# Energy Landscapes of Biopolymers

Michael Wolfinger

Institute for Theoretical Chemistry and Structural Biology, University Vienna

28th October 2004



### Outline

- 1 Biopolymers
- 2 Conformation space
- 3 Energy landscapes
- 4 Dynamics of biopolymers
- 5 Examples



### The RNA model



A secondary structure is a list of base pairs that fulfills two constraints:

- A base may participate in at most one base pair.
- Base pairs must not cross, i.e., no two pairs (i,j) and (k,l) may have i < k < j < l. (no pseudo-knots)

The optimal as well as the suboptimal structures can be computed recursively.



## RNA energy model



The energy of a sequence and particular structure is given as the sum of contributions from the "loops" (planar faces). Stacks yield stabilizing contributions, all other loops lead to destabilizing energy contributions.



## Levels of structure in proteins





### The HP-model

Suggested by Dill, Chan and Lau in the late 1980ies. In this *simplified model*, a conformation is a *self-avoiding walk (SAW)* on a given lattice in 2 or 3 dimensions. Each bond is a straight line, bond angles have a few discrete values. The 20 letter alphabet of amino acids (monomers) is reduced to a two letter alphabet, namely **H** and **P**. H represents hydrophobic monomers, P represents hydrophilic or *polar* monomers.

### Advantages:

- lattice-independent folding algorithms
- simple energy function
- hydrophobicity can be reasonably modeled



FRRLLFLF





# Lattice proteins





$$\begin{array}{cccc} & H & P \\ H & -1 & 0 \\ P & 0 & 0 \end{array}$$



# Folding kinetics

Biomolecules may have kinetic traps which prevent them from reaching equilibrium within the lifetime of the molecule. Long molecules are often trapped in such meta-stable states during transcription.

#### Possible solutions are

- Stochastic folding simulations (predict folding pathways)
- Predicting structures for growing fragments of the sequence
- Analysis of the energy landscape based on complete suboptimal folding



The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

RNA

$$c_n \sim \alpha^n \cdot n^{-\frac{3}{2}}$$

dynamic programming algorithms available

Lattice proteins

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$

problem is NP-hard

- A set X of configurations
- lacktriangle a notion  $\mathfrak M$  of neighborhood, nearness, distance or accessibility on X, and
- an energy function  $f: X \to \mathbb{R}$



The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

RNA

$$c_n \sim \alpha^n \cdot n^{-\frac{3}{2}}$$

dynamic programming algorithms available

Lattice proteins

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$

problem is NP-hard

- A set X of configurations
- lacktriangle a notion  $\mathfrak M$  of neighborhood, nearness, distance or accessibility on X, and
- an energy function  $f: X \to \mathbb{R}$



The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

RNA

 $c_n \sim \alpha^n \cdot n^{-\frac{3}{2}}$ 

dynamic programming algorithms available

Lattice proteins

 $c_n \sim \mu^n \cdot n^{\gamma-1}$ problem is NP-hard

- A set X of configurations
- lacktriangledown a notion  $\mathfrak M$  of neighborhood, nearness, distance or accessibility on X, and
- an energy function  $f: X \to \mathbb{R}$



The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

| Lattice proteins                    | RNA                                        |
|-------------------------------------|--------------------------------------------|
| $c_n \sim \mu^n \cdot n^{\gamma-1}$ | $c_n \sim \alpha^n \cdot n^{-\frac{3}{2}}$ |

dynamic programming algorithms available problem is NP-hard

- A set X of configurations
- lacktriangledown a notion  $\mathfrak M$  of neighborhood, nearness, distance or accessibility on X, and
- an energy function  $f: X \to \mathbb{R}$



The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

$$c_n \sim \alpha^n \cdot n^{-\frac{3}{2}}$$

dynamic programming algorithms available

Lattice proteins

$$c_n \sim \mu^n \cdot n^{\gamma-1}$$

problem is NP-hard

- A set X of configurations
- lacktriangledown a notion  $\mathfrak M$  of neighborhood, nearness, distance or accessibility on X, and
- an energy function  $f: X \to \mathbf{R}$



### The move set





- For each move there must be an inverse move
- Resulting structure must be in X
- Move set must be *ergodic*



# Low-energy states of lattice proteins





# Kinetic Folding Algorithm

Simulate folding kinetics by a rejection-less Monte-Carlo type algorithm:

Generate all neighbors using the move-set

Assign rates to each move, e.g.

$$P_i = \min\left\{1, \exp\left(-rac{\Delta E}{kT}
ight)
ight\}$$

Select a move with probability proportional to its rate Advance clock  $1/\sum_i P_i$ .





## Energy barriers and barrier trees

#### Some topological definitions:

#### A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point



## Energy barriers and barrier trees

#### Some topological definitions:

#### A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point





## Energy barriers and barrier trees

#### Some topological definitions:

#### A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors
- saddle point if there are at least two local minima thar can be reached by a downhill walk starting at this point





















### Information from the barrier trees

- Local minima
- Saddle points
- Barrier heights
- Gradient basins
- Partition functions and free energies of (gradient) basins

N.B.: A *gradient basin* is the set of all initial points from which a gradient walk (steepest descent) ends in the same local minimum.



### Dynamics of biopolymers

The probability distribution P of structures as a function of time is ruled by a set of forward equations, also known as the master equation

$$\frac{dP_t(x)}{dt} = \sum_{y \neq x} [P_t(y)k_{xy} - P_t(x)k_{yx}]$$

Given an initial population distribution, how does the system evolve in time? (What is the population distribution after n time-steps?)

$$\frac{d}{dt}P_t = \mathbf{U}P_t \implies P_t = e^{t\mathbf{U}}P_0$$



### Barrier tree kinetics

For a reduced description we need

- macro-states that form a partition of full configuration space
- transition rates between macro-states, e.g.

$$r_{etalpha} = \Gamma_{etalpha} \exp\left(-(E_{etalpha}^* - G_{lpha})/kT\right)$$

All relevant quantities can be computed via the flooding algorithm.

# Dynamics of tRNA



tbi

# Dynamics of lattice proteins: HEX/TET lattice

#### NNHHPPNNPHHHHPXP n=16







- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- The accuracy of the model is very high in the case of RNA and mostly sufficient for lattice proteins.
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.



- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- The accuracy of the model is very high in the case of RNA and mostly sufficient for lattice proteins.
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.

- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- The accuracy of the model is very high in the case of RNA and mostly sufficient for lattice proteins.
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.



- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- The accuracy of the model is very high in the case of RNA and mostly sufficient for lattice proteins.
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.



- Discrete models allow a detailed study of the energy surface.
- Barrier trees approximate the landscape topology and folding kinetics.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- The accuracy of the model is very high in the case of RNA and mostly sufficient for lattice proteins.
- This newly generated framework provides a powerful method for further refinement of biopolymer folding landscapes.



### **Thanks**

Peter Stadler
Ivo Hofacker
Christoph Flamm
Peter Schuster
the audience

