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Evolution: A Phylogenetic Approach,” Blackwell Science ISBN 0-86542-889-1

Trees

Figure 1 illustrates some terminology used to describe trees. Unfortunately tree terminology
varies greatly among authors, and among different disciplines, such as mathematics and biology.
Where possible we will list the commonly used synonyms that you may encounter in the literature.
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Figure 1 A simple tree and associated terms.

A tree is a mathematical structure which is used to model the actual evolutionary history of a
group of sequences or organisms. This actual pattern of historical relationships is the phylogeny or
evolutionary tree which we try and estimate. A tree consists of nodes connected by branches (also
called edges). Terminal nodes (also called leaves, OTUs [Operational Taxonomic Units], or
terminal taxa) represent sequences or organisms for which we have data; they may be either extant or
extinct. Internal nodes represent hypothetical ancestors; the ancestor of all the sequences that
comprise the tree is the root of the tree (see below).

The nodes and branches of a tree may have various kinds of information associated with
them. For example some methods of phylogeny reconstruction (e.g., parsimony) endeavour to
reconstruct the characters of each hypothetical ancestor; most methods also estimate the amount of
evolution that takes place between each node on the tree, which can be represent as branch lengths
(or edge lengths). Trees with branch lengths are sometimes called weighted trees.

Trees are like mobiles

There are many different ways of drawing trees, so it is important to know whether these different
ways actually reflect differences in the kind of tree, or whether they are simply stylistic conventions.
For instance, the order in which the labels on a tree are drawn on a piece of paper (or computer
screen) can differ without changing the meaning of the tree. This is because the edges of a tree can be
freely rotated without changing the relationships among the terminal nodes. The diagram below
shows the same tree drawn three different ways:
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In this sense a tree is just like a mobile; no matter how many times you rotate the “hanging” objects
you do not change how they are connected to one another.

The number of adjacent branches possessed by an internal node is that node’s degree. If a
node has a degree greater than three (i.e., it has one ancestor and more than two immediate
descendants) then that node is a polytomy. A tree that has no polytomies is fully resolved (Figure 2).

star tree fully resolvedpartially resolved

polytomy

Figure 2 Three trees showing various degrees of resolution, ranging from a complete lack of

resolution (star tree) to a fully resolved tree. Any internal  node with more than two immediate

descendants is a polytomy.

Polytomies can represent two rather different situations (Figure 3); firstly they may represent
simultaneous divergence — all the descendants evolved at the same time (a “hard” polytomy);
alternatively, polytomies may indicate uncertainty about phylogenetic relationships — the lineages did
not necessarily all diverge at once, but we are unsure as to the actual order of divergence (a “soft”
polytomy). These two interpretations — simultaneous divergence or uncertainty — are obviously quite
different. Typically polytomies are treated as “soft.” It may be thought unlikely that multiple lineages
would diverge at exactly the same time, however, if lineages diverge rapidly in time relative to the rate
of character evolution then there may be insufficient evidence available to us to ever be able to
reconstruct the exact order of splitting, in which case the polytomy is effectively “hard.”
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Figure 3 Polytomies can represent either simultaneous divergence of multiple sequences

(“hard”), or lack of resolution due to insufficient data or conflicting trees (“soft”).

A shorthand for trees

Trees can be represented by a shorthand notation that uses nested parentheses. Each internal
node is represented by a pair or parentheses that enclose all descendants of that node. This format
makes it easy to describe a tree in the body of some text without having to draw it. The format is also
used by many computer programs to store representations of trees in data files. Figure 4 gives an
example of this shorthand.

(((A,B),C),(D,E))

A B C D E

Figure 4 A tree and its shorthand representation using nested parentheses.

Cladograms, additive trees, and ultrametric trees

Different kinds of tree can be used to depict different aspects of evolutionary history. The
most basic tree is the cladogram which simply shows relative recency of common ancestry, that is,
given the three sequences, A, B, and C, the cladogram in Figure 5 tells us that sequences A and B
share a common ancestor more recently than either does with C. In the biomathematical literature
cladograms are often called “n-trees.”
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Figure 5. A phylogeny and the three basic kinds of tree used to depict that phylogeny. The

cladogram represents relative recency of common ancestry; the additive tree depicts the amount

of evolutionary change that has occurred along the different branches, and the ultrametric tree

depicts times of divergence.

Additive trees contain additional information, namely branch lengths. These are numbers
associated with each branch that correspond to some attribute of the sequences, such as amount of
evolutionary change. In the example shown in Figure 5, sequence A has acquired 4 substitutions since
it shared a common ancestor with sequence B. Other commonly used terms for additive trees include
“metric trees” and “phylograms.”

Ultrametric trees (sometimes also called “dendrograms”) are a special kind of additive tree
in which the tips of the trees are all equidistant from the root of the tree. This kind of tree can be used
to depict evolutionary time, expressed either directly as years or indirectly as amount of sequence
divergence using a molecular clock.

Additive and ultrametric trees both contain all the information found in a cladogram — the
cladogram is the simplest statement about evolutionary relationships that we can make. For some
questions knowledge of relative recency of common ancestry is sufficient. However, there are other
evolutionary questions (such as determining relative rates of evolution) which require the additional
information contained in additive and ultrametric trees.

Rooted and unrooted trees

Cladograms and additive trees can either be rooted or unrooted. A rooted tree has a node
identified as the root from which ultimately all other nodes descend, hence a rooted tree has direction.
This direction corresponds to evolutionary time; the closer a node is to the root of the tree the older it
is in time. Rooted trees allow us to define ancestor-descendant relationships between nodes: given a
pair of nodes connected by a branch, the node closest to the root is the ancestor of the node further
away from the root (the descendant). Unrooted trees lack a root, and hence do not specify
evolutionary relationships in quite the same way, and they don’t allow us to talk of ancestors and
descendants. Furthermore, sequences that may be adjacent on an unrooted tree need not be
evolutionarily closely related. For example, given the unrooted tree in Figure 6, the gibbon (B) and
orangutan(O) sequences are neighbours on the tree, yet the orangutan is more closely related to the
other apes (including humans). This is because the root of the tree lies on the branch leading to the
gibbon. Had we placed the root elsewhere, say on the branch leading to the gorilla (G), then the
gibbon and orangutan sequences would be indeed closely related.
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Figure 6. Rooted and unrooted trees for humans (H), chimps (C), gorilla (G), orangutan (O), and

gibbon (B). The rooted tree (top) corresponds to the unrooted tree below.

In the unrooted tree for the apes shown in Figure 6 we could have placed the root on any of the seven
branches of the tree. Hence this unrooted tree corresponds to a set of seven rooted trees (Figure 7).
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Figure 7. The seven rooted trees that can be derived from an unrooted tree for five sequences.

Each rooted tree 1-7 corresponds to placing the root on the corresponding numbered branch of

the unrooted tree. (Sequence labels as for Figure 6).

The distinction between rooted and unrooted trees is important because many methods for
reconstructing phylogenies reconstruct unrooted trees, and hence cannot distinguish among the seven
trees shown in Figure 7 on the basis of the data alone. In order to root an unrooted tree (i.e., decide
which of the seven trees is the actual evolutionary tree) we need some other source of information.
Note that this does not apply to ultrametric trees which are rooted by definition.

The number of possible unrooted trees Un for n sequences is given by

U n nn = − −( )( ) ( )( )2 5 2 7 3 1… (1)

for n  ≥ 2. The number of rooted trees Rn for n  ≥ 3 is given by
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for n  ≥ 3. Table 1 lists the numbers of rooted and unrooted fully resolved trees for 2 − 10 sequences.
Note that the number of unrooted trees for n sequences is equal to the number of rooted trees for (n  −
1) sequences. Note also that the number of trees rapidly reaches very large numbers: for 10 sequences
there are over 34 million possible rooted trees. For a relatively modest 20 sequences there are
8,200,794,532,637,891,559,000 possible trees, whereas the number of different trees for the 135
human mitochondrial DNA sequences used in the “out of Africa” study (2.113 × 10267) exceeds the
number of particles in the known universe! This explosion in number of trees is a fundamental
problem for phylogeny reconstruction, where the goal is to identify which tree of all the possible trees
is the best estimate of the actual phylogeny.

Table 1 Numbers of unrooted and rooted trees for 2-10 sequences.

Number of sequences Number of unrooted
trees

Number of rooted trees

2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10,395
8 10,395 135,135
9 135,135 2,027,025

10 2,027,025 34,459,425

Tree shape
Typically the information in a tree in which we are most interested is the relationship among

the sequences, and perhaps the lengths of the branches. However, other aspects of the tree may also
reflect evolutionary phenomena and hence be of interest. Figure 8 shows the three possible shapes (or
topologies) for a rooted tree for five sequences. All 105 possible trees (Table 1) for five sequences will
have one of these three shapes.

Figure 8 The three possible shapes for a rooted tree for five sequences.

Splits
Trees can be represented in a variety of ways other than as graphs. One useful representation

is as sets of sets, called splits or partitions. Each split takes the set of sequences (e.g., {H, C, G, O,
B}) and partitions them into two mutually exclusive sets: you can think of a split as the two sets of
sequences obtained by chopping (“splitting”) the tree at a given branch. For example, the tree shown
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in Figure 9 has seven branches and hence seven splits. However, all splits comprising a single
terminal node on one hand and the rest of the tree on the other are not “phylogenetically informative”
in the sense that all possible trees will contain those splits. Hence, the only informative splits are those
resulting from chopping internal branches. The tree shown in Figure 9 has two informative splits: {
{C, H}, {G, O, B} } and { {G, C, H}, {O, B}}.

C G O

BH

C G

O

BH

C

G O

BH

Tree

Splits

Figure 9. An unrooted tree and its two splits.

Given these two splits we can combine them to reconstruct the original tree. Notice that there are
other possible partitions of the set {H, C, G, O, B}, such as { {H, G}, {C, O, B}}. This split groups
humans and gorillas together to the exclusion of the other apes, which is incompatible with the split {
{C, H}, {G, O, B} }, which groups humans and chimps. Incompatible splits cannot be combined to
form a tree.

Another way of representing the splits in Figure 9 is to assign arbitrary letters to each half of
a split, such as  the letter “A” to each sequence on the left and the letter “T” to each sequence on the
right. This gives the following table:

Sequence Split 1 Split 2
H A A
C A A
G T A
O T T
B T T

Each split now resembles a single nucleotide site with only the bases A and T. On Monday 8th you
will encounter some methods for reconstructing phylogenies that make use of this relationship
between nucleotide sites and splits.

Ancestors

Phylogenies presuppose ancestors  previously living organisms that are now extinct but which left
descendants which comprise modern species. These ancestors (or their sequences) are represented by
the internal nodes of a tree. These ancestors are hypothetical, but some methods of phylogenetic
reconstruction allow us to infer what they (or their sequences) may have looked like.

All molecular phylogenies include ancestors, but for the most part these remain hypothetical
entities represented by the internal nodes of the tree, and inferred solely on the basis of sequences
from extant organisms. It used to be thought that the possibility that a sequence being studied was
actually an ancestor could be safely ignored, hence all sequences were placed at the tips of
evolutionary trees. However, a two recent developments have meant that molecular biologists must
deal with a problem previously restricted to palaeontology —  namely the recognition of ancestors.
The first of these developments is the spectacular recovery of ancient DNA from fossils up to 100+
million years old; the second is the increasing number of sequences being obtained from viruses such
as human immunodeficiency virus (HIV) which evolve sufficiently fast to be tracked in “real time.”
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If all sequences are from extant organisms then they can be placed at the tips of the tree.
However, if some of the sequences are extinct it is possible, if unlikely, that they may have been
ancestral to one or more of the extant sequences: is a sequence extracted from a termite trapped in
Dominican amber an ancestor to modern termites or is it on a evolutionary side branch? Cladists have
adopted the convention that extinct taxa that lack autapomorphies are candidates for being ancestral,
as it is equally parsimonious to treat them as sister taxa (i.e., each other’s closest relative) or as
ancestors (Figure 10). Treating a taxon with autapomorphies as an ancestor would require us to
postulate additional evolutionary changes. Note that under this rule a taxon with no autapomorphies
need not be an ancestor, rather there is nothing to refute that possibility.

A

A A

A A

T
Tseq 1 seq 2 seq 2

seq 1 T

A

A
seq 2

seq 1

hypothetical 
ancestors

seq 1 
ancestral

seq 2 
ancestral

Cladogram Evolutionary trees

Figure 10 A cladogram for two sequences (seq 1 and seq 2)  showing the nucleotide at a single

site, and two possible of several evolutionary trees derived from that cladogram. We could

postulate that either sequence is ancestral to the other. However, postulating seq 2 to be an

ancestor of seq 1 requires the gain and subsequent loss of T, whereas if seq 1 is an ancestor no

additional substitutions need be postulated.  Note that a third phylogeny would be identical to

the cladogram (see Box 2.1).

We can apply the cladistic convention to viral sequences where the virus is evolving
sufficiently rapidly for successive samples to show evolutionary change. For example, Figure 0.11
shows a cladogram for eight HIV sequences obtained from a single patient over three years. Because
the samples were obtained over a period of time it is possible that some of the sequences sampled
earlier in time gave rise to later sequences. Indeed, some sequences lack autapomorphies and hence by
the cladistic criterion are potential ancestors, a conclusion which is supported by the order of the
sequences in time.
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Figure 0.11 Cladogram and corresponding evolutionary tree for eight V3 loop amino acid

sequences for HIV samples taken from a single patient over three years. In the cladogram on the

left all eight sequences are depicted as terminal nodes; however, four sequences (D1, D2, D4, and

D7) have no autapomorphies (i.e., there are no replacements along the branch leading to each

sequence) and hence are possible ancestors.  The evolutionary tree on the right depicts the same

relationships as the cladogram, but the sequences lacking autapomorphies (except D7) are

treated as ancestors which is consistent with the order of appearance of the sequences (modified

from Holmes et al., 1992).
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Box 1 Cladograms and evolutionary trees

In this book we use the term “cladogram” to refer to an evolutionary tree that has no information on

branch lengths (e.g., Figure 5). Within cladistics a distinction is made between a cladogram and an

evolutionary tree. In a cladogram the terminal taxa are always at the tips of the tree, no matter the

taxa are extant or extinct, or whether one or more of the taxa are ancestral to any of the others.

However, in an evolutionary tree some of the taxa may be ancestral to the others. Given the cladogram

((A,B),C) shown below, there are six different evolutionary trees that are consistent with the

cladogram. One of these trees is the cladogram itself; the other five trees have one or more of the taxa

A, B and C being ancestral to the others. Note that in all six trees A and B are more closely related to

each other than to C.

A B C
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B C

B

A C
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=

In the vast majority of cases none of the taxa (or sequences) being studied will be ancestral and hence

the cladogram is also an evolutionary tree. Exceptions may occur when fossils are being studied

(although the probability that a given fossil is actually part of an ancestral lineage is rather remote) or

in the case where samples have been taken over time from a rapidly evolving lineage, such as a virus

(Figure 0.11).

Trees and distances

Measures of sequence dissimilarity may be used to estimate the number of evolutionary
changes that occurred in two sequences since they last shared a common ancestor. These measures
quantify the evolutionary distance between the two sequences. Trees themselves can also be
represented by distances, and this link has motivated a range of tree building methods that seek to
convert pairwise distances between sequences into evolutionary trees. We shall describe these
measures later in the course. However, in order for a distance measure to be used to build phylogenies
it must satisfy some basic requirements: it must be either a metric, and it must be additive.

Metric distances

Let d (a, b) be the distance between two sequences, a and b. A distance d is a metric if it satisfies
these properties:

1. d(a, b) ≥ 0 (non-negativity)
2. d(a, b) = d(b, a) (symmetry)
3. d(a, c) ≤ d(a, b) + d(b, c) (triangle inequality)
4. d(a,b) = 0 if and only if a = b (distinctness)
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The first property is non-negativity; two sequences must have a nonnegative distance. The second
property is symmetry; two sequences have the same dissimilarity regardless of the direction in which
the dissimilarity is measured. These two properties may seem trivial, but not all measures of sequence
similarity meet these seemingly obvious requirements.

The third property is the triangle inequality; which states that the dissimilarity between any
two sequences cannot exceed the sum of the dissimilarities between each sequence and a third. This
condition is equivalent to ensuring that it is possible to represent the distances between the three
sequences as a triangle (Figure 12), hence the name.

a

b

c9

6
5

Figure 12 The triangle inequality. The  distance between any pair of sequence must be no

greater than that between those sequences and a third sequence.

The last condition (distinctness) requires that sequences that are different must have a non zero
dissimilarity.

Of these conditions, 1, 2, and 4 are generally true for all measures of sequences dissimilarity
calculated directly from sequences. However, indirect measures of sequence dissimilarity such as those
obtained from DNA-DNA hybridisation or from immunological measurements need not always obey
these conditions, particularly condition 2.

Ultrametric distances

A metric is an ultrametric if it satisfies the additional criterion that

5. d(a, b) ≤ maximum [d(a, c), d(b, c)]

This criterion implies that the two largest distances are equal, so that they define an isosceles triangle
(Figure 13).

a b

c

66

4

Figure 13 The ultrametric inequality. The two largest pairwise distances, in this case d(a, c) and

d(b, c) are equal, hence the ultrametric defines an isosceles triangle.
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Ultrametric distances have the very useful evolutionary property of implying a constant rate of
evolution. Indeed the “relative rate” test for a molecular clock is a test of how far the pairwise
distances  between three sequences depart from ultrametricity. Furthermore, if distances between
sequences are ultrametric then the most similar sequences are also the most closely related.

Additive distances

Being a metric (or ultrametric) is a necessary, but not sufficient condition for being a valid
measure of evolutionary change. A measure must also satisfy the four point condition:

6. d(a, b) + d(c, d) ≤ maximum [ d(a, c) + d(b, d), d(a, d) + d(b, c) ]

This is equivalent to requiring that of the three sums d(a, b) + d(c, d), d(a, c) + d(b, d), and d(a, d) +
d(b, c), the two largest are equal.

Tree distances

An additive distance measure defines a tree. Perhaps the easiest way to see this is to consider
the distances shown in Figure 14.
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Figure 14 An ultrametric distance matrix between four sequences a-d and the corresponding

ultrametric tree. For any two sequences, the value in the distance matrix corresponds to the sum

of the branch lengths along the path between the two sequences on the tree.

Sequence d is equidistant from all other sequences; sequence c is equidistant from a and b. If we take
any three sequences the distances between them define an isosceles triangle (the two largest distances
are equal), hence the distances shown in Figure 14 are ultrametric. These same distances can be
represented by the ultrametric tree shown in Figure 14. If we trace the shortest path between any pair
of sequences in the tree, and add up the corresponding  branch lengths we obtain the same value as
that in the distance matrix. For example, travelling from sequence a to sequence d and adding branch
lengths we obtain the value of 1 + 2 + 2 + 5 = 10, hence d(a, d) = 10.

When distances are not ultrametric but only metric they can still be represented by a tree, in
this case an additive tree Figure 15.
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Figure 15 An additive distance matrix between four sequences and the corresponding additive

tree. For any two sequences, the value in the distance matrix corresponds to the sum of the

branch lengths along the path between the two sequences on the tree.

This additive tree again represents the additive distances exactly. Notice that sequences b and c are the
most similar (d(b, c) = 3) but are not the most closely related. Similarity and evolutionary relationship
will only coincide exactly if the distances are ultrametric. This has important implications for using
distances to reconstruct trees.

The distances obtained from the tree are tree distances (also called patristic distances), to
distinguish them from observed distances which are obtained directly from the sequences themselves.
In the examples shown in Figure 14 and Figure 15, the observed and tree distances match exactly. For
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real data this is rarely the case, indicating that the observed distances cannot be completely accurately
represented by a tree. The discrepancy between observed and tree distances can be used to measure
how good the fit is between the observed distances and the best tree representation of those distances.
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Further Reading

Maddison and Maddison (1992) give an excellent introduction to trees and phylogenies. Barthélemy
and Guénoche (1991) provide a detailed and elegant discussion of the kinds of trees, and the
relationship between distances and trees. See Poinar and Poinar (1993) for the recovery of DNA from
amber, and Smith (1994) on the problem of ancestors. The HIV example is taken from Holmes et al.
(1992). For the distinction between hard and soft polytomies see (Maddison, 1989).
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