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5Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany
6Fraunhofer Institute IZI, Perlickstr. 1, Leipzig, Germany
7Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501, USA
8IMADA, Univ. Southern Denmark, Campusvej 55, Odense, Denmark.

1 PART A: CONNECTIVITY OF THE BHG
First, for a given RNA sequence, its energy landscape is connected.
This is because for any pair given secondary structures A and B,
there exists a path between A and B by first removing all the base
pairs in A \B and then adding the base pairs in B \A.

Next, we prove that the “base hopping graph” is connected. We
start from Theorem 1 of (Klemm et al., 2014), which states that
for any two local minima, there exists a zig-zag path between them
defined as following: Given a path P = (v0, v1, . . . , v`, v`+1) ∈
X , if vk > vk+1 = · · · = vl−1 < vl, then all the structures vj for
k+1 ≤ j ≤ l−1 are called valley points. Analogously, peak points
are the structures vj with k+ 1 ≤ j ≤ l− 1 if vk < vk+1 = · · · =
vl−1 > vl. A path P = (x = w0, w1, . . . , w`, w`+1 = y) is a zig-
zag path on (X, f) if the following three conditions are fulfilled: (a)
maxi f(wi) = S(x, y); (b) if wk > wk+1 = · · · = wl−1 < wl

then there is a minimal shelf L such that wj ∈ L for k + 1 ≤ j ≤
l− 1 and (c) if wk < wk+1 = · · · = wl−1 > wl then each wj with
k + 1 ≤ j ≤ l − 1 is a direct saddle separating the nearest valley
points that the path P passed before and after wj .

LEMMA 1.1. (Klemm et al., 2014) If x, y are two local minima,
then there exists a zig-zag path connecting x and y.

PROOF. The definition of the saddle height guarantees there is a
path ℘ from x to y whose height does not exceed S(x, y). Denote
by Xf (y) the connected component of the induced subgraph
with vertex set {z ∈ V |f(z) = f(y)}. In the local search
literature, Xf (x) is often called a plateau or a neutral network
(Van Nimwegen & Crutchfield, 2000).

Consider the graph X∗ = X/ ∼f derived from the original
landscape X by contracting any Xf (y) into a vertex of X∗. This
contracts a path ℘ in X to a path ℘∗ in X∗.

To prove the theorem, all we need is to first construct a zig-zag
path P ∗ ∈ X∗ from ℘∗ and then prove the existence of a zig-
zag path P ∈ X such that P ∗ is the resulted graph of P after
the contraction. The latter is trivial since by construction, Xf (y)
is connected for any y ∈ X . Therefore the proof reduces to the
construction of P ∗ ∈ X∗ from ℘∗. This construction is described
as follows and illustrated in Fig. 1.
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Fig. 1. The construction of the path (℘→ ℘∗ → P ∗ → P ) in the proof of
Lemma 1.1. Bold lines in grey denote the path in the plateau Xf (z) where
z is inside, z ∈ {p1, `1, p3}.

Let {vi}ti=1 denote the valley points in ℘∗. From each valley
point vi, a gradient walk is simulated to reach some local minimum
`i. Without loss of generality, we set v0 = `0 = x, vt+1 =
`t+1 = y and assume that all `i are different configurations. In this
context, we observe that there exists a pair of hill-climbing walks
from ”adjacent” local minima `i and `i+1 to some peak point of ℘∗,
denoted by pi. By definition, f(pi) ≥ DS[`i, `i+1]. Depending on
whether they are equivalent or not, there are two cases. In case of
f(pi) = DS[`i, `i+1], then we just substitute the pair of sections
([vi, pi], [pi, vi+1]) in ℘∗ into the pair of hill-climbing walks from
`i and `i+1 to pi, respectively. Otherwise, by definition, there must
exist a configuration di such that f(di) = DS[`i, `i+1] < f(pi).
In this case, we substitute the pair of sections ([vi, pi], [pi, vi+1])
in ℘∗ into the pair of hill-climbing walks from `i and `i+1 to di,
respectively.

Thus the graph where LMs are adjacent only if there is a direct
saddle between them, is connected. Since the BHG is obtained from
this graph be removing only edges that can be replaced by path (with
lower saddle height), it is also connected.
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2 PART B
THEOREM 2.1. For any two saddles s′ and s′′ either B(s′) ⊆

B(s′′), B(s′′) ⊆ B(s′) or B(s′′) ∩B(s′) = ∅ is satisfied, i.e., the
basins below saddles of a landscape form a hierarchy with respect
to the set inclusion order.

PROOF. By definition, the basin B(s) = Bf(s)(s) of s (Flamm
et al., 2002) is the set of all points in X that can be reached from s
by a path whose elevation never exceeds f(s).

Without loss of generality, we assume f(s′) ≤ f(s′′). Consider
the saddle height between two saddles s′ and s′′, denoted by
S(s′, s′′). There are three cases: (1) S(s′, s′′) = f(s′) = f(s′′);
(2) f(s′) < S(s′, s′′) = f(s′′) and (3) f(s′) ≤ f(s′′) < S(s′, s′′).
Correspondingly, we have (1) B(s′) = B(s′′); (2) B(s′) ⊂ B(s′′)
and (3) B(s′′) ∩ B(s′) = ∅. Thus the theorem is true.
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3 PART C: BASIN HOPPING GRAPH AND
BARRIER TREE

Let G(V,E, ω) be a finite, simple graph with the vertex set V , the
edge set E and arbitrary edge weights ω : E → R. We consider
the following algorithm (Algorithm 3) to analyze the given graph
G and obtain a binary, vertex-weighted tree Tb(VTb , ETb , ωTb),
accordingly. This algorithm is well-known as a naive version of
the single linkage clustering with the time complexity O(|V |3). In
1973, R. Sibson proposed an optimally efficient algorithm of only
complexity O(|V |2) known as SLINK (Sibson, 1973). Intuitively,
we start with all vertices x ∈ V in separate clusters (x). In each step,
the pair of clusters connected by the smallest edge weight is merged.
Edge weights to all other clusters are updated to the minimum of the
edge weights of the merged clusters.

Require: G(V,E, ω)
1: /*Initialize clusters, tree Tb and distance matrix*/
2: L← {(x)|x ∈ V }
3: VTb ← {(x)|(x) ∈ L} and ETb ← ∅
4: for all (x) ∈ VTb do
5: ωTb((x))← f(x)
6: end for
7: for all ((x), (y)) ∈ L× L do
8: Wxy ← ωxy if {x, y} ∈ E and Wxy ←∞ if {x, y} /∈ E
9: end for

10: while |L| > 1 do
11: Find a pair of clusters {(u), (v)} such that Wuv =

min
(x,y)∈(|L|

2 )Wxy

12: /*update the distance matrix and the Tb-tree*/
13: for all (x) ∈ L \ {(u), (v)} do
14: Wux = min{Wux,Wvx}
15: end for
16: create a new (internal) Tb-vertex (uv) ← (u) ∪ (v) with

ωTb((uv))←Wuv

17: VTb ← VTb ∪ (uv)
18: ETb ← ETb ∪ {(uv), (u)} ∪ {(uv), (v)}
19: L← L \ {(v)}
20: end while

The single linkage clustering implicitly defines a binary tree Tb

in which each internal node (uv) = (u) ∪ (v) corresponding to the
merging of the clusters (u) and (v) has the minimum weight Wuv .
Note that this algorithm is not deterministic if the pair with minimal
weight (Line 3) is not unique, i.e., if

|{(u, v)|Wuv = min
(x,y)∈(|L|

2 )
Wxy}| > 1.

Clearly, ambiguities concern only pairs with the same weights. A
unique tree T is obtained by contracting all edges in Tb for which
the adjacent vertices are internal nodes with the same weight.

The barrier tree of a given landscape (X, f) can also be
interpreted into a vertex weighted tree T ∗b (V

∗
Tb
, E∗Tb

, ω∗Tb
) with the

local minima as its leaves. Internal nodes indicate the merging of
basins surrounding two local minima at their saddle height.

THEOREM 3.1. The barrier tree T ∗b (V
∗
Tb
, E∗Tb

, ω∗Tb
) of the

landscape (X, f) is the tree Tb(VTb , ETb , ωTb) computed by the

single linkage clustering from the complete graphK(VK , EK , wK)
whose vertex set VK includes the local minima of the landscape and
whose edges have weight ωK({x, y}) = S(x, y) for all {x, y} ∈
EK .

PROOF. To prove this observation, we need to introduce a notion
called the level number LN : V → Z∗ for each vertex in the tree.
The level number is defined recursively: (1) the level number of each
leaf is 0 and (2) the level number of each internal node v is defined
as maxx{LN(x)}+1 where x runs over all the children of v. Thus
the observation is reduced to:
For each level number ` ≥ 0, there exists an one-to-one mapping
Id : F `

b → F ∗,`b between the subgraph (forest) of F `
b and induced

by vertices in Tb with level number ≤ ` and the corresponding
induced subgraph F ∗,`b of T ∗b .

Firstly, when ` = 0, the statement is trivial since the leaves for
both forests are the set of local minima in the landscape. Now we
assume the statement is true for all the vertices with level numbers
less than or equal to k. Now consider an arbitrary vertex v in F k+1

b

with the level number k+1, we need to prove: (1) Id(v) ∈ F ∗,k+1
b ;

(2) if w is a child of v in F k+1
b then Id(w) is a child of Id(v) in

F ∗,k+1
b and (3) ωTb(v) = ω∗Tb

(Id(v)).
Clearly, since the level number of v is k + 1, then there exists

at least one of its children, say w whose level number is k. Now
consider the parent node v∗ ∈ T ∗b of Id(w) and its children set
{w0 = Id(w), w1, . . . wt}. Let mi and mj be the leaves of wi

and wj (0 ≤ i < j ≤ t), respectively. Then by definition
of the barrier tree, the saddle height between (mi,mj) is exactly
w∗Tb

(v∗). Now consider the subtrees rooted in w−1
i =: Id−1(wi)

and w−1
j =: Id−1(wj) in Tb. By construction, the level numbers of

w−1
i and w−1

j are no more than k. Therefore by assumption, they
both exist. Furthermore, there exist mi ∈ w−1

i and mj ∈ w−1
j .

Now we claim ωTb(v) = ωTb(v
∗). On one hand side, the single

clustering algorithm gives rise to ωTb(v) = min(x,y) S(x, y), where
x and y run over all the leaves of the subtrees rooted in w−1

i and
w−1

j , respectively. Therefore, ωTb(v) ≤ S(mi,mj) = wTb(v
∗).

On the other hand, if ωTb(v) < ωTb(v
∗), then there exists a

pair of local minima mp ∈ Tb(w
−1
i ) and mq ∈ Tb(w

−1
j ) with

ωTb(v) = S(mp,mq) > max{ωTb(w
−1
i ), ωTb(w

−1
j )}. In which,

Tb(w) denotes the subtree of Tb rooted at w. In this case, we can
construct a path mi → mp → mq → mj with cost S(mp,mq)
- strictly less than S(mi,mj), which is a contradiction to the
definition of saddle height. Therefore, the claim is true. Thus, we
set Id(v) = v∗ and the proof is complete.

THEOREM 3.2. Let B(VB , EB , ωB) be the basin hopping graph
of the landscape (X, f) with VB denoting the set of local minima in
(X, f). Then, for all {x, y} ∈

(
VB
2

)
,

S(x, y) = min
℘∈path(x,y)

max
{u,v}∈℘

ωB({u, v}) (1)

where path(x, y) denotes the set of the paths between x and y in
B(VB , EB , ωB) and each path ℘ ∈ path(x, y) is represented by
the sequence of edges it passes through.

PROOF. This theorem is indicated in the proof the Lemma 1.1
since the crucial observation in Lemma 1.1 is that every path
connecting two local minima can be replaced by a sequence of local
minima that are connected by directed saddles.
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THEOREM 3.3. The barrier tree T ∗b (V
∗
Tb
, E∗Tb

, ω∗Tb
) of the

landscape (X, f) is the tree TB(VTB , ETB , ωTB ) computed by
single linkage clustering from the BHG.

PROOF. According to Theorem 3.1, we only need to prove
that there exists an identity map I : VTB → VTb between the
trees TB(VTB , ETB , ωTB ) and Tb(VTb , ETb , ωTb) constructed in
Theorem 3.1 with the following properties: (1) for two vertices
{x, y} ⊂ VTB if x is a child of y, then I(x) is a child of I(y)
and (2) for any x ∈ VTB , there is ωTB (x) = ωTb(I(x)).

To prove this, we will use induction on the level number ` of these
two trees again. When ` = 0, the proof is trivial. Assume that the
two forests F k

B and F k
b are induced by vertices of level numbers ` ≤

k in TB and Tb, respectively. Consider an arbitrary vertex v ∈ VB

with the level number ` = k + 1, by definition, it has at least one
child z of the level k. Consider the Tb-subtree rooted in the parent
node v∗ of the vertex I(z). Let {w0 = I(z), w1, . . . , wt} denote
the set of children of v∗. Consider an arbitrary pair of children wi

and wj , where 0 ≤ i < j ≤ t. Furthermore, let mi and mj be the
leaves of the Tb-subtrees rooted in wi and wj , respectively. Clearly,
there exists ωTb(v

∗) = S(mi,mj). According to the assumption
that the statement is true for ` ≤ k, mi and mj , the leaves of
the TB-subtrees are rooted in w−1

i and w−1
j as well. According to

the construction of the single linkage clustering and Theorem 3.2,
we have ωTB (v) ≤ W ((w−1

i ), (w−1
j )) ≤ S(mi,mj), where

W ((w−1
i ), (w−1

j )) denotes the distance between (w−1
i ) and (w−1

j ).
Clearly W ((w−1

i ), (w−1
j )) < S(mi,mj) indicates the existence of

a zig-zag path between mi and mj with a cost strictly less than its
saddle height, which contradicts to the Lemma 1.1. Therefore, we
obtain ωTB (v) = S(mi,mj) = ωTb(v

∗).
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PART D: THE NUMBER OF DETECTED LOCAL
MINIMA GROWS LINEARLY WITH RESPECT TO
THE RUNNING TIME
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Fig. 2. The number of detected local minima grows linearly
with respect to running time: for both natural sequences and
random sequences. (Left) The performance of RNAlocmin for
Melitaea cinxia U6 snRNA JX878560.1 (107nt) (Right) The
average performance of RNAlocmin for random generated RNA
sequences of length 60–500. The adaptive ξ-schedule is effective
since for different RNA lengths, the speed of finding new LMs keeps
stable, i.e. the number of detected local minima grows linearly with
respect to the running time.
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PART E: ADDITIONAL EXAMPLES OF RNALOCMIN

Fig. 3. The comparison between RNAlocmin and RNAlocopt for the
A/T-site tRNA Phe 3FIH Y (76nt). The sample size for RNAlocmin was
limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.

Fig. 4. The comparison between RNAlocmin and RNAlocopt for the
snRNA EF682131.1 (361nt). The sample size for RNAlocmin was
limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.
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Fig. 5. The comparison between RNAlocmin and RNAlocopt for the
mRNA EZ450098.1 (339nt). The sample size for RNAlocmin was
limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.

Fig. 6. The comparison between RNAlocmin and RNAlocopt for the U6
snRNA JX878560 (107nt). The sample size for RNAlocmin was limited to
N = 400, 000 structures. The fraction of undetected basins was estimated
by an enumeration of 10 · N suboptimal structures with RNAsubopt -e
and the subsequent evaluation of gradient basins with barriers.
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Fig. 7. The comparison between RNAlocmin and RNAlocopt for the
SV11 RNA L07337.1 (115nt). The sample size for RNAlocmin was
limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.
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Fig. 8. The comparison between RNAlocmin and RNAlocopt for the
mRNA NM 001180686.1 (261nt). The sample size for RNAlocmin was
limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.
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Fig. 9. The comparison between RNAlocmin and RNAlocopt for the
ncRNA NR 000584.1 (144nt). The sample size for RNAlocmin was
limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.

Fig. 10. The comparison between RNAlocmin and RNAlocopt for the
small nuclear RNA NR 004413.2 (166nt). The sample size for RNAlocmin
was limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.
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Fig. 11. The comparison between RNAlocmin and RNAlocopt for the
ncRNA NR 048079.2 (137nt). The sample size for RNAlocmin was
limited to N = 400, 000 structures. The fraction of undetected basins
was estimated by an enumeration of 10 · N suboptimal structures with
RNAsubopt -e and the subsequent evaluation of gradient basins with
barriers.
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4 PART F: RESULTS OF BHGBUILDER

As expected, all examples show that BHGbuilder outperforms
or at least performs equally well as findpath. To be precise, the
results of 10 examples can be divided into 2 categories based on their
result comparisons: (1) Three RNAs (NR 000584.1, NR 004413.2,
and NR 048079.2) with significant improvements between 0.2–
2.0 kcal/mol in about 30% of all the LM pairs. We present also
difference plots for these examples. (2) Seven RNAs with minor
improvements. For two relatively short RNAs (NR 073613.1 and
3FIH Y), both two algorithms obtained almost the exact results
derived from barriers, therefore no improvement was possible.

For these three RNAs in Category (1), a better estimation of
saddle heights between LM pairs (in particular these ones with 1–2.5
kcal/mol improvements) can help to derive more exact RNA kinetic
information, since kinetic properties are exponentially dependent
on the energy barriers. This is because the saddle height between
two BHG-adjacent LMs are closely related with the transition rate
between their corresponding basins.

For the seven RNAs in Category (2), we point out here, estimating
the saddle heights is just one of the two important functions of
BHGbuilder. The other one is to detect adjacency of basins
represented by their LMs via the filtration procedure. This function,
however, can not be achieved via simply utilizing some established
procedure such as findpath for all possible pairs of LMs.

Examples are compared to findpath and also to barriers
where applicable (only the smallest three examples). The x-axes
denote the indices of LM-pairs which are sorted according to
their saddle heights in an increasing order and the y-axes are the
corresponding saddle heights estimations derived from different
methods.
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Fig. 12. The comparison of the saddle height estimates of BHGbuilder
and findpath for ncRNA NR 000584.1 (144nt). Here, the x-axes denote
the indices of LM-pairs which are sorted according to their saddle heights
in an increasing order and the y-axes are the corresponding saddle heights
[kcal/mol] estimations derived from different methods. The 2nd panel shows
the difference in the saddle height prediction between BHGbuilder and
findpath algorithm.
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Fig. 13. The comparison of the saddle height estimates of BHGbuilder
and findpath for ncRNA NR 048079.2 (137nt). Here, the x-axes denote
the indices of LM-pairs which are sorted according to their saddle heights
in an increasing order and the y-axes are the corresponding saddle heights
[kcal/mol] estimations derived from different methods. The 2nd panel shows
the difference in the saddle height prediction between BHGbuilder and
findpath algorithm.
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Fig. 14. The comparison of the saddle height estimates of BHGbuilder
and findpath for small nuclear RNA NR 004413.2 (166nt). Here, the
x-axes denote the indices of LM-pairs which are sorted according to their
saddle heights in an increasing order and the y-axes are the corresponding
saddle heights [kcal/mol] estimations derived from different methods. The
2nd panel shows the difference in the saddle height prediction between
BHGbuilder and findpath algorithm.
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Fig. 15. The comparison of the saddle height estimates of BHGbuilder
and findpath for ncRNA NR 102213.1 (170nt). Here, the x-axes denote
the indices of LM-pairs which are sorted according to their saddle heights
in an increasing order and the y-axes are the corresponding saddle heights
[kcal/mol] estimations derived from different methods. The 2nd panel shows
the difference in the saddle height prediction between BHGbuilder and
findpath algorithm.
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Fig. 16. The comparison of the saddle height estimates of BHGbuilder
and findpath for snRNA EF682131 1 (361nt). Here, the x-axes denote
the indices of LM-pairs which are sorted according to their saddle heights
in an increasing order and the y-axes are the corresponding saddle heights
[kcal/mol] estimations derived from different methods. The 2nd panel shows
the difference in the saddle height prediction between BHGbuilder and
findpath algorithm.
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Fig. 17. The comparison of the saddle height estimates of
BHGbuilder and findpath for ncRNA NR 102237.1 (188nt).
Here, the x-axes denote the indices of LM-pairs which are sorted
according to their saddle heights in an increasing order and the y-
axes are the corresponding saddle heights [kcal/mol] estimations
derived from different methods. Both programs performed equally
in this example.
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Fig. 18. The comparison of the saddle height estimates of
BHGbuilder and findpath for SV11 RNA L07337 1 (115nt).
Here, the x-axes denote the indices of LM-pairs which are sorted
according to their saddle heights in an increasing order and the y-
axes are the corresponding saddle heights [kcal/mol] estimations
derived from different methods. Both programs performed equally
in this example.
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Fig. 19. The comparison of the saddle height estimates of BHGbuilder
and findpath for U6 snRNA JX878560.1 (107nt) . Here, the x-
axes denote the indices of LM-pairs which are sorted according to their
saddle heights in an increasing order and the y-axes are the corresponding
saddle heights [kcal/mol] estimations derived from different methods. The
2nd panel shows the difference in the saddle height prediction between
BHGbuilder and competing algorithms.
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Fig. 20. The comparison of the saddle height estimates of BHGbuilder
and findpath for ncRNA NR 073613.1 (69nt). Here, the x-axes denote
the indices of LM-pairs which are sorted according to their saddle heights
in an increasing order and the y-axes are the corresponding saddle heights
[kcal/mol] estimations derived from different methods. The 2nd panel shows
the difference in the saddle height prediction between BHGbuilder and
competing algorithms.
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Fig. 21. The comparison of the saddle height estimates of BHGbuilder
and findpath for tRNA phe 3FIH Y (76nt). Here, the x-axes denote
the indices of LM-pairs which are sorted according to their saddle heights
in an increasing order and the y-axes are the corresponding saddle heights
[kcal/mol] estimations derived from different methods. The 2nd panel shows
the difference in the saddle height prediction between BHGbuilder and
competing algorithms.
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PART G: FOLDING KINETICS USING THE BHG
Folding kinetics on a toy example
GUGUCGCUUUCGAUUAAGGACCUACAACAGGCU
for different approaches are shown here. A hundred lowest local
minima for this sequence were computed, the local minima with
50th lowest energy have been assigned probability of 1 at the
start of the experiment. Figures capture the population probabilities
of different local minima (only those with population density
> 5% shown) of the approach by Wolfinger et al. (2004), the
approach using Arrhenius rates on the barrier tree (without using
the topology), and the approach using Arrhenius rate on the BHG
(the topology is taken into account). The exhaustive enumeration
approach depicted in the first plot closely approximates the real
kinetics as is discussed in Wolfinger et al. (2004). Therefore, it
can be used as a ground truth for comparison of the latter two.
However, this approach consumes a lot of system resources, making
it available only for sequences below 100nt. The second approach
require only a precise saddle height approximation to be done,
but it misses a lot of kinetic properties (for example the local
minima no.13 is completely missing from the picture). Finally, our
approach using both the precise saddle height estimation and the
topology reconstructed by BHGbuilder performs very closely to
the exhaustive enumeration approach.
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Fig. 22. The comparison of folding kinetics computed by different methods. Transition rates are computed using the Arrhenius kinetic rule based on different
underlying transition graphs: (Left) barrier tree (Middle) BHG. In (Right), transition rates were computed using the exhaustive enumeration approach by
Wolfinger et al. (2004). The time axis is given in arbitrary units which would need to be scaled with the help of an experimental data. The Arrhenius
approximation (Left and Middle) also requires an entropic pre-factor that cannot be determined from the graphs, hence the time units in the different
approximations are shifted by an unknown constant factor relative to each other.
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PART H: PRELIMINARY RESULTS OF BHG TAKING
PSEUDOKNOTS INTO CONSIDERATION
Both the BHG and the sampling strategy for local minima
generalizes to structures with pseudoknots in a straightforward
manner. To this end, three issues need to be addressed: (a1) the
extension of the search space to a suitable class of pseudoknots, (a2)
the energy function necessary to score these pseudoknots, and (a3)
the definition of an appropriate move set.

There is no generally accepted or universally used class of
pseudoknots. Instead, a wide variety of more or less restrictive
sub-classes has been explored in the literature. These choices are
driven less by biophysical considerations but rather by algorithmic
practicability, see e.g. (Condon et al., 2004). A major practical
concern is that the energy models for pseudoknots are simple,
heuristic extensions of the standard energy model (Mathews
et al., 1999) that use “developer-defined” energy penalties to
score pseudoknots. These parameters are grounded in very sparse
experimental data. An alternative, rather general energy function for
pseudoknotted structures has been derived from the “cross-linked
gel model” (Isambert & Siggia, 2000), it however suffers from
the same lack of experimental data. Furthermore, no open source
implementation of this energy function is available.

A key constraint for our approach is that we require a reasonably
efficient way to generate structures with prescribed expected
energies in order to construct a generalization of RNAlocmin.
In practice, this restricts us to dynamic programming approaches.
To our knowledge, the only software that implements Boltzmann
sampling is gfold (Reidys et al., 2011). It computes the so-
called γ1-structures, see Fig. 23, which comprise 4 basic types of
pseudoknots characterized by the topological genus g = 1 of their
“elementary” components, see (Bon et al., 2008; Reidys et al., 2011)
for details.

With small modifications to the implementation, gfold can
be used as a replacement for RNAsubopt -p that considers a
larger class of RNA structures. It is computationally much more
demanding: the folding step takes O(n6) time and O(n4) space.
Sampling a single structure requiresO(n5) time compared toO(n2)
for sampling pseudoknot-free secondary structures. In practice, this
restricts the method to moderate sequence lengths.

Much more efficient sampling algorithms can be devised
e.g. using the boustrophedon method (Ponty, 2008), to make the
RNAlocmin approach feasible also for much larger pseudoknotted
RNAs.

In order to implement the gradient walk required in RNAlocmin
we need a move set within the class of γ1-structures. Opening and
closing of individual base pairs is of course sufficient. The difficulty
is to efficiently determine which base pairs can be added without
leaving the class of γ1-structure and to compute the resulting change
in energy without re-evaluating the entire structure. An example of
an invalid move is shown in Fig. 24.

Because of these difficulties, we restrict ourselves in this paper to
the subset of γ1-structures with at most one H-type pseudoknot.
Fig. 25 shows how to add base pairs in order to obtain a valid
pseudoknot structure in this restricted class. Removing base pairs is
relatively simple since they will never result in an invalid structure.
The general case involving four types of pseudoknots is rather
involved, even with the restriction to structures with at most one
pseudoknot, see Tab. 4. We therefore defer a complete treatment

Type H Type K 

Type L Type M 

Fig. 23. Four types of pseudoknots considered in gfold.

G GG G GA CC C C CC U GG

Type K

UU G GG G GA CC C C CC U GG

Type K

UU

Fig. 24. An invalid move for an RNA structure with pseudoknot of type K.
The blue GC pair can not be added since the resulted structure is not a γ1
structure. Therefore it is invalid in the structure ensemble in gfold.

Table 1. Possible transitions between types of pseudoknots upon adding (+)
or removing (-) a single base pair. S refers to structures without pseudoknots.
1 and 0 indicates whether a transition is possible or not.

+ S H K L M
S 1 1 1 0 0
H 0 1 1 1 0
K 0 0 1 0 1
L 0 0 0 1 1
M 0 0 0 0 1

- S H K L M
S 1 0 0 0 0
H 1 1 0 0 0
K 1 1 1 0 0
L 0 1 0 1 0
M 0 0 1 1 1

of the general cases to future work, and restrict ourselves here to
structures with a single H-type pseudoknot as a proof of concept.

As an example, we investigate the 27 nt pseudoknot PK1 of the
upstream pseudoknot domain of the 3’-UTR of tobacco mild green
mosaic virus, pseudobase ID PKB92 (Leathers et al., 1993). Its
ground state structure
.(((((.[[[[[)))))....]]]]].
is correctly predicted by gfold with an energy of −4.3 kcal/mol.
The competing pseudoknot-free minimum free energy secondary is
.(((((......)))))..........
with an energy of −3.9 kcal/mol as predicted by RNAfold, see
Fig. 26.
BHGbuilder requires a path-searching algorithm to connect

the LM obtained by the modified version of RNAlocmin, but is
otherwise independent of the specification of the search space. We
therefore extend findpath (Flamm et al., 2000) to accommodate
the class of pseudoknots under consideration by incorporating the
expanded move set and energy function. Otherwise the algorithm
remains unchanged.

We limited the sample size for the modified RNAlocmin
program toN = 10, 000 structures and obtained 69 LMs within the
energy interval [−4.3, 11.5] kcal/mol. Among these 12 structures
contain a pseudoknot. Fig. 27 shows the low energy part of the
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G GG G GA CC C C C U G GG G GA CC C C C U

Type H

(A)

(B)

Type H

(C)

Type H

GGG CCCCC GG GGG CCCCC GG

Type H

GGG CCC CC GG

Type H

GGG CCC CC GG

(D)

Type H

GGG CCC CC GG

(E)

Type H

GG CC CC GG CG

Type H

GG CC CC GG CG

Fig. 25. The insertion of base pairs to derive a valid pseudoknot structure:
(A) Adding a base pair crossing a stack results in an H-type pseudoknot.
(B) An H-type pseudoknot naturally divides the RNA into five regions: two
external regions (blue) and three internal regions (green); There are three
basic ways to add base pairs: (C) add a base pair which involves nucleotides
exactly in one green region without crossing with other existing base pairs;
(D) add a base pair which involves two green regions to thinner the existing
stacks, and (E) add a base pair which involves two blue regions without
crossing other existing base pairs.

resulting BHG. We find that PKB92 is more likely to fold into its
most stable secondary structure first and only then refolds to form
the pseudoknot. The optimal folding pathway is detailed in Tab. 2.
The second, suboptimal pathway forming the second stem of the
pseudoknot at first can be observed in the BHG as L6 → S7 →
L3→ S4→ L1 in the Fig. 27.

Table 2. Optimal folding pathway of PKB92 from the open structure to its
MFE. Local minima and saddle points in the second column refer to Fig. 27.
Structures and energies [kcal/mol] are given in the third and columns,
respectively.

Index Structure E
0 L6 ........................... 0.00
1 S5 .....(......).............. 3.20
2 ....((......))............. 1.30
3 ...(((......)))............ -1.40
4 ..((((......))))........... -3.00
5 L2 .(((((......))))).......... -3.90
6 S6 .(((((...[..)))))......]... 3.80
7 .(((((...[[.))))).....]]... 1.20
8 .(((((..[[[.))))).....]]].. -0.50
9 .(((((.[[[[.))))).....]]]]. -3.20

10 L1 .(((((.[[[[[)))))....]]]]]. -4.30
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Fig. 26. The minimum free energy structure with pseudoknot predicted
by gfold and without pseudoknot predicted by RNAfold. Secondary
structure with and without pseudoknot drawings were produced with
PseudoViewer (Han et al., 2002) and VARNA (Darty et al., 2009),
respectively.
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Fig. 27. Low energy part of the BHG for PKB92. Vertices are labeled
for later use. In which, LMs and (direct) saddles are labeled by “Lx” and
“Sx”, respectively. Edges are labeled by their energy barriers [kcal/mol] and
the corresponding saddle structures. Secondary structure with and without
pseudoknot drawings were produced with PseudoViewer (Han et al.,
2002) and VARNA (Darty et al., 2009), respectively.
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