
co
nd

-m
at

/9
61

21
86

20

 D
ec

 1
99

6

Introduction To Monte Carlo Algorithms

Werner Krauth1

CNRS-Laboratoire de Physique Statistique
Ecole Normale Supérieure

F-75231 Paris Cedex 05, France

December 19, 1996

1krauth@physique.ens.fr, http://lps.ens.fr/̃ krauth

Abstract

In these lectures, given in ’96 summer schools in Beg-Rohu (France) and
Budapest, I discuss the fundamental principles of thermodynamic and dy-
namic Monte Carlo methods in a simple light-weight fashion. The key-
words are Markov chains, Sampling, Detailed Balance, A Priori

Probabilities, Rejections, Ergodicity, “Faster than the clock

algorithms”.
The emphasis is on Orientation, which is difficult to obtain (all the

mathematics being simple). A firm sense of orientation helps to avoid getting
lost, especially if you want to leave safe trodden-out paths established by
common usage.

Even though I will remain quite basic (and, I hope, readable), I make
every effort to drive home the essential messages, which are easily explained:
the crystal-clearness of detail balance, the main problem with Markov chains,
the great algorithmic freedom, both in thermodynamic and dynamic Monte
Carlo, and the fundamental differences between the two problems.

Chapter 1

Equilibrium Monte Carlo
methods

1.1 A Game in Monaco

The word “Monte Carlo method” can be traced back to a game very popular
in Monaco. It’s not what you think, it’s mostly a children’s pass-time played
on the beaches. On Wednesdays (when there is no school) and on weekends,
they get together, pick up a big stick, draw a circle and a square as shown in
figure 1.1. They fill their pockets with pebbles 1. Then they stand around,

Figure 1.1: Children at play on the beaches of Monaco. They spend their
afternoons calculating π by a method which can be easily extended to general
integrals.

1

close their eyes, and throw the pebbles randomly in the direction of the
square. Someone keeps track of the number of pebbles which hit the square,
and which fall within the circle (see figure 1.1). You will easily verify that
the ratio of pebbles in the circle to the ones in the whole square should come
out to be π/4, so there is much excitement when the 40th, 400th, 4000th is
going to be cast.

This breath-taking game is the only method I know to compute the num-
ber π to arbitrary precision without using fancy measuring devices (meter,
balance) or advanced mathematics (division, multiplication, trigonometry).
Children in Monaco can pass the whole afternoon at this game. You are
invited 2 to write a little program to simulate the game. If you have never
written a Monte Carlo program before, this will be your first one. You may
also recover “simplepi.f” from my WWW-site.

Lately, big people in Monaco have been getting into a similar game. Late
in the evenings, when all the helicopters are safely stowed away, they get

Figure 1.2: Adults at play on the Monte Carlo heliport. Their method to
calculate π has been extended to the investigation of liquids, suspensions,
and lattice gauge theory.

together on the local heliport (cf. figure 1.2), which offers the same basic
layout as in the children’s game. They fill their expensive Hermès handbags
with pebbles, but, since the field is so large, they play a slightly different
game: they start somewhere on the field, close their eyes, and then throw
the little stone in a random direction. Then they walk to where the first

1pebble is calculus in Latin.
2cf. ref. [8] for an unsurpassed discussion of random numbers, including all practical

aspects.

2

stone landed, take a new one out of their handbag, and start again. You will
realize that using this method, one can also sweep out evenly the heliport
square, and compute the number π. You are invited to write a 10-line
program to simulate the heliport game - but it’s not completely trivial.

Are you starting to think that the discussion is too simple? If that is
so, please consider the lady at c). She just flung a pebble to c’), which is
outside the square. What should she do?

1. simply move on at c)

2. climb over the fence, and continue until, by accident, she will reinte-
grate the heliport

3. other:

A correct answer to this question will be given on page 9, it contains the
essence of the concept of detailed balance. Many Monte Carlo programs are
wrong because the wrong alternative was programmed.

The two cases - the children’s game and the grown-ups’ game are per-
fect illustrations of what is going on in Monte Carlo. . . and in Monte Carlo
algorithms. In each case, one is interested in evaluating an integral∫

x,y ε
dxdyπ(x, y)f(x, y) (1.1)

with a probability density π which, in our case is the square

π(x, y) =

{
1 if |x| < 1 and |y| < 1
0 otherwise

(1.2)

and a function f (the circle)

f(x, y) =

{
1 if x2 + y2 < 1
0 otherwise

(1.3)

Both the children and the grown-ups fill the square with a constant density
of pebbles (corresponding to π(x, y) = 1.), one says that they sample the
function π(x, y) on the basic square. If you think about it you will realize
that the number π can be computed in the two games only because the area
of the basic square is known. If this is not so, one is reduced to computing
the ratio of the areas of the circle and of the square, i.e., in the general case,
the ratio of the integrals:∫

x,y ε
dxdyπ(x, y)f(x, y)/

∫
x,y ε

dxdyπ(x, y) (1.4)

3

Two basic approaches are used in the Monte Carlo method:

1. direct sampling (children on the beach)

2. Markov-chain sampling (adults on the heliport)

Direct sampling is usually like Pure Gold, it means that you are able
to call a subroutine which provides an independent hit at your distribution
function π(x, y). This is exactly what the kids do whenever they get a new
pebble out of their pockets.

Most often, there is no way to do direct sampling in a reasonable manner.
One then resorts to Markov-chain sampling, as the adults on the heliport.
Almost all physical systems are of this class. A famous example, which does
not oblige us to speak of energies, hamiltonians etc. has occupied more
than a generation of physicists. It can easily be created with a shoe-box,
and a number of coins (cf figure 1.3): how do you generate (directly sample)
random configurations of the coins such that they don’t overlap? Imag-

Figure 1.3: The Coin in a shoe-box problem (hard disks) has occupied
Monte Carlo workers since 1953. There is no direct-sampling algorithm,
and Markov-chain sampling is extremely tedious at some densities.

ine the 2N -dimensional configuration space of N non-overlapping coins in a
shoe-box. Nobody has found a subroutine which would directly sample this
configuration space, i.e. create any of its members with equal probability.
First-time listeners often spontaneously propose a method called Random

Sequential Adsorption: deposit a first coin at a random position, then
a second, etc, (if they overlap, simply try again). Random Sequential Ad-
sorption will be dealt with in detail, but in a completely different context,
on page 35. Try to understand that this has nothing to do with finding
a random non-overlapping configuration of the coins in the shoe-box (in

4

particular, the maximum density of random sequential deposition is much
smaller than the close packing density of the coins).

Direct sampling is usually impossible - and that is the basic frustration
of Monte Carlo methods (in statistical physics). In contrast, the grown-ups’
game can be played in any situation (. . . already on the heliport which is
too large for direct sampling). Markov chain sampling has been used in
an uncountable number of statistical physics models, in the aforementioned
coin-in-a-box problem, the Hubbard model, etc etc. Usually it is a very
poor, and extremely costly substitute to what we really want to do.

In the introduction, I have talked about Orientation, and to get oriented
you should realize the following:

• In the case of the children’s game, you need only a few dozen pebbles
(samples) to get a physicist’s idea of the value of π, which will be
sufficient for most applications. Exactly the same is true for some of
the most difficult statistical physics problems. A few dozen (direct)
samples of large coin-in-the-box problems at any density would be suf-
ficient to resolve long-standing controversies. (For a random example,
look up ref. [14], where the analysis of a monumental simulation relies
on an effective number of 4− 5 samples).

Likewise, a few dozen direct samples of the Hubbard model of strong
fermionic correlation would give us important insights into supercon-
ductivity. Yet, some of the largest computers in the world are churning
away day after day on problems as the ones mentioned. They all try
to bridge the gap between the billions of Markov chain samples and
the equivalent of a few random flings in the children’s game.

• It is only after the problem to generate independent samples by Markov
chains at all is understood, that we may start to worry about the slow
convergence of mean-values. This is already apparent in the children’s
game - as in every measurement in experimental physics - : the pre-
cision of the numerical value decreases only as 1/

√
N , where N is the

number of independent measurements. Again, let me argue against
the “mainstream” that the absolute precision discussion is not nearly
as important as it may seem: you are not always interested in com-
puting your specific heat to five significant digits before putting your
soul to rest. In daily practice of Monte Carlo it is usually more critical
to be absolutely sure that the program has given some independent
samples 3 rather than that there are millions and billions of them.

3i. e. that it has decorrelated from the initial configuration

5

• It is essential to understand that a long Markov chain, even if it pro-
duces only a small number of independent samples (and thus a very
approximative result) is usually extremely sensitive to bugs, and even
small irregularities of the program.

1.2 The Toddlers’ algorithm and detailed balance

We have yet to determine what the lady at point c) in the heliport game
should do. It’s a difficult question, and full of consequences, and we don’t
want to give her any wrong advice. So, let’s think, and analyze first a similar,
discretized game, the well-known puzzle shown in figure 1.4. Understanding
this puzzle will allow us to make a definite recommendation. The task is

6 3 5

1 7

4 2 8

Figure 1.4: This well-known puzzle is the starting point for our theoretical
analysis of the Monte Carlo method.

now to create a perfect scrambling algorithm which generates any possible
configuration of the puzzle with equal probability. One such method, the
toddlers’ algorithm, is well known, and illustrated in figure 1.5 together with
one of its inventors.

The theoretical baggage picked up in the last few sections allows us to
class this method without hesitation among the direct sampling methods (as
the children’s game before), since it creates an independent instance each
time the puzzle is broken apart.

We are rather interested in a grown-up people’s algorithm, which respects
the architecture of the game 4.

What would You do? Almost certainly, you would hold the puzzle in
your hands and - at any time step - move the empty square in a random
direction. The detailed balance condition which you will find out about

4Cf. the discussion on page 25 for an important and subtle difference between the
toddlers’ algorithm and any incremental method.

6

Figure 1.5: This is a direct sampling algorithm for the puzzle game.

in this section shows that this completely natural sounding algorithm is
wrong.

If the blank square is in the interior (as in figure 1.4) then the algorithm
should clearly be to choose one of the four possible directions ↑ → ↓
← with equal probability, and to move the empty square.

As in the heliport game, we have to analyze what happens at the bound-
ary of the square 5. Consider the corner configuration a, which communi-

7 5 8

4 2 6

1 3
c

7 5 8

4 2 6

1 3
a

7 5 8

4 2

1 3 6
b

Figure 1.6: The corner configuration a is in contact with the configurations
b and c

cates with the configurations b and c, as shown in figure 1.6. If our algorithm
(yet to be found) generates the configurations a, b and c with probabilities

5periodic boundary conditions are not allowed.

7

π(a), π(b), and π(c), respectively (we impose them to be the same), we can
derive a simple rate equation relating the π’s to the transition probabilities
p(a → b) etc. Since a can only be generated from b, c, or from itself, we
have

π(a) = π(b)p(b→ a) + π(c)p(c→ a) + π(a)p(a→ a) (1.5)

this gives

π(a)[1− p(a→ a)] = π(b)p(b→ a) + π(c)p(c→ a) (1.6)

We write the condition which tells us that the empty square, once at a, can
stay at a or move to b or c:

1 = p(a→ a) + p(a→ b) + p(a→ c) (1.7)

which gives [1−p(a→ a)] = p(a→ b) +p(a→ c). This formula, introduced
in eq. (1.6) yields

π(a) p(a→ b) + π(a)
︷ ︸︸ ︷
p(a→ c) = π(c) p(c→ a) + π(b)︸ ︷︷ ︸p(b→ a) (1.8)

We can certainly satisfy this equation if we equate the braced terms sepa-
rately:

π(a)p(a→ b) = π(b)p(b→ a) etc. (1.9)

This equation is the celebrated Condition of detailed Balance.
We admire it for awhile, and then pass on to its first application, in our

puzzle. There, we impose equal probabilities for all accessible configurations,
i. e. p(a → b) = p(b → a), etc, and the only simple way to connect the
proposed algorithm for the interior of the square with the boundary is to
postulate an equal probability of 1/4 for any possible move. Looking at
eq. (1.7), we see that we have to allow a probability of 1/2 for p(a → a).
The consequence of this analysis is that to maximally scramble the puzzle,
we have to be immobile with a probability 1/2 in the corners, and with
probability 1/4 on the edges.

We can assemble all the different rules in the following algorithm: At
each time step t = 0, 1, . . .

1. choose one of the four directions ↑ → ↓ ← with equal proba-
bility.

2. move the blank square into the corresponding direction if possible.
Otherwise, stay where you are, but advance the clock.

8

I have presented this puzzle algorithm in the hope that you will not be-
lieve that it is true. This may take you to scrutinize the detailed balance
condition, and to understand it better.

Recall that the puzzle game was in some respect a discretized version
of the heliport game, and you will now be able to answer by analogy the
question of the fashionable lady at c). Notice that there is already a pebble
at this point. The lady should now pick two more stones out of her handbag,
place one of them on top of the stone already on the ground, and use the
remaining one to try a new fling. If this is again an out-fielder, she should
pile one more stone up etc. If you look onto the heliport after the game has
been going on for awhile, you will notice a strange pattern of pebbles on
the ground (cf. figure 1.7). There are mostly single stones in the interior,

Figure 1.7: Landing pad of the Monte Carlo heliport after all the players
have gone home. Notice the piles at the edges, particularly close to the
corners.

and some more or less high piles as you approach the boundary, especially
the corner. Yet, this is the most standard way to enforce a constant density
π(x, y) = const.

It has happened that first-time listeners of these sentences are struck with
utter incredulity. They find the piling-up of stones absurd and conclude that
I must have gotten the story wrong. The only way to reinstall confidence
is to show simulations (of ladies flinging stones) which do and do not pile
up stones on occasions. You are invited to do the same (start with one
dimension).

In fact, we have just seen the first instance of a Rejection, which, as
announced, is a keyword of this course, and of the Monte Carlo method in

9

general. The concept of a rejection is so fundamental that it is worth dis-
cussing it in the completely barren context of a Monaco airfield. Rejections
are the basic method by which the Monte Carlo enforces a correct density
π(x, y) on the square, with an algorithm (random “flings”) which is not par-
ticularly suited to the geometry. Rejections are also wasteful (of pebbles),
and expensive (you throw stones but in the end you just stay where you
were). We will deepen our understanding of rejections considerably in the
next sections.

We have introduced the rejections by a direct inspection of the detailed
balance condition. This trick has been elevated to the status of a general
method in the socalled Metropolis algorithm [1]. There, it is realized that
the detailed balance condition eq. (1.9) is verified if one uses

P (a→ b) = min(1,
π(b)
π(a)

) (1.10)

What does this equation mean? Let’s find out in the case of the heliport:
Standing at a) (which is inside the square, i.e. π(a) = 1), you throw your
pebble in a random direction (to b). Two things can happen: Either b is
inside the square (π(b) = 1), and eq. (1.10) tells you to accept the move
with probability 1, or b is outside (π(b) = 0), and you should accept with
probability 0, i.e. reject the move, and stay where you are.

After having obtained an operational understanding of the Metropolis al-
gorithm, you may want to see whether it is correct in the general case. For
once, there is rescue through bureaucracy, for the theorem can be checked
by a bureaucratic procedure: simply fill out the following form:

case π(a) > π(b) π(b) > π(a)
P (a→ b) 1

π(a)P (a→ b) 2
P (b→ a) 3

π(b)P (b→ a) 4

Fill out, and you will realize for both columns that the second and forth
rows are identical, as stipulated by the detailed balance condition. You
have understood all there is to the Metropolis algorithm.

1.3 To Cry or to Cray

Like a diamond tool, the Metropolis algorithm allows you to “grind down”
an arbitrary density of trial movements (as the random stone-flings) into

10

the chosen stationary probability density π(x, y).
To change the setting we discuss here how a general classical statistical

physics model with an arbitrary high-dimensional energy E(x1, x2, . . . , xN)
is simulated (cf the classic reference [2]). In this case, the probability den-
sity is the Boltzmann measure π(x1, ..., xN) = exp(−βE), and the physical
expectation values (energies, expectation values) are given by formulas as
in eq. (1.4). All you have to do (if the problem is not too difficult) is to . . .

• set up a (rather arbitrary) displacement rule, which should generalize
the random stone-flings of the heliport game. For example, you may
from an initial configuration x1, x2, . . . , xN go to a new configuration
by choosing an arbitrary dimension i, and doing the random displace-
ment on xi → xi + δx, with δx between −ε and +ε. Discrete variables
are treated just as simply.

• Having recorded the energies Ea and Eb at the initial point a and the
final point b, you may use the Metropolis algorithm to compute the
probability, p, to actually go there.

p(a→ b) = min[1, exp(−β(Eb −Ea)]) (1.11)

This is implemented using a single uniformly distributed random num-
ber 0 < ran < 1, and we move our system to b under the condition
that ran < p(a→ b), as shown in the figure.

0 1

p(x)

ran

Figure 1.8: The probability for a uniformly distributed random number
0 < ran < 1 to be smaller than p(a → b) is min[1, p(a → b)]. A typical
Monte Carlo program contains one such comparison per step.

• You notice that (for continuous systems) the remaining liberty in your
algorithm is to adjust the value of ε. The time-honored procedure
consists in choosing ε such that about half of the moves are rejected.
This is of course just a golden rule of thumb. The “< p(ε) >∼ 1/2”

11

rule, as it may be called, does in general insure quite a quick diffusion
of your particle across configuration space. If you want to do better,
you have to monitor the speed of your Monte Carlo diffusion, but it is
usually not worth the effort.

As presented, the Metropolis algorithm is extremely powerful, and many
problems are adequately treated with this method. The method is so power-
ful that for many people the theory of Monte Carlo stops right after equation
(1.9). All the rest is implementation details, data collection, and the adjust-
ment of ε, which was just discussed.

Many problems, especially in high dimensions, nevertheless defy this
rule. For these problems, the programs written along the lines of the one
presented above will run properly, but have a very hard time generating
independent samples at all. These are the problems on which one is forced
to either give up or compromise: use smaller sizes than one wants, take risks
with the error analysis etc. The published papers, over time, present much
controversy, shifting results, and much frustration on the side of the student
executing the calculation.

Prominent examples of difficult problems are phase transitions in general
statistical models, Hubbard model, Bosons, and disordered systems. The
strong sense of frustration can best be retraced in the case of the hard sphere
liquid, which was first treated in the original 1953 publication introducing
the Metropolis algorithm, and which has since generated an unabating series
of unconverged calculations, and heated controversies.

A very useful system to illustrate a difficult simulation, shown in fig-
ure 1.9 is the chain of N springs with an energy

z ↑

Figure 1.9: Chain of coupled springs which serves as an example of a large-
dimensional Monte Carlo problem.

12

E =
(z1 − z0)2

2
+

(z2 − z1)2

2
+ . . .+

(zN+1 − zN)2

2
(1.12)

z0 and zN+1 are fixed at zero, and z1, . . .zN are the lateral positions of
the points, the variables of the system. How do we generate distributions
according to exp(−βE)? A simple algorithm is very easily written (you may
recover “spring.f” from my WWW-site). According to the recipe given
above you simply choose a random bead and displace it by a small amount.
The whole program can be written in about 10 lines. If you experiment with
the program, you can also try to optimize the value of ε (which will come out
such that the average change of energy in a single move is β|Eb−Ea| ∼ 1).

What you will find out is that the program works, but is extremely
slow. It is so slow that you want to cry or to Cray (give up or use a
supercomputer), and both would be ridiculous.

Let us analyze why a simple program for the coupled springs is so slow.
The reason are the following

• Your “< p(ε) >∼ 1/2” rule fixes the step size, which is necessarily
very small.

• The distribution of, say, zN/2, the middle bead, as expressed in units

of ε is very large, since the whole chain will have a lateral extension of
the order of

√
N . It is absolutely essential to realize that the distribu-

tion can never be intrinsically wide, but only in units of the imposed
step size (which is a property of the algorithm).

• It is very difficult to sample a large distribution with a small stepsize,
in the same way as it takes a very large bag of stones to get an approx-
imate idea of the numerical value of π if the heliport is much larger
than your throwing range (cf. figure 1.10).

The difficulty to sample a wide distribution is the basic reason why simula-
tions can have difficulties converging.

At this point, I often encounter the remark: why can’t I move sev-
eral interconnected beads independently, thus realizing a large move? This
strategy is useless. In the big people’s game, it corresponds to trying to
save every second stone by throwing it into a random direction, fetching it
(possibly climbing over the fence), picking it up and throwing it again. You
don’t gain anything since you already optimized the throwing range before.
You already had an important probability of rejection, which will now be-
come prohibitive. The increase in the rejection probability will more than
annihilate the gain in stride.

13

20 zN/2

Figure 1.10: The elastic string problem with N = 40 is quite a difficult
problem because the distribution of, e g, zN/2 is large. The simulation path
shown in the figure corresponds to 400.000 steps.

As set up, the thermal spring problem is difficult because the many
degrees of freedom x1, . . .xN are strongly coupled. Random ε-moves are
an extremely poor way to deal with such systems. Without an improved
strategy for the attempted moves, the program very quickly fails to converge,
i e to produce even a handful of independent samples.

In the coupled spring problem, there are essentially two ways to improve
the situation. The first consists in using a basis transformation, in this case
in simply going to Fourier space. This evidently decouples the degrees of
freedom. You may identify the Fourier modes which have a chance of be-
ing excited. If you write a little program, you will very quickly master a
popular concept called “Fourier acceleration”. An exercise of unsurpassed
value is to extend the program to an energy which contains a small addi-
tional anisotropic coupling of the springs and treat it with both algorithms.
Fermi, Pasta and Ulam, in 1945, were the first to simulate the anisotropic
coupled chain problem on a computer (with a deterministic algorithm) and
to discover extremely slow thermalization.

The basis transformation is a specific method to allow large moves. Usu-
ally, it is however impossible to find such a transformation. A more general
method to deal with difficult interacting problems consists in isolating sub-
problems which you can more or less sample easily and solve exactly. The
a priori information gleaned from this analytical work can then be used to
propose exactly those (large) moves which are compatible with the system.
The proposed moves are then rendered correct by means of a generalized

14

Monte Carlo algorithm. A modified Metropolis rejection remains, it cor-
rects the “engineered” density into the true stationary probability. We will
first motivate this very important method in the case of the coupled chain
example, and then give the general theory, and present a very important
application to spin models.

To really understand what is going on in the coupled spring problem, let’s
go back to figure 1.9, and analyze a part only of the whole game: the motion
of the bead labeled i with i− 1 and i+ 1 (for the moment) immobilized at
some values zi−1 and at zi+1. It is easy to do this simulation (as a thought
experiment) and to see that the results obtained are as given in figure 1.11.
You see that the distribution function P (zi), (at fixed zi−1 and zi+1) is a

Figure 1.11: Here we analyze part of the coupled spring simulation, with
zi−1 and zi+1 immobilized. The large rejection rate is due to the fact that
the proposed probability distribution for zi (light gray) is very different from
the accepted distribution (the Gaussian).

Gaussian centered around zi = (zi−1 +zi+1)/2. Note however that there are
in fact two distributions: the accepted one and the rejected one. It is the
Metropolis algorithm which, through the rejections, modifies the proposed
- flat - distribution into the correct Gaussian. We see that the rejections
- besides being a nuisance - play the very constructive role of modifying
the proposed moves into the correct probability density. There is a whole
research literature on the use of rejection methods to sample 1−dimensional
distributions (cf [8], chap 7.3), . . . a subject which we will leave instantly
because we are more interested in the higher-dimensional case.

15

1.4 A priori Probability

Let us therefore extend the usual formula for the detailed balance condition
and for the Metropolis algorithm, by taking into account the possible “a pri-
ori” choices of the moves, which is described by an a priori Probability

A(a→ b) to attempt the move 6. In the heliport game, this probability was
simply

A(a→ b) =

{
1 if |a− b| < ε
0 otherwise

(1.13)

with ε the throwing range, and we did not even notice its presence. In the
elastic spring example, the probability to pick a bead i, and to move it by
a small amount −ε < δ < ε was also independent of i, and of the actual
position zi.

Now, we reevaluate the detailed balance equation, and allow explicitly
for an algorithm: The probability p(a → b) is split up into two separate
parts [9]:

p(a→ b) = A(a→ b)P(a→ b) (1.14)

where P(a → b) is the (still necessary) acceptance probability of the move
proposed with A(a → b). What is this rejection probability? This is very
easy to obtain from the full detailed balance equation

π(a)A(a→ b)P(a→ b) = π(b)A(b→ a)P(b→ a) (1.15)

You can see, that for any a priori probability, i.e. for any Monte Carlo
algorithm we may find the acceptance rate which is needed to bring this
probability into accordance with our unaltered detailed balance condition.
As before, we can use a Metropolis algorithm to obtain (one possible) correct
acceptance rate

P(a→ b)
P(b→ a)

=
π(b)

A(a→ b)
A(b→ a)
π(a)

(1.16)

which results in

P(a→ b) = min
(

1,
π(b)

A(a→ b)
A(b→ a)
π(a)

)
(1.17)

Evidently, this formula reduces to the original Metropolis prescription if
we introduce a flat a priori probability (as in eq. (1.13)). As it stands,
eq. (1.17) states the basic algorithmic liberty which we have in setting up
our Monte Carlo algorithms: Any possible bias A(a → b) can be made

6I don’t know who first used this concept. I learned it from D. Ceperley

16

into a valid Monte Carlo algorithm since we can always correct it with the
corresponding acceptance rate P(a → b). Of course, only a very carefully
chosen probability will be viable, or even superior to the simple and popular
choice eq. (1.10).

Inclusion of a general a priori probability is mathematically harmless,
but generates a profound change in the practical setup of our simulation.
In order to evaluate the acceptance probability in eq. (1.17), P(a→ b), we
not only propose the move to b, but also need explicit evaluations of both
A(a→ b) and of the return move A(b→ a).

Can you see what has changed in the eq. (1.17) with respect to the previ-
ous one (eq. (1.10))? Before, we necessarily had a large rejection probability
whenever getting from a point a with high probability (large π(a)) to a point
b which had a low probability (small π(b)). The naive Metropolis algorithm
could only produce the correct probability density by installing rejections.
Now we can counteract, by simply choosing an a priori probability which
is also much smaller. In fact, you can easily see that there is an an optimal
choice: we may be able to use as an a priori probability A(a→ b) the prob-
ability density π(b) and A(b→ a) the probability density π(a). In that case,
the ratio expressed in eq. (1.17) will always be equal to 1, and there will
never be a rejection. Of course, we are then also back to direct sampling
. . . from where we came from because direct sampling was too difficult

The argument is not circular, as it may appear, because it can always
be applied to a part of the system. To understand this point, it is best to
go back to the example of the elastic string. We know that the probability
distribution π(zi) for fixed zi−1 and zi+1 is

π(zi|zi−1, zi+1) ∼ exp[−β(zi − zi)2] (1.18)

with zi = (zi−1 +zi+1)/2. We can now use exactly this formula as an a priori
probability A(zi|zi−1, zi+1) and generate an algorithm without rejections,
which thermalizes the bead i at any step with its immediate environment.
To program this rule, you need Gaussian random numbers (cf. [8] for the
popular Box-Muller algorithm). So far, however, the benefit of our operation
is essentially non-existent 7.

It is now possible to extend the formula for zi at fixed zi−1 and zi+1 to
a larger window. Integrating over zi−1 and zi+1 in π(zi−2, . . . , zi+2), we find
that

π(zi|zi−1, zi+1) ∼ exp[−2β(zi − zi)2] (1.19)
7The algorithm with this a priori probability is called “heatbath” algorithm. It is

popular in spin models, but essentially identical to the Metropolis method

17

where, now, zi = (zi−2 + zi+2)/2. Having determined zi from a sampling of
eq. (1.19), we can subsequently find values for zi−1 and zi+1 using eq. (1.18).
The net result of this is that we are able to update zi−1, zi, zi+1 simultane-
ously. The program “levy.f” which implements this so called Lévy con-
struction can be retrieved and studied from my WWW-site. It generates
large moves with arbitrary window size without rejections.

1.5 Perturbations

From this simple example of the coupled spring problem, you can quickly
reach all the subtleties of the Monte Carlo method. You see that we were able
to produce a perfect algorithm, because the a priori probabilityA(zi|zi−l, zi+l)
could be chosen equal to the stationary probability π(zi−l, . . . , zi+l resulting
in a vanishing rejection rate. This, however, was just a happy accident.
The enormous potential of the a priori probability resides in the fact that
eq. (1.17) deteriorates (usually) very gracefully when A and π(z) differ. A
recommended way to understand this point consists in programming a sec-
ond program for the coupled chain problem, in which you again add a little
perturbing term to the energy, such as

E1 = γ
N∑
i=1

f(zi) (1.20)

which is supposed to be relatively less important than the elastic energy. It is
interesting to see in which way the method adapts if we keep the above Lévy-
construction as an algorithm8. If you go through the following argument,
and possibly even write the program and experiment with its results, you
will find the following

• The energy of each configuration now is Ẽ(z1, . . . , zN) = E0 + E1,
where E0(a) is the term given in eq. (1.12), which is in some way
neutralized by the a priori probability A(a → b) = exp[−βE0(b)].
One can now write down the Metropolis acception rate of the process
from eq. (1.17). The result is

P(a→ b) = min
(

1,
exp[−βE1(b)]
exp[−βE1(a)]

)
(1.21)

This is exactly the naive Metropolis algorithm eq. (1.10), but exclu-
sively with the newly added term of the energy.

8In Quantum Monte Carlo, you introduce a small coupling between several strings.

18

• Implementing the a priori probability with γ = 0, your code runs with
acceptance probability 1, independent of the size of the interval 2l+1.
If you include the second term E1, you will again have to optimize this
size. Of course, you will find that the optimal window corresponds to
a typical size of β|Eb

1 −Ea
1 | ∼ 1.

• with this cutting-up of the system into a part which you can solve
exactly, and an additional term, you will find out that the Monte
Carlo algorithm has the appearance of a perturbation method. Of
course, it will always be exact. It has all the chances to be fast if E1 is
typically smaller than E0. One principal difference with perturbation
methods is that it will always sample the full perturbed distribution
π(z1, . . . , zN) = exp[−βẼ].

One can spend an essentially endless time pondering about the a priori
probabilities, and the similarities and differences with perturbation theory.
This is where the true power of the Monte Carlo method lies. This is what
one has to understand before venturing into mass tailering tomorrow’s pow-
erful algorithms for the problems which are today thought to be out of reach.
Programming a simple algorithm for the coupled oscillators will be an ex-
cellent introduction into the subject. Useful further literature are [9], where
the coupled spring problem is extended into one of the most successful appli-
cations to Quantum Monte Carlo methods, and [3], where some limitations
of the approach are outlined.

In any case, we should understand that a large rate of rejections is always
indicative of a structure of the proposed moves which is unadapted to the
probability density of the model at the given temperature. The benefit of
fixing this problem - if we only see how to do it - is usually tremendous:
doing the small movements with negligible rejection rate often allows us to
do larger movements, and to explore the important regions of configuration
space all the more quickly.

To end this section, I will give another example: the celebrated cluster
methods in lattice systems, which were introduced ten years ago by Swend-
sen and Wang [4] and by Wolff [5]. There again, we find the two essential
ingredients of slow algorithms: necessarily small moves, and a wide distri-
bution of the physical quantities. Using the concept of a priori probabilities,
we can very easily understand these methods.

19

1.6 Cluster Algorithms

I will discuss these methods in a way which brings out clearly the “engi-
neering” aspect of the a priori probability, where one tries to cope with the
large distribution problem. Before doing this, let us discuss, as before, the
general setting and the physical origin of the slow convergence. As we all
know, the Ising model is defined as a system of spins on a lattice with an
energy of

E = −
∑
<i,j>

SiSj (1.22)

where the spins can take on values of Si = ±1, and where the sum runs over
pairs of neighboring lattice sites. A simple program is again written in a few
lines: it picks a spin at random, and tries to turn it over. Again, the a priori
probability is flat, since the spin to be flipped is chosen arbitrarily. You
may find such a program (“simpleising.f”) on my WWW site. Using this
program, you will very easily be able to recover the phase transition between
a paramagnetic and a ferromagnetic phase, which in two dimensions takes
place at a temperature of β = log(1 +

√
2)/2 (you may want to look up the

classic reference [13] for exact results on finite lattices). You will also find out
that the program is increasingly slow around the critical temperature. This
is usually interpreted as the effect of the divergence of the correlation length
as we approach the critical point. In our terms, we understand equally well
this slowing-down: our simple algorithm changes the magnetization by at
most a value of 2 at each step, since the algorithm flips only single spins. This
discrete value replaces the ε in our previous example of the coupled springs.
If we now plot histograms of the total magnetization of the system (in units
of the stepsize ∆m = 2!), we again see that this distribution becomes “wide”
as we approach βc. (cf figure 1.12) Clearly, the total magnetization has a
wide distribution, which it is extremely difficult to sample with a single
spin-flip algorithm.

To appreciate the cluster algorithms, you have to understand two things:

1. As in the coupled spring problem, you cannot simply flip several spins
simultaneously (cf the discussion on page 13.) You want to flip large
clusters, but of course you cannot simply solder together all the spins
of one sign which are connected to each other, because those could
never again get separated.

2. If you cannot solidly fix the spins of same sign with probability 1,
you have to choose adjacent coaligned spins with a certain probability
p. This probability p is the construction parameter of our a priori

20

0 200

Figure 1.12: Histograms of the magnetization in the 20 × 20 Ising model
at temperatures 10 % and 45 % above the critical point. On the x-axis is
plotted m/∆m, where ∆m = 2 is the change of the magnetization which
can be obtained in a single Monte Carlo step.

probabilityA. The algorithm will run for an arbitrary value of p (p = 0
corresponding to the single spin-flip algorithm), but the p minimizing
the rejections will be optimal.

The cluster algorithm we find starts with the idea of choosing an arbitrary
starting point, and adding “like” links with probability p. We arrive here
at the first nontrivial example of the evaluation of an a priori probability.
Consider the figure 1.13. Imagine that we start from a “+” spin in the
gray area of configuration a) and add “like” spins. What is the a priori
probability A(a → b) and the inverse probability A(b → a), and what are
the Boltzmann weights π(a) and π(b)?
A(a→ b) is given by a term concerning interior “+ +” links,Aint(a→ b),

which looks difficult, and which we don’t even try to evaluate, and a part
concerning the boundary of the cluster. This boundary is made up of two
types of links, as summarized below

int ext number
+ − c1

+ + c2

E|∂C = −c2 + c1 (1.23)

(in the example of figure 1.13, we have c1 = 10 and c2 = 14). The a priori
probability is A(a → b) = Aint × (1 − p)c2. To evaluate the Boltzmann
weight, we also abstain from evaluating terms which don’t change between

21

Figure 1.13: construction process of the Swendsen-Wang algorithm. Starting
from an initial + site, we include other + sites with probability p (left).
The whole cluster (gray area) is then flipped. In the text, we compute the
probability to stop the construction for the gray cluster, and for the reverse
move. This yields our a priori probabilities.

a) and b): we clearly only need the boundary energy, which is given in
eq. (1.23). It follows that π(a) ∼ exp[−β(c1 − c2)]. We now consider the
inverse move. In the cluster b), the links across the boundary are as follows:

int ext number
− − c1

− + c2

E|∂C = −c1 + c2 (1.24)

The a priori probability to construct this cluster is again put together by
an interior part, which is exactly the same as for the cluster in a), and a
boundary part, which is changed: A(b → a) = Aint × (1 − p)c1 . Similarly,
we find that π(a) ∼ exp[−β(c2 − c1)]. It is now sufficient to put everything
into the formula of the detailed balance

e−β[c1−c2](1− p)c2P(a→ b) = e−β[c2−c1](1− p)c1P(b→ a) (1.25)

which results in the acceptance probability:

P(a→ b) = min(1,
e−β[c2−c1](1− p)c1
e−β[c1−c2](1− p)c2

) (1.26)

The most important point of this equation is not that it can be simplified, as
we will see in a minute, but that it is perfectly explicit, and may be evaluated

22

without problem: once your cluster is constructed, you could simply evaluate
c1 and c2 and compute the rejection probability from this equation.

On closer inspection of the formula eq. (1.26), you see that, for 1− p =
exp[−2β], the acceptance probability is always 1. This is the “magic” value
implemented in the algorithms of Swendsen-Wang and of Wolff.

The resulting algorithm [5] is very simple, and follows exactly the de-
scription given above: you start picking a random spin, and add coaligned
neighbors with probability p, the construction stops once none of the “like”
links across the growing cluster has been chosen. If you are interested, you
may retrieve the program “wolff.f” from my WWW-site. This program
(which was written in less than an hour) explains how to keep track of the
cluster construction process. It is amazing to see how it passes the Curie
point without any perceptible slowing-down.

Once you have seen such a program churn away at the difficult problem
of a statistical physics model close to the critical point you will come to
understand what a great pay-off can be obtained from an intelligent use of
powerful Monte Carlo ideas.

1.7 Concluding remarks on the equilibrium Monte
Carlo

We arrive at the end of the introduction to equilibrium Monte Carlo meth-
ods. I hope to have given a comprehensible introduction to the way the
method presents itself in most statistical physics contexts:

• The (equilibrium) Monte Carlo approach is an integration method
which converges slowly, but surely. Except in a few cases, one is al-
ways forced to sample the stationary density (Boltzmann measure,
density matrix in the quantum case) by a Markov chain approach.
The critical issue there is the correlation time, which can become as-
tronomical. In the usual application, one is happy with a very small
number of truly independent samples, but an appallingly large number
of computations never succeed in decorrelating the Markov chain from
the initial condition.

• The regular methods work well, but have some important disadvan-
tages. As presented, the condition that the rejection rate has to be
quite small - typically of the order of 1/2 - reduces us to very local
moves.

23

• The acceptance rate has important consequences for the speed of the
program, but a small acceptance rate is in particular an indicator that
the proposed moves are inadequate.

• It would be wrong to give the impression that the situation can al-
ways be ameliorated - sometimes one is simply forced to do very big
calculations. In many cases however, a judicious choice of the a priori
probability allows us to obtain very good acceptance rates, even for
large movements. This work is important, and it frequently leads to
an exponential increase in efficiency.

24

Chapter 2

Dynamical Monte Carlo
Methods

2.1 Ergodicity

Usually, together with the fundamental concept of detailed balance, one
finds also a discussion of Ergodicity, since it is the combination of both
principles which insures that the simulation will converge to the correct
probability density. Ergodicity simply means that any configuration b can
eventually be reached from the initial configuration a, and we denote it by
p(a→ . . .→ b) > 0.

Ergodicity is a tricky concept, which does not have the step-by-step prac-
tical meaning of the detailed balance condition. Ergodicity can be broken
in two ways:

• trivially, when your Monte Carlo dynamics for some reasons only sam-
ples part of phase space, split off, e.g., by a symmetry principle. An
amusing example is given by the puzzle game we considered already in
section 1.2 : It is easy to convince yourself that the toddlers’ algorithm
is not equivalent to the grown-up algorithm, and that it creates only
half of the possible configurations. Consider those configurations of the
puzzle with the empty square in the same position, say in the lower
right corner, as in figure 2.1. Two such configurations can only be
obtained from each other only if the empty square describes a closed
path, and this invariably corresponds to an even number of steps
(transpositions) of the empty square. The first two configurations in
figure 2.1 can be obtained by such a path. The third configuration (to
the right) differs from the middle one in only one transposition. It can

25

7 8

4 5 6

1 2 3

7 5

4 2 8

1 3 6

5 7

4 2 8

1 3 6

Figure 2.1: The two configurations to the left can reach each other by the
path indicated (the arrows indicate the (clockwise) motion of the empty
square). The rightmost configuration cannot be reached since it differs by
only one transposition from the middle one.

therefore not be obtained by a local algorithm. Ergodicity breaking
of the present type is very easily fixed, by simply considering a larger
class of possible moves.

• The much more vicious ergodicity breaking appears when the algo-
rithm is “formally correct”, but is simply too slow. After a long simu-
lation time, the algorithm may not have visited all the relevant corners
of configuration space. The algorithm may be too slow by a constant
factor, a factor N , or exp(N) Ergodicity breaking of this kind
sometimes goes unnoticed for a while, because it may show up clearly
only in particular variables, etc. Very often, the system can be solidly
installed in some local equilibrium, which does however not correspond
to the thermodynamically stable state. It always invalidates the Monte
Carlo simulation. There are many examples of this type of ergodicity
breaking, e. g. in the study of disordered systems. Notice that the
abstract proof that no “trivial” accident happens does not protect you
from a “vicious” one.

For Orientation (and knowing that I may add to the confusion) I
would want to warn the reader to think that in a benign simulation all

the configuration have a reasonable chance to be visited. This is not at all
the case, even in small systems. Using the very fast algorithm for the Ising
model which I presented in the last chapter, you may for yourself generate
energy histograms of, say, the 20 × 20 Ising model at two slightly different
temperatures (above the Curie point). Even for very small differences in
temperature, there are many configurations which have no practical chance
to ever be generated at one temperature, but which are commonly encoun-

26

tered at another temperature. This is of course the legacy of the Metropolis
method where we sample configurations according to their statistical weight
π(x) ∼ exp[−βE(x)]. This socalled “Importance Sampling” is the rescue
(and the danger) of the Monte Carlo method - but is related only to the
equilibrium properties of the process. Ergodicity breaking - a sudden slow-
down of the simulation - may be completely unrelated to changes in the
equilibrium properties of the system. There are a few models in which this
problem is discussed. In my opinion, none is as accessible as the work of
ref [7] which concerns a modified Ising model, which undergoes a purely
dynamic roughening transition.

We retain that the absolute probability p(a → . . . → b) > 0 can very
rarely be evaluated explicitly, and that the formal mathematical analysis is
useful only to detect the “trivial” kind of ergodicity violation. Very often,
careful data analysis and much physical insight is needed to assure us of the
practical correctness of the algorithm.

2.1.1 Dynamics

One is of course very interested in the numerical study of the phenomena
associated with very slow dynamics, such as relaxation close to phase transi-
tions, as glasses, spin glasses, etc. We have just seen that these systems are
a priori difficult to study with Monte Carlo methods, since the stationary
distribution is never reached during the simulation.

It is characteristic of the way things go in Physics that - nonwithstanding
these difficulties - there is often no better method to study these systems
than to do a . . . Monte Carlo simulation! In Dynamical Monte Carlo,
one is of course bound to a specific Monte Carlo algorithm, which serves as
a model for the temporal evolution of the system from one local equilibrium
state to another. In these cases, one knows by construction that the Monte
Carlo algorithm will drive the system towards the equilibrium, but very often
after a time much too large to be relevant for experiment and simulation.
So one is interested in studying relaxation of the system from a given initial
configuration.

The conceptual difference of the equilibrium Monte Carlo (which was
treated in the last chapter) with the dynamical Monte Carlo methods can-
not be overemphasized. In the first one, we have an essentially unrestricted
choice of the algorithm (expressed by the a priori probability, which was
discussed at length), since one is exclusively interested in generating inde-
pendent configurations x distributed according to π(x). In the thermody-
namic Monte Carlo, the temporal correlations are just a nuisance. As we

27

turn to dynamical calculations, these correlations become the main object of
our curiosity. In dynamical simulations, the a priori probability is of course
fixed. Also, if the Monte Carlo algorithm is ergodic both in principle and in
practice, the static results will naturally be independent of the algorithm.

You may ask whether there is any direct relationship between the Metropo-
lis dynamics (which serves as our Model), and the true physical time of
the experiment, which would be obtained by a numerical integration of the
equations of motion, as is done for example in molecular dynamics. There
has been a lot of discussion of this point and many simulations have been
devoted to an elucidation of this question for, say, the hard sphere liquid.
All these studies have confirmed our intuition (as long as we stay with purely
local Monte Carlo rules): the difference between the two approaches corre-
sponds to a renormalization of time, as soon as go leave a ballistic regime
(times large compared to the mean-free time). The Monte Carlo dynamics
is very often simpler to study.

In equilibrium Monte Carlo, theory does not stop with the naive Metropo-
lis algorithm. Likewise, in dynamical simulation there is also room for much
algorithmic subtlety. In fact, even though our model for the dynamics is
fixed, we are not forced to implement the Metropolis rejections blindly on
the computer. Again, it’s the rate of rejections which serves as an impor-
tant indicator that something more interesting than the naive Metropolis
algorithm may be tried. The keyword here are faster than the Clock

algorithms which are surprisingly little appreciated, even though they
often allow simulations of unprecedented speed.

2.2 Playing dice

As a simple example which is easy to remember, consider the system shown
in figure 2.2: a single spin, which can be S = ±1 in a magnetic field H, at
finite temperature. The energy of each of the two configurations is

E = −H S (2.1)

We consider the Metropolis algorithm of eq. (1.10) to model the dynamical
evolution of the system and introduce an explicit time step ∆τ = 1.

p(S → −S,∆τ) = ∆τ

{
1 (if E(−S) < E(S))

exp[−β(E(−S)− E(S))] (otherwise)
(2.2)

To be completely explicit, we write down again how the spin state for the
next time step is evaluated in the Metropolis rejection procedure: at each

28

Figure 2.2: Here, we look at the dynamics of a single spin in a magnetic
field. We will soon relate it . . .

time step t = 1, 2, . . . we compute a random number 0 < ran < 1 and
compare it with the probability p from eq. (2.2):

St+1 =

{
−St if p(St → −St) > ran
St otherwise

(2.3)

This rule assures that, asymptotically, the two configurations are chosen with
the Boltzmann distribution. Notice that, whenever we are in the excited “−”
state of the single spin model, our probability to fall back on the next time
step is 1, which means that the system will flip back to the “+” state on
the next move. Therefore, the simulation will look as follows:

. . .+ + + + - + + - + + + - + + + + + - + + + - + . . . (2.4)

As the temperature is lowered, the probability to be in the excited state
will gradually diminish, and you will spend more and more time computing
random numbers in eq. (2.3), but rejecting the move from S = +1 to S = −1.

At the temperature β = log(6)/2, the probability to flip the spin is
exactly 1/6, and the physical problem is then identical to the game of the
little boy depicted in figure 2.3. He is playing with a special die, with 5
empty faces (corresponding to the rejections St+1 = St = 1) and one face
with the inscription “flip” (St+1 = −St, St+2 = −St+1). The boy will roll
the die over and over again, but of course most of the time the result of the
game is negative. As the games goes on, he will expend energy, get tired,
etc etc, mostly for nothing. Only very rarely does he encounter the magic
face which says “flip”. If you play this game in real life or on the computer,
you will soon get utterly tired of all these calculations which result in a
rejection, and you may get the idea that there must be a more economical

29

10

Figure 2.3: . . . to the game of this little boy. There is a simpler way to
simulate the dynamics of a single spin than to throw a die at each time step.
The solution is indicated in the lower part: the shaded space corresponds to
the probability of obtaining a “flip” on the third throw.

way to arrive at the same result. In fact, you can predict analytically what
will be the distribution of time intervals between “flips”. For the little boy,
at any given time, there is a probability of 5/6 that one roll of the die will
result in a rejection, and a probability of (5/6)2 that two rolls result in
successive rejections, etc. The numbers (5/6)l are shown in the lower part
of figure 2.3. You can easily convince yourself that the shaded space in the
figure corresponds to the probability (5/6)2−(5/6)3 to have a flip at exactly
the third roll. So, to see how many times you have to wait until obtaining a
“flip”, you simply draw a random number ran 0 < ran < 1, and check into
which box it falls. The box index l is calculated easily:

(5/6)l+1 < ran < (5/6)l ⇒ l = Int
{

log ran
log(5/6)

}
. (2.5)

What this means is that there is a very simple program “dice.f”, which you
can obtain from my WWW-site, and which has the following characteristics:

• the program has no rejection. For each random number drawn, the
program computes a true event: the waiting time for the next flip.

• The program thus is “faster than the clock” in that it is able to predict
the state of the boy’s log-table at simulation time t with roughly t/6

30

operations.

• the output of the accelerated program is completely indistinguishable
from the output of the naive Metropolis algorithm.

You see that to determine the temporal evolution of the die-playing game you
don’t have to do a proper “simulation”, you can use a far better algorithm.

It is of course possible to generalize the little example from a probability
λ = 1/6 to a general value of λ, and from a single spin to a general statistical
mechanics problem with discrete variables. . . . I hope you will remember the
trick next time that you are confronted to a simulation, and the terminal
output indicates one rejection after another. So you will remember that the
proper rejection method eq. (2.3) is just one possible implementation of the
Metropolis algorithm eq. (2.2). The method has been used to study different
versions of the Ising model, disordered spins, kinetic growth and many other
phenomena. At low temperatures, when the rejection probabilities increase,
the benefits of this method can be enormous.

So, you will ask why you have never heard of this trick before. One
of the reason for the relative obscurity of the method can already be seen
on the one-spin example: In fact you see that the whole method does not
actually use the factor 1/6, which is the probability to do something, but
with 5/6 = 1 − 1/6, which is the probability to do nothing. In a general
spin model, you can flip each of the N spins. As input to your algorithm
computing waiting times, you again need the probability “to do nothing”,
which is

1− λ = 1−
N∑
i=1

[probability to flip spin i] (2.6)

If these probabilities all have to be computed anew for each new motion,
the move becomes quite expensive (of order N). A straightforward imple-
mentation therefore has all the chances to be too onerous to be extremely
useful. In practice, however, you may encounter enormous simplifications in
evaluating λ for two reasons:

• you may be able to use symmetries to compute all the probabilities.
Since the possible probabilities to flip a spin fall into a finite number
n of classes. The first paper on accelerated dynamical Monte Carlo
algorithms [6] has coined the name “n-fold way” for this strategy.

• You may be able to simply look up the probabilities, instead of com-
puting them, since you didn’t visit the present configuration for the
first time and you took notes [12].

31

2.3 Accelerated Algorithms for Discrete Systems

We now discuss the main characteristics of the method, as applied to a gen-
eral spin model with configurations Si made up ofN spins Si = (Si,1, . . . , Si,N).
We denote the configuration obtained from Si by flipping the spin m as S [m]

i .
The system remains in configuration Si during a time τi, so that the time
evolution can be written as

S1(τ1)→ S2(τ2) . . .→ Si(τi)→ Si+1(τi+1) . . . etc (2.7)

The probability of flipping spin m is given by

p(Si → S
[m]
i ,∆τ) =

∆τ
N

{
1 (if E(S [m]

i) < E(Si))
exp[−β(∆E)] (otherwise)

(2.8)

where the 1/N factor expresses the the 1/N probability to select the spin m.
After computing λ =

∑
i p(Si → S

[m]
i), we obtain the waiting time as in eq.

(2.5), which gives the exact result for a finite values of ∆τ . Of course, in the
limit ∆τ → 0, the eq. (2.5) simplifies, and we can sample the time to stay
in Si directly from an exponential distribution p(τi) = λ exp(−λτi) (cf [8]
chap. 7.2 for how to generate exponentially distributed random numbers).

If we have then found out that after a time τ we are going to move from
our configuration S, where are we going? The answer to this question can
be simply understood by looking at figure 2.4: there we see the “pile” of all

p(S → S [1])

p(S → S [2])

p(S → S [N])

1− λ

← ran

Figure 2.4: “Pile” of probabilities, which allows us to understand how we
decide on the spin to flip. Accelerated algorithms make sense if, usually,
λ << 1.

32

the probabilities which were computed. If the waiting time τi is obtained
from λi, we choose the index [m] of the flipped spin with a probability
p(S → S [m]). To do this, you need all the elements to produce the box in
figure 2.4 i. e. the probabilities:

p(S → S [1]) + p(S → S [2]) + . . .p(S → S [N]) = λ
...
p(S → S [1]) + p(S → S [2])
p(S → S [1])

(2.9)

In addition, one needs a second random number (0 < ran < λ) to choose
one of the boxes (cf the problem in figure 2.3). The best general algorithm to
actually compute m is of course not “visual inspection of a postscript figure”,
but what is called “search of an ordered table”. This you find explained in
any book on basic algorithms (cf, for example [8], chap. 3.2). Locating the
correct box only takes of the order of log(N) operations. The drawback of
the computation is therefore that any move costs an order of N operations,
since in a sense we have to go through all the possibilities of doing something
before knowing our probability “to do nothing”. This expense is the price
to be payed in order to completely eliminate the rejections.

2.4 Implementing Accelerated Algorithms

Once you have understood the basic idea of accelerated algorithms, you
may wonder how these methods are implemented, and whether it’s worth
the trouble. In cases in which the local energy is the same for any lattice site,
you will find out that the probabilities can take on only n different values. In
the case of the 2-dimensional Ising model, there are 10 classes that the spin
can belong to, ranging from up-spin with 4 neighboring up-spins, up-spin
with 3 neighboring up-spins, to down-spin with 4 neighboring down-spins.
Knowing the repartition into different classes at the initial time, you see
that flipping the spin changes the classes of 5 spins, and can be seen as a
change of the number of particles belonging to the different classes. Using a
somewhat more intricate bookkeeping, we can therefore compute the value
of λ in a constant number of operations, and the cost of making a move
is reduced to order O(1). You see that the accelerated algorithm has truly
solved the problem of small acceptance probabilities which haunts so many
simulations at low temperature (for practical details, see refs [6], [15]).

. . . If you program the method, the impression of bliss may well turn into
frustration, for we have overlooked an important point: the system’s dynam-

33

ics, while without rejections, may still be futile. Consider for concreteness
an energy landscape as in figure 2.5, where any configuration (one of the

Figure 2.5: Rugged energy “landscape” which poses problems in a dynamical
Monte Carlo simulation at low temperatures. The system will be stuck in
one of the local minima, and the dynamics will be futile, i. e. very repetitive.

little dots) is connected to two other configurations. Imagine the system at
one of the local minima at some initial time. At the next time step, it will
move to one of the neighboring sites, but it will almost certainly fall back
right afterwards. At low temperature, the system will take a very long time
(and, more importantly, a very large number of operations) before hopping
over one of the potential barriers. In these cases, the dynamics is extremely
repetitive, futile. If such behavior is foreseeable, it is of course wasteful to
recompute the “‘pile of probabilities” eq. (2.9), and even to embark on the
involved book-keeping tricks of the n-fold way algorithm. In these cases, it is
much more economical to save much of the information about the probabil-
ities, and to look up all the relevant information. An archive can be set up
in such a way that, upon making the move Si → S

[m]
i we can quickly decide

whether we have seen the new configuration before, and we can immediately
look up the “pile of probabilities”. This leads to extremely fast algorithms
(for practical details, see [11], [12]). Systems in which this approach can
be used contain: flux lines in a disordered superconductor, the NNN Ising
model [7] alluded to earlier, disordered systems with a so-called single-step
replica symmetry breaking transition, and in general systems with steep
local minima. For these systems it is even possible to produce a second-
generation algorithm, which not only accepts a move at every timestep, but
even a move to a configuration which the system has never seen before. One
such algorithm has been proposed in [11], cf also [16].

34

Figure 2.6: Random sequential adsorption: the light coin - which has just
been deposited - has to be taken away again.

There are endless possibilities to improve the dynamical algorithms for
some systems. Of course, the more powerful a method the less frequently
it can be applied. It should be remembered that the above method is only
of use if the probability to do nothing is very large, and/or if the dynamics
is very repetitive (small local minimum of energy function in figure 2.5). A
large class of systems for which none of these conditions hold are the spin
glasses with a socalled continuous replica symmetry breaking transition, as
the Sherrington-Kirkpatrick model. In these cases, the ergodicity breaking
takes place very “gracefully”, there are very many configurations accessible
for any given initial condition. In this case, there seems to be very little
room for improvements of the basic method.

2.5 Random Sequential Adsorption

I do not want to leave the reader with the impression that the accelerated
algorithms are restricted only to spin models. In fact, intricate rapid meth-
ods can be conceived in most cases in which you have many rejections in a
dynamical simulation. These rejections simply indicate that the time to “do
something” may be much larger than the simulation time step.

The following example, random sequential adsorption, was already men-
tioned in section 1.1. Imagine a large two-dimensional square on which you
deposit one coin per second - but attention: we only put the coin if it does
not overlap with any of the coins already deposited. The light-gray coin in
the figure 2.6 will immediately be taken away. Random sequential adsorp-

35

tion is a particularly simple dynamical system because of its irreversibility.
We are interested in two questions:

• The game will stop at the moment at which it is impossible to deposit
a new coin. What is the time after which this “jamming” state is
reached and what are its properties?

• We would also like to know the mean density as a function of time for
a large number of realizations.

I will give here a rather complete discussion of this problem in six steps,
displaying the panoply of refinements which can be unfolded as we come to
understand the program. There is a large research literature on the subject,
but you will see that you can yourself find an optimal algorithm by simply
applying what we have learned in the problem of the rolling die.

2.5.1 Naive Algorithm

You can write a program simulating in a few minutes. You need a table
which contains the (x, y) positions of the N (t) coins already deposited, and
a random number generator which will give the values of x, y. If you run the
program, you will see that even for modest sizes of the box, it will take quite
a long time before it stops. You may say “Well, the program is slow, simply
because the physical process of random absorption is slow, there is nothing
I can do . . . ”. If that is your reaction, you may gain something from reading
on. You will find out that there is a whole cascade of improvement that can
be imported into the program. These improvements concern not only the
implementation details but also the deposition process itself, which can be
simulated faster than in the experiment - especially in the final stages of the
deposition. Again, there is a Faster than the Clock algorithm, which
deposits (almost) one particle per unit time. These methods have been very
little explored in the past.

2.5.2 Underlying Lattice

The first thing you will notice is that the program spends a lot of time com-
puting distances between the proposed point (x, y) and the coins which are
already deposited. It is evident that you will gain much time by performing
only a local search. This is done with a grid, as shown in figure 2.7 and
by computing the table of all the particles contained in each of the little
squares. As you try to deposit the particle at x, y, you first compute the

36

Figure 2.7: One of the basic techniques to orient oneself is introducing a
grid. The exclusion area of the coin is also shown.

square which houses the point (x, y) and then compute the overlaps with
particles contained in neighboring squares. Some bookkeeping is necessarily
involved, and varies with the size of the squares adopted. There has been
a lot of discussion about how big the little squares have to be taken, and
there is no clear-cut answer. Some people prefer a box of size approximately√

2 times the radius of the spheres. In this case you are sure that at most
1 sphere per square is present, but the number of boxes which need to be
scrutinized is quite large. Others have adopted larger boxes which have the
advantage that only the contents of 9 boxes have to be checked. In any case,
one gains an important factor N with respect to the naive implementation.

2.5.3 Stopping criterion

Since we said that we want to play the game up to the bitter end, you may
want to find out whether there is at all a possibility to deposit one more
coin. The best thing to do is to write a program which will tell you whether
the square can host one more point. To do this, you have to apply basic
trigonometry to find out whether the whole square is covered with “exclusion
disks”, as shown in figure 2.7

2.5.4 Excluding Squares

Try to apply the idea of an exclusion disk to the configuration shown in
figure 2.8. Using the idea of the exclusion disk, you will be able to compute
the parts of the field on which you can still deposit a new coin. These parts
have been designed in dark, we call them “stars” for obvious reasons. You

37

a

Figure 2.8: Even though there is much empty space, we can only deposit
further coins on three “stars” (belonging to 4 of the 24 squares making up
the field).

can see that, at the present moment, there are only 4 of the 24 grid-squares
which can take on a new point. Before starting to compute distances with
coins in adjacent squares, it may be a good idea to check at all whether
it is possible to deposit a box on the point. You will quickly realize that
we are confronted with exactly the same problem as the boy in figure 2.3:
only one of six grid-squares have a non-zero chance to accept a new coin.
The time for the next hit of one of the useful squares can be obtained
with a one-sides die, or, equivalently, sampled from eq. (2.5). So, you can
write a faster (intermediate) program, by determining which of the boxes
can still hold a coin. This probability then gives the probability “to do
nothing”, which is used in eq. (2.5) to sample the time after which a new
deposition is attempted. Are you tempted to write such a program? You
simply need a subroutine able to determine whether there is still free space
in a square. With such a subroutine you are able to exclude squares from the
consideration. The ratio of excluded squares to the total number of squares
then gives the probability 1− λ to do nothing, which is what you need for
the faster-than-the-clock algorithm of section 2.2.

2.5.5 The Ultimate Algorithm

Cutting up the field into little squares allows us a second time to make the
program run faster by a factor N , where N is the number of little squares.
Not only can we use the squares to simplify the calculation of overlaps, but
to exclude large portions of the field from the search.

38

Unfortunately, you will quickly find out that the program still has a
very large rejection probability . . . just look at the square denoted by an
a in figure 2.3: roughly 2% of the square’s surface can only accept a new
coin. So, you will attempt many depositions in vain before being able to do
something reasonable. One idea to go farther consists in going to smaller
and smaller squares. This has been implemented in the literature [10]. What
one really wants to do, however, is to exploit the exact analogy between the
area of the stars, and the probabilities in eq. (2.9). If we know the location
and the area of the stars, we are able to implement one of the rejection-
free algorithms. Computing the area of a “star” is a simple trigonometric
exercise. Having such a subroutine at our disposal allows us to envision the
ultimate program for random sequential adsorption.

• Initially, you do the naive algorithm for a while

• Then you do a first cut-up into stars. The total relative area of the
field not covered by stars corresponds to the factor λ, and you will
sample the the star for the next deposition exactly as in eq. (2.9).
Then you randomly deposit (x, y) into the star chosen, and update
the book keeping.

2.5.6 How to sample a Random Point in a Star

So, finally, this breath-taking, practical discussion brings us to ponder a
philosophical question: how to sample loci in a star. In fact, how
do we do that?1. For my part, I have given up looking for a rejection-free
method to solve this problem - I simply sample a larger square, as in figure
2.9, and then use the good old rejection method. But perhaps you know
how to do this?

2.5.7 Literature, extensions

Of course, the example of the random adsorption was only given to stimulate
you to think about better algorithms for Your current Monte Carlo prob-
lem, and how it may be possible in your own research problem to get away
from a blind use of algorithms. If you want to know more about random
deposition, notice that there is a vast research literature, and an algorithm
has been presented in [10]. Notice that in our algorithm it was very impor-
tant for the spheres to be monodisperse, ie for them all to have the same

1There is no help in turning to the literature. the Question is neither treated in “Le
Petit Prince” by A. de St. Exupery, nor in any other book I know.

39

Figure 2.9: The ultimate algorithm for random sequential adsorption needs
a program to calculate the area of a star (straightforward), and a method
to sample a random point within it. Can you sample random points within
the star without rejections?

diameter. What can be done in the contrary case? Are there accelerated
algorithms for spheres with some distribution of diameters (from dmin to
dmax) (easy), and what would be an optimal algorithm for deposition of
objects with additional degrees of freedom? The problem is of some inter-
est in the case of ellipses. Evidently, from a numerical point of view, you
will end up with a three-dimensional “star” in which you have to sample
(x, y, θ), where θ gives the orientation of the ellipse to be deposited. You
may be inspired to think about such a simulation. Remember that it is not
important to compute the 3 − d star exactly, just as, in the last chapter,
it was without real importance that the a priori probability A(x) could be
made exactly to π(x).

40

Bibliography

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E.
Teller, J. chem. Phys 21 1087 (1953)

[2] Monte Carlo Methods in Statistical Physics, edited by K. Binder, 2nd
ed. (Springer Verlag, Berlin, 1986)

[3] S. Caracciolo, A. Pelissetto, A. D. Sokal, Phys. Rev. Lett 72 179 (1994)

[4] R. H. Swendsen and J.-S. Wang Phys. Rev. Lett. 63, 86 (1987)

[5] U. Wolff Phys. Rev. Lett. 62, 361 (1989)

[6] A. B. Bortz, M. H. Kalos, J. L. Lebowitz; J. Comput. Phys. 17, 10
(1975) cf also : K. Binder in [2] sect 1.3.1

[7] J. D. Shore, M. Holzer, J. P. Sethna; Phys Rev. B 46 11376 (1992)

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Nu-
merical Recipes, 2nd edition, Cambridge University Press (1992).

[9] E. L. Pollock, D. M. Ceperley Phys. Rev. B 30, 2555 (1984), 36 8343
(1987); D. M. Ceperley Rev. Mod. Phys 67, 1601 (1995)

[10] J-S Wang Int. J. Mod. Phys C 5, 707 (1994)

[11] W. Krauth, O. Pluchery J. Phys. A: Math Gen 27, L715 (1994)

[12] W. Krauth, M. Mézard Z. Phys. B 97 127 (1995)

[13] A. E. Ferdinand and M. E. Fisher Phys. Rev. 185 185 (1969)

[14] J. Lee, K. J. Strandburg Phys Rev. B 46 11190 (1992)

[15] M. A. Novotny Computers in Physics 9 46 (1995)

[16] M. A. Novotny Phys. Rev. Lett. 74 1 (1995) Erratum: 75 1424 (1995)

41

