( = 1)1()1(v + 20— )1))’ 92(2) = ((N i)1)(N++ z(((r = 1)1))
fi(z) = (N — 2)(Asg — Avo) fr(2) = (N —2)(z(=Asw+0—1)+ (N = 1)(1 — wpo)
! (N=1)(N +z(c - 1)) 7? (N-1)(N+z(c-1))
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with Aik = 0 Wi — Wok, i, k= 0, 1, 2.

Hence equation (17) becomes

BEHDQuEF D+ RE+)QED) = A()Qu(E) +L(HQE)  (18)

with Qum(z) == Y.2_, 2 P(z,2) and Q(z) := Y.2_, P(z,2). Note that g;(.) and fi(.)

vanish if w9 = wyg.

Using the relation given by equation (14) the term Qp;(2) can be written as

z

Qu(z) = Q(2) Y Px(z]2) = Q(2) Q(2).

r=0
Applying this and equation (18) we find a recursion formula for Q(.) of the following form

h(2)Q() + f2(2)

Q(z+1) =Q(2) G DOGEF1) gz +1)

(19)

N
defined for z=0,..., N — 1 and initial value Q(0) chosen in that way that >  Q(z) = 1.
z=0

The solution for Q(z) can be easily determined in the special case w9 = wao. It has

already been mentioned that under these circumstances f;(z) and g¢;(z) vanish. So we get

Q) =1/} =), Q@) =w=()/}_ =)

A10—0'+1 z B(bQ,N)
) B(bhz (20)

) B(byy, N — 2)

where by = (N = 1)wgo/(0 — 1 — Ayg) and by = —a(N — 1)wig/A1o.

Finally we are interested in the conditional probability Px(z|z). By definition of the
process the random variable X; follows an ordinary birth and death process if the number
of masters is required to be constant. The birth rate is given by

zZ—X

)\($|Z) :B($7Z) = (N— 1)(N—|-(o'— 1)2)

(A1 = Ag) 24+ A2i(z=1) + (N = 1woy)
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((Arz = Aga) (2 — 1)+ Ags (2 — 1)+ (N = 1)awgy).

and the death rate by
x

= £ , =
,u(xlz) (m Z) (N—l)(N+(U—1)Z)
The stationary solution of this process can be completely determined
Px(0]2)=1/Y w(k|z) and Px(z|z)=n(z|z2)/) =(k]|z). (21)
k=0 k=0
with N
AII_AQI) 5(027N)
7(0]2)=1 and =(k|z)= 22
( | ) ( | ) (AQQ—A12 B(Cl,k)'B(CQ,N—k) ( )
Wlth ¢ = AZl(Z —All)lt([{\il— 1)’(1}01 and cy = A12(Z —A12)2-|:([]\\12— l)woz fOI' k —
=0

gaeay

1 z.
Given the stationary probability Px (z|z) forall 0 < z < z < N the function Q == 3 aPx(z]2)

is completely determined. Thus, applying recursion formula (19), the values Q(z) can be
derived. And finally putting things together we obtain the stationary probability distri-

bution P(z,y) from P(z,y) = Q(z + y) Px(z|z + y).
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For population size 100 and mean values wpg = 0.999, wgz = wo1 and wyg = wip = 0.5 the
value w = wa2 = wi; is varied. The figure shows for increasing w the stationary distribution of X; —

Figure 17:

the number of masters on I'y[s].
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In order to be consistent with section 4.1 and 4.2 we shall ask for the stationary distribu-
tion of the number of masters on network I',,[s] (or T',[s'] respectively). We immediately
see that it is given by P(X = z) = ) Q(z)Px(z|z). The system depends on several
parameters. By changing only one of z‘uTlZm its particular effects on the distribution can
be detected. One example is presented in figure 17. Here the population size is N = 100.
We fix the values: wgg = 0.999, wg2 = wpy and wyy = wyp = 0.5. Now we plot P(X = z)
depending on w = wyy = wyq for increasing w. Again we observe the existence of a critical
value for w — the phenotypic fixation probability — where the modality of the distribution
changes from an unimodal to a bimodal one. Being confronted with an ensemble of pa-
rameters it is impossible to derive analytical expressions for these bifurcation values. But
in principle the evolution of the master subpopulation can be explained in terms of the
simple model developed in section 4.1. Thereafter first of all the probabilities of pheno-
typic fixation, W, ,,, and secondly the probabilities of transitions between phenotypes,

W, e » are crucial for survival, extinction and revival of a master subpopulation.

Let U(z) be a positive real valued function defined by U(z) ££ — log (P(X = z)) with
©=0,1,...,N. Then U(z) can be interpreted as a potential function [27, 32]. A particle
— representing the state of the neutral network — is moving in the potential driven by
some random forces. An unimodal curve can be imagined as a basin. A particle on a
point inside the basin is going to fall down and rest at the bottom — the minimum of
the potential. From any point of inside the basin the particle returns to this point. We
can say that this is the stable equilibrium position of the particle. In the case when the
function U(z) takes the form of a double well potential the particle might first be trapped
in one local minimum. In order to go to the other local minimum it has to pass the barrier
of the local maximum before. Both minima are stable equilibrium positions whereas the
local maximum is an unstable equilibrium position of the particle. Clearly the higher the
barrier the more time is needed for crossing. Thus from the height of the local maximum
and the depth of the local minima it is possible to predict the evolutionary behavior of

the process without performing it.
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5. Neutral Evolution — Computational Results

The regularity of sequence to structure mappings as expressed by the properties of neutral
networks has stimulated the study of neutral evolution on the level of RNA secondary
structures. Computer simulations were performed to investigate several effects of neutral
evolution [40]. We now study the dynamic behavior of populations evolving in various
double shape landscapes. This might be considered as a shift in investigating neutral
evolution to a more complex level. Neutrality on the level of shapes is combined with

neutrality on the level of fitness.

For a comprehensive study we select three different ordered pairs of structures (s,s’)
from the shape space containing all RNA secondary structures. Evidently each pair is

expected to induce a different kind of double-shape landscape.

s s/
A | oo COCCCLCCeaeININNY | veeeeene e dINOM
B. | ........ O aanNNIN CCCCCCCCo NN CCCe..nn
C. | ... Qe 1IN e )DDDD DD D

Lateron these pairs will be simply presented by their capital letters given in the table.

We commence to apply the mathematical framework developed in 3.3 to these three pairs.
First we consider the mapping of RNA secondary structures of chain length n into elements
of the symmetric group S,,. For a fixed structure s its involution is denoted by 7(s). Then

by writing 7(s) and 7(s') € Ss¢ as products of transpositions we get for

m(s) = (9,30)(10,29)(11,28)(12,27)(13,26)(14,25) (15,24) (16,23) (17,22)
m(s') = (10,30)(11,29)(12,28)(13,27) (14,26) (15,25) (16,24) (17,23) (18,22)
m(s) = (9,30)(10,29)(11,28)(12,27)(13,26) (14,25) (15,24) (16,23) (17,22)
m(s") = (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(20,30)(21,29)

(22,28) (23,27)
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(s
s

7(:

) = (8,30)(9,29)(10,28) (11,27) (12,26) (13,25) (14,24) (15,23)
" (1,23)(2,22)(3,21)(4,20)(5,19) (6,18) (7,17)(8,186)

Any two involutions constitute a dihedral group. The operation of the group generated
by 7(s),n(s") leads to a cycle decomposition that can be reordered with respect to the

structures s, s’. Finally each pair of structures is associated with an orbit decomposition

A (m(s), 7 (s)) :
(1) (2) (3) (4) (5) (&) (7) (8) (19) (20) (21)
(9,30,10,29,11,28,12,27,13,26,14,25,15,24,16,23,17,22,18)
B. (n(s),n()) :
(1,19)(2,18) (5,15,24) (6,14,25) (7,13,26) (9,30,20) (10,29,21)
(3,17,22,28,11) (4,16,23,27,12,8)
C. (n(s),m(s")) :

(2,22)(3,21)(4,20) (5,19) (6,18) (7,17) (9,29) (10,28) (11,27)
(12,26) (13,25) (14,24) (1,23,15)(16,8,30).

These decompositions are seen to be different and consequently size and topology of the
corresponding overlaps between the sets of compatible sequences are distinct. On the
account that sequences on the overlap play a decisive role in evolutionary optimization
we shall study their organization in more detail. Note that only for pairs A and C' the
interacting sets of compatible sequences have equal size for both structures. For pair B
the cardinality of the corresponding sets of compatible sequences is larger for structure s

than for s'.

Structure pair A is characterized by a large number of common unpaired positions. (11

orbits of length 1) and a long orbit of length 19. It can be shown that the graph of
the overlap decomposes into large islands that can be connected by long paths in C[s]
and C[s'] respectively. Positions covered by orbits of length one are completely variable,

i.e. a mutation of a sequence from the overlap in these positions yields a sequence being
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compatible with both structures, the intersection is not left. Eleven positions fulfill this
condition. The remaining nineteen positions are restricted by the pairing rule of the
(AUGC) alphabet. 1In the course of evolutionary optimization a frequent interaction
between the neutral networks is expected if the population is located in a number of

sequences on the overlap.

Structure pair B possesses orbits of length two up to six. That means by mutating a

sequence on the overlap in a single position we always leave the intersection. There are
only two orbits of length two and hence by a single pair exchange it is likely to leave the
intersection, too. The overlap subgraph decomposes into a large number of isolated small
islands. The different sizes of the sets of compatible sequences for s and s’ implies that
sequences on the overlap are more frequent in C[s'] than in C[s]. Therefore a population
in evolutionary optimization is more likely to be located on the neutral network generated

by s than on those of s'.

Structure pair C' offers a large number of open orbits of length two (12) and no orbit of

length one. That means by a single base exchange in a sequence on the overlap it is left,
but by a pair exchange it is likely to stay on the intersection. The induced subgraph
of the overlap consists of large islands that can be connected by short paths in C[s] and
C[s'] respectively. In evolutionary adaptation processes we expect a strong interaction of
the neutral networks generated by s and s’ if a number of sequences of the population is

located on the overlap.

The next two sections are devoted to computer simulations of evolutionary dynamics
determined by double shape landscapes induced by the three different pairs of structures.
In general the model consists of a population of RNA sequences which replicate in a stirred
flow reactor. When a sequence undergoes a replication, each base is copied with fidelity
1 — p. To ensure that an offspring, after replication, in terms of Hamming distance is
close to its parent, depending also on the chain length, the single digit accuracy 1—p has
to be chosen sufficiently large. Therefore in general we set p to 0.03. Finally a selection

pressure is ensured by an unspecific dilution flux.
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5.1. Neutral Evolution Based On RNA Folding

In this section we are concerned with the combinatory map ¢ : Q7 — S5, induced by
the minimum free energy folding [36]. That means all RNA secondary structures under
considerations are minimum free energy structures. Since only two neutral networks are
of interest in the case of double-shape landscapes not all sequences need to be folded in
an evolutionary run but only those being compatible with one or the other network.

First we mention some technical details that the following simulations have in common:

o The underlying sequence space is the 30-dimensional hypercube formed over the al-
phabet A =(G,C). The pairing rules are determined by B =(GC,CG).

o Since in general RNA population manageable in the laboratory are tiny compared to
the size of sequence space (2°° &~ 10%) the computer simulations are started with an
initial population consisting of N = 100 sequences divided into 50 copies of a random
sequence on network I',[s] and 50 copies of another random sequence on network I',,[s'].

o The superior fitness ¢ of master sequences is set to be 10 as opposed to 1 as minor
fitness.

o When a sequence undergoes a replication each base is copied with single digit accuracy
0.97. This ensures point and pair mutations to be most likely whereas simultaneous

exchanges of more than three nucleotides are improbable.

Simulations

Two evolutionary experiments based on (i) the flow reactor dynamics and (ii) on the
replication-deletion process are executed on double-shape landscapes predefined by the
structure pairs A, B and C. After each generation the number of sequences occupying
network I',[s] and I',,[s'], respectively, is checked and stored. A simulation is terminated
after 10° generations. On account of the ergodic property of the processes the stationary
probability distribution for the number of sequences on the master networks can be eval-
uated by averaging over time. Figure 17, 18, and 19 display the results we received for
structure pairs A, B, and C. Each figure is subdivided into two parts: the I.h.s. shows

the results for network I',,[s] whereas the r.h.s. displays those for I',[s']. Circles coincide
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with the values we received from the flow reactor experiment whereas squares with those
of the replication-deletion process. The solid line always presents the analytical curve for
the actually investigated network whereas the dashed line corresponds to the other not

depicted network.

In order to evaluate the analytical expression for the stationary probability distribution the
phenotypic fixation and transition probabilities W, ,,, W, ,,, etc. need to be estimated.
Except for the joint neutrality parameter p all input parameters (A,[s], A,[s'] etc.) had
been determined by exhaustive enumeration [30, 31] and thus they are as accurate as
possible. Of course in order to skip such an expensive procedure a statistical approach is
sufficient. The joint neutrality parameter p is determined in this way. The values of the
fixation and transition probabilities providing the input for the analytical curve evaluation

are tabulated in appendix A.

Remark: The determined theoretical curves are based on the replication-deletion process
and therefore expected to fit the numerical results of the replication process slightly better
than those of the real flow reactor dynamic where fluctuating population size additionally

comes into play.
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5.2. Neutral Evolution Based On Random Graphs

Do randomly constructed neutral networks of RNA secondary structures behave in the
same manner as those obtained by minimum free energy folding? In this section we shall
verify this question for coevolution of two neutral networks.

In principle the application of the random graph models discussed in section 3.3 for

computer simulations can be organized in two ways:

1. Two networks are constructed by making use of model I or II (section 3.1) and following
the scheme (section 3.3) to deal with sequences on the overlap. Finally one need to store
both networks that are random but fixed for the following simulation. The advantage
of this construction is that the average fractions of neutral neighbors and the degree of
neutrality can be exactly determined. A big disadvantage of this is the immense effort
to store both networks on disk and finally to access to the data. Therefore we will use
the second way.

2. The networks are constructed dynamically. The parameters A, and A, as well as
the joint neutrality parameter p are defined. A new mutant entering the population
is checked for compatibility with I',[s] and I',[s'] respectively. A sequence which
is compatible with structure s is chosen to be a member of I',[s] with probability
Au[s]Ap[s]if it is not on the overlap and with p-(Ay[s]Ap[s])/(Au[s]Ap[s]HAL[sIA,[s]) if it
is found on the intersection. The construction for the second network runs analogically.
The advantage of this procedure is that it is very fast. The disadvantage is that the
construction is not unique. A sequence eventually lost and found for the second time

might be first chosen to be on one network and the second time to be a non-master.

All simulations that have been performed on randomly constructed neutral networks are
performed by using ansatz 2. We now proceed mentioning some technical details that the

following simulations have in common.

o The underlying sequence space in which the structure pairs A,B,C will be explored is
the hypercube of dimension 30 formed over the alphabet A =(G, C) with correspond-
ing pairing alphabet B =(GC,CG).

— 69 —



COMPUTATIONAL RESULTS

o We consider an initial population consisting of N = 100 sequences divided into 50
copies of a random sequence on network I',[s] and 50 copies of a random sequence on
network I',,[s']. Both random sequences are demanded to be non-intersection elements.

o The parameters A, and A, are set to 0.5 for s and s’. The joint neutrality p is chosen
to be 0.25.

o The superior fitness ¢ of all master sequences is set to be 10 as opposed to 1 as minor

fitness for non-master sequences.

Simulations

Two evolutionary experiments are executed based on (i) the flow reactor dynamics and (ii)
the replication-deletion process. The underlying fitness landscapes are induced by the
pairs of secondary structures A,B,C. The number of sequences occupying network I',[s]
and I',[s'] respectively is checked and stored after each generation. After having stopped
a simulation at generation 10° the stationary probability distribution is evaluated by
averaging over time. Figure 20, 21, and 22 present the outcomes for A B, and C respec-
tively. Each figure is subdivided into two part: the left sub-figure shows the results for
network I',,[s] whereas the right one monitors those for I',[s']. Circles present the values
we received from the flow reactor dynamics whereas squares correspond to those of the
replication deletion process. The solid line pictures the analytical curve for the actually
reported network whereas the dashed line corresponds to the network not reported. Since
all parameters describing the topology of the networks had chosen to be equal the the-
oretical curves for the stationary probability distributions coincide for both networks in
case of structure pair A and C. Hence for them the dashed line is covered by the solid

line.
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5.3.RNA Folding versus Random Graphs

Again we deal with populations evolving in double shape landscapes. It was shown in the
previous section that the stationary distributions of master sequences can be eminently
approximated by modeling RNA folding with a random graph ansatz. Now we want
to show that evolutionary dynamics exhibit the same properties in case of randomly
chosen networks and networks resulting from RNA folding. Therefore we introduce some
definitions that allow to classify states of populations evolving in a double shape landscape.
We always look at a population V(¢) at time ¢. Let X; and Y; be the variables counting the
number of sequences in the population V(#) located on network I',,[s] or T',[s'] respectively.

Then we define

(1) The population V(t) is fixed on I',[s] at time ¢ iff X; > 0 and Y; =0,
(2) I'y[s] is the dominant network at time ¢ iff X; > 0 and Y; < oxy, and
(3) I'y[s] and T'y[s'] coexist iff X4, Y > oxy

where oxy denotes the stationary standard derivation of the random variable X; + Y;,
e, oy = Lo p(e) - 22— (L p(2) - 2)" with p(z) = lim Prob{X,+Y; = z}. Note

that fixation on a network is a special case of dominance.

There are three characteristic features for coevolution of two neutral networks: (i) one
dominating network over time, (ii) two coexisting networks, and (iii) networks that mu-
tually come close to dominance or extinction. The characteristic features depend on the
size and topology of the networks and of the overlap, the distribution of sequences close

to the overlap, the replication accuracy and the population size.

Type (iii) of coevolution is of particular interest because there is no prefered dominating
network over time but fast changes between states characterizing the population. We call
these switches transitions. They are correlated with the number of sequences on or close

to the overlap that are present in the population V.

Now we shall perform two evolutionary computer experiments having the following input

parameters in common:
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o The underlying double shape landscape is induced by structure pair A . The superior
fitness of the master sequences is set to 10 as opposed to 1 as minor fitness.

o The underlying sequence space is the generalized hypercube over the alphabet (G,C,A,U)
with corresponding pairing alphabet (GC,CG,AU,UA,GU,UG).

o The initial population size is set to N = 1000. We start with 500 copies of one random
sequence on ['3g[s] and 500 copies of another random sequence on I'so[s'].

o The stochastic process is simulated by making use of the flow reactor dynamics.

o The experiments are executed for 10° generations.

The simulations differ in taking the neutral networks under consideration (1) from RNA

folding under minimum free energy conditions and (2) from random graph construction

with A, = A, = 0.5 for s and s" and p = 0.25.

Simulation 1

The neutral networks are taken from minimum free energy folding. In figure 24 we present
the time development of relative frequencies of master sequences on the elected networks.
We find network I';o[s] to be dominant about 90% of time and thereof 93% to be fixed in
population. The remaining 10% of time both networks coexist. Despite masters on ['39[s']
coming up in this particular realization the corresponding network is never observed to

be dominant.

Simulation 2

According to section 5.3 the neutral networks corresponding to the elected pair of sec-
ondary structures are constructed dynamically randomly. In figure 25 we present the
time development of the relative frequencies of master sequences. We find I'sg[s] to be
dominant about 73% of time thereof 96% to be fixed in population. I'so[s'] is dominant
only 12% of time but thereof 94% fixed in population. The remaining 15% are left for

coexistence of the two networks.
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Simulation 1
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Figure 24: Simulation 1: The relative frequencies of masters on network I',[s] (left) and 'y [s’] per gener-
ation are presented. The simulation monitors the results for one realization of an evolutionary course on
a double shape landscape induced by structure pair A. The underlying sequence space is the generalized
hypercube over the physical alphabet (AUGC) with pairing alphabet (GC,CG,AU,UA,GU,UG).
The neutral networks are taken from RNA folding. The average population size is N = 1000.
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Simulation 2
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Figure 25: Simulation 2: The relative frequencies of masters on network I'y[s] (left) and I'y[s'] per

generation are presented. The simulation monitors the

results for one realization of an evolutionary

course on a double shape landscape induced by structure pair A. The underlying sequences space is the
generalized hypercube over the the physical alphabet (AUGC). The neutral networks are randomly

constructed. The average population size is N = 1000.
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Although no transitions can be observed in simulation 1 we find that the dominance of
network I',,[s] vanishes for about 10 % of time. In figure 26 we show that these coexisting
states are directly connected with the occurrence of sequences on the overlap or close to
it. It was mentioned earlier (section 4.3) that a population in the context of double shape
landscape can be divided into disjoint classes of sequences with respect to the number of
incompatible base pairs with s or s’. A corresponding class was denoted by &, i.e. &g
is equivalent to the overlap. In the course of the evolutionary simulation sequences are
found very seldomly in the overlap. The same effect applies to sequences in distance class
&11 that however occur more frequently than those on the overlap. On the other hand
we directly see that coexisting states are accompanied from the emergence of sequences

in distance classes ;g9 and &y .

Simulation 2 is an example for an evolutionary trajectory of type (iii) . Note that by
random graph construction both networks have the same properties (size, connectivity,
density) in average. The alternations from one dominating network to the other occurs via
coexisting states. Figure 27 shows that these states are accompanied from the emergence
of sequences on the overlap and sequences close to it. It can be observed that sequences
in classes &y and &7 occur less frequently than those in classes £ and &9 but their

emergence is always correlated with coexisting states.
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Simulation 1
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Figure 26: Emergence of sequences in different distance classes. Corresponding to simulation 1 (fig-
ure 24) we document the relative frequencies of sequences on the overlap (£pg) and of sequences close to
it (€01, &10 and &11) in steps of 100 generations. Sequences on the overlap and in distance class £11 are
found seldomly. However non master sequences having one incompatible base pair with each structure
occur nearly all time. The emergence of sequences having only one incompatible base pair with either
structure s or structure s’ is perfectly correlated with coexisting states of both networks.
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Simulation 2
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Figure 27: Emergence of sequences in different distance classes. Corresponding to simulation 2 (fig-
ure 25) we document the relative frequencies of sequences on the overlap (£pg) and of sequences close to
it (£01,&10 and £11) in steps of 100 generations. In a nice way it is shown that transitions between neu-
tral networks of different kind are supported by sequences on the overlap and nearby, i.e. in Hamming
distance up to two. In this particular case sequences on the networks having exactly one incompatible
base pair with the other structure are those facilitating transitions.

— 80 —



COMPUTATIONAL RESULTS

5.4. A Population in Sequence Space and Time

Except for a small group of theoreticians most people enjoy the graphical illustration of
complex phenomena. So in evolutionary optimization it might be interesting to visualize
the location of a population in sequence space at a fixed time . Looking at a population in
equidistant time steps may provide an impression how migration through sequence space
takes place. The visualization of finite populations in sequence space is tantamount to
the projection of a high dimensional space onto three or two dimensions the human being
is living in. These projections are always associated with loss of information. However
in a natural way a population evolving in a double shape landscape is proper for being
pictured in the three dimensional space. According to the number of incompatible base
pairs each pair of secondary structures induces a partitioning of sequences present in a

population. These distance classes have been firstly introduced in section 4.3 .

Before proceeding our considerations we specify the conditions for another evolutionary

experiment (simulation 3) whose results later on will be used as reference data.

o The underlying double shape landscape is induced by structure pair C . The superior
fitness of the masters is 10 as opposed to 1 as minor fitness of the non-masters.

o The underlying sequence space is the binary hypercube over the alphabet (G,C) with
pairing alphabet (GC,CG). The neutral networks are formed under minimum free
energy conditions (RNA-folding).

o The initial population size is set to NV = 1000. We start with 500 copies of one random
sequence on ['y9[s] and another random sequence on T'y[s'].

o The stochastic process is simulated by making use of the flow reactor dynamics.

o The experiment is executed 9 - 10* generations.

In figure 28 we present the relative frequencies of masters on network I'3o[s] and I'3o[s] per
generation. This single realization of the evolutionary experiment exhibits an example for
the occurrence of sharp and fast transitions which alter the kind of dominating network.
Network I'sg[s] is found to dominant about 47% of time and thereof it is 64% fixed in
population. The masters of ['59[s'] are dominant about 42% of the time whereby they are
fixed about 77% of this. The remaining 11% of time are left for the coexistence of both

networks which indicates that coexistence is a transient state in the evolutionary process.
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Figure 28: Simulation 3: The relative frequencies of masters on network I'y[s] (left) and [',[s’] (right)
per generation are presented. The simulation shows the results of one realization of an evolutionary
course on a double shape landscape induced by structure pair C . The underlying sequence space is the
binary hypercube over the alphabet (G,C). The neutral networks are taken from minimum free energy
folding. The average population size is N = 1000.
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One transition being observed in figure 28 covers the time range from generation 13000
to 14500. For this time interval a series of pictures is presented in figure 29. In steps
of 100 generations they report snapshots of the population that is represented according
to the partition with respect to the distance classes induced by the structure pair (s, s'),
i.e. A reference point (7,k,e;x) in the three dimensional space represents the relative
frequency of sequences in the population that are located in distance class &;. Noticing
that structure s and s’ belonging to the pair under consideration both have eight and no
common base pairs a quadratic grid of length eight is formed.

Up to generation 13100 the population is biased on network I'so[s']. A mutant spectrum
surrounds the center of the population that is located in distance classes &4 g to & . This
observation corresponds to the statement of lemma 4. In this times the overlap is not
occupied. Due to random drift generation 13200 up to 13400 exhibit a broadening of the
distribution. The population moves close to the overlap. Then some sequences migrate
to the other network as if they tunnel through distance class & . Finally the population
is split into two subpopulations each of them occupying one network and being centered
around distance classes 49 — &0 and & 4 — £y 5 respectively. From generation 13500 to
14000 the subpopulations seem to struggle to overcome this unstable state of coexistence.
And finally in generation 14100 network I'so[s] has managed to pull all individuals to its

side. Now the whole population becomes centered around distance class & 4 to & 5.

This view on the support of a population during time evolution corresponds to the ob-
servations made by Fontana et al. [23]. The two neutral networks form isolated fitness
platforms in sequence space where populations can be trapped on. Evolutionary jumps
correspond to transitions between neutral network. In extent to Fontana we are able to
specify the type of sequences providing the opportunity to escape from one network to the
other. Thus the waiting for a series of any kind of fluctuations is more precisely waiting

for sequences on the overlap or ‘close’ to it.
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Figure 29: Population in a double shape landscape. In anatural way two structures induce a partitioning
of a population, i.e. in disjoint classes of sequences that can be visualized onto three dimensions. Let
(i, k, e;r) be an arbitrary coordinate, then i shall indicate the number of incompatible base pairs that a
sequence has in common with structure s whereas k complies to the number of incompatible base pairs
that this sequence shares with structure s’. Finally e;; denotes the relative frequeny of all sequences
present in a population that belong to distance class £;;. According to the simulation results presented
in figure 28 we monitor the partitioning of the population starting in generation 13000 up to 14500 in
steps of 100 generations.
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Derrida and Peliti [10] have predicted by means of analytical calculations that in absence of
natural selection due to neutrality a population splits into well-defined clusters in sequence
space. This was supported by Huynen et al. [40] who derived a diffusion coefficient for the
center of mass of a population in sequence space. Moreover by computer simulations he
has shown that a population undergoing erroneous replication splits into subpopulations
that share the same phenotype and diffuse independently through sequence space. A
diffusion coefficient for a population evolving in a single shape landscape was derived by
Reidys et al. [57]. Accordingly a population on a neutral network behaves like a drop of
a fluid. That in fact this behavior applies to populations on double shape landscapes as
well could already be guessed from figure 29.

Another kind of visualization that more sophisticated gives insights into the process of
clustering is presented in figure 30. Using some theorems from distance geometry [34]
the support of a population can be pictured in two dimensions, where each sequence is
presented by a point. Again we use the results delivered from the evolutionary course
presented in figure 28. We show snapshots from generation 13000 to 13600 in steps of
200. Blue points indicate sequences on network ['so[s] whereas red points those of I'3o[s'].
The minimum spanning tree with respect to Hamming distance is drawn omitting edges
of length greater than two. We observe at generation 13000 the population covering
network [';o[s']. Except of a few non-masters all sequences are connected and thus the
population forms a cloud in sequence space. Yet in generation 13200 the population starts
splitting into two subpopulations but however it is still connected. Finally in generation
13400 the splitting is completed and two subpopulations are found on I'sg[s’]. One of
them is penetrated by sequences that belong to the other network. So this subpopulation
completely migrates to network ['so[s]. Finally in generation 13600 the population is
divided into two clusters each of them occupying one of the master networks. Replication,
mutation and selection make this state of coexistence extremely unstable and so after a

couple of generations the population will become fixed on either one or the other network.

— 85 —



COMPUTATIONAL RESULTS

=13000 =13200

t=13400 t=13600

Figure 30: Population structures in sequence space. All sequences present in at least one copy define
the support of a population. Theorems from distance geometry [34] can be applied in order to picture it
in two dimensions. A metric Matrix M is computed with entities m;; = (d%Z + dgj - d?j)/Z, where d;;
is the Hamming distance between sequence ¢ and j and O indicates the alternating sequence GCGC.. ..
Sequences are expressed in principal axes coordinates by diagonalizing M. Only the components corre-
sponding to the two largest eigenvalues are kept, yielding a projection onto the plane. According to the
simulation presented in figure 28 we exhibit snapshots of the population support in generation 13000
up to 13600 in steps of 200 generations. Blue dots indicate sequences folding into structure s, red dots
sequences folding into s’ and tiny black dots sequences that neither fold into s nor s’. The dots are
connected by edges of the minimum spanning tree. Edges connecting sequences of Hamming distance
greater than 3 are omitted.
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6. Discussion

The late sixties saw the birth of a new concept in population genetics when Kimura
postulated his neutral theory of molecular evolution [43, 44]. The controversy arising
over the hypothesis whether or not neutral variants exist in nature and play a role in
evolution had an impact on the view of molecular evolution. Due to an immense amount of
experimental data from sequence comparison there are no doubts left about the existence
of neutrality at the molecular level. Yet one controversial issue has not be clarified at
all: What is the relative importance of random drift and positive selection. Even Charles
Darwin had admitted the existence and relevance of random drift. Nowadays it has been
recognized that its effects cannot be neglected when considering evolutionary dynamics
on the molecular level [9, 41, 48]. Kimura emphasized that his theory has two roots. One
being the stochastic theory of population genetics and the other being molecular genetics.
In our opinion the most important aspect of this unification is the qualitative formulation
of a mechanism of heredity. The main goal is to answer the question: How do changes
in genotype act on the level of phenotypes? The RNA model considers explicitly the
folding of sequences into secondary structures. It makes for the first time investigations
of the influence of mutations on the phenotype accessible to mathematical analysis and

computer simulations.

Local neutrality being the property of a single sequence to have sequences in its neighbor-
hood that adopt the same structure and the definition of compatible sequences provide the
inputs to the description of 'neutral networks’ as randomly induced graphs [59, 56]. The
direct comparison of features predicted by the random graph model with RNA folding-
networks had demonstrated its usefulness [30, 31]. Critical values for the average fraction
of neutral neighbors had been derived above which neutral networks are predicted to be
dense and connected, with other words particularly well suited for searching in evolution
[56, 59]. Those networks are proven to approach each other in sequence space, i.e., for any
two networks there exists a set of sequences representing points of contacts between them
(sect. 3.3). For the physically meaningful AUGC alphabet the cardinality of this set can

be obtained as the product of generalized Fibonacci numbers. With the same arguments
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leading to the size of the overlap it can be shown that it is uniformly distributed in se-
quence space and has the form of connected islands. These contact sequences are claimed
and proven to be of primary importance for evolutionary adaptation (sect. 3.3, 5.3). The
random graph model [56] (sect. 3.2) was developed in order to describe and analyze RNA
folding landscapes. The existence of sequences that in principle could adopt two struc-
tures requires an extension of this model. We have proposed to treat sequences on the
overlap separately by introducing a joint neutrality parameter which decides whether the
sequence is a master or not. The kind of network the sequence belongs to is taken into
account by weighting over the network parameters. The addition of only one degree of

freedom to the parameters of the networks turns out to be a useful approximation to

RNA-folding (sect. 3.3).

The generation of simple but nevertheless suggestive landscapes is one approach to the
question: What are the generic features of evolutionary optimization? That means in
order to investigate neutral evolution on RNA folding landscapes it is natural to furnish
sequences adopting the same secondary structure with the same fitness value. This ap-
proach corresponds to the assumption of a single sequence having superior fitness that
leads to the quasi-species [14], or of two sequences having the same superior fitness val-
ues yielding a degenerated quasi-species [66]. But instead of asking for the stationary
distribution of particular sequences we are interested in the number of sequences being
located on specified networks encoding a set of interacting phenotypes. In order to take
the effects of genetic drift into account the population size was assumed to be very small
compared to the size of the sequence space. This finally demanded a stochastic approach

to model the kinetics.

First a basic model was established that assumed a completely flat fitness landscape
accommodating two fictitious phenotypes (sect. 4.1). A probability 'w’ of a replication
to produce an offspring that belongs to the same phenotype as its template was defined.
This parameter — the phenotypic fixation probability — was shown to have the function
of a decoupling constant between the two phenotypes. Depending on the population size

the existence of a critical value w* could be shown. Below this value both phenotypes
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are likely to coexist over time whereas above it only one phenotype is actually present.
The course of evolution is then characterized by fast transitions changing the nature of
dominating phenotype. These swaps can be observed for constant as well as for fluctuating
population sizes. Distinct fixation probabilities w for each of the two phenotypes change
the properties of the model only slightly. Coexistence can be observed if both values are
below w*. If one w-value is smaller and the other one greater than w*, the phenotype with
the greater w-value dominates over time. Transitions between dominating phenotypes can
be only expected if both probabilities are above the critical phenotypic fixation probability

w*.

The counter-part of the single-peak landscape [16] is the single-shape landscape on the
level of RNA secondary structures [56] (sect. 4.2). It is induced by a fixed neutral network
whose sequences are assumed to form a fitter master phenotype than all other sequences
(non-masters). This in a natural way defines a partition into two disjoint ‘phenotypes’.
A uniform error model [17] and the random graph approach (sect 3.2) provide the in-
puts for deriving arithmetic expressions for the phenotypic fixation probability (W, (p)
corresponding to sequences on the network [59] and W,,(p) for those not being on the
network) which depend on the single digit error rate p. In general, the probability to
obtain a master individual through replication when the template is a master strongly
depends on the master-template itself. The same applies to non-masters as well. So the
values for W, and W,, have to be interpreted as average probabilities. They give a good
approximation if A, and A, — the average fractions of neutral neighbors in the unpaired
and paired regions of a structure — are interpreted in terms of conditional probability and
additionally an average rate of neutrality is introduced. The latter is defined to be equal
to |I',[s]|/|C[s]| which in general is much smaller than A,A,. This assumption takes the

local effect called buffering [39] into account.

Likewise as for the basic model, there exist critical values for the probabilities W, and
W, additionally depending on the absolute fitness difference that determine the character
of the evolutionary course. For finite (sect. 4.2) as well as for infinite population sizes [57]

an error threshold p* can be given where in the long time limes it becomes most likely to
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find no sequence on the neutral network, i.e., all sequences that carry the information of

this particular phenotype vanish.

The model envisages an increase in complexity and one further step towards an under-
standing of neutral evolution when the interaction of three phenotypes is investigated. In
particular, we are interested in the evolutionary behavior of a population that is charac-
terized by two dominating neutral networks of equal fitness (sect. 4.3). It is known from
section 3.3 that for any two fixed neutral networks a number of sequences can be found
that come very close to both of them. This gives rise to the assumption that in the course
of evolutionary optimization a population mainly living on one network can not only pick
up sequences that belong to the other network but eventually support it by producing
offspring that adopt the structure or the second network. The parameters of the extended
random graph model and the single digit error rate provide the input for the formulation
of analytical expressions describing the phenotypic fixation and transition probabilities.
The evolutionary dynamics of a finite population in an underlying double-shape landscape
turns out to be a combination of the basic model acting on the level of the networks and
the dynamics on a single-shape landscape. With respect to the neutral networks three
generic features are possible to emerge in the course of evolution

(1) coexistence of genotypes from both networks,

(2) genotypes supporting only one network,

(3) sporadic alternation of extinction and dominance of genotypes belonging to the

networks.

These outcomes depend primarily on the topologies of the two networks which are deter-
mined by the amount of compatible sequences, the average fractions of neutral neighbors
in the unpaired and paired regions, and the average fraction of neutrality and secondly
on their overlap as well as on the structural features, single digit error rate, and the pop-
ulation size. In applying our knowledge from the basic model and from the single-shape
dynamics it can be recognized that these features are strongly correlated with the fixation
rates W, ,, and W,,,, on the two networks. While coexistence of both and extinction of

only one network are two outcomes that could be figured out as well by the deterministic
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approach to the model, mutual alternation of extinction and dominance is caused by the
finiteness of the population. The fact that this third feature of evolutionary behavior
cannot be detected by the deterministic approach to the model is one more justification
for the stochastic view on evolutionary dynamics. A finite population migrates through
sequence space and moves on a neutral network by means of diffusion like mechanisms [40,
56]. Depending on the population size it may split into subpopulations that then move
autonomously through sequence space. A population being fixed on a predefined network
and producing offspring that again are preferentially located on the same network after
some time will come close to the other fit network. Then it may ’tunnel’ to the other
network via sequences on the overlap and become fixed there, or it passes transient states
of coexistence and again becomes fixed on the previously dominating network (sect. 5.4).
These elaborated interesting stochastic phenomena give rise to new aspects in neutral
evolution. Therefore under certain circumstances firstly the replacement of distinct phe-
notypes of nearly the same fitness takes place only in a few generations (sect. 4.1) and
coexistence is only seen to be an intermediate unstable state. This corresponds to the
results presented by Fontana et al. [23]. But secondly and this is the most astonishing
result a phenotype going extinct does not need to be irreversibly lost (sect. 5.4), if it has
a similar fitness as the actually dominating phenotype and covers an extended network
in sequence space. Then error prone replication causes a diffusion process that allows
the population to move close to sequences encoding the lost phenotype and eventually

producing offspring that belongs to it.
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Appendix A: Parameters

In order to connect the random graph theory on neutral networks of RNA secondary
structures with the RNA folding algorithm the average fractions of neutral neighbors (A,
and Ap,) need to be estimated. In general this can be done by choosing a random sample
of sequences on a predefined neutral network and computing the distribution of neutral
neighbors separately for unpaired and paired bases. The average fraction of neutrality X is
derived from a random sample of sequences that are compatible with the given structure.
Finally the joint neutrality parameter p is computed from a random sample of sequences
on the intersection I[s,s’]. Due to the data received by exhaustive folding of all GC
sequences up to chain lengths 30 it was possible to give the exact values for all neutral
networks [30, 31]. For convenience once more table 1 recalls the pairs of structures (s, s')

underlying the numerical simulations performed in the previous section.

Table 1. pairs of RNA secondary structures forming double shape landscapes

s s'
Ao | . COCCCCCCeaeINININY | veeeeene OO oMM
B. | ........ CCCCCCCC oMM CCCCCCCCaeINMIN oM
.o O, 1IN e, VI ...

For these three pairs of secondary structures and the sequence space of dimension 30
formed over the alphabet (G,C) table 2 monitors the parameters describing the corre-

sponding neutral networks.

According to section 4.3 the phenotypic fixation and transition probabilities are calculated
and presented in table 3. Here the single digit error rate was chosen to be 0.03. For each
pair of structures all sequences adopting structure s are denoted by u; whereas those

adopting structure s’ are denoted by u,. Non-master sequences are indicated by v.
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Table 2. average fractions of neutral neighbors, average fraction of neutrality, joint neu-

trality with respect to s and s’

A. B. C.
A 0.859944 0.859944 0.666106
M) 0.802359 0.967120 0.665647
Ap 0.894559 0.894559 0.748079
AL 0.928420 0.965835 0.745359
A 0.747912 0.747912 0.295754
b\ 0.642873 0.957394 0.293419
p 0.3911 0.9160 0.1491

Table 3. phenotypic fixation and transition probabilities for single digit accuracy 0.97

A. B. C.
W, 0.557150 0.557358 0.545325
W s 0.546931 0.484030 0.545215
W i 0.000458 0.000070 0.000444
W s 0.000533 0.000534 0.000448
W, 0.000535 0.000535 0.000449
Wi 0.000513 0.000082 0.000483
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Appendix B: Stochastic Simulation of Finite Populations Dynamics

” Ansatz of Gillespie”

The time evolution of a spatially homogeneous mixture of chemically reacting molecules
is usually calculated by solving a set of coupled ordinary differential equations. This
deterministic formulation of chemical kinetics leads to N differential equations if there
are N chemically active molecular species. An arbitrary equation expresses the time-
rate-of-change of the molecular concentration of a single species in functional terms of
the concentration of all species as well as reaction constants and stoichiometrics of the

reactions it is involved in (mass-action-kinetics, Michealis-Menten-kinetics).

Another approach to chemical kinetics of a spatially homogeneous system is the stochastic
formulation. It is somewhat more applicable than the deterministic formulation and as
opposed to the mathematically more simple deterministic approach, it takes fluctuation
and correlation into account. In the stochastic formulation reaction rates are not viewed
as deterministic reaction rates but as reaction probabilities per time unit. The temporal
behavior of a chemically reacting system takes the form of a Markovian stochastic process
in the N-dimensional state space of the molecular populations of the N species. In the
stochastic formulation of chemical kinetics the time evolution is analytically described by
a single differential-difference equation for a probability function over the state space of N
species depending on time. From the mathematical point of view the set of deterministic
reaction rate equations for a given system is much easier to solve than its corresponding
master equation. If neither formulation is tractable by analytical methods computer-
oriented methods are required. Gillespie proposed such a method to simulate the Markov
process that the master equation describes analytically. In particular he addressed a

problem that can be formulated as follows:

— There is given a volume V containing molecules of N chemical active species S; (i =
1,...,N) and possibly molecules of several inert species.

— Let X; be the current number of molecules of the species S; in V with (¢ =1,..., N).

— The N species S; can participate in M chemical reactions R, (x = 1...M), each

characterized by a numerical reaction parameter c,,.
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Remark: A population of haploid replicating molecules evolving in a flow-reactor can be
described by two types of reactions {R,,, } : S; — S;+S; for replication and {R,,,} : ;i — *

for the unspecific dilution flux.

The fundamental hypothesis of the stochastic formulation of chemical kinetics states that
the reaction parameter ¢, can be interpreted as
c,0t = average probability, to first order in 4f, that a particular combination of R,

reactant molecules will react accordingly in the next time interval &¢.

The principal task now is to develop a method for simulating the time evolution of the
N quantities {X;}, knowing only their initial values {Xi(o)}, the forms of the M reactions

{R,} and the values of the associated reaction parameters {c,}.

Let P(X1, Xa,..., Xn;t) be the probability that there will be X; molecules of Species S;
fort=1,..., N in the Volume V at time ¢. The number X; of S; molecules found at time
t will vary from run to run. In the limit of infinitely many runs the values X;(t) approach

an average value, also the variance of the values X;(t) is finite.

The usual stochastic approach to the coupled chemical reaction problem focuses upon
the probability function P(Xy, Xa,..., Xn;t). Then the master equation is the time
evolution equation for the P(Xy, Xa,..., Xn;t). Often it turns out to not feasible to
solve the master equation both analytically and numerically. That is why the numerical
method proposed by Gillespie is not based on P but one another quantity called the
reaction probability density function, P(t,u).

Definition 2 P(r,p) dr = probability at time t that the next reaction in the volume V

will occur in the infinitesimal time interval (t + 7,t + 7 4 d7) and will be a R,, reaction.

In terms of probability theory, P(7, i) is a joint probability density function on the space

of continuous time 7 and discrete variables p.

Gillespie [28, 29] derived an exact expression for P(7, p):
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where £, is defined to be the number of distinct molecular reactant combinations for
reaction /2, found to be present in V' at time ¢, whereas 0 < 7 < oo, T€ R, 1 < pu <
M, p € N and P(p,7) = 0 for all other 7, p.

The computational procedure uses Monte Carlo technique to simulate the stochastic pro-

cess described by P(7, ). Then the simulation algorithm can be described as follows:

Step 0: Initialization: Set ¢t = 0, specify and store initial values for the N variables
Xq,..., Xn. Specify and store the values ¢y, ..., cpr for the set of M chemical
reactions {R,}. Calculate and store the M quantities ¢ihq,...,carhar. Specify
and store a series of "sampling times” #; < 3 < ... and a "stopping time” t4,p.

Step 1: Generate by a suitable Monte Carlo technique one random pair (7, x). (How to
do this is shown below.)

Step 2: Using the numbers 7, i generated in step 1, advance t by 7 and change the {X;}
values of those species involved in reaction R,. Then recalculate the ¢, h, quan-
tities for those reactions R, whose reactants X;-values have just been changed.

Step 3 If t hast just been advanced through one of the sampling times ¢;, read out the
current molecular population values Xy, ..., Xn. If t > t5,, or by, = 0 for all p

terminate the calculation, otherwise return to step 1.

By carrying out the above procedure from time 0 to time Zy,, only one realization of
the stochastic process is obtained. In order to get a statistically complete picture of the
temporal evolution of the system, we have to carry out several independent realizations,

each starting with the same initial set of molecules and proceeding the same time ¢54,,.

One method to generate the random pair (7, p) according to P(r,u) is called the ”di-
rect” method. It is based on fact that P(r,u) can be written in terms of conditional
probabilities. Hence P(r,u) = Pi(7) - P»(p|7). Here Py (7)dt is the probability that the
next reaction will occur between times ¢ + 7 and ¢ + 7 + dr, irrespective of which reac-
tion it might be. Further P, (u|7) is the probability that the next reaction will be a R,
reaction, given that the next reaction occurs at time ¢ + 7. By applying the addition

M P(7, ). Therefore it follows for Py (u|7):

theorem for probabilities one gets 11 (1) =3,

Py(ulr) = P(r, 1)/ §1P<r, ).
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Substituting P(r, ) finally yields P, = a-e~*", Py(p|r) = a,/a. where a, = h,c, and
M

a= > a,. In particular P,(p|7) turns out to be independent of 7.
u=1

The idea of the ’direct’ method is therefore (first) to generate the random value according

to P (1) = a-e”" and (second) to generate generate a random integer p according to

Py(ulr) = aufa.

Using the output of a uniform random number generator, a random value 7 can be gener-
ated according to P (7) by simply taking a random number r; from the uniform distribu-
tion in the unit interval and setting 7 = (1/a)In(1/ry). Further a random integer u can
be obtained by evaluating a number ry from the uniform distribution in the unit interval

and taking p as the integer fulfilling

p=1 H
E a, <rea < E ay.
v=1 v=1

”Replication Deletion Process”

Next we introduce a model that follows the Moran scheme [52]. It has the advantage of

allowing explicit expressions for many quantities of evolutionary interest.

Let N be a natural number, with V > 2 and let V be a finite family of vertices V =
(v;]7 € Ny) where {v;|i € Ny} C QL. V is called a population in Q.
We consider an arbitrary partition of the set v[Q”] into disjoint sets of vertices G, i =

1,...,m with (JG; = v[QZ]. A fitness function induced by {G;};=1,...m can be given by
f)i=0; ffved;, oeRY i=1,...,m.

A Replication Deletion Process with respect to a partition {G;};=1 ... is a mapping from
a family V = (v; |7 € Ny) to a family V' = (v |i € Ny) as follows:

— An ordered pair of vertices (v, vy) is selected from V = (v; |1 € Ny). For

z;i=resg, #(Gy), j=1,...,m
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vy is chosen with probability o;z;/ 3", oz from {v;|i € Ny, } with resg, (v;) > 0.
The second coordinate vy, is selected with uniform probability 1/(N—1) from {v; | #
£,i € Ny}. We assume the time T between these mappings to be exponentially
distributed (scaled by the mean fitness)

Prob{T <t} = o= (20, dizt

The vertex vy = (21,...,2,) is mapped randomly into the vertex v* = (z},...,z").
This is done by mapping each coordinate z; to z} # z; with probability p where
all #f # x; are equally distributed and leave the coordinate fixed otherwise. This
mapping is called ”replication”

Finally we delete the second coordinate vg.

The pair (vg, vg) is mapped into the pair (v, v*). Thereby we obtain V’ by substi-
tuting vy by v*.
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Notation

alphabet
= (-1 [z+1)...(z+£-1)], z€R, e N;Betafunction
size of predefined alphabet

graph of compatible sequences with respect to s

set of compatible sequences with respect to s

edge set of a graph GG

:={v|d(v,',[s]) and d(v,[',[s']) = k}; distance class with respect to incom-
patible base pairs in s and s/,

combinatory map

fitness function with respect to neutral networks of s and s’
neutral network corresponding to secondary structure s of length n
set of all induced subgraphs in the finite graph H

C[s] N C[s'], intersection, overlap

intersection graph

OW;ip — Wok

IT'.[s]|/|C[s]|, fraction of neutrality

average fraction of neutral neighbors unpaired and paired

average or fixed population size

parameter of system size, in particular chain length

number of unpaired and number of paired bases

probability

infinitesimal transition probability in Markov chain

pairing rule of an alphabet

set of contacts of an RNA secondary structure s, pairing rules of s
single digit error rate

single digit accuracy

representation of secondary structure s in symmetric group S,

:= (#1,...,1x), orbit corresponding to a pair of secondary structures s, s', cycle

of m(s) o w(s") with respect to the pairing rules 11(s) and I1(s’)
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NOTATION

generalized hypercube of dimension n over an alphabet of cardinality o
action probability on the intersection

set of all secondary structures of sequences of chain length n

secondary structure

positive real number greater than 1, superior fitness

the population

number of masters and nonmasters in population

vertex of a graph or element of a population V

vertex set of a graph GG

average probability by mutating a master with error rate 1 —p to get a master
average probability by mutating a nonmaster with error rate 1 — p to get a

master

; short form for W_ ;if i = k it is called phenotypic fixation probability, other-

wise phenotypic transition probability
critical phenotypic fixation probability

integer valued random variables
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