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Preface

The current text contains notes that were prepared first for a course on ‘Evo-
lutionary Dynamics’ held at Vienna University in the summer term 2014.
No claim is made that the text is free of errors. The course is addressed
to students of physics, chemistry, biology, biochemistry, molecular biology,
mathematical and theoretical biology, bioinformatics, and systems biology
with particular interests in evolutionary phenomena. Evolution although in
the heart of biology as expressed in Theodosius Dobzhansky famous quote,

”nothing in biology makes sense except in the light of evolution”,
is a truly interdisciplinary subject and hence the course will contain ele-
ments from various disciplines, mainly from mathematics, in particular dy-
namical systems theory and stochastic processes, computer science, chemical
kinetics, molecular biology, and evolutionary biology. Considerable usage of
mathematical language and analytical tools is indispensable, but we have
consciously avoided to dwell upon deeper and more formal mathematical
topics.

Evolution has been shifted into the center of biological thinking through
Charles Darwin’s centennial book ’On the Origin of Species’ [45]. Gregor
Mendel’s discovery of genetics [206] was the second milestone of evolutionary
biology but it remained largely ignored for almost forty years before it be-
came first an alternative concept to selection. Biologists were split into two
camps, the selectionists believing in continuity in evolution and the geneti-
cists, who insisted in the discreteness of change in the form of mutation (An
account of the historic development of mutation as an ides is found in the
recent publication [34]. The unification of two concepts was first achieved
on the level of a mathematical theory through population genetics [92, 318]
developed by the three great scholars Ronald Fisher, J.B.S. Haldane, and
Sewall Wright. Still it took twenty more years before the synthetic theory
of evolution had been completed [202]. Almost all attempts of biologists
to understand evolution were and most of them still are completely free
of quantitative or mathematical thinking. The two famous exceptions are
Mendelian genetics and populations genetics. It is impossible, however, to
model or understand dynamics without quantitative description. Only re-
cently and mainly because of the true flood of hitherto unaccessible data the
desire for a new and quantitative theoretical biology has been articulated
[26, 27]. We shall focus in this course on dynamical models of evolutionary
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processes, which are rooted in physics, chemistry, and molecular biology. On
the other hand, any useful theory in biology has to be grounded on a solid
experimental basis. Most experimental data on evolution at the molecular
level are currently focussing on genomes and accordingly, sequence compar-
isons and reconstruction of phylogenetic trees are a topic of primary interest
[232]. The fast, almost explosive development of molecular life sciences has
reshaped the theory of evolution [276]. RNA has been considered as a rather
uninteresting molecule until the discovery of RNA catalysis by Thomas Cech
and Sidney Altman in the nineteen eighties, nowadays RNA is understood as
an important regulator of gene activity [9], and we have definitely not come
near to the end of the exciting RNA story.

This series of lectures will concentrate on principles rather than techni-
cal details. At the same time it will be necessary to elaborate tools that
allow to treat real problems. The tools required for the analysis of dynam-
ical systems are described, for example, in the two monographs [143, 144].
For stochastic processes we shall follow the approach taken in the book [107]
and presented in the course of the Summer term 2011 [36, 251]. Some of the
stochastic models in evolution presented here are described in the excellent
review [22]. Analytical results on evolutionary processes are rare and thus it
will be unavoidable to deal also with approximation methods and numerical
techniques that are able to produce results through computer calculations
(see, for example, the article [112, 113, 115, 117]). The applicability of sim-
ulations to real problems depends critically on population sizes that can by
handled. Present day computers can readily deal with 106 to 107 particles,
which is commonly not enough for chemical reactions but sufficient for most
biological problems and accordingly the sections dealing with practical ex-
amples will contain more biological than chemical problems. A number of
text books have been used in the preparation of this text in addition to the
web encyclopedia Wikipedia. In molecular biology, molecular genetics, and
population genetics these texts were [5, 125, 130, 136]

The major goal of this text is to avoid distraction of the audience by taking
notes and to facilitate understanding of subjects that are quite sophisticated
at least in parts. At the same time the text allows for a repetition of the
major issues of the course. Accordingly, an attempt was made in preparing a
useful and comprehensive list of references. To study the literature in detail
is recommended to every serious scholar who wants to progress towards a
deeper understanding of this rather demanding discipline.

Peter Schuster Wien, February 2014.



1. Darwin’s principle in mathematical language

Charles Darwin’s principle of natural selection is a powerful abstraction

from observations, which provides insight into the basic mechanism giving

rise to changing species. Species or populations don’t multiply but individu-

als do, either directly in asexual species, like viruses, bacteria or protists, or

in sexual species through pairings of individuals with opposite sex. Variabil-

ity of individuals in populations is an empirical fact that can be seen easily

in everyday life. Within populations the variants are subjected to natural

selection and those having more progeny prevail in future generations. The

power of Darwin’s abstraction lies in the fact that neither the shape and

the structure of individuals nor the mechanism of inheritance are relevant

for selection unless they have an impact on the number of offspring. Oth-

erwise Darwin’s approach had been doomed to fail since his imagination of

inheritance was incorrect. Indeed Darwin’s principle holds simultaneously for

highly developed organisms, for primitive unicellular species like bacteria, for

viruses and even for reproducing molecules in cell-free assays.

Molecular biology provided a powerful possibility to study evolution in its

simplest form outside biology: Replicating ribonucleic acid molecules (RNA)

in cell-free assays [268] play natural selection in its purest form: In the test

tube, evolution, selection, and optimization are liberated from all unneces-

sary complex features, from obscuring details, and from unimportant acces-

sories. Hence, in vitro evolution can be studied by the methods of chemical

kinetics. The parameters determining the “fitness of molecules” are repli-

cation rate parameters, binding constants, and other measurable quantities,

which can be determined independently of in vitro evolution experiments,

and constitute an alternative access to the determination of the outcome of

selection. Thereby “survival of the fittest” is unambiguously freed from the

reproach of being the mere tautology of “survival of the survivor”. In ad-

dition, in vitro selection turned out to be extremely useful for the synthesis
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of molecules that are tailored for predefined purposes. A new area of appli-

cations called evolutionary biotechnology branched off evolution in the test

tube. Examples for evolutionary design of molecules are [166, 176] for nucleic

acids, [25, 161] for proteins, and [316] for small organic molecules.

The chapter starts by mentioning a few examples of biological applica-

tions of mathematics before Darwin (section 1.1), then we derive and analyze

an ODE describing simple selection with asexual species (section 1.2), and

consider the effects of variable population size (section 1.3). The next sub-

section 1.4 analyzes optimization in the Darwinian sense, and eventually we

consider generic properties of typical growth functions (section 1.5).

1.1 Counting and modeling before Darwin

The first mathematical model that seems to be relevant for evolution was

conceived by the medieval mathematician Leonardo Pisano also known as

Fibonacci. His famous book Liber abaci has been finished and published in

the year 1202 and was translated into modern English eight years ago [264].

Among several other important contributions to mathematics in Europe Fi-

bonacci discusses a model of rabbit multiplication in Liber abaci. Couples

of rabbits reproduce and produce young couples of rabbits according to the

following rules:

(i) Every adult couple has a progeny of one young couple per month,

(ii) a young couple grows to adulthood within the first month and accord-

ingly begins producing offspring in the second months,

(iii) rabbits live forever, and

(iv) the number of rabbit couples is updated every month.

The model starts with one young couple (1), nothing happens during mat-

uration of couple 1 in the first month and we have still one couple in the

second month. In the third month, eventually, a young couple (2) is born

and the number of couples increases to two. In the fourth month couple 1

produces a new couple (3) whereas couple 2 is growing to adulthood, and
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we have three couples now. Further rabbit counting yields the Fibonacci

sequence:1

month 0 1 2 3 4 5 6 7 8 9 . . .

#couples 0 1 1 2 3 5 8 13 21 34 . . .

It is straightforward to derive a recursion for the rabbit count. The number

of couples in month (n + 1), fn+1, is the sum of two terms: The number

of couples in month n, because rabbits don’t die, plus the number of young

couples that is identical to the number of couples in month (n− 1):

fn+1 = fn−1 + fn with f0 = 0 and f1 = 1 . (1.1)

With increasing n the ratio of two subsequent Fibonacci numbers converges

to the golden ratio, fk+1/fk = (1+
√
5)/2 (For a comprehensive discussion of

the Fibonacci sequence and its properties see [124, pp.290-301] or, e.g., [61]).

In order to proof this convergence we make use of a matrix representation

of the Fibonacci model:

Fn

(

f0

f1

)

=

(

fn

fn+1

)

with F =

(

f0 f1

f1 f2

)

and Fn =

(

fn−1 fn

fn fn+1

)

.

The matrix representation transforms the recursion into an expression that

allows for direct computation of the elements of the Fibonacci sequence.

fn =
(

1 0
)

Fn

(

f0

f1

)

=
(

1 0
)

(

fn−1 fn

fn fn+1

)(

f0

f1

)

. (1.2)

Theorem 1.1 (Fibonacci convergence). With increasing n the Fibonacci

sequence converges to a geometric progression with the golden ratio as factor,

q = (1 +
√
5)/2.

Proof. The matrix F is diagonalized by the transformation T−1 · F · T = D

with D =

(

λ1 0

0 λ2

)

. The two eigenvalues of F are: λ1,2 = (1±
√
5)/2. Since

1According to Parmanand Singh [265] the Fibonacci numbers were invented earlier in

India and used for the solution of various problems (See also Donald Knuth [178]).
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Figure 1.1: Fibonacci series and geometric progression. The Fibonacci

series (1.1) (blue) is compared with the geometric progression gn = qn/
√
5 with q =

(1+
√
5)/2 (red). The Fibonacci series oscillates around the geometric progression

with decreasing amplitude and converges asymptotically to it.

F is a symmetric matrix the L2-normalized eigenvectors of F, (e1, e2) = T,

form an orthonormal set,

T =





1√
1+λ2

1

1√
1+λ2

2

λ1√
1+λ2

1

λ2√
1+λ2

2



 and T · T ′ =
(

1 0

0 1

)

with T′ being the transposed matrix, and T−1 = T′. Computation of the

n-th power of matrix F yields

Fn = T · Dn · T′ = T ·
(

λn1 0

0 λn2

)

· T′ = 1√
5

(

λn−11 − λn−12 λn1 − λn2
λn1 − λn2 λn+1

1 − λn+1
2

)

,

from which the expression for fn is obtained by comparison with (1.2)

fn =
1√
5
(λn1 − λn2 ) . (1.3)



Evolutionary Dynamics 9

Because λ1 > λ2 the ratio converges to zero: limn→∞ λ
n
2/λ

n
1 = 0, and the

Fibonacci sequence is approximated well by a geometric progression fn ≈
gn = 1√

5
qn with q = (1 +

√
5)/2.

Since λ2 is negative the Fibonacci sequence alternates around the geometric

progression. Expression (1.3) is commonly attributed to the French mathe-

matician Jacques Binet [21] and named after him. As outlined in ref. [124,

p.299] the formula has been derived already hundred years before by the

great Swiss mathematician Leonhard Euler [80] but was forgotten and redis-

covered.

Thomas Robert Malthus was the first who articulated the ecological and

economic problem of population growth following a geometric progression

[193]: Animal or human populations like every system capable of repro-

duction grow like a geometric progression provided unlimited resources are

available. The resources, however, are either constant or grow – as Malthus

assumes – according to an arithmetic progression if human endeavor is in-

volved. The production of nutrition, says Malthus, is proportional to the land

that is exploitable for agriculture and the gain in the area of fields will be a

constant in time – the increase will be the same every year. An inevitable

result of Malthus’ vision of the world is the pessimistic view that populations

will grow until the majority of individuals will die premature of malnutrition

and hunger. Malthus could not foresee the green revolutions but he was also

unaware that population growth can be faster than exponential – sufficient

nutrition for the entire human population is still a problem. Charles Darwin

and his younger contemporary Alfred Russel Wallace were strongly influ-

enced by Robert Malthus and took form population theory that in the wild,

where birth control does not exist and individuals fight for food, the major

fraction of of progeny will die before they reach the age of reproduction and

only the strongest will have a chance to multiply.

Leonhard Euler introduced the notions of the exponential function in the

middle of the eighteenth century [81] and set the stage for modeling growing

populations by means of ordinary differential equations (ODEs). The growth
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rate is proportional to the number of individuals or the population size N

dN

dt
= r N , (1.4)

where the parameter r is commonly called Malthus or growth parameter.

Straightforward integration yields:

∫ N(t)

N(0)

dN

N
=

∫ t

0

dt and N(t) = N0 exp(rt) with N0 = N(0) . (1.5)

Simple reproduction results in exponential growth of a population with N(t)

individuals.

Presumably not known to Darwin, the mathematician Jean François Ver-

hulst complemented the concept of exponential growth by the introduction

of finite resources [292–294]. The Verhulst equation is of the form2

dN

dt
= rN

(

1− N

K

)

, (1.6)

where N(t) again denotes the number of individuals of a species X, and K

is the carrying capacity of the ecological niche or the ecosystem. Equ. (1.6)

can be integrated by means of partial fractions (γ = 1/K):

∫ N(t)

N0

dN

N(1 − γN)
=

∫ N(t)

N0

dN

N
+

∫ N(t)

N0

γ dN

1− γN ,

and the following solution is obtained

N(t) = N0
K

N0 +
(

K −N0

)

exp(−rt) . (1.7)

Apart from the initial condition N0, the number of individuals X at time

t = 0, the logistic equation has two parameters: (i) the Malthusian parameter

or the growth rate r and (ii) the carrying capacity K of the ecological niche

or the ecosystem. A population of size N0 grows exponentially at short

times: N(t) ≈ N0 exp(rt) for K ≫ N0 and t sufficiently small. For long

2The Verhulst equation is also called logistic equation and its discrete analogue is the

logistic map, a standard model to demonstrate the occurrence of deterministic chaos in a

simple system. The name logistic equation was coined by Verhulst himself in 1845.
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Figure 1.2: Solution curves of the logistic equations (1.7,1.13). Upper plot:

The black curve illustrates growth in population size from a single individual to

a population at the carrying capacity of the ecosystem. The red curve represents

the results for unlimited exponential growth, N(t) = N(0) exp(rt). Parameters:

r = 2, N(0) = 1, and K = 10000. Lower plot: Growth and internal selection is

illustrated in a population with four variants. Color code: C black, N1 yellow,

N2 green, N3 red, N4 blue. Parameters: fitness values fj = (1.75, 2.25, 2.35, 2.80),

Nj(0) = (0.8888, 0.0888, 0.0020, 0.0004), K = 10000. The parameters were ad-

justed such that the curves for the total populations size N(t) coincide (almost)

in both plots.
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times the population size approaches the carrying capacity asymptotically:

limt→∞N(t) = K.

The two parameters r and K are taken as criteria to distinguish different

evolutionary strategies: Species that are r-selected exploit ecological niches

with low density, produce a large number of offspring each of which has a low

probability to survive, whereas K-selected species are strongly competing in

crowded niches and invest heavily in few offspring that have a high proba-

bility of survival to adulthood. The two cases, r- and K-selection, are the

extreme situations of a continuum of mixed selection strategies. In the real

world the r-selection strategy is an appropriate adaptation to fast chang-

ing environments, whereas K-selection pays in slowly varying or constant

environments.

1.2 The selection equation

The logistic equation can be interpreted differently and this is useful is the

forthcoming analysis: In the second term — −(N/K) rN — the expression

rN/K is identified with a constraint for limiting growth: rN/K ≡ φ(t),

dN

dt
= N

(

r − φ(t)
)

, (1.6’)

The introduction of φ(t) gives room for other interpretations of constraints

than carrying capacities of ecosystems. For example, φ(t) may be a dilution

flux in laboratory experiments on evolution in flow reactors [234, pp.21-27].

Equ. (1.6’) falls into the class of replicator equations, dx/dt = xF (x) [253],

which describe the time development of the concentrations of replicators X.

Equ. (1.6’) can be used now for the derivation of a selection equation in

the spirit of Darwin’s theory. The single species X is replaced by several

variants forming a population, Υ = {X1,X2, . . . ,Xn}; in the language of

chemical kinetics competition and selection are readily cast into a reaction

mechanism consisting of n independent, simple replication reactions:

(A) + Xj

fj
−−−→ 2Xj , j = 1, 2, . . . , n . (1.8)
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Figure 1.3: Solution curve of the selection equation (1.13). The system

is studied at constant maximal population size, N = K, and relative concen-

trations are applied: xj = Nj/K. The plots represent calculated changes of

the variant distributions with time. The upper plot shows selection among

three species X1 (yellow), X2 (green), and X3 (red), and then the appearance

of a fourth, fitter variant X4 (blue) at time t = 6, which takes over and

becomes selected thereafter. The lower plot presents an enlargement of the

upper plot around the point of spontaneous creation of the fourth species

(X4). Parameters: fitness values fj = (1, 2, 3, 7); xj(0) = (0.9, 0.08, 0.02, 0)

and x4(6) = 0.0001.
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The symbol A denotes the material from which Xj is synthesized (It is put

in parentheses, because we assume that it is present in access and its con-

centration is constant therefore). The numbers of individuals of the variants

are denoted by Nj(t), or in vector notation N(t) =
(

N1(t), N2(t), . . . , Nn(t)
)

with
∑n

i=1Ni(t) = C(t). A common carrying capacity is defined for all n

variants:

lim
t→∞

n
∑

i=1

Ni(t) = lim
t→∞

C(t) = K .

The Malthus parameters are given here by the fitness values f1, f2, . . . , fn,

respectively. For individual species the differential equations take on the

form
dNj

dt
= Nj

(

fj −
C

K
φ(t)

)

; j = 1, 2, . . . , n with

φ(t) =
1

C

n
∑

i=1

fiNi(t)

(1.9)

being the mean fitness of the population. Summation over all species yields

a differential equation for the total population size

dC

dt
= C

(

1− C

K

)

φ(t) . (1.10)

Stability analysis is straightforward: From dC/ dt = 0 follow two stationary

states of equ. (1.10): (i) C̄ = 0 and (ii) C̄ = K.3 For conventional stability

analysis we calculate the (1× 1) Jacobian and obtain for the eigenvalue

λ =
∂
(

dC/ dt
)

∂C
= φ(t)− C

K

(

2φ(t)−K ∂φ

∂C

)

− C2

K

∂φ

∂C
.

Insertion of the stationary values yields λ(i) = φ > 0 and λ(ii) = −φ < 0, state

(i) is unstable and state (ii) is asymptotically stable. The total population

size converges to the value of the carrying capacity, limt→∞C(t) = C̄ = K.

3There is also a third stationary state defined by φ = 0. For strictly positive fitness val-

ues, fi > 0 ∀ i = 1, 2, . . . , n, this condition can only be fulfilled by Ni = 0 ∀ i = 1, 2, . . . , n,

which is identical to state (i). If some fi values are zero – corresponding to lethal variants

– the respective variables vanish in the infinite time limit because of dNi/ dt = −φ(t)Ni

with φ(t) > 0.
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Equ. (1.10) can be solved exactly yielding thereby an expression that con-

tains integration of the constraint φ(t):

C(t) = C(0)
K

C(0) +
(

K − C(0)
)

exp(−Φ) with Φ =

∫ t

0

φ(τ)dτ ,

where C(0) is the population size at time t = 0. The function Φ(t) depends

on the distribution of fitness values within the population and its time course.

For f1 = f2 = . . . = fn = r the integral yields Φ = rt and we retain equ. (1.7).

In the long time limit Φ grows to infinity and C(t) converges to the carrying

capacity K.

At constant population size C = C̄ = K equ. (1.9) becomes simpler

dNj

dt
= Nj

(

fj − φ(t)
)

; j = 1, 2, . . . , n . (1.9’)

and can be solved exactly by means of the integrating factor transformation

[329, p. 322ff.]:

Zj(t) = Nj(t) exp

(
∫ t

0

φ(τ) dτ

)

. (1.11)

Insertion into equ. (1.9’) yields

dNj

dt
=

dZj

dt
exp

(
∫ t

0

−φ(τ) dτ
)

− Zj exp

(
∫ t

0

−φ(τ) dτ
)

φ(t) =

= Zj exp

(
∫ t

0

−φ(τ), dτ
)

(

fj − φ(t)
)

,

dZj

dt
= Zj , j = 1, 2, . . . , n or dZ/ dt = F · Z , (1.12)

where F is a diagonal matrix containing the fitness values fj (j = 1, 2, . . . , n)

as elements. Using the trivial equality Zj(0) = Nj(0) we obtain for the

individual genotypes:

Nj(t) = Nj(0) exp(fjt)
C

∑n
i=1Ni(0) exp(fit)

; j = 1, 2, . . . , n . (1.13)

Equ. (1.13) encapsulates Darwinian selection and optimization of fitness in

populations that will be discussed in detail in section 1.4.
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The use of normalized or internal variables xj = Nj/C provides certain

advantages and we shall use them whenever we are dealing with constant

population size. The ODE is of the form

dxj
dt

= fjxj − xjφ(t) = xj

(

fj − φ(t)
)

; j = 1, 2, . . . , n with

φ(t) =

n
∑

i=1

fixi ,
(1.14)

the solution is trivially the same as in case of equ.(1.9):

xj(t) =
xj(0) exp(fjt)

∑n
i=1 xi(0) exp(fit)

; j = 1, 2, . . . , n . (1.15)

The use of normalized variables,
∑n

i=1 xi = 1, defines the unit simplex, S
(1)
n =

{0 ≤ xi ≤ 1 ∀ i = 1, . . . , n ∧ ∑n
i=1 xi = 1}, as the physically accessible

domain that fulfils the conservation relation. All boundaries of the simplex —

corners, edges, faces, etc. — are invariant sets, since xj = 0 ⇒ dxj/ dt = 0

by equ. (1.14).

Asymptotic stability of the simplex follows from the stability analysis

of equ. (1.10) and implies that all solution curves converge to the unit sim-

plex from every initial condition, limt→∞

(

∑n
i=1 xi(t)

)

= 1. In other words,

starting with any initial value C(0) 6= 1 the population approaches the unit

simplex. When it starts on Sn it stays there and in presence of fluctuations

it will return to the invariant manifold. As long as the population is finite,

0 < C < +∞, and since Nj(t) = xj(t) · C(t), we can restrict population

dynamics to the unit simplex without loosing generality and characterize the

state of a population at time t by the vector x(t) which fulfils the L(1) norm
∑n

i=1 xi(t) = 1 (as an example see fig. 1.4). In the next section 1.3 we shall

consider variable C(t) explicitly.

1.3 Variable population size

Now we shall show that the solution of equ. (1.9) describes the internal equi-

libration for constant and variable population sizes as long as the popu-

lation does neither explode nor die out, 0 < C(t) < +∞ [71]. The va-

lidity of theorem 1.2 as will be shown below is not restricted to constant
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fitness values fj and hence we can replace them by general growth functions

Gj(N1, . . . , Nn) = Gj(N) or fitness functions Fj(N) with Gj(N) = Fj(N)Nj

in the special case of replicator equations [253]: dNj/ dt = Nj

(

Fj(N)−Ψ(t)
)

where Ψ(t) comprises both, variable total concentration and constraint.

Time dependence of the conditions in the ecosystem can be introduced in

two ways: (i) variable carrying capacity, K(t) = C̄(t), and (ii) a constraint or

flux ϕ(t),4 where flux refers to some specific physical device, for example to a

flow reactor. The first case is given, for example, by changes in the environ-

ment as there are periodic changes like day and night or seasons. In addition

there are slow non-periodic changes or changes with very long periods like

climatic change. Constraints and fluxes may correspond to unspecific or spe-

cific migration.5 Considering time dependent carrying capacity and variable

constraints simultaneously, we obtain

dNj

dt
= Gj(N)− Nj

K(t)
ϕ(t); j = 1, 2, . . . , n . (1.16)

Summation over the concentrations of all variants Xj and restricting the

analysis to slowly changing environments – K(t) varies on a time scale that

is much longer than the time scale of population growth C(t) – we can assume

that the total concentration is quasi equilibrated, C ≈ C̄ = K, and obtain a

relation between the time dependencies of flux and total concentration:

ϕ(t) =

n
∑

i=1

Gj(N) − dC

dt
or

C(t) = C(0) +

∫ t

0

(

n
∑

i=1

Gj(N)− ϕ(τ)
)

dτ .

(1.17)

The proof for internal equilibration in growing populations is straightforward.

4There is a difference in the definitions of the fluxes φ and ϕ: φ(t) = ϕ(t)/C(t).
5Unspecific migration means that the numbers Nj of individuals for each variant Xj

decrease (or increase) proportional to the numbers of individuals currently present in the

population, dNj = kNj dt. Specific migration is anything else. In a flow reactor, for

example, we have a dilution flux corresponding to unspecific emigration and an influx of

one or a few molecular species corresponding to specific immigration into the reactor.
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Theorem 1.2 (Equilibration in populations of variable size). Evolution in

populations of changing size approaches the same internal equilibrium as evo-

lution in populations of constant size provided the growth functions are homo-

geneous functions of degree γ in the variables Nj. Up to a transformation of

the time axis, stationary and variable populations have identical trajectories

provided the population size stays finite and does not vanish.

Proof. Normalized variables, xi = Ni/C with
∑n

i=1 xi = 1, are introduced

in order to separate of population growth, C(t), and population internal

changes in the distribution of variants Xi. From equations (1.16) and (1.17)

with C = C̄ = K and Nj = Cxj follows:

dxj
dt

=
1

C

(

Gj

(

Cx
)

− xj
n
∑

i=1

Gi

(

Cx
)

)

; j = 1, 2, . . . , n . (1.18)

The growth functions are assumed to be homogeneous of degree γ in the

variables6 Nj : Gj(N) = Gj(Cx) = Cγ Gj(x). and we find

1

Cγ−1
dxj
dt

= Gj(x) − xj

n
∑

i=1

Gi(x); j = 1, 2, . . . , n ,

which is identical to the selection equation in normalized variables for C = 1.

For γ = 1 the concentration term vanishes and the dynamics in populations

of constant and variable size are described by the same ODE. In case γ 6= 1

the two systems still have identical trajectories and equilibrium points up to

a transformation of the time axis (for an example see section 4.2):

dt̃ = Cγ−1 dt and t̃ = t̃0 +

∫ t̃

t̃0

Cγ−1(t) dt ,

where t̃0 is the time corresponding to t = 0 – commonly t̃0 = 0. From

equ. (1.18) we expect instabilities at C = 0 and C =∞.

6A homogenous function of degree γ is defined by G(Cx) = CγG(x). The degree

γ is determined by the mechanism of reproduction. For sexual reproduction according

to Ronald Fisher’s selection equation (2.9) we have γ = 2 [92]. Asexual reproduction

discussed here fulfils γ = 1.
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The instability at vanishing population size, limC → 0, is, for example, also

of practical importance for modeling drug action on viral replication. In

the case of lethal mutagenesis [30, 31, 283] medication aims at eradication

of the virus population, C → 0, in order to terminate the infection of the

host. At the instant of virus extinction equ. (1.9) is no longer applicable (see

chapter 6.2).

1.4 Optimization

For the discussion of the interplay of selection and optimization we shall

assume here that all fitness values fj are different. The case of neutrality will

be analyzed in chapter 10.3 and without loosing generality we rank them:

f1 > f2 > . . . > fn−1 > fn . (1.19)

The variables xj(t) fulfil two time limits:

lim
t→0

xj(t) = xj(0) ∀ j = 1, 2, . . . , n by definition, and

lim
t→∞

xj(t) =







1 iff j = 1

0 ∀ j = 2, . . . , n .

In the long time limit the population becomes homogeneous and contains only

the fittest genotype X1. The process of selection is illustrated best by differ-

ential fitness, fj − φ(t), the second factor in the ODE (1.14): The constraint

φ(t) =
∑n

i=1 fixi = f represents the mean fitness of the population. The

population variables xl of all variants with a fitness below average, fl < φ(t),

decrease whereas the variables xh with fh > φ(t) increase. As a consequence

the average fitness φ(t) is increasing too and more genotypes fall below the

threshold for survival. The process continues until the fittest variant is se-

lected. Since another view of optimization will be needed in chapter 2, we

present another proof for the optimization of mean fitness without referring

to differential fitness.

Theorem 1.3 (Optimization of mean fitness). The mean fitness φ(t) = f̄ =
∑n

i=1 fixi with
∑n

i=1 xi = 1 in a population as described by equ. (1.14) is

non-decreasing.
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Proof. The time dependence of the mean fitness or flux φ is given by

dφ

dt
=

n
∑

i=1

fi
dxi
dt

=
n
∑

i=1

fi

(

fixi − xi
n
∑

j=1

fjxj

)

=

=

n
∑

i=1

f 2
i xi −

n
∑

i=1

fixi

n
∑

j=1

fjxj =

= f 2 −
(

f
)2

= var{f} ≥ 0 .

(1.20)

Since a variance is always nonnegative, equ. (1.20) implies that φ(t) is a non-

decreasing function of time.

The condition var{f} = 0 is met only by homogeneous populations. The

one containing only the fittest variant X1 has the largest possible mean fit-

ness: f̄ = φmax = f1 = max{fj ; j = 1, 2, . . . , n}. φ cannot increase any

further and hence, it was been optimized by the selection process. The state

of maximal fitness of population Υ = {X1, . . . ,Xn},
x|max{φ(Υ)} = {x1 = 1, xi = 0 ∀ i = 2, . . . , n} = P1, is the unique stable

stationary state, and all trajectories starting from initial conditions with

nonzero amounts of X1, x1 > 0, have P1 as ω-limit. An illustration of the

selection process with three variants and the trajectories are plotted on the

unit simplex S
(1)
3 is shown in figure 1.4.

Gradient systems [143, p.199] facilitate the analysis of the dynamics, they

obey the equation

dx

dt
= −grad{V (x)} = −∇V (x) (1.21)

and fulfil criteria that are relevant for optimization:

(i) The eigenvalues of the linearization of (1.21) evaluated at the equilib-

rium point are real.

(ii) If x̄0 is an isolated minimum of V then x̄0 is an asymptotically stable

solution of (1.21).

(iii) If x(t) is a solution of (1.21) that is not an equilibrium point, then

V
(

x(t)
)

is a strictly decreasing function and the trajectories are per-

pendicular to the constant level sets of V .
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Figure 1.4: Selection on the unit simplex. In the upper part of the figure we

show solution curves x(t) of equ. (1.15) with n = 3. The parameter values are:

f1 = 3 [t−1], f2 = 2 [t−1], and f3 = 1 [t−1], where [t−1] is an arbitrary reciprocal

time unit. The two sets of curves differ with respect to the initial conditions:

(i) x(0) = (0.02, 0.08, 0.90), dotted curves, and (ii) x(0) = (0.0001, 0.0999, 0.9000),

full curves. Color code: x1(t) black, x2(t) red, and x3(t) green. The lower part of

the figure shows parametric plots x(t) on the unit simplex S
(1)
3 . Constant level sets

of φ(x) = f̄ are shown in grey. The trajectories refer to different initial conditions.
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Figure 1.5: Typical functions describing unlimited growth. All functions

are normalized in order to fulfil the conditions z0 = 1 and dz/dt|t=0 = 1. The

individual curves show hyperbolic growth (z(t) = 1/(1 − t); magenta; the dotted

line indicates the position of the instability), exponential growth (z(t) = exp(t);

red), parabolic growth (z(t) = (1+ t/2)2; blue), linear growth (z(t) = 1+ t; black),

sublinear growth (z(t) =
√
1 + 2t; turquoise), logarithmic growth

(z(t) = 1 + log(1 + t); green), and sublogarithmic growth (z(t) = 1 + t/(1 + t);

yellow; the dotted line indicates the maximum value zmax: limt→∞ z(t) = zmax).

(iv) Neither periodic nor chaotic solutions of (1.21) do exist.

The relation between gradients systems and optimization is clearly seen from

the first part of (iii): Replacing the minus signs in equ. (1.21) by plus signs

reveals that V
(

x(t)
)

is non-decreasing and approaches a (at least local) max-

imum in the limit t → ∞. As easily seen from figure 1.4 the trajectories of

(1.14) are not perpendicular to the constant level sets of φ(x) and hence,

equ. (1.14) is not a gradient system in the strict sense. With the definition

of a generalized inner product corresponding to a Riemannian metric [261],

however, the selection equation can be visualized as a generalized gradient

and oscillations as well as deterministic chaos can be excluded [255].
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1.5 Growth functions and selection

It is worth considering different classes of growth functions z(t) and the be-

havior of long time solutions of the corresponding ODEs. An intimately

related problem concerns population dynamics: What is the long time or

equilibrium distribution of genotypes in a normalized population, limt→∞ x(t)

provided the initial distribution has been x0? Is there a universal long time

behavior, for example selection, coexistence or cooperation, that is charac-

teristic for certain classes of growth functions?

Differential equations describing unlimited growth of the class

dz

dt
= f · zn (1.22)

will be compared here. Integration yields two types of general solutions for

the initial value z(0) = z0

z(t) =
(

z1−n0 + (1− n)ft
)1/(1−n)

for n 6= 1 and (1.22a)

z(t) = z0 · eft for n = 1 . (1.22b)

In order to make growth functions comparable we normalize them such that

they fulfil the two conditions z0 = 1 and dz/ dt|t=0 = 1. For both equs. (1.22)

this yields z0 = 1 and f = 1. The different classes of growth functions, which

are drawn in different colors in figure 1.5, are characterized by the following

behavior:

(i) Hyperbolic growth requires n > 1; for n = 2 it yields a solution curve

of the form z(t) = 1/(1 − t). Characteristic is the existence of an

instability in the sense that z(t) approaches infinity at some critical

time, limt→tcr z(t) = ∞ with tcr = 1. The selection behavior of hy-

perbolic growth is illustrated by the Schlögl model:7 dzj/ dt = fjz
2
j ;

j = 1, 2, . . . , n. Depending on the initial conditions each of the repli-

cators Xj can be selected. Xm the species with the highest replication

7The Schlögl model is tantamount to Fisher’s selection equation with diagonal terms

only: fj = ajj ; j = 1, 2, . . . , n [242].
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parameter, fm = max{fi; i = 1, 2, . . . , n} has the largest basin of at-

traction and the highest probability to be selected. After selection has

occurred a new species Xk is extremely unlikely to replace the cur-

rent species Xm even if its replication parameter is substantially higher,

fk ≫ fm. This phenomenon is called once-for-ever selection.

(ii) Exponential growth is observed for n = 1 and described by the so-

lution z(t) = et. It represents the most common growth function in

biology. The species Xm having the highest replication parameter,

fm = max{fi; i = 1, 2, . . . , N}, is always selected, limt→∞ zm = 1. In-

jection of a new species Xk with a still higher replication parameter,

fk > fm, leads to selection of the fitter variant Xk (fig.1.3).

(iii) Parabolic growth occurs for 0 < n < 1 and for n = 1/2 has the solution

curve z(t) = (1 − t/2)2. It is observed, for example, in enzyme free

replication of oligonucleotides that form a stable duplex, i.e. a complex

of one plus and one minus strand [295]. Depending on parameters and

concentrations coexistence or selection may occur [311].

(iv) Linear growth follows from n = 0 and takes on the form z(t) = 1 + t.

Linear growth is observed, for example, in replicase catalyzed replica-

tion of RNA at enzyme saturation [17].

(v) Sublinear growth occurs for n < 0. In particular, for n = −1 gives rise

to the solution z(t) = (1 + 2t)1/2 =
√
1 + 2t.

In addition we mention also two additional forms of weak growth that do not

follow from equ. (1.22):

(vi) Logarithmic growth that can be expressed by the function z(t) = z0 +

ln(1 + ft) or z(1) = 1 + ln(1 + t) after normalization, and

(vii) sublogarithmic growth modeled by the function z(t) = z0+ ft/(1+ ft)

or z(t) = 1 + t/(1 + t) in normalized form.

Hyperbolic growth, parabolic growth, and sublinear growth constitute fam-

ilies of solution curves that are defined by a certain parameter range (see
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figure 1.5), for example a range of exponents, nlow < n < nhigh, whereas expo-

nential growth, linear growth and logarithmic growth are critical curves sepa-

rating zones of characteristic growth behavior: Logarithmic growth separates

growth functions approaching infinity in the limit t → ∞, limt→∞ z(t) = ∞
from those that remain finite, limt→∞ z(t) = z∞ < ∞, linear growth sepa-

rates concave from convex growth functions, and exponential growth eventu-

ally separates growth functions that reach infinity at finite times from those

that don’t.
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2. Mendel’s genetics and recombination

Darwin’s principle of natural selection was derived from a wealth of ob-

served adaptations that he had made during all his life and in particular

on a journey all around the world, which he made as the naturalist on

H.M.S.Beagle. Although adaptations are readily recognizable in nature with

educated eyes, very little was evident about the mechanisms of inheritance

except perhaps the general principle that children resemble their parents to

some degree. Similarity in habitus manifests itself nowhere so clearly as with

identical twins, and this was, of course, already noticed long time before ge-

netics has been discovered and analyzed. Although twins were of interest to

scholars since the beginnings of civilization, for example in the fifth century

B.C. the Greek physician Hippocrates had been studying similarity in the

course of diseases in twins, the modern history of twin research was initiated

only since the nineteenth century by the polymath Sir Francis Galton, who

was a cousin of Charles Darwin. The lack of insight into the mechanisms of

inheritance, however, caused him and many other scientists and physicians

afterwards – among them also the population geneticist Ronald Fisher [91] –

to miss the difference between monozygotic (MZ) or identical and dizygotic

(DZ) or fraternal twins. Before Fisher’s failure, however, this difference had

been recognized already by the German physician and pioneer of population

genetics Wilhelm Weinberg [303] and later rediscovered and documented by

the German physician Hermann Werner Siemens [263].

Darwin’s ideas on inheritance focussed on the concept of pangenesis,

which assumed that tiny particles from cells, so called gemmules, are trans-

mitted from parents to offspring and maternal and paternal features are

blended in the progeny. Pangenesis, however, was wrong in two important

aspects: (i) Not all cells contribute to inheritance only the germ cells [304]

and (ii) inheritance occurs in discrete packages nowadays called genes, many

features, for example the colors or leaves, flowers or fruits, are discrete rather

27



28 Peter Schuster

than continuously varying. Here we shall start with a discussion of Gre-

gor Mendel’s experiments on Pisum sativum, the garden pea [206], and Hi-

eracium, the hawkweed [207], and after that introduce elementary population

genetics and, in particular, we derive the Hardy-Weinberg equilibrium, and

analyze Fisher’s selection equation and the fundamental theorem. Finally we

shall discuss Fisher’s criticism on Mendel’s work.

2.1 Mendel’s experiments

The Augustinian friar Gregor Mendel performed a series of experiments with

plants under controlled fertilization (For a detailed outline of Mendel’s ex-

periments and patterns of inheritance in general see [125, pp.27-66]. Luckily

Mendel was choosing the garden pea, Pisum sativum as the object of his

studies. His works are remarkable for at least two reasons: (i) Mendel im-

proved the experimental pollination technique in such a way that unintended

fertilization could be excluded (Among more than 10 000 plants, which were

carefully examined, only in a very few cases an indubitable false impregna-

tion by foreign pollen had occurred), and (ii) he discovered a statistical law

and therefore he had to carry out a sufficiently large number of individual

experiments before the regularities became evident.

Mendel’s contributions to evolutionary biology were twofold:

(i) He discovered two laws of inheritance, Mendel’s first law called the law of

segregation – the hereditary material is cut into pieces that represent individ-

ual characters in the offspring, and Mendel’s second law called independent

assortment – the hereditary characters from father and mother come into a

pool are combined anew without reference to their parental combinations.

(ii) By careful planning and recording of experiments he found two modes

of hereditary transmission: Dominance – one of the two parental features is

reproducibly transmitted to the offspring whereas the second one disappears

completely in the first generation (F1) – and recessiveness – a feature that has

disappeared in the first generation will show up again if hybrid individuals

of the first generation are crossed among each other (F2).

Gregor Mendel was choosing seven characters for experimental recording:
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Figure 2.1: Mendelian genetics. The rules of genetic inheritance are illustrated

by means of a simple sketch. Flowers appear in two colors, white and red. Two

plants that are homozygous at the color locus are cross-fertilized and yield a

generation of heterozygotes (F1). Cross-fertilization of F1 plants yields the

second generation F2. Two cases are distinguished: dominance (lhs) and

semi-dominance (rhs). In case of dominance the heterozygote exhibits the

same features as the homozygote of the dominant allele (red color in the

example), and this leads to a ratio of 1:3 in the phenotypes of the second

generation F2. The heterozygote of an intermediate pair of alleles shows an

intermediate feature (pink color) and then the ratio of phenotypes is 1:2:1.



30 Peter Schuster

(i) The difference in the form of ripe seeds. Round or roundish versus

irregularly angular and deeply wrinkled, studied in 60 fertilizations on

15 plants.

(ii) The difference in the color of the seed endosperm. Pale yellow, bright

yellow or orange versus more or less intense green, studied in 58 fertil-

izations on 10 plants.

(iii) The difference in the color of the seed-coat. White or gray, gray-brown

or leather-brown with or without violet spotting, studied in 35 fertil-

izations on 10 plants.

(iv) The difference in the form of the ripe pods. Simply inflated versus

deeply constricted and more or less wrinkled, studied in 40 fertilizations

on 10 plants.

(v) The difference in the color of the unripe pods. Light to dark green versus

vividly yellow, studied in 23 fertilizations on 5 plants.

(vi) The difference in the position of the flowers. Axial (distributed along

the main stem) versus terminal (bunched at the top of the stem), stud-

ied in 34 fertilizations on 10 plants.

(vii) The difference in the length of the stem. Long (1.8 to 2.1 m) versus

short (25 to 50 cm) distinguishable for healthy plants grown in the

same soil, studied in 37 fertilizations on 10 plants.

Mendel first created hybrids from plants with opposite forms of the seven

characters and these hybrids constitute the generation F1, which is genet-

ically homogeneous. Crossings of two (genetically identical) individuals of

generation F1 leads three different genotypes in the F2 generation. For all

the characters he has been studying he observed two different phenotypes

with a ratio around 3:1 (table 2.1). Mendel’s correct interpretation is illus-

trated in fig. 2.1: All (diploid) organisms carry two alleles at every locus, they

are homozygous if the two alleles are identical and heterozygous if the alleles

are different. Cross-fertilization of two homozygous plants yields identical
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Figure 2.2: Human blood types as an example for codominance. The

sketch shows the erythrocytes of the four human blood types with the antigens

expressed on the cell surface (top row). In the middle row we see the antibodies

that are present in the blood plasma after contact with the corresponding antigens.

No antibodies are developed against antigens that are recognized as self by the

immune system (bottom row).

offspring. Since this is not the case if one or both parents are heterozygous,

this criterion can be used to identify homozygous individuals. When two

identical genotypes of the F1 generation are cross-fertilized, three different

genotypes are obtained, the two homozygotes and two heterozygotes.1

Mendel’s observation implied that the heterozygotes and one of the two

homozygotes developed the same phenotype. All seven characters correspond

to this situation and the following forms were present a higher frequency:

(i) the round or roundish form of the seeds,

1In Mendelian genetics the two heterozygotes are indistinguishable because it is as-

sumed that the same phenotype is formed irrespectively whether a particular allele of

an autosome come from the father or from the mother. All chromosomes except the sex

chromosomes are autosomes and they are present in two copies in a diploid organism.
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(ii) the yellow color of the endosperm,

(iii) the gray, gray-brown or leather-brown color of the seed coat,

(iv) the simply inflated form of the ripe pods,

(v) the green coloring of the unripe pod,

(vi) the axial distribution of the flowers along the stem, and

(vii) the long stems.

The figure shows in addition the ratios of phenotypes when one individual

of the F1 generation is cross fertilized with a homozygous plant of the F2

generation. Later such an allele pair has been denoted as dominant-recessive.

In table 2.1 we show the detailed results of Mendel’s experiments and point

a two features that a typical for a statistical law: (i) the large number of

repetitions, which are necessary to be able to recognize the regularities and

(ii) the rather small deviations from the ideal ratio three. In section 2.6 we

shall analyze Mendel’s data by means of the χ2-test, a statistical reliability

test that has been introduced around nineteen hundred by the Karl Pearson.

From Mendel’s experiment we conclude that every diploid organism car-

ries two copies of each (autosomal) gene. The copies are separated during

sexual reproduction and combined anew. Alleles shall be denoted by sans-

serif letters, in a dominant-recessive allele pair we shall denote the dominant

allele by an upper-case letter and the recessive allele by a lower-case letter,

A and a, respectively. The four zygote are then AA, Aa, aA, and aa where

the first three genotypes express the same phenotype. Although dominance

is by far the more common feature in nature, other form exist and they are

also familiar to careful observers and naturalists.

Incomplete dominance or semi-dominance is a form of intermediate in-

heritance in which one allele for a specific trait is not completely dominant

over the other allele, and a combined phenotype is the results (fig. 2.1, rhs):

The phenotype expressed by the heterozygous genotype is an intermediate of

the phenotypes of the homozygous genotypes. For example, the color of the
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Table 2.1: Results of Gregor Mendel’s experiments with the garden pea

(pisum sativum). The list contains all results of Mendel’s crossing experiments

in which the parents different in one character. the ration between phenotypes

is very close to three that is the ideal ration derived from Mendel’s principle of

inheritance.

Char. Parental phenotype F1 F2 F2 ratio

1 round×wrinkled seeds all round 5174 / 1859 2.96

2 yellow× green seeds all yellow 6022 / 2001 3.01

3 purple×white petals all purple 705 / 244 3.15

4 inflated×pinched pods all inflated 882 / 299 2.95

5 green× yellow pods all green 428 / 152 2.82

6 axial× terminal flowers all axial 651 / 207 3.14

7 long× short stems all axial 787 / 277 2.84

snapdragon flower in homozygous plants is either red or white. When the red

homozygous flower is cross-fertilized with the white homozygous flower, the

result yields a pink snapdragon flower. A similar form of incomplete domi-

nance is found in the four o’clock plant where in pink color is produced when

true bred parents of white and red flowers are crossed. The lack of dominance

is expressed in the notation through choosing upper-case letters for both al-

leles, for example the alleles A and B give rise to the four genotypes AA, AB,

BA, and BB whereby the two heterozygotes produce the same phenotype.

When plants of F1 generation are self pollinated the phenotypic and geno-

typic ratio of the F2 generation will be same and is 1:2:1 (Red:Pink:White),

because three phenotypes can be distinguished. The intermediate color com-

monly is a result of pigment concentration: One allele, R, produces the red

color, the other one 0 does not give rise to color expression, and then RR has

twice as much red pigment than R0.

Codominance is another genetic mechanism that leads to two alleles on

an equal footing. The allelic products coexist in the phenotype and the

contributions of both alleles at the single locus are clearly visible and do not
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overpower each other. Codominance is different from incomplete or semi-

dominance, where the quantitative interaction of allele products produces

an intermediate phenotype like the pink snapdragon obtained by crossing

homozygous plants with red and white flowers. In case of codominance the

hybrid genotype derived from a red and a white homozygous flower will

produce offspring that have red and white spots. As an well studied example

of codominance we mention the human AB0 blood type system, because it

has a very simple explanation on the molecular level (fig. 2.2). Three alleles

from six diploid genotypes which develop four phenotypes:

genotype phenotype

AA A

BB B

00 0

AB AB

A0 A

B0 B

Codominance of the two alleles A and B leads to the blood type AB where

the two alleles coexist in the phenotype. The explanation is straightforward:

The red blood cells called erythrocytes express characteristic antigens on the

cell surface and antibodies are developed against non-self antigens (fig. 2.2).

The blood types determine a possible antigen-antibody reaction that causes

mixed blood samples to agglutinate or forms blood clumps. If this happens

after a blood transfusion the patient develops a very serious usually lethal

acute hemolytic reaction. Red blood cell compatibilities are readily derived

from fig. 2.2: AB type individuals can receive blood from any group but can

donate only to other AB individuals, 0 type individuals in contrary can donate

blood to all blood types but receive blood only from individuals of the 0

group, A group individuals can receive blood from A and 0 type individuals,

and analogously B blood is compatible with samples from B and 0 type

individuals.

As an example for dominance in human genetics we consider the rhesus

(Rh) blood group system. It is highly complex and dealing with about fifty
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antigens, out of which five, D, C, c, E, and e being the most important ones.

The term rhesus (Rh) factor is commonly used for the D/d allele pair on one

locus. Rh positive and Rh negative refer to the D antigen only, because the

d allele expresses no antigen (like the 0 allele):

genotype phenotype

DD Rh D positive

Dd Rh D positive

dd Rh D negative

The rhesus factor plays a role in blood transfusion but is also responsible

for Rh D hemolytic disease of the newborn. If the genotype of the mother

is dd (Rh negative) sensitization to Rh D antigens caused by feto-maternal

blood transfusion through the placenta can lead to the production of mater-

nal anti-D antibodies that will effect any subsequent pregnancy and lead to

the disease in case the baby is Rh D positive. The vast majority of cases

of Rh disease can be prevented by modern antenatal care through injections

of anti-D antibodies called Rho(D) immune globulin. The prevalence of Rh

negative people varies substantially in different ethnic groups. The Rh neg-

ative phenotype is most common (≈ 30%) among the Basque people and

quite common among the other Europeans (≈ 16%) and very rare (≈ 1%

and less) in Asian and Native American populations. African Americans are

intermediate (≈ 7%).

2.2 The mechanism of recombination

Recombination of packages of genetic information during sexual reproduc-

tion was kind of a mystery as long as the mechanism at the molecular level

was unknown or unclear. Cell biology and in particular the spectacular de-

velopment of molecular biology shed light on the somewhat obscure seeming

partitioning of genetic information into packages. Already August Weismann

had the correct idea that there is a fundamental difference between cells in

the germ-line and somatic cells [304, 305] and inheritance is based on germ-

line cells alone. The germ-line cells fall into two classes, sperms and eggs,
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Figure 2.3: The life cycle of a diploid organism. The life cycle of a typical

diploid eukaryote consists of a haploid phase with γ = n chromosomes (blue) that

is initiated by meiosis and ends with the fusion of a sperm and an egg cell in

order to form a diploid zygote. During the rest of the life cycle each somatic cell

of the organism has γ = 2n chromosomes in n − 1 autosomal pairs and the sex

chromosomes (red). Special cell lines differentiate into meiocytes, which undergo

meiosis and form the gametes.

which differ largely in the amount of cytoplasm that they contain: In the

sexual union of sperm and egg forming a zygote the egg contributes almost

the entire cytoplasm. The nuclei of egg and sperm cells are of approximately

the same size and therefore the nuclei were considered as candidates for har-

boring the structures that are responsible for inheritance. A sketch of the

typical diploid life cycle with a long diploid phase and a short haploid stage

providing the frame for sexual reproduction is shown in Fig. 2.3. In the eigh-

teen eighties the German biologist Theodor Boveri demonstrated that within

the nucleus the chromosomes were the vectors of heredity. It was also Boveri

who pointed out that Mendel’s rules of inheritance are consistent with the

observed behavior of chromosomes and developed independently from Walter

Sutton in 1902 the chromosome theory of inheritance. The ultimate proof

of the role of chromosome was provided by the American geneticist Thomas
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Figure 2.4: Sketch of a

replicated and condensed

eukaryotic chromosome.

Shown are the two sister

chromatids in the meta

phase after the synthetic

phase. The centromere (red)

is the point where the two

chromatids touch and where

the microtubules attach.

The ends of the chromatids

(green) are called telomeres

and carry repetitive sequences

that protect the chromosomes

against damage.

Hunt Morgan who started with systematic crossing experiments with the

fruit fly drosophila around 1910.

2.2.1 Chromosomes

Chromosomes are complex structures consisting of DNA molecules and pro-

teins. The necessity to organize DNA structure becomes evident from con-

sidering its size: The DNA molecule of a human consists of 2×3×109 base

pairs and in fully stretched state the double-helical DNA molecule would

be 6×109 · 0.34 nm≈ 2m long. Clearly, such a long molecule can only be

processed successfully in an compartment with the diameter of a eucaryotic

cell when properly condensed to smaller size. Mammalian cells vary consid-

erably in size: Among the smallest are the red blood cells with a diameter of

about 0.76µm and among the largest cells are are the nerve cells that span a

giraffe’s neck and which can be longer than 3m. Analogously human nerve

cells may be as long as 1m. The size of the average human cell, however, lies
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in the range 1 ≤ d ≤ 10µm. In Fig. 2.2 we present a sketch of a duplicated

chromosome after completed condensation. The condensation of the DNA

leads to a length contraction by six orders of magnitude, i.e. from 2m to

about 2µm. It occurs in several steps and involves histones and other pro-

teins. Histones are positively charged (basic) proteins that bind strongly to

the negative charged DNA molecule. Their sequence and structure is highly

conserved in evolution. Here we give an idea only of the first steps, which is

the formation of chromatin from core histones, linker histones, and DNA. An

protein octamer built from two molecules each of the histones H2A, H2B, H3,

and H4 forms the core of a nucleosome around which the DNA is wrapped

twice. The resulting structure looks like beads on a string an has a diam-

eter of d ≈10 nm. Linker histones arrange nucleosomes forming a solenoid

structure with six nucleosomes symmetrically arranged in one complete turn

and a diameter of d ≈10 nm. There are three homologous linker histones,

H1, H5 and H1◦ , which apparently can replace each other and have addi-

tional specific functions [278]. With the help of scaffold proteins the solenoid

structure is condensed further during interphase (see Fig. 2.5) yielding the

active chromosome that is again condensed further through addition of more

scaffold proteins, and eventually the metaphase chromosome is formed that

is ready for cell division.

The numbers of chromosomes is variable and characteristic for species.

They are divided into autosomes and sex chromosomes (subsection 2.2.2 and

vary substantially in size. Human cells have 46 chromosomes, 22 pairs of

autosomes and on pair of sex chromosomes. Chromosome 1 is the largest, it

is almost 250 million base pairs long and carries to present-day knowledge

4 316 genes. Chromosome 21 is the smallest human chromosome, it is 47 mil-

lion bases long and codes for 300 to 400 genes. Comparison of chromosome

numbers in different species shows. Our closest relatives, Gorillas and chim-

panzees have 48 chromosomes, domestic cats 38, dogs 78, cows 60, and horses

64. The variation among fishes is remarkable: Fugu has the smallest genome

– only 392.4 million base pairs, which is about 1/8 of the human genome –

and 44 chromosomes, guppy the popular aquarium fish 46 and the goldfish

100-104. Somewhat more complex is the chromosome number with birds:
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The domestic pigeon has 18 large chromosomes and 60 microchromosomes

and similarly chicken with 10 chromosomes and 60 microchromosomes, and

eventually the pretty bird kingfisher 132 total. The chromosome numbers

in plants are highly variable as well: the thale cress, arabidopsis thaliana,

has 10 chromosomes and the pea, pisum sativum, 24, and the pineapple 50.

The well-studied yeast, saccharomyces cerevisiae, has 32 chromosomes. Fi-

nally, we make a glance on prokaryotes. The eubacterium Escherichia coli

has a single circular chromosome, which when fully stretched is many orders

of magnitude larger than the cell itself, but no histones like other eubacte-

ria. DNA is condensed mainly by supercoiling and the process is assisted

by specific enzymes called topoisomerases [162]. Topoisomerases, in general,

resolve the topological problems associated with DNA replication, transcrip-

tion, recombination, and chromatin remodeling in a trivial but highly efficient

way: They introduce temporary single- or double-strand breaks into DNA,

unwind, and ligate again.

After DNA replication and condensation into chromosomes the two sis-

ter chromatids have a long and a short arm (Fig. 2.2) and they are joined

at the centromere that is also the point of attachment of the microtubules,

which organize chromosome transport during cell division. In order to pre-

vent loss of DNA ends during cell division at the tips, the chromosomes carry

telomeres, which are stretches of short repeats of oligonucleotides that can

be understood as disposable buffers blocking the ends of the chromosomes.

In case of vertebrates the repeat in the telomeres is TTAGGG. Part of the

telomeres are consumed during cell division and replenished by an enzyme

called telomerase reverse transcriptase. Cells, which have completely con-

sumed their telomeres, are destroyed by apoptosis and in rare cases they

find ways of evading programmed destruction and become immortal cancer

cells. In 2009 Elizabeth Blackburn, Carol Greider, and Jack Szostak were

awarded the Nobel Prize in Physiology and Medicine for the discovery of

how chromosomes are protected by telomeres and the enzyme telomerase.

The telomeres are tightly bound to the inner surface of the nuclear enve-

lope during prophase 1 (see Fig. 2.6) and play an important role in pairing

homologous chromosomes during meiosis.
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2.2.2 Chromosomes and sex determination

A diploid organism (Fig. 2.3) carries γ = 2n chromosomes forming n − 1

pairs of autosomes and the pair of sex (determining) chromosomes. Sex is

basic to diploid life and therefore the fact that there are several entirely

different sex-determination systems has a kind of strange appeal. Three

different chromosomal systems are known, one system changes the common

haploid-diploid relation, and others invoke external parameters:

system female male species

XX/XY XX XY almost all mammals including man,

some insects (drosophila), some plants, ...

XX/X0 XX X0 insects, ...

ZW/ZZ ZW ZZ birds, some fish, some reptiles and insects, ...

haplo- 2n n hymenoptera (most), ...

diploid spider mites, bark beetles, rotifers, ...

temper- warm cold some reptiles, few birds , ...

ature medium extreme other reptiles, ...

infection infected not butterflies (Wolbachia infection), ...

infected some nematodes, ...

Since the XX/XY sex-determination found in man is almost universal among

mammals one is inclined to consider it as the only sex-determining sys-

tem in nature but this is utterly untrue. The XX/XY-determination is wide

spread in nature and this helps to believe it is the only one. The XX/X0-

determination can be visualized as a XX/XY-system in which the already

smaller Y-chromosome has been ultimately lost. An intermediate situation

is found with the fruit-fly drosophila: In some variants (or species) the male

carries a Y-chromosome whereas it has none in other variants. In the ZW/ZZ

sex-determination system the female rather than the male carries the two dif-

ferent sex chromosomes. In the haplodiploid sex-determination system the

male is haploid and the entire kinship relations are different from those in

the conventional diplodiploid systems. The coefficients of relationship for

parent and offspring expressed in the percentage of shared genes (1≡100%)

are [317]:
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haplodiploid diplodiploid

relative female male female male

daughter 1/2 1 1/2 1/2

son 1/2 – 1/2 1/2

mother 1/2 1/2 1/2 1/2

father 1/2 – 1/2 1/2

identical twin – – 1 1

full sister 3/4 1/2 1/2 1/2

full brother 1/4 1/2 1/2 1/2

In the case of haplodiploidy sisters are more closely related than in diploid-

diploid organisms and this has been used as support for the frequent oc-

currence of eusociality in hymenoptera, in particular bees, wasps, and ants

[131, 132]. Kinship in haplodiploid organisms as explanation for colony for-

mation and altruistic behavior had one major problem: Termites are diploid

organisms and form gigantic colonies with a complex caste system. Recently

it was shown that the evolution of eusociality can be explained and modeled

mathematically by means of natural selection [225]. Sex determination by

nest temperature

2.2.3 Mitosis and meiosis

Here we can present a few some basic facts of this very extensive field of

cytology and molecular biology, which is outlined in more detail in text books

(for example, [5] and [125]) and which represents also a discipline of cutting-

edge research [222]. From Fig. 2.3 follows that a diploid organism needs – at

least – two types of cell divisions: (i) A division mechanism, which in general

creates two identical diploid cells from one diploid precursor cell, and (ii) a

mechanism, which creates haploid cells from a diploid precursor in order to

allow for the formation of a diploid zygote through merging of two haploid

cells during mating. The two most common and almost universal natural cell

division mechanisms, mitosis and meiosis, are sketched in Figs. 2.5 and 2.6.

In general, both mechanisms are symmetric in the sense that the two or four

daughter cells are equivalent. Asymmetric cell divisions in the sense that the
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offspring cells are intrinsically different play a role in embryonic development

[139], in particular with stem cells [177]. As an example we mention the

nematode Caenorhabditis elegans where several successive asymmetric cell

divisions in the early embryo are critical for setting up the anterior/posterior,

dorsal ventral, and left/right axes of the body plan [119].

In mitosis one diploid cell divides into two diploid cells that – provided no

accident has happened – carry the same genetic information as the parental

cell and the over-all process is simple duplication (Fig. 2.5). Homologous

chromosomes behave independently during mitosis – and this distinguishes

it from meiosis. The problem that has to be solved, nevertheless, is of

formidable complexity: A molecule of about 2m length has to be copied

in a cell of about 10µm diameter and than divided equally during cell di-

vision. Long before the advent of molecular biology cell division has been

studied extensively by means of light microscopy and the different stages

shown in Fig. 2.5 were distinguished. DNA replication takes place in the

interphase nucleus and each chromosome is transformed into two identical

sister chromatids, in prophase we have the sister chromatids in perfect align-

ment and ready for cell division then the nuclear membrane dissolves and in

metaphase the chromosomes migrate to the equator of the cell. Microtubules

form and attach to the centromeres (Fig. 2.2) in anaphase and telophase the

sister chromatids are pulled apart and to the two opposite poles of the cell.

At the end of telophase the cell splits into two daughter cells and nuclear

membrane are formed in both cells.

Meiosis is initiated like mitosis by DNA replication but instead of cell

division two organized cell divisions follow with no second replication phase

in between. Accordingly one diploid cell is split into four haploid gametes

during meiosis. The major difference between the two cell division scenar-

ios occurs in prophase 1 and metaphase 1: The two duplicated homologous

chromosomes are pairing and crossover between the four chromatids is disen-

tangled by homologous recombination.2 During prophase 1 the tight binding

2Homologous recombination is the precise notion of recombination during meiosis since

there are also other forms of recombination in the sense of exchange of genetic material,

for example, with bacterial conjugation or multiple virus infection of a single cell.
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2n

2n

2n

interphase prophase metaphase anaphase

telophase

daughter cells

replication segregation

Figure 2.5: Mitosis. Mitosis is the mechanism for the division of nuclei associated

with the division of somatic cells in eukaryotes. During interphase that comprises

of three stages of the cell cycle – gap 1 (G1), synthesis (S), and gap2 (G2) –

the DNA of each chromosome replicates and each chromosome is transformed

into two sister chromatids, which lie side by side. The mitosis stage of the cell

cycle (M) starts with prophase when the sister chromatids become visible in the

light microscope. During metaphase the sister chromatid pairs are moving to the

equatorial plane of the cell. In anaphase microtubules being part of the nuclear

spindle attach to the centromeres (small orange balls in the sketch), separate the

sister chromatids, and pull them in opposite direction towards the cellular poles.

In telophase the separation is completed and a nuclear membrane forms around

each nucleus and cell division completes mitosis. The sketch shows the fate of

a single chromosome, which is present in two differently marked copies (red and

bright violet) that appear in identical form in the two daughter cells. Mitosis

produces two (in essence) genetically identical diploid (2n) daughter cells from one

diploid cell (2n). Here and in Fig. 2.6 we do not show the nuclear membrane in

order to avoid confusion. During interphase, the first part of prophase, and in the

daughter cells the compartment shown is the nucleus whereas the circles mean the

entire cell during the stages of segregation.

between the sister chromatids is weakened and eventually resolved through

the formation of a large complex in which all four chromatids of the two dupli-

cated homologous chromosomes are aligned by means of an extensive protein

machinery. This process is slow as prophase 1 may occupy 90% or more
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Figure 2.6: Meiosis. Meiosis in the mechanism by which diploid or-

ganisms produce haploid germ cells from a diploid precursor cell. The

process is initiated like mitosis in prophase 1 but then in metaphase 1

the duplicated chromosomes are paired yielding a four chromatid complex,

which is the stage where homologous recombination occurs (see Fig. 2.7).

We show one crossing over of DNA double strands that is disentangled

by recombination. Then follow two divisions without a synthetic phase

– anaphase 1→telophase 1→prophase 2→metaphase 2→anaphase 2→telophase 2 –

and eventually after the second division we end up with four different gametes.

The sketch shows the fate of a chromosome pair, which is initially present in

two differently marked homologous copies (red and bright violet) during one DNA

replication and two consecutive divisions into four daughter cells. Meiosis produces

four genetically different haploid gametes (n) from one diploid cell (2n).
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Figure 2.7: Crossover and recombination. Crossover occurs in the meiotic

prophase 1 or metaphase 1 during pairing of homologous stretches from all four

chromatids. Both forms single crossover and multiple crossover shown in the upper

and lower parts of the figure, respectively, are possible and in general all four

strands may be involved in it. Resolution of crossover through special mechanisms

involving breaking and linking of the DNA double strands in chromatids leads

two recombination shown on the rhs of the figure. Since at least one crossover is

obligatory in meiosis – if no crossover occurs the process is arrested in metaphase 1,

all four haploid gametes are genetically mixed and different unless the diploid

organism has been homozygous in all genes.

of the total time of meiosis. The tightly aligned homologs form crossovers

that can be seen as chiasmata in metaphase 1. Crossovers are resolved lead-

ing to recombination in the four chromatids and four different chromosomes

are formed (For the sake of simplicity only one crossover event is shown in

Fig. 2.6). In anaphase 1 and telophase 1 the eventually recombined duplicated

homologous chromosomes segregate and enter after cell division as two sepa-

rate diploid cells into the second division cycle initiated through prophase 2.

Metaphase 2 is analogous to the metaphase in mitosis: homologous chromo-

somes align in the region of the cell equator segregate during anaphase 2 and

telophase 2 and finally end up in four genetically mixed haploid gametes.

Incase of heterozygosity the gametes are also genetically different.
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In prophase 1 and metaphase 1 of meiosis individual chromatids pair with

the other homologous chromosome with the help of a large protein machin-

ery called the recombination complex (see [5, chapter 21]). Tight packing

of the four chromatids of the duplicated homologous chromosomes together

with the protein machinery and produces a very large synaptonemal complex.

The processes in the synaptonemal complex may last for days and longer

and eventually, prophase 1 ends through disassembling of the synaptonemal

complex and initiating metaphase 1. Chiasmata being the visual point of

crossing-over of chromatid strands that might have occurred already before

and during the formation of the complex appear during the phase of disas-

sembly. Resolution of crossover in consequence leads to recombination. The

chromosomes determining the sex of the carrier may behave differently from

autosomes. In mammals female sex chromosomes XX behave like autosomes

during meiosis. Male sex chromosomes – XY in mammals – however, require

special features during meiosis. Although the X and the Y chromosome in a

male are not homologous they too must pair and undergo crossover during

prophase 1 in order to allow for normal segregation in anaphase 1. Pair-

ing, crossing-over, and segregation are made possible because there are small

regions of homology between X and Y at one end or both ends of the chro-

mosomes. The two chromosomes pair and crossover in these regions during

prophase 1 and ensure thereby that each sperm cell receives either one X or

one Y chromosome – and neither both nor none – and the sperm cells deter-

mine whether the zygote develops into a female or male embryo, respectively.

Meiosis is regulated differently in female and male mammals. In males meio-

sis begins begins in sperm precursor cells called spermatocytes in the testes at

puberty and then goes on continuously. It takes about 24 days for a human

spermatocyte to complete meiosis. In females the egg precursor cells, the

oocytes begin meiosis in the fetal ovary but arrest after the synaptonemal

complex has disassembled in metaphase 1. Oocytes complete meiosis only

after the female has become sexually mature and the oocyte is released from

the ovary during ovulation and the released oocyte completes meiosis only

if it is fertilized. In humans some oocytes my be arrested in netaphase 1 for

40 years or more. There are specific stop and start mechanisms in female
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meiosis that are lacking in the male. Finally, we remark that according to

the current state of knowledge meiosis goes wrong frequently and this leads

to early abortion or serious damage of the embryo.

Crossover occurs before the first cell division in meiosis and can be seen in

the microscope in the form of a chiasma where a chromatid strands switches

from one chromosome to the other. Chiasmata or crossovers are resolved by

splitting and ligating DNA and eventually genes from homologous but differ-

ent chromatids find itself recombined on the same chromosome. As shown in

Fig. 2.7 a single crossover is sufficient to produce four different chromosomes.

Double and multiple crossovers may occur as well and they give rise to a

great variety of gene patterns. How are crossover and recombination related

to Gregor Mendel’s laws of inheritance? Linkage equilibrium in population

genetics is achieved when the association of alleles at two or more loci is

random. In other words, Mendel made the assumption of random assort-

ment of alleles, which is at the same time the basis for linkage equilibrium

and accordingly, every deviation from it is called linkage disequilibrium. This

deviation can be cast into a quantitative relation. For the sake of simplicity

we consider a haplotype3 for two loci A and B with two alleles each, and the

following frequencies for all possible combinations:

[A1B1] = x11, [A1B2] = x12, [A2B1] = x21, and [A2B2] = x22.

These frequencies are assumed to be normalized,
∑

i,j xij = 1, and this leads

to the following frequencies of the alleles:

[A1] = p1 = x11 + x12 , [A2] = p2 = x21 + x22 , and p1 + p2 = 1 ,

[B1] = q1 = x11 + x21 , [B2] = q2 = x12 + x22 , and q1 + q2 = 1 .

At linkage equilibrium we obtain from trivial statistics x̄ij = piqj and de-

fine the linkage disequilibrium by the deviation of the real value from the

equilibrium value:

D = x11 − p1q1 = x11x22 − x12x21 . (2.1)

3A haplotype in genetics is a combination of alleles at adjacent locations on the chro-

mosome that are transmitted together. A haplotype may be one locus, several loci, or an

entire chromosome depending on the number of recombination events that have occurred.
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Expressing the state of a population with respect to haplotypes on finds

the phrases ”two alleles are in linkage disequilibrium” for D 6= 0, and al-

ternatively linkage equilibrium stands for D = 0. Because of the various

conservation relations linkage disequilibrium is a one-parameter manifold as

follows from the table relating haplotype and allele frequencies:

A1 A2 total

B1 x11 = p1q1 +D x21 = p2q1 −D q1

B2 x12 = p1q2 −D x22 = p2q2 +D q2

total p1 p2 1

Sometimes the parameter D is normalized

ϑ =
D

Dmax

with Dmax =







min{p1q1, p2q2} if D < 0

min{p1q2, p2q1} if D > 0
.

As an alternative to ϑ the correlation coefficient between pairs of loci is used

(For a comparison of various linkage disequilibrium measures see, e.g., [50]):

r =
D√

p1p2q1q2
. (2.2)

The frequency of recombination between two loci c can be used to demon-

strate that linkage disequilibrium converges to zero in absence of other evo-

lutionary factors than Mendelian segregation and random mating. The fre-

quency of the haplotype A1B1 is given by the difference equation

x
(n+1)
11 = (1− c) x(n)11 + c p1q1 . (2.3)

This equation is readily interpreted: A fraction (1−c) of the haplotypes have
not recombined and hence are present in the next generation, multiplication

by x
(n)
11 yields the fraction of the not-recombined haplotypes that are A1B1,

and a fraction c did recombine the two loci. Random mating presupposed we

compute the fraction of the haplotype under consideration: The probability

that A1 is at locus A is p1 and the probability that the copy has B1 at locus

B. Since the alleles are initially on different loci the events are independent

and the probabilities can be simply multiplied. Rewriting of Equ. (2.3) yields

x
(n+1)
11 − p1q1 = (1− c)

(

x
(n)
11 − p1q1

)

or Dn+1 = (1− c)Dn ,
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which for an initial linkage disequilibrium of D0 takes on the form

Dn = (1− c)nD0 . (2.4)

As time progresses and the number of generations approaches infinity we find

lim
n→∞

Dn = 0 ,

since limn→∞(1 − c)n = 0 because of 0 < 1 − c < 1. After a sufficiently

number of generations linkage disequilibrium will disappear due to recombi-

nation. The smaller the distance between the two loci, however, the smaller

will be the frequency of recombination c, and the slower will be the rate of

convergence of D towards zero.

2.2.4 Molecular mechanisms of recombination

The first molecular mechanism of crossover and recombination has been pro-

posed by Robin Holliday in 1964 [150] (For a more recent account see [273]).

It centers around the notion of a Holliday junction (Fig. 2.8), which is a cova-

lently linked crossing of two double-helical DNA strands.4 Holliday junctions

combining largely homologous stretches of DNA – as, for example, in case

of paired chromatids – can migrate by means of a simple base pair opening

and base pair closing mechanism. As shown in the lower part of Fig. 2.8 two

DNA double helices become longer and the other two are shortened during

migration. According to current knowledge, which is far from satisfactory

understanding, homologous crossing-over of chromatid strands is highly reg-

ulated with respect to (i) number and (ii) location. There is at least one

crossover event between the members of each homolog pairs because this

is necessary for normal segregation in metaphase 1, and there is crossover

interference inhibiting crossover points to be closer than some critical dis-

tance. Although the required two strand breaks occurring during meiosis can

be located almost everywhere on the chromosome, they are not distributed

uniformly: They cluster at hot spots where the chromatin is accessible, and

4In order to distinguish DNA single strands and double strands as used, for example,

in Fig. 2.7 we indicate 5’- and 3’ends of the single strands.



50 Peter Schuster

5' 5'3' 3'

5'

5'

3'

3'

5' 5'3' 3'

5'

5'

3'

3'

5'3'

5'3'

5' 3'

5' 3'

3'
3'

5'3'

5'
5'

3' 5'

Figure 2.8: The Holliday junction of two DNA double helices. At the

Holliday junction two stretches of double-helical DNA exchange strands. The

upper part of the figure present to schematic views of a Holliday junction, which

are interrelated by rotating the upper right part of the sketch by 180◦ around the

diagonal. The lower part shows the base-pair opening and closure mechanism by

which Holliday junctions migrate.

they occur only rarely in cold spots such as heterochromatin regions around

centromeres and telomeres.

The so-called Holliday model for DNA crossover is sketched in Fig. 2.9

[150]. It is initiated by breaks in two DNA single strands called nicks, each

one situated at one of two aligned DNA molecules. We consider three loci,

A, B, and C, with two alleles each, (Aa),(B,b), and (C,c), and the break

occurs somewhere in the region between locus A and locus B. In the next
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Figure 2.9: The Holliday model for DNA crossover. The model shows the

formation of a Holliday junction through the repair of two DNA single strand cuts

(nicks) and the resolution of the junction resulting in recombination (6; cut along

axis V) or repair (7; cut along H). Primed letters indicate opposite polarity of the

DNA-strand (3’→5’). For details see text.
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Figure 2.10: The double strand break repair (DSBR) model for DNA

crossover. The double strand repair model starts from a double strand break

and a 5’-exonuclease produces sequence gaps. Strand invasion, DNA-synthesis

and second end capture leads to a structure with two Holliday junctions that can

be resolved to yield either double strand break repair (resolution at a & b or α & β)

or crossover and recombination (resolution at a & β or α & b). Newly synthesized

DNA stretches are shown as dashed lines. For details see text.
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step the open ends are linked to the other DNA molecules resulting in a

Holliday junction. The junction migrates and finds an appropriate site for

resolving the crossover somewhere between locus B and locus C. The result-

ing Holliday junction can be cleaved in two ways, one yielding a recombined

DNA with a heteroduplex at locus B and one repaired molecules without

recombination but still showing the heteroduplex at B. One of the most im-

portant results of the Holiday model was to demonstrate the relation between

crossover and DNA damage repair. As outlined in Fig.2.9 (2) the process is

initiated by two single strand breaks (nicks), which are closed through the

formation of a strand switch from one double helix to the other forming

thereby a Holliday junction (3). The Holliday junction migrates along locus

B until it reached a point appropriate for resolution (4) and then an enzyme

called Holliday junction resolvase cuts and ligates the DNA strands elimi-

nating the entanglement of the two DNA double helices (5). The resolution

is possible in two different ways: (i) a vertical cut (V) and (ii) a horizontal

cut (H). The vertical cut resolves the Holliday junction into a structure in

which the two chromatid strands show crossover leading to recombination

(6) whereas the horizontal cleavage is leading to a structure in which the two

nicks have been repaired (7). In both cases the structures differ from the

original double helical strands at locus B where they have now heteroduplex

pairings Bb. The Holliday-model was complemented ten years after its inven-

tion by the more general Meselson-Radding model [208], which starts from

a single-strand break in one DNA molecule that becomes the site of strand

displacement by a DNA-polymerase. The displaced single-strand pairs with

the complementary sequence of a second homologous DNA-molecule and it

induces thereby a single strand break in the latter. Migration of the Holliday

junction and its resolution is similar to the Holliday-model. One difference

between the two models is that the heteroduplex region is confined to one

DNA molecule at the beginning in the Meselson-Radding model but is always

found in both DNA molecules in the Holliday model.

Work on plasmids in yeast [231] has shown that double strand gap repair

can lead to crossing-over but does not always do so. The corresponding

double-strand-break repair (DSBR) model is sketched in Fig. 2.10. It starts
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Figure 2.11: Enzymatic resolution of chiasmata. Three enzymatic resolution pathways of a double strand break

(For stage (1) and (2) see Fig. 2.10). The enzyme complexes are denoted by α, β, and γ, respectively. Newly synthesized

DNA stretches are shown as dashed lines. For details see text.
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from a double-strand-break (1) and action of 5’-exonucleases as well as some

(or no) double strand degradation lead to a structure with free 3’-ends (2).

These ends are the active agents in the forthcoming steps: One strand with

an active 3’-end invades the double helix of the homologous chromatid and

initiates DNA double strand synthesis (3) until the free 3’-end is captured

(4). Completion and gap closure on both double helices leads to a structure

with two Holliday junctions (5). The resolution of the two junctions leads

either to break repair (6) or crossover and recombination (7) depending on

the direction of the cuts in the Holliday junctions: Both cuts horizontal or

both cuts vertical yields break repair whereas one cut horizontal and one

cut vertical produces crossover. Four years after the proposal of the DSBR-

model it was tested for recombination of phage λ and plasmid λdv [274, 284].

The most relevant new feature of this paper for the DSBR-model was that

a topoisomerase has been suggested to resolve the Holliday junctions. Later

topoisomerases were indeed identified that did precisely this job [257, 258].

Research on Holliday junctions and their resolution led to a rather confus-

ing multiplicity of possible pathways and a variety of endonuclease enzymes

called resolvases were identified in prokaryotes [60], in yeast [23, 230] and

eventually also in human cells [37]. In essence, three different pathways for

DSBR where found to be most prominent [307]. New light has been shed

on the problem when three enzymes from different organisms where shown

to promote Holliday junction resolution in analogous manner: the resolvases

RuvC from Escherichia coli, Yen1 from yeast and GEN1 from human cells

[157]. In Fig. 2.11 we show a sketch of the three pathways taken from [281].

The first two steps are identical with the corresponding steps in the DSBR

model in Fig. 2.10, one Holliday junction results from DNA strand invasion

(3), and then both single strand are completed to full double helices (4). Here

we have the first branching point: Either the two open ends are ligated and

the second Holliday junction is formed (5) (as in the simple DSBR model) or

structure (4) is directly resolved by the protein complex χ=Mus81-Eme1,

which cleaves the asymmetrically [23, 151] and produces a crossover product

(11). Two pathways branch out from the double Holliday junction structure

(5): One pathway makes use of the protein complex α=BLM-TopoIIIα-
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RMI1 and disentangles the structure by two concerted topoisomerase dou-

ble strand openings and closures (7) [32, 320]. The resulting final product

is a double strand repair structure with a heteroduplex region in one dou-

ble strand (9). The third pathway engages the above mentioned resolvase,

β=GEN1 or β=Yen1, respectively, and resolves the double Holliday junc-

tion structure symmetrically by one vertical and one horizontal cut (8) as

also shown in Fig. 2.10) leading thereby to crossover (10). Although the 2008

paper [281] had the promising title Resolving Resolvases: The Final Act?,

research on Holliday junction resolution remained an exciting story until now

[217, 279].

After having had a glance on the enormously complicated processes of

meiosis and the state of the art in understanding its molecular mechanisms

we shall now return to the formal aspects and repeat the basic facts. re-

combination pure. Homologous chromatid strands do not pair in full length

during meiotic prophase 1 but show deviations in the sense that different

stretches are aligned to different chromatids, and this leads to chiasmata,

crossover and recombination. At least one crossover and recombination event

per chromosome is required for successful meiosis, since cells without chi-

asmata get arrested in metaphase 1 and are eliminated through apoptosis.

In essence recombination serves three purposes: (i) repair of double strand

breaks that have occurred during replication or pairing, (ii) enabling segre-

gation in metaphase 1 of meiosis, and (iii) creating genetic diversity through

recombination.
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2.3 Recombination and population genetics

The basic assumption in Mendelian genetics that the genetic information of

the parents is split into pieces and recombined in the offspring is introduced

by means of a simple relation governing the evolution of genotype distribu-

tions for two alleles at a single locus in discrete manner. Fisher’s selection

equation is an ODE handling an arbitrary number of alleles again at a single

locus.

2.4 Hardy-Weinberg equilibrium

The dynamics of recombination is illustrated easily by means of the so called

Hardy-Weinberg equilibrium that has been derived independently by God-

frey Harold Hardy [134] and Wilhelm Weinberg [303]. The content of the

Hardy-Weinberg equilibrium is the relation between allele frequencies and

genotype frequencies in a single locus model. Implicit in the validity of the

Hardy-Weinberg equilibrium are ten assumptions, which are often made in

population genetics and which we summarize here for clarity [136, p.74]:

(i) organisms are diploid,

(ii) reproduction is sexual,

(iii) generations are discrete and nonoverlapping,

(iv) genes under consideration have two alleles,

(v) allele frequencies are identical in males and females,

(vi) mating partners are chosen at random,

(vii) populations sizes are infinite meaning very large in practice,

(viii) migration is negligible,

(ix) mutation can be ignored, and

(x) natural selection does not affect the alleles under consideration.
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Figure 2.12: The Hardy-Weinberg equilibrium. The equilibrium frequencies

of the three genotypes, x = [AA] (red), y = [Aa] (green), and z = [aa] (blue), are

plotted as a function of the frequency of the dominant allele A, p = [A]/([A] + [a]).

The frequency of the recessive allele is q = 1− p = [a]/([A] + [a]).

Figure 2.13: De Finetti illustration of the Hardy-Weinberg equilibrium.

The three genotype frequencies are plotted on a unit simplex S3: x+ y + z = 1.
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These ten assumptions are often addressed as the Hardy-Weinberg model. In

order to derive the relations we assume a diploid population with two alleles

A and a where A is dominant and with p and q, p + q = 1, being the allele

frequencies of A and a in the population. At Hardy-Weinberg equilibrium we

obtain the three genotype frequencies

x = [AA] = p2 , y = [Aa] = 2 pq , z = [aa] = q2 . (2.5)

In order to show the one-step convergence towards the equilibrium rela-

tions we start from an initial population Υ0 with a distribution of genotypes

(AA),(Aa), and (aa) being x : y : z = p0 : 2q0 : r0, respectively, fulfilling the

condition p0 + 2q0 + r0 = 1. The sum is now written as (p0 + q0) + (q0 + r0),

we build the square of both sides and find:

p1 + 2q1 + r1 = (p0 + q0)
2 + 2 (p0 + q0)(q0 + r0) + (q0 + r0)

2 = 1 .

The individual frequencies are p1 = (p0 + q0)
2, q1 = (p0 + q0)(q0 + r0) and

r1 = (q0+r0)
2, which is already Hardy’s result for random mating (2.5). The

equivalence condition is readily verified:

E1 = q21 − p1 r1 =
(

(p0+ q0)(q0+ r0)
)2

− (p0+ q0)
2(q0+ r0)

2 = 0 . (2.6)

It is straightforward to show now that for all generations after the first one

the Hardy-Weinberg equilibrium is fulfilled:

p2 = (p1 + q1)
2 = p21 + 2p1q1 + q21 =

= (p0 + q0)
2
(

(p0 + q0)
2 + 2(p0 + q0)(q0 + r0) + (q0 + r0)

2
)

= (p0 + q0)
2 .

Accordingly p2 = p1 and this remains so in all succeeding generations. The

same holds for the other two genotypes.

The generalization of the Hardy-Weinberg equilibrium to n alleles is

straightforward: Assume a distribution (p1, p2, . . . , pn) for n alleles A1,A2 . . .An

with
∑n

i=1 pi = 1 and then the Hardy-Weinberg equilibrium is achieved when

the genotype frequencies fulfil

xi = [AiAi] = p2i and yij = [AiAj] = 2 pipj ; i, j = 1, 2, . . . , n . (2.7)
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This equation will be the basis for Fisher’s selection equation, which will

be discussed in the next section 2.5. Another straightforward generalization

the case of polyploidy that leads to a genotype distribution according to

the binomial distribution for tetraploidy and two alleles, A and a, with the

frequencies (p, q) we find

[AAAA] = p4 , [AAAa] = 4p3q , [AAaa] = 6p2q2 , [Aaaa] = 4pq3 , [aaaa] = q4 .

The derivation of the completely general form, n alleles and m-ploidy, is left

to the reader as an exercise.

As an example of Hardy Weinberg equilibrium in case of dominance we

consider the human Rh blood groups (see section 2.1). The dominant allele

D codes for the Rhesus antigen, which is presented on the surface of red

blood cells, whereas the d allele fails to code for the antigen. Accordingly,

the two genotypes DD and Dd unfold the Rhesus positive phenotype (Rh+),

whereas dd has the Rhesus negative phenotype (Rh−). The frequency of Rh+

phenotypes among American Caucasians is about 0.858, leaving 14.2% for

Rh− people [216]. Left with this information only the data are insufficient

to calculate the genotype frequencies, because there is no way to distinguish

between DD and Dd since both give rise to the Rh+ phenotype. Under

the assumption of random mating, however, the relative proportions of DD

and Dd genotypes are given by the Hardy-Weinberg principle: The genotype

frequencies at equilibrium are given by p2, 2pq, and q2, respectively. An

estimate of q from the known frequency of the homozygote [dd] = q2 is

straightforward:5 From q̂2 = 0.142 we obtain q̂ ≈
√
0.142 = 0.3768. The

result is easily generalized: If R is the frequency of homozygous recessive

genotypes in a population of N individuals, then q̂ and its standard deviation

σ6 are obtained from

q̂ =
√

R and σ(q̂) =

√

1− R
4N

. (2.8)

5The remark estimate refers to the uncertainty, how well the assumption of random

mating is fulfilled. Accordingly, we denote the estimated values for the allele frequencies

by p̂ and q̂ in order to distinguish them from the exact values p and q, respectively.
6The standard deviation is calculated under the assumption of a binomial distribution

in the limit of the normal distribution: σ =
√

p̂ q̂/N =
√

(1− q̂) q̂/n.
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From q̂ we obtain p̂ = 1 − q̂ = 0.6232 and we calculate for the genotype

frequencies: [DD] = p̂2 = 0.3884, [Dd] = 2 p̂q̂ = 0.4696, and [dd] = q̂2 =

0.1420, and 54.7% of the Rh+ people are heterozygous. No χ2-test is possible

in this case because there are zero degrees of freedom (subsection 2.6.1).

It is remarkable that the Hardy-Weinberg principle is considered as the

basis of many models in population genetics, although on cannot assume that

the ten conditions listed above a fulfilled in reality. Many test for random

mating (item vi) based on deviations from the Hardy-Weinberg equilibrium

have been developed, for example [76, 129], and it was shown that devia-

tions are quite common. Sten Wahlund had shown that a subdivision of a

population in subpopulations leads to a reduction of heterozygosity [299].

Even when the subpopulations are in Hardy-Weinberg equilibrium, the total

population is not. Another critical point is the absence of effects of natural

selection (item x), which is a typical idealization and very hard to check in-

dependently of deviations from Hardy-Weinberg equilibrium. Therefore it is

advisable to consider the Hardy-Weinberg formula as a reference state and to

analyze deviations as consequences of the lack of validity of the basic assump-

tions. We shall come back to the delicate problem of generality, explanatory

adequacy, scope, and applicability in the next chapter 3.

2.5 Fisher’s selection equation and the fundamental theorem

Here, we present only the continuous time approach more common stochastic

models with discrete generations will be discussed in chapter 8. In order to

study the process of selection among n alleles at a single locus under random

mating and recombination Ronald Fisher’s [92] conceived a selection equation

for alleles:

dxj
dt

=

n
∑

i=1

ajixjxi − xj

n
∑

i=1

n
∑

k=1

aikxixk = xj

(

n
∑

i=1

ajixi − φ

)

(2.9)

with φ =

n
∑

i=1

n
∑

k=1

aikxixk . (2.10)

The variables xj are the allele frequencies in the population. The two con-

ditions aij > 0 ∀ i, j = 1, 2, . . . , n and xi ≥ 0 ∀ i = 1, 2, . . . , n will guarantee
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Figure 2.14: Selection dynamics of three alleles at one locus. Selection

is shown in the space of normalized allele concentrations,
∑3

i=1 xi = 1, which is

the unit simplex S3. In the general case, the dynamical system has seven

stationary points. For the sake of simplicity we consider the symmetric case

with equal diagonal and equal off diagonal elements of the parameter matrix

A. If the diagonal elements dominate, d > g, all three corners represent

asymptotically stable states (x1 = 1, x2 = 1, and x3 = 1). For larger off-

diagonal elements, d < g, the only asymptotically stable state is the center

of the simplex, x1 = x2 = x3 = 1/3. Color code: asymptotically stable states

in red, saddle points and sources in blue.

φ(t) ≥ 0. Summation of allele frequencies,
∑n

i=1 xi(t) = c(t), yields again an

equation for dc/ dt that is identical to (1.10) and hence, the population is

confined again to the unit simplex for
∑n

i=1 xi(0) = 1. The rate parameters

aij form a quadratic matrix

A =













a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann













.
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The dynamics of equ. (2.9) may be very complicated for general matrices A

and involve oscillations as well as deterministic chaos [243, 253]. In case of

Fisher’s selection equation, however, we are dealing with a symmetric matrix

for biological reasons,7 and then the differential equation can be subjected

to straightforward qualitative analysis.

Qualitative analysis of equ. (2.9) yields 2n − 1 stationary points, which

depending on the elements of matrix A may lie in the interior, on the

boundary or outside the unit simplex S
(1)
n . In particular, we find at max-

imum one equilibrium point on the simplex and one on each subsimplex

of the boundary. For example, each corner, represented by the unit vector

ek = {x̄k = 1, xi = 0 ∀ i 6= k}, is a stable or unstable stationary point. In

case there is an equilibrium in the interior of S
(1)
n it may be stable or unstable

depending on the elements of A. In summary, this leads to a rich collection

of different dynamical scenarios, which share the absence of oscillations or

chaotic dynamics.

The coordinates of the stationary points are derived through solution of

the equations derived from (2.9) by putting dxi/dt = 0 for i = j, k, l with

x̄j + x̄k + x̄l = 1 and xi = 0 ∀ i /∈ (j, k, l):

corner j : x̄j = 1

edge jk : x̄j =
akk − ajk

ajj − 2ajk + akk
, x̄k =

ajj − ajk
ajj − 2ajk + akk

face △jkl : x̄j =
Zj

D
, x̄k =

Zk

D
, x̄l =

Zl

D
with

Zj = ajlakk + ajkall + a2kl − ajkakl − ajlakl − akkall ,
Zk = ajjakl + a2jl + akjall − ajlajk − aklajl − ajjall ,
Zl = a2jk + ajlakk + ajjakl − ajkajl − ajkakl − ajjakk ,
D = Zj + Zk + Zl .

7Fisher’s equation is based on the assumption that phenotypes are insensitive to the

origin of the parental alleles on chromosomes. Phenotypes derived from genotype AiAj

are assumed to develop the same properties, no matter which allele, , on the chromosomal

locus comes from the mother and which comes from the father. New results on human

genetic diseases have shown, however, that this assumption can be questioned.
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Local stability analysis on the simplex S3 through diagonalization of the

(2× 2) Jacobian yields for the corners

corner j : λ1 = ajk − ajj , λ2 = ajl − ajj ,

and for the edges

edge jk : λ1 =
(ajk − ajj)(ajk − akk)
ajj − 2ajk + akk

,

λ2 = −
ajjakk − ajjakl − ajlakk − a2jk + ajkajl + ajkakl

ajj − 2ajk + akk
.

The corner j is asymptotically stable for (ajk, ajl) < ajj or in other words,

if the homozygote AjAj has higher fitness than the two heterozygotes AjAk

and AjAl. The stationary point on the edge jk is unstable for (ajj, akk) > ajk

because λ1 is positive. We dispense here for a more detailed discussion of

the eventually quite sophisticated situation and refer to the simplified model

discussed below.

The calculation of the eigenvalues of the Jacobian at the stationary point

in the interior of the face △jkl is even more involved but, nevertheless, can

be computed analytically. We present the results for the stationary point on

the face △jkl in order to demonstrate the strength and the limits of machine

based symbolic computation. For the two eigenvalues of the Jacobian we

find:

λ1,2 = (Q1 ±
√

Q2)/(2D
2) with

Q1 = (akl − akk)P1 + (ajl − ajj)P2 and

Q2 =
(

(ajl − ajj)(akl − akk)− (ajk − ajl)(ajk − akl)
)

P1P2 ,

P1 = ajkajl − ajkall − ajjakl + ajlakl + ajjall − a2jl ,

P2 = ajkakl − ajkall − ajlakk + ajlakl + akkall − a2kl ,

D = a2jk + a2jl + a2kl − ajjakk − ajjall − akkall+

+ 2(ajjakl + ajlakk + ajkall − ajkajl − ajkakl − ajlakl)
Q2 when completely expanded becomes a sixth order polynomial in ajk with

more than 120 terms. Although fully analytical the expressions are pro-
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hibitive for further calculations and will be studied numerically in practical

calculations.

A simple example of a three-allele one-locus model is shown on Fig. 2.14:

The matrix of rate parameters is simplified to

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






=







d g g

g d g

g g d






,

which has only two parameters the diagonal terms d representing the fitness

of the homozygotes, and g the off-diagonal elements for the heterozygotes.

From a11 = a22 = a33 = d and a12 = a13 = a23 = g we have Q2 = 0. In this

fully symmetric case the coordinates of stationary points and the eigenvalues

of the Jacobian fulfil very simple expressions:

corner (1, 0, 0) : λ1 = λ2 = d− f

edge (
1

2
,
1

2
, 0) : λ1 = −λ2 = −

1

2
(g − d)

face (
1

3
,
1

3
,
1

3
) : λ1 = λ2 = −

1

3
(g − d) .

The critical quantity here is the difference between the off-diagonal and the

diagonal term of matrix A, g−d. As long as d > g is fulfilled – corresponding

to higher fitness of homozygotes, AjAj and AiAi, than heterozygotes, AjAi

and AiAj – the corners are stable stationary points and depending on initial

conditions one allele, Aj or Ai, is selected. For overdominance of heterozy-

gotes, g > d, the stable points are on the edges or in the interior of the face

(Fig. 2.14). Multiple stationary states do occur and more than one may be

stable and the outcome of population dynamics need not be uniquely de-

fined. Instead depending on initial conditions the distribution of alleles may

approach one of the local optima [4, 86, 147, 245].

In order to analyze the behavior of the mean fitness φ(t) we introduce

mean rate parameters ai =
∑n

j=1 aijxj , which facilitate the forthcoming anal-
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ysis. The time dependence of φ is now given by

dφ

dt
=

n
∑

i=1

n
∑

j=1

aij

(

dxi
dt
· xj + xi ·

dxj
dt

)

= 2
n
∑

i=1

n
∑

j=1

aji · xi ·
dxj
dt

=

= 2
n
∑

i=1

n
∑

j=1

aji · xi
(

n
∑

k=1

ajkxjxk − xj

n
∑

k=1

n
∑

ℓ=1

akℓxkxℓ

)

=

= 2

n
∑

j=1

xj

n
∑

i=1

ajixi

n
∑

k=1

ajkxk − 2

n
∑

j=1

xj

n
∑

i=1

ajixi

n
∑

k=1

xk

n
∑

ℓ=1

akℓxℓ =

= 2
n
∑

j=1

xj a
2
j − 2

n
∑

j=1

xj aj

n
∑

k=1

xk ak =

= 2
(

< a2 > − < a >2
)

= 2 var{a} ≥ 0 . (2.11)

Again we see that the flux φ(t) is a non-decreasing function of time, and

it approaches an optimal value on the simplex. This result is often called

Fisher’s fundamental theorem of evolution (see, e.g., [86]). As said above,

multiple stationary states do occur and more than one may be stable. This

implies that the optimum, φ(t) is approaching, need not be uniquely defined.

Instead φ(t) may approach one of the local optima and then the outcome of

the selection process will depend on initial conditions [4, 86, 147, 245].

Three final remarks are important for the näıve interpretation of Fisher’s

fundamental theorem: (i) Selection in the one-locus system when it follows

Equ. (2.9) optimizes mean fitness of the population, (ii) the outcome of the

process need not be unique since the mean fitness φ may have several local

optima on the unit simplex, and (iii) optimization behavior that is suscep-

tible to rigorous proof is restricted to the one locus model since systems

with two or more gene loci may show different behavior of φ(t). In partic-

ular, epistasis, linkage disequilibrium, and frequency dependent fitness may

lead to situations in which the mean fitness is decreasing [214]. The conven-

tional opinion considered the fundamental theorem as wrong and a mistake

of Ronald Fisher who – by the way – made so many other important contri-

butions to mathematics, statistics, and population genetics.

Recalling Fisher’s own verbal formulation of the fundamental theorem:

The rate of increase of the mean fitness of any species at any time is equal
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to its genetic variation at that time, allow for many different interpretations.

A more recent reinterpretation the theorem [103, 228] tries to rehabilitate

Fisher’s claim for universality. These interpretations are based on partition-

ing genetic variation in additive and nonadditive, in other words epistatic,

effects and intrinsic and environment caused contributions. The misunder-

standing of Fisher’s original intensions is mainly attributed to the thirty

years controversy about the meaning of natural selection between Fisher and

Wright. We shall come back to these differences in view when we discuss

Fisher’s theorem and Wright’s concept of adaptive landscapes in the light of

a general theory of evolution (chapter 3).

2.6 Evaluation of data and the Fisher-Mendel controversy

Derivation and experimental verification of statistical laws requires a firm

mathematical theory of testing whether or not the observed regularity fol-

lows significantly from the harvested data. Ronald Fisher criticized Mendel’s

work [93] and brought up the argument that Mendel’s data are too good and,

presumably, were slightly manipulated by the author. Fisher’s paper was the

beginning of a seventy years long debate and eventually led to a monograph

stating that it is high-time to end the controversy [104]. It is fair to say

that Mendel work in essence has been rehabilitated but Fisher’s statistical

perfection in data analysis created a new standard in th e validation of sta-

tistical laws. We dispense from here from all historical details but use the

Mendel-Fisher discussion to digress on statistical methods that allow for an

evaluation of the statistical significance of harvested data.

2.6.1 The χ2-distribution

The conventional statistical test for data from random sampling is called

Pearson’s χ2-test, because it has been introduced by the statistician Karl

Pearson [233] and assesses two kinds of comparisons: (i) a quality test that

establishes whether or not an observed value distribution differs from a the-

oretical distribution, and (ii) a test of independence that assesses whether

paired observations on two variables are independent of each other.
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Figure 2.15: The p-value in significance test of null hypothesis. The figure

shows the definition of the p-value. The bell-shaped curve (red) is the probability

density function (PDF) of possible results. Two specific data points are shown one

at values above the most frequent outcome at x = 5 near x = 7 (green) and the

other one at x ≈ 3.5 (blue). The p-value – not to be mistaken for a score – is the

cumulative probability of more extreme cases, i.e., results that are further away of

the most frequent outcome than the data point and obtained as the integral under

the PDF. Depending of the position of the observed result this integral has to be

taken to higher (green) or lower (blue) values of x, respectively.

The test is based on the χ2-distribution with the following properties:8

χ2
k(x) is a one-parameter probability distribution, which is defined on the

positive real axis (support: x ∈ [0,+∞) ), and which is defined as the sum

of the squares of k independent random variables Z1, . . . ,Zk that fulfil the

standard normal distribution:

Q =

k
∑

i=1

Z2
i ,

The parameter k is the number of the degrees of freedom. The distribution

8In case it is important to distinguish between the test statistics and the χ2-distribution

the test is named Pearson X2 test.
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of Q is given by

probability density function: f(x; k) =
1

2
k
2 Γ
(

k
2

)
x

k
2
−1 e−

x
2 ,

cumulative distribution function: F (x; k) =
1

Γ
(

k
2

) γ

(

k

2
,
x

2

)

,

(2.12)

whereby χ2
k(x) = f(x; k). The functions Γ(z), γ(s, z) and Γ(s, z) are the

Gamma function and the lower and the upper incomplete Gamma function,

respectively:

Γ(z) =

∫ ∞

0

e−t tz−1 dt and Γ(n) = (n− 1)!; , n ∈ N0 ,

γ(s, z) =

∫ z

0

e−t tz−1 dt , and

Γ(s, z) =

∫ ∞

z

e−t tz−1 dt .

The χ2 density and distribution functions are available in tables that were

used before the ubiquitous availability of computers, which allow for straight-

forward calculation of numerical values from the functions available in all

statistics packages. Since Γ(1) = 1 the case k = 2 is particularly simple and

serves as an example:

f(x; 2) =
1

2
e−

x
2 and F (x; 2) =

∫ x

0

f(x; 2) dx = 1− e−x
2 .

The integration starts here at x = 0 rather than at x = −∞ because the

support of the distribution is restricted to the positive real axis.

In order to perform a specific test the start is to define the null hypothesis

that is the assumption of a theoretical distribution of the measured values

commonly in form of an expected partitioning of N observations in n cells.

In case of a discrete uniform distribution as null hypothesis – as it is very

often the case – the theoretical frequency is given by

εi =
N

n
, i = 1, 2, . . . , n .

Other common null hypotheses are the assumption of a normal, a Poisson

or a binomial distribution. Next the test statistic is calculated according to
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Figure 2.16: Calculation of the p-value in significance test of null hypoth-

esis. The figure shows the p-values from Equ. (2.14) as a function of the calculated

values of X2 for the d-values 1 (black), 2 (red), 3 (yellow), 4 (green), and 5 (blue).

The highlighted area at the bottom of the figure shows the range where the null

hypothesis is rejected.

Pearson’s cumulative test statistic

X2 =
n
∑

i=1

(νi − εi)
2

εi
, (2.13)

where νi is the number of observations that were falling into cell Ci. The

cumulative test statistic X2 converges to the χ2 distribution in the limit

N →∞ – just as a mean value of a stochastic variable, Z =
∑N

i=1 zi converges

to the expectation value limN→∞Z = E{Z}. This implies that X2 is never

exactly equal to χ2 and the approximation that will always become better

when the sample size is increased. Usually a lower limit is defined for the

number of entries in the cells to be considered, values between 5 and 10 are

common.

Now the number of degrees of freedom d of the theoretical distribution

to which the data are fitted has to be determined. The number of cells,

n, represents the maximal number of degrees of freedom, which is reduced
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by π = s + 1 where s is the number of parameters used in fitting of the

distribution of the distribution of the null hypothesis and accordingly we have

d = n−π. Considering the uniform distribution that is parameter free we find

d = n−1 and this is readily interpreted: Because the data fulfil
∑n

i=1 πi = N

only n − 1 cells can be filled independently. Eventually, we determine the

p-value of the data sample as a measure of statistical significance. Precisely,

the p-value is the probability of obtaining a test statistic that is at least as

extreme as the actually observed one under the assumption that the null

hypothesis is true. We call a value a more extreme than b if a is less likely to

occur under the null hypothesis as b. As shown in Fig. 2.15 this probability

is obtained as the integral below the PDF from the calculated X2-value to

+∞. In case of the χ2 distribution we have

p =

∫ +∞

X2

χ2
d(x) dx = 1 −

∫ X2

0

χ2
d(x) dx = 1 − F (X2; d) , (2.14)

which involves the cumulative distribution function F (x; d) defined in

Equ. (2.12). Commonly, the null hypothesis is rejected when p is smaller

than the significance level: p < α with 0.001 ≤ α ≤ 0.05. If the condition

p < α is fulfilled one says the null hypothesis is statistically significantly

rejected.

A simple example is used for the purpose of illustration: Two random

samples of N animals was drawn from a population, ν1 were males and ν2

were females with ν1 + ν2 = N . The first sample,

N = 322, ν1 = 170, ν2 = 152 : X2 =
(170 − 161)2 + (152 − 161)2

322
= 0.503 ,

p = 1− F (0.503; 1) = 0.478 ,

clearly supports the null hypothesis that that males and females are equally

frequent since p > α ≈ 0.05. The second sample,

N = 467, ν1 = 207, ν2 = 260 : X2 =
(207 − 233.5)2 + (260 − 233.5)2

233.5
= 6.015 ,

p = 1− F (6.015; 1) = 0.0142 ,

leads to a p-value, which definitely is at the lower limit or below the critical

limit and the rejection of the null hypothesis is statistically significant.
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The test of independence is relevant for situations when an observation

registers two outcomes and the null hypothesis is that these outcomes are

statistically independent. Each observation is allocated to one cell of a two-

dimensional array of cells called a contingency table (see next section 2.6.2).

In the general case there are m rows and n columns in a table. Then, the

theoretical frequency for a cell under the null hypothesis of independence is

εij =

∑n
k=1 νik

∑m
k=1 νkj

N
, (2.15)

where N is the (grand) total sample size or the sum of all cells in the table.

The value of the X2 test-statistic is

X2 =
m
∑

i=1

n
∑

j=1

(νij − εij)2
εij

. (2.16)

Fitting the model of independence reduces the number of degrees of freedom

by π = m+n−1. Originally the number of degrees of freedom is equal to the

number of cells, m ·n, and after reduction by π we have d = (m− 1) · (n− 1)

degrees of freedom for comparison with the χ2 distribution.

The p-value is again obtained by insertion into the cumulative distribution

function, p = 1 − F (X2; d), and a value of p less than a predefined critical

value, commonly p < 0.05, is considered as justification for rejection of the

null hypothesis or in other words the row variable does not appear to be

independent of the column variable.

2.6.2 Fisher’s exact test

As a second example out of many statistical significance test developed in

mathematical statistics we mention Fisher’s exact test for the analysis of

contingency tables. In contrast to the χ2-test Fisher’s test is valid for all

sample sizes and not only for sufficiently large samples. We begin by defining

a contingency table, which in general is a m×n matrix M where all possible

outcomes of one variable x enter the columns in one row and distribution

of outcomes of the second variable y is contained in the columns for a given

row. The most common case – and the one that is most easily analyzed – is
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2× 2, two variables with two values each. The the contingency table has the

form

x1 x2 total

y1 a b a+ b

y2 c d c+ d

total a+ c b+ d N

where every variable, x and y, has two outcomes and N = a+ b+ c+d is the

grand total. Fisher’s contribution was to prove that the probability to obtain

the set of values (x1, x2, y1, y2) is given by the hypergeometric distribution

probability mass function fµ,ν(k) =

(

µ
k

)(

N−µ
ν−k
)

(

N
ν

) ,

cumulative density function Fµ,ν(k) =

k
∑

i=0

(

µ
k

)(

N−µ
ν−k
)

(

N
ν

) ,

(2.17)

where N ∈ N = {1, 2, . . .}, µ ∈ {0, 1, . . . , N}, ν ∈ {1, 2, . . . , N}, and the

support k ∈ {max(0, ν+µ−N), . . . ,min(µ, ν)}. Translating the contingency

table into the notation of probability functions we have: a ≡ k, b ≡ µ − k,
c ≡ ν−k, and d ≡ N+k−(µ+ν) and hence Fisher’s result for the probability

of the general 2× 2 contingency table is

p =

(

a+b
a

)(

c+d
c

)

(

N
a+c

) =
(a+ b)! (c+ d)! (a+ c)! (b+ d)!

a! b! c! d!N !
, (2.18)

where the expression on the rhs shows beautifully the equivalence between

rows and columns. We present the right- or left-handedness of human males

or females as an example for the illustration of Fisher’s test: A sample con-

sisting of 52 males and 48 females yields 9 left-handed males and 4 left-handed

females. Is the difference statistically significant and allows for the conclu-

sion that left-handedness is more common among males than females? The

calculation yields p ≈ 0.10 which is above the critical value 0.001 ≤ α ≤ 0.05

and p > α confirms the rejection of the assumption that men are more likely

to be left-handed for these data.
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3. Fisher-Wright debate and fitness landscapes

Although Ronald Fisher, J.B.S. Haldane, and Sewall Wright were united

in their search for compatibility of Mendelian genetics and Darwinian se-

lection, they differed strongly in their view on the existence and nature of

a universal mechanism of evolution. In particular Fisher and Wright were

engaged for more than thirty years in a heavy debate and each of both was

more or less convinced that he had the solution to the problem [266]. No

end of the debate occurred and no end was insight until Fisher’s death in

1962. Interestingly the debate got a revival in 1997 when Jerry Coyne, Nick

Barton and Michael Turelli [41] claimed that Fisher had the right theory and

Wright’s model is of minor importance if not dispensable at all. Inspired by

this one-sided point of view Michael Wade and Charles Goodnight gave an

answer in the same journal [297] wherein they argued that Fisher’s theory

cannot be applied to a variety of relevant phenomena in population genet-

ics and is far away from being fully general. Accordingly, there is plenty of

room for other theoretical approaches Wright’s model being the most promi-

nent one at the current state of knowledge [297]. In two follow-up papers

[42, 120] the Fisher-Wright debate has been reignited and began to interest

philosophers: Robert Skipper classified this scientific contest as a relative

significance controversy and presented a proposal for a solution in the future

that will be discussed in section 3.2. First, however, we shall present a new

interpretation of Fisher’s fundamental theorem that tries to rescue generality

and relevance of this evolutionary optimization principle.

3.1 Fisher’s fundamental theorem revisited

In section 2.5 Fisher’s differential equation combining recombination and se-

lection has been presented and analyzed. It describes the evolution of the

allele distribution at a single locus. The variables are the normalized allele

75
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dSenv dfenv
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dfns ³ 0

dfenv dfns df+ =

Figure 3.1: Comparison of thermodynamical entropy and mean fitness.

The extremum principle of the entropy in thermodynamics applies to isolated

systems, which are systems that sustain neither exchange of energy nor exchange

of matter with their environment, and it is of the form dS/dt ≤ 0 where S is

the total entropy of the system (lhs of the figure). Isolated systems may house

open systems that exchange energy and/or matter with their environment being

part of the isolated system. The open system (white circle in the sketch) by itself

does not fulfil the second law criterium because entropy can be exported to or

imported from the environment: No maximum principle holds for Sint. Fisher’s

fundamental theorem is sketched on the rhs. The change in the mean population

fitness is partitioned into two contributions, dφ = dφns + dφenv, out of which only

one, dφns fulfils the maximum principle. Color code: The ranges of validity of the

unidirectionality principle are indicated by red lines.

frequencies,
∑n

i=1 xi = 1, the concentrations of the diploid genotypes are fully

determined by the assumption of Hardy-Weinberg equilibrium. In essence,

this is the gene’s eye view as it has been popularized by Richard Dawkins [46].

The quantity that is nondecreasing and hence optimized is the mean repro-

duction rate of the allele distribution at the locus, φ(t) =
∑n

i=1

∑n
k=1 aikxixk.

This function φ(t) obeying a directionality principle (Equ. (2.11)) was some-

times considered as an off-equilibrium equivalent to the entropy in equilib-

rium thermodynamics ([48]; for a more recent review see [49]), which accord-

ing to the second law fulfils universal unidirectionality in isolated systems,

dS/dt ≥ 0. In Fig. 3.1 we present a sketch of the optimization principles in

thermodynamics and in evolution. The major difference between both cases

of unidirectionality concerns the range of validity: The thermodynamic prin-

ciple holds globally, and need not be fulfilled in open subsystems whereas the
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fundamental theorem is valid only for a subset of factors influencing mean

fitness φ. This subset can be identified with natural selection. For reasons

the will become clear within the next paragraphs the more recent and more

elaborate interpretations of the fundamental theorem suggest that such an

correspondence is not justified. It is, however, fair to say that Fisher himself

stressed the limitation of the analogy [228, pp.346,347].

At first it is important to emphasize that Fisher’s theorem as expressed

by Equ. (2.11) is neither wrong not inexact. The (justified) critique concerns

the very limited applicability. As said before the theorem does not apply

in the two locus case when the two genes interact – a phenomenon that is

called epistasis, there must be no linkage disequilibrium implying the neces-

sity of random mating, and all other nonadditive genetic interactions must be

zero. As we shall see later on, Fisher’s large population size theory (L[P]ST)1

several of the jeopardizing deviations become small and unimportant in the

limit Fisher is considering [62, 87, 228, 236]. Secondly, as Ronald Fisher him-

self stressed several times, the (total) mean fitness of a population in nature

can only fluctuate around zero because otherwise the population would either

explode or collapse and die out.2 How can this undeniable fact be reconciled

with the Darwinian principle of optimizing fitness? The explanation of the

contradiction The variation in the mean fitness is split into two different con-

tributions: (i) the increase in mean fitness caused by natural selection, and

(ii) the change in mean fitness caused by the environment where we define the

environment as everything contributing to changes except natural selection:

dφ = dφns + dφenv , (3.1)

and φns =
∑n

k=1

∑n
i=1 aikxixk is obeying the directionality principle. The no-

tation of dφenv being the change in mean fitness caused by the environment

1Fisher’s theory is often abbreviated as LPST, sometimes as LST. We shall adopt here

the shorter three letter version.
2Cases of such explosions are known but very rare. If, for example, a species is trans-

ferred into a new environment where other species predating on them are missing extremely

rapid population growth occurs, which corresponds to a (temporarily) large positive mean

fitness. Examples are the rabbits in Australia and several cases of insect proliferations

causing major damage.
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sounds weird, and makes sense only in the gene’s eye view. Then, epistatic

effects coming from other genes through interaction may look as environmen-

tal influence for the gene under consideration. The interpretation of other

contributions to dφenv is even more difficult. However, with this definition

Fisher’s fundamental theorem can be rescued also its range of applicability

has shrunk to the small white area in Fig. 3.1 and definitely FTNS cannot

be applied to the total dφ as it is done in the conventional interpretation.

There are still a number of problems with the subtler recent interpretation

but most of them can be straightened out by careful argumentation [228].

A straightforward interpretation of the two views on Fisher’s fundamental

theorem concerns the nature of the time derivative:

conventional view:
dφ

dt
≥ 0 , new view:

∂φns

∂t

∣

∣

∣

∣

env

≥ 0 ,

The conventional view was dealing with the total differential whereas the

new view considers the partial differential at constant environment.

The important issue touched upon above can now find an answer. The

gain in mean fitness of the allele population resulting from natural selection

is compensated by the changes in the environment. Accordingly, we have

dφenv < 0 or in other words for the gene the environment deteriorates to

such an extent that the stationarity of the (eco)system is maintained. This

compensation effect reminds of Leigh van Valen’s red queen hypothesis :3 ...

and the Red Queen said to Alice: ”In this place it takes all the running you

can do, to keep in the same place. ...”. This sentence is commonly used as a

metaphor for the requirement of continuing development of an evolutionary

system in order to maintain its (total) fitness relative to the (environmental)

system it is coevolving with. Transferring the metaphor to Fisher’s (peculiar)

definition of environment this means for the allele population at a given

locus: As its mean fitness increases by natural selection the environment

deteriorates to about the same amount.

3The Red Queen is a fictional character in Lewis Carroll’s fantasy novella, Through the

Looking-Glass, which is often mistaken with the Queen of the Heart in Carroll’s previous

book Alice’s Adventures in Wonderland.
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Figure 3.2: Sewall Wright’s fitness landscape. The landscape has been intro-

duced as a metaphor to illustrate evolution [319]. Populations or subpopulations

of species are climbing on landscape with multiple peaks and optimize fitness in

a non-descending or adaptive walk until they occupy local maxima. The fitness

landscape is constructed through assigning a fitness value to every node of the sup-

port graph. Genotype space in Wright’s original concept is recombination space

and as such it is high-dimensional. In the simple sketch here the graph on which

the landscape is plotted is a so-called path graph Pn, which consists of n nodes on

a straight line.

3.2 The Fisher-Wright controversy

Ronald Fisher’s model of evolution, the large population size theory (LST),

is based (i) on the assumption of large panmictic populations,4 (ii) on muta-

tion and natural selection as the major process driving evolutionary change,

(iii) additive genetic effects and context independence of alleles, and (iv) re-

finement of existing adaptations in a stable and slowly changing environment

4Panmixis or panmixia means that there are no restrictions of any kind – be it genetic,

physical or geographical – in mating. Mating partners are chosen fully at random.
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as the ultimate driving force for evolution. Seen from this point of view the

factors giving rise to deviations from the fundamental theorem are minor cor-

rections of the global picture. For example, random drift plays a dominant

role in small population, when genetic effects are predominantly additive and

context independent, epistasis and pleiotropy are negligible.

Sewall Wright’s model contrasts Fisher’s view in many aspects. His model

consists of three logical phases: (i) Random drift leads to semi-isolated sub-

populations or demes within the global population, which are losing fitness

because of accidental loss of fittest genotypes by the mechanisms of Mullers

ratchet,5 (ii) natural selection acts on complex genetic reaction networks and

raises the mean fitness of subpopulations, (iii) interdemic selection raises

the mean fitness of the global population. Eventually, environmental change

shifts the adaptive peaks of mean fitness and drives the dynamics of evolution

[228].

Depending on the species under consideration both evolutionary scenar-

ios, the Fisher scenario and the Wright scenario, can be realized. None of the

two models of evolution has internal inconsistencies that would allow for re-

jection. Thus the dispute between the two scholars is – what the philosophers

call – a relative significance controversy. Both concepts are valid approaches

that apply only to a limited subset of evolutionary scenarios and multiplic-

ity of theoretical approaches is unavoidable at least at the current state of

knowledge. In contrast to the view of most biologists and some philosophers

(see, e.g., [266]) I think there is no need to believe that there will never be

a uniform theory of evolution [249]. The unification, however, will not come

on the phenomenological level of biology, it will be the result of a compre-

hensive theoretical biology that has its basis at the molecular level. The

basis of this optimistic view comes from examples from physics: Electricity

and magnetism were seen as largely unrelated phenomena unless the unifying

theory of electromagnetism was born that found its elegant completion by

James Clerk Maxwell who conceived the famous Maxwell equations.

5Hermann Joseph Muller considered a random drift process in a finite population.

Stochasticity (see chapter 8) will cause a loss of the fittest genotype at some instant, then

the fittest genotype of the rump population will be lost, and so on [90, 220, 221].
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Figure 3.3: Path graphs and binary sequence spaces. The structure of bi-

nary sequence spaces Ql follows straightforwardly from the graph Cartesian prod-

uct of the path graph P2. The definition of the graph Cartesian product is shown

on the lhs of the figure. The sketch on the rhs presents the construction of binary

sequence spaces: Q1 = P2, Q2 = P2 ⊗ P2, Q3 = P2 ⊗Q2 = P2 ⊗ P2 ⊗ P2, and so

on, and Ql = (P2)l.

3.3 Fitness landscapes on sequence spaces

Sewall Wright’s original landscape metaphor was fitness plotted on recombi-

nation space as support. Recombination space is a discrete space with every

possible allele combination or genome represented by a point. It is huge as

Wright has already recognized: For the modest number of two alleles per

gene and about 4000 genes for a bacterium like Escherichia coli there are

24000 = 1.3 × 101204 combinations, and for the human genome with some

30 000 genes this number raises to 230 000 = 7.9 × 109030. These numbers

are so far outside any imagination that one doesn’t need to comment them.

If we assume independent variation corresponding to the absence of linkage

disequilibrium recombination space would have a dimension of several thou-

sand but only two points in every direction – a bizarre object indeed but

such a structure is typical for discrete spaces of combinatorial objects which

are assembled from a set of building blocks. The structure of recombination
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Figure 3.4: Four letter sequence spaces. The sequence space derived from

the four letter alphabet (AT(U)GC; κ = 4) are the Hamming graphs H(l, 4).
The Hamming graph for a single nucleotide is the complete graph H(1, 4) = K4

(lhs) and for the 16 two letter sequences the space is H(2, 4) = K4 ⊗ K4 (rhs).

The general case, the space of sequences of chain length l, H(l, 4) is the graph

Cartesian product with l factors K4.

space has been studied in some detail [269, 272] but we dispense here from

reviewing it, because we shall be mainly concerned with another discrete

formal space, the sequence space here and in the forthcoming chapters.

Despite enormous progress in synthetic biology [137, 196] the possibilities

to construct gene combinations at will are still very limited. For example,

oscillatory gene networks [75] and genetic toggle switches [108] were engi-

neered in bacteria, and various synthetic genetic regulatory elements were

introduced into eukaryotic cells [11, 13], but engineered recombination is still

not achievable at present. Engineering sequences with mutations at arbi-

trary positions has become routine thirty years ago already [96, 155, 184] and

searching a space of sequences is much easier than searching recombination

space therefore.

The idea of sequence space without the explicit notion has been used to

order strings in informatics for quite some time (see, e.g., [133]) before the

word has been coined for proteins [201] and nucleic acids [65]. Like recombi-
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nation space sequence space is a discrete formal space where each sequence

is represented by a point (see, for example, Fig. 4.7 where the sequence space

of binary sequences of length l is used for illustration). The sequence space

for binary sequences is a hypercube Ql of dimension l where l is the sequence

length of the string. The building principle of sequence spaces by means of

the graph Cartesian product is illustrative and can be used for sequences over

arbitrary alphabets and, in particular, also for the natural AT(U)GC alpha-

bet. The Cartesian product of two graphs is illustrated in Fig. 3.3 by means

of two path graphs:6 The product graph, P(1) ⊗P(1) is two-dimensional and

has P(1) on its horizontal and P(2) on its vertical margin, respectively. There

are many ways to visualize binary sequence spaces as hypercubes – one, the

consecutive product of P2 graphs is illustrated in Fig. 3.3:

Ql = P2 ⊗ P2 ⊗ . . . ⊗ P2 =
(

P2

)l
. (3.2)

The advantage of the construction of sequence spaces a graph Cartesian

products has the advantage of being generalizable. If we choose a complete

graph Kκ as unit the consecutive Cartesian product yields the corresponding

sequence space for sequences of chain length l:

Q(κ)
l = K(l, κ) = Kκ ⊗ Kκ ⊗ . . . ⊗ Kκ =

(

Kκ

)l
. (3.3)

The most important case is the natural alphabet with κ = 4 (Fig. 3.4).

Both recombination and sequence spaces are characterized by high di-

mensionality and this makes it difficult to visualize distances. Considering,

for example, the binary sequence space for strings of chain length l = 10 that

contains 210 = 1024 sequences. Were sequence space a (one dimensional)

path graph, the longest distance would be 1023. In two dimensions is would

be 62 and on the hypercube Q(2)
10 it is shrunk to only 10. Both recombination

and sequence space are metric spaces. The most natural metric for sequence

spaces is the Hamming distance dH (see section 4.3.1), for recombination

spaces the construction an appropriate metric is somewhat more involved

and can be done by using graph theory [272].

6A path graph Pn is a one-dimensional graph with n nodes. Two nodes at the ends

have vertex degree one and all other n− 2 nodes have vertex degree two.
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A landscape is obtained through plotting some property on a graph as

support (see Fig. 3.2). On a fitness landscape fitness values are assigned to

the nodes of sequence space. The mathematical analysis of typical landscape

properties, for example correlation functions, on discrete spaces require spe-

cial techniques that are based on the use of Laplace operators on graphs [271].

Landscapes on supports that are combinatorial manifolds like the genomes

obtained by recombination and/or mutation have been studied [238, 239] in

some detail. Since the size of even the smallest sequence spaces is pro-

hibitive for the empirical determination of a fitness landscape, simple models

were used in particular in population genetics. The three most popular are

(i) the additive fitness landscape, (ii) the multiplicative fitness landscape, and

(iii) the single peak fitness landscape. Sequences are grouped around the

fittest genotype. It is assumed that all sequences of a given mutant class

have the same fitness. In the first case all mutations reduce the fitness of the

fittest genotype by a constant increment θ, in the second case by a constant

factor ϕ, and

additive landscape : fj = fm − k θ ∀ Xj ∈ Γk , (3.4a)

multiplicative landscape : fj = fm ϕ
k ∀ Xj ∈ Γk , and (3.4b)

single peak landscape : fj =







f0 if j = m

fn if j 6= m
, (3.4c)

where Γk is the k-th mutant class of the fittest sequence Xm:

Γ
(m)
k : Xi ∈ Γ

(m)
k iff dH(Xi,Xm) = k . (3.5)

Instead of the increment θ and the factor φ one might also use the lowest

fitness value fn for calibration and obtains θ = (f0−fn)/l and φ = (fn/f0)
1/l,

respectively. As we shall later in a detailed discussion of the the properties

of these different types of simple fitness landscapes (section 4.3.3) they are

convenient for mathematical analysis but completely unrealistic.

Empirical knowledge and computer models of biopolymer – protein and

nucleic acid – structures confirm to properties of realistic landscapes: (i) they

are rugged and (ii) they are rich in neutral sequences. Rugged means that
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nearby lying sequences – these are sequences of short Hamming distance –

may have very different fitness values. This is easy to visualize since a single

nucleotide exchange leading to an exchange of an amino acid that is essential

for protein activity may render an enzyme functionless and in consequence

the mutation might be lethal for its carrier. On the other hand, a single nu-

cleotide exchange may have no effect at all and give rise to a neutral variant.

What is true for a single nucleotide exchange already holds as well for mul-

tiple point mutations and other sequence changes Neutrality has been found

early and predicted theoretically when the traces of evolution were discovered

on the molecular level [173, 175]. The existence of a molecular clock of evolu-

tion is one important consequence of neutrality in evolution (for a review see

[183]). One consequence of neutrality is random drift of populations through

sequence space as described by Motoo Kimura’s theory of neutral evolution

[174] (see also section 10.3). Not all sequences are neutral, of course, but

the neutral sequences form neutral networks in sequence space [238, 252] and

these subsets of sequences set the stage for evolutionary dynamics.

The new techniques in molecular genetics provided access to empirical

data of fitness landscapes for protein and nucleic acid evolution. Both basic

features, ruggedness and neutrality were confirmed. Examples are protein fit-

ness landscapes [140], landscapes derived from in vitro evolution of molecules

[3], and a recent extensive study on the HIV-I fitness landscape in presence

and absence of medication [181].
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4. Mutation and selection

Gregor Mendel’s concepts of segregation and independent assortment of

genes during reproduction provides an excellent example of an approximate

statistical law that has been modified by molecular insight but remained cor-

rect as the proper reference for the limit of infinitely frequent recombination.

In case of mutation such an ideal reference does not exist and indeed this

idea of change in the hereditary material has a fascinating history [34].

In this chapter we shall consider the consequences of mutation for evo-

lutionary dynamics. We start by giving a brief historical account on the

sharpening of the originally diffuse notion of mutation and then introduce

chemical kinetics by means of a flow reactor that is useful for both, modeling

and experimental studies. The kinetic model of a chemical reaction network

based on ODEs introduced by Manfred Eigen in which correct replication

and mutation are parallel reaction channels [65, 68, 70–72] replaces the deus

ex machina appearance of mutants by. The formulation of the kinetic equa-

tions for overall replication,1 that is without dwelling into molecular details

is straightforward. Two major results of the mathematical analysis of these

reaction networks are: (i) The formation of well defined stationary states

called quasispecies and (ii) the existence of a maximal mutation rate char-

acterized as error threshold above which no stationary states exist. This

chemical reaction model of evolution has been directly applied to evolution

of RNA molecules in the test-tube (see e.g. [14]), viroids and viruses, and

bacteria as long as recombination plays very little or no role.

Reaction kinetics of RNA replication, for example, is a multi-step pro-

cess that has been investigated at molecular resolution by Christof Biebricher

[17–19] and the established mechanism can be incorporated into the model of

1Here we use replication when we have the molecular mechanism or some over-all

kinetics of it in mind, and characterize the process of multiplication as reproduction when

we don’t refer to the molecular level or when the mechanisms is completely unknown.
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evolution at any level of detail. In this case the extension of the overall kinetic

description of evolution to a comprehensive model that treats replication and

mutation at full molecular detail is possible and will be presented. Quasis-

pecies theory has been applied to virus populations by Esteban Domingo

and turned out to be the proper concept for a description of virus infection

and virus evolution [51, 54, 191]. The error threshold phenomenon provides

a proper frame for the development new antiviral strategies [56]. A dispute

arose whether or not viral quasispecies pass the error threshold before the

die out [30, 31, 283] and we shall present a brief overview of models for lethal

mutagenesis.

For bacteria or higher organism the kinetic model of evolution can be ap-

plied in the same spirit as the ODE models in population genetics but the full

details of reproduction are still in the dark. Nevertheless much progress has

been made within the last ten years The organisms that come closest to full

understanding in the spirit of systems biology are small parasitic bacteria of

the species Mycoplasma. Examples are the works of the Spanish group of Luis

Serrano’s [128, 182, 322] who have almost completed the full biochemistry of

an entire small bacterial cell. About 75% of the approximately 6 000 genes

of a small eukaryote, the yeast Saccharomyces cerevisiae, where studied with

respect to their function and a quantitative genetic interaction profile has

been established [38]. Functional cross-connections between all bioprocesses

were derived from the global network and mapped onto a cellular wiring dia-

gram of pleiotropy. These investigations in essence tell us two things: (i) The

complexity of cellular biology at the molecular level is enormous, and (ii) the

modern techniques of genomics, proteomics, transcriptomics, metabolomics,

and so on, together with conventional biochemistry and biochemical kinet-

ics can be successfully applied to decipher all processes in an entire cell at

molecular resolution, and the data are usable for mathematical modeling and

computer simulation at all levels of complexity.
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4.1 The historical route to mutation

Systematic mutation studies were initiated in Thomas Hunt Morgan’s labo-

ratory. He began his seminal work with the fruit fly Drosophila melanogaster

as animal model around 1910 and was awarded the Nobel Prize 1933 for Phys-

iology for his extensive and path-breaking genetic studies. Later Drosophila

melanogaster 2 became the standard animal for genetic studies mainly be-

cause of its enormous fertility and short (mean) generation time of only 7 to

60 days depending on subspecies on nutrition condition. Morgan’s contribu-

tions were frequently dealing with genes on sexual chromosomes where the

mechanism of gene action can be inferred and discussed more easily because

every species provides two different chromosomal types, male and female.

In the early days of genetics the term mutation was used for all inheritable

changes of phenotypes, no matter whether the cause was a change in the

gene or a rearrangement of the chromosomal structure of the cell. Known,

of course, was the distinction between mutation along the germ line and so-

matic mutation that was not inheritable. The American biologist Hermann

Muller argued that the term mutation should be restricted to variation due

to change in the individual gene [218] and chromosomal changes should be

considered separately since they have a different origin. Examples are poly-

ploidy, gains or losses of entire sets of chromosomes, aneuploidy, gains or

losses of single chromosome in otherwise diploid organisms, and structural

rearrangements of chromosomes. The notion of point mutation had been

created for spontaneous changes in phenotypic properties determined by a

single locus, was not clearly distinguished from the mutation, and got his

meaning only with the discovery of DNA as genetic material.

The idea to increase the natural mutation rate by radiation, mainly X-

rays, in order to produce a diversity of variants was already pursued by the

Morgan group and others but little progress was made. The early attempts

to use radiation failed for several reasons, one of them was the lack of reli-

able dosimeters and the application of wrong doses – low dose for long times.

2Due to a more recent classification of the Drosophilidae the famous model animal

belongs now to the subgenus Sophophora and the official name is Sophophora melanogaster.
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Muller and others found that the occurrence of point mutations increases

linearly with time whereas chromosomal rearrangements showed an expo-

nential time law. By applying high doses Muller was able to increase the

mutation rate by a factor of 150. The technique and the results of Muller’s

systematic studies on X-ray induced mutation [219] were also of great im-

portance for agriculture where human selection of desired variants initiated

a green revolution. Useful mutants were nevertheless rare as the majority

of radiation induced variants that showed a phenotype were lethal. Muller

was awarded the Nobel Prize for Physiology in 1946 for the discovery of the

production of mutations by means of X-ray irradiation. Muller also tried to

distinguish effects from primary radiation impacts, which are mainly identi-

fied with double strand breaks or point mutations originating from damage

repair, and secondary effects that result from chemical mutagenesis caused

by the products of radiation impact on water. Muller’s view was that the

secondary effects dominate and candidates for chemical mutagenesis were

among others hydrogen peroxide – already close to the most potent agent

produced by irradiation of water: the hydroxy radical. Many other chemi-

cals were found to produce or promote mutation, but time was not yet ripe

for chemical models of mutation because the molecular nature of the ge-

netic material was still (at least to a large extent) in the dark. In particular

the clear separation of variants producing processes into mutation, recom-

bination, and major chromosomal rearrangements was impossible without a

knowledge of the molecular structure and function of DNA.

The next major breakthrough in understanding mutation came from bio-

chemistry. George Wells Beadle and Edward Lawrie Tatum found that mu-

tations (can) change the metabolism of the affected mutation carrier [12].

Mutations change genes and the changes genes give rise to modification in

an enzyme that is active in cellular metabolism: The one gene - one enzyme

hypothesis of biology was born. Together with Joshua Lederberg Beadle

and Tatum received the Nobel Prize 1958 in Physiology. Although time was

already overripe for a major step forward in the understanding of the mech-

anisms of reproduction and inheritance, progress in the knowledge about

nucleic acids was relatively slow [167]. It was Watson and Crick’s model of
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Figure 4.1: Point mutation in DNA replication. A misincorporation of a

nucleotide during DNA replication leads to unpaired nucleotides at one position

of the DNA double helix (second line, rhs: highlighted). The next replication step

results in one correct copy and one mutant (third line, rhs: highlighted). The

nucleotides are sketched as beads. Watson-Crick base pairs (A=T and G≡C) are
shown a thick gray lines connecting two beads on opposite strands. Color code: A

green, T magenta, G blue, and C yellow.

DNA structure that changed the situation completely, and the reason for

this new insight is hidden in the famous sentence at the end of the letter

to Nature: ”It has not escaped our notice that the specific pairing we have

postulated immediately suggests a possible copying mechanism for the genetic

material”. As a matter of fact the DNA structure suggested at the same time

a mechanism for the origin and inheritance of point mutations (Fig. 4.1). On

the other hand the consequences of mutations for fitness and evolution were

completely in the dark and still are unknown in many aspects at present.

Many different classes of mutations and major DNA rearrangements were

observed so far. The three most important classes are sketched in Fig. 4.2.

Apart from point mutations deletions and insertions occur rather often. Dele-

tions represent losses of a wide range of sizes, from individual nucleotides to

whole genes or chromosomes. Insertions commonly are duplication of DNA

stretches and they comprise an even wider range of seizes from single nu-
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Figure 4.2: Classes of mutations. The sketch shows the three most common

classes of DNA mutations: (i) point mutations (top, see Fig. 4.1), (ii) deletions

(middle), and (iii) insertions (bottom). Deletion and insertions can be of any size.

Examples for large scale events are gene loss and gene duplication. Eventually,

whole genome duplication events have occurred in evolution. Color code: A green,

U magenta, G blue, and C yellow.

cleotide duplications to gene duplication and duplications of entire genomes.

Gene duplication has been postulated as a major driving force for evolution

by the Japanese Biologist Susumo Ohno [226]. Over the years many instances

of genome duplications that have occurred in the past were found [289]. In

particular, the role of genome duplications in developmental were studied

in detail and the evolution of the Hox genes was found to present excellent

examples for such events [59, 106, 185]. An ancient genome duplication event

in the yeast Saccharomyces cerevisiae is especially well documented [168].
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Figure 4.3: The continuously stirred tank reactor (CSTR). The CSTR is

a device for simulating deterministic and stochastic kinetics in an open system. A

stock solution containing all materials for RNA replication ([A] = a0) including

an RNA polymerase flows continuously at a flow rate r into a well stirred tank

reactor (CSTR) and an equal volume containing a fraction of the reaction mixture

([⋆] = {a, b, ci}) leaves the reactor. A population of RNA molecules in the reactor

(X1,X2, . . . ,Xn present in the numbers N1, N2, . . . , Nn with N =
∑n

i=1Ni) fluc-

tuates around a mean value, N ±
√
N . RNA molecules replicate and mutate in

the reactor, and the fastest replicators are selected. The RNA flow reactor has

been used also as an appropriate model for computer simulations [99, 100, 156, 234],

which allow for the application of other criteria for selection than fast replication.

For example, fitness functions are defined that measure the distance to a prede-

fined target structure and then the mean fitness of the population increases during

the approach towards the target [101].
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4.2 The flow reactor

The theoretical and experimental device of a flow reactor shown in Fig. 4.3

represents an open system that is perfectly suited for studies on evolution-

ary dynamics. The setup explains its name continuously stirred tank reactor

(CSTR). A basic assumption of the theoretical model is instantaneous and

complete mixture of the reactor content at any moment, and spatial homo-

geneity of the solution in the reaction volume allows for the usage of ordinary

rather than partial differential equations for modeling reaction kinetics. Here

we consider replication of RNA molecules as an example of an ensemble of

competitive autocatalytic reactions in the spirit of the selection Equ. (1.9).

The reaction mechanism is of the form

∗
a0 r

−−−→ A , (4.1a)

A + Xj

kj
−−−→ 2Xj ; j = 1, . . . , n , (4.1b)

Xj

kj
−−−→ B ; j = 1, . . . , n , (4.1c)

A
r

−−−→ ∅ , (4.1d)

B

r

−−−→ ∅ , and (4.1e)

Xj

r

−−−→ ∅ ; j = 1, . . . , n . (4.1f)

The symbol A stands for the material required in RNA synthesis and B are

the degradation products of the RNA molecules.3 The flow rate parameter

r is the reciprocal mean residence time of a volume element in the reactor,

r = τ−1R . If the reactor has a volume V then a mean volume V has flown

through it in the time interval ∆t = τ−1R . The influx of A into the reactor

is a so-called zeroth order reaction, because the rate dA = a0r dt does not

depend on concentrations in reaction step (4.1a). The autocatalytic second

order reaction step (4.1b) is identical to the reproduction step in Equ. (1.8)

only here the concentration of A is a variable [A] = a(t). The degradation

reaction of Xj (4.1c) can be united with the outflux of Xj (4.1f) yielding a

3For the sake of simplicity we lump all building blocks Ai and all degradation products

Bi (i = 1, 2, . . .) together in a single symbol.
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rate parameter of kj + r unless B enters the system again via a chemical or

photochemical recycling reaction B+D→ A or B+ hν → A. The reaction

steps (4.1d-4.1f) eventually describe the outflux of the reactor content that

compensates the increase in volume through influx of stock solution.

The mechanism (4.1) can be casted into a chemical master equation or

modeled by stochastic processes. Here we shall assume large population

sizes and use ODEs for modeling. The kinetic equations, with [A] = a and

[Xj ] = cj , are of the form

da

dt
= − a

n
∑

j=1

kjcj + r (a0 − a) ,

dcj
dt

= cj
(

a kj − r
)

; j = 1, . . . , n ,

(4.2)

and can be readily analyzed with respect to long time behavior. For this goal

we introduce a total concentration of replicators, c =
∑n

i=1 ci, that fulfils

dc

dt
= c (a φ − r) with φ(t) =

1

c

n
∑

i=1

ki ci (4.3)

being the mean replication rate parameter. The total concentration of ma-

terial in the flow reactor, C = a+ c, fulfils the kinetic equation

dC

dt
=

da

dt
+

dc

dt
= r (a0 − C) .

From dC/dt = 0 follows the stationarity condition C̄ = ā + c̄ = a0, and two

more conditions derived from da/dt = 0 and dc/dt = 0 yield:

(i) P (1) : c̄(1) = 0 and ā(1) = a0,

(ii) P (2) : c̄(2) = a0 − r/φ̄ and ā(2) = r/φ̄ .

Thus, we have a state of extinction, P (1), with c̄ = 0 ⇒ c̄j = 0 (j = 1, . . . , n),

and n active states Pj belonging to P (2)), with different combinations of the

individual concentrations c̄j . For these states the conditions dcj/dt = 0 are

fulfilled by n different solutions

c̄i = 0 for all i 6= j ; i = 1, . . . , n , c̄j = a0 −
r

kj
and

ā =
r

kj
for j = 1, . . . , n and r < kj a0

(4.4)
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where for a physically meaningful stationary point Pj all concentrations have

to be nonnegative.

In order to derive the stability of the different stationary states we calcu-

late the Jacobian matrix

A =



















−∑n
i=1 kici − r −k1a −k2a . . . −kna
k1c1 k1a− r 0 . . . 0

k2c2 0 k2a− r . . . 0
...

...
...

. . .
...

kncn 0 0 . . . kna− r



















.

At the stationary point Pj with c̄j(Pj) and ā(Pj) as given in Equ. (4.4) we

obtain

A =



























−kja0 −k1
kj
r . . . −r . . . −kn

kj
r

0
(

k1
kj
− 1
)

r . . . 0 . . . 0
...

...
. . .

...
. . .

...

kja0 − r 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . 0 . . .
(

kn
kj
− 1
)

r



























.

The corresponding eigenvalue problem can be solved analytically and yields

for Pj :

λ0 = − r ,

λ1 =
k1 − kj
kj

r ,

...

λj = − kj a0 + r ,
...

λn =
kn − kj
kj

r ,

(4.5)

A stationary state is stable if and only if all eigenvalues are negative. Con-

sidering Equ. (4.5) λ0 is always negative, λj is negative provided r < kj a0,
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and the sign of all other eigenvalues λi (i 6= j) is given by the sign of the

difference ki − kj. In the non-degenerate case – the parameters ki are all

different – the only stable stationary state Pm with j ≡ m is defined by

km = max{k1, k2, . . . , kn} .

From λm = −kma0+r follows that Pm is also the state that has only positive

concentrations up to the largest flow rate, r = km a0, see (4.4).

The analysis of (competitive) replication in the flow reactor provides three

results: (i) Flow rates above a critical limit lead to extinction, (ii) within a

given ensemble of replicating molecules selection in the Darwinian sense of

survival of the fittest takes place, i.e. the molecular species with the largest

replication rate constant fm = max{fj}, and (iii) the mean replication rate

parameter of a population is the quantity that is optimized.

A modified flow reactor with automatic control of the flow rate facilitates

the analysis of the kinetic differential equations. The flow rate r(t) is regu-

lated such that the total concentrations of replicators is constant, c = c0:
4

n
∑

i=1

dci
dt

= 0 =

n
∑

i=1

ci(a ki − r) = c0 (a · φ − r) , and

r = a · φ . (4.6)

Equ. (4.6) is readily interpreted: In order to keep the concentration of repli-

cators constant, the flow rate has to be raised when either the concentration

of A or the mean replication rate of the population, φ, increases. The con-

servation relation c = c0 reduces the number of independent variables from

n+1 to n: a and n−1 concentration variables cj. The kinetic equations can

be written now

da

dt
= a φ (a0 − c0 − a) and

dcj
dt

= a cj (kj − φ) , j = 1, 2, . . . , n− 1 .

4Reactors called cellstat or turbidostat serve this goal. Such devices are used, for

example, in microbiology to maintain constant concentrations of bacteria [29, 153, 154,

197]. The concentration of particles is monitored and regulated by parameters like optical

turbidity or dielectric permittivity.
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The remaining concentration and the mean replication rate parameter are

defined by

cn = c0 −
n−1
∑

i=1

ci and φ =
1

c0

(

knc0 +
n−1
∑

i=1

(ki − kn)ci
)

.

Multiplication of the time axis by the factor a(t) > 0, dτ = a(t) dt, yields:

dcj
dτ

= cj (kj − φ) , j = 1, 2, . . . , n− 1 , and (4.7)

da

dτ
= (a0 − c0 − a)φ , with

dφ

dτ
= var{k} .

Equ. (4.7) is self-contained in the sense that it does not require information

on a(t) to be solved, although a(t) is contained in the transformed time axis

τ . The coupled differential equation for a(t) on the other hand requires ex-

plicit knowledge of the variables cj(t), which appear in φ(t). Equ. (4.7) is

also formally identical with Equ. (1.14), which has been derived under the

assumption of constant total concentration,
∑n

i=1 ci = c0 and constant con-

centration of A: [A] = a0, which corresponds to a large reservoir of building

blocks. Then, a0 can be incorporated into the rate parameters, fj = kj · a0,
obtaining thereby the analog of Equ. (1.14):

dcj
dt

= cj (fj − φ) ; j = 1, 2, . . . , n− 1 . (4.7’)

This condition simplifying the analysis of the kinetic equations is called con-

stant organization in the kinetic theory of molecular evolution [71] and used

also in population genetics. As far as the dimensions of the variables, the rate

parameters and the mean replication rate is concerned there is a subtle dif-

ference: [k] = [φ] = [time−1 · concentration−1] and [τ ] = [time · concentration]
in Equ. (4.7), whereas in the equation above [f ] = [φ] = [time−1] and

[t] = [time]. The two ODEs (4.7) and (4.7’) are a nice example of two

dynamical systems with identical trajectories and different solution curves

because of different time axes.
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Figure 4.4: Consecutive mutations. Consecutive point mutations propagate

into sequence space and are properly group in mutant classes Γk where k is the

Hamming distance from the reference sequence in Γ0. For binary sequences (κ = 2)

the numbers of sequences in mutant class k follows the binomial distribution:

|Γk| =
( l
k

)

, and in the general case we have |Γk| = (κ− 1)k
( l
k

)

. The figure sketches

the sequence spaces of binary (lhs) and natural (AUGC) sequences (rhs) of chain

length l = 3.

4.3 Replication and mutation

The interplay of replication, mutation, and selection is a core issue of Dar-

winian evolution, which could not be properly approach before knowledge

on structures and functions of the molecules involved in the process became

available. In particular, the accessibility of mutants requires knowledge on

the mechanism of mutation and the internal structure of a mutation space.

In section 3.3 we discussed the sequence space as the mutation compatible

ordering principle of sequences and considered it as the appropriate support

for fitness landscapes. Mathematically the internal structure of sequence

space is given by the properties of the Hamming graph H(l, κ) where l is the
chain length of the sequence and κ the size of the nucleobase alphabet. Evo-

lution proceeding via consecutive mutations is confined by the properties of

sequence space as sketched in Fig. 4.4 for the paths determined by point mu-

tations. The size of the nucleobase alphabet clearly determines the diversity
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Figure 4.5: A molecular view of replication and mutation. The replication

device E, commonly a replicase molecule or a multi-enzyme complex (violet) binds

the template DNA or RNA molecule (Xj, orange) in order to form a replication

complex E ·Xj with a binding constant Hj = h+j [E][Xj]
/

h−j [E ·Xj ] and replicates

with a rate parameter fj. During the template copying process reaction channels

leading to mutations are opened through replication errors. The reaction leads to a

correct copy with frequency Qjj and to a mutant Xk with frequency Qkj commonly

with Qjj ≫ Qkj ∀ k 6= j. Stoichiometry of replication requires
∑n

i=1 Qij = 1, since

the product has to be either correct or incorrect. The reaction is terminated by

full dissociation of the replication complex. The sum of all activated monomers is

denoted by A.

of mutations. For a binary sequence of length l the number of mutants with

k errors being the number of sequences in the mutant class Γk is simply given

by the binomial distribution: |Γk| =
(

l
k

)

. The formula is easily generalized

to an alphabet with κ letters: |Γk(κ; l)| = (κ − 1)l
(

l
k

)

. The change in pop-

ulation structure due to mutation is determined by the branching structure

of the mutation tree. Since mutant diversity increases fast with increasing

number of consecutive mutants being tantamount to the Hamming distance

dH from the reference sequence the question arises, how large is the fraction

of mutants that can be tolerated by intact inheritance. After introducing

a mathematical model for mutation based evolution we shall return to the

problem of error tolerance in consecutive replication.



Evolutionary Dynamics 101

4.3.1 Mutation-selection equation

As follows from the logic of mutation shown in Fig. 4.1 correct replication

and mutation are parallel chemical reactions, which are initiated in the same

way. A sketch of such a mechanism is shown in Fig. 4.5: A replication device

– a single single-strand DNA replicating enzyme in the polymerase chain re-

action (PCR), an RNA-specific RNA polymerase in most cases of viral RNA

replication or a large multi-enzyme complex in DNA double-strand repli-

cation – binds the template, replication is initiated and correct replication

and mutations represent different replication channels, since replication er-

rors occur on the fly. When replication is completed the complex between

template, product, and replication device dissociates. We distinguish direct

replication, X → 2X, and complementary replication, X(+) → X
(−) + X

(+)

and X
(−) → X

(+) + X
(−), where the former is typical for DNA replication

of all organisms and the latter occurs commonly with RNA single-strand

viruses. Here, we start by considering direct application first and shall show

later that complementary replication under almost all reasonable conditions

can be well approximated by a single overall direct replication step.

In order to introduce mutations into selection dynamics Manfred Eigen

[65] conceived a kinetic model based on overall stoichiometric equations,

which handle correct replication and mutation of an asexually reproducing

species as parallel reactions (Fig. 4.5)

(A) + Xi

Qjifi
−−−→ Xj + Xi ; i, j = 1, . . . , n . (4.8)

Since A is assumed to be present in excess it is a constant and contained as

a factor in the rate parameter fj = a0 kj

In normalized coordinates (4.8) corresponds to a differential equation of

the form

dxj
dt

=
n
∑

i=1

Qjifi xi − xj φ(t) ; j = 1, . . . , n ;
n
∑

i=1

xi = 1 . (4.9)

The finite size constraint φ(t) =
∑n

i=1 fixi is precisely the same as in the

mutation-free case (1.14), and the integrating factor transformation [329,
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p. 322ff.] can be used to solve the differential equation [165, 285]:

zj(t) = xj(t) exp

(
∫ t

0

φ(τ)dτ

)

with exp

(
∫ t

0

φ(τ)dτ

)

=

n
∑

i=1

zi(t) ,

Insertion into Equ. (4.9) yields

d

dt

(

zj(t) e
−

t∫

0

φ(τ)dτ

)

=
dzj
dt

e
−

t∫

0

φ(τ)dτ
+ zj(t)

d

dt
e
−

t∫

0

φ(τ)dτ
=

=
dzj
dt

e
−

t∫

0

φ(τ)dτ
− zj(t) e

−
t∫

0

φ(τ)dτ
φ(t) =

=

(

n
∑

i=1

Qjifi zi(t) − zj(t)φ(t)

)

e
−

t∫

0

φ(τ)dτ
,

dzj
dt

= Qjifi zi(t) or
dz

dt
= Q · F · z = W · z . (4.10)

The transformation turns the mildly nonlinear ODE (4.9) into a linear equa-

tion, which can be solved by standard mathematical techniques. All pa-

rameters are contained in the two n × n matrices, the mutation matrix Q,

the fitness matrix F: The mutation frequencies are subsumed in the ma-

trix Q = {Qji} with Qji being the probability that Xj is obtained as an

error copy of Xi. The fitness values are the elements of a diagonal matrix

F = {Fij = fi δi,j} and the value matrix W finally, is the product of the two

matrices: W = Q · F = {Wji = Qjifi}.
Provided matrix W is diagonalizable, which will always be the case if

the mutation matrix Q and the fitness matrix F are based on real chemical

reaction mechanisms, we can transform variables by means of the two n× n
matrices B = {bij} and B−1 = H = {hij} (i, j = 1, . . . , n),

z(t) = B · ζ(t) and ζ(t) = B−1 · z(t) = H · z(t) ,

such that B−1 ·W ·B = Λ is diagonal and its elements, λk, are the eigenvalues

of the matrix W. The right-hand eigenvectors of W are given by the columns

of B, bj = (bi,j; i = 1, . . . , n), and the left-hand eigenvectors by the rows of

B−1 = H, hk = (hk,i; i = 1, . . . , n), respectively. These eigenvectors are the

normal modes of mutation-selection kinetics.
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For strictly positive off-diagonal elements of W, implying the same for

Q, which implies nothing more than every mutation Xi → Xj has to be

possible although the probability of occurrence might be extremely small,

Perron-Frobenius theorem holds (see, for example, [259] and below) and we

are dealing with a non-degenerate largest eigenvalue λ0,

λ0 > |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . ≥ |λn| , (4.11)

and a corresponding dominant eigenvector b0 with strictly positive compo-

nents, bi0 > 0 ∀ i = 1, . . . , n.5 In terms of components the differential equation

in ζ has the solutions

ζk(t) = ζk(0) exp(λk t) . (4.12)

Transformation back into the variables z yields

zj(t) =

n−1
∑

k=0

bjk βk(0) exp(λk t) , (4.13)

with the initial conditions encapsulated in the equation

βk(0) =
n
∑

i=1

hki zi(0) =
n
∑

i=1

hki xi(0) . (4.14)

From here we obtain the solutions in the original variables xj through inverse

transformation and normalization

xj(t) =

∑n−1
k=0 bjk βk(0) exp(λk t)

∑n
i=1

∑n−1
k=0 bik βk(0) exp(λk t)

. (4.15)

For sufficiently long times the contribution of the largest eigenvalue domi-

nates the summations and we find for the long time solutions

xj(t) ≈
bj0 β0(0) exp(λ0 t)

∑n
i=1 bi0 β0(0) exp(λ0 t)

and

lim
t→∞

xj(t) = x̄j =
bj0 β0(0)

∑n
i=1 bi0 β0(0)

,

(4.16)

5We introduce here an asymmetry in numbering rows and columns in order to point at

the special properties of the largest eigenvalue λ0 and the dominant eigenvector b0.
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which represent the components of the stationary population vector denoted

by Υ = (x̄1, . . . , x̄n). Solution curves Υ(t) =
(

x1(t), . . . , xn(t)
)

and station-

ary mutant distributions Υ were derived here in terms of the eigenvectors of

the matrix W and can be obtained by numerical computation. Highly flexible

and accurate computer codes for matrix diagonalization are available and the

only problem that the numerical approach visualizes is high-dimensionality

since n is commonly very large.

Perron-Frobenius theorem comes in two versions [259], which we shall
now apply to the selection-mutation problem. The stronger version provides
a proof for six properties of the largest eigenvector of non-negative primitive
matrices6 T:

(i) The largest eigenvalue is real and positive, λ0 > 0,

(ii) a strictly positive right eigenvector ℓ0 and a strictly positive left eigen-
vector h0 are associated with λ0,

(iii) λ0 > |λk| holds for all eigenvalues λk 6= λ0,

(iv) the eigenvectors associated with λ0 are unique up to constant factors,

(v) if 0 ≤ B ≤ T is fulfilled and β is an eigenvalue of B, then |β| ≤ λ0,
and, moreover, |β| = λ0 implies B = T,

(vi) λ0 is a simple root of the characteristic equation of T.

The weaker version of the theorem holds for irreducible matrices7 T. All
the above given assertions hold except (iii) has to be replaced by the weaker
statement

(iii) λ0 ≥ |λk| holds for all eigenvalues λk 6= λ0.

Irreducible cyclic matrices can be used straightforwardly as examples in or-
der to demonstrate the existence of conjugate complex eigenvalues. Perron-
Frobenius theorem, in its strict or weaker form, holds not only for strictly

6A square non-negative matrix T = {tij ; i, j = 1, . . . , n; tij ≥ 0} is called primitive if
there exists a positive integer m such that Tm is strictly positive: Tm > 0 which implies

Tm = {t(m)
ij ; i, j = 1, . . . , n; t

(m)
ij > 0}.

7A square non-negative matrix T = {tij ; i, j = 1, . . . , n; tij ≥ 0} is called irreducible if
for every pair (i, j) of its index set there exists a positive integer mij ≡ m(i, j) such that
t
mij

ij > 0. An irreducible matrix is called cyclic with period d, if the period of (all) its
indices satisfies d > 1, and it is said to be acyclic if d = 1.
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positive matrices T > 0 but also for large classes of mutation or value ma-
trices (W ≡ T being a primitive or an irreducible non-negative matrix) with
off-diagonal zero entries corresponding to zero mutation rates. The occur-
rence of a non-zero element t

(m)
ij in Tm implies the existence of a mutation

path Xj → Xk → . . .→ Xl → Xi with non-zero mutation frequencies for ev-
ery individual step. This condition is almost always fulfilled in real systems.

The stationary solutions of the mutation-selection Equ. (4.9) represent

the genetic reservoirs of an asexually reproducing populations or species,

and have been called quasispecies therefore. The quasispecies is defined upon

sequence space or upon a subspace of sequence space (see chapter 3). The

condition for its existence in the sense of Perron-Frobenius theorem requires

that every sequence can be reached from every other sequence along a finite-

length path of single point mutations in the mutation network.8 In addition

the quasispecies contains all mutants at nonzero concentrations (x̄i > 0 ∀ i =
1, . . . , n). In other words, after sufficiently long time a kind of mutation

equilibrium is reached at which all mutants are present in the population.

In absence of neutral variants and in the limit of small mutation rates (see

chapter 5) the quasispecies consists of a master sequence, the fittest sequence

Xm : {fm = max(fi; i = 1, . . . , n)}, and its mutants, Xj (j = 1, . . . , n, i 6=
m), which are present at concentrations that are, in essence, determined

by their own fitness fj , the fitness of the master fm and the off-diagonal

element of the mutation matrix Qjm that depends on the Hamming distance9

from the master sequence dH(Xj ,Xm)
(

see Equ.(4.23)
)

. The coefficient of

the first term in Equ. (4.9) for any sequence Xj can be partitioned into two

parts: (i) the selective value Wjj = Qjj · fj and (ii) the mutational flow

Ωj =
∑n

i=1,i 6=j Qji · fi. For the master sequence Xj the two quantities, the

8By definition of fitness values, fi ≥ 0, and by definition of mutation frequencies,

Qji ≥ 0 where in both cases the greater sign (>) is valid for at least in one species, W is a

non-negative matrix and the reachability condition boils down to the condition: Wk ≫ 0,

i.e. there exists a k such that Wk has exclusively positive entries and Perron-Frobenius

theorem applies [259].
9The Hamming distance named after Richard Hamming counts the number of positions

in which two aligned sequences differ. The appropriate alignment of two sequences requires

knowledge of their functions [215]. Here, we shall be concerned only with the simplest case:

end-to-end alignment of sequences of equal lengths.
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selective value of the master, Wmm and the mutational backflow Ωm are of

particular importance as we shall see in the discussion of strong quasispecies.

At sufficiently large mutation rates it may also happen that another relatively

fit sequence replaces the original master sequence, because its mutational

backflow overcompensates the fitness difference. This replacement concerns

not only the master sequence but also its mutation cloud: one quasispecies

is replaced by another one (subsection 5.2.2).

Quasispecies in the sense of stationary mutant distribution are experi-

mentally observed and can be quantitatively predicted in evolution of RNA

in the test tube [14, 15]. Mutant distribution in viroid and virus populations,

and in bacteria and can be subjected to quantitative analysis. The majority

of investigations were done on RNA viruses [52] and these studies revealed

that the question of stationarity of mutant distribution in the sense of a qua-

sispecies cannot be confirmed. Because of the high mutation rates and the

strong selection pressure exerted by the host’s immune system the popula-

tions may never reach stationary states [53, 66, 149]. Modeling evolution by

means of ODEs raises also several other questions that don’t have trivial an-

swers and are touching general problems concerning the conventional present

view of evolution to which we shall come back in chapter 8.

4.3.2 Quasispecies and optimization

The selection problem has been illustrated in Fig.1.4 by means of trajectories

on the unit simplex S
(1)
3 . We recall that – independently of the dimension of

the system – all corners of the unit simplex,

ej = (xj = 1; xi = 0 ∀ i = 1, . . . , n; i 6= j) ,

were stationary states and all of them were saddle points except em corre-

sponding to the sequence Xm with the highest fitness, fm = max{fj; j =

1, . . . , n}, which represents the only asymptotically stable point of the sys-

tem.10 Considering the position of em on the linear surface of mean fitness

10Precisely speaking, the corner el corresponding to the sequence Xl with the lowest

fitness, fl = min{fj; j = 1, . . . , n}, is not a saddle point but a source, unless one takes into

account as well the mode of convergence towards the simplex.
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φ(x) =
∑n

i=1 fixi we recognize that maximal fitness is, of course, not the

highest point of the fitness surface that extends to infinity but the highest

point on the intersection of the physically acceptable subset S
(1)
n of R(n) and

fitness surface φ(x). Highest (or lowest) points of this kind are often called

corner equilibria.

In order to consider the optimization problem in the selection-mutation

case, we choose the eigenvectors of W as the basis of a new coordinate system

shown in Fig. 4.6:

x(t) =

n
∑

i=1

xk(t) ei =

n−1
∑

k=0

ξk(t) · bk ,

wherein the vectors ei are the unit eigenvectors of the conventional Cartesian

coordinate system and bk the eigenvectors of W. The unit eigenvectors repre-

sent the corners of S
(1)
n and in complete analogy we denote the space defined

by the vectors bk as S̃
(1)
n . Formally, the transformed differential equation

dξk
dt

= ξk (λk − φ) , k = 0, 1, . . . , n− 1 with φ =
n−1
∑

k=0

λkξk = λ

is identical to Equ. (1.14) and hence the solutions are the same,

ξk(t) = ξk(0) exp

(

λk t −
∫ t

0

φ(τ) dτ

)

, k = 0, 1, . . . , n− 1 ,

as well as the maximum principle on the simplex S̃
(1)
n

dφ

dt
=

n−1
∑

k=0

dξk
dt

λk =
n−1
∑

k=0

ξk λk (λk − φ) = < λ2 > − < λ >2 ≥ 0 . (1.20a)

The difference between the representation of selection and selection-mutation

comes from the fact that the simplex S̃n does not coincide with the physi-

cally defined space Sn (see Fig. 4.6 for a low-dimensional example). Indeed

only the dominant eigenvector b0 lies in the interior of S
(1)
n : It represent the

stable stationary distribution of genotypes called quasispecies [70] towards

which the solutions of the differential Equ. (4.9) converge. All other n − 1

eigenvectors, b1, . . . , bn−1 lie outside S
(1)
n in the not physical range where one
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Figure 4.6: The quasispecies on the unit simplex. Shown is the case of

three variables (x1, x2, x3) on S
(1)
3 . The dominant eigenvector, the quasispecies

denoted by b0, is shown together with the two other eigenvectors, b1 and b2. The

simplex is partitioned into an optimization cone (white; red trajectories) where

the mean replication rate f̄(t) is optimized, a second zone, the master cone where

f̄(t) always decreases (white; blue trajectory), and two other zones where may

increase, decrease or change nonmonotonously (grey; green trajectories). In this

illustration X3 is chosen to be the master sequence. Solution curves are presented

as parametric plots x(t). In particular, the parameter values are: f1 = 1.9 [t−1],
f2 = 2.0 [t−1], and f3 = 2.1 [t−1], the Q-matrix was assumed to be bistochastic with

the elements Qii = 0.98 and Qij = 0.01 for i, j = {1, 2, 3}. Then the eigenvalues

and eigenvectors of W are:

k λk b1k b2k b3k

1 2.065 0.093 0.165 0.742

2 1.958 0.170 1.078 -0.248

3 1.857 1.327 -0.224 -0.103

The mean replication rate f̄(t) is monotonously increasing along red trajecto-
ries, monotonously decreasing along the blue trajectory, and not necessarily
monotonous along green trajectories.
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or more variables xi are negative. The quasispecies b0 is commonly dom-

inated by a single genotype, the master sequence Xm, having the largest

stationary relative concentration: x̄m ≫ x̄i ∀ i 6= m, reflecting, for not too

large mutation rates, the same sequence in the elements of the matrix W:

Wmm ≫Wii ∀ i 6= m. As sketched in Fig. 4.6 the quasispecies is then situated

close to the unit vector em in the interior of S
(1)
n .

For the discussion of the optimization behavior the simplex is partitioned

into three zones: (i) The zone of maximization of φ(t), the (large) lower

white area in Fig. 4.6 where Equ. (1.20a) holds and which we shall denote

as optimization cone,11 (ii) the zone that includes the unit vector of the

master sequence, em, and the quasispecies, b0, as corners, and that we shall

characterize as master cone,11 and (iii) the remaining part of the simplex

S
(1)
n (two zones colored grey in Fig. 4.6). It is straightforward to proof that

increase of φ(t) and monotonous convergence towards the quasispecies is

restricted to the optimization cone [256]. From the properties of the selection

Equ. (1.14) we recall and conclude that the boundaries of the simplex S̃
(1)
n

are invariant sets. This implies that no orbit of the differential Equ. (4.9) can

cross these boundaries. The boundaries of S
(1)
n , on the other hand, are not

invariant but have the restriction that they can be crossed exclusively in one

direction: from outside to inside.12 Therefore, a solution curve starting in

the optimization cone or in the master cone will stay inside the cone where

it started and eventually converge towards the quasispecies, b0.

In zone (ii), the master cone, all variables ξk except ξ0 are negative and ξ0

is larger than one in order to fulfill the L(1)-norm condition
∑n−1

k=0 ξk = 1. In

order to analyze the behavior of φ(t) we split the variables into two groups,

ξ0 the frequency of the quasispecies and the rest [256], {ξk; k = 1, . . . , n− 1}
11The exact geometry of the optimization cone or the master cone is a polyhedron that

can be approximated by a pyramid rather than a cone. Nevertheless we prefer the inexact

notion cone because it is easier to memorize and to imagine in high-dimensional space.
12This is shown easily by analyzing the differential equation, but follows also from the

physical background: No acceptable process can lead to negative particle numbers or

concentrations. It can, however, start at zero concentrations and this means the orbit

begins at the boundary and goes into the interior of the physical concentration space, here

the simplex S
(1)
n .
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with
∑n−1

k=1 ξk = 1− ξ0:

dφ

dt
= λ20ξ0 +

n−1
∑

k=1

λ2kξk −
(

λ0ξ0 +

n−1
∑

k=1

λkξk

)2

.

Next we replace the distribution of λk values in the second group by a single

λ-value, λ̃ and find:

dφ

dt
= λ20ξ0 + λ̃2(1− ξ0) −

(

λ0ξ0 + λ̃(1− ξ0)
)2

.

After a view simple algebraic operations we find eventually

dφ

dt
= ξ0 (1− ξ0) (λ0 − λ̃)2 . (4.17)

For the master cone with ξ0 ≥ 1, this implies dφ(t)/dt ≤ 0, the flux is a

non-increasing function of time. Since we are only interested in the sign of

dφ/dt, the result is exact, because we could use the mean value λ̃ = λ̄ =

(
∑n−1

k=1 λkξk)/(1 − ξ0), the largest possible value λ1 or the smallest possi-

ble value λn−1 without changing the conclusion. Clearly, the distribution

of λk-values matters for quantitative results. As it has to be, Equ. (4.17)

applies also to the optimization cone and gives the correct result that φ(t)

is non-decreasing. Decrease of mean fitness or flux φ(t) in the master cone

is readily illustrated: Consider, for example, a homogeneous population of

the master sequence as initial condition: xm(0) = 1 and φ(0) = fm. The

population becomes inhomogeneous because mutants are formed. Since all

mutants have lower replication constants by definition, (fi < fm ∀ i 6= m),

φ becomes smaller. Finally, the distribution approaches the quasispecies b0

and limt→∞ φ(t) = λ0 < fm.

An extension of the analysis from the master cone to the grey zones, where

not all ξk values with k 6= 0 are negative, is not possible. It has been shown

by means of numerical examples that dφ(t)/dt may show nonmonotonous

behavior and can go through a maximum or a minimum at finite time [256].

4.3.3 Error thresholds

How many mutations per generation can be tolerated without jeopardizing

inheritance? This is a proper question that is very hard to analyze without
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Figure 4.7: Mutant classes in sequence space. The sketch shows the sequence
space for binary sequences of chain length l = 5, which are given in terms of
their decadic encodings: ”0”≡ 00000, ”1”≡ 00001, . . . , ”31”≡ 11111. All pairs
of sequences with Hamming distance dH = 1 are connected by red lines. The
number of sequences in mutant class k is

(

l
k

)

.

a theory that has a direct access on the dependence of mutant distribution

on the mutation frequency. For conventional population genetics it is not

simple to give an answer, because mutations are not part of the evolutionary

dynamics modeled. In the theory based on chemical kinetics of replication,

however, mutation is just another replication channel and propagation of

errors is part of the system. Here, an analytical expression for the stationary

mutant distribution – the quasispecies Ῡ – as a function of the error rate

will be provided by means of the zero mutational backflow approximation. A

limit for error propagation, which is compatible with evolution, is derived and

the results are compared with perturbation theory and accurate numerical

results. Eventually we present a proof for the existence of a phase transition-

like error threshold.
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Neglect of mutational backflow approximation. Neglect of mutational back-

flow from mutants to the master sequence allows for the derivation of ana-

lytical approximations for the quasispecies [65, 67]. The backflow is of the

form

Φm←(i) =

n
∑

i=1

Qmifix̄i =

n
∑

i=1

Wmi x̄i ,

and if Wmi << |Wmm −Wii| (i 6= m) is fulfilled Qmi = 0 ∀ i = 1, . . . , n; i 6=
m is a valid approximation for small mutation rates [280]. Insertion into

equation (4.9) yields the following ODE for the master sequence13

dx
(0)
m

dt
= (Wmm − φ) x(0)m = (Qmm fm − φ) x(0)m . (4.18a)

dx
(0)
j

dt
= Wjm x

(0)
m − φ x

(0)
j = Qjm fm x

(0)
m − φ x

(0)
j . (4.18b)

The differential equation (4.18a) sustains two stationary states: (i) x̄
(0)
m = 0,

the state of extinction, and (ii) Qmmfm − φ = 0. In the latter case we split

φ as we did previously:

φ =

n
∑

i=1

fi x
(0)
i = fm x

(0)
m +

n
∑

i=1,i 6=m

fi x
(0)
i = fm x

(0)
m + (1− x(0)m ) f−m

with f−m =
1

1− xm

n
∑

i=1,i 6=m

fi xi .

Insertion into condition (ii) yields

Qmm fm − fm x̄
(0)
m − (1− x̄(0)m ) f−m ,

which can be evaluated to yield an expression for x̄
(0)
m . For known concen-

trations of the master sequence we obtain the concentration of the mutants

from equation (4.18b). For simplicity we introduce the assumption of the

single peak landscape leading to f−m = f :

x̄
(0)
j =

Qjm fm x̄
(0)
m

(fm − f) x̄(0)m + f
.

13The superscript ‘(0)’ stands for zeroth order perturbation theory and means (total)

neglect of mutational backflow, although the approach does not correspond to a defined

order of perturbation theory (see next paragraph).
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which after some algebraic operations leads to an equation for the stationary

concentrations of all members of the quasispecies

x̄(0)m =
Wmm − f−m
fm − f−m

=
Qmm − σ−1m

1− σ−1m

, (4.19a)

x̄
(0)
j = εdi0 x̄(0)m ; j = 1, . . . , n , j 6= m (4.19b)

with σm = fm
/

f−m = fm
/

f and ε =
p

1− p.

The superiority σm is a measure of the advantage in fitness the master has

over the rest of the population, and f−m is the mean fitness of this rest.14 In

case of the single peak fitness landscape we have the trivial result: f−m = f .

The superiority of the master sequence can also be understood as an empirical

quantity that can be determined through direct measurements of replication

efficiencies of cloned sequences.

In order to gain basic insight into evolutionary dynamics we introduce

the uniform error rate model. Any polynucleotide sequence is represented

by a string, Xj =
(

s
(j)
1 , s

(j)
2 , . . . , s

(j)
n

)

with s
(j)
1 ∈ {A,U,G,C}. The uniform

error model assumes that the point mutation rate p (s
(j)
i ) is independent of

the site si, the nucleobase where the mutation goes (A→U, A→G or A→C,

for example), and the particular sequence Xj . We can interpret the uniform

error rate model, for example, by the application of a mean mutation rate per

site and reproduction event p. As a matter of fact this assumption is often

violated: There exist, for example, hot spots for mutation where mutations

are substantially more frequent than in other regions of the sequence. In

general, however, the uniform error rate model turned out to be extremely

useful because it is sufficiently realistic and at the same time accessible to

rigorous mathematical analysis. Further simplification is introduced by the

use of binary rather than four-letter sequences.15 Then, diagonal and off-

14An exact calculation of f−m is difficult because it requires knowledge of the stationary

concentrations of all variants in the population: x̄i; x = 1, . . . , n. For computational details

see [67, 68, 71, 250].
15It should be noted that artificially synthesized two letter (DU; D = 2,6-diamino-

purine) ribozymes have perfect catalytic properties [237].
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diagonal elements of matrix Q are of the simple form

Qii = (1− p)l and

Qji = (1− p)l−dH(Xj ,Xi) p dH(Xj ,Xi) = (1− p)lεdH(Xj ,Xi)

with ε =
p

1− p ,
(4.20)

wherein the Hamming distance dH(Xi,Xj) counts the numbers of positions

in which the two aligned sequences Xl and Xj differ. It is worth noticing that

the Hamming distance is symmetric dH(Xi,Xj) = dH(Xj ,Xi) and this is one

of the three properties required for a metric:

(i) dH(Xi,Xj) = 0,

(ii) dH(Xi,Xj) = dH(Xj,Xi) (symmetry), and

(iii) dH(Xi,Xj) + dH(Xj,Xk) ≥ dH(Xi,Xk) (triangle inequality).

Indeed, the Hamming distance induces a metric in sequence space (chapter 3).

Equ. (4.20) allows for a calculation of all elements of the mutation matrix Q

from three parameters only: (i) the point mutation rate p, (ii) the lengths of

the sequences expressed in the number of nucleotides l, and (iii) the Hamming

distance dH. For given sequences of the same length l and dH are known and

p is the only free parameter apart from the fitness values fj .

The uniform error rate allows for further simplification of the mutation-

selection equation (4.9) since the corresponding mutation matrix Q is consis-

tent with a change in variables from individual sequences to mutant classes

(Fig. 4.7) [224, 280]. The sequences are ordered in mutant classes Yj accord-

ing to the Hamming distance from the master sequence, which is commonly

the sequence with the highest fitness value. In absence of neutrality the

zero-error class contains only the master sequence
(

Y0 : {Xm ≡ X0}
)

, the

one-error class comprises all single point mutations, the two-error class all

double point mutations, and so on.16 Since the error rate p is independent

16Centering the quasispecies around the master sequence suggests to use decadic equiva-

lents, e.g., 6 ≡110, for the individual (binary) sequences: X0 = 000. . .00, X1 = 000. . .01,

X2 = 000. . .10, · · · ,X2l−1 = 111. . .11 .
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of the sequence and because of the assumption of a single-peak fitness land-

scape all molecules belonging to the same mutant class have identical fitness

values f(k) = {f0, f}, it is possible to introduce variables for entire mutant

classes Γk (Fig. 4.7):

yk =
∑

j ,Xj∈Γk

xj , k = 0, 1, . . . , l ,

l
∑

k=0

yk = 1 . (4.21)

The mutation matrix Q has to be adjusted to transitions between classes

[224, 280]. For mutations from class Γl into Γk we calculate:

Qkj =

min(k,j)
∑

i=j+k−l

(

k

i

)(

l − k
j − i

)

p k+j−2i(1− p) l−(k+j−2i) . (4.22)

The mutation matrix Q for error classes is not symmetric, Qkj 6= Qjk as

follows from Equ. (4.22).

Insertion into Equ. (4.19) yields the three parameter (l, p, σ) expression

x̄m ≈
(1− p)l − σ−1m

1− σ−1m

and (4.23a)

x̄j ≈ εdH(Xj ,Xm) fm
fm − fj

x̄m . (4.23b)

Equ. (4.23) provides a quantitative estimate for the concentrations of mu-

tants: For given p, x̄j is the larger the smaller the Hamming distance from

the master, dH(Xj,Xm), is and the smaller the larger the difference in fitness,

fm − fj is. The stationary concentration of the master sequence, x̄m, van-

ishes at some critical mutation rate p = pcr characterized as error threshold

or more dramatically as error catastrophe [16, 65, 68, 70, 280]:17

pcr = 1 − σ−1/l =⇒ pmax ≈
ln σ

l
and lmax ≈

ln σ

p
. (4.24)

17Zero or negative concentrations of sequences clearly contradict the exact results de-

scribed above and are an artifact of the zero backflow approach. As said before Perron-

Frobenius theorem guarantees positive concentrations for all mutants that can be derived

from the master sequence through a finite numbers of single point mutations. Neverthe-

less, the agreement between the exact solutions and the zero backflow results up to the

error threshold as shown in Fig. 4.8 is remarkable.
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Figure 4.8: The quasispecies as a function of the point mutation rate

p. The plot shows the stationary mutant distribution of sequences of chain length

l = 50 on a single-peak fitness landscape as a function of the point mutation rate

p. The upper part contains the approximation by the zero backflow approximation

according to Equ. (4.23) and is compared with the exact results presented in the

lower part of the figure. Plotted are the relative concentration of entire mutant

classes (Fig. 4.7): ȳ0 (black) is the master sequence Xm ≡ X0, ȳ1 (red) is the sum

of the concentrations of all one-error mutants of the master sequence, ȳ2 (yellow)

that of all two-error mutants, ȳ3 (green) that of all three-error mutants, and so

on. In the zero backflow approach the entire population vanishes at a critical

mutation rate pcr called the error threshold (which is indicated by a broken gray

line at pcr = 0.04501) whereas a sharp transition to the uniform distribution, Π, is

observed with the exact solutions. In the uniform distribution the concentration

of class k is given by
(

l
k

) /

2l with a largest value of ȳ25 = 0.1123 and a smallest

value of ȳ0 = ȳ50 = 8.8818 × 10−16. Choice of parameters: f0 = fm = 10,

f = fj = 1∀ j = 1, . . . , l; j 6= m, and accordingly f−m = 1.
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Figure 4.9: Quasispecies calculated by perturbation theory. The upper

plot presents a comparison of the stationary concentration of the master sequence

in the zero mutational backflow approximation, x̄
(0)
m (p) (red), with first order per-

turbation theory, x̄
(1)
m (p) (blue), and numerical solution x̄m (black). The violet

curve is the total concentration in the zero mutational backflow approximation,

c̄(0) =
∑n

i=1 x̄
(0)
i . The lower plot is an enlargement of the curves at low muta-

tion rates demonstrating that both approximations almost coincide with the exact

solution curve. The error threshold indicated by a broken vertical line occurs at

p = pcr = 0.2057. Choice of parameters: n = 10, f0 = 10 [t−1], and f = 1 [t−1].
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Fig. 4.8 compares a quasispecies calculated by the zero backflow approach

with the exact solution and shows excellent agreement up to the critical mu-

tation rate p = pcr. This agreement is important because quantitative appli-

cations of quasispecies theory to virology are essentially based on Eqs. (4.23)

and (4.24) [54].

Zero mutational backflow fails to account for the quasispecies at muta-

tion rates above the threshold pcr: Perron-Frobenius theorem states that

the concentrations of all members of the quasispecies are positive definite:

x̄i > 0 ∀ i = 1, . . . , n but zero mutational backflow yields x̄i = 0 ∀ i = 1, . . . , n

at p = pcr. Considering the problem more closely this is no surprise since the

zero mutational backflow assumption violates the conditions for the validity

of the theorem: The requirement for matrix W was irreducibility and this

implies that every sequence can be reached from every other sequence in a

finite number of mutation steps – zero mutational backflow implies that the

master cannot be reached from the mutants. Beyond the error threshold we

have to consider either full first order perturbation theory or the numerical

solutions. The manipulation of the elements of the matrix Q has also the

consequence that the stationary total concentration c̄(0) =
∑n

i=1 x̄
(0)
i is not

constant but vanishes at the error threshold

c̄(0)(p) =
1

Q

Q− σ−1m

1− σ−1m

.

Clearly, the good agreement between the zero mutational backflow approx-

imation and the exact solution is not fortuitous and many examples have

shown that it is quite general and becomes perfect for long chains l (see

Proof for the existence of an error threshold below).

Perturbation theory. Application of first and second order Rayleigh-Schrödinger

perturbation theory to calculate the quasispecies Ῡ as a function of the mu-

tation rate has been performed in the past [280]. Here we present the full

analytical first order expressions x̄
(1)
i (p). The second expressions are rather

clumsy and bring only limited improvement for small mutation rates p.

The largest eigenvalue is the same by zero mutational backflow and in

first order perturbation theory:

λ
(0)
0 = λ

(1)
0 = Wmm = Qmm fm .
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For the computation of the largest eigenvector we make use of the first order

expression from perturbation theory of the matrix W (4.19b):18

x̄
(1)
j =

Wjm

Wmm −Wjj
x̄(1)m ; j = 1, . . . , n , j 6= m .

Making use of the normalization condition
∑n

i=1 x̄
(1)
i = 1 we obtain for the

master sequence

x̄(1)m =
1

1 +
∑n

i=1,i 6=m
Wim

Wmm−Wii

.

Straightforward calculations yield for the stationary concentrations

x̄(1)m (p) =
Q (1− σ−1m )

1−Qσ−1m

, (4.25a)

x̄
(1)
j (p) =

Qim

Q (1− σ−1m )
x̄(0)m ; j = 1, . . . , n , j 6= m (4.25b)

with Q = (1− p)ν .

As shown in figure 4.9 the curve x̄
(1)
m (p) extends to the point p = p̃ = 1

2 and

further, but it does not pass precisely through the uniform distribution Π,

x̄(1)m (
1

2
) =

(

1

2

)ν
1− σ−1m

1− (12)
νσ−1m

.

The deviation of x̄
(1)
m from numerical solution is much larger than in the zero

mutational backflow approximation approximation and the error threshold

phenomenon is not detectable. In summary, first order perturbation theory

provides a consistent approximation to the eigenvalues and eigenvectors of

the value matrix W. The results, however, are not nearly as good as those

of the zero back mutation approach. Improvements by second order are

possible at very small error rates but the calculations are rather tedious and

the solutions for the eigenvalue λ
(2)
0 become unstable for larger error rates

[280]. A combination of zero mutation flux approximation and first order

18As a matter of fact, the first order perturbation expressions are used in the zero mu-

tational backflow approximation for the calculation of the concentrations of the mutants,

because



120 Peter Schuster

perturbation theory in the sense of equations (4.18a) and (4.25b) [65, 280]

leads to slightly better results than the zero mutation flux approach alone

but is not recommended because of the lack of consistency.

Numerical solutions. Full solutions can be computed numerically through

solving the eigenvalue problem of matrix W for different values of of the

mutation rate p, and for a typical example the normalized concentrations

of error classes ȳ(k)(p) are shown in figure 4.8. The agreement between the

numerical results and the zero mutational backflow curve for the master class,

ȳ0(p) in the region above the error threshold is remarkable indeed. The other

solution curves ȳ(k)(p) (k 6= 0) agree well too but the deviations become

larger with increasing k.

The numerical solution for the master sequence (black curve) decreases

monotonously from p = 0 to p = p̃ = 1/2, this is between two points for

which analytical solutions exist. At vanishing error rates, lim p → 0, the

master sequence is selected, limt→∞ x0(t) = limt→∞ y0(t) = ȳ0 = x̄0 = 1,

and all other error classes vanish in the long time limit. Increasing error

rates are reflected by a decrease in the stationary relative concentration of

the master sequence and a corresponding increase in the concentration of

all mutant classes. Except ȳ0(p) all concentrations ȳk(p) with k < ν/2 go

through a maximum at values of p that increases with k – as in case of zero

mutational backflow where we had an implicit analytical expression for the

maximum, and approach the curves for ȳν−k – whereas the zero mutational

backflow curves still go through a maximum because they vanish at p = pcr.

At p = p̃ = 1/2 we have p̃ = 1 − p̃ for binary sequences, and again the

eigenvalue problem can be solved exactly (see section 4.3.6. The uniform

distribution Π is a result of the fact that correct digit incorporation and

point mutation are equally probable for binary sequences at p̃ = 1/2 = 1− p̃
and therefore we may characterize this scenario as random replication.19 It

is worth mentioning that the range of high mutation rates p̃ ≤ p ≤ 1 is

also meaningful: At p = 1 the complementary digit is incorporated with

19The extension to sequences over an alphabet with κ classes of digits is straightforward.

In the frame of uniform errors random replication occurs at p̃ = 1/κ = (1 − p̃)/(κ − 1).

For the natural four letter alphabet we have p̃ = 1/4.
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ultimate accuracy, 0→ 1 and 1→ 0, and accordingly, the range at high p-

values describes error-prone complementary or plus-minus replication [280].

The special situation at the error threshold is the occurrence of an (al-

most) uniform distribution far away from the point p = p̃ – in figure 4.8 the

critical mutation rate is pcr = 0.045 ≪ p̃ = 0.5. As we shall see in the next

section 4.3.6, the error threshold on the single peak landscape is characterized

by the coincidence of three phenomena: (i) the concentration of the master

sequence becomes very small and this is expressed in term of level crossing

values ȳ0(p)|p=p(1/M)
= 1/M whereM is 100, 1000 or higher depending on the

size of 2ν , (ii) a sharp change in the quasispecies distribution within a narrow

band of p-values that reminds of a phase transition [187, 188, 267, 282, 298],

and (iii) a transition to the uniform distribution, which implies that the

domain within which the uniform distribution is fulfilled to a high degree

of accuracy has the form of a broad plateau (pcr = 0.045 < p < p̃ = 0.5

in figure 4.8). It is worth considering the numerical data from the compu-

tations shown in the figure: pcr = 0.04501 from zero mutational backflow

versus the level crossing values p(1/100) = 0.04360, p(1/1000) = 0.04509, and

p(1/10000) = 0.04525.

Proof for the existence of an error threshold. In order to present a rigorous

proof for the existence of an error threshold on the single peak landscape in

the sense that the exact solution converges to the zero mutational back flow

result in the limit of infinite chain length l. Previously we stated that the

agreement between the (exact) numerical solution for the stationary quasis-

pecies and the zero mutational backflow in surprisingly good and here we

shall give a rigorous basis for this agreement. The proof proceeds in three

steps: (i) Models are derived that provide upper and lower bounds for the

exact solution, (ii) the models are evaluated analytically in order to yield

expressions for the relative stationary concentration of the master sequence

Xm at the position of the error threshold, x̄
(flow)
m (pcr), and (iii) we show that

the values for the upper and the lower bound coincide in the limit l →∞.

The zero mutational backflow approximation neglects backflow completely;

now we introduce two other approximations that are based on model back-
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Figure 4.10: Existence of the error threshold. The plots represent the exact

solution (black) together with the zero mutational backflow approximation (green),

the uniform backflow approximation (red) and the error-class one backflow approx-

imation (red). The numerically exact solution is entrapped between the uniform

and the one error-class approximation. Since both approximations converge to

zero in the limit of long chain lengths (l →∞) the exact curve does as well. The

error threshold as indicated by a broken vertical line occurs at p = pcr = 0.2057.

Choice of parameters: n = 10, f0 = 10 [t−1], and f = 1 [t−1].
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flows that represent lower and upper bounds for the exact backflow. Com-

putation of the mutational backflow requires either knowledge of the distri-

bution of concentrations of all sequence of an assumption about it. In order

to be able to handle the problem analytically the backflow must lead to an

autonomous equation for the master concentration x0. The minimal back-

flow can be estimated by the assumption of a uniform distribution (Π) for

all sequences except the master. In this case all sequences contribute equally

no matter whether a particular sequence is close to the master sequences or

far apart. For the concentrations xi = (1 − x(Π)
0 )/(n− 1) ∀ i = 1, . . . , n with

n = κl we obtain under the further assumption of a single peak landscape

and the uniform error rate model the ODE for x
(Π)
0 :

dx
(Π)
0

dt
= x

(Π)
0 (Q00f0 − φ) + f

1− x(Π)
0

n− 1
(4.26)

with φ = f + (f0 − f) x(Π)
0

The stationary concentration is obtained as the solution of a quadratic equa-

tion

x̄
(Π)
0 =

Qf0 − f − fγ(1−Q) +

√

(

Qf0 − f − fγ(1−Q)
)2

+ 4(f0 − f)(1−Q)fγ

2(f0 − f)

with Q = Q00 = (1− p)l and γ =
1

n− 1

Insertion of the value of the mutation rate parameter at the error threshold, p =

pcr = 1− σ−1/l or Q = (1− pcr)
l = σ−1 leads to the result

x̄
(Π)
0 (pcr) =

1

2

√

1 + 4σ(n − 1) − 1

σ(n− 1)
, (4.27)

which yields in the limit of long chains or large l-values

x̄
(Π)
0 (pcr) ≈

1√
σ n

=
1√
σ κl

. (4.27’)

Ultimately the value of the stationary concentration of the master sequence decays

exponentially with one halt of the chain lengths as exponent: x̄
(Π)
0 (pcr) ∝ κ−l/2.

It is straightforward to show that the uniform mutational backflow approximation

becomes exact at the point p = p̃ and insertion in the quadratic equation yields:
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x̄
(Π)
0 (12) =

(1
2
)l
. Generalization, of course, is straightforward and yields p = p̃ and

insertion in the quadratic equation yields: x̄
(Π)
0 (1/κ) =

(

1/κ
)l

In order to find an upper bound for the stationary solution of the master se-

quence we assume that mutational backflow comes only form the sequences in the

one error class, Γ
(0)
1 , which can be assumed to be present at equal concentrations,

xi = (1 − x
(I)
0 )/l, and

∑l
i=1 xi = 1 − x0. All other sequences except the master

sequence and the one error class are absent. Pointing at the fact that Γ
(0)
1 rep-

resents the entire mutant cloud we shall denote this distribution by I. For the

corresponding elements of the mutation matrix Q we use the usual expressions,

which are all equal: Q0i = Q0(1) = Q01 ∀ i = 1, . . . , l. The ODE for the master

sequence is then again autonomous and can be readily solved for the stationary

state:

dx
(I)
0

dt
= x

(I)
0 (Q00f0 − φ) + Q01 f (1− x

(I)
0 ) (4.28)

with φ = f + (f0 − f)x
(I)
0 .

The stationary concentration is again obtained from a quadratic equation of similar

structure as before

x̄
(I)
0 =

Q00f0 −Q01f − f +

√

(

Q00f0 −Q01f − f
)2

+ 4(f0 − f)Q01f

2(f0 − f)

with Q00 = (1− p)l and Q01 = (1− p)l−1 p .

It is shown straightforwardly that the curve for the class one backflow passes

through the point p = p̃ = κ−l. For the stationary concentration of the master

sequence at the error threshold we find

x̄
(I)
0 (pcr) = − Q01 f

2 (f0 − f)
+

√

Q01 f

f0 − f
·
√

1 +
Q01 f

4 (f0 − f)
, (4.29)

with three components. Before we can discuss the individual terms we have to

examine the asymptotic dependence of the mutation rate p on the chain length l,

which is encapsulated in the series expansion

Q01 = (1− p)l−1 p = p − (l − 1) p2 +
(l − 1)(l − 2)

2
p3 − · · ·

with the first term being p. The critical mutation rate can be approximated by

pcr ≈ lnσ/l and we can consider Equ. (4.29). The negative term in equation shows
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Table 4.1: Proof of the error threshold. Two auxiliary model assumptions

concerning mutational backflow are applied: (i) uniform distribution for all one

error mutants, called class one uniform, and (ii) the uniform distribution Π for all

sequences except the master sequence denoted as all uniform. All solution curves

x̄0(p) – exact and approximate – begin at the value x̄0(0) = 1 and all except the

zero backflow approximation end at the point x̄(p̃) = x̄(κ−1) = 1/κl

x̄0-value at the mutation rate

mutational backflow notation p = 0 p = pcr p̃ = 1
κ

class one uniform x̄
(I)
0 (p) 1

√

ln σ/(σ − 1) · 1/
√

l κ−l

exact x̄0(p) 1 computed κ−l

all uniform x̄
(Π)
0 (p) 1 1/

√

σκl κ−l

zero x̄
(0)
0 (p) 1 0 negative

an asymptotic dependence on the chain length of l−1, the first factor behaves

asymptotically like 1/
√
l whereas the second factor converges to unity. What

remains in the limit of long chains or large l-values is

x̄
(I)
0 (pcr) ≈

√

f lnσ

f0 − f
· 1√

l
=

√

lnσ

σ − 1
· 1√

l
. (4.29’)

The value of the stationary concentration of the master sequence decays with the

reciprocal square root of the chain length: x̄
(I)
0 (pcr) ∝ 1/

√
l. Although the class

one uniform distribution is not an impressively good upper bound for the exact

solution curve, it is sufficient for our purpose here because x̄
(I)
0 (pcr) vanishes in the

limit l→∞.

In summary the solution curve of the mutation-selection equation (4.9) for

the master sequence and the three approximations at the critical mutation

rate pcr appear in the order shown in Tab. 4.1 and there is no reason to

doubt that the same order prevails for the entire domain 0 < p < p̃ = κ−l:

The exact solution is indeed entrapped between the two approximations for

the mutational backflow and, since both converge asymptotically to zero the

exact curve approaches the zero mutational backflow approximation in the

limit of long chains. All four curves (Fig. 4.10) start at the point x̄m(0) and

all except the zero backflow approximation end at the correct value p̃ = κ−l.
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Table 4.2: Mutation rates and genome length. The table shows the product

between the mutation rate per site and copying event, p, and the genome length

l, which is roughly constant within of class of organisms [58].

class of mutation rate per genome reproduction event

organisms µ = p · l
RNA viruses 1 replication

retroviruses 0.1 replication

bacteria 0.003 cell division

eukaryotes 0.003 cell division

eukaryotes 0.01 – 0.1 sexual reproduction

The stationary master concentrations at the critical mutation rate p = pcr

illustrate the relative importance of the mutational backflow (Fig. 4.29): Zero

backflow assumption causes the stationary concentration x̄
(0)
0 to vanish. The

all uniform backflow is a little more than one half of the computed exact value,

and this approximation is a excellent lower bound for the exact solution. The

error one class backflow is about three time as large as the exact solution.

Nevertheless it is an upper bound for the real mutation flow and serves the

purpose for which it is intended here. If one is interested in an approximation

apart from this proof the zero mutational back flow approximation x̄
(Π)
0 (p)

in the region 0 ≤ p < pcr and the uniform backflow approximation in the

entire range are suitable approximations. In particular the uniform backflow

approximation is well suited because it is exact for p = 0 and p = p̃ = 1/κ

and it has also a correct asymptotic behavior in the long chain limit at the

error threshold.
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Error thresholds and applications. The error threshold has been put in rela-

tion to phase transitions [187, 188, 282]. Here, we are in a position to prove

the behavior of the exact solution curve x̄0(p) in the limit l →∞. The critical

mutation rate converges to the value zero: liml→∞ pcr = liml→∞ ln σ/l = 0.

At the same time we have liml→∞ x̄0 = 0 for p > 0 and thus the quasispecies

degenerates to an “L”-shaped distribution, x̄0(0) = 1 and x̄0(p) = 0 ∀ p > 0,

and we are left with a pathological phase transition at pcr = 0.

According to Equ. (4.24) the error threshold defines a maximal error rate

for evolution, p ≤ pmax, at constant chain length l, and at constant reproduc-

tion accuracy p the length of faithfully copied polynucleotides is confined to

l ≤ lmax [70, 72]. The first limit of a maximal error rate pmax has been used

in pharmacology for the development of new antiviral strategies [56], and

the second limit entered hypothetical modeling of early biological evolution

where the accuracy limits of enzyme-free replication confine the lengths of

polynucleotides that can be replicated faithfully [73].

The error threshold relation (4.24) can be written in a different form that

allows for straightforward testing with empirical data:

µ = l p ≈ ln σ , (4.24’)

the product of the genome length and the mutation per site and replication,

µ, which represents the mean number of mutations per full genome repro-

duction, corresponds to the logarithm of the superiority. In a publication by

John Drake et al. the mutation rates µ were found to be remarkably con-

stant for organisms of the same class (table 4.2 and [58]). In other words, for

organisms within one class – viruses, retroviruses, bacteria, and eukaryotes

– the replication is more accurate if the genome is longer. A comparison

between the bacteriophage Qβand the vesicular stomatitis virus (SVS) may

serve as an example [57]: The genome lengths are 4 200 and 11 200 and the

mutation rates per site and replication are 1.5×10−3 and 3.8×10−4, respec-

tively. The large difference in reproduction accuracy between mitosis and

meiosis is remarkable.
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Figure 4.11: The principle of complementary replication. Complementary

replication involves two recurrent logical steps: (i) the synthesis of a double strand

or duplex from a single strand, say the plus-strand, and (ii) duplex dissociation

into the newly synthesized minus-strand and the template plus-strand. In the next

replication round the minus-strand is the template for plus-strand synthesis. Plus-

and minus-strand together grow exponentially just like a simple replicator would.

4.3.4 Complementary replication

The molecular mechanism of replication of RNA single strands in the test

tube or in virus infected cells proceeds through an intermediate represented

by an RNA molecule with the complementary sequence (Fig. 4.11). Here we

denote the plus-strand by X1 ≡ X
(+) and the complementary minus-strand by

X2 ≡ X
(−) and the corresponding rate parameters by f1 and f2, respectively:

(A) + X1

f1
−−−→ X2 + X1 and

(A) + X2

f2
−−−→ X1 + X2 .

(4.30)
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In analogy to Equ. (4.8), with f1 = k1 [A], f2 = k2 [A], x1 = [X1], x2 = [X2],

and x1 + x2 = 1 we obtain the following differential equation [65, 70, 71]:

dx1
dt

= f2x2 − x1 φ and

dx2
dt

= f1x1 − x2 φ with φ = f1x1 + f2x2 .

(4.31)

Applying again the integrating factor transformation [329, p. 322ff.] yields

the linear equation

dz1
dt

= f2z2 and
dz2
dt

= f1z1 or
dz

dt
= W ·z ; z =

(

z1

z2

)

, W =

(

0 f2

f1 0

)

.

The eigenvalues and (right hand) eigenvectors of the matrix W are

λ1,2 = ±
√

f1f2 = ±f with f =
√

f1f2 ,

b1 =

(√
f2√
f1

)

and b2 =

(

−√f2√
f1

)

.
(4.32)

Straightforward calculation yields analytical expressions for the two variables

(see paragraph mutation) with the initial concentrations x1(0) and x2(0),

and γ1(0) =
√
f1x1(0) +

√
f2x2(0) and γ2(0) =

√
f1x1(0) −

√
f2x2(0) as

abbreviations:

x1(t) =

√
f2
(

γ1(0) · eft + γ2(0) · e−ft
)

(
√
f1 +

√
f2)γ1(0) · eft − (

√
f1 −

√
f2)γ2(0) · e−ft

x2(t) =

√
f1
(

γ1(0) · eft − γ2(0) · e−ft
)

(
√
f1 +

√
f2)γ1(0) · eft − (

√
f1 −

√
f2)γ2(0) · e−ft

.

(4.33)

After sufficiently long time the negative exponential has vanished and we

obtain the simple result

x1(t)→
√

f2/(
√

f1+
√

f2) , x2(t)→
√

f1/(
√

f1+
√

f2) as exp(−ft)→ 0 .

After an initial period, the plus-minus pair, the ensemble X1,2 ≡ X
(±), grows

like a single replicator with a fitness value f =
√
f1f2 and a stationary ratio

of the concentrations of complementary stands x̄1/x̄2 ≈
√
f2/
√
f1. It is worth

noticing that the faster replicating strand is present at a lower equilibrium

concentration: x̄1
√
f2 = x̄2

√
f1. By mass action it is guaranteed that the

ensemble grows at an optimal rate.
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4.3.5 Quasispecies on ”simple” model landscapes

First we consider the general properties of a quasispecies distribution of bi-

nary sequences as a function of the mutation rate Υ(p). There are two

p-values for which we have exact analytical solutions: (i) error-free repli-

cation at p = 0, and (ii) random replication at p = 1
2 . The first case

is the selection scenario that we have discussed already in section 1.2: All

sequences except the master sequence vanish after sufficiently long time,

Υ(0) = (x̄m = 1, x̄j = 0 ∀ j 6= m).

For p = 1
2 the incorporation of the incorrect digits into the growing binary

string has exactly the same probability as the incorporation of the correct

digit, 1 − p = 1
2 , wrong and right digits are chosen at random and every

sequence has the same probability to be outcome of a replication event –

as easily visualized, the template plays no role. Accordingly, the mutation

matrix Q and the value matrix W are of the form:

Q =

(

1

2

)l













1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1













, W =

(

1

2

)l













f1 f2 . . . fn

f1 f2 . . . fn
...

...
. . .

...

f1 f2 . . . fn













.

Matrix W has only one nonzero eigenvalue λ0 = (12)
l
∑n

i=1 fi the number

of sequences n = 2l, and the corresponding eigenvector is the uniform dis-

tribution: Υ(12) = 2−l(1, 1, . . . , 1). Between these two limiting cases the

quasispecies fulfills
∑n

i=1 x̄i = 1 and x̄i > 0 ∀ i by Perron-Frobenius theorem.

The influence of the landscape on the solution curves Υ(p) is thus restricted

to the way the transition from the homogeneous (p = 0) to the uniform

distribution occurs. We shall call the transition smooth when there is no

recognizable abrupt change in at some critical value of the mutation rate

parameter p = pcr (for an example see Fig. 4.12). A typical sharp transition

in Υ(p) from a structured distribution to the uniform distribution is shown

in Fig. 4.8: It occurs in a very narrow range of p around pcr, and pcr = 0.045

is far away from the random replication point (p = 1
2). Thus we have a wide

range of p-values where Υ(p) (almost) coincides with the uniform distribu-
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tion.

At first we consider the quasispecies Υ(p) for the entire range of mutation

rates 0 ≤ p ≤ 1. As we have discussed above, the left half of the domain,

0 ≤ p ≤ 1
2 describes (direct) error-prone replication and ends at the uniform

distribution when the probability to make an error at the incorporation of a

single digit (p) is exactly as large as the probability to incorporate the correct

digit (1−p). What happens if the mutation rate parameter exceeds one half?

At p = 1 always the opposite digit is incorporated: 0→ 1 and 1→ 0, and we

are dealing with complementary replication.20 Accordingly, we expect pairs

of complementary sequences to be target of selection in the right half of the

domain, 1
2 ≤ p ≤ 1. At p = 1 a master pair is selected and as we saw in

subsection 4.3.4 the ratio of the two sequences is x̄+/x̄− =
√

f−/f+, and

all other sequences vanish. Between the three points where we have exact

results solutions are readily obtained by numerical computation.

Next we are now in the position to study the conditions for the occur-

rence of an error threshold on the single peak landscape. In Figs. 4.12-4.15

we show results for the single peak landscape. In addition to the dependence

of the stationary class concentrations, ȳk(p), we show also the curves for the

individual sequences x̄j(p) = ȳk(p)/
(

l
k

)

∀Xj ∈ Γk. A chain length of l = 5 is

very small compared to l = 50 in Fig. 4.8 and we see no indication of an error

threshold. The situation reminds of cooperative transitions [189, 324, 325]

or phase transitions [187, 188, 282] in the sense that the transition becomes

sharper with increasing sequence length l. There is, however, a second possi-

bility to induce an error threshold in quasispecies dynamics through reducing

the difference in fitness between the master sequence and the mutant cloud,

f0 − fn. In the three plots these difference decreases from 9 (Fig. 4.12) to 3

(Fig. 4.13) and eventually to 0.1 (Fig. 4.14) and at the same time the transi-

tion changes from smooth to broad and then to sharp. In the curves x̄j(p)

20In real polynucleotide replication, the situation is a little bit more involved since

the minus-strand is not the complement of the plus strand but the 3’end-5’end swapped

complement (Fig. 4.11). If we consider the string X0 = (000 · · · 0) as plus strand, X2l−1 =

(111 · · ·1) is the minus strand since swapping does not change palindromic sequences.
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Figure 4.12: The quasispecies on the single peak landscape I. The plots

show the dependence of the quasispecies from binary sequences on the mutation

rate parameter Υ(p) over the full range 0 ≤ p ≤ 1. The upper plot shows the

relative concentrations of entire mutant classes, ȳk (k = 0, 1, . . . , l), the lower plot

presents the relative concentrations of individual sequences, x̄j (j = 0, . . . , 2l − 1).

Choice of parameters: l = 5, f0 = 10, and fn = 1.
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Figure 4.13: The quasispecies on the single peak landscape II. The plots

show the dependence of the quasispecies from binary sequences on the mutation

rate parameter Υ(p) over the full range 0 ≤ p ≤ 1. The upper plot shows the

relative concentrations of entire mutant classes, ȳk (k = 0, 1, . . . , l), the lower plot

presents the relative concentrations of individual sequences, x̄j (j = 0, . . . , 2l − 1).

Choice of parameters: l = 5, f0 = 4, and fn = 1.
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Figure 4.14: The quasispecies on the single peak landscape III. The plots

show the dependence of the quasispecies from binary sequences on the mutation

rate parameter Υ(p) over the full range 0 ≤ p ≤ 1. The upper plot shows the

relative concentrations of entire mutant classes, ȳk (k = 0, 1, . . . , l), the lower plot

presents the relative concentrations of individual sequences, x̄j (j = 0, . . . , 2l − 1).

Choice of parameters: l = 5, f0 = 1.1, and fn = 1.
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Figure 4.15: The quasispecies on the single peak landscape IV. The plots

show the dependence of the quasispecies from binary sequences on the mutation

rate parameter Υ(p) over the full range 0 ≤ p ≤ 1. The upper plot is an enlarge-

ment of the lhs of Fig. 4.14 and shows the relative concentrations of entire mutant

classes, ȳk (k = 0, 1, . . . , l). The lower plot enlarges the curves on the rhs. Choice

of parameters: l = 5, f0 = 1.1, and fn = 1.
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Figure 4.16: The quasispecies on the multiplicative landscape. The plots

show the dependence of the quasispecies from binary sequences on the muta-

tion rate parameter Υ(p) on the multiplicative landscape (3.4b). The upper plot

shows the relative concentrations of entire mutant classes, ȳk(p) (k = 0, 1, . . . , l),

the lower plot presents the relative concentrations of individual sequences, x̄j(p)

(j = 0, 1, 2, . . . , 2l − 1). Choice of parameters: l = 50, f0 = 10, fn = 1, and

ϕ = 1/(101/50).
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Figure 4.17: Comparison of quasispecies on the additive and the multi-

plicative landscape. The plots show the dependence of the quasispecies from

binary sequences on the mutation rate parameter Υ(p). The upper plot shows the

relative concentrations of entire mutant classes, ȳk (k = 0, 1, . . . , l), on the addi-

tive landscapes (3.4a), and the lower plot presents the plot for the multiplicative

landscapes (3.4b). Choice of parameters: l = 50, f0 = 10, fn = 1, θ = 9/50, and

ϕ = 1/(101/50).
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the transition is more difficult to locate but the formation and broadening

of the plateau representing the domain of the approximate uniform distribu-

tion is easily recognized, and as the plateau broadens the decay regions of

the master sequence (lhs) or the master pair (rhs) are compressed. Fig. 4.15

finally shows enlargements of the regimes of direct and complementary repli-

cation. In the enlargement the error threshold in direct replication is still

broad compared to the l = 50 case (Fig. 4.8). In complementary replication

we observe that the curves for X0 and X31 approach each other as f0−fn be-

comes smaller: The values for x̄31/x̄0 are
√
10 ≈ 3.162, 2, and

√
1.1 ≈ 1.049,

respectively. In is interesting to observe that in the enlargement for f0 = 1.1

the curves for the complementary pairs in the one- and four-error classes two

as well as in the two- and three-error classes are so close together that they

can no more be resolved for p < 1.

Two among the model landscapes presented in Equ. (3.4), the additive or

linear and the multiplicative or exponential landscape show no error thresh-

old in the sense of the single peak landscape. These two landscapes are very

similar and it is sufficient therefore to discuss only one of them and to show

one comparison here, and we choose the multiplicative landscape for the

purpose of illustration because it is used more frequently in population ge-

netics. Although the concentration of the master sequence decays very fast

on the multiplicative landscape (Fig. 4.16) no error threshold phenomenon

is observed. Instead the curves for the individual error classes look plaited

around themselves. Looking more carefully, however, shows that the each

curve ȳk passes a single maximum only (k > l/2) or no maximum at all

(k ≤ l/2) before is converges to ȳk(
1
2) = (12)

l
(

l
k

)

. This appearance of the plot

for the classes is a result of the binomial factors, and the plot the individual

concentrations x̄j(p) reflects simply the lower frequencies for sequences with

larger Hamming distance from the master sequence, dH(Xj,Xm). It is worth

mentioning that application of a smaller fitness difference shifts all curves

closer to p0 and compresses them without, however, changing the overall

appearance.

In qualitative terms the additive landscape gives rise to the same curves

as the multiplicative landscape (Fig. 4.17). The quantitative comparison for
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Figure 4.18: Some examples of model fitness landscapes. The figure
shows five model landscapes with identical fitness values for all sequences in
a given error class: (i) the single peak landscape (upper left drawing), (ii) the
hyperbolic landscape (upper right drawing, black curve), (iii) the step-linear
landscape (lower left drawing), (iv) the multiplicative landscape (upper right
drawing, red curve), and (v) the additive or linear landscape (lower right
drawing). Mathematical expressions are given in the text.

the same highest and lowest fitness values shows that the decay of the master

sequence is steeper and and the curves are more compressed on the additive

landscapes. The interpretation is straightforward: The highest fitness value

except the master is larger on the additive landscape, f1 = f0− (f0−fn)/l =
9.82 versus f1 = f0(fn/f0)

1/l ≈ 9.55 on the multiplicative landscape.

There are, of course, many other possible simple landscapes that show, in

essence, one these two scenarios or combinations of both [250]. In the next

subsection we shall compare several simple landscapes and analyze the error

threshold in more detail. In particular, we shall show that the threshold as

it occurs on the single peak landscape is a superposition of three phenomena

that are separable through appropriate choice of the distribution of fitness

values.
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4.3.6 Error thresholds on “simple” model landscapes

The fact that existence and form of an error threshold depend on the nature

of the fitness landscape has been pointed out already fifteen years ago [308].

As has been discussed in the previous subsection 4.3.5 the additive and the

multiplicative landscape – the two types of landscapes that are commonly

used in population genetics – don’t show error thresholds at all. In addition

to these two landscapes and the single peak landscape we consider two further

examples of simple model landscapes, the hyperbolic landscape and the step-

linear landscape. All these simple landscapes are characterized by identical

fitness values for all members of the same mutant class. In particular, the

fitness values are of the form:

(i) the additive or linear landscape

f(Yk) = fk = f0 − (f0 − f) k/l ; k = 0, 1, . . . , l ,

(ii) the multiplicative landscape

f(Yk) = fk = f0

(

f
f0

)k/l

; k = 0, 1, . . . , l ,

(iii) the hyperbolic landscape

f(Yk) = fk = f0 − (f0 − f) ( l+1
l
) ( k

k+1
) ; k = 0, 1, . . . , l , and

(iv) the step-linear landscape

f(Yk) = fk =







f0 − (f0 − f) k/h if k = 0, 1, . . . , h− 1 ,

f if k = h, . . . , l .

In order to be able to compare the different landscapes the values of f were

chosen such that all landscapes are characterized by the same superiority of

the master sequence: σm = σ0 = f0
/

f−0 with f−0 =
∑n

i=1 yifi
/

(1 − y0).
Since the distribution of concentrations is not known a priori we have to make

an assumption. As shown in subsection 4.3.3 the range of (approximate)

validity of the uniform distribution extends in the direction of decreasing

mutation rates from the point p = p̃ far down to the error threshold for and

hence, the assumption of the uniform distribution in the calculation of f is
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Table 4.3: Concentration level crossing near the error threshold. The
decline of the master class, ȳ0 = x̄0, at p-values below the error threshold pcr
is illustrated by means of the points p(1/M) where ȳ0(p) crosses the level 1/M
for the three fitness landscapes that sustain error thresholds. Parameters:
l = 100, f0 = 10, and f−0 = 1.

Landscape Level crossing Error threshold

p(1/100) p(1/1000) p(1/10000) pcr

Single-peak 0.02198 0.02274 0.02282 0.02277

Hyperbolic 0.01450 0.01810 0.02036 0.02277

Step-linear 0.01067 0.01774 0.02330 0.02277

well justified,

f =
(

f−0 (2
l − 1) − f0 (2

l−1 − 1)
) /

2l−1 , (4.34a)

f =

(

(

f−0 (2
l − 1) + f0

)1/l

− f
1/l
0

)l

, (4.34b)

f =
(

f−0 l (2
l − 1) − f0 (2

l − l + 1)
) /

(

2l(l − 1) + 1
)

, (4.34c)

f =
f−0 (2

l − 1) − f0

(

∑h−1
k=0

(

l
k

)

h−k
h
− 1

)

∑h−1
k=0

(

l
k

)

k
h
+
∑l

k=h

(

l
k

) . (4.34d)

In Fig. 4.19 and 4.20 the solution curves ȳk(p) are compared for the three

landscapes showing error thresholds, single-peak, hyperbolic and step-linear.

The superiority was adjusted to σ0 = 10 be means of equation (4.34).

The additive and the multiplicative landscape do not sustain sharp tran-

sitions but show a gradual transformation of the master dominated quasis-

pecies to the uniform distribution being the exact solution of the mutation-

selection equation (4.9) at p = p̃ = κ−l, which has been discussed in the

previous subsection 4.3.5. Here we shall concentrate on landscapes that give

rise to sharp transitions as we observed it previously on the single peak
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Figure 4.19: Error thresholds on different model landscapes. The figures

show stationary concentrations of mutant classes as functions of the error rate,

ȳk(p), for sequences of chain length l = 100 with f0 = 10 and f−0 = 1 on three

different model landscapes: the single peak landscape (upper part, f = 1), the

hyperbolic landscape (middle part, f = 10/11), and the step-linear landscape

(lower part, f = 1). The dashed line indicates the value of the error threshold
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Figure 4.20: Error thresholds on different model landscapes. The three

figures are enlargements of the plots from in Fig. 4.19. Stationary concentrations

of mutant classes, ȳk(p), are shown for the single peak landscape (upper part), the

hyperbolic landscape (middle part), and the step-linear landscape (lower part; see

the caption Fig. 4.19 for details).
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landscape. The three examples chosen differ in the way the fitness function

changes with k the index of the mutant class (Γk): (i) the “L” shaped single

peak landscape, (ii) the hyperbolic landscape that shows fast steep but at the

same gradual decay of the fitness with k, and (iii) the step-linear landscape

that combines features of the linear and the single peak landscape – linear

decay of fitness values and completely flat part.

As already shown in Fig. 4.8 and analyzed in the proof for the occurrence

of the threshold (Tab. 4.1) the calculated value for pcr coincides perfectly

with the position of the transition on the single-peak landscape, and the

p-values for concentration level crossing lie close together and near pcr (see

table 4.3) indicating a rather steep decrease of ȳ0 in the range on the left-

hand side of the transition to the uniform distribution. Comparison with

the other two landscapes shows that the error threshold phenomenon can be

separated into three different features, which happen to coincide on the single

peak landscape: (i) fast decay of the concentration of the master sequence

x̄0(p) in the range 0 ≤ p ≤ pcr, (ii) a sharp transition to another sequence

distribution and (iii) an extension of the solution at point p = p̃ towards

smaller mutation rates that gives rise to a broad domain pcr < p < p̃ within

which the quasispecies is very close to the uniform distribution.

On the hyperbolic landscape, the actual transition occurs slightly above

the error threshold of the single-peak landscape, the decrease of ȳ0 is flatter,

and the transition also sharp does not result in the uniform distribution.

Instead we observe a mutant distribution above the error threshold, which

changes slightly with p.The interpretation is straightforward: A flat part of

the landscape in required for the expansion of the unform distribution and

such a flat part does not exist on the hyperbolic landscape, and therefore we

observe a gradually changing flat distribution. On the step-linear landscape,

eventually, the curve of ȳ0 is even flatter, the transition is shifted further

to higher p-values, but the transition leads to the uniform distribution as

in the single-peak case. Knowing the behavior of the quasispecies on the

single-peak and the linear landscape an interpretation of the observed plots

for the step-linear landscape is straightforward: In the range of small Ham-

ming distances from the master sequence the fitness landscape has the same
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shape as the linear landscape and for small mutation rates the quasispecies

is dominated by sequences, which are near the master in sequence space,

at higher mutation rates p sequences that are further away from the mas-

ter gain importance, and indeed we observe a similarity of the quasispecies

with that on the linear landscape at small p-values whereas an error thresh-

old and the uniform distribution beyond it are observed at higher mutation

rates p. In the step-linear landscape the position of the step, h can be varied

as well. For the parameters f0 = 10 and f = 1 we observe error thresholds

in the range 0 ≤ h ≤ 35, at higher h-values it becomes softer and eventually

around h = 45 it has completely disappeared.21 A useful indicator for the

existence of an error threshold is the upper envelope of all individual curves

ȳk(p): The absence of a threshold leads to a monotonous decrease off the

envelope (Figs. 4.16 and 4.17) whereas an error threshold manifests itself in

a pronounced minimum of the envelope just below pcr (Fig. 4.20).

The fact that the behavior of quasispecies depends strongly on the na-

ture of the fitness landscape is not surprising. Fitness values after all play

the same role as rate parameters in chemical kinetics and the behavior of

a system can be changed completely by a different choice of rate parame-

ters. The most relevant but also most difficult question concerns the relation

between rate parameters and observed stationary distributions: Can we pre-

dict the quasispecies from a knowledge of the fitness landscape? Or the even

more difficult inverse problem [77]: Does the observed behavior of the qua-

sispecies allow for conclusions about the distribution of fitness values? A few

regularities were recognized already from observations on the simple model

landscapes: (i) steep decay of the master concentration, ȳ0(p) may occur

without the appearance of a sharp transition, (ii) a sharp transition may

occur on fitness landscapes with gradually changing fitness values provided

the decay of f(Yk) with k is sufficiently steep, (iii) a sharp transition may

occur without leading to the uniform distribution, and (iv) the appearance

of the uniform distribution at pcr-values lower than p̃ requires a flat part of

21Like in physics we distinguish hard and soft transitions. A hard transition is confined

to a very narrow range of the order parameter – here the error rate p – and becomes

steeper and steeper as the system grows to infinity.
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the fitness landscapes in the sense that fitness values of neighboring classes

are the same.



5. Fitness landscapes and evolutionary dynamics

Sewall Wright’s metaphor of a fitness landscape has been considered

far off reality for more than forty years. Growing knowledge on biopoly-

mer structure and function, in particular structural data from proteins and

RNA molecules, led to first speculations on the nature of sequence struc-

ture mappings. The notion of sequence space was suggested [65, 201] for

the support in mappings and landscapes based on combinatorial diversity.

Relatedness in sequence space was derived from the mutational distance

that is commonly identified with the Hamming distance between sequences,

dH(Xj ,Xi) = dji = dij, which induces a metric and hence is symmetric

with respect to the aligned sequences. Still the tools for systematic searches

in sequence space were not yet available and it needed the new sequenc-

ing methods as well as high-throughput techniques before progress in the

empirical determination of fitness landscapes became possible. Much later,

mainly based on experimentally as well as theoretically derived properties of

biomolecules the notion of a structure space or shape space1 has been created

[98, 238, 252] that corresponds to a phenotype space in evolution research.

In this chapter we present at first the landscape concept from the point

of view of a structural biologist. Fitness and other properties can be derived

from molecular functions, which are thought to be essentially determined

by molecular structures. RNA secondary structures are used as a model

system, which is sufficiently simple to be analyzed by rigorous mathemat-

ics but encapsulates at the same time the essential features of more complex

sequence-structures mappings. Two features are characteristic for landscapes

derived from biopolymers, in particular RNA molecules, are: (i) ruggedness

– pairs of sequences situated nearby in sequence space, i.e., having Hamming

distance dH = 1, may give rise to very similar or entirely different structures

1The notion of shape space is commonly used also in mechanical engineering for the

complete set of shapes that can be assembled from a few elementary objects.
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and properties – and (ii) neutrality – two or more sequences may have iden-

tical structures and properties,2 and these neutral sequences form neutral

networks in sequence space, which are the preimages of the structures (see

Fig. 5.2).

In the second part we introduce model fitness landscapes that reproduce

the basic characteristics of functions derived from biopolymer structures and

study evolutionary dynamics on them. The dynamics on these “realistic” fit-

ness landscapes reflects several features that were observed on simple fitness

landscapes already (subsection 4.3.5) like the existence of error thresholds but

reveals also new phenomena like phase-transition like conversions between

different quasispecies. The third part is dealing with neutrality and deter-

ministic evolutionary dynamics in presence of two or more neutral sequences.

This section is complementary to the chapter on stochasticity (chapter 8).

5.1 RNA landscapes

The majority of data on the relation between sequences and molecular prop-

erties comes from structural biology of biopolymers, in particular RNA and

protein. As said RNA secondary structures are chosen here because they

provide a simple and mathematically accessible example of a realistic map-

ping of biopolymer sequences onto structures [248, 252]. The RNA model is

commonly restricted to the assignment of a single structure to every sequence

but the explicit consideration of suboptimal conformations is possible as well

[248] (see Fig. 5.7) and will be used here to illustrate more complex functions

of RNA molecules, for example switches controlling metabolism. Neutrality

with respect to structure formation implies that several sequences fold into

the same structure or, in other words, the RNA sequence-structure mapping

is not invertible.

Originating from the application of quantum mechanics to molecular mo-

tions the Born-Oppenheimer approximation gave rise to molecular hyper-

surfaces upon which nuclear motion takes place. Meanwhile the landscape

2Identical in the context of neutrality does not mean identical in strict mathematical

sense but indistinguishable for the experimental setup or for natural selection [174, 227].
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concept became also an integral part of biophysics and in other areas of

physics and chemistry. In particular, conformational landscapes of biopoly-

mers have been and are successfully applied to the folding problem of proteins

[229, 314]. Nucleic acid structures, in particular RNA in the simplified form

of secondary structures, turned out to provide a sufficiently simple model for

the study of basic features of sequence-structure mappings [238, 239]. What

renders nucleic acids accessible to mathematical analysis is the straightfor-

ward and unique base pairing logic for nucleic acids: In DNA A pairs with T

and C pairs with G providing thereby the basis of replication and reproduc-

tion. Base pairing by the same token dominates intramolecular interactions

in RNA and accounts for the major fraction of the free energy of folding. Base

pairing in RNA, however, is slightly relaxed: As in DNA have the Watson-

Crick pairs A = U and G ≡ C but the wobble pairs G−U are accepted as well

in secondary structures of single stranded RNA. Base pairing logic, for exam-

ple, allows for the application of combinatorics in counting of structures with

predefined structural features or properties [146, 300]. In addition, efficient

algorithms based on dynamic programming and using empirically determined

parameter sets are available for RNA structure prediction [145, 326, 328].

5.1.1 The paradigm of structural biology

In structural biology the relation between biopolymer sequences and func-

tions is conventionally spit into two parts: (i) the mapping of sequences

into structures and (ii) the prediction or assignment of function for known

structures (Fig. 5.1). If function is encapsulated in a scalar quantity, for ex-

ample in a reaction rate parameter or a fitness value, the second mapping

corresponds to a landscape with structure space as support:

X −→ S = Φ(X) −→ f = Ψ(S) . (5.1)

The function itself gives rise to the dynamics of a process involving a pop-

ulation of sequences or genotypes. The underlying concept is based on the

assumption that structures can be calculated from sequences either directly

or by means of an algorithm. Function manifests itself in the structure and
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Figure 5.1: The paradigm of structural biology. The relations be-
tween sequences, structures, and functions involve three spaces: (i) the se-
quence space Q with the Hamming distance dH as metric, (i) the shape
space S with a structure distance dS as metric, and (iii) the parameter
space Rm

+ for m parameters. Properties and functions are viewed as the
result of two consecutive mappings: Φ maps sequences into structures, Ψ
assigns parameters to structures and thereby determines molecular function
(The insert shows fitness values fk and selection as as example). The se-
quence space Q has a remarkable symmetry: All sequences are equivalent
in the sense that the occupy topologically identical positions having the
same number of nearest, next nearest, etc., neighbors linked in the same
way (Examples of a sequence spaces are shown in Figs. 3.3, 3.4, and 4.7).
The shape space S refers here to RNA secondary structures, which can be
uniquely represented by strings containing parentheses for base pairs and
dots for single stranded nucleotides (see Fig. 5.3 for an explanation). The
elements of shape space can be classified by the number of base pairs and
then there is a unique smallest element, the open chain, and depending
on l one largest element for odd l or two largest elements for even l –
one with the unpaired nucleobase on the 5’-end and one with it on the 3’-
end. Parameter space in chemical kinetics is commonly multi-dimensional
and the elements are rate parameters, commonly nonnegative real numbers
fk ∈ R+; k = 1, . . . , or equilibrium properties like binding parameters.
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Figure 5.2: A sketch of the mapping of RNA sequences onto secondary
structures. The points of sequence space (here 183 on a planar hexagonal lattice)
are mapped onto points in shape space (here 25 on a square lattice) and, inevitably,
the mapping is many to one. All sequences X. folding the same mfe structure form
a neutral set, which in mathematical terms is the preimage of Sk in sequence
space. Connecting nearest neighbors of this set – these are pairs of sequences with
Hamming distance dH = 1 – yields the neutral network of the structure, Gk. The
network in sequence space consists of a giant component (red) and several other
small components (pink). On the network the stability against point mutations
varies from λ̂ = 1/6 (white points) to λ̂ = 6/6 = 1 (black point). We remark that
the two-dimensional representations of sequence are used here only for the purpose
of illustration. In reality, both spaces are high-dimensional – the sequence space

of binary sequences Q(2)
l , for example, is a hypercube of dimension n and that of

natural four-letter sequences Q(4)
l an object in 3n dimensional space.

should be predictable therefore. As it turned out after some spectacular

successes in the early days (see, e.g., [302]) both steps are feasible but the

mappings are highly complex and not fully understood yet. The alternative

way to determine parameters consists of an inversion of conventional kinetics:

The measured time dependence of concentrations is the input and parame-

ters are fit to the data either by trial and error or systematically by means

of inverse methods involving regularization techniques [77].

Counting sequences and structures reveals the ultimate basis for neu-

trality. In the natural AUGC alphabet we are dealing with κl = 4l RNA
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sequences whereas the number of acceptable secondary structures3 that has

been determined by combinatorics [146, 300]:

∣

∣

∣
S(3,2)
lim

∣

∣

∣
(l) = 1.4848× l−3/2(1.84892)l . (5.2)

The formula is asymptotically correct for long sequences as indicated by the

limit. Insertion of moderately long or even small chain lengths l into Equ. 5.2

shows that we are always dealing with orders of magnitude more sequences

that structures and therefore neutrality with respect to structure and the

formation of neutral network for common structures is inevitable [247].

The conventional problem in structural biology is to find the structures

into which a sequences folds under predefined conditions [327, 328]. Solutions

to the inverse problem, finding a sequence that folds into a given structure

are important for the design of molecules in synthetic biology. An inverse

folding algorithm has been developed for RNA secondary structures [145]

(for a recent variant see [2]) and turned out to be a very useful tool for

studying sequence-structure mappings. In particular, these mappings are

not invertible: Many sequences fold into the same structure, and the notion

of neutral network has been created for the graph representing the preimage

of a given structure in sequence space [252]:

Φ(Xj) = Sk =⇒ Gk = Φ−1(Sk) ≡ {Xj|Φ(Xj = Sk} , (5.3)

The neutral set Gk in converted into the neutral network Gk through con-

necting all pairs of sequences with Hamming distance dH = 1. The definition

of the neutral networks in a way restores uniqueness of the mapping: Every

structure Sk has a uniquely defined neutral network Gk in sequence space.

Every sequence Xj belongs to one and only one neutral network. Neutral

networks are characterized by a (mean) degree of neutrality

λ̄k =

∑

j|Xj∈Gk
λ
(k)
j

|Gk|
, (5.4)

3Acceptable means here that hairpin loops of lengths nhp = 1 or 2 are excluded for

stereochemical reasons and stacks of length nst = 1, i.e. isolated base pairs, are not

considered for poor energetics (see Fig. 5.4).
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wherein λ
(k)
j is the local fraction of neutral nearest neighbors of sequence Xj

in sequence space (An example is sketched in Fig.5.2). Without knowing

special features of neutral networks derived from RNA secondary structures

the application of random graph theory [78, 79] to neutral networks is obvious.

One (statistical) result of the theory dealing with the connectedness of the

graph applies straightforwardly and relates it with the degree of neutrality

λ̄k: Neutral networks Gk with a degree of neutrality above a critical value,

λ̄k > λcr, are connected whereas networks with lower degree of neutrality,

λ̄k < λcr, are partitioned into components with one particularly large and

several small components. The large component is commonly characterized

as giant component. The critical degree of neutrality depends only on the size

of the nucleobase alphabet: λcr = 1−κ−1/(κ−1) leading to λcr = 0.5 for κ = 2

and to λcr = 0.370 for κ = 4. Because of the non-invertibility of the mapping

distance relations in structure space are different from those in sequence space

and they are more complex. The notion of distance is replaced by a concept

on nearness [102] of neutral networks. Nearness, however, does not fulfill the

properties of a metric as careful mathematical analysis reveals but leads to

a pretopology in phenotype space [270]. Fig.5.2 shows a sketch of a typical

neutral network in a ’two-dimensional’ sequence space. The network consists

of several components with one giant component being much larger than the

others. Random graph theory was found to represent a proper reference also

for the neutral networks based on RNA secondary structures in the sense

that deviations from the idealized node distribution can be interpreted by

structure based nonhomogeneous distributions of sequences in sequence space

[127]. Some structures with special features like, for example, stack with free

ends on both sides may show two or four giant components of equal size or

three giant components with a size distribution 1:2:1.
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Figure 5.3: Folding of RNA sequences into secondary structures. A
sequence of chain lengths l = 52 is converted into its most stable or minimum
free energy (mfe) structure – represented here by the conventional graph – be
means of a folding algorithm. The most popular algorithms are use the technique
of dynamic programming to find the structure of lowest free energy [145, 326,
328]. The parameter values, enthalpies and entropies of formation for structural
elements and substructures (Fig. 5.4) are determined empirically [199, 200]. The
string below the graph is an equivalent representation of the secondary structure:
Base pairs are represented by parentheses and single stranded nucleotides by dots.
Color is used here only to facilitate the assignment of graph substructures to
stretches on the structure string. It is not required to make the assignment of the
graph to the string and vice versa unique.

5.1.2 RNA secondary structures

An RNA secondary structure is a listing of base pairs that is convention-

ally cast into a graph.4 The secondary structure graph (Fig. 5.3) is obtained

4It is important to note that a graph does not represent a structure. It defines only

neighborhood relations. In case of the RNA secondary structures these are (i) the neigh-

borhood in the RNA backbone corresponding to the neighborhood in the sequence and

(ii) the neighborhood in the base pairs.
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by means of efficient algorithms using dynamic programming [145, 326, 328].

The basic idea is partitioning of the secondary structure into structural el-

ements, double stranded base pairs and single stranded loops and external

elements, which are assumed to contribute independently to the total free

energy of the molecule. An illustration of individual substructures and their

combination to RNA structures is shown in Fig. 5.4. The desirable uniqueness

of folding requires a specification of the conditions under which the process

takes place. Commonly, the criterium of folding is finding the thermody-

namically most stable structure called minimum free energy (mfe) structure,

which makes the implicit assumption that the process may take infinitely

long time. Another important condition is folding of the growing chain dur-

ing RNA synthesis. For long RNA molecules melting and refolding may take

very long time (see subsection 5.1.3) and then the result obtained by folding

on-the-fly is metastable and represents a conformation that is different from

the mfe-structure. In addition, folding kinetics may prefer conformations

that are different from the mfe structure.

The two characteristic features of landscapes derived from biopolymer

structures, which were mentioned initially – ruggedness and neutrality, be-

come immediately evident through an analysis of RNA structures. This

simultaneous appearance of ruggedness and neutrality is illustrated most

easily by means of RNA secondary structures, which are defined in terms of

Watson-Crick and G − U base pairs: Exchange of one nucleobase in a base

pair, e.g., C → G in G ≡ C, may open the base pair, destroy a stack, and

eventually lead to an entirely different structure with different properties, or

leave the structure unchanged, e.g., A → G in A = U. Neutrality is equally

well demonstrated: Exchanging both bases in a base pair may leave struc-

ture and (most) properties unchanged, G ≡ C → C ≡ G may serve as an

example. Evolutionary dynamics is clearly influenced by the shape of fitness

landscapes and the interplay of the two characteristic features was found to

be essential for the success of evolutionary searches [101, 102, 156].

In order to illustrate the typical form of the local environment in a

biopolymer landscape we choose a small RNA of chain length l = 17 with
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Figure 5.4: Elements of RNA secondary structures. Three classes of
structural elements are distinguished: (i) stacks (indicated by nucleotides in blue
color), (ii) loops, and (iii) external elements being joints (chartreuse) and free ends
(green). Loops fall into several subclasses: Hairpin loops (red) have one base pair,
called the closing pair, in the loop. Bulges (violet) and internal loops (orange)
have two closing pairs, and loops with three or more closing pairs (yellow) are
called multiloops. The number of closing pairs is the degree of the loop.

the sequence X0 ≡AGCUUACUUAGUGCGCU as example.5 At 0 ◦C the se-

quence forms the minimum free energy structure S0 = Φ(X0), which consists

of an hairpin with six base pairs and an internal loop that separates two

5All polynucleotide sequences are written from the 5’-end at the lhs to the 3’-end on

the rhs.
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Figure 5.5: Selected RNA structures. Shown are examples of RNA structures
in the one-error neighborhood of sequence X0 ≡ (AGCUUACUUAGUGCGCU)
ordered by the numbers of base pairs. In total, the 3×17 = 51 sequences form two
different structures with two base pairs (1,8; the numbers in parentheses refer to
the occurrence of the individual structures), four structures with three base pairs
(1,1,2,3), three structure with four base pairs (1,2,3), four structures with five
base pairs (1,1,3,4), two structures with six base pairs (2,15), and one structure
with seven base pairs (3). The three structures on the rhs have a common folding
pattern and differ only by closing and opening of a base pair: (i) the two bases in
the internal loop and (ii) the outermost base pair.

Figure 5.6: Free energy landscape of a small RNA. Free energies of folding,

−∆G
(0)
0 at 0 ◦C, are plotted for the individual point mutations, which are grouped

according to their positions along the sequence (from 5’- to 3’-end). The color
code refers to the number of base pairs in the structures (see Fig.5.5): powder
blue for two base pairs, pink for three base pairs, sky blue for four base pairs,
grass green for five base pairs, black for six base pairs as in the reference structure,
and red for seven base pairs. Mutations in the hairpin loop – positions 8, 9, 10
– do not change the structure. All calculations were performed with the Vienna
RNA Package, version 1.8.5 [145].
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stacks with three base pairs each (Fig.5.5; black structure), and the free en-

ergy of structure formation is: ∆G
(0)
0 = −6.39 kcal/mole. The molecule is

relatively stable and has three low lying suboptimal conformations with free

energies at 0.29, 0.38, and 0.67 kcal/mole above the minimum free energy

structure. These three states differ from the ground state through opening

of one or both external base pairs (see e.g. Fig.5.7), all three suboptimal

configurations are lying within reach of thermal energy and therefore con-

tribute to the partition function of the molecule. The Hamming distance

one neighborhood of X0 consists of 17 × 3 = 51 sequences, which form 16

different structures. Out of the 51 sequences 15 form the same minimum

free energy structure as X0 and 10 have also the same minimum free energy

energy implying a local degree of neutrality of λ
(0)
0 = 0.29 for structures and

λ
(∆G)
0 = 0.19 for the free energies, respectively. The plot of the free energies

of folding ∆G
(0)
0 for all 51 mutants in Fig.5.6 is a perfect illustration of the

ruggedness of the free energy landscape: The stability range of the one-error

mutants goes from marginal stability at position 2, G → U, to more than

twice the absolute free energy of the reference at position 4, U→ G.

Recently, methods were developed that allow for efficient construction of

fitness landscapes for catalytically active RNA molecules [235]. Ruggedness

and neutrality are not restricted to RNA-molecules, similar results provid-

ing direct evidence were found with proteins [140]. Protein space, however,

is more complex than RNA space since a large fraction of amino acid se-

quences does not lead to stable protein structures. Strongly hydrophobic

molecular surfaces, for example, lead to protein aggregation and accordingly

the landscapes have holes where no sequences are situated that cane give

rise to useful structures. The landscape then reminds of a holey landscape as

introduced in a different context by Sergey Gavrilets [109]. Holey landscapes

provide a challenge for adaptive evolution because certain areas of sequence

are not accessible. Attempts were made to reconstruct fitness landscapes

for simple parasitic organisms like viruses. A recent example is large scale

fitness modeling for HIV I [181]. Apart from a few exceptions experimen-

tal comprehensive information on fitness landscapes or conformational free

energy surfaces is still rare but the amount of reliable data is rapidly grow-
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ing. It seems to be appropriate therefore to conceive and construct model

landscapes that account for the known features and to study evolutionary

dynamics on them.

5.1.3 Sequences with multiple structures

The conventional view of biopolymer structures can be characterized as the

one sequence-one structure paradigm: Given a sequence, the folding problem

consists in the determination of the corresponding structure. A definition of

the physical conditions under which the folding process occurs is required.

Commonly, one assumes the thermodynamic minimum free energy criterium

that is appropriate for small RNA molecules only. Large RNA molecules

often exist and exert their function in long living metastable conformations,

which were formed according to kinetic criteria, for example folding on-the-fly

during RNA synthesis or kinetic folding of the entire sequence via kinetically

determined folding nuclei. Here, we want to concentrate on RNA molecules

that form multiple structures and function as RNA switches in nature and

in vitro.

In the great majority of natural, evolutionary selected RNA-molecules

we are dealing with sequences forming a single stable structure, whereas

randomly chosen sequences generically form a great variety of metastable

suboptimal structures in addition to the minimum free energy structure

[248]. Important exceptions of the one sequence-one structure paradigm

are RNA switches fulfilling regulatory functions in nature [122, 194, 260, 312]

and synthetic biology [24]. Such riboswitches are multiconformational RNA

molecules, which are involved in posttranscriptional regulation of gene ex-

pression. The conformational change is commonly induced by ligand binding

or ribozymic RNA cleavage. Multitasking by RNA molecules clearly imposes

additional constraints on genomic sequences and manifests itself through a

higher degree of conservation in phylogeny.

The extension of the notion of structure to multiconformational molecules

is sketched in Fig.5.7. The RNA molecule shown there has been designed

to form two conformations: (i) a well defined minimum free energy (mfe)
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Figure 5.7: RNA secondary structures viewed by thermodynamics and
folding kinetics. An RNA sequence X of chain length l = 33 nucleotides has
been designed to form two structures: (i) the single hairpin mfe structure,S0 (red)
and (ii) a double hairpin metastable structure, S1 (blue). The Gibbs free energy
of folding (∆G) is plotted on the ordinate axis. The leftmost diagram shows the
minimum free energy structure S0 being a single long hairpin with a free energy of
∆G = −26.3 kcal/mole. The plot in the middle contains, in addition, the spectrum
of the ten lowest suboptimal conformations classified and color coded with respect
to single hairpin shapes (red) and double hairpin shapes (blue). The most stable –
nevertheless metastable – double hairpin has a folding free energy of ∆G = −25.3
kacl/mole. The rightmost diagram shows the barrier tree of all conformations up
to a free energy of ∆G = −5.6 kcal/mole where the energetic valleys for the two
structures merge into one basin containing 84 structures, 48 of them belonging
to the single hairpin subbasin and 36 to the double hairpin subbasin. A large
number of suboptimal structures has free energies between the merging energy of
the subbasins and the free reference energy of the open chain (∆G = 0).

structure – being a perfect single hairpin (red structure; lhs of the figure and

rhs of the barrier tree), and (ii) a metastable double hairpin conformation

(blue structure; lhs of the barrier tree), which is almost as stable as the mfe

structures. In addition to the mfe structure S0 and the conformation S1,

the sequence X ≡ (GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC)

like almost all RNA sequences6 forms a great variety of other, less stable

6Exceptions are only very special sequences, homopolynucleotides, for example.
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conformations called suboptimal structures (S2 to S10 are shown by numbers

in the middle of the figure and in the barrier tree). The numbers of all

suboptimal structures are huge but most suboptimal conformations have free

energies way above the mfe structure and don’t appreciably contribute to

the low-lying conformations. Structures, mfe and suboptimal structures,

are related through transitions, directly or via intermediates, which in a

simplified version can be represented by means of a barrier tree [95, 313]

shown on the rhs of the figure. Kinetic folding introduces a second time

scale into the scenario of molecular evolution.7 Based on Arrhenius theory of

chemical reaction rates,

k = A · e−Ea/RT , (5.5)

the height of the barrier, Ea determines the reaction rate parameter k and

thereby the half life of the conformation t1/2 = ln 2/k. In equation (5.5),

A is the pre-exponential factor of the reaction, R is the gas constant and T

the absolute temperature in ◦Kelvin. The two structures shown in Fig.5.7

are connected by a lowest barrier of 20.7 kcal/mole that depending on the

pre-exponential factors implies half lives of days or even weeks for the two

conformations. In a conventional experiment with a time scale of hours the

two conformations would appear as two separate entities. Barriers, neverthe-

less, can be engineered to be much lower and then an equilibrium mixture of

rapidly interconverting conformations may be observed. Several constraints

are required for the conservation of an RNA switch, and the restrictions of

variability in sequence space are substantial.

The comparison of the two dominant structures S0 and S1 in Fig. 5.7

provides a straightforward example for the illustration of different notions of

stability: (i) thermodynamic stability, which considers only the free energies

of the mfe structures – S0 in Fig.5.7 is more stable than S1 since it has a lower

free energy, ∆G(S0) < ∆G(S1), (ii) conformational stability, which can be

expressed in terms of suboptimal structures or partition functions within a

7Timescale number one is the evolutionary process – mutation and selection – itself. In

order to be relevant for evolutionary dynamics the second timescale has to be substantially

faster than the first one, or in other words, the conformational changes has to occur almost

instantaneously on the timescale of evolution.
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basin or a subbasin of an RNA sequence – a conformationally stable molecule

has no low lying suboptimal conformations that can be interconverted with

the mfe structure or another metastable structure at the temperature of the

experiment; for kinetic structures separated by high barriers the partition

functions are properly restricted to individual subbasins [195], and (iii) mu-

tational stability that is measured in terms of the probability with which a

mutation changes the structure of a molecule (see Fig.5.2). All three forms of

stability are relevant for evolution, but mutational stability and the spectrum

of mutational effects – adaptive, neutral or deleterious – are most important.

RNA suboptimal structures were also used for explaining characteristic

feature of the evolution of organisms like plasticity, evolvability, and modu-

larity [6, 7, 97]. Among these very complex features modularity is the most

intriguing one, because it plays a crucial role from the early beginnings of

evolution to the most complex relations in societies. Modularity is indis-

pensable for understanding complex systems in biology and anywhere else.

Modular structure in cases where it is not congruent with other forces shap-

ing subunits is hard to interpret still and as it seems will remain a hot topic

for many years in the future.

5.2 Dynamics on realistic rugged landscapes

The majority of data on the relation between sequences and molecular prop-

erties comes from structural biology of biopolymers, in particular RNA and

protein. RNA secondary structures as shown in the previous section 5.1 pro-

vide a simple and mathematically accessible example of a realistic mapping

of biopolymer sequences onto structures [252]. The RNA model is commonly

restricted to the assignment of a single structure to every sequence but the

explicit consideration of suboptimal conformations is possible as well (see

subsection 5.1.3 and [248]). Two features are characteristic for landscapes

derived from RNA molecules: (i) ruggedness – pairs of sequences situated

nearby in sequence space, i.e., having Hamming distance dH = 1, may give

rise to very similar or entirely different structures and properties – and (ii)
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neutrality – two or more sequences may have identical structures and prop-

erties.

Rugged fitness landscapes, which are more elaborate than the simple ones

discussed in section 4.3.6, have been proposed. The most popular example

is the Nk-model conceived by Stuart Kauffman [169, 170, 306] that is based

on individual loci on a genome and interactions between them: N is the

number of loci and k is the number of interactions. A random element,

which is drawn from a predefined probability distribution – commonly the

normal distribution – and which defines the interaction network, is added

to the otherwise deterministic model: N and k are fixed and not subjected

to variation. Here a different approach is proposed that starts out from

the nucleotide sequence of a genome rather than from genes and alleles,

and consequently it is based on the notion of sequence space. Ruggedness

(this section 5.2) and neutrality (see section 5.3) are introduced by means

of tunable parameters, d and λ, and pseudorandom numbers are used to

introduce random scatter, which reflects the current ignorance with respect

to detailed fitness values and which is thought to be replaced by real data

when they become available in the near future. We begin with an overview

of the current knowledge on biopolymer landscapes and discuss afterwards

model landscapes that come close to real landscapes at the current state of

knowledge and investigate then evolutionary dynamics on such “realistic”

landscapes.

A new type of landscapes, the realistic rugged landscape (RRL), is in-

troduced and analyzed here. Ruggedness is modeled by assigning fitness

differences at random within a predefined band of fitness values with ad-

justable width d. The highest fitness value is attributed to the master se-

quence Xm
.
= X0, fm = f0, and the fitness values of all other sequences are

obtained by means of the equation

f(Xj) = fj =







f0 if j = 0 ,

f + 2d(f0 − f)
(

η
(s)
j − 0.5

)

if j = 1, . . . , κ l ,
(5.6)

where η
(s)
j is the j-th output random number from a pseudorandom number
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generator with a uniform distribution of numbers in the range 0 ≤ η
(s)
j ≤ 1.

The random number generator is assumed to have been started with the

seed s,8 which will be used to characterize a particular distribution of fitness

values (Fig. 5.8). The parameter d determines the amount of scatter around

the mean value f̄−0 = f , which is independent of d: d = 0 yields the single

peak landscape, and d = 1 leads to fully developed or maximal scatter where

individual fitness values fj can reach the value f0. A given landscape can be

characterized by

L = L(λ, d, s; l, f0, f) , (5.7)

where λ is the degree of neutrality (see section 5.3; here we have λ = 0).

The parameters l, f0 and f have the same meaning as for the single peak

landscape (3.4c).

Two properties of realistic rugged landscapes fulfilled by fitness values

relative to the mean except the master, ϕj = fj − f ∀ j = 0, . . . , κ l − 1,

are important: (i) the ratio of two relative fitness values of sequences within

the mutant cloud is independent of the scatter d and (ii) the ratio of the

relative fitness values of a sequence from the cloud and the master sequence

is proportional to the scatter d:

ϕj

ϕk
=

η
(s)
j − 0.5

η
(s)
k − 0.5

; j, k = 1, . . . , κ l − 1 and (5.8a)

ϕj

ϕ0
= 2 d

(

η
(s)
j − 0.5

)

; j = 1, . . . , κ l − 1 . (5.8b)

The second equation immediately shows that
∑κl−1

j=1 ϕj = 0.

5.2.1 Single master quasispecies

We are now in a position to explore whether or not the results derived from

simple model landscapes are representative for mutation-selection dynamics

in real populations. At first the influence of random scatter on quasispecies

8The seed s indeed determines all details of the landscape, which is completely defined

by s and the particular type of the pseudorandom number generator as well as by f0, f ,

and d.
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Figure 5.8: Realistic rugged fitness landscapes. The landscapes for bi-

nary sequences with chain length l = 10 are constructed according to equa-

tion (5.6). In the upper plot the band width of random scatter was chosen to

be d = 0.5 and a seed of s = 919 was used for the random number generator

(L(0, 0.5, 919; 10, 1.1, 1.0)). For the lower plot showing maximal random scatter

d = 1 and s = 637 was applied (L(0, 1.0, 637; 10, 1.1, 1.0)). Careful inspection

allows for the detection of individual differences. The broken blue lines separate

different mutant classes.

and error thresholds will be studied. The chain length for which diagonaliza-

tion of the value matrix W can be routinely performed lies at rather small

values around l = 10 giving rise to a matrix size of 1 000 × 1 000. Accord-
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Figure 5.9: Error thresholds on a realistic model landscape with different

random scatter d. Shown are the stationary concentrations of classes ȳj(p) on

the realistic landscape with s = 023 for d = 0 (L(0, 0, 0); upper plot), d = 0.5

(L(0, 0.5, 023); middle plot), and d = 0.95 (L(0, 0.95, 023); lower plot). The error

threshold calculated by zero mutational backflow lies at pcr = 0.009486 (black

dotted line), the values for level crossing decrease with the width of random scatter

d (blue dotted lines). Other parameters: l = 10, f0 = 1.1, and f = 1.0.
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ingly, it has to be confirmed first whether or not such a short chain length

is sufficient to yield representative results. In Fig. 5.9 the stationary con-

centrations of mutant classes, ȳk (k = 0, 1, . . . , 10) are shown for different

band widths d of random scatter: The purely deterministic case d = 0 rep-

resenting the single-peak landscape, d = 0.5, and d = 0.95, the maximal

scatter that sustains a single quasispecies over the entire range, 0 ≤ p < pcr.
9

Despite the short chain length of l = 10 the plots reflect the threshold phe-

nomena rather well, the width of the transition to the uniform distribution

is hardly changing, and values for level crossing (section 4.3.6 and table 4.3)

are shifted towards smaller p(1/M)-values with increasing d. Answering the

initial question, computer studies with l = 10 are suitable for investigations

on quasispecies behavior.

For d > 0 the fitness values for individual sequences within one class

are no longer the same and hence the curves x̄j(p) differ from each other

and form a band for each class that increases in width with the amplitude

d of the random component (Fig. 5.11). The separation of the bands formed

by curves belonging to different error classes is always recognizable at suf-

ficiently small mutation rates p but the bands overlap and merge at higher

p-values. As expected the zone where the bands begin to mix moves in the

direction p = 0 with increasing scatter d. Interestingly, the error threshold

phenomenon is fully retained thereby, only the level-crossing value p(1/100)

is shifted towards lower error rates (figs. 5.10, 5.11, and 5.12). Indeed, the

approaches towards the uniform distribution on the landscape without a ran-

dom component (d = 0) and on the landscape with d = 0.5 are very similar

apart from the relatively small shift towards lower p-values, whereas the shift

for d = 0.95 is substantially larger and the solution curve x̄0(p) is curved up-

wards more strongly. Closer inspection of the shift of the level-crossing value

shows nonmonotonous behavior for some landscapes: The level crossing value

is shifted towards larger p-values at first, passes a maximum value and then

9As shown below in detail (Fig. 5.14) individual quasispecies may be replaced by others

at certain critical p-values, ptr. For a given scatter s the number of such transitions

becomes larger with increasing values of d.



168 Peter Schuster

Figure 5.10: Error threshold and decay of the master sequence X0. Shown

are the stationary concentrations of the master sequence x̄0(p) and the level cross-

ing values p(1/100) (vertical lines) on a landscape with s = 023 for d = 0 (black),

d = 0.5 (blue), and d = 0.950 (grey). The error threshold lies at pcr = 0.094857

(red). The lower plot enlarges the upper plot and shows the level x̄0 = 0.01 (dotted

horizontal line, black). Other parameters: l = 10, f0 = 1.1 and f = 1.0.
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Figure 5.11: Quasispecies on a realistic model landscape with different

random scatter d. Shown are the stationary concentrations x̄j(p) on a landscape

with s = 491 for d = 0 (upper plot), d = 0.5 (middle plot), and d = 0.9375 (lower

plot) for the classes Γ0, Γ1, and Γ2. In the topmost plot the curves for all sequences

in Γ1 (single point mutations, dH(X0,X(1)) = 1) coincide, and so do the curves in

Γ2 (double point mutations, dH(X0,X(2)) = 2) since zero scatter, d = 0, has

been chosen. The error threshold calculated by zero mutational backflow lies at

p = 0.066967. Other parameters: l = 10, f = 2.0, and f = 1.0.



170 Peter Schuster

Figure 5.12: Level-crossing values for the master sequence of dif-

ferent model landscape with different random scatter d. Shown are

the level crossing values for M = 100 as functions of the random scat-

ter p(1/100)(d). The error threshold calculated by zero mutational backflow

lies at pcr = 0.0117481. Color code for different seeds s: 023= orange,

229= red, 367=green, 491=black, 577= chartreuse, 637=blue, 673=yellow,

877=magenta, 887= turquoise, 919=blue violet, and 953=hot pink. Other pa-

rameters: l = 10, f0 = 1.1, and f = 1.0.
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Figure 5.13: A realistic model landscape with a transition between qua-

sispecies. Shown are the stationary concentrations x̄j(p) on a landscape with

s = 023 for d = 0.5 (upper plot), d = 0.999 (middle plot), and fully developed

scatter d = 1.0 (lower plot). Other parameters: l = 10, f0 = 1.1, and f = 1.0.
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Figure 5.14: A realistic model landscape with multiple transitions be-

tween quasispecies. Shown are the stationary concentrations x̄j(p) on a land-

scape with s = 637 for d = 0.5 (upper plot), d = 0.995 (middle plot), and fully

developed scatter d = 1.0 (lower plot). Other parameters: l = 10, f0 = 1.1, and

f = 1.0.
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follows the general shift towards lower values of p with increasing scatter d

(Fig. 5.12).

5.2.2 Transitions between quasispecies

In addition, transitions between quasispecies may be observed at critical mu-

tation rates p = ptr: One quasispecies, Ῡ0, which is the stationary solution

of the mutation-selection equation (4.9) in the range 0 ≤ p < ptr, is replaced

by another quasispecies, Ῡk, which represents the stationary solution above

the critical value up to the error threshold ptr < p < pcr, or up to a second

transition, (ptr)1 < p < (ptr)2. More than two transitions are also possible,

an example is shown in Fig. 5.14 (lower plot). The mechanism by which qua-

sispecies replace each other is easily interpreted [256]:10 The stationary muta-

tional backflow from the sequences Xi (i = 1, . . . , n) to the master sequence

X0 is determined by the sum of the product terms ψ0 =
∑n

i=1W0i = Q0ifi

and likewise for a potential master sequence Xk, ψk =
∑n

i=0,i 6=kWki = Qkifi.

The necessary – but not sufficient – condition for the existence of a transition

is ∆ψ = ψ0−ψk < 0. Since the fitness value f0 is the largest by definition we

have f0 > fi (i = 1, . . . , n) and at sufficiently small mutation rates p the dif-

ferences in the values, ∆ω = ω0−ωk =W00−Wkk = Q00f0−Qkkfk > 0, will

always outweigh the difference in the backflow, ∆ω > |∆ψ|. With increasing

values of p, however, the replication accuracy and ∆ω will decrease because

of the term Q00 = Qkk ≈ (1 − p)l in the uniform error approximation. At

the same time ∆ψ will increase in absolute value and provided ∆ψ < 0 there

might exist a mutation rate p = ptr smaller than the threshold value ptr < pcr

at which the condition ∆ω + ∆ψ = 0 is fulfilled and consequently, the qua-

sispecies Ῡk is the stable stationary solution of equation (4.9) at p > ptr.

The influence of a distribution of fitness values instead of the single value

of the single-peak landscapes can be predicted straightforwardly: Since f0 is

independent of the fitness scatter d the difference f0 − fk will decrease with

10Thirteen years after this publication the phenomenon has been observed in quasis-

pecies of digital organisms [309] and was called survival of the flattest.
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Table 5.1: Computed and numerically observed quasispecies transitions.

In the table we compare the numerically observed values of p at transitions between

quasispecies, ptr, with the values calculated from equation (5.9), (ptr)eval, and the

error thresholds, pcr. The table is adopted from [256].

Chain length Qsp. Ῡ0 Qsp. Ῡm Critical mutation rates

l f0 f
(0)
1 fm f

(m)
1 ptr (ptr)eval pcr

20 10 1 9.9 2 0.0520 0.0567 0.1130

50 10 1 9.9 2 0.0362 0.0366 0.0454

50 10 1 9.9 5 0.0148 0.0147 0.0470

50 10 1 9.0 5 0.0445 0.0456 0.0453

increasing scatter d. Accordingly, the condition for a transition between qua-

sispecies can be fulfilled at lower p-values and we expect to find one or more

transitions preceding the error threshold pcr. No transition can occur on

the single peak landscape but as d increases and the difference ∆ω becomes

smaller and it becomes more likely that the difference in backflow becomes

sufficiently strong for a replacement of Ῡ0 by Ῡk below pcr. Fig. 5.13 presents

a typical example: No quasispecies transition is found up to a random scatter

of d = 0.95. Then, a soft transition becomes observable at d = 0.975 and

eventually dominates the plot of the quasispecies against the mutation rate

p at random scatter close to the maximum (d = 0.995 and d = 1.0). An

example with multiple transitions increasing in number with increasing d is

shown in Fig. 5.14.

An explicit computation of the transition point p = ptr has been per-

formed some time ago [256]. A simple model is used for the calculation of

the critical value that is based on a zero mutational flow assumption between

the two quasispecies. The value matrix W corresponding to all 2l sequences

of chain length l is partitioned into two diagonal blocks and the rest of the

matrix: (i) Block Ῡ0 contains sequence X0 with the highest fitness value f0,

which is the master sequence in the range 0 ≤ p < ptr and all its one-error
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mutants X
(0)
(1) = {Xj ∈ Γ

(0)
1 } with a fitness value f

(0)
1 , (ii) block Ῡm contains

sequence Xm with the fitness value fm, which is the master sequence in the

range ptr ≤ p < pcr, and all its one-error mutants X
(m)
(1) = {Xj ∈ Γ

(m)
1 } with a

fitness value f
(m)
1 , and (iii) the rest of the matrix W is neglected completely

as all entries are set equal zero:

W = ql



































f0 f
(0)
1 ε · · · f

(0)
1 ε · · · 0 0 · · · 0

f0ε f
(0)
1 · · · f

(0)
1 ε2 · · · 0 0 · · · 0

...
...

. . .
...

. . .
...

...
. . .

...

f0ε f
(0)
1 ε2 · · · f

(0)
1 · · · 0 0 · · · 0

0 0 · · · 0 · · · fm f
(m)
1 ε · · · f

(m)
1 ε

0 0 · · · 0 · · · fmε f
(m)
1 · · · f

(m)
1 ε2

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 · · · fmε f
(m)
1 ε2 · · · f

(m)
1



































.

Each block is now represented by a 2 × 2 matrix

W0 = ql

(

f0 l f
(0)
1 ε

f0ε f
(0)
1

(

1 + (l − 1)ε2
)

)

and

Wm = ql

(

fm l f
(m)
1 ε

fmε f
(m)
1

(

1 + (l − 1)ε2
)

)

.

Calculation of the two largest eigenvalues λ0 and λm yields the condition for

the occurrence of the transitions: λ0 = λm. The result is

ptr = 1 −
√

1− ϑ tr

l − 1
, (5.9)

with ϑ tr being the result of the equation

ϑ tr =
1

2

(

α + β − γ +
√

(α + β − γ)2 − 4αβ
)

with (5.9’)

α = l − f0 − fm
f
(m)
1 − f (0)

1

,

β = l − f0fm(f
(m)
1 − f (0)

1 )

f
(0)
1 f

(m)
1 (f0 − fm)

, and

γ =
(f0f

(0)
1 − fmf (m)

1 )2

(l − 1)f
(0)
1 f

(m)
1 (f0 − fm)(f (m)

1 − f (0)
1 )

.
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Although the complexity of these equations is prohibitive for further manip-

ulations, the accuracy of the zero mutational flow approximations is relevant

for the next subsection 5.2.3 were we shall apply a similar approximation.

The corresponding table 5.1 is reproduced from [256]. The agreement is very

good indeed but is cases where ptr and pcr are very close it can nevertheless

happen that the calculated value lies above the error threshold.

5.2.3 Clusters of coupled sequences

A certain fraction of landscapes gives rise to characteristic quasispecies dis-

tributions as a function of the mutation rate p that is substantially different

from the one shown in Fig. 5.14 and discussed above. No transitions are

observed, not even at fully developed scatter d = 1 (Fig. 5.15). Another fea-

ture concerns the classes to which the most frequent sequences belong. On

the landscape defined by s = 919 these sequences are the master sequence

(X0; black curve), one one-error mutant (X4; red curve), and one two-error

mutant (X516; yellow curve).11 The three sequences are situated close-by in

sequence space – Hamming distances dH(X1,X4) = dH(X4,X516) = 1 and

dH(X1,X516) = 2)– form a cluster, which is dynamically coupled by means

of strong mutational flow (Fig. 5.16). Apparently, such a quasispecies is not

likely to be replaced in a transition by another one that is centered around

a single master sequence and accordingly, we call such clusters strong qua-

sispecies. The problem that ought to be solved now is the prediction of the

occurrence of strong quasispecies from know fitness values.

First, a heuristic is mentioned that serves as an (almost perfect) diagnostic
tool for detecting whether or not a given fitness landscape gives rise to a
strong quasispecies: (i) For every mutant class we identify the sequence with
the highest fitness value, f0, (f(1))max = f(Xm(1)), (f(2))max = f(Xm(2)), . . . ,
and call them class-fittest sequences. Next we determine the fittest sequences
in the one-error neighborhood of the class-fittest sequences. Clearly, for the
class k-fittest sequence Xm(k) this sequence lies either in class k − 1 or in
class k+1.12 Simple combinatorics is favoring classes closer to the middle of

11Näıvely we would expect a band of one-error sequences at higher concentration than

the two-error sequence.
12For class k = 1 we omit the master sequence X0, which trivially is the fittest sequence
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Figure 5.15: Error thresholds on a realistic model landscape with differ-

ent random scatter d and transitions between quasispecies. The landscape

characteristic is s = 919. Shown are the stationary concentrations x̄j(p) for d = 0.5

(upper plot), d = 0.995 (middle plot), and fully developed scatter d = 1.0 (lower

plot). Other parameters: l = 10, f0 = 1.1, and f = 1.0.
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Figure 5.16: Mutation flow in quasispecies. The sketch shows two typical
situations in the distribution of fitness values in sequence space. In the upper dia-
gram (s = 637) the fittest two-error mutant, X768, has its fittest nearest neighbor,
X769, in the three-error class Γ3, and the fittest sequence in the one-error neigh-
borhood of X4 (being the fittest sequence in the one-error class), X68, is different
from X768, the mutational flow is not sufficiently strong to couple X0, X4, and X68,
and transitions between different quasispecies are observed (Fig. 5.14). The lower
diagram (s = 919) shows the typical fitness distribution for a strong quasispecies:
The fittest two-error mutant, X516, has its fittest nearest neighbor, X4, in the one-
error class Γ1 and it coincides with the fittest one-error mutant. Accordingly, the
three sequences (X0, X4, and X516) are strongly coupled by mutational flow and a
strong quasispecies is observed (Fig. 5.15).
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sequence space. Any sequence in the two-error class, for example, has two
nearest neighbors in the one-error class but n − 2 nearest neighbors in the
three-error class. To be a candidate for a strong quasispecies requires that
– against probabilities – the fittest sequence in the one-error neighborhood
of Xm(2) lies in the one-error class: (f(Xm(2))m(1)

)max with (Xm(2))m(1) ∈ Γ1

and preferentially, this is the fittest one-error sequence, (Xm(2))m(1) ≡ Xm(1).
Since all mutation rates between nearest neighbor sequences in neighboring
classes are the same – (1 − p)n−1p within the uniform error model – the
strength of mutational flow is dependent only on the fitness values, and the
way in which the three sequences were determined guarantees optimality
of the flow: If such a three-membered cluster was found it is the one with
the highest internal mutational flow for a given landscape. Fig. 5.16 (lower
picture, s = 919) shows an example where such three sequences form a
strongly coupled cluster. There is always a fourth sequence – here X512 –
belonging to the cluster but it may play no major role because of low fitness.
The heuristic presented was applied to 21 fitness landscapes with different
random scatter and three strong quasispecies (s =401, 577, and 919) were
observed. How many would be expected by combinatorial arguments? The
probability for a sequence in Γ2 to have a neighbor in Γ1 is 2/10 = 0.2
and, since the sequence Xm(1) is fittest in Γ1 and hence also in the one-
error neighborhood of Xm(2), this is also the probability for finding a strong
quasispecies. The sample that has been investigated in this study comprised
21 landscapes an hence we expect to encounter 21/5 = 4.2 cases, which is
– with respect to the small sample size – in agreement with the three cases
that we found.

The suggestion put forward in the heuristic mentioned above – a cluster
of sequences coupled by mutational flow that is stronger within the group
than to the rest of sequence space because of frequent mutations and high fit-
ness values – will now be analyzed and tested through the application of zero
backflow approximation. Instead of a single master sequence we consider
a master cluster of sequences and then proceed in full analogy to subsec-
tion 4.3.3 by applying zero mutational backflow from the rest of sequence
space to the cluster. In order to be able to deal with a cluster of sequences

in the one-error neighborhood, and search only in class k = 2.
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we rearrange the value matrix W:

W =





























W11 W12 · · · W1k W1,k+1 · · · W1n

W21 W22 · · · W2k W2,k+1 · · · W2n
...

...
. . .

...
...

. . .
...

Wk1 Wk2 · · · Wkk Wk,k+1 · · · Wkn

Wk+1,1 Wk+1,2 · · · Wk+1,k Wk+1,k+1 · · · Wk+1,n
...

...
. . .

...
...

. . .
...

Wn1 Wn2 · · · Wnk Wn,k+1 · · · Wnn





























. (5.10)

The upper left square part of the matrix W will be denoted by wm. It rep-
resents the core of the quasispecies in the sense of a mutationally coupled
master cluster, Cm = {Xm1, . . . ,Xmk}, and after neglect of mutational back-
flow from sequences outside the core we are left with the eigenvalue problem

wm ζmj = λmj ζmj ; j = 0, . . . , k − 1 . (5.11)

In the uniform error rate model the elements of the mutation matrix Q are
of the form

Qmi,mj = (1− p)n−dmi,mj pdmi,mj = (1− p)n−k qmi,mj with

qmi,mj = (1− p)k−dmi,mj pdmi,mj

Apart from the reduced dimension the eigenvalue problem (5.11) is in com-
plete analogy to the eigenvalue problem in subsection 4.3.1. The common
factor (1−p)n−k leaves the eigenvectors unchanged and is a multiplier for the
eigenvalues: λmj ⇒ (1− p)n−k λmj ∀ j = 0, . . . , k− 1. Only the largest eigen-

value λm0 and the corresponding eigenvector ζm0 – with the components ζ
(m0)
i

and
∑k

i=0 ζ
(m0)
i = 1 – are important for the discussion of the quasispecies.

By the same tokens as in subsection 4.3.3, equation (4.19a), we obtain the
stationary solution

c̄(0)m =
λm0 (1− p)n−k − f−m

fm − f−m
with

x̄
(0)
mj = ζ

(m0)
j c̄(0)m ; j = 1, . . . , k , and

fm =

k
∑

i=1

ζ
(m0)
i fi and f−m =

n
∑

i=k+1

x̄ifi

/ n
∑

i=k+1

x̄i .

(5.12)

The calculations of the concentrations of the sequences not belonging to the
master core is straightforward but more involved than in the case of a single



Evolutionary Dynamics 181

Table 5.2: Strong quasispecies. Shown are error thresholds and level crossing

values for three cases of strong quasispecies.

Random seeds s = 401 s = 577 s = 919

j fitness j fitness j fitness

Core sequences 0 1.1000 0 1.1000 0 1.1000

64 1.0981 64 1.0951 4 1.0966

16 1.0772 256 1.0894 512 0.9296

80 1.0987 320 1.0999 516 1.0970

j p(1/100) j p(1/100) j p(1/100)

Level crossing, d = 0 0 0.01396 0 0.01410 0 0.01320

64 0.01406 64 0.01402 4 0.01348

16 0.01318 256 0.01377 512 0.00828

80 0.01389 320 0.01410 516 0.01304

Level crossing, d = 1 0 0.008443 0 0.006921 a 0 0.007876

64 0.008359 64 0.006481 4 0.008385

16 0.007003 256 0.006440 512 - - - b

80 0.007876 320 0.006733 516 0.007476

Error threshold (pcr) 0.01134 0.01145 0.01087

a The quasispecies with s = 577 shows a small smooth transition just above

the error threshold. The following three sequences have the same or higher

level crossing values: p(1/100)(X899) = 0.008026, p(1/100)(X931) = 0.007186, and

p(1/100)(X962) = 0.006842.
b The stationary concentration x̄512(p) never exceeds nor reaches the value 0.01.

master sequence. We dispense here from details because we shall not make
use of the corresponding expressions. In the forthcoming examples we shall
apply a modified single peak landscape where all sequences except those in
the master core have the same fitness values f and then the equation f−m = f
is trivially fulfilled.



182 Peter Schuster

For the purpose of illustration of the analysis of sequence clustering in

strong quasispecies full numerical computations are compared with the zero

mutational backflow approximation for the four membered cluster on the fit-

ness landscape L(λ = 0, s = 919, d = 1.00) in Fig. 5.17. Although differences

are readily recognized and the agreement between the full calculation and

the approximation is not as good as in the case of a single master sequence,

the appearance of the cluster is very well reproduced by the zero mutational

backflow approximation. In particular, the relative frequencies of the four

sequences forming the cluster are reproduced well. In comparison to the

full calculation, the critical mutation rate at the error threshold, the point

p = pcr at which the entire quasispecies Ῡ(0) vanishes, appears at a higher

p-value than the level crossings of the full calculation. The difference in the

critical mutation rates is readily interpreted: The full calculation is based

on a landscape with fully developed random scatter whereas the zero muta-

tional backflow calculation compares best with a four peak landscape where

the four peaks correspond to the members of the cluster (X0, X4, X516, X512)

and all other sequences have identical fitness values. In order to show that

this interpretation is correct the cluster has been implemented on a single

peak landscape (d = 0) with the same fitness values (f0 = 1.1 and f = 1.0)

and the error threshold on this landscape is shifted slightly to higher values

of the mutation rate parameter p. The agreement with the zero mutational

backflow approximation is remarkably good. This agreement can be taken

as a strong indication that the interpretation of strong quasispecies being a

result of the formation of mutationally linked clusters of sequences within

the population.

Three strong quasispecies with the values s = 401, 577, and 919 were

found among the 21 landscapes studied here. The most important computed

data are summarized in table 5.2. Like in the single master case on the single

peak landscape the level crossing values p(1/100) occur at higher mutation rates

than the error threshold (see Fig. 5.10). The shift in the strong quasispecies

is about ∆p = 0.0265 somewhat larger than that for the single master lying

at ∆p = 0.00226. In the single master case the error threshold was calculated

to be pcr = 0.094875 whereas here it is shifted to higher p-values by about
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Figure 5.17: Zero backflow approximation for a quasispecies on a realistic

model landscape. The landscape characteristic is L(λ = 0, d = 1.00, s = 919).

Shown are the stationary concentrations x̄j(p)
(0) (j = 1, 2, 3, 4) for the cluster

obtained through zero mutational backflow (upper plot), the results of the full

numerical computation (middle plot), and of a full numerical computation where

the cluster was implemented on the single peak landscape (lower plot, d = 0).

Other parameters: l = 10, f0 = 1.1, and f = 1.0.



184 Peter Schuster

∆p = 0.0046. The interpretation is straightforward: The core taken together

has a higher effective fitness than a single master and this is reflected by the

shift to higher mutation rates. This shift is smallest in case of the core with

s = 919 being the in agreement with a particularly small fitness value of one

of the two class 1 mutant (f512 = 0.9296). In fact, the core in this case consists

practically of three sequences only: X0, X4, and X516. In the computation

with fully developed scatter (d = 1) for the strong quasispecies with s = 577

we observe p(1/100)-values that are smaller than in the other two cases. Again

the explanation is straightforward: There is a small and smooth transition

at a ptr value just below the error threshold and the stationary concentration

of the master beyond the transition is higher than that of the dominating

sequence in the core, x̄899 > x̄0, and the p(1/100)-value for the sequence X899

is indeed higher, p(1/100)(X899) = 0.008026.

The mutation rate at which the last stationary concentration crosses the

value 1/100 shows some scatter: For the twenty one random landscapes that

were investigated here it amounts to p(1/100)(Xlast) = 0.00812±0.00071. Inter-
estingly the values for strong quasispecies lie close together at p(1/100)(Xlast) =

0.0084. The observed scatter in the level crossing of the concentration of Xlast

is definitely smaller than that found for the master sequence (p(1/100)(X0) in

Fig. 5.12), which is an obvious result since x̄0 decays to small values at tran-

sitions that occur before the error threshold, at values ptr < pcr.
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5.3 Dynamics on realistic rugged and neutral landscapes

The second property of realistic fitness landscapes mentioned in section 5.2

is neutrality and the challenge is to implement it together with ruggedness.

In order to be able to handle both features together we conceived a two

parameter landscape: (i) the random scatter is denoted by d as before and

(ii) a degree of neutrality λ is introduced. The value λ = 0 means absence of

neutrality and λ = 1 describes the completely flat landscape in the sense of

Motoo Kimura’s neutral evolution [174]. The result of the theory of neutral

evolution that is most relevant here concerns random selection: Although

fitness differences are absent, one randomly chosen sequence is selected by

means of the stochastic replication mechanism, X → 2X and X → ⊘. For

most of the time the randomly replicating population consists of a dominant

genotype and a number of neutral variants at low concentration.

An important issue of the landscape approach is the random positioning

of neutral master sequences in sequence space, which is achieved by means

of the same random number generator that is used to compute the random

scatter of the other fitness values obtained from pseudorandom numbers with

a uniform distribution in the interval 0 ≤ η ≤ 1:

f(Xj) =



































f0 if j = 0 ,

f0 if η
(s)
j ≥ 1− λ ,

f + 2d
1−λ(f0 − f)

(

η
(s)
j − 0.5

)

if η
(s)
j < 1− λ ,

j = 1, . . . , κ l; j 6= m .

(5.13)

The rugged and neutral fitness landscape (5.13) is the complete analogue to

the rugged fitness landscape (5.6) under the condition that several master

sequences exist, which have the same highest fitness values f0. The fraction

of neutral mutants is determined by the fraction random numbers, which

fall into the range 1 − λ < η ≤ 1, apart from statistical fluctuations this

fraction is λ. At small values of the degree of neutrality λ isolated peaks

of highest fitness f0 will appear in sequence space. Increasing λ will result

in the formation of clusters of sequences of highest fitness. Connecting all
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fittest sequences of Hamming distance dH = 1 by an edge results in a graph

that has been characterized as neutral network [238, 239]. Neutral networks

were originally conceived as a tool to model, analyze, and understand the

mapping of RNA sequences into secondary structures [126, 127, 252]. The

neutral network in RNA sequence-structure mappings is the preimage of a

given structure in sequence space and these networks can be approximated in

zeroth order by random graphs [78, 79]. Whereas neutral networks in RNA

sequence-structure mappings are characterized by a relatively high degree of

neutrality around λ ≈ 0.3 and sequence space percolation is an important

phenomenon, we shall be dealing here with much lower λ-values.

5.3.1 Small neutral clusters

The two smallest clusters of fittest sequences have Hamming distances dH = 1

and dH = 2 (Fig. 5.18). In the former case we are dealing with a minimal

neutral neutral network, in the latter case the Hamming distance two se-

quences are coupled through two intermediate sequences similarly as in the

core of strong quasispecies. An exact mathematical analysis for both cases

is possible in the limit of vanishing mutation rates, lim p → 0 [256], led to

results that differ from Kimura’s neutral theory:

lim
p→0

x̄I =
1

2
, lim

p→0
x̄II =

1

2
for dH(XI,XII) = 1 , (5.14a)

lim
p→0

x̄I =
α

1 + α
, lim

p→0
x̄II =

1

1 + α
for dH(XI,XII) = 2 , (5.14b)

lim
p→0

x̄I = 1 , lim
p→0

x̄II = 0 or lim
p→0

x̄I = 0 , lim
p→0

x̄II = 1 ,

for dH(XI,XII) ≥ 3 . (5.14c)

If the two neutral fittest sequences, XI and XII, are nearest neighbors in

sequence space, dH(XI,XII) = 1, they are present at equal concentrations

in the quasispecies in the low mutation rate limit, in case they are next

nearest neighbors in sequence space, dH(XI,XII) = 2, they are observed at

some ratio α, and in both cases none of the two sequences vanishes. Only for
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Figure 5.18: Neutral networks in quasispecies. The sketch presents four
special cases that were observed on rugged neutral landscapes defined in equa-
tion (5.13). Part a shows the smallest possible network consisting of two sequences
of Hamming distance dH = 1 observed with s = 367 and λ = 0.01. Part b con-
tains two sequences of Hamming distance dH = 2, which are coupled through two
dH = 1 sequences; it was found with s = 877 and λ = 0.01. The neutral network in
part c has a core of three sequences, surrounded by five one-error mutants, one of
them having a chain of two further mutants attached to it; the parameters of the
landscape are s = 367 and λ = 0.1. Part d eventually shows a symmetric network
with three core sequences and four one-error mutants attached to it, observed with
s = 229 and λ = 0.1. Choice of further parameters: n = 10, f0 = 1.1, f = 1.0, and
d = 0.5. Color code: core sequences in black, one-error mutants in red, two-error
mutants in yellow, and three-error mutants in green.

Hamming distances dH(XI,XII) ≥ 3 Kimura’s scenario of random selection

occurs. It is important to stress a difference between the two scenarios, the

deterministic ODE approach leading to clusters of neutral sequences and

the random selection phenomenon of Motoo Kimura: In the quasispecies we

have strong mutational flow within the cluster of neutral sequences – which

is not substantially different from the flow within the non-neutral clusters
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Figure 5.19: Cluster on a weakly neutral rugged model landscape with

s = 367. The plot in the middle is an enlargement of the topmost plot. in

the bottom plot only the curves of the dominant cluster, consisting of the two

master sequences, X0 and X64, their one-error neighborhoods, and the third fittest

neutral sequence X324, are shown. Further parameters: n = 10, f0 = 1.1, f = 1.0,

λ = 0.01, d = 0.5. Color code see appendix.
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Figure 5.20: A small neutral cluster in a quasispecies. The color code from

the appendix that is different from Fig. 5.18 is used: X0 black, the one-error mutant

X64 red, the two-error mutants in yellow, and the fittest three-error mutant X324

in green.

in subsection 5.2.3 – and this flow outweighs fluctuations. In the random

replication scenario mutations don’t occur and the only drive for change in

particle numbers is random fluctuations. For Hamming distances dH of three

and more the mutational flow is too weak to counteract random drift.

An important issue of the quasispecies dynamics of closely related neutral

sequences (dH = 1 and dH = 2) is the fact that mutational backflow between

two or more master sequences leads to a situation where population dynamics

can be described already on the deterministic level in contrast to Kimura’s

model of random replication where random selection is a phenomenon that

is exclusively observable in populations of finite size. The difference between

both approaches is caused by mutational flow between neutral sequences:

the coupling of neutral sequences of Hamming distance one or two forms a

strongly coupled cluster of sequences of the kind discussed also in the non-

neutral case and this cluster behaves like a single entity competing with its

mutant cloud.
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Figure 5.21: Quasispecies on weakly neutral rugged model landscape

with s = 877. The topmost part of the figure refers to the landscape with s = 877

and presents the solution curves for the master pair, {X518,X546} and their one-

error mutants. The plot in the middle is an enlargement and highlights the curves

for the two intermediate sequences X514 and X550 in pastel blue. The plot at the

bottom shows the ratio between the stationary concentrations of the two master

sequences, α(p). Further parameters: n = 10, f0 = 1.1, f = 1.0, λ = 0.01, d = 0.5.

Color code see appendix.
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Figure 5.22: Quasispecies on weakly neutral rugged model landscape

with s = 877. The topmost part of the figure refers to the landscape with s = 877

and presents all solution curves Further parameters: n = 10, f0 = 1.1, f = 1.0,

λ = 0.01, d = 0.5. Color code see appendix.

The question now is whether or not the exact results derived for lim p→ 0

are of more general validity. In order to find an answer numerical compu-

tations of quasispecies as functions of the mutation rate p were performed.

Random landscapes with a degree of neutrality of λ = 0.01 were searched

and indeed the desired small networks with distances dH = 1 and one for

dH = 2 between the master sequences were found for s = 367 and s = 877

(Fig. 5.18, parts a and b, respectively). Figs. 5.19 and 5.21 show the solutions
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Figure 5.23: Quasispecies with two neutral master sequences. The sketch
contains a set of sequences in order to demonstrate the role of neutrality in the de-
termination of the consensus sequence of a population. Two fittest sequences with
Hamming distance dH = 1 (upper picture) lead to an ambiguity at one position.
Mutations at other positions are wiped out by statistics whereas the one-to-one
ratio of the two mater sequences leads to a 50/50 ratio of two nucleobases at
the position of the mutation. The lower picture refers to two master sequences
with Hamming distance dH = 2: Ambiguities are obtained at two positions and
the ratios of the nucleobases are given approximately by the value of α in equa-
tion(5.14b). The two intermediates are present in small stationary concentrations
only but they are, nevertheless, more frequent than the other one-error mutants
(see Fig. 5.21).
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curves x̄j(p) for the two examples of small neutral clusters. The concentra-

tion ratios of the two fittest sequences fulfil the predictions of the analytical

approach in the limit of small mutation rates, lim p → 0: The ratio for X0

and X64 in the Hamming distance one case, x̄0(0)/x̄64(0) = 1, and some fi-

nite ratio x̄518(0)/x̄546(0) = α = 1.2259 in the Hamming distance two case,

respectively.

Fig. 5.19 illustrates the dependence of the quasispecies formed by two

master sequences of Hamming distance dH = 1 on the mutation rate p. The

extrapolation of the exact result, x̄0/x̄64 = 1 to nonzero mutation rates turns

out to be successful: Indeed, the red curve behind the black curve is hardly

to be seen in the topmost plot as well as in the enlargement (middle plot). A

precise calculation of this ratio shows a slight increase until at p̂ = 0.009405 a

maximum of x̄0(p̂)/x̄64(p̂) = 1.0610 is reached. Then the ratio decreases and

apparently becomes unity again at p̃ = 0.5. The plot of all stationary concen-

trations in the quasispecies belonging to the network a in Fig. 5.18 shows an

interesting detail: The non-master sequence with the highest concentration,

X324, does not belong to the combined one-error neighborhood of the two

master sequences but lies at Hamming distance dH = 2 and dH = 3 from the

two masters, X0 and X64, respectively. The explanation follows straightfor-

wardly from an inspection of the fitness landscape. Sequence X324 belongs to

the class of fittest neutral sequences but it is not coupled by an edge to the

dominant network (Fig. 5.20). Instead it forms an Hamming distance two

cluster together with X64 with X68 and X320 being the intermediates. The

plot at the bottom of Fig. 5.19 contains the curves of the stationary con-

centrations of the Hamming distance one master pair (black and red) and

their complete one-error neighborhood (red and yellow, respectively) together

with that of the neutral sequence X324. It is interesting that all curves of the

neighborhood sequences and the curve of X324 have their maxima at almost

the same position near p ≈ 0.05 whereas the maxima of all other curves

(comparison with the middle plot of Fig. 5.20) are shifted towards higher

p-values. An error threshold expressed by means of p1/100-values occurs at

somewhat higher mutation rates than in the case of a single master sequence:

p1/100(X0) = 0.01073 and p1/100(Xlast) = 0.01082 with Xlast ≡ X64 compared
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to p1/100(X0) = 0.01065 in the non-neutral case. As expected the Hamming

distance one pair is equivalent to a master that is slightly stronger than a

single sequence. Indeed, the fitness value of X64 is raised from f64 = 1.04923

to f64 = 1.1 on the landscape with neutrality.

An isolated cluster with a distance dH = 2 between the two master se-

quences, {X518,X546}, has been observed on the rugged neutral landscape

with λ = 0.01 and s = 877. In the limit p → 0 the two fittest neutral se-

quences X518 and X546 are present at the stationary concentrations x̄518 =

0.5507 and x̄546 = 0.4493, respectively, and their ratio is x̄518(0)
/

x̄546(0) =

α(0) = 1.2259. Both stationary concentrations decrease with increasing p-

values, the ratio increases at first but then decreases and approaches the

value one corresponding to the uniform distribution: limp→p̃=1/2 α(p) = 1.

The function α(p) passes a (local) maximum of α(p) = 1.29 at p = 0.00441

(see Fig. 5.21, plot at the bottom). The plot in the middle of the figure

demonstrates that the two sequences lying in between the master pair, X514

and X550, appear at higher concentrations than the rest of the one-error

cloud.13 It is interesting to note that the landscape L(λ = 0.01, s = 877) sus-

tains another Hamming distance two pair of fittest sequences {X0,X132} with
the intermediates X4 and X128. This second cluster is in competition with

the first cluster as shown in Fig. 5.22 and gains in concentration with increas-

ing mutation rates p, passes through a maximum and then decays through

an error threshold to the uniform distribution at p = p̃. The position of

the error threshold again is estimated by means of the p1/100-values and one

finds p1/100(X518) = 0.01053 and p1/100(X546) = 0.01022 with X518 ≡ Xlast.

On this neutral landscape the corresponding non-neutral master sequence is

more stable than the cluster as expressed by p1/100(X0) = 0.01075. This fact

is difficult to interpret, because the original master X0 is not member of the

cluster, which accordingly is situated in another part of sequences space with

different fitness values of the neighboring sequences.

13In the case shown here, the two intermediate sequences have very similar fitness values,

f514 = 1.017 and f550 = 1.012. Large fitness differences can outweigh the advantage caused

by the mutation flow from both master sequences.



Evolutionary Dynamics 195

mutation rate p

re
la

ti
v
e
 c

o
n
c
e
n
tr

a
ti
o
n

(
)

x
p

mutation rate p

re
la

ti
v
e
 c

o
n
c
e
n
tr

a
ti
o
n

(
)

x
p

mutation rate p

re
la

ti
v
e

 c
o

n
c
e

n
tr

a
ti
o

n
(

)
x

p

Figure 5.24: Quasispecies on rugged neutral model landscapes I. Shown

are the stationary concentrations for the landscape L(λ = 0.1, d = 0.5, s = 229).

The topmost plot is drawn with the color code of the appendix, the plot in the

middle applies the color code of the neutral network in Fig. 5.18d with the curves

of sequences not belonging to the net in grey. The plot at the bottom is an

enlargement of the plot in the middle. Other parameters: l = 10, f0 = 1.1, and

f = 1.0.
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Figure 5.25: Quasispecies on rugged neutral model landscapes II. Shown

are the stationary concentrations for the landscape L(λ = 0.1, d = 0.5, s = 367).

The topmost plot is drawn with the color code of the appendix, the plot in the

middle applies the color code of the neutral network in Fig. 5.18 c with the curves

of sequences not belonging to the net in grey. The plot at the bottom is an

enlargement of the plot in the middle. Other parameters: l = 10, f0 = 1.1, and

f = 1.0.
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Eventually we consider a simple practical consequence of the existence

of fittest neutral pairs of Hamming distance dH = 1 and dH = 2 for the

sequence analysis in populations. Despite vast sequence heterogeneity [55],

in particular of virus populations, average or consensus sequences are fairly

insensitive to individual mutations provided the population size is sufficiently

large. Individual deviations in mutant sequences cancel through averaging

in population with single master sequences. This will not be the case in the

presence of neutral variants. In the 50/50 mixture of two master sequences

with mutant clouds surrounding both the sequence difference between the

masters is not going to cancel by averaging and ambiguities remain. Consid-

ering now the two cases discussed here: (i) two master sequences at Hamming

distance one present at equal concentrations and (ii) two master sequences

at Hamming distance two present at a concentration ratio α, we expect to

find sequence averages as sketched in Fig. 5.23. In the former case a 50/50

mixtures of two nucleotides is expected to occur at one position on the se-

quence, and in the latter case two positions will show nucleobase ambiguities

with the ratio α.

5.3.2 Medium size neutral clusters

An increase in the degree of neutrality λ will results in the appearance of

larger neutral networks that are scattered all over sequence space. We start

here by the introduction of the adjacency matrix as an appropriate reference

state of neutral networks and the discuss two examples of more complex

neutral networks that are observed in form of quasispecies on landscapes

Ln(λ = 0.1, d = 0.5, s).

The adjacency matrix of a graph contains an entry one at every off diago-

nal element that corresponds to an edge in the graph. We have, for example,
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the adjacency matrix A

A =

















0 0 1 0 0

0 0 1 0 0

1 1 0 1 0

0 0 1 0 1

0 0 0 1 0

















for the graph:

Now we consider a neutral network corresponding to this graph and obtain

for the mutation matrix Q:

Q =



















(1− p)n (1− p)n−2p2 (1− p)n−1p (1− p)n−2p2 (1− p)n−3p3

(1− p)n−2p2 (1− p)n (1− p)n−1p (1− p)n−2p2 (1− p)n−3p3

(1− p)n−1p (1− p)n−1p (1− p)n (1− p)n−1p (1− p)n−2p2

(1− p)n−2p2 (1− p)n−2p2 (1− p)n−1p (1− p)n (1− p)n−1p

(1− p)n−3p3 (1− p)n−3p3 (1− p)n−2p2 (1− p)n−1p (1− p)n



















.

In the limit of small mutation rates we neglect all powers f(p) ∈ o(p) and

after multiplication with the fitness matrix F = f0·I, where I is the identity or

unit matrix, the result is the value matrix in the zeroth order approximation

W (0) = f0 p
n−1 ·

















1− p 0 p 0 0

0 1− p p 0 0

p p 1− p p 0

0 0 p 1− p p

0 0 0 p 1− p

















.

Since neither the addition of a constant to the diagonal elements nor the mul-

tiplication by a common factor changes eigenvectors, the adjacency matrix

and the matrix W (0) have identical eigenvectors. Accordingly, the adjacency

matrix of the neutral network is the appropriate reference for quasispecies
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Table 5.3: Neutral networks and adjacency matrix. The largest eigenvector

of the adjacency matrix of the neutral network in Fig. 5.18 c is compared with the

quasispecies calculated for a small value of the mutation rate p.

Class No. j ζ0(Xj)
a ζ

(0)
0 (Xj)

b

Core 1 79 0.196220 0.196281

2 207 0.156240 0.156284

3 143 0.143652 0.143688

Class 1 4 175 0.090212 0.090231

5 71 0.090206 0.090231

6 75 0.090212 0.090231

7 111 0.090206 0.090231

8 135 0.066039 0.066053

Class 2 9 687 0.052585 0.052934

Class 3 10 751 0.024177 0.024177

a The entries in this column are the components of the quasispecies expressed as

the elements of the largest eigenvector of the value matrix W computed with a

mutation rate p = 1× 10−6.
b The entries in this column are the components of the largest eigenvector ζ

(0)
0 of

the adjacency matrix of the graph representing the fittest neutral network on the

landscape L(λ = 0.05, d = 0.5, s = 367).

rugged neutral landscapes. Clearly, this has been the case for the small clus-

ter shown in Fig. 5.19 where the dominant eigenvector of the trivial adjacency

matrix
(

0 1

1 0

)

simply is ζ
(0)
0 = (

1

2
,
1

2
)t ,

and represents also the solution of the mutation selection equation (4.9) for

p = 0.

In Fig. 5.24 the quasispecies as a function of the mutation rate, Ῡ(p) is

shown for the landscape L(λ = 0.1, d = 0.5, s = 229). The neutral network
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consists of seven sequences, three of them form a linear inner core and four

are attached to it on the periphery (Fig. 5.18d). The dominant eigenvector

of the adjacency matrix is of the form

ζ
(0)
0 = (0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1) = (x̄184, x̄504, x̄248, x̄760, x̄728, x̄600, x̄729)

t .

The figure shows that the relative concentration within the quasispecies in

the sense of three more frequent and four less frequent sequences are perfectly

maintained almost up to the error threshold. The level crossing of the three

core sequences occurs at: p1/100(X248) = 0.007712, p1/100(X760) = 0.007307,

and p1/100(X728) = 0.007413.

The neutral network on the landscape L(λ = 0.1, d = 0.5, s = 367) has

a more complicated structure than the symmetric seven membered neutral

cluster discussed in the previous paragraph. It contains ten individual se-

quences and has the form shown in Fig. 5.18 c: A core of three sequences

is surrounded by five nearest neighbors and has a tail consisting of one

Hamming distance two and one Hamming distance three sequence. Also

for this more involved topology the low mutation rate limit of the quasis-

pecies, limp→0 Ῡ(p), converges exactly to the largest eigenvector of the ad-

jacency matrix (table 5.3). The three core sequences stay together for the

whole range of p-values up to the error threshold that is reached in terms

of level crossing at: p1/100(X79) = 0.007649, p1/100(X207) = 0.007462, and

p1/100(X143) = 0.007704. It is not easy to guess that four out of the five

nearest neighbor sequences have identical values in the eigenvector of the ad-

jacency matrix – and it is the tail-free sequence, X135, and not the sequence

carrying the tail, X175, which is different from the other four.

Further increase in the degree of neutrality, λ, gives rise to extended neu-

tral networks, which eventually percolate whole sequence space. Whether or

not such large clusters of neutral sequences play a role in real biology cannot

be said in the moment but more empirical knowledge on fitness landscapes

will help to decide this question.
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8. Probability and stochasticity

An experimentalist reproduces an experiment. What can he expect to

find? There are certainly limits to precision and these limits confine the re-

producibility of experiments and at the same time restrict the predictability

of outcomes. The limitations of correct predictions are commonplace: We

witness them every day by watching the failures of various forecasts from the

weather to the stock market. Daily experience also tells us that there is an

enormous variability in the sensitivity of events with respect to precision of

observation. It ranges from the highly sensitive and hard to predict phenom-

ena like the ones just mentioned to the enormous accuracy of astronomical

predictions, for example, the precise dating of the eclipse of the sun in Europe

on August 11, 1999. Most cases lie between these two extremes and careful

analysis of unavoidable randomness becomes important. In this chapter we

are heading for a formalism, which allows for proper accounting of the lim-

itations of the deterministic approach and which extends the conventional

description by differential equations.

Modeling by differential equations makes one implicit assumption: The

use of continuous variables, xj(t), implies very large, in principle infinitely

large populations. Particles are discrete and countable objects and taking

into account the non-continuous nature of variables would be quite natural

therefore. The reason for using ODEs and PDEs instead is threefold: (i)

Large population sizes of 1020 particles and more do not allow for counting

particles because no experimental measuring technique exist, which could

possibly reach the required resolution, (ii) by equilibrium thermodynamics

stochastic fluctuation in populations of N particles are of the order
√

N and
√

1020 = 1010 particles is hardly detectable in populations of 1020 and more,

and (iii) last but not least the experience of modeling by means of differential

equations is enormous compared to other mathematical techniques – Leibniz

and Newton invented calculus almost 450 years ago.

205
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In biology we can not always assume large particle numbers although

populations may reach appreciable sizes, for example the current human

population with 7×109 individuals. In contrary, numbers are often very small

inevitably: Every mutation after all starts out from a single copy, regulatory

molecules are often present in a few copies only and due to recombination all

individuals in a population have different genomes with the only exception of

identical twins – this fact is used for unambiguous identification of individuals

in forensic genomics – to give just a few examples. Three different kinds of

models with discrete variables are important in biology: (i) Discrete time and

continuous population variables for modeling discrete generations obtained

through synchronization by day and night rhythms, by seasons or by other

pace makers lead to difference equations instead of differential equations,

(ii) continuous time and discrete population variables are typically used for

populations with small particle numbers and mixing generations and modeled

by a variety of stochastic processes, (iii) discrete time and discrete particle

numbers. Modeling deterministic discrete time processes is commonly done

by means of difference equations [44]. Modeling according to (ii) and (iii)

clearly requires probabilistic methods. For answering questions concerning

the three examples mentioned above and other similar cases of interest in

evolution research the modeling approach (ii) is most appropriate and we

shall in essence restrict here the discussion to continuous time stochastic

processes.

The conventional description by time dependent variables and functions

has to be replaced by a probabilistic view. We are no longer dealing with

exact values of variable but we shall use probabilities that variables take on

certain values. For example, the number of particles X is given by the time

dependent stochastic or random variable X (t),1 and this implies that the

values of X measured at some time, t = tr = t0 + ∆rt with t0 being the

initial time, will be different for different repetitions of an experiment under

identical conditions. In modern probability theory a rigorous definition of

1The notion of a random variable centers on the fact that the value of the variable

depends on the outcome of a random process. If an experiment is repeated under identical

conditions the value of a random variable will be different for every repetition.
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random variables is given on the basis of sets on sample space.

Two introductory sections present the basic notations and definitions of

probability theory and stochastic processes for discrete and continuous ran-

dom variables. Then master equations as used in modeling chemical kinetics

will be presented. The advantage of modeling by means of chemical master

equations is twofold: (i) Since chemical master equations are based on chem-

ical kinetics they are very general and can be used for nonlinear and complex

reaction mechanisms, and (ii) numerical methods are available for the exact

simulation of the processes described by chemical master equations [117].

We shall also make a digression into the field of birth-and-death processes,

because this class of stochastic processes is most relevant for modeling evo-

lution. Eventually, we introduce and discuss Motoo Kimura’s neutral theory

of evolution.

8.1 Probabilities and probability theory

The concept of probability originated from the desire to analyze gambling

by rigorous mathematical thoughts. An early study that has largely re-

mained unnoticed but contained already the basic ideas of probability was

done in the sixteenth century by the Italian mathematician Gerolamo Car-

dano. The beginning of classical probability theory – 100 years after Cardano

– is associated with the story of French mathematician Blaise Pascal and the

professional gambler, the Chevalier de Méré that is told in almost ever intro-

duction to probability theory (see section 8.1.1). Classical probability theory

can handle all cases that are modeled by discrete quantities. It is based on

counting and accordingly fails when applied to uncountable sets. Uncount-

able sets are occur with continuous variables and these are indispensable for

migration in space as well as for large particle numbers that are described in

terms of concentrations. Current probability theory is based on set theory

and can handle discrete (and countable) as well as continuous (and uncount-

able) variables. We illustrate the historical probability theory my means of a

few examples and then provide a short introduction to modern probabilities

that are derived from set theoretical operations. In the third part we present
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probability distributions and some of their properties that will be required

in the applications to stochastic processes.

8.1.1 Historical probability

The route to probability theory originated from risk and chance estimates in

gambling. The oldest well preserved document on a gambling problem mak-

ing correct use of probability theory is a letter of July 29, 1654, written by

Blaise Pascal to Pierre de Fermat in which he reports the careful observation

of a professional gambler, the Chevalier de Méré, which let . The Chevalier

observed that obtaining at least one “six” with one die in 4 throws is success-

ful in more than 50% in the cases whereas obtaining at least two times the

“six” with two dice in 24 throws has less than 50% chance to win. Chevalier

de Méré considered this finding as a paradox because he calculated näıvely

and erroneously that the chances should be the same:

4 throws with one die yields 4× 1

6
=

2

3
,

24 throws with two dice yields 24× 1

36
=

2

3
.

Blaise Pascal became interested in the problem and calculated the proba-

bilities correctly as we do it now in classical probability theory by careful

counting of events:

probability = Prob =
number of favorable events

total number of events
. (8.1)

A probability according to Equ. (8.1) is always a positive quantity between

zero and one, 0 ≤ Prob ≤ 1. The sum of the probabilities that an event has

occurred or did not occur thus has to be always one. Sometimes, as in the

gambler’s example, it is easier to calculate the probability of the unfavorable

case, q, and to obtain the desired probability as p = 1 − q. In the one-

die example the probability not to throw a “six” is 5/6, in the two-dice

example we have 35/36 as the probability of failure. In case of independent

events probabilities are multiplied2 and we finally obtain for 4 and 24 trials,

2We shall come back to the problem of independent events later when we introduce

current probability theory in subsection 8.1.2, which is based on set theory.
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respectively:

q(1) =

(

5

6

)4

and p(1) = 1−
(

5

6

)4

= 0.5177 ,

q(2) =

(

35

36

)24

and p(2) = 1−
(

35

36

)24

= 0.4914 .

It is remarkable that the gambler could observe this rather small difference

in the probability of success – he must have tried the game very often indeed!

Classical probability theory centers around notions like independence of

events, joint and conditional probabilities, and many others, which are also

central issues of modern set theory based probability and we dispense here

from unnecessary repetition.

8.1.2 Sets, sample spaces, and probability

Sets are collections of objects with two restrictions: (i) Each object belongs

to one set cannot be a member of more sets and (ii) a member of a set must

not appear twice or more often. In other words, objects are assigned to

sets unambiguously. In application to probability theory we shall denote the

elementary objects by the small Greek letter omega, ω – if necessary with

various sub- and superscripts – and call them sample points or individual

results and the collection of all objects ω under consideration the sample

space is denoted by Ω with ω ∈ Ω. Events, A, are subsets of sample points

that fulfil some condition3

A =
{

ω, ωk ∈ Ω : f(ω) = c
}

(8.2)

with ω = {ω1, ω2, . . .} being some set of individual results and f(ω) = c

encapsulates the condition on ensemble of the sample points ωk.
4

3What a condition means will become clear later. For the moment it is sufficient to

understand a condition as a function providing a restriction, which implies that not all

subsets of sample points belong to A.
4In order to avoid misinterpretations we shall use different symbols for sets and strings:

{· · · } is a set, every element appears only once and the sequence of elements is irrelevant,

and (α2, α1, α1, · · · ) is a string where repetitions may occur and the sequence matters.

A nucleotide sequence (GAA· · · ) is a string and the nucleotide alphabet is a (sub)set:

A = {A,U,G,C}.
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Any partial collection of points is a subset of Ω. We shall be dealing with

fixed Ω and, for simplicity, often call these subsets of Ω just sets. There

are two extreme cases, the entire sample space Ω and the empty set, ∅.
The number of points in some set S is called its size, |S|, and thus is a

nonnegative integer or ∞. In particular, the size of the empty set is |∅| = 0.

The unambiguous assignment of points to sets can be expressed by5

ω ∈ S exclusive or ω /∈ S .

Consider two sets A and B. If every point of A belongs to B, then A is

contained in B. A is a subset of B and B is a superset of A:

A ⊂ B and B ⊃ A .

Two sets are identical if the contain exactly the same points and then we

write A = B. In other words, A = B iff (if and only if) A ⊂ B and B ⊂ A.

The basic operations with sets are illustrated in Fig. 8.1. We briefly repeat

them here:

Complement. The complement of the set A is denoted by Ac and consists of

all points not belonging to A:6

Ac = {ω|ω /∈ A} . (8.3)

There are three evident relations which can be verified easily: (Ac)c = A,

Ω c = ∅, and ∅ c = Ω.

Union. The union of the two sets A and B, A∪B, is the set of points which

belong to at least one of the two sets:

A ∪ B = {ω|ω ∈ A or ω ∈ B} . (8.4)

Intersection. The intersection of the two sets A and B, A ∩ B, is the set of

points which belong to both sets (For short A∩B is sometimes written AB):

A ∩ B = {ω|ω ∈ A and ω ∈ B} . (8.5)

5In order to be unambiguously clear we shall write or for and/or and exclusive or for

or in the strict sense.
6Since we are considering only fixed sample sets Ω these points are uniquely defined.
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Figure 8.1: Some definitions and examples from set theory. Part a shows

the complement Ac of a set A in the sample space Ω. In part b we explain the

two basic operations union and intersection, A∪B and A∩B, respectively. Parts

c and d show the set-theoretic difference, A \ B and B \ A, and the symmetric

difference, A△B. In parts e and f we demonstrate that a vanishing intersection of

three sets does not imply pairwise disjoint sets.

Unions and intersections can be executed in sequence and are also defined

for more than two sets, or even for an infinite number of sets:

⋃

n=1,...

An = A1 ∪ A2 ∪ · · · = {ω|ω ∈ An for at least one value of n} ,

⋂

n=1,...

An = A1 ∩ A2 ∩ · · · = {ω|ω ∈ An for all values of n} .

These relations are true because the commutative and the associative laws



212 Peter Schuster

are fulfilled by both operations, intersection and union:

A ∪ B = B ∪A , A ∩B = B ∩ A ;

(A ∪ B) ∪ C = A ∪ (B ∪ C) , (A ∩B) ∩ C = A ∩ (B ∩ C) .

Difference. The set A \B is the set of points, which belong to A but not to

B:

A \B = A ∩ Bc = {ω|ω ∈ A and ω /∈ B} . (8.6)

In case A ⊃ B we write A− B for A \B and have A \ B = A− (A ∩ B) as

well as Ac = Ω−A.

Symmetric difference. The symmetric difference A∆B is the set of points

which belongs exactly to one of the two sets A and B. It is used in advanced

theory of sets and is symmetric as it fulfils the commutative law, A∆B =

B∆A:

A∆B = (A ∩ Bc) ∪ (Ac ∩ B) = (A \B) ∪ (B \ A) . (8.7)

Disjoint sets. Disjoint sets A and B have no points in common and hence

their intersection, A ∩ B, is empty. They fulfill the following relations:

A ∩ B = ∅ , A ⊂ Bc and B ⊂ Ac . (8.8)

A number of sets are disjoint only if they are pairwise disjoint. For three sets,

A, B and C, this requires A∩B = ∅, B ∩C = ∅, and C ∩A = ∅. When

two sets are disjoint the addition symbol is (sometimes) used for the union,

A +B for A ∪B. Clearly we have always the decomposition: Ω = A+ Ac.

Sample spaces may contain finite or infinite numbers of sample points.

As shown in Fig. 8.2 it is important to distinguish further between different

classes of infinity: countable and uncountable numbers of points. The set of

rational numbers, for example, is a countably infinite since the numbers can

be labeled and assigned uniquely to the positive integers

1 < 2 < 3 < · · · < n < · · · .
The set of real numbers cannot be ordered in such a way and hence it is

uncountable.
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Figure 8.2: Sizes of sample sets and countability. Finite, countably infinite,

and uncountable sets are distinguished. We show examples of every class. A set

is countably infinite when its elements can be assigned uniquely to the natural

numbers (1,2,3,. . .,n,. . .).

Countable sample spaces. For countable sets it is straightforward to mea-

sure the size of sets by counting the numbers of points they contain. The

proportion

Prob (A) = P (A) =
|A|
|Ω| (8.9)

is identified as the probability of the event represented by the elements of

subset A.7 For countable and finite sets this is precisely Equ. (8.1). For

another event holds, for example, P (B) = |B|/|Ω|. Calculating the sum of

7The number of elements or the cardinality of a set A is denoted by n(A) or |A|.
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the two probabilities, P (A) + P (B), requires some care since we know only

(Fig. 8.1):

|A| + |B| ≥ |A ∪ B| .

The excess of |A|+ |B| over the size of the union |A∪B| is precisely the size

of the intersection |A ∩ B| and thus we find

|A| + |B| = |A ∪ B| + |A ∩ B|

or by division through the size of sample space Ω

P (A) + P (B) = P (A ∪ B) + P (A ∩B) .

Only in case the intersection is empty, A ∩ B = ∅, the two sets are disjoint

and their probabilities are additive, |A ∪ B| = |A|+ |B|, and hence

P (A+B) = P (A) + P (B) iff A ∩B = ∅ . (8.10)

It is important to memorize this condition for later use, because it represents

an implicitly made assumption for computing probabilities.

Now we can define a probability measure by means of the basic axioms

of probability theory (for alternative axioms in probability theory see, for

example [40, 164]):

A probability measure on the sample space Ω is a function of subsets of Ω,

P : S → P (S) or P (·) for short, which is defined by the three axioms:

(i) For every set A ⊂ Ω, the value of the probability measure is a nonneg-

ative number, P (A) ≥ 0 for all A,

(ii) the probability measure of the entire sample set – as a subset – is equal

to one, P (Ω) = 1, and

(iii) for any two disjoint subsets A and B, the value of the probability mea-

sure for the union, A ∪B = A+B, is equal to the sum of its value for

A and its value for B,

P (A ∪ B) = P (A+B) = P (A) + P (B) provided P (A ∩B) = ∅ .



Evolutionary Dynamics 215

Figure 8.3: The powerset. The powerset P(Ω) is a set containing all subsets

of Ω including the empty set ∅ and Ω itself. The figure sketches the powerset of

three events {A, B, C}.

Condition (iii) implies that for any countable – eventually infinite – collection

of disjoint or non-overlapping sets, Ai (i = 1, 2, 3, . . .) with Ai ∩ Aj = ∅ for
all i 6= j, the relation called σ-additivity or countable additivity

P

(

⋃

i

Ai

)

=
∑

i

P (Ai) or P

( ∞
∑

k=1

Ak

)

=

∞
∑

k=1

P (Ak) (8.11)

holds. Clearly we have also P (Ac) = 1− P (A), P (A) = 1− P (Ac) ≤ 1, and

P (∅) = 0. For any two sets A ⊂ B we have P (A) ≤ P (B) and P (B − A) =
P (B) − P (A). For any two arbitrary sets A and B we can write a sum of

disjoint sets as follows

A ∪ B = A + Ac ∩ B and

P (A ∪ B) = P (A) + P (Ac ∩ B) .

Since B ⊂ Ac ∩ B we obtain P (A ∪ B) ≤ P (A) + P (B).

The set of all subsets of Ω is the powerset P(Ω) (Fig. 8.3). It contains the

empty set ∅, the sample space Ω and all subsets of Ω and this includes the

results of all set theoretic operations that were listed above. The powerset
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of some given set S has cardinality 2|S|. The relation between the sample

point ω, an event A, the sample space Ω and the powerset P(Ω) is illustrated
by means of an example taken from molecular evolution of nucleic acid se-

quences: single nucleotide exchanges or point mutations. Mutation in natural

DNA or RNA sequences may be considered like rolling dice with four out-

comes, e.g. A→T(U), A→G, and A→C, and the fourth outcome is A→A, no

change or correct reproduction. For the sake of simplicity we assume binary

sequences that correspond to Bernoulli trials discussed in subsection 8.2.1.

Events ω are mutations 0 → 1, and the sample points for flipping the coin

n-times are binary n-tuples or strings, ω = (ω1, ω2, . . . , ωn) with ωi ∈ {0, 1}.8
The powerset shown in Fig. 8.3 corresponds to sequences of length l = 3 with

the empty set, ∅, is represented by (000). Events indicate the appearance

of a 1 at a certain position: A ≡ 100, B ≡ 010, C ≡ 001, AB ≡ 110,

etc. Identifying some (reference) binary sequence X0 with the empty set

the analogy between the power set and the sequence space Q is recognized

straightforwardly. It is useful to consider also infinite numbers of repeats,

in particular for computing limits n → ∞: ω = (ω1, ω2, . . .) = (ωi)i∈N with

ωi ∈ {0, 1}. Then we are dealing with infinitely long binary strings and the

sample space Ω = {0, 1}N is the space of all infinitely long binary strings.

It is countable as can be easily verified: Every binary string represents the

binary encoding of a natural number (including ’0’) Nk ∈ N0 and hence Ω is

countable as the natural numbers are.

A subset of Ω will be called an event A iff a probability measure derived

from axioms (i), (ii), and (iii) has been assigned. Often one is not interested

in the full detail of a probabilistic result and events can be easily coarse

grained by lumping together sample points. We ask, for example, for the

probability A that n coin flips yield at least k-times tail, i.e. the score 1:

A =

{

ω = (ω1, ω2, . . . , ωn) ∈ Ω :

n
∑

i=1

ωi ≥ k

}

,

8There is a trivial but important distinction between strings or n-tuples and sets: In

a string the position of an element matters, whereas in a set it does not. The following

three sets are identical: {1, 2, 3} = {3, 1, 2} = {1, 2, 2, 3}. In order to avoid ambiguities

string are written in (normal) parentheses and sets in curly brackets.
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Figure 8.4: An ordered partial sum of a random variable. The partial sum

Sn =
∑n

k=1Xk represents the cumulative outcome of a series of events described

by a class of random variables, Xk. The series can be extended to +∞ and such

a case will be encountered, for example, with probability distributions, and when

the series is completed the sum has to fulfil: Sn =
∑∞

k=1Xk = 1. The ordering

criterion is not yet specified, it could be time t, for example.

where the sample space is Ω = {0, 1}n. The task is now to find a system

of events F that allows for a consistent assignment of a probability P (A)

for every event A. For countable sample spaces Ω the powerset P(Ω) rep-

resents such a system F , we characterize P (A) as a probability measure

on
(

Ω,P(Ω)
)

, and the further handling of probabilities as outlined below

is straightforward. In case of uncountable sample spaces Ω, however, the

powerset P(Ω) is too large and a more sophisticated procedure is required

(see, e.g., Schuster:11d). Weighting sample points ωn by assigning factors

̺n eventually leads to a probability functions, which assign local probabili-

ties or cumulative probabilities to events and which are called (probability)

densities and distributions, respectively (see subsection 8.1.3).



218 Peter Schuster

Random variables and functions. For a precise definition of random variables

on countable sets a probability triple (Ω,P(Ω), P ) is required: Ω contains the

sample points or individual results, the powerset P(Ω) provides the events

A as subsets, and P eventually represents a probability measure that will be

precisely defined in Equ. (8.19). Based on such a probability triple we define

a random variable as a numerically valued function X of ω on the domain of

the entire sample space Ω,

ω ∈ Ω : ω → X (ω) . (8.12)

Random variables, X (ω) and Y(ω), can be subject to operations to yield

other random variables, such as

X (ω) + Y(ω) , X (ω)−Y(ω) , X (ω)Y(ω) , X (ω)/Y(ω) [Y(ω) 6= 0] ,

and, in particular, also any linear combination of random variables such as

αX (ω) + βY(ω) is a random variable too. Just as a function of a function is

still a function, a function of a random variable is a random variable,

ω ∈ Ω : ω → ϕ (X (ω),Y(ω)) = ϕ(X ,Y) .

Particularly important cases are the (partial) sums of n variables:

Sn(ω) = X1(ω) + . . . + Xn(ω) =

n
∑

k=1

Xk(ω) . (8.13)

Such a partial sum Sn could be, for example, the cumulative outcome of

n successive throws of a die.9 Consider, for example, an ordered series of

events where the current cumulative outcome is given by the partial sum

Sn =
∑n

k=1Xk as shown in Fig. 8.4. In principle, the series can be extended to

infinity and then the conservation relation of probabilities, Sn =
∑∞

k=1Xk =

1, has to be fulfilled.

9The use of partial in this context implies that the sum does not cover the entire

sample space in the moment. Series of throws of dice, for example, could be continued in

the future.
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Joint probabilities. Two (or more) random variables,10 X and Y , form a

random vector, ~Z = (X ,Y), which is defined by the probability

P (X = xi,Y = yj) = p(xi, yj) . (8.14)

These probabilities constitute the joint probability distribution (see subsec-

tion 8.1.3) of the random vector. By summation over one variable we obtain

the probabilities for the two marginal distributions :

P (X = xi) =
∑

yj

p(xi, yj) = p(xi, ∗) and

P (Y = yj) =
∑

xi

p(xi, yj) = p(∗, yj) ,
(8.15)

of X and Y , respectively. In other words, the marginal distributions reduce

the multivariate function p(xi, yj) to functions of single variables, p(xi) and

p(yj) through summation over all possible values of the second variable.

Conditional probabilities. The conventional probability is defined on the en-

tire sample space Ω, P (A) = |A|/|Ω| =∑ω∈A P (ω)
/
∑

ω∈Ω P (ω).
11 We shall

now define a probability of set A relative to another set, say S. This means

that we are interested in the proportional weight of the part of A in S which

is expressed by the intersection A ∩ S relative to S, and obtain

∑

ω∈A∩S
P (ω)

/

∑

ω∈S
P (ω) .

In other words, we switch from Ω to S as the new universe and consider the

conditional probability of A relative to S:

P (A|S) =
P (A ∩ S)
P (S)

=
P (AS)

P (S)
(8.16)

provided P (S) 6= 0. From here on we shall always use the a short notation

for the intersection, AS ≡ A∩S, in this section. Apparently, the conditional

probability vanishes if the intersection is empty: P (A|S) = 0 if P (AS) = ∅.
10For simplicity we restrict ourselves to the two variable case here. The extension to

any finite number of variables is straightforward.
11The sample space Ω is assumed to be countable and the weight P (ω) = P ({ω}) is

assigned to every point.
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Next we mention several simple but fundamental relations involving con-

ditional probabilities that we present here, in essence, without proof (for

details see [36], pp.111-144). For n arbitrary events Ai we have

P (A1, A2, . . . , An) = P (A1)P (A2|A1)P (A3|A1A2) . . . P (An|A1A2 . . . An−1)

provided P (A1A2 . . . An−1) > 0. Under this proviso all conditional probabil-

ities are well defined since

P (A1) ≥ P (A1A2) ≥ . . . ≥ P (A1A2 . . . An−1) > 0 .

Let us assume that the sample space Ω is partitioned into n disjoint sets,

Ω =
∑

nAn. For any set B we have then

P (B) =
∑

n

P (An)P (B|An) .

From this relation it is straightforward to derive the conditional probability

P (Aj|B) =
P (Aj)P (B|Aj)

∑

n P (An)P (B|An)

provided P (B) > 0.

Independence of random variables will be a highly relevant problem in

the forthcoming chapters. Countably-valued random variables X1, . . . ,Xn

are defined to be independent if and only if for any combination x1, . . . , xn

of real numbers the joint probabilities can be factorized:

P (X1 = x1, . . . ,Xn = xn) = P (X1 = x1) · . . . · P (Xn = xn) . (8.17)

A major extension of Equ. (8.17) replaces the single values xi by arbitrary

sets Si

P (X1 ∈ S1, . . . ,Xn ∈ Sn) = P (X1 ∈ S1) · . . . · P (Xn ∈ Sn) .

In order to proof this extension we sum over all points belonging to the sets
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S1, . . . , Sn:

∑

x1∈S1

· · ·
∑

xn∈Sn

P (X1 = x1, . . . ,Xn = xn) =

=
∑

x1∈S1

· · ·
∑

xn∈Sn

P (X1 ∈ S1) · . . . · P (Xn ∈ Sn) =

=

(

∑

x1∈S1

P (X1 ∈ S1)

)

· . . . ·
(

∑

xn∈Sn

P (Xn ∈ Sn)

)

,

which is equal to the right hand side of the equation to be proven.

Since the factorization is fulfilled for arbitrary sets S1, . . . Sn it holds also

for all subsets of (X1 . . .Xn) and accordingly the events

{X1 ∈ S1}, . . . , {Xn ∈ Sn}

are also independent. It can also be verified that for arbitrary real-valued

functions ϕ1, . . . , ϕn on (−∞,+∞) the random variables ϕ1(X1), . . . , ϕn(Xn)

are independent too.

Independence can be extended in straightforward manner to the joint

distribution function of the random vector (X1, . . . ,Xn)

F (x1, . . . , xn) = F1(x1) · . . . · Fn(xn) ,

where the Fj ’s are the marginal distributions of the Xj’s , 1 ≤ j ≤ n. Thus,

the marginal distributions determine the joint distribution in case of inde-

pendence of the random variables.

8.1.3 Probability distributions

Depending on the nature of variables probability distributions are discrete

or continuous. We introduce probability distributions be discussing the con-

ceptually simpler discrete case and present then the differences encountered

for continuous probability functions.

Discrete probabilities. So far we have constructed and compared sets but

not yet introduced numbers, which are needed in actual computations. In
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order to construct a probability measure that is adaptable for numerical

calculations on countable sample spaces, Ω = {ω1, ω2, . . . , ωn, . . .}, we assign
a weight ̺n to every sample point ωn subject to the conditions

∀ n : ̺n ≥ 0 ;
∑

n

̺n = 1 . (8.18)

Then, for P ({ωn}) = ̺n ∀ n the following two equations

P (A) =
∑

ω∈A
̺(ω) for A ∈ P(Ω) and

̺(ω) = P ({ω}) for ω ∈ Ω

(8.19)

represent a bijective relation between the probability measure P on
(

Ω,P(Ω)
)

and the sequences ̺ =
(

̺(ω)
)

ω∈Ω in [0,1] with
∑

ω∈Ω ̺(ω) = 1. Such a

sequence is called a probability density or probability mass function.

The function ̺(ωn) = ̺n has to be estimated or determined empirically

because it is the result of factors lying outside mathematics or probability

theory. In physics and chemistry the correct assignment of probabilities has

to meet the conditions of the experimental setup. An example will make this

point clear: The fact whether a die is fair and shows all its six faces with equal

probability or it has been manipulated and shows the “six” more frequently

then the other numbers is a matter of physics and not mathematics. For

many purposes the discrete uniform distribution, ΠΩ, is applied: All results

ω ∈ Ω appear with equal probability and hence ̺(ω) = 1/|Ω|. In Fig. 8.5 the

scores obtained by simultaneously rolling two dice are shown: The events are

independent and hance the two scores based on the assumption of uniform

probabilities are added.

The probabilistic nature of random variables is illustrated well by a differ-

ent formulation, which is particularly useful for the definition of probability

distribution functions:

Pk(t) = Prob
(

X (t) = k
)

with k ∈ N
0 . (8.20)

In a stochastic process we can properly visualize the change in the represen-

tation of the process as the replacement of a deterministic variable x(t) by an
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scores       k  =  2  ,  3  ,  4  ,  5  ,  6  ,  7  ,  8  ,  9  , 10 , 11 , 12
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Figure 8.5: Probabilities of throwing two dice. The probability of obtaining

scores from two to twelve counts through throwing two fair dice are based on the

equal probability assumption (uniform distribution Π) for obtaining the individual

faces of a single die. The probability mass function f(k) = Pk raises linearly from

two to seven and then decreases linearly between seven and twelve (P (N) is a

discretized tent map) and the additivity condition requires
∑12

k=2 P (k) = 1.

evolving probability vector P(t) =
(

P0(t), P1(t), . . .
)

.12 It is worth noticing

that two separate changes are introduces here simultaneously: (i) the con-

tinuous concentration is replaced by a discrete particle number, and (ii) the

deterministic description is substituted by a probabilistic view. The elements

Pk are probabilities hence they must fulfil two conditions: (i) they have to be

nonnegative numbers, Pk ≥ 0, and (ii) the set of all possible events covers the

sample space Ω and fulfils the conservation relation, which can be formulated

12Whenever possible we shall use “k, l,m, n” for discrete counts, k ∈ N0, and “x, y, z”

for continuous variables, x ∈ R1.
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also in terms of classical probability theory

Pk = Prob
favorable events

all events
leading to

n
∑

i=1

Pi = 1 .

Recalling the mutation-selection equation (4.9) we may notice now that the

relation
∑n

i=1Qij = 1 can be interpreted as conservation of probabilities.

Discrete probabilities for complete sets of events are represented either

by the probability mass function (pmf)

fX (k) = Prob (X = k) = pk (8.21)

or by the cumulative distribution function (cdf)

FX (k) = Prob (X ≤ k) =
∑

i≤k
pi (8.22)

Two properties of the cumulative distribution function are self evident:

lim
k→−∞

FX (k) = 0 and lim
k→+∞

FX (k) = 1 .

The limit at low k-values is chosen in analogy to the definitions: Taking zero

instead of −∞ as lower limit because fX (−|k|) = p−|k| = 0 (k ∈ N) or, in

other words, negative particle numbers have zero probability (For more de-

tails on probability functions see [36, 251]). A simple example of probability

functions is shown in Fig. 8.7. All measurable quantities can be computed

from either of the two probability functions.

As seen in Fig. 8.7 the cumulative distribution function is a step function

and requires a convention how the steps are treated in detail. Indeed, step

functions have limited or no differentiability depending on the definition of

the values of the function at the step. Three definitions are possible for the

value of the function at the discontinuity. We present them for the Heaviside

step function

H(k) =



















0 , if k < 0 ,

0, 1
2
, 1 if k = 0 ,

1 , if k > 0 .

(8.23)
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Figure 8.6: Continuity in probability theory and step processes. Three
possible choices of partial continuity at the steps of step functions are shown: (i)
left-hand continuity (A), (ii) no continuity (B), and (iii) right-hand continuity (C).
The step function in (A) is left-hand semi-differentiable, the step function in (C)
is right-hand semi-differentiable, and the step function in (B) is neither right-hand
nor left-hand semi-differentiable. Choice (ii) allows for making use of the inherent
symmetry of the Heaviside function. Choice (iii) is the standard assumption in
probability theory and stochastic processes. It is also known as càdlàg-property
(subsection 8.2.1).

The value ’0’ at k = 0 implies left-hand continuity for H(k) and in terms of

a probability distribution would correspond to a definition Prob (X < k) in

Equ. (8.22), the value 1
2
implies that H(k) is neither right-hand nor left-hand

semi-differentiable at k = 0 but is useful in many applications that make use

of the inherent symmetry of the Heaviside function, for example the relation

H(x) =
(

1 + sgn(x)
)

/2 where sgn(x) is the sign or signum function:

sgn(x)



















−1 if x < 0 ,

0 if x = 0 ,

1 if x > 0 .

The functions in probability theory make use of the third definition deter-

mined by P (X ≤ x) or H(0) = 1 in case of the Heaviside function. This

choice implies right-hand continuity or right-hand semi-differentiability and

is important in the conventional handling of stochastic processes.

Fig. (8.7) presents the probability mass function (pmf) and the cumulative

probability distribution function (cdf) for the scores of rolling two dice. The
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Figure 8.7: Probability mass function and cumulative distribution func-
tion for rolling two dice. As as example we show here the probabilities for the
scores obtained by rolling two dice simultaneously with the complete set of events
Ω = {2, 3, . . . , 12} and the random variable X ∈ Ω. The probability mass func-
tion (pmf; upper plot) has its maximum at the score “7”, because it is obtained
with the maximum number of combinations (1+6, 2+5, 3+4, 4+3, 5+2, 6+1)
leading to a probability of 6/36=1/6=0.1667. The cumulative distribution func-
tion (cdf; lower plot) presents the summation of all probabilities of lower scores:
FX (k) = P (X ≤ k) =

∑

i≤k pi and limk→+∞ FX (k) = 1.
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former is given by the tent function

f(k) =







1
s2
(k − 1) for k = 1, 2, . . . , s ,

1
s2
(2s+ 1− k) for k = s+ 1, s+ 2, . . . , 2s

,

where k is the score and s the number of faces of the die, which is six in case

of the commonly used dice. The cumulative probability distribution is given

by the sum

F (k) =
2s
∑

i=2

f(i) .

Here the two-dice probability distribution is used only as an example for the

illustration of probability functions, but later on we shall extend to the n-dice

score problem in order to illustrate the law of large numbers.

The Poisson distribution. The Poisson distribution, a discrete probability

distribution, is of particular importance in the theory of stochastic processes,

because it expresses the probability that a given number of events occurs

within a fixed time interval (The corresponding stochastic process is the

Poisson process discussed in subsection 9.1.2). The events take place with a

known average rate and independently of the time that has elapsed since the

last event. An illustrative example is the arrival of (independent) e-mails:

We assume a person receiving on the average 50 e-mails per day, then the

Poisson probability mass function

Pois(k;λ) : f(k) =
λk

k!
e−λ with k ∈ N

0 = {0, 1, 2, . . .} , (8.24)

returns the probability that exactly x are arriving in the same time interval,

i.e. per day. The corresponding cumulative distribution function is

Pois(k;λ) : F (k) =
Γ(⌊k + 1⌋, λ)
⌊k⌋! = e−λ

⌊k⌋
∑

k=0

λk

k!
for k ≤ 0 , (8.25)

with Γ(s, z) being the upper and γ(s, z) the lower incomplete Γ-function:

Γ(s, z) =

∫ ∞

z
xs−1 e−x dx , γ(s, z) =

∫ z

0
xs−1 e−x dx , Γ(s) = Γ(s, z) + γ(s, z) ,
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Figure 8.8: Poisson density and distribution. In the plots the Poisson distri-
bution, Pois(λ), is shown in from of the probability density f(k) and the probability
distribution F (k) as an example. The probability density f(k) is asymmetric for
small λ-values (λ = 1, 2, 5) and steeper on the (left-hand) side of k-values blow
the maximum, whereas large λ’s give rise to more and more symmetric curves as
expected by the law of large numbers. Choice of parameters: λ = 1 (black), 2
(red), 5 (green), 10 (blue) and 20 (yellow).
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and ⌊k⌋ being the floor function, which extracts j being the largest integer

i (i, j ∈ N
0) that fulfils j = (max{i} ∧ i ≤ k). Examples of Poisson distribu-

tions with different λ-values are shown in Fig. 8.8. Time span is not the only

interval for defining the Poisson distribution as the reference for independent

events. It can be used equally well for events taking place in space with the

intervals referring to distance, area or volume.

In science the Poisson distribution is used for modeling independent

events. The most relevant case for applications in chemistry and biology

is the occurrence of elementary chemical reactions, which are thought to be

initiated by an encounter of two molecules. Since the numbers of molecules

are large and the macroscopic dimensions of a reaction vessel exceed the

distances between two encounters of a given molecule by many orders of

magnitude, reactive collisions can be considered as independent events (see

also 9.1.2). Concerning evolutionary aspects a typical biological example to

which a Poisson distribution of events applies is the number of mutations

per unit time interval on a given stretch of DNA. In subsection 9.3.1 a mas-

ter equation based on collision theory will be derived for the simulation of

chemical reactions.

Eventually, we shall characterize a probability distribution by itsmoments

of the random variable X . Most important for practical purposes are the first

moment or the mean that takes on the value

E(X ) =

∞
∑

k=0

k pk =

∞
∑

x=0

x f(x) = λ (8.26)

for the Poisson distribution and the second centered moment or the variance.

which becomes

σ2(X ) = E
(

(

X − E(X )
)2
)

= E(X 2) −
(

E(X )
)2

= λ

with E(X 2) =

∞
∑

x=0

x2 f(x) .
(8.27)

In the Poisson distribution the mean is equal to the variance and takes on

the value of the parameter, λ. Often the standard deviation σ is used instead

of the variance. Higher moments are used sometimes to characterize further
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details of probability distributions we mentioned here the third moment ex-

pressed as the skewness and the fourth moment called in the kurtosis of the

distribution.

Continuous probabilities. A rigorous introduction of continuous distributions

of random variables13 is quite involved and requires an introduction into un-

countable sets and measure theory [36, 251]. We shall dispense here from the

mathematical part and make use only of applications. A continuous random

variable is commonly defined on the real numbers X ∈ R1. Discrete proba-

bility mass functions (pmf) and cumulative distribution functions (cdf) have

their analogues in continuous probability density functions (pdf) and cumu-

lative probability distribution functions (cdf), and summation is replaced by

integration. The probability density is a function f on R =] − ∞,+∞[ ,

u→ f(u), which satisfies the two conditions:

(i) ∀u : f(u) ≥ 0 , and

(ii)

∫ +∞

−∞
f(u) du = 1 ,

which are the analogues to the positivity condition and conservation relation

of probabilities. Now we can rigorously define random variables on general

sample spaces: X is a function on Ω, which is here the set of real numbers R

and whose probabilities are prescribed by means of a density function f(u).

For any interval [a, b] the probability is given by

Prob (a ≤ X ≤ b) =

∫ b

a

f(u) du . (8.28)

For the interval ]−∞, x] we derive the (cumulative probability) distribution

function F (x) of the continuous random variable X

F (x) = P (X ≤ x) =

∫ x

−∞
f(u) du .

13Random variables having a density are often called continuous in order to distinguish

them from discrete random variables defined on countable sample spaces.
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Figure 8.9: Normal density and distribution. In the plots the normal distri-
bution, N (µ, σ), is shown in from of the probability density

f(x) = exp
(

−(x− µ)2/(2σ2)
)

/

(
√
2π σ) and the probability distribution

F (x) =
(

1 + erf
(

(x − µ)/
√
2σ2
) /

2
)

. Choice of parameters: µ = 6 and σ = 0.5

(black), 0.65 (red), 1 (green), 2 (blue) and 4 (yellow).
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If f is continuous then it is the derivative of F as follows from the fundamental

theorem of calculus

F ′(x) =
dF (x)

dx
= f(x).

If the density f is not continuous everywhere, the relation is still true for

every x at which f is continuous. If the random variable X has a density,

then we find by setting a = b = x

Prob (X = x) =

∫ x

x

f(u) du = 0

reflecting the trivial geometric result that every line segment has zero area.

It seems somewhat paradoxical that X (ω) must be some number for every

ω whereas any given number has probability zero. The paradox, however,

can be resolved by looking at countable and uncountable sets and measures

defined on them in more depth [36, 251].

The first moment, the second central moment, and higher central mo-

ments are defined for continuous distributions in the same way as for discrete

distributions only the summation is replaced by an integral:14

E(X ) = µ̂(X ) =

∫ +∞

−∞
x f(x) dx , and (8.29a)

σ2(X ) = µ2(X ) =

∫ +∞

−∞

(

x− E(X )
)2
f(x) dx (8.29b)

µn(X ) =

∫ +∞

−∞

(

x− E(X )
)n
f(x) dx (8.29c)

Two higher moments are frequently used to characterize the detailed shape

of a distribution, the skewness is expressed as the third central moment

µ3(X ) and the kurtosis is obtained form the fourth moment µ4(X ). The

skewness describes the asymmetry of the distribution: A density with positive

skewness is flatter on the right-hand-side (at larger values of X ; for example

the Poisson density), whereas one with negative skewness has the steeper

slope at the right-hand-side. The kurtosis is a measure of the “peakedness”

14Raw moments µ̂n(X ) = E(Xn) =
∫ +∞

−∞
xn f(x) dx are distinguished from central

moments µn(X ) = E
(

(

X − E(X )
)n
)

=
∫ +∞

−∞

(

x− µ̂(X )
)n

f(x) dx, and hence µ(X ) = 0.
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of a distribution: More positive kurtosis implies a sharper peak whereas

negative kurtosis indicates a flatter maximum of the distribution. Often the

attributes “leptokurtic” and “platykurtic” are given to densities with positive

and negative excess kurtosis, respectively, where excess refers to values with

respect to the normal distribution.

The number of special continuous probability distributions reflecting dif-

ferent circumstances and conditions is, of course, large and we shall mention

only two of them, which are of particular importance for probability the-

ory and stochastic processes in general and in particular in chemistry and

biology, the normal distribution (Fig. 8.9) and the somewhat pathological

Cauchy-Lorentz distribution (Fig. 8.11).

The normal distribution. The density of the normal distribution is a Gaussian

function named after the German mathematician Carl Friedrich Gauß and is

often called symmetric bell curve.

N (x;µ, σ2) : f(x) =
1

√

2πσ2
e−

(x−µ)2

2σ2 , (8.30)

F (x) =
1

2

(

1 + erf
(x− µ
√

2σ2

)

)

. (8.31)

The two parameters of the normal distribution are at the same time the first

and the second moment: the mean, E(X ) = µ, and the variance, σ2(X ) = σ2,

and all odd central moments are zero because of symmetry. The even central

moments take on the general form

µ2n(X ) =
(2n)!

2n n!

(

σ2
)n
,

and we find for the kurtosis of the normal distribution µ4(X ) = 3σ4. The

kurtosis of general distribution is often expressed as excess kurtosis or fourth

cumulant, κ4 = µ4 − 3µ2
2 = µ4 − 3(σ2)2 = µ4 − 3σ4, that measures kurtosis

relative to the normal distribution.

The presumably most important property of the normal distribution is

encapsulated in the central limit theorem, which says in a nutshell: Every

probability distribution converges to the normal distribution provided the
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number of sampling points approaches infinity. The central limit theorem can

be proved exactly (see [36, 251]) but here we shall make use of two instructive

examples of discrete probability distributions converging to the normal dis-

tribution at large numbers of sample points. Commonly, the convergence of

to the normal distribution is illustrated by means of the binomial distribution

B(k; p, n) : f(x) =

(

n

k

)

pk (1− p)n−k with k = {0, 1, 2, . . . n} , n ∈ N
0 . (8.32)

The binomial distribution is the discrete probability distribution of the num-

bers of successes within a sequence of n independent trials of binary (yes/no)

decisions, each of which has a probability p to succeed. Such trials are called

Bernoulli trials and the individual trial yields a one (success) with probabil-

ity p and a zero (failure) with probability q = 1−p. The binomial distribution

B(k; p, 1) is the Bernoulli distribution. The cumulative distribution for the

binomial distribution is

B(k; p, n) : F (k) = I1−p(n− k, 1 + k) =

= 1− Ip(1 + k, n − k) = (n− k)

(

n

k

)

1−p
∫

0

tn−k−1(1− t)k dt
(8.33)

Herein Ix(a, b) is the regularized incomplete beta function:15

Ix(a, b) =
a+b+1
∑

j=a

(a+ b− 1)!

j! (a+ b− 1− j)! x
j (1− x)a+b−1−j .

The de Moivre-Laplace theorem provides the proof for the convergence of

the binomial distribution to a normal distribution with µ̂ = np and variance

15The beta function or the Euler integral of the first kind is defined by

B(x, y) =

∫ 1

0

t(x− 1) (1− t)(y − 1) dt for
(

ℜ(x),ℜ(y)
)

> 0 ,

and generalized to the incomplete beta function

B(z;x, y) =

∫ z

0

t(x− 1) (1− t)(y − 1) dt and Iz(x, y) =
B(z;x, y)

B(x, y)
.

The regularized incomplete beta function is thus obtained through a kind of normalization.
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Figure 8.10: Convergence of a probability mass function to the normal
density. The series starts with a pulse function f(k) = 1/6 for i = 1, . . . , 6
(n = 1), then comes a tent function (n = 2) and then follows the gradual approach
of an normal distribution, (n = 3, 4, . . .). For n = 7 we show the comparison with
a fitted normal distribution (broken black curve). Choice of parameters: s = 6
and n = 1 (black), 2 (red), 3 (green), 4 (blue), 5 (yellow), 6 (magenta), and 7
(chartreuse).

σ2 = np(1− p) = npq in the limit n→∞. In particular, the theorem states

lim
n→∞

(

n
k

)

pkqn−k

exp
(

−(k−np)2/(2npq)
)

√
2πnpq

= 1 for p+ q = 1, p > 0, q > 0 , (8.34)

as n becomes larger and larger k approaches a continuous variable and the

binomial distribution becomes a normal distribution.

The second example deals with the extension of the rolling-dice problem to

n dice. The probability of a score of k points can be calculated by means of

combinations:

fs,n(k) =
1

sn

⌊k−n
s
⌋

∑

i=0

(−1)i
(

n

i

)(

k − s i− 1

n− 1

)

(8.35)

The results for small values of n and ordinary dice (s = 6) are illustrated

in Fig. 8.10. The convergence to a continuous probability density is nicely
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illustrated. For n = 7 the deviation from a the Gaussian curve of the normal

distribution is hardly recognizable.

The central limit theorem (CLT) is the generalization of the two examples

shown here to arbitrary probability distributions.16 In the traditional form it

is expressed as:

Central limit theorem. Let {X1,X2, . . . ,Xn} be a random sample of size n that

is obtained as a sequence of independent and identically distributes random

variables drawn from distributions with expectation values, E(X ) = µ and

variances, σ2(X ) = σ2. Then the sample average of these random variables

is defined by Sn := (X1 +X2 + . . .+Xn)/n. The central limit theorem states

that as n gets larger the distribution of the difference between Sn and its limit

µ multiplied by
√
n, i.e.

√
n(Sn − µ), approximates a normal distribution

with mean zero and variance σ2. For fixed large n this is tantamount to the

statement that for fixed large n the distribution Sn is close to the normal

distribution with expectation value µ and variance σ2/n. In other words the

distribution of
√
n(Sn−µ) approaches normality regardless of the distribution

of the individual Xi’s.

The law of large numbers follows as a straightforward consequence of the

central limit theorem. Its main message says that for a sufficiently large

number of independent events the statistical errors will vanish by summation

and the mean of any finite sample converges to the (exact) expectation values

and higher moments:

m̂ =
1

n

n
∑

i=1

xi and lim
n→∞

m̂ = µ̂ , and

m2 =
1

n− 1

n
∑

i=1

(xi − m̂)2 and lim
n→∞

m2 = var(x) = σ2(x),

(8.36)

where n denotes here the sample size. The sample mean m̂ and the sample

variance m2 converge to the expectation value µ̂ and the variance σ2 in the

16For some distributions, which have no defined moments like the Cauchy-Lorentz dis-

tribution neither the central limit theorem nor the law of large numbers are fulfilled.
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Figure 8.11: Cauchy-Lorentz density and distribution. In the plots
the Cauchy-Lorentz distribution, C(x0, γ), is shown in from of the probabil-

ity density f(x) = γ
/

(

π
(

(x − x0)
2 + γ2

)

)

and the probability distribution

F (x) = 1
2 + arctan

(

(x− x0)/γ
)

/

π . Choice of parameters: x0 = 6 and γ = 0.5

(black), 0.65 (red), 1 (green), 2 (blue) and 4 (yellow).



238 Peter Schuster

x

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

(
)

f
x

Figure 8.12: Comparison of Cauchy-Lorentz and normal density. The
plots compare the Cauchy-Lorentz density, C(x0, γ), and the normal density
N (µ, σ2). In the flanking regions the normal density decays to zero much faster
than the Cauchy-Lorentz density, and this is the cause of the abnormal behavior of
the latter. Choice of parameters: x0 = µ = 6 and γ = σ2 = 0.5 (black), 1 (green).

limit of infinite sample size. Thus the law of large numbers provides the basis

for the conventional assumption of convergence with increasing sample size

in mathematical statistics.

The Cauchy-Lorentz distribution. The Cauchy-Lorentz distribution, C(x0, γ),
named after the French mathematician Augustin Cauchy and the Dutch

physicist Hendrik Lorentz is often addressed as the canonical example of

a pathological distribution, because all its moments are either undefined like

all odd moments or diverge like for example the raw second moment, µ̂2 =∞.

Clearly, it has no moment generating function. Nevertheless, it has impor-

tant applications, for example it is the solution to the differential equation

describing forced resonance, it is used in spectroscopy to describe the spectral

lines that show homogeneous broadening, and it is the probabilistic basis for

a class of highly irregular stochastic processes with the Cauchy process being

its most prominent example (see subsection 8.2.2).
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The probability density function and cumulative distribution function are

of the form

N (x; x0, γ) : f(x) =
1

π

γ

(x− x0)2 + γ2
, (8.37)

F (x) =
1

2
+

1

π
arctan

(

x− x0
γ

)

. (8.38)

In Fig. 8.11 the Cauchy-Lorentz density and distribution are shown for differ-

ent parameter values. At a first glance the family of curves looks very similar

to the analogous family of the normal distribution. A more close inspection,

however, shows the flanking regions are much flatter in the Cauchy-Lorentz

case (Fig. 8.12), and the slow convergence towards zero is the ultimate cause

for the pathological values of the moments.
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8.2 Stochastic processes

In 1827 the British botanist Robert Brown detected and analyzed irregular

motions of particles in aqueous suspensions that turned out to be indepen-

dent of the nature of the suspended materials – pollen grains, fine particles

of glass or minerals [28]. Although Brown himself had already demonstrated

that Brownian motion is not caused by some (mysterious) biological effect,

its origin remained kind of a mystery until Albert Einstein [74], and inde-

pendently by Marian von Smoluchowski [296], published a satisfactory ex-

planation in 1905 and 1906, respectively, which contained two main points:

(i) The motion is caused by highly frequent impacts on the pollen grain of

the steadily moving molecules in the liquid in which it is suspended.

(ii) The motion of the molecules in the liquid is so complicated in detail

that its effect on the pollen grain can only be described probabilistically

in terms of frequent statistically independent impacts.

In particular, Einstein showed that the number of particles per unit volume,

ρ(x, t),17 fulfils the already known differential equation of diffusion,

∂ρ

∂t
= D

∂2ρ

∂x2
with the solution ρ(x, t) =

N√
4πD

exp
(

−x2/(4Dt)
)

√
t

,

where N is the total number of particles. From the solution of the diffusion

equation Einstein computes the square root of the mean square displacement,

λx, the particle experiences in x-direction:

λx =
√
x̄2 =

√
2Dt .

Einstein’s treatment is based on discrete time steps and thus contains an

approximation – that is not well justified – but it represents the first analysis

based on a probabilistic concept of a process that is comparable to the current

theories and we may consider Einstein’s paper as the beginning of stochastic

modeling. Brownian motion was indeed the first completely random process

that became accessible to a description that was satisfactory by the standards

17For the sake of simplicity we consider only motion in one spatial direction, x.
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of classical physics. Thermal motion as such had been used previously as the

irregular driving force causing collisions of molecules in gases by James Clerk

Maxwell and Ludwig Boltzmann. The physicists in the second half of the

nineteenth century, however, were concerned with molecular motion only as it

is required to describe systems in the thermodynamic limit. They derived the

desired results by means of global averaging statistics. For scholars interested

in a mathematically rigorous history of stochastic processes we recommend

the comprehensive review by Subrahmanyan Chandrasekhar [35].

Systems evolving probabilistically in time can be rigorously described

and modeled in mathematical terms by stochastic processes. More precisely,

we postulate the existence of a time dependent random variable or random

vector, X (t) or ~X (t) =
(

X1(t),X2(t), . . . ,Xn(t)
)

, respectively. Depending

on the nature of the process a discrete or a continuous variable may be

appropriate for modeling and we shall distinguish and consider both cases

here: (i) the simpler discrete case, in which the variables refer, for example,

to particle numbers

Xk(t) = P
(

X (t) = k
)

with k ∈ N
0 , (8.39)

and (ii) the continuous probability density case, where the variable are con-

centrations

dF (x, t) = f(x, t) dx = P
(

x ≤ X (t) ≤ x+ dx
)

with x ∈ R
1 . (8.40)

The latter case, of course, requires that dF (x, t) is differentiable. In both

cases a trajectory is understood as a recording of the particular values of X
at certain times:

T =
(

(x1, t1), (x2, t2), (x3, t3), · · · , (y1, τ1), (y2, τ2), · · ·
)

. (8.41)

As the repeated measurement of a stochastic variable yields different values,

the repetition of a stochastic process through reproducing an experiment

yields a different trajectory and the full description of the process requires

knowledge on the time course of the probability distribution. In experiments

and in computer simulation the probability distribution is usually derived
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0 t2 t1 t3 t2 t1

backward evaluation

forward evaluation

Figure 8.13: Time order in modeling stochastic processes. Time is pro-

gressing from left to right and the most recent event is given by the rightmost

recording at time t1. The Chapman-Kolmogorov equation describing stochastic

processes comes in two forms: (i) the forward equation predicting the future form

past and present and (ii) the backward equation, which extrapolates back in time

from present to past.

through superposition of many individual trajectories (see subsection 9.3).

Although it is not essential for the application of probability theory but def-

initely required for comparison with experiments, we shall assume here that

the recorded values are time ordered with the oldest values on the rightmost

position and the most recent values at the latest entry on the left-hand side

(Fig. 8.13):18

t1 ≥ t2 ≥ t3 ≥ · · · ≥ τ1 ≥ τ2 ≥ · · · .
A trajectory thus is a time ordered sequence of doubles (x, t).

In order to model evolution or other dynamical phenomena based on

chemical or biochemical kinetics by stochastic processes we postulate a pop-

ulation of molecular species P = {X1,X2, . . . ,Xn}, which are quantitatively

described by a time dependent random vector ~X (t) as defined above. In mod-

eling evolution the species Xj are various individual agents that are capable

of reproduction and mutation. In the deterministic approach (chapter 4) we

postulated a space of all possible genotypes, the sequence space Q(κ)
l , and

we chose it as a theoretical reference for evolution. In case of stochastic

18Time is measured with respect to some reference point on the right-hand side, and

we remark that the stochastic time axis runs in the opposite direction of the conventional

time axis in plots.
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processes it is much more appropriate to restrict the population to the actu-

ally present variants and to introduce a new variable whenever a mutation

leads to a genotype that was not present in the population before. Then,

the size of the population support Σ(P) is changing and can be considered

as a function of time, |Σ(P)| = nΣ(t). Variable population size N and vari-

able species diversity nΣ have great impact on the evolutionary process. For

example bottle necks and broad regions shape evolution as will be discussed

later in section 10.2 [101, 246, 247].

8.2.1 Markov and other simple stochastic processes

A stochastic process, as we shall assume, is determined by a set of joint prob-

ability densities the existence and analytical form of which is presupposed.19

The probability density encapsulates the physical nature of the process and

contains all parameters and data on external conditions and hence we can

assume that they determine the system completely:

p
(

x1, t1; x2, t2; x3, t3; · · ·
)

. (8.42)

By the phrase “determine completely” we mean that no additional informa-

tion is required for a description of the progress in terms of the time ordered

series (8.41) and we shall call such a process a separable stochastic process.

Although more general processes are conceivable, they play little role in cur-

rent physics, chemistry, and biology and therefore we shall not consider them

here.

Calculation of probabilities from (8.42) is straightforward by application

of marginal densities. For the discrete case the result is obvious

P (X = x1) = p(x1, ∗) =
∑

xk 6=x1

p (x1, t1; x2, t2; x3, t3; · · · ; xn, tn; · · · ) .

19The joint density p (8.14) is defined by Prob
(

X = xi,Y = yj
)

= p(xi, yj) or

Prob
(

X ≤ x,Y ≤ y
)

=
∫ x

−∞

∫ x

−∞
f(u, v) du dv in the continuous case. Since we are always

dealing with doubles (x, t) we modify the notation slightly and separate individual doubles

by semicolons: · · · ;xk, tk;xk+1, tk+1; · · · .
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and in the continuous case we obtain

P (X1 = x1 ∈ [a, b]) =

∫ b

a

dx1

∫∫∫ ∞

−∞
dx2dx3 · · ·dxn · · ·

p (x1, t1; x2, t2; x3, t3; · · · ; xn, tn; · · · )

Time ordering allows for the formulation of predictions on future values from

the known past in terms of conditional probabilities:

p (x1, t1; x2, t2; · · · | y1, τ1; y2, τ2, · · · ) =
p (x1, t1; x2, t2; · · · ; y1, τ1; y2, τ2, · · · )

p (y1, τ1; y2, τ2, · · · )
,

with t1 ≥ t2 ≥ · · · ≥ τ1 ≥ τ2 ≥ · · · . In other words, we may compute

{(x1, t1), (x2, t2), · · · } from known {(y1, τ1), (y2, τ2), · · · }.
Three simple stochastic processes will be discussed here: (i) the factoriz-

able process with probability densities that are independent of the event with

the special case of the Bernoulli process where the probability densities are

also independent of time, (ii) the martingale where the (sharp) initial value of

the stochastic variable is equal to the conditional mean value of the variable

in the future, and (iii) the Markov process where the future is completely

determined by the presence.

The simplest class of stochastic processes is characterized by complete

independence of events,

p (x1, t1; x2, t2; x3, t3; · · · ) =
∏

i

p (xi, ti) , (8.43)

which implies that the current value X (t) is completely independent of its

values in the past. A special case is the sequence of Bernoulli trials where

the probability densities are also independent of time: p (xi, ti) = p (xi), and

then we have

p (x1, t1; x2, t2; x3, t3; · · · ) =
∏

i

p (xi) . (8.44)

Further simplification occurs, of course, when all trials are based on the same

probability distribution – for example, if the same coin is tossed in Bernoulli

trials – and then the product is replaced by p(x)n.
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Figure 8.14: The one-dimensional random walk. The one-dimensional

random is shown as an example of a martingale. Five trajectories were calcu-

lated with different seeds for the random number generator. The expectation

value E
(

X (t)
)

= x0 = 0 is constant and the variance grows linearly with time

σ2
(

X (t)
)

= 2dt, Accordingly, the standard deviation grows with
√

t. The three

black lines in the figure correspond to E and E±σ(t), and the grey area represent

the confidence interval of 68,2%. Choice of parameters: ϑ = 1
2; random number

generator: Mersenne Twister ; seeds: 491 (yellow), 919 (blue), 023 (green), 877

(red), 127 (violet).

The notion of martingale has been introduced by the French mathemati-

cian Paul Pierre Lévy and the development of the theory of martingales is

due to the American mathematician Joseph Leo Doob. The conditional mean

value of the random variable X (t) provided X (t0) = x0 is defined as

E
(

X (t)|(x0, t0)
) .

=

∫

dx p(x, t|x0, t0) .

In a martingale the conditional mean is simple given by

E
(

X (t)|(x0, t0)
)

= x0 . (8.45)

The mean value at time t is identical to the initial value of the process

(Fig. 8.14). The martingale property is rather strong and restrictive and
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applies only to relatively few cases to which we shall refer only in some

specific situations.

The somewhat relaxed notion of a semimartingale is of importance be-

cause it covers the majority of processes that are accessible to modeling by

stochastic differential equations. A semimartingale is composed of a local

martingale and a càdlàg adapted process with bounded variation20

X (t) = M(t) + A(t)

A local martingale is a stochastic process that satisfies locally the martingale

property (8.45) but its expectation value 〈M(t)〉 may be distorted at long

times by large values of low probability. Hence, every martingale is a local

martingale and every bounded local martingale is a martingale. In particu-

lar, every driftless diffusion process is a local martingale but need not be a

martingale. An adapted or nonanticipating process is a process that cannot

see into the future. An informal interpretation [310, section II.25] would say:

A stochastic process X (t) is adapted iff for every realization and for every

time t, X (t) is known at time t and not before.

Another simple concept assumes that knowledge of the present only is

sufficient to predict the future. It is realized in Markov processes named after

the Russian mathematician Andrey Markov21 and can formulated easily in

terms of conditional probabilities:

p (x1, t1; x2, t2; · · · | y1, τ1; y2, τ2, · · · ) = p (x1, t1; x2, t2; · · · | y1, τ1) . (8.46)

In essence, the Markov condition expresses independence of the history of

the process prior to time τ1 or in other words and said more sloppily: “A

Markov process has no memory and the future is completely determined by

20The property càdlàg is an acronym from French for “continue à droite, limites à

gauche”. It is a common property in statistics (section 8.1).
21The Russian mathematician Andrey Markov (1856-1922) is one of the founders of

Russian probability theory and pioneered the concept of memory free processes, which

is named after him. He expressed more precisely the assumptions that were made by

Albert Einstein [74] and Marian von Smoluchowski [296] in their derivation of the diffusion

process.
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the presence.” In particular, we have

p (x1, t1; x2, t2; y1, τ1) = p (x1, t1| x2, t2) p (x2, t2| y1, τ1) .

Any arbitrary joint probability can be simply expressed as products of con-

ditional probabilities:

p (x1, t1; x2, t2; x3, t3; · · · ; xn, tn) =

= p (x1, t1| x2, t2) p (x2, t2| x3, t3) · · · p (xn−1, tn−1| xn, tn) p (xn, tn) (8.46’)

under the assumption of time ordering t1 ≥ t2 ≥ t3 ≥ . . . tn−1 ≥ tn.

8.2.2 Continuity and the Chapman-Kolmogorov equation

Prior to the discussion of the mathematical approach to model step-processes,

continuous processes, and combinations of both we shall consider a classifi-

cation of stochastic processes. Assuming a discrete representation of particle

numbers as in Equ. (8.39) the probability functions of the stochastic variable

X (t) can change only in steps or jumps. A continuous stochastic variable

X (t) with a suitable probability function, however, need not exclude the oc-

currence of jumps. Accordingly, we expect to be dealing with several classes

of processes: (i) pure deterministic or drift processes, (ii) pure driftless and

jump free diffusion processes, (iii) pure jump processes, (iv) a combination of

(i) and (ii) being processes with drift and diffusion, and (v) a combination of

(i), (ii), and (iii) and others. At first we introduce the notion of continuity in

stochastic processes be means of two examples, the Wiener and the Cauchy

process. Then, we shall discuss a very general equation for the description of

stochastic processes, which contains all above mentioned processes as special

cases.

Continuity in stochastic processes. The condition of continuity in Markov

processes requires a more detailed discussion. The process goes from position

z at time t to position x at time t + ∆t. Continuity of the process implies

that the probability of x to be finitely different from z goes to zero faster

than ∆t in the limit lim∆t→ 0:

lim
∆t→0

1

∆t

∫

|x−z|>ε

dx p (x, t+∆t|z, t) = 0 , (8.47)
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Figure 8.15: Continuity in Markov processes. Continuity is illustrated by

means of two stochastic processes of the random variable X (t), the Wiener process

W(t) (8.48) and the Cauchy process C(t) (8.49). The Wiener process describes

Brownian motion and is continuous but almost nowhere differentiable. The even

more irregular Cauchy process is wildly discontinuous.

and this uniformly in z, t, and ∆t. In other words, the difference in proba-

bility as a function of | x− z| converges sufficiently fast to zero and hence no

jumps occur in the random variable X (t).
Two illustrative examples for the analysis of continuity are chosen and

sketches in Fig. 8.15: (i) the Einstein-Smoluchowski solution of Brownian

motion that is a continuous version of the one-dimensional random walk

shown in Fig. 8.14,22 which leads to a normally distributed probability,

p(x, t+∆t|z, t) =
1√

4πD∆t
exp

(

−(x− z)
2

4D∆t

)

, (8.48)

and (ii) the so-called Cauchy process following the Cauchy-Lorentz distribu-

22Later on we shall discuss the continuous version of this stochastic process in more

detail and call it a Wiener process.
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tion,

p(x, t+∆t|z, t) =
∆t

π

1

(x− z)2 +∆t2
. (8.49)

In case of the Wiener process we exchange the limit and the integral, intro-

duce ϑ = (∆t)−1, perform the limit ϑ→∞, and have

lim
∆t→0

1

∆t

∫

|x−z|>ε

dx
1√
4πD

1√
∆t

exp

(

−(x− z)
2

4D∆t

)

=

=

∫

|x−z|>ε

dx lim
∆t→0

1

∆t

1√
4πD

1√
∆t

exp

(

−(x− z)
2

4D∆t

)

=

=

∫

|x−z|>ε

dx lim
ϑ→∞

1√
4πD

ϑ3/2

exp
(

(x−z)2
4D

ϑ
) , where

lim
ϑ→∞

ϑ3/2

1 + (x−z)2
4D
· ϑ + 1

2!

(

(x−z)2
4D

)2

· ϑ2 + 1
3!

(

(x−z)2
4D

)3

· ϑ3 + . . .
= 0 .

Since the power expansion of the exponential in the denominator increases

faster than every finite power of ϑ, the ratio vanishes in the limit ϑ →
∞, the value of the integral is zero, and the Wiener process is continuous

everywhere. Although it is continuous, the curve of Brownian motion [28] is

indeed extremely irregular since it is nowhere differentiable (Fig. 8.15).

In the second example, the Cauchy process, we exchange limit and integral

as in case of the Wiener process, and perform the limit ∆t→ 0:

lim
∆t→0

1

∆t

∫

|x−z|>ε

dx
∆t

π

1

(x− z)2 +∆t2
=

=

∫

|x−z|>ε

dx lim
∆t→0

1

∆t

∆t

π

1

(x− z)2 +∆t2
=

=

∫

|x−z|>ε

dx lim
∆t→0

1

π

1

(x− z)2 +∆t2
=

∫

|x−z|>ε

1

π(x− z)2 dx 6= 0 .

The value of the last integral, I =
∫∞
|x−z|>ε

dx/(x− z)2 = 1/
(

π(x− z)
)

, is of

the order I ≈ 1/ε and the curve for the Cauchy-process is also irregular but

even discontinuous.

Both processes, as required for consistency, fulfill the relation

lim
∆t→0

p (x, t+∆t| z, t) = δ(x− z) ,
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where δ(·) is the so-called delta-function.23

Chapman-Kolmogorov equation. From joint probabilities follows that sum-

mation of all mutually exclusive events of one kind eliminates the correspond-

ing variable:

∑

i

P (A ∩ Bi ∩ C · · · ) = P (A ∩ C · · · ) ,

where the subsets Bi fulfil the conditions

Bi ∩Bj = ∅ and
⋃

i

Bi = Ω .

Applied to stochastic processes we find by the same token

p (x1, t1) =

∫

dx2 p (x1, t1; x2, t2) =

∫

dx2 p (x1, t1| x2, t2) p (x2, t2) .

Extension to three events leads

p (x1, t1|x3, t3) =

∫

dx2 p (x1, t1; x2, t2| x3, t3) =

=

∫

dx2 p (x1, t1| x2, t2; x3, t3) p (x2, t2| x3, t3) .

For t1 ≥ t2 ≥ t3 and making use of the Markov assumption we obtain the

Chapman-Kolmogorov equation, which is named after the British geophysi-

cist and mathematician Sydney Chapman and the Russian mathematician

Andrey Kolmogorov:

p (x1, t1|x3, t3) =

∫

dx2 p (x1, t1| x2, t2) p (x2, t2| x3, t3) . (8.50)

In case of discrete random variable N ∈ N
0 = 0, 1, . . . , k, . . . defined on the

integers we replace the integral by a sum and obtain

P (k1, t1| k3, t3) =
∑

k2

P (k1, t1| k2, t2) P (k2, t2| k3, t3) . (8.51)

23The delta-function is no proper function but a generalized function or distribution. It

was introduced by Paul Dirac in quantum mechanics. For more details see, for example,

[244, pp.585-590] and [241, pp.38-42].
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Figure 8.16: Illustration of forward and backward equations. The for-

ward differential Chapman-Kolmogorov equation starts from an initial condition

corresponding to the sharp distribution δ(y − z), (y, t′) is fixed (black), and the

probability density unfolds with time t ≥ t′ (black). It is well suited for the

description of actual experimental situations. The backward equation, although

somewhat more convenient and easier to handle from the mathematical point of

view, is less suited to describe typical experiments and commonly applied to first

passage time or exit problems. Here, (x, t′′) is held constant (red) and the time

dependence of the probability density corresponds to samples unfolding into the

past, τ ≤ t′′ (red). The initial condition, δ(y − z), is in this case replaced by a

final condition, δ(z − x), represented by a sharp distribution.

The Chapman-Kolmogorov equation can be interpreted in two different ways

and the corresponding implementations are known as forward and backward

equation (Fig. 8.16). In the forward equation the double (x3, t3) is considered

to be fixed and (x1, t1) represents the variable x1(t1), and the time t1 pro-

ceeding in positive direction. The backward equation is exploring the past

of a a given situation: the double (x1, t1) is fixed and (x3, t3) is propagating

backwards in time. The forward equation is better suited to describe actual

processes, whereas the backward equation is the appropriate tool to compute

the evolution towards given events, for example first passage times. In order

to discuss the structure of solutions of Eqs. (8.50) and (8.51), we shall present

the equations in differential form (For a derivation see [107]).
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The differential version of the Chapman-Kolmogorov equation is based

on the continuity condition already discussed for the Wiener and the Cauchy

process. In the derivation of the differential form the general equations (8.50)

and (8.51) have to be partitioned with respect to differentiability conditions

corresponding either to continuous motion under generic conditions or to

discontinuous motion. This partitioning is based on the following conditions

for all ε > 0: (8.52)

(i) lim∆t→0
1
∆t
p(x, t+∆t|z, t) t = W (x|z, t) , uniformly in x, z, and t

for |x− z| ≥ ε,

(ii) lim∆t→0
1
∆t

∫

|x−z|<ε
dx (xi − zi) p(x, t+∆t|z, t) = Ai(z, t) + O(ε) ,

uniformly in z, and t, and

(iii) lim∆t→0
1
∆t

∫

|x−z|<ε
dx (xi − zi)(xj − zj) p(x, t+∆t|z, t) =

= Bij(z, t) + O(ε) , uniformly in z, and t.

where xi, xj , zi, and zj , refer to particular components of the vectors x and

z, respectively. It is important to notice that all higher-order coefficients

of motion Cijk, defined in analogy to Ai in (ii) or Bij in (iii), must vanish

by symmetry considerations [107, p.47-48]. In essence, the three terms in

Equ. (8.52) refer to different behavior with respect to continuity: (i) (deter-

ministic) drift, (ii) diffusion in the sense of a Wiener process, and (iii) a jump

process, with the attributes (i) continuous and differentiable, (ii) continuous

and nowhere differentiable, and (iii) discontinuous, respectively.

The partial differential equation for the evolution of the probability distri-

bution has been called differential Chapman-Kolmogorov equation by Crispin

Gardiner. Neglect of surface terms at the boundary of the domain of z leads

to the expression:

∂p (z, t |y, t′)
∂t

= −
∑

i

∂

∂zi

(

Ai(z, t) p (z, t|y, t′)
)

+ (8.53a)

+
1

2

∑

i,j

∂2

∂zi∂zj

(

Bij(z, t) p (z, t|y, t′)
)

+ (8.53b)

+

∫

dx
(

W (z |x, t) p (x, t|y, t′)−W (x |z, t) p (z, t|y, t′)
)

. (8.53c)
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Under certain conditions, A(x, t) real, B(x, t) positive semi-definite, and

W (x| y, t) non-negative, a non-negative solution to to the differential Chapman-

Kolmogorov equation (8.53), which fulfils the continuous Chapman-Kolmogorov

equation (8.50), exists for the initial condition p (z, t| y, t) = δ(y− z).

The nature of the different stochastic processes associated with the three

terms in Equ. (8.53) is visualized by setting some parameters, A(z, t), B(z, t),

and W (x |z, t) equal to zero and analyzing the remaining equation. We shall

discuss here the four cases that are modeled by different equations

(i) B = 0, W = 0, deterministic drift process: Liouville equation,

(ii) A = 0, W = 0, diffusion process: drift free Fokker-Planck equation,

(iii) W = 0, drift and diffusion process: Fokker-Planck equation, and

(iv) A = 0, B = 0, pure jump process: master equation.

The first three processes can be modeled very efficiently by stochastic dif-

ferential equations (SDE) often called Langevin equations after the French

physicist Paul Langevin [186]. Examples of SDEs will mentioned for the

Wiener process and the Ornstein-Uhlenbeck process. We shall mention them

only briefly here, refrain from a detailed discussion, and refer to the literature

[107, 251].

Chapman-Kolmogorov backward equation. Equ. (8.53) has been derived for

the forward direction and according to Fig. 8.16 a differential Chapman-

Kolmogorov equation can also be derived for the backward process. Then

the limit has to be taken with respect to the initial variables (y, τ) of the

probability p (x, t| y, τ) and the limit of the vanishing time interval is of the

form

lim
∆τ→0

1

∆τ

(

p (x, t|y, τ +∆τ) − p(x, t|y, τ)
)

=

= lim
∆τ→0

1

∆τ

∫

dz p (z, τ +∆τ |y, τ)
(

p (x, t|y, τ +∆τ) − p (x, t| z, τ +∆τ)
)

,

where the Chapman-Kolmogorov equation (8.50) was used to derive the sec-

ond line. The derivation of the differential from of the backward equation

follows essentially the same steps as in case of the forward equation [107] and
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eventually we obtain a probabilistic differential equation that is equivalent

to the forward equation:

∂p (x, t |y, τ)
∂t

= −
∑

i

Ai(y, τ)
∂p (x, t|y, τ)

∂yi
+ (8.54a)

+
1

2

∑

i,j

Bij(z, t)
∂2p (x, t|y, τ)

∂yi∂yj
+ (8.54b)

+

∫

dx W (z |y, τ)
(

p (x, t|y, τ) − p (z, t|z, τ)
)

. (8.54c)

As we have stated for the forward equation the appropriate initial condition

is p (x, t| y, t) = δ(x− y) for all t.

Liouville equation. In the limiting case of a stochastic process with vanish-

ing probabilistic contributions, diffusion and jump processes, one obtains a

differential equation that is a Liouville equation well known from classical

mechanics:

∂p(z, t|y, t′)
∂t

= −
∑

i

∂

∂zi

(

Ai(z, t) p(z, t|y, t′)
)

, (8.55)

Equ. (8.55) describes a completely deterministic motion, which is a solution

of the ordinary differential equation

dx(t)

dt
= a

(

x(t), t
)

with x(y, t′) = y . (8.56)

The (probabilistic) solution of the differential Equ. (8.55) with the initial

condition p(z, t′|y, t′) = δ(z − y) is p(z, t|y, t′) = δ
(

z − x(y, t)
)

, or in other

words z(0) = z(t′) = y(t′) represents the initial conditions of the ODE (8.56).

The proof of this assertion is obtained by direct substitution [107, p.54].

∑

i

∂

∂zi

(

A(z, t) δ
(

z− x(y, z)
)

)

=
∑

i

∂

∂zi

(

Ai(x(y, t), t) δ
(

z− x(y, t)
)

)

,

=
∑

i

(

Ai(x(y, t), t)
∂

∂zi
δ
(

z− x(y, t)
)

)

,

and
∂

∂t
δ
(

z− x(y, t)
)

= −
∑

i

∂

∂zi
δ
(

z− x(y, t)
) dxi(y, t)

dt
,

and by means of Equ. (8.56) the last two lines become equal.
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Figure 8.17: Evolution of the probability density in the Wiener process.

In the figure we show the conditional probability density of the Wiener process

which is identical with the normal distribution (Fig. 8.9),

p(w, t|w0, t0) = exp
(

−(w − w0)
2/
(

2(t− t0)
)

)

/
√

2π(t− t0).

The values used are w0 = 5 and t − t0 = 0 (black), 0.05 (purple), 0.5

(red), 1.0 (green), 2.0 (blue), and 4.0 (yellow). The initially sharp distribution,

p(w, t|w0, t0) = δ(w−w0) spreads with increasing time until it becomes completely

flat in the limit t→∞.

If a particle is in a well-defined position y at time t′ it will remain on the tra-

jectory obtained by solving the corresponding ordinary differential equation

(ODE). Deterministic motion can be visualized therefore as an elementary

form of Markov process, which can be formulated by a drift-diffusion process

with a zero diffusion matrix B. A generalization of the initial conditions is

straightforward: If we are dealing with a probability distribution rather than

a δ-function this distribution is traveling along the trajectory.

Wiener process. If only the diffusion matrix B has nonzero entries and all

terms of A(z, t) and W (x |z, t) vanish, we are dealing with a Wiener process

named after the American mathematician and logician Norbert Wiener. It is

synonymous to (continuous) Brownian motion or white noise and describes

among other things random fluctuations caused by thermal motion. The
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trajectories in Fig. 8.14 are almost indistinguishable from those of a Wiener

process because a small increment of the random walk was chosen. From

the point of view of stochastic processes the probability density of a Wiener

process is a solution of the differential equation24

∂p (w, t|w0, t0)

∂t
=

1

2

∂2

∂w2
p (w, t|w0, t0) (8.57)

in one random variable, W(t). The probability distribution of W(t) is given

by

P (W(t) ≤ w′) =

∫ w′

−∞
p (w, t) dw .

Equ. (8.57) can be understood as a Fokker-Planck equation with drift co-

efficient zero and diffusion coefficient D = 1. Fokker-Planck equations are

partial differential equations named after two physicists, the Dutchman Adri-

aan Daniël Fokker and the German Max Planck and in one dimension, in the

forward direction, and for the initial conditions p (x0, t0) they are of the gen-

eral form

∂p (x, t)

∂t
= − ∂

∂x

(

A(x, t) p (x, t)
)

+
1

2

∂2

∂x2

(

B(x, t) p (x, t)
)

. (8.58)

An example of a full Fokker-Planck equation modeling the Ornstein-Uhlenbeck

process will be discussed in the next paragraph. Fokker-Planck equations can

be easily converted into stochastic differential equations (SDEs), which are

convenient for analysis and computer simulation [107]. The probability dis-

tribution of the Fokker-Planck equation (8.58) is equivalent to the ensemble

of trajectories described by

dx = a(x, t) dt + b(x, t) dW (t) , (8.59)

where dW (t) corresponds to a Wiener process.25 Integration of stochastic

differential equation requires special definitions that will not be discussed

here.
24In application in physics and chemistry diffusion occurs in space and it would be

natural to use X (t) as stochastic variable and x as coordinate. Because of the key role of

the Wiener process in stochasticity we shall use W(t) and w instead.
25The original formulation by Paul Langevin was different:

dx
dt = a(x, t) + b(x, t) ξ(t) ,
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The solution of (8.57) for the initial condition on the conditional proba-

bility p (w, t0|w0, t0) = δ(w−w0) can be obtained by using the characteristic

function

φ(s, t) =

∫

dw p (w, t|w0, t0) exp(ı
.
ıs w) ,

which fulfils ∂φ(s, t)/∂t = −1
2
s2 φ(s, t) as can be shown by applying integra-

tion in parts twice and making use of the fact that p (w, t|w0, t0) like every

probability density has to vanish in the limits w → ±∞ and the same is true

for the first partial derivative, ∂p/∂w. Next we compute the characteristic

function by integration:26

φ(s, t) = φ(s, t0) · exp
(

−1
2
s2 (t− t0)

)

. (8.60)

Insertion of the initial condition φ(s, t0) = exp(ı
.
ıs w0) completes the calcula-

tion of the characteristic function

φ(s, t) = exp
(

ı
.
ıs w0 −

1

2
s2 (t− t0)

)

. (8.61)

The probability density is now obtained through inversion of Fourier trans-

formation

p (w, t|w0, t0) =
1

√

2π (t− t0)
exp

(

−(w − w0)
2

2 (t− t0)

)

. (8.62)

It is straightforward to identify the density function of the Wiener process as

a normal distribution with an expectation value of E
(

W(t)
)

= w0 = ν and

variance of E
(

(

W(t)−w0

)2
)

= t−t0 = σ(t)2. Accordingly, an initially sharp

where ξ(t) is a stochastic variable representing the noise term. Rigorous mathematical

handling of this equation leads to problems related to the fact that the Wiener process

and ξ(t) are nowhere differentiable and integration raises problems that can be avoided

by the formulation (8.59).

26The characteristic of a probability distribution is defined as

φ(s) =

∫ +∞

−∞

exp(ı
.
ısx) dF (x) =

∫ +∞

−∞

exp(ı
.
ısx) f(x) dx ,

and fulfils φ(s) = E(eı
.
ısX ). Apart from constant factors the characteristic function is the

Fourier transform of the probability density.
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distribution of th form of a δ-function spreads in space as time progresses

and eventually in the limit t → ∞ the variance diverges. An illustration is

shown in Fig. 8.17.

The Wiener process may be characterized by three important features:

(i) irregularity of sample path,

(ii) non-differentiability of sample path, and

(iii) independence of increment.

Although the mean value E
(

W(t)
)

is well defined and independent of time,

w0, in the sense of a martingale, the expectation value of the mean square of

the random variable E
(

W(t)2
)

becomes infinite as t→∞. This implies that

the individual trajectories, W(t), are extremely variable and diverge after

short time (see, for example, the trajectories in Fig. 8.14). We shall encounter

such a situation with finite mean but diverging variance also in biology in

the case of multiplication as a birth and death process (subsection 9.1.3):

Although the mean is well defined it looses its value in practice when the

standard deviation becomes much larger than the expectation value.

Continuity of sample paths of the Wiener process has been demonstrated

previously. In order to show that the trajectories of the Wiener process are

nowhere differentiable we consider the probability

P

(∣

∣

∣

∣

W(t + h)−W(t)

h

∣

∣

∣

∣

> k

)

= 2

∫ ∞

k h

dw
1√
2πh

exp(−w2/2h) ,

which can be readily computed from the conditional probability (8.62). In

the limit h→ 0 the integral becomes 1
2
and the probability is one. The result

implies that, no matter what finite k we choose, |
(

W(t+ h)−W(t)
)

/h| will
almost certainly be greater than this value. In other words, the derivative of

the Wiener process will be infinite with probability one and the sample path

is not differentiable.

The Wiener process is self-similar and this property is often referred to

as Brownian scaling. We assume that Wct is a Wiener process with the

probability density fWct(x) = exp(−x2/2ct)
/√

2πt and then the process

Vt = Wct

/√
c is another Wiener process for every c > 0. In other words, a

Wiener process looks the same on all time scales.
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Figure 8.18: Stochastic integration. The figure illustrates the Cauchy-Euler

procedure for the construction of an approximate solution of the stochastic differ-

ential equation (8.63). The stochastic process consists of two different components:

(i) the drift term, which is the solution of the ODE in absence of diffusion (red;

b(xi, ti) = 0) and (ii) the diffusion term representing a Wiener process W (t) (blue;

a(xi, ti) = 0). The superposition of the two terms gives the stochastic process

(black). The two lower plots show the two components in separation. The incre-

ments of the Wiener process ∆Wi are independent or uncorrelated. An approxi-

mation to a particular solution of the stochastic process is constructed by letting

the mesh size approach zero, lim∆t→ 0.

Diffusion is closely related to the Wiener process and hence for the appli-

cations in physics and chemistry is important that the increments of W(t)

are statistically independent. The proof makes use of the Markov property of

the Wiener process and derives factorizability of increments, which is tanta-

mount to independence of the variables ∆Wi of each other and by the same

token of W(t0).

Stochastic differential equation. A stochastic variable x(t) is consistent with
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an Itō stochastic differential equation (SDE) [159, 160]27

dx(t) = a
(

x(t), t
)

dt + b
(

x(t), t
)

dW (t) , (8.63)

if for all t and t0 = 0 the integral equation

x(t) − x(0) =

∫ t

0

a
(

x(τ), τ
)

dτ +

∫ t

0

b
(

x(τ), τ
)

dW (τ) (8.64)

is fulfilled. Time is ordered,

t0 < t1 < t2 < · · · < tn = t ,

and the time axis may be assumed to be split into (equal or unequal) incre-

ments, ∆ti = ti+1 − ti. We visualize a particular solution curve of the SDE

for the initial condition x(t0) = x0 by means of a discretized version

xi+1 = xi + a(xi, ti)∆ti + b(xi, ti)∆Wi , (8.64’)

wherein xi = x(ti), ∆ti = ti+1 − ti, and ∆Wi = W (ti+1) − W (ti). Fig-

ure 8.18 illustrates the partitioning of the stochastic process into a deter-

ministic drift component, which is the discretized solution curve of the ODE

obtained by setting b
(

x(t), t
)

= 0 in equation (8.64’) and stochastic diffusion

component, which is a random Wiener process W (t) that is obtained by set-

ting a
(

x(t), t
)

= 0 in the SDE. The increment of the Wiener process in the

stochastic term, ∆Wi, is independent of xi provided (i) x0 is independent of

all W (t) −W (t0) for t > t0 and (ii) a(x, t) is a nonanticipating function of

t for any fixed x. Condition (i) is tantamount to the requirement that any

random initial condition must be nonanticipating.

27Stochastic integration requires the definition of a reference point. The definition by

Itō choosing the reference point at the beginning of the interval is frequently used in the

theory of stochastic processes, because it facilitates integration of stochastic differential

equations, but Itō calculus is different from conventional calculus. An alternative definition

due to the Russian physicist and engineer Ruslan Leontevich Stratonovich [277] and the

American mathematician Donald LeRoy Fisk [94] puts the reference point in the middle

of the interval and retains thereby the conventional integration formulas, suffers, however,

from being more sophisticated.
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Figure 8.19: The Ornstein-Uhlenbeck process. Trajectories are simulated

according to Xi+1 = Xi e
−k ϑ + µ(1 − e−k ϑ) + σ

√

1−e−2k ϑ

2k (R0,1 − 0.5), where

R0,1 is a random number drawn by a random number generator from the uniform

distribution on the interval [0, 1]. The figures shows several trajectories differing

only in the choice of seed for Mersenne Twister as random number generator,. The

black curve represents the expectation value E
(

X (t)
)

and the area highlighted in

grey is the confidence interval E±σ. Choice of parameters: X (0) = 3, µ = 1, k = 1,

σ = 0.25, ϑ = 0.002 or total time tf = 10. Seeds: 491 (yellow), 919 (blue), 023

(green), 877 (red), and 733 (violet). For the simulation of the Ornstein-Uhlenbeck

model see [116, 290].

Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process is named after

two Dutch physicists Leonard Ornstein and George Uhlenbeck [288] and rep-

resents presumably the simplest stochastic process that approaches a station-

ary state with a defined variance.28 The Ornstein-Uhlenbeck process found

application also in economics for modeling irregular behavior of financial

markets [291]. In essence, the Ornstein-Uhlenbeck process describes expo-

nential relaxation to stationary state or equilibrium superimposed by Brown-

ian motion. Fig. 8.19 presents several trajectories of the Ornstein-Uhlenbeck

process, which show nicely the drift and the diffusion component of the in-

28The variance of the random walk and the Wiener process diverged in the infinite time

limit, limt→∞ var
(

W(t)
)

=∞.
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Figure 8.20: The probability density of the Ornstein-Uhlenbeck process.

Starting from the initial condition p (x, t0) = δ(x − x0) (black) the probability

density (8.66) broadens and migrates until it reaches the stationary distribution

(yellow). The lower plot presents an illustration in 3D. Choice of parameters:

x0 = 3, µ = 1, k = 1, and σ = 0.25. Times: t = 0 (black), 0.12 (orange), 0.33

(violet), 0.67 (green), 1.5 (blue), and 8 (yellow).



Evolutionary Dynamics 263

dividual runs.

The Fokker-Planck equation of the Ornstein-Uhlenbeck process for the

probability density p (x, t) = p (x, t| x0, 0) is of the form

∂p (x, t)

∂t
= k

∂

∂x

(

(x− µ) p (x, t)
)

+
σ2

2

∂2p (x, t)

∂x2
, (8.65)

with k is the rate parameter of the exponential decay, µ the expectation

value of the random variable in the long time limit, µ = limt→∞E
(

X (t)
)

,

and σ2/(2k) being the long time variance. Applying the initial condition

p (x, 0) = p (x, 0| x0, 0) = δ(x − x0) the probability density can be obtained

by standard techniques

p (x, t) =

√

k

πσ2 (1− e−2k t)
exp

(

− k

σ2

(x− µ− (x0 − µ)e−kt)2

1− e−2kt

)

. (8.66)

This expression can be easily checked by performing the two limits t → 0

and t → ∞. The first limit has to yield the initial conditions and indeed

recalling a common definition of the Dirac delta-function

δα(x) = lim
α→0

1

α
√
π
e−x

2/α2

, (8.67)

and inserting α2 = σ2(1− e−2kt)/k leads to

lim
t→0

p (x, t) = δ(x− x0) .

The long time limit of the probability density is calculated straightforwardly:

lim
t→∞

p (x, t) =

√

k

πσ2
e−k (x−µ)2/σ2

,

which is a normal density with expectation value µ and variance σ2/(2k).

The evolution of probability density p (x, t) from the δ-function at t = 0 to

the stationary density limt→∞ p (x, t) is shown in Fig. 8.20.

The Ornstein-Uhlenbeck process can be modeled efficiently by a stochas-

tic differential equation

dx(t) = k
(

µ− x(t)
)

dt + σ dW (t) . (8.68)
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Figure 8.21: A jump process. The stochastic variable X (t) in a jump process

J (t) is defined only for discrete values, integers, for example, representing particle

numbers. The step size or height of jumps may be variable in general but in

the chemical master equation (see section 9.1) it will be restricted to ±1 and ±2
depending on the reaction mechanism. In the pure jump process no continuous

changes of stochastic variables are allowed.

The SDE can be used for simulating individual trajectories [116, 290] by

means of the following equation

Xi+1 = Xi e
−k ϑ + µ(1− e−k ϑ) + σ

√

1− e−2k ϑ

2k
(R0,1 − 0.5) ,

where ϑ = ∆t/nst is the number of steps per time interval ∆t. The probability

density can be derived, for example, from a sufficiently large ensemble of

simulated trajectories.

Jump process. In a jump process only the last term in the differential

Chapman-Kolmogorov Equ. (8.53c) contributes, since we have A(z, t) = 0

and B(z, t) = 0. The resulting equation is known as master equation:

∂

∂t
p(z, t|y, t′) =

∫

dx
(

W (z|x, t) p(x, t|y, t′) − W (x|z, t) p(z, t|y, t′)
)

. (8.69)
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In order to illustrate the general process described by the master equation

(8.69) we consider the evolution in a short time interval. For this goal we solve

approximately to first order in ∆t and use the initial condition p (z, t| y, t) =
δ(y− z) representing a sharp probability density at t = 0:29

p(z, t+∆t|y, t) = p(z, t|y, t) + ∂

∂t
p(z, t|y, t)∆t + . . . ≈

≈ p(z, t|y, t) + ∂

∂t
p(z, t|y, t)∆t =

= δ(y− z) +

(

W (z|y, t)−
∫

dxW (x|y, t) δ(y− z)

)

∆t =

=

(

1−
∫

dxW (x|y, t)∆t
)

δ(y− z) + W (z|y, t)∆t .

In the first term, the coefficient of δ(y− z) is the (finite) probability for the

particle to stay in the original position y, whereas the distribution of particles

that have jumped is given after normalization by W (z | y, t). A typical path

~X (t) thus will consist of constant sections, ~X (t) = const, and discontinuous

jumps which are distributed according to W (z | y, t) (Fig. 8.21). It is worth

noticing that a pure jump process does occur here even though the variable

~X (t) can take on a continuous range of values.

In a special case of the master equations, which nevertheless is funda-

mental for modeling processes in chemistry and biology, the sample space is

mapped onto the space of integers, Ω → Z = {..,−2,−1, 0, 1, 2, ..}. Then,

we can use conditional probabilities rather than probability densities in the

master equation:

∂P (n, t|n′, t′)
∂t

=
∑

m

(

W (n|m, t)P (m, t|n′, t′)−W (m|n, t)P (n, t|n′, t′)
)

. (8.69’)

Clearly, this process is confined to jumps since only discrete values of the

random variable ~N (t) are allowed. The master equation on the even more

restricted sample space Ω→ N0 = {0, 1, 2, . . .} is of particular importance in

chemical kinetics. The random variable N (t) then counts particle numbers

which are necessarily non-negative integers. Furthermore, conservation of

29We recall a basic property of the delta-function:
∫

f(x)δ(x − y) dx = f(y).
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mass introduces an upper bound, for the random variable, N ≤ N , and

restricting reaction kinetics to elementary step limits the changes in particle

numbers to ∆N = 0,±1, and ±2.
Noting initial conditions separate from the differential equation, recalling

that time t is the only continuous variable when diffusion and other spatial

phenomena are not considered, and introducing the physical limitations on

particle numbers we obtain eventually

dPn(t)

dt
=

n+2
∑

m=n−2

(

W (n|m, t)Pm(t − W (m|n, t)Pn(t)
)

(8.70)

The transition probabilities are assumed to be time-dependent here and this

is commonly not the case in chemistry and here we shall assume time inde-

pendence in general. The transition probabilities W (n|m) are understood as

the elements of a transition matrix

W
.
= {Wnm;n,m ∈ N

0} (8.71)

Diagonal elements Wnn cancel in the master Equ. (8.70) and hence need not

be defined. According to their nature as transition probabilities, allWnm with

n 6= m have to be nonnegative. Two definitions of the diagonal elements are

common (i) normalization

Wnn = 1 −
∑

m6=n

Wmn with
∑

m

Wmn = 1

as used for example in the mutation selection problem (4.9), or (ii) we may

define
∑

mWmn = 0 which implies Wnn = −∑m6=nWmn and then insertion

into (8.70) leads to a compact form of the master equation

dPn(t)

dt
=
∑

m

WnmPm(t) . (8.70’)

In subsection 9.1.1 we shall discuss specific examples of chemical master

equations and methods to drive analytical solutions. Here, we illustrate by

means of a simple example that became a standard problem in stochasticity:
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Figure 8.22: Probability distribution of the random walk. The figure

presents the conditional probabilities P (n, t|0, 0) of a random walker to be in posi-

tion n ∈ Z at time t for the initial condition to be at n = 0 at time t = t0 = 0. The

n-values of the individual curves are: n = 0 (black), n = 1 (blue), n = 2 (purple),

and n = 3 (red). Parameter choice: ϑ = 1, l = 1.

Random walk in one dimension. The random walk in one dimension ex-

pressed by the random variable R(t) describes the movement along a straight

line by taking steps with equal probability to the left or to the right. The

length of the steps is l and the position of the walker is recorded as a function

of time (see Fig. 8.14, where the random walk has been used as illustration

for a martingale). The process is discrete in space – the positions that can

be reached are integer multiples of the elementary length l: R(t) = n l with

n being an integer, n ∈ Z and continuous in time t. The first problem we

want to solve is the calculation of the probability that the walk reaches the

point at distance n l at time t when it started at the origin at time t0 = 0.

For this goal we cast the random walk in a master equation and search for

an analytical solution.

In the master equation we have the following transition probabilities per
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unit time provided the time step δt has been chosen sufficiently small, such

that only single steps are occurring:

W (n+1|n, t) = W (n−1|n, t) = ϑ , W (m|n, t) = 0 ∀ m 6= {n+1, n−1} . (8.72)

The master equation describing the probability of the walk being in position

n l at time t when it started at n′ l at time t′ is

∂P (n, t|n′, t′)
∂t

= ϑ
(

P (n+1, t|n′, t′) + P (n−1, t|n′, t′) − 2P (n, t|n′, t′)
)

. (8.73)

In order to solve the master equation we introduce the time dependent char-

acteristic function:

φ(s, t) = E(eı
.
ıs n(t)) =

∑

n

P (n, t|n′, t′) exp(ı.ıs n) . (8.74)

Combining (8.73) and (8.74) yields

∂φ(s, t)

∂t
= ϑ

(

eı
.
ıs + e−ı

.
ıs
)

φ(s, t) ,

and the solution for the initial condition n′ = 0 at t′ = 0 takes on the form

φ(s, t) = φ(s, 0) exp
(

ϑ t (eı
.
ıs + e−ı

.
ıs − 2)

)

= exp
(

ϑ t (eı
.
ıs + e−ı

.
ıs − 2)

)

.

Comparison of coefficients for the individual powers of eı
.
ıs yields the individ-

ual conditional probabilities:

P (n, t|0, 0) = In(4ϑt) e
−2ϑt , n ∈ Z or

Pn(t) = In(4ϑt) e
−2ϑt , n ∈ Z for Pn(0) = δ(n) . (8.75)

where the pre-exponential term is written in terms of modified Bessel func-

tions Ik(θ) with θ = 4ϑt, which are defined by

Ik(θ) =

∞
∑

j=0

(θ/4)2j+k

j!(j + k)!
. (8.76)

It is straightforward to calculate first and second moments from the charac-

teristic function φ(s, t):

E
(

R(t)
)

= n0 and σ2
(

R(t)
)

= 2ϑ (t− t0) . (8.77)
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The expectation value is constant and coincides with the starting point of

the random walk and the variance increases linearly with time. In Fig. 8.14

we showed individual trajectories of the random walk together with the ex-

pectation value and the ±σ confidence interval. In Fig. 8.22 we illustrate the

probabilities Pn(t) by means of a concrete example. The probability distri-

bution is symmetric for a symmetric initial condition Pn(0) = δ(n) and hence

Pn(t) = P−n(t). For long times the probability density P (n, t) becomes flatter

and flatter and eventually converges to the uniform distribution over the en-

tire spatial domain. In case n ∈ Z all probabilities vanish: limt→∞ Pn(t) = 0

for all n.

It is straightforward to consider the continuous time random walk in the

limit of continuous space. This is achieved by setting the distance traveled

to x = n l and performing the limit l → 0. For that purpose we can start

from the characteristic function of the distribution in x,

φ(s, t) = E
(

eı
.
ısx
)

= φ(ls, t) = exp
(

ϑ (eı
.
ıls + e−ı

.
ıls − 2)

)

,

and take the limit of infinitesimally small steps, lim l → 0:

lim
l→0

exp
(

ϑ t (eı
.
ıls + e−ı

.
ıls − 2) t

)

=

= lim
l→0

exp
(

ϑ t (−l2s2 + . . .)
)

= exp(−s2Dt/2) ,

where we used the definition D = 2 liml→0(l
2ϑ). Since this is the character-

istic function of the normal distribution we obtain for the density (8.30):

p (x, t| 0, 0) =
1√
2πDt

exp
(

−x2/2Dt
)

. (8.30’)

We could also have proceeded directly from equation (8.73) and expanded

the right-hand side as a function of x up to second order in ℓ which gives

∂p (x, t| 0, 0)
∂t

=
D

2

∂2

∂x2
p (x, t| 0, 0) , (8.78)

where D stands again for 2 liml→0(l
2ϑ). This equation is readily recognized

as the special Fokker-Planck equation for the diffusion problem, which was

be considered in detail in the paragraph on the Wiener process.
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8.2.3 Lévy processes

A class of stochastic processes is named after the French mathematician Paul

Lévy, which are derived from the differential Chapman-Kolmogorov equation

(8.53) by making the assumption of homogeneity in time and probability

space. In other words the functions in (8.53) are assumed to be constants.

For one dimension we find:

A(x, t) =⇒ a , (8.79a)

B(x, t) =⇒ 1

2
σ2 , and (8.79b)

W (z| x, t) =⇒ w(z − x) . (8.79c)

With these assumptions equations (8.53) becomes30

∂p(z, t)

∂t
= − a

∂p(z, t)

∂z
+

1

2
σ2 ∂

2p(z, t)

∂z2
+

+ —

∫

duw(u)
(

p(z − u, t)− p(z, t)
)

,

(8.80)

where –
∫

du denotes the principal value of the integral in the complex plane.

The characteristic function of a Lévy process can be obtained in explicit

form:

φ(s, t) =

∫ +∞

−∞
dz eı

.
ısz p (z, t) ,

which combined with (8.80) yields

∂φ(s, t)

∂t
=
(

ı
.
ı a s − 1

2
σ2 s2 + —

∫ +∞

−∞
du
(

eı
.
ısu − 1

)

w(u)
)

φ(s, t) .

Eventually, the characteristic function for the initial condition p (z, 0) = δ(0)

or Z(0) = 0 takes on the form

φ(s, t) =

∫ +∞

−∞
dz eı

.
ısz p (z| 0, t) =

= exp

(

(

ı
.
ı a s − 1

2
σ2 s2—

∫ +∞

−∞
du
(

eı
.
ısu − 1

)

w(u)
)

t

)

,

(8.81)

30The notation p(z, t) is used as a short version of p(z| y, t).
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which turns out to be quite useful for analyzing special cases.

Lévy processes are or interest because several fundamental processes like

the Wiener process and the Poisson process belong to this class. They re-

ceived plenty of attention outside science and became really important in

financial applications like modeling the financial markets, in particular the

stock exchange market [107, pp.235-263].

Closing this section on stochastic processes we recall that three different

behaviors in the limit of vanishing time intervals resulted from the differen-

tial form of the Chapman-Kolmogorov equation and refer to three classes of

processes characterized as (i) drift processes, (ii) diffusion processes , and

(iii) jump processes. The jump process will turn to be most relevant for

our intentions here because it is the basis of the chemical master equation

(section 9.1) and it provides the most straightforward access to handling

stochasticity in biology. The Fokker-Planck equation will be encountered

again in the discussion of Motoo Kimura’s neutral theory of evolution.
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9. Stochasticity in chemical reactions

Conventional chemical kinetics as said before does not require rigorous

stochastic description, because fluctuations are extremely small and ample

is fluctuation spectroscopy, which aims at direct recordings of fluctuations

[315, 321]. In particular, very accurate measurements of fluorescence corre-

lation signals have been successful [63, 69, 190, 240]. The breakthrough was

achieved here through the usage of high-performance lasers. Direct experi-

mental observations of individual processes are now accessible by means of

single molecule techniques. The best studied examples are, for example,

the experimental recording of single trajectories of biopolymer folding and

unfolding (see, for example, [121, 148, 163, 323]).

The role of fluctuations is especially interesting in situations where fluc-

tuations can be amplified by reaction dynamics. Such situations occur with

reaction mechanisms involving nonlinear terms and giving rise to highly sen-

sitive oscillations and deterministic chaos. Other examples are pattern for-

mation in space and time, Turing patterns, migrating spirals, and spatiotem-

poral chaos. Here, we focus on modeling stochastic chemical phenomena by

means of master equations, which have the advantage to be accessible to

numerical computation. Master equations applied in chemical kinetics are

discussed first, we pay particular attention to the Poisson process that is

essential for the analysis of probability distributions of independent events,

next we discuss master equations derived from birth-and-death processes,

then we review exactly solvable cases of elementary steps in chemical kinet-

ics, and eventually we present and discuss an efficient numerical method for

the calculation of stochastic trajectories of chemical reaction networks.

273
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9.1 Master equations in chemistry

Chemical reactions are defined by mechanisms, which can be decomposed

into elementary processes. An elementary process describes the transforma-

tion of one or two molecules into products. Elementary processes involving

three or more molecules are unlikely to happen in the vapor phase or in

dilute solutions, because trimolecular encounters are very rare under these

conditions. Therefore, elementary steps of three molecules are not consid-

ered in conventional chemical kinetics.1 Two additional events which occur

in open systems, for example in flow reactors, are the creation of a molecules

through influx or the annihilation of a molecule through outflux. Common

elementary steps are:

⋆ −−−→ A (9.1a)

A −−−→ ⊘ (9.1b)

A −−−→ B (9.1c)

A −−−→ 2B (9.1d)

A −−−→ B + C (9.1e)

A + B −−−→ C (9.1f)

A + B −−−→ 2A (9.1g)

A + B −−−→ C + B (9.1h)

A + B −−−→ C + D (9.1i)

2A −−−→ B (9.1j)

2A −−−→ 2B (9.1k)

2A −−−→ B + C (9.1l)

Depending on the number of reacting molecules the elementary processes

are called mono-, bi -, or trimolecular. Tri- and higher molecular elementary

1Exceptions are reactions involving surfaces as third partner, which are important in

gas phase kinetics, and biochemical reactions involving macromolecules.
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steps are excluded in conventional chemical reaction kinetics as said above.

The example show in Equ. (9.1g) is a simple autocatalytic elementary

process. In practice autocatalytic chemical reactions commonly involve many

elementary steps and thus are the results of complex reaction mechanisms. In

evolution reproduction and replication are obligatory autocatalytic processes,

which involve a complex molecular machinery. In order to study the basic

features of autocatalysis or chemical self-enhancement and self-organization,

single step autocatalysis is often used as in model systems. One particular

trimolecular autocatalytic process invented by Ilya Prigogine and Gregoire

Nicolis

2A + B −−−→ 3A , (9.2)

became very famous [223] despite its trimolecular nature, which makes it un-

likely to occur in real systems. The elementary step (9.2) is the essential step

in the so-called Brusselator model that can be analyzed straightforwardly by

rigorous mathematical techniques. The Brusselator model gives rise to com-

plex dynamical phenomena in space and time, which are rarely observed

in standard chemical reaction systems. Among other features such special

phenomena are: (i) multiple stationary states, (ii) chemical hysteresis, (iii)

oscillations in concentrations, (iv) deterministic chaos, and (v) spontaneous

formation of spatial structures. The last example is known as Turing insta-

bility named after the English computer scientist Alan Turing [287] and is

frequently used as a model for certain classes of pattern formation in biology

[204]. The original concept Turing’s was based on a reaction-diffusion equa-

tion and aimed at a universal model of morphogenesis in development. It

has been worked out later in great detail by Alfred Gierer, Hans Meinhardt

and others [110, 205]. Molecular genetics, however, has shown that nature is

using direct genetic control through cascades of gene regulation rather than

self-organized reaction-diffusion patterns [111, 192].

9.1.1 Chemical master equations

Provided particle numbers are used as variables to model the progress of

chemical reactions, stochastic variables N (t) are described by the probabil-
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ities Pn(t) = Prob (N (t) = n) and take only nonnegative integer values,

n ∈ N
0. As mentioned already in the previous subsection 8.2.2 we introduce

a few simplifications and conventions in th notation: (i) We shall use the

forward equation unless stated differently, (ii) we assume an infinitely sharp

initial density, P (n, 0|n0, 0) = δn,n0 with n0 = n(0), and (iii) we simplify the

full notation P (n, t|n0, 0) ⇒ Pn(t) with the implicit assumption of the sharp

initial condition (ii). Handling extended probability densities as initial con-

ditions will be discussed explicitly. The expectation value of the stochastic

variable N (t) is denoted by

E
(

N (t)
)

= 〈n(t)〉 =
∞
∑

n=0

n · Pn(t) , (9.3)

and its stationary value, provided it exists, will be written

n̄ = lim
t→∞
〈n(t)〉 . (9.4)

Almost always n̄ will be identical with the long time value of the correspond-

ing deterministic variable. The running index of integers will be denoted

by either m or n′. Then the chemical master equation is of the previously

presented form

dPn(t)

dt
=
∑

m

(

W (n|m)Pm(t) − W (m|n)Pn(t)
)

=
∑

m

WnmPm(t) , (8.70)

where the compact form requires the definition
∑

mWmn = 0 and accordingly

Wnn = −∑m6=nWmn.

Introducing vector notation, P(t) = (P1(t), . . . , Pn(t), . . .), we obtain

∂P(t)

∂t
= W ×P(t) . (8.70”)

With the initial condition Pn(0) = δn,n0 we can formally solve Equ. (8.70”)

for each n0 and obtain

P (n, t|n0, 0) =
(

exp(W t)
)

n,n0
,

where the element (n, n0) of the matrix exp(Wt) is the probability to have

n particles at time t, N (t) = n, when there were n0 particles at time t0 = 0.
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The evaluation of this equation boils down to diagonalize the matrix W which

can be done analytically in rather few cases only.

The chemical master equation has been shown to be based on a rigor-

ous microscopic concept of chemical reactions in the vapor phase within the

frame of classical collision theory [115]. The two general requirements that

have to be fulfilled are: (i) a homogeneous mixture as it is assumed to exits

through well stirring and (ii) thermal equilibrium implying that the veloci-

ties of molecules follow a Maxwell-Boltzmann distribution. Daniel Gillespie’s

approach focusses on chemical reactions rather than molecular species and

is well suited to handle reaction networks. In addition he developed an algo-

rithm that allows for the computation of trajectories, converges for statistics

of trajectories to the exact solution and can be easily implemented for com-

puter simulation. We shall discuss the Gillespie formalism together with the

computer program in section 9.3. Here we present analytical solutions of

master equations by means of a few selected examples (subsection 9.2).

9.1.2 The Poisson process

A Poisson process is a stochastic process that counts the number of events of

a certain class by means of a stochastic variable X (t) and the times at which

these events occur. Examples of Poisson processes is the radioactive decay,

the arrival of telephone calls, and other discrete events they can be assumed

to occur independently. A homogeneous Poisson process is characterized by

its rate parameter λ that represents the expected number of arrivals or events

per unit time.2 The probability density of the random variable of a Poisson

process expressed as the number of events in the time interval ]t, t+ τ ], k, is

given by a Poisson distribution with the parameter λτ :

P
(

(

X (t+ τ)− X (t)
)

= k
)

=
e−λτ (λτ)k

k!
with k ∈ N

0 . (9.5)

The Poisson process can be understood as the simplest example of a Lévy

process with a = σ = 0, and w(u) = λ δ(u − 1) or as a pure-birth process

2In the non-homogeneous Poisson process the rate function depends on time λ(t) and

the expected number of events in the time interval between a and b is λa,b =
∫ b

a
λ(t) dt.
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X
(
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Figure 9.1: The Poisson process. The random variable X (t) of a Poisson

process describes consecutive times of occurrence for a series of independent events.

The step size of change ∆X = +1 since multiple occurrence of events at the same

instant is excluded. The three trajectories in the figure were obtained by drawing

exponentially distributed random real numbers. The expectation value (black) is

E(X (t) = λt and the confidence interval E ± σ with σ =
√
λt is the grey shaded

zone. Choice of parameters: λ = 3. Random seeds (“Mersenne Twister”): 491

(yellow), 733 (blue), and 919 (green).

– this is a birth-and-death process with birth rate λ and zero death rate

(subsection 9.1.3). Sometimes the condition of a normalizable function w(u)

is stressed by calling the process a compound Poisson process because it fulfils
∫ +∞
−∞ w(u) du ≡ λ < ∞. The quantity λ is also called the intensity of the

process, and it is equal to the inverse mean time between two events.

Because of its general importance we present a precise definition of the

Poisson process as a family of random variables X (t) with t being a contin-

uous variable over the domain [0,∞[ with a parameter λ iff it satisfies the

following conditions [36, pp.199-210]

(i) X (0) = 0,

(ii) the increments X (ti+τi)−X (τi) over an arbitrary set of disjoint intervals
(ti, ti + τi) are independent random variables,
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Figure 9.2: Sketch of the transition probabilities in master equations. In

the general jump process steps of any size are admitted (upper drawing) whereas

in birth-and-death processes all jumps have the same size. The simplest and most

common case is dealing with the condition that the particles are born and die one

at a time (lower drawing).

(iii) the general increment X (t + τ)− X (τ) is distributed according to the
Poisson density Pois(λt) for each pair (t ≥ 0, τ ≥ 0).

The Poisson process is an excellent model for chemical reactions in a given

reaction volume. If we choose the occurrence of reactive collision as event,

the individual collisions – no matter whether taking place in the vapor phase

or in solution – are to a very good approximation independent events, and

the prerequisites for a Poisson process are fulfilled.

9.1.3 Birth-and-death processes

The concept of birth-and-death processes has been created in biology and is

based on the assumption that only a finite number of individuals are produced

– born – or destroyed – die – in a single event. The simplest and the only case,

we shall discuss here, is occurs when birth and death is confined to single
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individuals of only one species. These processes are commonly denoted as

one step birth-and-death processes.3 In Fig. 9.2 the transitions in a general

jump process and a birth-and-death process are illustrated. Restriction to

single events is tantamount to the choice of a sufficiently small time interval

of recording, ∆t, such that the simultaneous occurrence of two events has

a probability of measure zero (see also section 9.3). This small time step is

often called the blind interval, because no information on things happening

within ∆t is available.

Then, the transition probabilities can be written in the form

W (n|m, t) = w+(m) δn,m+1 + w−(m) δn,m−1 , (9.6)

since we are dealing with only two allowed processes:

n −→n+ 1 with w+(n) as transition probability per unit time and

n −→n− 1 with w−(n) as transition probability per unit time.

Modeling of chemical reactions by birth-and-death processes turns out to

be a very useful approach for reaction mechanisms that can be described

by changes in a single variable. Another special case of a birth-and-death

process is the Poisson process on n ∈ N0: It has zero death rate and describes

the occurrence of independent events (see also the Poisson distribution in

subsection 8.1.3 and the Poisson process in subsection 9.1.2). We shall make

use of the Poisson process in describing the occurrence of chemical reaction

in subsection 9.3.

The stochastic process can now be described by a birth-and-death master

equation

dPn(t)

dt
= w+(n− 1)Pn−1(t) + w−(n+ 1)Pn+1(t)−

−
(

(w+(n) + w−(n)
)

Pn(t) .

(9.7)

3In addition, one commonly distinguishes between birth-and-death processes in one

variable and in many variables [107]. We shall restrict the analysis here to the simpler

single variable case here.
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There is no general technique that allows to find the time-dependent solutions

of equation (9.7) and therefore we shall present some special cases later on.

Only few single step birth-and-death processes can be solved analytically.

The stationary case, however, can be analyzed in full generality. Provided

a stationary solution of equation (9.7) exists, limt→∞ Pn(t) = P̄n, we can

compute it in straightforward manner. It is useful to define a probability

current J(n) for the n-th step in the series,

Particle number 0 ⇋ 1 ⇋ . . . ⇋ n− 1 ⇋ n ⇋ n+ 1 . . .

Reaction step 1 2 . . . n− 1 n n+ 1 . . .

which is of the form

J(n) = w− n P̄ (n) − w+ (n− 1) P̄ (n− 1) . (9.8)

The conditions for the stationary solution are given by vanishing time deriva-

tives of the probabilities

dPn(t)

dt
= 0 = J(n+ 1) − J(n) . (9.9)

Restriction to positive particle numbers, n ∈ N0, implies w−(0) = 0 and

Pn(t) = 0 for n < 0, which in turn leads to J(0) = 0. Now we sum the

vanishing flow terms according to equation (9.9) and obtain:

0 =

n−1
∑

z=0

(

J(z + 1) − J(z)
)

= J(n) − J(0) .

Accordingly we find J(n) = 0 for arbitrary n, which leads to

P̄n =
w+(n− 1)

w−(n)
P̄n−1 and finally P̄n = P̄0

n
∏

z=1

w+(z − 1)

w−(z)
.

The condition J(n) = 0 for every reaction step is known in chemical kinetics

as the principle of detailed balance: At equilibrium the reaction flow has

to vanish for every reaction step. The principle of detailed balance was

formulated first by the American mathematical physicist Richard Tolman

[286] (see also [107, pp.142-158]).
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The macroscopic rate equations are readily derived from the master equa-

tion through calculation of the expectation value:

d

dt
E
(

n(t)
)

=
d

dt

( ∞
∑

n=0

nPn(t)

)

=

=
∞
∑

n=0

n
(

w+(n− 1)Pn−1(t) − w+(n)Pn(t)
)

+

+
∞
∑

n=0

n
(

w−(n + 1)Pn+1(t) − w−(n)Pn(t)
)

=

=

∞
∑

n=0

(

(n+ 1)w+(n) − nw+(n) + (n− 1)w−(n) − nw−(n)
)

Pn(t) =

=

∞
∑

n=0

w+(n)P n(t) −
∞
∑

n=0

w−(n)Pn(t) = E
(

w+(n)
)

− E
(

w−(n)
)

.

Neglect of fluctuations yields the deterministic rate equation of the birth-

and-death process

d〈n〉
dt

= w+
(

〈n〉
)

− w−
(

〈n〉
)

. (9.10)

The condition of stationary yields: n̄ = limt→∞ 〈n(t)〉 forwhich holdsw+(n̄) =

w−(n̄). Compared to this results we note that the maximum value of the

stationary probability density, max{P̄n, n ∈ N0}, is defined by P̄n+1 − P̄n ≈
−(P̄n − P̄n−1) or P̄n+1 ≈ P̄n−1, which coincides with the deterministic value

for large n.

9.2 Examples of solvable master equations

Although only a small minority of master equations in chemical reaction ki-

netics can be solved analytically, these cases provide the best insight into the

role of stochasticity in chemical reactions, and they reflect well the repertoire

of methodological tricks that are applied in modeling of stochastic processes

in chemistry and biology. Here we shall solve the equilibration of the flow

in the flow reactor, examples of unimolecular reactions, and one solvable

bimolecular reaction.
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The flow reactor. In section 4.2 the flow reactor has been introduced as a de-

vice for the experimental and theoretical analysis of systems under controlled

conditions away from thermodynamic equilibrium (Fig. 4.3). Here we shall

use it for analyzing the simplest conceivable process, the non-reactive flow

of a single compound, A, through the reactor. The stock solution contains

A at the concentration [A]influx = â = ā. The influx concentration â is

equal to the stationary concentration ā, because no reaction is assumed and

after sufficiently long time the content of the reactor will be stock solution.

The intensity of the flow is measured by means of the flow rate r and this

implies an influx of â · r of A into the reactor, instantaneous mixing with the

content of the reactor, and an outflux of the mixture in the reactor at the

same flow rate r.4 If the volume of the reactor is V , the mean residence time

of a volume element dV in the reactor is τR = V · r−1.
In- and outflux of compound A into and from the reactor are modeled by

two formal elementary steps or pseudo-reactions

⋆ −−−→ A

A −−−→ ⊘ .
(9.11)

In chemical kinetics the differential equations are almost always formulated in

molecular concentrations. For the stochastic treatment, however, we replace

concentrations by the numbers of particles, n̄ = ā · V ·NL with n ∈ N0 and

NL being Loschmidt’s or Avogadro’s number,5 the number of particles per

mole.

The particle number of A in the reactor is a stochastic variable with the

probability Pn(t) = P
(

N (t) = n
)

. The time derivative of the probability

4The assumption of equal influx and outflux rate is required because we are dealing

with a flow reactor of constant volume V (CSTR, Fig. 4.3).
5As a matter of fact there is a difference between Loschmidt’s and Avogadro’s number

that is often ignored in the literature: Avogadro’s number, NL = 6.02214179×1023mole−1

refers to one mole substance whereas Loschmidt’s constant n0 = 2.6867774 × 1025m−3

counts the number of particles in one liter gas under normal conditions. The conver-

sion factor between both constants is the molar volume of an ideal gas that amounts to

22.414 dm−3 ·mole−1.
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distribution is described by means of the master equation

dPn(t)

dt
= r

(

n̄ Pn−1(t) + (n+1)Pn+1(t) − (n̄+n)Pn(t)
)

; n ∈ N0 . (9.12)

Here we have implicitly assumed Equ. (9.12) describes a birth-and-death pro-

cess with w+(n) = rn̄ and w−(n) = rn. Thus we have a constant birth rate

and a death rate which is proportional to n. see next subsection 9.1.3

Solutions of the master equation can be found in text books listing stochas-

tic processes with known solutions, for example [118]. Here we shall derive

the solution by means of probability generating functions in order to illustrate

this particularly powerful approach. The probability generating function of

a nonnegative valued random variable is defined by

g(s, t) =

∞
∑

n=0

Pn(t) s
n . (9.13)

In general the auxiliary variable s is real valued, s ∈ R1, although generating

functions with complex s can be of advantage. Sometimes the initial state is

included in the notation: gn0(s, t) implies Pn(0) = δn,n0. Partial derivatives

with respect to time t and the variable s are readily computed:

∂g(s, t)

∂t
=

∞
∑

n=0

∂Pn(t)

∂t
· sn =

= r

∞
∑

n=0

(

n̄ Pn−1(t) + (n+ 1)Pn+1(t) − (n̄+ n)Pn(t)
)

sn and

∂g(s, t)

∂s
=

∞
∑

n=0

nPn(t) s
n−1 .

Proper collection of terms and arrangement of summations – by taking into

account: w−(0) = 0 – yields

∂g(s, t)

∂t
= rn̄

∞
∑

n=0

(

Pn−1(t) − Pn(t)
)

sn + r
∞
∑

n=0

(

(n+ 1)Pn+1(t) − nPn(t)
)

sn .
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Evaluation of the four infinite sums
∑∞

n=0
Pn−1(t) s

n = s
∑∞

n=0
Pn−1(t) s

n−1 = s g(s, t) ,

∑∞

n=0
Pn(t) s

n = g(s, t) ,

∑∞

n=0
(n+ 1)Pn+1(t) s

n =
∂g(s, t)

∂t
, and

∑∞

n=0
nPn(t) s

n = s
∑∞

n=0
nPn(t) s

n−1 = s
∂g(s, t)

∂t
,

and regrouping of terms yields a linear partial differential equation of first

order
∂g(s, t)

∂t
= r

(

n̄(s− 1) g(s, t) − (s− 1)
∂g(s, t)

∂s

)

. (9.14)

The partial differential equation (PDE) is solved through consecutive sub-

stitutions

φ(s, t) = g(s, t) exp(−n̄ s) −→ ∂φ(s, t)

∂t
= −r(s− 1)

∂φ(s, t)

∂s
,

s− 1 = eρ and ψ(ρ, t) = φ(s, t) −→ ∂ψ(ρ, t)

∂t
+ r

∂ψ(ρ, t)

∂ρ
.

Computation of the characteristic manifold is equivalent to solving the

ordinary differential equation (ODE) r dt = −dρ. We find: rt − ρ = C

where C is the integration constant. The general solution of the PDE is an

arbitrary function of the combined variable rt− ρ:

ψ(ρ, t) = f
(

exp(−rt + ρ)
)

· e−n̄ and φ(s, t) = f
(

(s− 1) e−rt
)

· e−n̄ ,

and the probability generating function

g(s, t) = f
(

(s− 1) e−rt)
)

· exp
(

(s− 1)n̄
)

.

Normalization of probabilities (for s = 1) requires g(1, t) = 1 and hence

f(0) = 1. The initial conditions as expressed by the conditional probability

P (n, 0|n0, 0) = Pn(0) = δn,n0 leads to the final expression

g(s, 0) = f(s− 1) · exp
(

(s− 1)n̄
)

= sn0 ,

f(ζ) = (ζ + 1)n0 · exp(−ζn̄) with ζ = (s − 1) e−rt ,

g(s, t) =
(

1 + (s− 1) e−rt
)n0 · exp

(

−n̄(s− 1) e−rt
)

· exp
(

n̄(s − 1)
)

=

=
(

1 + (s− 1) e−rt
)n0 · exp

{

−n̄(s− 1) (1 − e−rt)
}

.

(9.15)
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From the generating function we compute with somewhat tedious but straight-

forward algebra the probability distribution

Pn(t) =

min{n0,n}
∑

k=0

(

n0

k

)

n̄n−k · e
−krt (1− e−rt

)n0+n−2k

(n− k)!
· e−n̄ (1−e−rt) (9.16)

with n, n0, n̄ ∈ N0. In the limit t → ∞ we obtain a non-vanishing contri-

bution to the stationary probability only from the first term, k = 0, and

find

lim
t→∞

Pn(t) =
n̄n

n!
exp(−n̄) .

This is a Poissonian distribution with parameter and expectation value α =

n̄. The Poissonian distribution has also a variance which is numerically

identical with the expectation value, σ2(NA) = E(NA) = n̄, and thus the

distribution of particle numbers fulfils the
√
N -law at the stationary state.

The time dependent probability distribution allows to compute the expecta-

tion value and the variance of the particle number as a function of time

E
(

N (t)
)

= n̄ + (n0 − n̄) · e−rt ,

σ2
(

N (t)
)

=
(

n̄ + n0 · e−rt
)

·
(

1 − e−rt
)

.
(9.17)

As expected the expectation value apparently coincides with the solution

curve of the deterministic differential equation

dn

dt
= w+(n) − w−(n) = r (n̄− n) , (9.18)

which is of the form

n(t) = n̄ + (n0 − n̄) · e−rt . (9.18’)

Since we start from sharp initial densities variance and standard deviation are

zero at time t = 0. The qualitative time dependence of σ2
(

NA(t)
)

, however,

depends on the sign of (n0 − n̄):

(i) For n0 ≤ n̄ the standard deviation increases monotonously until it

reaches the value
√
n̄ in the limit t→∞, and
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Figure 9.3: Establishment of the flow equilibrium in the CSTR. The

upper part shows the evolution of the probability density, Pn(t), of the number of

molecules of a compound A which flows through a reactor of the type illustrated in

Fig. 4.3. The initially infinitely sharp density becomes broader with time until the

variance reaches its maximum and then sharpens again until it reaches stationarity.

The stationary density is a Poissonian distribution with expectation value and

variance, E(N ) = σ2(N ) = n̄. In the lower part we show the expectation value

E
(

N (t)
)

in the confidence interval E ± σ. Parameters used: n̄ = 20, n0 = 200,

and V = 1; sampling times (upper part): τ = r · t = 0 (black), 0.05 (green), 0.2

(blue), 0.5 (violet), 1 (pink), and ∞ (red).
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(ii) for n0 > n̄ the standard deviation increases until it passes through a

maximum at

t(σmax) =
1

r

(

ln 2 + lnn0 − ln(n0 − n̄)
)

and approaches the long-time value
√
n̄ from above.

In figure 9.3 we show an example for the evolution of the probability den-

sity (9.16). In addition, the figure contains a plot of the expectation value

E
(

N (t)
)

inside the band E − σ < E < E + σ. In case of a normally dis-

tributed stochastic variable we find 68.3% of all values within this confidence

interval. In the interval E − 2σ < E < E + 2σ we would find even 95.4% of

all stochastic trajectories as derived in case of the normal distribution.

The monomolecular reaction. The reversible mono- or unimolecular chemical

reaction can be split into two irreversible elementary reactions

A
k1
−−−→ B (9.19a)

A
k2

←−−− B , (9.19b)

wherein the reaction rate parameters, k1 and k2, are called reaction rate

constants. The reaction rate parameters depend on temperature, pressure,

and other environmental factors. At equilibrium the rate of the forward

reaction (9.19a) is precisely compensated by the rate of the reverse reac-

tion (9.19b), k1 ·[A] = k2 ·[B], leading to the condition for the thermodynamic

equilibrium:

K =
k1
k2

=
[B]

[A]
. (9.20)

The parameter K is called the equilibrium constant that depends on tem-

perature, pressure, and other environmental factors like the reaction rate

parameters. In an isolated or in a closed system we have a conservation law:

NA(t) + NB(t)

V ·NA

= [A] + [B] = c(t) = c0 = c̄ = constant , (9.21)

with c being the total concentration and c̄ the corresponding equilibrium

value, limt→∞ c(t) = c̄.
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Figure 9.4: Probability density of an irreversible monomolecular reac-

tion. The three plots on the previous page show the evolution of the probability

density, Pn(t), of the number of molecules of a compound A which undergo a re-

action A→B. The initially infinitely sharp density Pn(0) = δn,n0 becomes broader

with time until the variance reaches its maximum at time t = t1/2 = ln 2/k and

then sharpens again until it approaches full transformation, limt→∞ Pn(0) = δn,0.

On this page we show the expectation value E
(

NA(t)
)

and the confidence intervals

E ± σ (68,3%,red) and ±2σ (95,4%,blue) with σ2
(

NA(t)
)

being the variance. Pa-

rameters used: n0 =200, 2000, and 20 000; k = 1 [t−1]; sampling times: 0 (black),

0.01 (green), 0.1 (blue), 0.2 (violet), (0.3) (magenta), 0.5 (pink), 0.75 (red), 1

(pink), 1.5 (magenta), 2 (violet), 3 (blue), and 5 (green).

The irreversible monomolecular reaction. We start by discussing the simpler

irreversible case,

A
k

−−−→ B , (9.19a’)

which is can be modeled and analyzed in full analogy to the previous case of

the flow equilibrium. Although we are dealing with two molecular species,

A and B the process is described by a single stochastic variable, NA(t),

since we have NB(t) = n0 − NA(t) with n0 = n(0) being the number of

A molecules initially present because of the conservation relation (9.21). If

a sufficiently small time interval is applied, the irreversible monomolecular

reaction is modeled by a single step birth-and-death process with w+(n) = 0
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and w−(n) = kn.6 The probability density is defined by Pn(t) = P (NA = n)

and its time dependence obeys

∂Pn(t)

∂t
= k (n+ 1)Pn+1(t) − k nPn(t) . (9.22)

The master equation (9.22) is solved again by means of the probability gen-

erating function,

g(s, t) =

∞
∑

n=0

Pn(t) s
n ; |s| ≤ 1 ,

which is determined by the PDE

∂g(s, t)

∂t
− k (1− s) ∂g(s, t)

∂s
= 0.

The computation of the characteristic manifold of this PDE is tantamount

to solving the ODE

k dt =
ds

s− 1
=⇒ ekt = s− 1 + const .

With φ(s, t) = (s − 1) exp(−kt) + γ, g(s, t) = f(φ), the normalization con-

dition g(1, t) = 1, and the boundary condition g(s, 0) = f(φ)t=0 = sn0 we

find

g(s, t) =
(

s · e−kt + 1 − e−kt
)n0

. (9.23)

This expression is easily expanded in binomial form, which orders with re-

spect to increasing powers of s,

g(s, t) = (1− e−kt)n0+

(

n0

1

)

se−kt(1− e−kt)n0−1 +

(

n0

2

)

se−2kt(1− e−kt)n0−2+

+ . . .+

(

n0

n0 − 1

)

sn0−1e−(n0−1)kt(1− e−kt) + sn0e−n0kt .

Comparison of coefficients yields the time dependent probability density

Pn(t) =

(

n0

n

)

(

exp(−kt)
)n (

1− exp(−kt)
)n0−n

. (9.24)

6We remark that w−(0) = 0 and w+(0) = 0 are fulfilled, which are the conditions for

a natural absorbing barrier at n = 0.
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It is straightforward to compute the expectation value of the stochastic vari-

able NA, which coincides again with the deterministic solution, and its vari-

ance

E
(

NA(t)
)

= n0 e
−kt ,

σ2
(

NA(t)
)

= n0 e
−kt (1− e−kt

)

.
(9.25)

The half-life of a population of n0 particles,

t1/2 : E{NA(t)} =
n0

2
= n0 · e−ktm =⇒ t1/2 =

1

k
ln 2 ,

is time of maximum variance or standard deviation, dσ2/ dt = 0 or dσ/ dt =

0, respectively. An example of the time course of the probability density of

an irreversible monomolecular reaction is shown in Fig. 9.4.

The reversible monomolecular reaction. The analysis of the irreversible re-

action is readily extended to the reversible case (9.19), where we are again

dealing with a one step birth-and-death process in a closed system: The con-

servation relation NA(t) +NB(t) = n0 – with n0 being again the number of

molecules of class A initially present, Pn(0) = δn,n0 – holds and the transi-

tion probabilities are given by: w+(n) = k2(n0 − n) and w−(n) = k1n.
7 The

master equation is now of the form

∂Pn(t)

∂t
= k2(n0 − n + 1)Pn−1(t) + k1(n + 1)Pn+1(t)−

−
(

k1n + k2(n0 − n)
)

Pn(t) .

(9.26)

Making use of the probability generating function g(s, t) we derive the PDE

∂g(s, t)

∂t
=
(

k1 + (k2 − k1)s− k1s2
)∂g(s, t)

∂s
+ n0 k2(s− 1) g(s, t) .

The solutions of the PDE are simpler when expressed in terms of parameter

combinations, κ = k1 + k2 and λ = k1/k2, and the function

7Here we note the existence of barriers at n = 0 and n = n0, which are characterized

by w−(0) = 0, w+(0) = k2n0 > 0 and w+(n0) = 0, w−(n0) = k1n0 > 0, respectively.

These equations fulfil the conditions for reflecting barriers.
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Figure 9.5: Probability density of a reversible monomolecular reaction.

The three plots on the previous page show the evolution of the probability density,

Pn(t), of the number of molecules of a compoundA which undergo a reaction A⇌B.

The initially infinitely sharp density Pn(0) = δn,n0 becomes broader with time until

the variance settles down at the equilibrium value eventually passing a point of

maximum variance. On this page we show the expectation value E
(

NA(t)
)

and the

confidence intervals E±σ (68,3%,red) and ±2σ (95,4%,blue) with σ2
(

NA(t)
)

being

the variance. Parameters used: n0 =200, 2000, and 20 000; k1 = 2 k2 = 1 [t−1];
sampling times: 0 (black), 0.01 (dark green), 0.025 (green), 0.05 (turquoise), 0.1

(blue), 0.175 (blue violet), 0.3 (purple), 0.5 (magenta), 0.8 (deep pink), 2 (red).

ω(t) = λ exp(−κt) + 1:

g(s, t) =
(

1 + (s− 1) e−κt − s

λ

)n0

=

=

(

λ (1− e−κt) + s (λe−κt + 1)

1 + λ

)n0

=

=
n0
∑

n=0

((

n0

n

)

(

λe−κt + 1
)n
(

λ(1− e−κt)
)

)n0−n sn

(1 + λ)n0
.

The probability density for the reversible reaction is then obtained as

Pn(t) =

(

n0

n

)

1

(1 + λ)n0

(

λe−κt + 1
)n
(

λ(1− e−κt)
)n0−n

. (9.27)

Expectation value and variance of the numbers of molecules are readily com-
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puted (with ω(t) = λ exp(−κt) + 1):

E
(

NA(t)
)

=
n0

1 + λ
ω(t) ,

σ2
(

NA(t)
)

=
n0 ω(t)

1 + λ

(

1− ω(t)

1 + λ

)

,
(9.28)

and the stationary values are

lim
t→∞

E
(

NA(t)
)

= n0
k2

k1 + k2
,

lim
t→∞

σ2
(

NA(t)
)

= n0
k1 k2

(k1 + k2)2
,

lim
t→∞

σ
(

NA(t)
)

=
√
n0

√

k1 k2
k1 + k2

.

(9.29)

This result shows that the
√
N -law is fulfilled up to a factor that is indepen-

dent of N : E/σ =
√
n0 k2/

√

k1 k2.

Starting from a sharp distribution, Pn(0) = δn,n0, the variance increases,

may or may not pass through a maximum and eventually reaches the equi-

librium value, σ̄2 = k1k2 n0/(k1 + k2)
2. The time of maximal fluctuations,

tmax, is easily calculated from the condition dσ2/ dt = 0 and one obtains

tmax =
1

k1 + k2
ln

(

2 k1
k1 − k2

)

. (9.30)

Depending on the sign of (k1−k2) the approach towards equilibrium passes a

maximum value or not. The maximum is readily detected from the height of

the mode of Pn(t) as seen in Fig. 9.5 where a case with k1 > k2 is presented.

In order to illustrate fluctuations and their value under equilibrium con-

ditions the Austrian physicist Paul Ehrenfest designed a game called Ehren-

fest’s urn model [64], which was indeed played in order to verify the
√
N -law.

Balls, 2N in total, are numbered consecutively, 1, 2, . . . , 2N , and distributed

arbitrarily over two containers, say A and B. A lottery machine draws lots,

which carry the numbers of the balls. When the number of a ball is drawn,

the ball is put from one container into the other. This setup is already suffi-

cient for a simulation of the equilibrium condition. The more balls are in a

container, the more likely it is that the number of one of its balls is drawn
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and a transfer occurs into the other container. Just as it occurs with chem-

ical reactions we have self-controlling fluctuations: Whenever a fluctuations

becomes large it creates a force for compensation which is proportional to

the size of the fluctuation.

Two examples of bimolecular reactions (9.1f) and (9.1j) as well as their

solutions are presented here in order to illustrate the enormous degree of

sophistication that is required to derive analytical solutions,

A + B
k

−−−→ C and (9.31a)

2A
k

−−−→ B , (9.31b)

and we discuss them in this sequence.

The irreversible bimolecular addition reaction. As first example of a bimolec-

ular process we choose the simple irreversible bimolecular addition reaction

(9.31a). In this case we are dealing with three dependent stochastic vari-

ables NA(t), NB(t), and NC(t). Following McQuarrie we define the prob-

ability Pn(t) = P
(

NA(t) = n
)

and apply the standard initial condition

Pn(0) = δn,n0, P (NB(0) = b) = δb,b0 , and P (NC(0) = c) = δc,0. Accord-

ingly, we have from the laws of stoichiometry NB(t) = b0 − n0 +NA(t) and

NC(t) = n0−NA(t). For simplicity we denote b0−n0 = ∆0. Then the master

equation for the chemical reaction is of the form

∂Pn(t)

∂t
= k (n+ 1) (∆0 + n+ 1)Pn+1(t) − k n (∆0 + n)Pn(t) . (9.32)

We remark that the birth and death rates are no longer linear in n. The

corresponding PDE for the generating function is readily calculated

∂g(s, t)

∂t
= k (∆0 + 1)(1− s)∂g(s, t)

∂s
+ k s(1− s) ∂

2g(s, t)

∂s2
. (9.33)

The derivation of solutions or this PDE is quite demanding. It can be

achieved by separation of variables:

g(s, t) =

∞
∑

m=0

Am Zm(s) Tm(t) . (9.34)
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Figure 9.6: Irreversible bimolecular addition reaction A+B→ C. The plot

shows the probability distribution Pn(t) = Prob
(

NC(t) = n
)

describing the num-

ber of molecules of species C as a function of time and calculated by equation (9.39).

The initial conditions are chosen to be NA(t) = δ(a, a0), NB(t) = δ(b, b0), and

NC(t) = δ(c, 0). With increasing time the peak of the distribution moves from

left to right. The state n = min(a0, b0) is an absorbing state and hence the long

time limit of the system is: limt→∞NC(t) = δ
(

n,min(a0, b0)
)

. Parameters used:

a0 = 50, b0 = 51, k = 0.02 [t−1 ·M−1]; sampling times (upper part): t = 0 (black),

0.01 (green), 0.1 (turquoise), 0.2 (blue), 0.3 (violet), 0.5 (magenta), 0.75 (red),

1.0 (yellow), 1.5 (red), 2.25 (magenta), 3.5 (violet), 5.0 (blue), 7.0 (cyan), 11.0

(turquoise), 20.0 (green), and ∞ (black).

We dispense from details and list only the coefficients and functions of the

solution:

Am = (−1)m (2m+∆0)Γ(m+∆0)Γ(n0 + 1)Γ(n0 +∆0 + 1)

Γ(m+ 1)Γ(∆0 + 1)Γ(n0 −m+ 1)Γ(n0 +∆0 +m+ 1)
,

Zm(s) = Jm(∆0,∆0 + 1, s) , and

Tm(t) = exp
(

−m(m +∆0) kt
)

.

Herein, Γ represents the conventional gamma function with the definition

Γ(x + 1) = xΓ(x), and J(p, q, s) are the Jacobi polynomials named after

the German mathematician Carl Jacobi [1, ch.22, pp.773-802], which are
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solutions of the differential equation

s(1−s)d
2Jn(p, q, s)

ds2
+
(

q− (p+1)s
)dJn(p, q, s)

ds
+ n(n+p) Jn(p, q, s) = 0 .

These polynomials fulfil the following conditions:

dJn(p, q, s)

ds
= − n(n + p)

s
Jn−1(p+ 2, q + 1, s) and

∫ 1

0

sq−1(1− s)p−qJn(p, q, s)Jℓ(p, q, s) ds =
n!
(

Γ(q)
)2

Γ(n + p− q + 1)

(2n+ p)Γ(n + p)Γ(n+ q)
δℓ,n .

At the relevant value of the auxiliary variable, s = 1, we differentiate twice

and find:
(

∂g(s, t)

∂s

)

s=1

=

n0
∑

m=1

(2m+∆0)Γ(n0 + 1)Γ(n0 +∆0 + 1)

Γ(n0 −m+ 1)Γ(n0 +∆0 +m+ 1)
Tm(t) , (9.35)

(

∂2g(s, t)

∂s2

)

s=1

=

=

n0
∑

m=2

(m− 1)(m+∆0 + 1)(2m +∆0)Γ(n0 + 1)Γ(n0 +∆0 + 1)

Γ(n0 −m+ 1)Γ(n0 −∆0 +m+ 1)
Tm(t) (9.36)

from which we obtain expectation value and variance

E
(

NA(t)
)

=

(

∂g(s, t)

∂s

)

s=1

and

σ2
(

NA(t)
)

=

(

∂2g(s, t)

∂s2

)

s=1

+

(

∂g(s, t)

∂s

)

s=1

−
(

(

∂g(s, t)

∂s

)

s=1

)2

. (9.37)

As we see in the current example, bimolecularity complicates the solution of

the chemical master equations substantially and makes analytical solutions

quite sophisticated. We dispense here from the detailed expressions but

provide the results for the special case of vast excess of one reaction partner,

|∆0| ≫ n0 > 1, which is known as pseudo first order condition. Then,

the sums can be approximated well be the first terms and we find (with

k′ = ∆0k):
(

∂g(s, t)

∂s

)

s=1

≈ n0
∆0 + 2

n0 +∆0 + 1
e−(∆0+1)kt ≈ n0 e

−k′t and

(

∂2g(s, t)

∂s2

)

s=1

≈ n0 (n0 − 1) e−2 k
′t ,
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and we obtain finally,

E
(

NA(t)
)

= n0 e
−k′t and

σ2
(

NA(t)
)

= n0 e
−k′t

(

1− e−k′t
)

,
(9.38)

which is essentially the same result as obtained for the irreversible first order

reaction.

For the calculation of the probability density we make use of a slightly

different definition of the stochastic variables and use NC(t) counting the

number of molecules C in the system: Pn(t) = P
(

NC(t) = n
)

. With the

initial condition Pn(0) = δ(n, 0) and the upper limit of n, limt→∞ Pn(t) = c

with c = min{a0, b0} where a0 and b0 are the sharply defined numbers of A

and B molecules initially present (NA(0) = a0, NB(0) = b0), we have

c
∑

n=0

Pn(t) = 1 and thus Pn(t) = 0 ∀ (n /∈ [0, c], n ∈ Z)

and the master equation is now of the form

∂Pn(t)

∂t
= k

(

a0 − (n− 1)
)(

b0 − (n− 1)
)

Pn−1(t)−

− k (a0 − n)(b0 − n)Pn(t) . (9.32’)

In order to solve the master equation (9.32’) the probability distribution Pn(t)

is Laplace transformed in order to obtain a set of pure difference equation

from the master equation being a set of differential-difference equation

qn(s) =

∫ ∞

0

exp(− s · t)Pn(t) dt

and with the initial condition Pn(0) = δ(n, 0) we obtain

−1 + s q0(s) = − k a0 b0 q0(s) ,

s qn(s) = k
(

a0 − (n− 1)
)(

b0 − (n− 1)
)

qn−1(s)−

− k (a0 − n)(b0 − n) qn(s) , 1 ≤ n ≤ c .

Successive iteration yields the solutions in terms of the functions qn(s)

qn(s) =

(

a0
n

)(

b0
n

)

(n!)2kn
n
∏

j=0

1

s+ k(a0 − j)(b0 − j)
, 0 ≤ n ≤ c
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Figure 9.7: Irreversible dimerization reaction 2A → C. The plot shows

the probability distribution Pn(t) = Prob
(

NA(t) = n
)

describing the number of

molecules of species C as a function of time and calculated by equation (9.45). The

number of molecules C is given by the distribution Pm(t) = Prob
(

NC(t) = m
)

.

The initial conditions are chosen to be NA(t) = δ(n, a0), and NC(t) = δ(m, 0) and

hence we have n + 2m = a0. With increasing time the peak of the distribution

moves from right to left. The state n = 0 is an absorbing state and hence the long

time limit of the system is: limt→∞NA(t) = δ(n, 0) limt→∞NC(t) = δ(m,a0/2).

Parameters used: a0 = 100 and k = 0.02[t−1 ·M−1]; sampling times (upper part):

t = 0 (black), 0.01 (green), 0.1 (turquoise), 0.2 (blue), 0.3 (violet), 0.5 (magenta),

0.75 (red), 1.0 (yellow), 1.5 (red), 2.25 (magenta), 3.5 (violet), 5.0 (blue), 7.0

(cyan), 11.0 (turquoise), 20.0 (green), 50.0 (chartreuse), and ∞ (black).

and after converting the product into partial fractions and inverse transfor-

mation one finds the result

Pn(t) = (−1)n
(

a0
n

)(

b0
n

) n
∑

j=0

(−1)j
(

1 +
n− j

a0 + b0 − n− j

)

×

×
(

n

j

)(

a0 + b0 − j
n

)−1
e−k(a0−j)(b0−j)t .

(9.39)

An illustrative example is shown in Fig. 9.6. The difference between the

irreversible reactions monomolecular conversion and the bimolecular addition

reaction (Fig. 9.4) is indeed not spectacular.
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The dimerization reaction. When the dimerization reaction (9.1j) is modeled

by means of a master equation [203] we have to take into account that two

molecules A vanish at a time, and an individual jump involves always ∆n = 2:

∂Pn(t)

∂t
=

1

2
k (n + 2)(n+ 1)Pn+2(t) −

1

2
k n(n− 1)Pn(t) , (9.40)

which gives rise to the following PDE for the probability generating function

∂g(s, t)

∂t
=

k

2
(1− s2) ∂

2g(s, t)

∂s2
. (9.41)

The analysis of this PDE is more involved than it might look at a first glance.

Nevertheless, an exact solution similar to (9.34) is available:

g(s, t) =
∞
∑

m=0

AmC
− 1

2
m (s) Tm(t) , (9.42)

wherein the parameters and functions are defined by

Am =
1− 2m

2m
· Γ(n0 + 1) Γ[(n0 −m+ 1)/2]

Γ(n0 −m+ 1) Γ[(n0 +m+ 1)/2]
,

C
− 1

2
m (s) : (1− s2) d

2C
− 1

2
m (s)

ds2
+ m(m− 1)C

− 1
2

m (s) = 0 ,

Tm(t) = exp{−1
2
km(m− 1) t} .

The functions C
− 1

2
m (s) are ultraspherical or Gegenbauer polynomials named

after the German mathematician Leopold Gegenbauer [1, ch.22, pp.773-802].

They are solution of the differential equation shown above and belong to

the family of hypergeometric functions. It is straightforward to write down

expressions for the expectation values and the variance of the stochastic

variable NA(t) (µ stands for an integer running index, µ ∈ N):

E
(

NA(t)
)

= −
2⌊n0

2
⌋

∑

m=2µ=2

Am Tm(t) and

σ2
(

NA(t)
)

= −
2⌊n0

2
⌋

∑

m=2µ=2

(1

2
(m2 −m+ 2)Am Tm(t) + A 2

m T
2
m(t)

)

.

(9.43)
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In order to obtain concrete results these expressions can be readily evaluated

numerically.

There is one interesting detail in the deterministic version of the dimer-

ization reaction. It is conventionally modeled by the differential equation

(9.44a), which can be solved readily. The correct ansatz, however, would

be (9.44b) for which we have also an exact solution (with [A]=a(t) and

a(0) = a0):

−da
dt

= k a2 =⇒ a(t) =
a0

1 + a0 kt
and (9.44a)

−da
dt

= k a(a− 1) =⇒ a(t) =
a0

a0 + (1− a0)e−kt
. (9.44b)

The expectation value of the stochastic solution lies always between the solu-

tion curves (9.44a) and (9.44b). An illustrative example is shown in figure 9.7.

As the previous paragraph we consider also a solution of the master equa-

tion by means of a Laplace transformation [158]. Since we are dealing with a

step size of two molecules A converted into one molecule C, the master equa-

tion is defined only for odd or only for even numbers of molecules A. For an

initial number of 2a0 molecules and a probability P2n(t) = P
(

NA(t) = 2n
)

we have for the initial conditions NA(0) = 2a0, NC(0) = 0 and the con-

dition that all probabilities outside the interval [0, 2a0] as well as the odd

probabilities P2n−1 (n = 1, . . . , 2a0 − 1) vanish

∂P2n(t)

∂t
= −1

2
k (2n)(2n − 1)P2n(t) +

1

2
k (2n+ 2)(2n + 1)P2n+2(t) (9.40’)

The probability distribution P2n(t) is derived as in the previous subsection

by Laplace transformation

q2y(s) =

∫ ∞

0

exp(− s · t)P2y(t) dt

yielding the set of difference equations

−1 + s q2a0(s) = −1
2
k (2a0)(2a0 − 1) q2a0(s) ,

s q2n(s) = −1
2
k (2n)(2n− 1) q2n(s) +

+
1

2
k (2n+ 2)(2n+ 1) q2n+2(s) , 0 ≤ y ≤ a0 − 1 ,
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which again can be solved by successive iteration. It is straightforward to cal-

culate first the Laplace transform for 2µ, the number of molecules of species

A that have reacted to yield C: 2µ = 2(a0−m) withm = [C] and 0 ≤ m ≤ a0:

q2(a0−m)(s) =

(

k

2

)m (2a0
2m

)

(2m)!

m
∏

j=1

(

s+
k

2

(

2(a0 − j)
)

·
(

2(a0 − j)− 1
)

)−1
,

and a somewhat tedious but straightforward exercise in algebra yields the

inverse Laplace transform:

P2(a0−m)(t) = (−1)m a0! (2a0 − 1)!!

(a−m)! (2a0 − 2m− 1)
×

×
m
∑

j=0

(−1)j (4a0 − 4j − 1)(4a0 − 2m− 2j − 3)!!

j!(m− j)!(4a0 − 2j − 1)!!
×

× e−k (a0−j)·
(

2(a0−j)−1
)

t .

The substitution i = a0 − j leads to

P2(a0−m)(t) = (−1)m a0! (2a0 − 1)!!

(a−m)! (2a0 − 2m− 1)
×

×
a0
∑

i=a0−m
(−1)a0−i (4i− 1)(2a0 − 2m+ 2i− 3)!!

(a0 − i)!(a0 − i+m)!(2a0 + 2i− 1)!!
×

× e−k 2i·
(

2i−1
)

t .

Setting now n = a0 − m in accord with the definition of m we obtain the

final result

P2n(t) = (−1)n a0!(2a0 − 1)!!

n!(2n− 1)!!
×

×
n
∑

i=1

(−1)i (4i− 1)(2n+ 2i− 3)!!

n!(2n− 1)!!
× e−k i(2i−1)t .

(9.45)

The results are illustrated be means of a numerical example in figure 9.7.

The examples discussed here provide detailed information on the analyt-

ically analyzable cases. The majority of systems, however, is to complicated

for the analytical approach and here numerical simulation has to fill the gap
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between model building and exact analysis. One major result concerns the

double role of nonlinearity in chemistry. Like in deterministic reaction ki-

netics we encounter substantial complication in the mathematical handling

of bi- and higher molecular processes, which do not manifest themselves in

spectacular qualitative changes in reaction dynamics. On the other hand

nonlinearities based on autocatalytic reaction steps may have rather drastic

influence on the appearance of the reactions.

9.3 Computer simulation of master equations

In this section we introduce a model for computer simulation of stochastic

chemical kinetics that has been developed and put upon a solid basis by the

American physicist and mathematical chemist Daniel Gillespie [112, 113, 115,

117]. Considered is a population of N molecular species, {S1,S2, . . . ,SN}
in the gas phase, which interact through M elementary chemical reactions

(R1,R2, . . . ,RM).8 Two conditions are assumed to be fulfilled by the system:

(i) the container with constant volume V in the sense of a flow reactor (CSTR

in Fig. 4.3) is assumed to be well mixed by efficient stirring and (ii) the

system is assumed to be in thermal equilibrium at constant temperature T .

The goals of the simulation are the computation of the time course of the

stochastic variables – Xk(t) being the number of molecules (K) of species

Sk at time t – and the description of the evolution of the population. A

single computation yields a single trajectory, very much in the sense of a

single solution of a stochastic differential equation (Fig. 8.18) and observable

results are commonly derived through sampling of a sufficiently large number

of trajectories.

For a reaction mechanism involving N species in M reactions the entire

population is characterized by an N -dimensional random vector counting

numbers of molecules for the various species Sk,

~X (t) =
(

X1(t),X2(t), . . . ,XN(t)
)

. (9.46)

The common variables in chemistry are concentrations rather than particle

8Elementary steps of chemical reactions were defined and discussed in subsection 9.1.1.



Evolutionary Dynamics 305

numbers:

x =
(

x1(t), x2(t), . . . , xN (t)
)

with xk =
Xk

V ·NL
, (9.47)

where the volume V is the appropriate expansion parameter Ω for the system

size.9 The following derivation of the chemical master equation [115, pp. 407-

417] focuses on reaction channels Rµ of bimolecular nature

Sa + Sb −−−→ Sc + . . . (9.48)

like (9.1f,9.1i,9.1j and 9.1k) shown in the list (9.1). An extension to monomolec-

ular and trimolecular reaction channels is straightforward, and zero-molecular

processes like the influx of material into the reactor in the elementary step (9.1a)

provide no major problems. Reversible reactions, for example (9.19), are

handled as two elementary steps, A + B −→ C + D and C +D −→ A + B.

In equation (9.48) we distinguish between reactant species, A and B, and

product species, C . . . , of a reaction Rµ.

9.3.1 Master equations from collision theory

Molecules in the vapor phase change their directions of flight irregularly

through collisions. Collisions in the gaseous state are classified as elastic,

inelastic, and reactive collisions. Because of the large numbers of molecules

in the reaction volume the collisions occur – for all practical implications –

independently of previous collisions, and hence follow a Poisson distribution

(subsections 8.1.3 and 9.1.2) with the mean number of reactive collisions

per time interval or reaction rate r as parameter λ = r. The reaction rate

for reactive collisions of molecules A and B can be obtained from statistical

mechanics of collisions in an ideal gas mixture and is given by10

d[A]

dt
=

d[B]

dt
= r = Z ρ [A] [B] exp

(

− Ea

RT

)

,

9In order to distinguish random and deterministic variables, stochastic concentrations

are indicated by upright fonts.
10The mass action relevant variable of compound A is denoted by [A]. It may be a

particle number, NA, a partial pressure pA typical for the vapor phase, or a concentration

cA or activity aA in solution.
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where ρ is a steric factor, Ea is the energy of activation of the reaction, T

is the absolute temperature, R is the gas constant and Z is the frequency of

collisions between molecules A and B,

Z = σAB

√

8kB T

π µAB

NL with σAB ≈ π(dA + dB)
2 and µAB =

mAmB

mA +mB

.

Here, σAB is the reaction cross section that can be estimated from the di-

ameter of the collision complex, which for hard spheres simply is the sum of

the diameters of the molecules: dAB = dA + dB and µAB is the reduced mass

(see Fig. 9.8). In solution collision are replaced by molecular encounters since

molecules move by diffusion in a random walk like manner with very small

steps. The basic equations remain the same but the individual parameters

have to be interpreted completely differently from the vapor phase. Reac-

tions in biochemistry follow essentially the same rate laws as in chemistry

although special notations and approximations are used for enzyme catalyzed

reactions.

The two stipulations (i) perfect mixture and (ii) thermal equilibrium can

now be cast into precise physical meanings. Premise (i) requires that the

probability of finding the center of an arbitrarily chosen molecule inside a

container subregion with a volume ∆V is equal to ∆V/V . The system is

spatially homogeneous on macroscopic scales but it allows for random fluctu-

ations from homogeneity. Formally, requirement (i) asserts that the position

of a randomly selected molecule is described by a random variable, which is

uniformly distributed over the interior of the container. Premise (ii) implies

that the velocity of a randomly chosen molecule of mass m will be found to

lie within an infinitesimal region dv3 around the velocity v is equal to

PMB =

(

m

2πkBT

)

e−mv2/(2kBT ) .

Here, the velocity vector is denoted by v = (vx, vy, vz) in Cartesian coordi-

nates, the infinitesimal volume element fulfils dv3 = dvx dvy dvz, the square

of the velocity is v2 = v2x+ v2y + v2z , and kB is Boltzmann’s constant. Premise

(ii) asserts that the velocities of molecules follow a Maxwell-Boltzmann dis-

tribution or formally it states that each Cartesian velocity component of a
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Figure 9.8: Sketch of a molecular collision in dilute gases. A spherical

molecule Sa with radius ra moves with a velocity v = vb−va relative to a spherical

molecule Sb with radius rb. If the two molecules are to collide within the next

infinitesimal time interval dt, the center of Sb has to lie inside a cylinder of radius

r = ra + rb and height v dt. The upper and lower surface of the cylinder are

deformed into identically oriented hemispheres of radius r and therefore the volume

of the deformed cylinder is identical with that of the non-deformed one.

randomly selected molecule of mass m is represented by a random variable,

which is normally distributed with mean 0 and variance kBT/m. Implicitly,

the two stipulations assert that the molecular position and velocity compo-

nents are all statistically independent of each other. For practical purposes,

we expect premises (i) and (ii) to be valid for any dilute gas system at con-

stant temperature in which nonreactive molecular collisions occur much more

frequently than reactive molecular collisions.

In order to derive a chemical master equation for the population variables

Xk(t) some properties of the probability πµ(t, dt) with µ = 1, . . . ,M that a

randomly selected combination of the reactant molecules for reaction Rµ at

time t will react to yield products within the next infinitesimal time interval

[t, t+ dt[. With the assumptions made in the previously virtually all chemical

reaction channels fulfil the condition

πµ(t, dt) = γµ dt , (9.49)

where the specific probability rate parameter γµ is independent of dt. First,

we calculate the rate parameter for a general bimolecular reaction by means

of classical collision theory and then extend briefly to mono- and trimolec-
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ular reactions. Apart from the quantum mechanical approach the theory of

collisions in dilute gases is the best developed microscopic model for chemi-

cal reactions and well suited for a rigorous derivation of the master equation

from molecular motion and events.

Bimolecular reactions. The occurrence of a reaction A+B has to be preceded

by a collision of an Sa molecule with an Sb molecule, and first we shall

calculate the probability of such a collision in the reaction volume V . For

simplicity molecular species are regarded as spheres with specific masses and

radii, for example ma and ra for Sa, and mb and rb for Sb, respectively. A

collision occurs whenever the center-to center distance of the two molecules

RAB decreases to (RAB)min = ra + rb. Next we define the probability that a

randomly selected pair of Rµ reactant molecules at time t will collide within

the next infinitesimal time interval [t, t + dt[ by π∗
µ
(t, dt) and calculate it

from the Maxwell-Boltzmann distribution of molecular velocities according

to Fig. 9.8.

The probability that a randomly selected pair of reactant molecules Rµ,

one molecule Sa and one molecule Sb, has a relative velocity v = vb − va

lying in an infinitesimal volume element dv3 about v at time t is denoted by

P (v(t),Rµ) and can be readily obtained from kinetic theory of gases:

P (v(t),Rµ) =

(

µ

2π kBT

)

exp
(

−µv2/(2kBT )
)

dv3 .

Herein v = |v| =
√

v2x + v2y + v2z is the value of the relative velocity and

µ = mamb/(ma + mb) is the reduced mass of the two Rµ molecules. Two

properties of the probabilities P (v(t),Rµ) for different velocities v are im-

portant:

(i) The elements in the set of all velocity combinations, {Ev(t),Rµ
} are mutu-

ally exclusive, and

(ii) they are collectively exhaustive since v is varied over the entire three

dimensional velocity space.

Now we relate the probability P (v(t),Rµ) to a collision event Ecol by calcu-

lating the conditional probability P (Ecol(t, dt)|Ev(t),Rµ
). In Fig. 9.8 we sketch

the geometry of the collision event between to randomly selected spherical
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molecules Sa and Sb that is assumed to occur with an infinitesimal time in-

terval dt:11 A randomly selected molecule Sa moves along the vector v of the

relative velocity vb − vb between Sa and an also randomly selected molecule

Sb. A collision between the molecules will take place in the interval [t, t+ dt

if and only if the center of molecule Sb is inside the spherically distorted

cylinder (Fig. 9.8) at time t. Thus P (Ecol(t, dt)|Ev(t),Rµ
) is the probability

that the center of a randomly selected Sb molecule moving with velocity v(t)

relative to the randomly selected Sa molecule will be situated at time t with

a certain subregion of V , which has a volume Vcol = v dt ·π(ra+ rb)
2, and by

scaling with the total volume V we obtain:12

P
(

Ecol(t, dt)|Ev(t),Rµ

)

=
v(t) dt · π(ra + rb)

2

V
. (9.50)

By substitution and integration over the entire velocity space we can calculate

the desired probability

π∗
µ
(t, dt) =

∫∫∫

v

(

µ

2π kBT

)

e−µv
2/(2kBT ) · v(t) dt · π(ra + rb)

2

V
dv3 .

Evaluation of the integral is straightforward and yields

π∗
µ
(t, dt) =

(

8π kBT

V

)1/2
(ra + rb)

2

µ
dt . (9.51)

The first factor contains only constants and the macroscopic quantities, vol-

ume V and temperature T , whereas the molecular parameters, the radii ra

and rb and the reduced mass µ.

A collision is a necessary but not a sufficient condition for a reaction to

take place and therefore we introduce a collision-conditioned reaction prob-

ability pµ that is the probability that a randomly selected pair of colliding

Rµ reactant molecules will indeed react according to Rµ. By multiplication

11The absolute time t comes into play because the positions of the molecules, ra and

rb, and their velocities, va and vb, depend on t.
12Implicitly in the derivation we made use of the infinitesimally small size of dt. Only

if the distance v dt is vanishingly small, the possibility of collisional interference of a third

molecule can be neglected.
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of independent probabilities we have

πµ(t, dt) = pµ π
∗
µ
(t, dt) ,

and with respect to equation (9.49) we find

γµ = pµ

(

8π kBT

V

)1/2
(ra + rb)

2

µ
. (9.52)

As said before, it is crucial for the forthcoming analysis that γµ is independent

of dt and this will be the case if and only if pµ does not depend on dt. This

is highly plausible for the above given definition, and an illustrative check

through the detailed examination of bimolecular reactions can be found in

[115, pp.413-417]. It has to be remarked, however, that the application of

classical collision theory to molecular details of chemical reactions can be

an illustrative and useful heuristic at best, because the molecular domain

falls into the realm of quantum phenomena and any theory that aims at a

derivation of reaction probabilities from first principles has to be built upon

a quantum mechanical basis.

Monomolecular, trimolecular, and other reactions. A monomolecular reac-

tion is of the form A −→ C and describes the spontaneous conversion

Sa −−−→ Sc . (9.53)

One molecule Sa is converted into one molecule Sc. This reaction is different

from a catalyzed conversion

Sa + Sb −−−→ Sc + Sb , (9.48’)

where the conversion A −→ C is initiated by a collision of an A molecule

with a B molecule,13 and a description as an ordinary bimolecular process is

straightforward.

13The two reactions are related by rigorous thermodynamics: Whenever a catalyzed re-

action is part of a mechanism an incorporation of the corresponding uncatalyzed process in

the reaction mechanism is required in order to fulfill the requirements of thermodynamics.
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The true monomolecular conversion (9.53) is driven by some quantum

mechanical mechanism similar as in the case of radioactive decay of a nu-

cleus. Time-dependent perturbation theory in quantum mechanics [209,

pp.724-739] shows that almost all weakly perturbed energy-conserving tran-

sitions have linear probabilities of occurrence in time intervals δt, when δt

is microscopically large but macroscopically small. Therefore, to a good ap-

proximation the probability for a radioactive nucleus to decay within the

next infinitesimal time interval dt is of the form α dt, were α is some time-

independent constant. On the basis of analogy we may expect πµ(t, dt) the

probability for a monomolecular conversion to be approximately of the form

γµ dt with γµ being independent of dt.

Trimolecular reactions of the form

Sa + Sb + Sc −−−→ Sd + . . . (9.54)

should not be considered because collisions of three particles do not occur

with a probability larger than of measure zero. There may be, however, spe-

cial situations where approximations of complicated processes by trimolecular

events is justified. One example is a set of three coupled reactions with four

reactant molecules [114, pp.359-361] where is was shown that πµ(t, dt) is

essentially linear in dt.

The last class of reaction to be considered here is no proper chemical

reaction but an influx of material into the reactor. It is often denoted as a

the zeroth order reaction (9.1a):

∗ −−−→ Sa . (9.55)

Here, the definition of the influx and the efficient mixing or homogeneity

condition is helpful, because it guarantees that the number of molecules

entering the homogeneous system is a constant and does not depend on dt.

9.3.2 Simulation of master equations

So far we succeeded to derive the fundamental fact that for each elementary

reaction channel Rµ with µ = 1, . . . ,M , which is accessible to the molecules
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of a well-mixed and thermally equilibrated system in the gas phase or in

solution, exists a scalar quantity γµ, which is independent of dt such that

[115, p.418]

γµ dt = probability that a randomly selected combination of

Rµ reactant molecules at time t will react accordingly

in the next infinitesimal time interval [t, t+ dt[ .

(9.56)

The specific probability rate constant, γµ is one of three quantities that are

required to fully characterize a particular reaction channelRµ. In addition we

shall require a function hµ(n) where the vector n = (n1, . . . , nn)
′ contains the

exact numbers of all molecules at time t, ~N (t) =
(

N1(t), . . . ,NN(t)
)′
= n(t),

hµ(n) ≡ the number of distinct combinations of Rµ reactant

molecules in the system when the numbers of molecules

Sk are exactly nk with k = 1, . . . , N ,

(9.57)

and an N ×M matrix of integers S = {νkµ; k = 1, . . . , N, µ = 1, . . . ,M},
where

νkµ ≡ the change in the Sk molecular population caused by the

occurrence of one Rµ reaction.
(9.58)

The functions hµ(n) and the matrix N are readily deduced by inspection of

the algebraic structure of the reaction channels. We illustrate by means of

an example:

R1 : S1 + S2 −−−→ S3 + S4 ,

R2 : 2S1 −−−→ S1 + S5 , and (9.59)

R3 : S3 −−−→ S5 .

The functions hµ(n) are obtained by simple combinatorics

h1(n) = n1 n2 ,

h2(n) = n1 (n1 − 1)/2 , and

h3(n) = n3 ,
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and the matrix S is of the form

S =

















−1 −1 0

−1 0 0

+1 0 −1
+1 0 0

0 +1 +1

















.

It is worth noticing that the functional form of hµ is determined exclusive

by the reactant side of Rµ. In particular, has precisely the same form de-

termined by mass action in the deterministic kinetic equations with the ex-

ception that the particle numbers have to counted exactly in small systems,

n(n − 1) instead of n2 for example. The stoichiometric matrix S refers to

the product side of the reaction equations and counts the net production of

molecular species per one elementary reaction event: νkµ is the number of

molecules Sk produces by reaction Rµ, these numbers are integers and nega-

tive values indicate the number of molecules, which have disappeared during

one reaction. In the forthcoming analysis we shall make use of vectors cor-

responding to individual reactions Rµ: νµ = (ν1µ, . . . , νNµ)
′.

Analogy to deterministic kinetics. It is illustrative to consider now the anal-

ogy to conventional chemical kinetics. If we denote the concentration vec-

tor of our molecular species Sk by x = (x1, . . . , xN)
′ and the flux vector

ϕ = (ϕ1, . . . , ϕN)
′ the kinetic equation can be expressed by

dx

dt
= S · ϕ . (9.60)

The individual elements of the flux vector in mass action kinetics are

ϕµ = kµ

n
∏

k=1

x
gkµ
k for g1µ S1 + g2µ S2 + . . . + gNµ SN −−−→

wherein the factors gkµ are the stoichiometric coefficients on the reactant

side of the reaction equations. It is sometimes useful to define analogous

factors qkµ for the product side, both classes of factors can be summarized

in matrices G and Q and then the stochastic matrix is simply given by the
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difference S = Q−G. We illustrate by means of the model mechanism (9.59)

in our example:

Q − G =



















0 +1 0

0 0 0

+1 0 0

+1 0 0

0 +1 +1



















−



















+1 +2 0

+1 0 0

0 0 +1

0 0 0

0 0 0



















=



















−1 −1 0

−1 0 0

+1 0 −1
+1 0 0

0 +1 +1



















= S

We remark that the entries of G and Q are nonnegative integers by defini-

tion. The flux ϕ has the same structure as in the stochastic approach, γµ

corresponds to the kinetic rate parameter or rate constant kµ and the com-

binatorial function hµ and the mass action product are identical apart from

the simplifications for large particle numbers.

Occurrence of reactions. The probability of occurrence of reaction events

within an infinitesimal time interval dt is cast into three theorems:

Theorem 1. If ~X (t) = n, then the probability that exactly one Rµ will occur

in the system within the time interval [t, t+ dt[ is equal to

γµ hµ(n) dt + o( dt) ,

where o( dt) denotes terms that approach zero with dt faster than dt.

Theorem 2. If ~X (t) = n, then the probability that no reaction will occur

within the time interval [t, t + dt[ is equal to

1 −
∑

µ

γµ hµ(n) dt + o( dt) .

Theorem 3. The probability of more than one reaction occurring in the

system within the time interval [t, t+ dt[ is of order o( dt).

Proofs for all three theorems are found in [115, pp.420,421].

Based on the three theorems an analytical description of the evolution of

the population vector ~X (t). The initial state of the system at some initial

time t0 is fixed: ~X (t0) = n0. Although there is no chance to derive a

deterministic equation for the time-evolution, a deterministic function for
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the time-evolution of the probability function P (n, t|n0, t0) for t ≥ t0 will

be obtained. We express the probability P (n, t|n0, t0) as the sum of the

probabilities of several mutually exclusive and and collectively exhaustive

routes from ~X (t0) = n0 to ~X (t + dt) = n. These routes are distinguished

from one another with respect to the event that happened in the time interval

[t, t + dt[:

P (n, t+ dt|n0, t0) = P (n, t|n0, t0) ×



1−
M
∑

µ=1

γµ hµ(n) dt + o( dt)



 +

+
M
∑

µ=1

P (n− νµ, t|n0, t0) ×
(

γµ hµ(n− νµ) dt + o( dt)
)

+

+ o( dt) .

(9.61)

The different routes from ~X (t0) = n0 to ~X (t + dt) = n are obvious from

the balance equation (9.61):

(i) One route from ~X (t0) = n0 to ~X (t + dt) = n is given by the first

term on the right-hand side of the equation: No reaction is occurring in the

time interval [t, t + dt[ and hence ~X (t) = n was fulfilled at time t. The

joint probability for route (i) is therefore the probability to be in ~X (t) = n

conditioned by ~X (t0) = n0 times the probability that no reaction has occurred

in [t, t+ dt[. In other words, the probability for this route is the probability

to go from n0 at time t0 to n at time t and to stay in this state during the

next interval dt.

(ii) An alternative route from ~X (t0) = n0 to ~X (t + dt) = n accounted

for by one particular term in sum of terms on the right-hand side of the

equation: An Rµ reaction is occurring in the time interval [t, t + dt[ and

hence ~X (t) = n − νµ was fulfilled at time t. The joint probability for

route (ii) is therefore the probability to be in ~X (t) = n − νµ conditioned by

~X (t0) = n0 times the probability that exactly one Rµ reaction has occurred

in [t, t+ dt[. In other words, the probability for this route is the probability

to go from n0 at time t0 to n − νµ at time t and to undergo an Rµ during

the next interval dt. Obviously, the same consideration is valid for every

elementary reaction and we have M terms of this kind.
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(iii) A third possibility – neither no reaction nor exactly one reaction

chosen from the set {Rµ;µ = 1, . . . ,M} – must inevitably invoke more than

one reaction within the time interval [t, t + dt[. The probability for such

events, however, is o( dt) or of measure zero by theorem 3.

All routes (i) and (ii) are mutually exclusive since different events are

taking place within the last interval [t, t+ dt[.

The last step to derive a simulation friendly form of the chemical master

equation is straightforward: P (n, t|n0, t0) is subtracted from both sides in

Equ. (9.61), then both sides are divided by dt, the limit dt ↓ 0 is taken, all

o( dt) terms vanish and finally we obtain

∂

∂t
P (n, t|n0, t0) =

M
∑

µ=1

(

γµ hµ(n− νµ)P (n− νµ|n0, t0)−

− γµ hµ(n)P (n, t|n0, t0)
)

.

(9.62)

Initial conditions are required to calculate the time evolution of the proba-

bility P (n, t|n0, t0) and we can easily express them in the form

P (n, t0|n0, t0) =







1 , if n = n0 ,

0 , if n 6= n0 ,
(9.62’)

which is precisely the initial condition used in the derivation of equation (9.61).

Any sharp probability distribution P
(

nk, t0|n(0)
k , t0

)

= δ(nk − n(0)
k ) is admit-

ted for the molecular particle numbers at t0. The assumption of extended

initial distributions is, of course, also possible but the corresponding master

equation becomes more sophisticated.

9.3.3 The simulation algorithm

The chemical master equation (9.62) as derived in the last subsection 9.3.1

was found to be well suited for the derivation of a stochastic simulation

algorithm for chemical reactions [112, 113, 117] and it is important to see

how the simulation tool fits into the general theoretical framework of the
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Figure 9.9: Partitioning of the time interval [t, t+τ+dτ [. The entire interval

is subdivided into (k+1) nonoverlapping subintervals. The first k intervals are of

equal size ε = τ/k and the (k + 1)-th interval is of length dτ .

chemical master equation. The algorithm is not based on the probability

function P (n, t|n0, t0) but on another related probability density p(τ,µ|n, t),
which expresses the probability that given ~X (t) = n the next reaction in the

system will occur in the infinitesimal time interval [t+ τ, t+ τ + dτ [, and it

will be an Rµ reaction.

Considering the theory of random variables, p(τ,µ|n, t) is the joint den-

sity function of two random variables: (i) the time to the next reaction, τ ,

and (ii) the index of the next reaction, µ. The possible values of the two

random variables are given by the domain of the real variable 0 ≤ τ < ∞
and the integer variable 1 ≤ µ ≤ M . In order to derive an explicit formula

for the probability density p(τ,µ|n, t) we introduce the quantity

a(n) =
M
∑

µ=1

γµ hµ(n)

and consider the time interval [t, t + τ + dτ [ to be partitioned into k +

1 subintervals, k > 1. The first k of these intervals are chosen to be of

equal length ε = τ/k, and together they cover the interval [t, t + τ [ leaving

the interval [t + τ, t + τ + dτ [ as the remaining (k + 1)-th part (figure 9.9.

With ~X (t) = n the probability p(τ,µ|n, t) describes the event no reaction

occurring in each of the k ε-size subintervals and exactly one Rµ reaction in

the final infinitesimal dτ interval. Making use of theorems 1 and 2 and the

multiplication law of probabilities we find

p(τ,µ|n, t) =
(

1 − a(n) ε + o(ε)
)k(

γµ hµ(n) dτ + o(dτ)
)
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Dividing both sides by dτ and taking the limit dτ ↓ 0 yields

p(τ,µ|n, t) =
(

1 − a(n) ε + o(ε)
)k

γµ hµ(n)

This equation is valid for any integer k > 1 and hence its validity is also

guaranteed for k → ∞. Next we rewrite the first factor on the right-hand

side of the equation

(

1 − a(n) ε + o(ε)
)k

=

(

1 − a(n) kε + k o(ε)

k

)k

=

=

(

1 − a(n) τ + τ o(ε)/ε

k

)k

,

and take now the limit k → ∞ whereby we make use of the simultaneously

occurring convergence o(ε)/ε ↓ 0:

lim
k→∞

(

1 − a(n) ε + o(ε)
)k

= lim
k→∞

(

1− a(n) τ

k

)k

= e−a(n) τ .

By substituting this result into the initial equation for the probability density

of the occurrence of a reaction we find

p(τ,µ|n, t) = a(n) e−a(n) τ
γµ hµ(n)

a(n)
= γµ hµ(n) e

−
∑M

ν=1 γνhν(n) τ . (9.63)

Equ. (9.63) provides the mathematical basis for the stochastic simulation

algorithm. Given ~X (t) = n, the probability density consists of two inde-

pendent probabilities where the first factor describes the time to the next

reaction and the second factor the index of the next reaction. These factors

correspond to two statistically independent random variables r1 and r2.

9.3.4 Implementation of the simulation algorithm

Equ. (9.63) is implemented now for computer simulation and we inspect the

probability densities of the two unit-interval uniform random variables r1

and r2 in order to find the conditions to be imposed of a statistically exact
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sample pair (τ,µ): r1 has an exponential density function with the decay

constant a(n),

τ =
1

a(n)
ln
(

1
/

r1
)

, (9.64a)

and taking m to be the smallest integer which fulfils

µ = inf

{

m
∣

∣

∣

m
∑

µ=1

cµ hµ(n) > a(n) r2

}

. (9.64b)

After the values for τ and µ have been determined accordingly the action

advance the state vector ~X (t) of the system is taking place:

~X (t) = n −→ ~X (t+ τ) = n+ νµ .

Repeated application of the advancement procedure is the essence of the

stochastic simulation algorithm. It is important to realize that this advance-

ment procedure is exact as far as r1 and r2 are obtained by fair samplings

from a unit-interval uniform random number generator or, in other words,

the correctness of the procedure depends on the quality of the random num-

ber generator applied. Two further issues are important: (i) The algorithm

operates with internal time control that corresponds to real time of the chem-

ical process, and (ii) contrary to the situation in differential equation solvers

the discrete time steps are not finite interval approximations of an infinites-

imal time step and instead, the population vector ~X (t) maintains the value

~X (t) = n throughout the entire finite time interval [t, t + dτ [ and then

changes abruptly to ~X (t + τ) = n + νµ at the instant t + τ when the Rµ

reaction occurs. In other words, there is no blind interval during which the

algorithm is unable to record changes.
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Table 9.1: The combinatorial functions hµ(n) for elementary reactions.

Reactions are ordered with respect to reaction order, which in case of mass action

is identical to the molecularity of the reaction. Order zero implies that no reactant

molecule is involved and the products come from an external source, for example

from the influx in a flow reactor. Orders 1,2 and 3 mean that one, two or three

molecules are involved in the elementary step, respectively.

No. Reaction Order hµ(n)

1 ∗ −→ products 0 1

2 A −→ products 1 nA

3 A+ B −→ products 2 nAnB

4 2A −→ products 2 nA(nA − 1)/2

5 A+ B+ C −→ products 3 nAnBnC

6 2A + B −→ products 3 nA(nA − 1)nB/2
7 3A −→ products 3 nA(nA − 1)(nA − 2)/6

Structure of the algorithm. The time evolution of the population in described

by the vector ~X (t) = n(t), which is updated after every individual reaction

event. Reactions are chosen from the set R = {Rµ;µ = 1, . . . ,M}, which
is defined by the reaction mechanism under consideration. They are classi-

fied according to the criteria listed in table 9.1. The reaction probabilities

corresponding to the reaction rates of deterministic kinetics are contained in

a vector a(n) =
(

c1h1(n), . . . , cMhM(n)
)′
, which is also updated after every

individual reaction event. Updating is performed according to the stoichio-

metric vectors νµ of the individual reactions Rµ, which represent columns

of the stoichiometric matrix S. We repeat that the combinatorial functions

hµ(n) are determined exclusively by the reactant side of the reaction equation

whereas the stoichiometric vectors νµ represent the net production, (prod-

ucts)−(reactants).
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The algorithm comprises five steps:

(i) Step 0. Initialization: The time variable is set to t = 0, the initial

values of all N variables X1, . . . ,XN for the species – Xk for species

Sk – are stored, the values for the M parameters of the reactions Rµ,

c1, . . . , cM , are stored, and the combinatorial expressions are incorpo-

rated as factors for the calculation of the reaction rate vector a(n)

according to table 9.1 and the probability density P (τ,µ). Sampling

times, t1 < t2 < · · · and the stopping time tstop are specified, the first

sampling time is set to t1 and stored and the pseudorandom number

generator is initialized by means of seeds or at random.

(ii) Step 1. Monte Carlo step: A pair of random numbers is created (τ,µ)

by the random number generator according to the joint probability

function P (τ,µ). In essence two explicit methods can be used: the

direct method and the first-reaction method.

(iii) Step 2. Propagation step: (τ,µ) is used to advance the simulation time

t and to update the population vector n, t → t + τ and n → n + νµ,

then all changes are incorporated in a recalculation of the reaction rate

vector a.

(iv) Step 3. Time control : Check whether or not the simulation time has

been advanced through the next sampling time ti, and for t > ti send

current t and current n(t) to the output storage and advance the sam-

pling time, ti → ti+1. Then, if t > tstop or if no more reactant molecules

remain leading to hµ = 0 ∀ µ = 1, . . . ,M , finalize the calculation by

switching to step 4, and otherwise continue with step 1.

(v) Step 4. Termination: Prepare for final output by setting flags for early

termination or other unforseen stops and send final time t and final n

to the output storage and terminate the computation.

A caveat is needed for the integration of stiff systems where the values of in-

dividual variable can vary by many orders of magnitude and such a situation

might caught the calculation in a trap by slowing down time progress.
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The Monte Carlo step. Pseudorandom numbers are drawn from a random

number generator of sufficient quality whereby quality is meant in terms of

no or very long recurrence cycles and a the closeness of the distribution of the

pseudorandom numbers r to the uniform distribution on the unit interval:

0 ≤ α < β ≤ 1 =⇒ P (α ≤ r ≤ β) = β − α .

With this prerequisite we discuss now two methods which use two output

values r of the pseudorandom number generator to generate a random pair

(τ,µ) with the prescribed probability density function P (τ,µ). Two imple-

mentations are frequently used:

(i) The direct method. The two-variable probability density is written as the

product of two one-variable density functions:

P (τ,µ) = P1(τ) · P2(µ|τ) .

Here, P1(τ) dτ is the probability that the next reaction will occur between

times t + τ and t + τ + dτ , irrespective of which reaction it might be, and

P2(µ|τ) is the probability that the next reaction will be an Rµ given that

the next reaction occurs at time t+ τ .

By the addition theorem of probabilities, P1(τ) dτ is obtained by summa-

tion of P (τ,µ) dτ over all reactions Rµ:

P1(τ) =

M
∑

µ=1

P (τ,µ) . (9.65)

Combining the last two equations we obtain for P2(µ|τ)

P2(µ|τ) = P (τ,µ)
/

M
∑

ν

P (τ,ν) (9.66)

Equations (9.65) and (9.66) express the two one-variable density functions

in terms of the original two-variable density function P (τ,µ). From equa-

tion (9.63) we substitute into P (τ,µ) = p(τ,µ|n, t) through simplifying the

notation by using

aµ ≡ γµhµ(n) and a =

M
∑

µ=1

aµ ≡
M
∑

µ=1

γµhµ(n)
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and find

P1(τ) = a exp(−a τ) , 0 ≤ τ <∞ and

P2(µ|τ) = P2(µ) = aµ
/

a , µ = 1, . . . ,M .
(9.67)

As indicated, in this particular case, P2(µ|τ) turns out to be independent

of τ . Both one variable density functions are properly normalized over their

domains of definition:

∫ ∞

0

P1(τ) dτ =

∫ ∞

0

a e−a τ dτ = 1 and

M
∑

µ=1

P2(µ) =

M
∑

µ=1

aµ
a

= 1 .

Thus, in the direct method a random value τ is created from a random

number on the unit interval, r1, and the distribution P1(τ) by taking

τ = − ln r1
a

. (9.68)

The second task is to generate a random integer µ̂ according to P2(µ|τ) in
such a way that the pair (τ,µ) will be distributed as prescribed by P (τ,µ).

For this goal another random number, r2, will be drawn from the unit interval

and then µ̂ is taken to be the integer that fulfils

µ−1
∑

ν=1

aν < r2 a ≤
µ
∑

ν=1

aν . (9.69)

The values a1, a2, . . . , are cumulatively added in sequence until their sum

is observed to be equal or to exceed r2a and then µ̂ is set equal to the

index of the last aν term that had been added. Rigorous justifications for

equations (9.68) and (9.69) are found in [112, pp.431-433]. If a fast and

reliable uniform random number generator is available, the direct method

can be easily programmed and rapidly executed. This it represents a simple,

fast, and rigorous procedure for the implementation of the Monte Carlo step

of the simulation algorithm.

(ii) The first-reaction method. This alternate method for the implementation

of the Monte Carlo step of the simulation algorithm is not quite as efficient
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as the direct method but it is worth presenting here because it adds insight

into the stochastic simulation approach. Adopting again the notation aν ≡
γνhν(n) it is straightforward to derive

Pν(τ) dτ = aν exp(−aν τ) dτ (9.70)

from (9.56) and (9.57). Then, Pν(τ) would indeed be the probability at time

t for an Rν reaction to occur in the time interval [t+ τ, t+ τ+dτ [ were it not

for the fact that the number of Rν reactant combinations might have been

altered between t and t+ τ by the occurrence of other reactions. Taking this

into account, a tentative reaction time τν for Rν is generated according to

the probability density function Pν(τ), and in fact, the same can be done for

all reactions {Rµ}. We draw a random number rν from the unit interval and

compute

τν = − ln rν
aν

, ν = 1, . . . ,M . (9.71)

From these M tentative next reactions the one, which occurs first, is chosen

to be the actual next reactions:

τ = smallest τν for all ν = 1, . . . ,M ,

µ = ν for which τν is smallest .
(9.72)

Daniel Gillespie [112, pp.420-421] provides a straightforward proof that the

random (τ,µ) obtained by the first reaction method is in full agreement with

the probability density P (τ,µ) from equation (9.63).

It is tempting to try to extend the first reaction methods by letting the

second next reaction be the one for which τν has the second smallest value.

This, however, is in conflict with correct updating of the vector of particle

numbers, n, because the results of the first reaction are not incorporated into

the combinatorial terms hµ(n). Using the second earliest reaction would, for

example, allow the second reaction to involve molecules already destroyed in

the first reaction but would not allow the second reaction to involve molecules

created ion the first reaction.

Thus, the first reaction method is just as rigorous as the direct method

and it is probably easier to implement in a computer code than the direct
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method. From a computational efficiency point of view, however, the direct

method is preferable because for M ≥ 3 it requires fewer random numbers

and hence the first reaction methods is wasteful. This question of economic

use of computer time is not unimportant because stochastic simulations in

general are taxing the random number generator quite heavily. For M ≥ 3

and in particular for large M the direct method is probably the method of

choice for the Monte Carlo step.

An early computer code of the simple version of the algorithm described –

still in FORTRAN – is found in [112]. Meanwhile many attempts were made

in order to speed-up computations and allow for simulation of stiff systems

(see e.g. [33]. A recent review of the simulation methods also contains a

discussion of various improvements of the original code [117].



326 Peter Schuster



10. Stochasticity in evolution

The population aspect is particularly important in evolution and accord-

ingly we stress it again here. A population vector

Π(t) =
(

N1(t), N2(t), . . . , Nn(t)
)

with Nk ∈ N
0 , t ∈ R

1
+ ,

counts the numbers of individuals for the different species1 Xk as a func-

tion of time Nk(t). Implicitly this kind of formulating the problem states

already that time will be considered as a continuous variable and counting

says that the numbers of individuals are considered to vary in discrete steps.

The basic assumptions thus are the same as in the applications of master

equations to chemical reaction kinetics (section 9.1). There is one major dif-

ference between the molecular approach based on elementary reactions and

macroscopic modeling often used in biology. The objects are no longer sin-

gle molecules or atoms but modules commonly consisting of a large number

of atoms or individual cells or organisms: Elementary step dynamics fulfils

several conservation relations like conservation of mass and conservation of

the number of atoms of every chemical element (unless nuclear reactions are

admitted), and the laws of thermodynamics provide additional restrictions.

In the macroscopic models these relations are not violated, of course, but

they are hidden in complex networks of interactions, which appear in the

model only after averaging on several hierarchical levels. For example, con-

servation of mass and energy are encapsulated and obscured in the carrying

capacity K of the ecosystem as modeled by the Verhulst equation (1.7). As

a consequence the numbers of individuals may change in biological models,

Nk(t) → Nk(t + ∆t) ± 1, without a compensation in another variable. The

analogue in chemistry is buffering where a large molecular reservoir remains

1In this chapter we use species in the sense ofmolecular species and indicate by biological

species the genuine notion of species in biology.
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practically unchanged when a single molecule is added or subtracted (see

section 9.2, irreversible addition reaction). Changes ±1 in the numbers of

individuals imply that the time interval considered is sufficiently short that

multiple events can be excluded. In biology we can understand the flow reac-

tor (section 4.2) as an idealized version of an ecosystem. Then the biological

analogues to influx (4.1a) and outflux (4.1d) are migration, immigration and

emigration, respectively.

A stochastic process on the population level is a recording of ordered

successive events at times Ti:

T0 < T1 < T2 < . . . < Tj < Tk . . . ,

along a continuous time axis t.2 A birth or death event at some time t = Tr,

for example, creates, Xj → 2Xj , or consumes one individual, Xj → ⊘, and
the population changes accordingly:

Π =











(

. . . , Nj(t) = Nj(Tr−1), Nk(t) = Nk(Tr−1), . . .
)

if Tr−1 ≤ t < Tr

(

. . . , Nj(t) = Nj(Tr−1)± 1, Nk(t) = Nk(Tr−1), . . .
)

if Tr ≤ t < Tr+1

.

This formulation of a biological birth or death events reflects the previously

mentioned convention in probability theory: Right-hand continuity is as-

sumed for steps in stochastic processes (see Fig. 8.6).

Compared to stochasticity in chemistry stochastic phenomena in biology

are not only more important but also much harder to control. The major

sources of the problem are small population numbers and the lack of suffi-

ciently simple references systems that are accessible to experimental studies.

In biology we are regularly encountering reaction mechanisms that lead to

enhancement of fluctuations at non-equilibrium conditions and biology in

essence is dealing with processes and stationary states far away from equilib-

rium whereas in chemistry autocatalysis in non-equilibrium systems became

an object of general interest and intensive investigation not before some forty

years ago. We start therefore with the analysis of simple autocatalysis mod-

eled by means of a simple birth-and-death process. Then we present an

2The application of discretized time in evolution – mimicking synchronized generations,

for example – is straightforward but we shall mention only briefly here because we focus

on continuous time birth-and-death processes and master equations.
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overview over solvable birth-and-death processes (section 10.1) and discuss

the role of boundaries in form of different barriers (section 10.1.2).

10.1 Autocatalysis, replication, and extinction

In the previous chapter we analyzed already bimolecular reactions, the ad-

dition and the dimerization reaction, which gave rise to perfectly normal

behavior although the analysis was shown to be quite sophisticated (sec-

tion 9.2). The nonlinearity manifested itself only in task to find solutions

and did not change effectively the qualitative behavior of the reaction sys-

tems, for example the
√
N -law for the fluctuations in the stationary states

retained its validity. As an exactly solvable example we shall study first a

simple reaction mechanism consisting of two elementary steps, autocatalytic

replication and extinction. In this case the
√
N -law is not valid and fluctu-

ations do not settle down to some value which is proportional to the square

root of the size of the system but grow in time without limit as we saw in

case of the Wiener process (8.2.2).

10.1.1 Autocatalytic growth and death

Reproduction of individuals is modeled by a simple duplication mechanism

and death is represented by first order decay. In the language of chemical

kinetics these two steps are:

A + X
λ

−−−→ 2X , (10.1a)

X
µ

−−−→ ⊘ . (10.1b)

The rate parameters for reproduction and extinction are denoted by λ and

µ, respectively.3 The material required for reproduction is assumed to be

replenished as it is consumed and hence the amount of A available is constant

and assumed to be included in the birth parameter: λ = f · [A]. Degradation

products of X do not enter the kinetic equation because reaction (10.1b) is

3Reproduction is to be understood a asexual reproduction here. Sexual reproduction,

of course, requires two partners and gives rise to a process of order two (table 9.1).
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t

E( )N( )t

Figure 10.1: A growing linear birth-and-death process.The two-step reac-

tion mechanism of the process is (X → 2X, X → ⊘) with rate parameters λ and

µ, respectively. The upper part shows the evolution of the probability density,

Pn(t) = ProbX (t) = n. The initially infinitely sharp density, P (n, 0) = δ(n, n0)

becomes broader with time and flattens as the variance increases with time. In

the lower part we show the expectation value E
(

N (t)
)

in the confidence interval

E ± σ. Parameters used: n0 = 100, λ =
√
2, and µ = 1/

√
2; sampling times

(upper part): t = 0 (black), 0.1 (green), 0.2 (turquoise), 0.3 (blue), 0.4 (violet),

0.5 (magenta), 0.75 red), and 1.0 (yellow).
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t

E( )N( )t

Figure 10.2: A decaying linear birth-and-death process. The two-step

reaction mechanism of the process is (X → 2X, X → ⊘) with rate parameters λ

and µ, respectively. The upper part shows the evolution of the probability density,

Pn(t) = ProbX (t) = n. The initially infinitely sharp density, P (n, 0) = δ(n, n0)

becomes broader with time and flattens as the variance increases but then sharpens

again as process approaches the absorbing barrier at n = 0. In the lower part we

show the expectation value E
(

N (t)
)

in the confidence interval E±σ. Parameters

used: n0 = 40, λ = 1/
√
2, and µ =

√
2; sampling times (upper part): t = 0 (black),

0.1 (green), 0.2 (turquoise), 0.35 (blue), 0.65 (violet), 1.0 (magenta), 1.5 red), 2.0

(orange), 2.5 (yellow), and limt→∞ (black).
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irreversible. The stochastic process corresponding to equations (10.1) belongs

to the class of linear birth-and-death processes with w+(n) = λ · n and

w−(n) = µ · n.4 The master equation is of the form,

∂Pn(t)

∂t
= λ (n− 1)Pn−1(t) + µ (n+ 1)Pn+1(t) − (λ+ µ)nPn(t) , (10.2)

and after introduction of the probability generating function g(s, t) gives rise

to the PDE
∂g(s, t)

∂t
− (s− 1) (λs− µ) ∂g(s, t)

∂s
= 0 . (10.3)

Solution of this PDE yields different results for equal or different replication

and extinction rate coefficients, λ 6= µ and λ = µ, respectively. In the first

case we substitute γ = λ/µ ( 6= 1) and η(t) = exp
(

(λ− µ)t
)

, and find:

g(s, t) =

{

(

η(t)− 1
)

+
(

γ − η(t)
)

s
(

γη(t)− 1
)

+ γ
(

1− η(t)
)

s

}n0

and

Pn(t) = γn
min(n,n0)
∑

m=0

(−1)m
(

n0 + n−m− 1

n−m

)(

n0

m

)

×

×
(

1− η(t)
1− γη(t)

)n0+n−m
(

γ − η(t)
γ
(

1− η(t)
)

)m

.

(10.4)

In the derivation of the expression for the probability distributions we ex-

panded enumerator and denominator of the expression in the generating

function g(s, t), by using expressions for the sums (1 + s)n =
∑n

k=0

(

n
k

)

sk

and (1+ s)−n = 1+
∑∞

k=1(−1)k n(n+1)...(n+k−1)
k!

sk, multiply, order terms with

respect to powers of s, and compare with the expansion of the generating

function, g(s, t) =
∑∞

n=0 Pn(t) s
n.

4Here we use the symbols commonly applied in biology: λ(n) for birth, µ(n) for death,

ν for immigration, and ρ for emigration (tables 10.1 and 10.2). These notions were created

especially for application to biological problems, in particular for problems in theoretical

ecology. Other notions and symbols are common in chemistry: A birth corresponds to the

production of a molecule, f ≡ λ, a death to its decomposition or degradation through a

chemical reaction, d ≡ µ. Influx and outflux are the proper notions for immigration and

emigration.
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Computations of expectation value and variance are straightforward:

E
(

NX(t)
)

= n0 e
(λ−µ) t and

σ2
(

NX(t)
)

= n0
λ+ µ

λ− µ e
(λ−µ) t (e(λ−µ) t − 1

)

(10.5)

Illustrative examples of linear birth-and-death processes with growing (λ >

µ) and decaying (λ < µ) populations are shown in figures 10.1 and 10.2,

respectively.

In the degenerate case of neutrality with respect to growth, µ = λ, the

same procedure yields:

g(s, t) =

(

λt + (1− λt) s

1 + λt + λt s

)n0

, (10.6a)

Pn(t) =

(

λt

1 + λt

)n0+n min(n,n0)
∑

m=0

(

n0 + n−m− 1

n−m

)(

n0

m

)(

1− λ2t2

λ2t2

)m

, (10.6b)

E
(

NX(t)
)

= n0 , and (10.6c)

σ2
(

NX(t)
)

= 2n0 λt . (10.6d)

Comparison of the last two expressions shows the inherent instability of this

reaction system. The expectation value is constant whereas the fluctuations

increase with time. The degenerate birth-and-death process is illustrated in

Fig. 10.3. The case of steadily increasing fluctuations is in contrast to an

equilibrium situation where both, expectation value and variance approach

constant values. Recalling the Ehrenfest urn game, where fluctuations were

negatively correlated with the deviation from equilibrium, we have here two

uncorrelated processes, replication and extinction. The number od individu-

als n fulfils a kind of random walk on the natural numbers, and indeed in case

of the random walk (see Equ. (8.77) in subsection 8.2.1 we had also obtained

a constant expectation value E = n0 and a variance that increases linearly

with time, σ2(t) = 2ϑ(t− t0)).
A constant expectation value accompanied by a variance that increases

with time has an easy to recognize consequence: At some critical time above

which the standard deviation exceeds the expectation, tcr = n0

/

(2λ). From
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this instant on predictions on the evolution of the system based on the expec-

tation value become obsolete. Then we have to rely on individual probabili-

ties or other quantities. Useful in this context is the probability of extinction

of all individuals, which can be readily computed:

P0(t) =

(

λt

1 + λt

)n0

. (10.7)

Provided we wait long enough, the system will die out with probability one,

since we have limt→∞ P0(t) = 1. This seems to be a contradiction to the

constant expectation value. As a matter of fact it is not: In almost all

individual runs the system will go extinct, but there are very few cases of

probability measure zero where the number of individuals grows to infinity

for t→∞. These rare cases are responsible for the finite expectation value.

Equ. (10.7) can be used to derive a simple model for random selection

[254]. We assume a population of n different species

A + Xj

λ

−−−→ 2Xj , j = 1, . . . , n , (10.1a’)

Xj

µ

−−−→ ⊘ , j = 1, . . . , n . (10.1b’)

The probability joint distribution of the population is described by

Px1...xn = P
(

X1(t) = x1, . . . ,Xn(t) = xn
)

= P (1)
x1
· . . . · P (n)

xn
, (10.8)

wherein all probability distribution for individual species are given by Equ. (10.6b)

and independence of individual birth events as well as death events allows

for the simple product expression. In the spirit of Motoo Kimura’s neutral

theory of evolution [174] all birth and all death parameters are assumed to

be equal, λj = λ and µj = µ for all j = 1, . . . , n. For convenience we as-

sume that every species is initially present in a single copy: Pnj
(0) = δnj ,1.

We introduce a new random variable that has the nature of a first passage

time: Tk is the time up to the extinction of n − k species and characterize

it as sequential extinction time. Accordingly, n species are present in the

population between Tn, which fulfils Tn ≡ 0 by definition, and Tn−1, n − 1

species between Tn−1 and Tn−2, and eventually a single species between T1
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n

P tn ( )

Figure 10.3: Continued on next page.
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Figure 10.3: Probability density of a linear birth-and-death with equal

birth and death rate. The two-step reaction mechanism is: (X→ 2X, X→ ⊘)
with rate parameters λ = µ. The upper and the middle part show the evolution

of the probability density, Pn(t) = Prob
(

X (t) = n
)

. The initially infinitely sharp

density, P (n, 0) = δ(n, n0) becomes broader with time and flattens as the vari-

ance increases but then sharpens again as the process approaches the absorbing

barrier at n = 0. In the lower part, we show the expectation value E
(

N (t)
)

in

the confidence interval E ± σ. The variance increases linearly with time and at

t = n0/(2λ) = 50 the standard deviation is as large as the expectation value.

Parameters used: n0 = 100, λ = 1; sampling times, upper part: t = 0 (black), 0.1

(green), 0.2 (turquoise), 0.3 (blue), 0.4 (violet), 0.49999 (magenta), 0.99999 red),

2.0 (orange), 10 (yellow), and middle part: t = 10 (yellow), 20 (green), 50 (cyan),

100 (blue), and limt→∞ (black).

Figure 10.4: The distribution of sequential extinction times Tk. Shown are

the expectation values E(Tk) for n = 20 according to equation(10.10). Since E(T0)
diverges, T1 is the extinction that appears on the average at a finite value. A single

species is present above T1 and random selection has occurred in the population.

and T0, which is the moment of extinction of the entire population. After T0
no individual of type X exists any more.
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Next we consider the probability distribution of the sequential extinction

times

Hk(t) = P (Tk < t) . (10.9)

The probability of extinction of the population is readily calculated: Since

individual reproduction and extinction events are independent we find

H0 = P0,...,0 = P
(1)
0 · . . . · P (n)

0 =

(

λt

1 + λt

)n

.

The event T1 < t can happen in several ways: Either X1 is present and all

other species have become extinct already, or only X2 is present, or only X3,

and so on, but T1 < t is also fulfilled if the whole population has died out:

H1 = Px1 6=0,0,...,0 + P0,x2 6=0,...,0 + P0,0,...,xn 6=0 + H0 .

The probability that a given species has not yet disappeared is obtained by

exclusion since existence and nonexistence are complementary,

Px 6=0 = 1 − P0 = 1 − λt

1 + λt
=

1

1 + λt
,

which yields the expression for the presence of a single species

H1(t) = (n + λt)
(λt)n−1

(1 + λt)n
,

and by similar arguments a recursion formula is found for the extinction

probabilities with higher indices

Hk(t) =

(

n

k

)

(λt)n−k

(1 + λt)n
+ Hk−1(t) ,

that eventually leads to the expression

Hk(t) =
k
∑

j=0

(

n

j

)

(λt)n−j

(1 + λt)n
.

The moments of the sequential extinction times are computed straightfor-

wardly by means of a handy trick: Hk is partitioned into terms for the
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individual powers of λt, Hk(t) =
∑k

j=0 hj(t) and then differentiated with

respect to time t

hj(t) =

(

n

j

)

(λt)n−k

(1 + λt)n
,

dhj(t)

dt
= h′j =

λ

(1 + λt)n+1

((

n

j

)

(n− j)(λt)n−j−1 −
(

n

j

)

j(λt)n−j
)

.

The summation of the derivatives is simple because h′k + h′k−1 + . . .+ h′0 is a

telescopic sum and we find

dHk(t)

dt
=

(

n

k

)

(n− k) λn−k tn−k−1

(1 + λt)n+1
.

Making use of the definite integral [123, p.338]

∫ ∞

0

tn−k

(1 + λt)n+1
dt =

λ−(n−k+1)

(

n
k

)

k
,

we finally obtain for the expectation values of the sequential extinction times

E(Tk) =

∫ ∞

0

dHk(t)

dt
t dt =

n− k
k
· 1
λ
, n ≥ k ≥ 1 , (10.10)

and E(T0) =∞ (see Fig. 10.4). It is worth recognizing here another paradox

of probability theory: Although extinction is certain, the expectation value

for the time to extinction diverges. Similarly as the expectation values, we

calculate the variances of the sequential extinction times:

σ2(Tk) =
n(n− k)
k2(k − 1)

· 1
λ2
, n ≥ k ≥ 2 , (10.11)

from which we see that the variances diverges for k = 0 and k = 1.

For distinct birth parameters, λ1, . . . , λn, and different initial numbers

of individuals, x1(0), . . . , xn(0), the expressions for the expectation values

become considerably more complicated, but the main conclusion remains

unaffected: E(T1) is finite whereas E(T0) diverges.
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10.1.2 Boundaries in one step birth-and-death processes

One step birth-and-death processes have been studied extensively and ana-

lytical solutions are available in table form [118]. For transition probabilities

at most linear in n, w+(n) = ν + λn and w−(n) = ρ + µn, one distin-

guishes birth (λ), death (µ), immigration (ν), and emigration (ρ) terms.

Analytical solutions for the probability distributions were derived for all one

step birth-and-death processes whose transitions probabilities are constant

or maximally linear in the numbers of individuals n.

It is necessary, however, to consider also the influence of boundaries on

these stochastic processes. For this goal we define an interval [a, b] as domain

of the stochastic variable N (t). Here we are dealing with classes of boundary

conditions, absorbing and reflecting boundaries. In the former case, a par-

ticle that left the interval is not allowed to return, whereas the latter class

of boundary implies that it is forbidden to exit from the interval. Bound-

ary conditions can be easily implemented by ad hoc definitions of transition

probabilities:

Reflecting Absorbing

Boundary at a w−(a) = 0 w+(a− 1) = 0

Boundary at b w+(b) = 0 w−(b+ 1) = 0

The reversible chemical reaction with w−(n) = k1 n and w+(n) = k2 (n0−n),
for example, had two reflecting barriers at a = 0 and b = n0. Among the

examples we have studied so far we were dealing with an absorbing boundary

in the replication-extinction process between N = 1 and N = 0 that is

tantamount to the lower barrier at a = 1 fulfilling w+(0) = 0: The state

n = 0 is the end point or ω-limit of all trajectories reaching it.

Compared, for example, to an unrestricted random walk on positive and

negative integers, n ∈ Z, a chemical reaction or a biological process has to

be restricted by definition, n ∈ N0, since negative particle numbers are not

allowed. In general, the one step birth-and-death master Equ. (9.7),

∂Pn(t)

∂t
= w+(n−1)Pn−1(t) + w−(n+1)Pn+1(t)−

(

(w+(n)+w−(n)
)

Pn(t) ,
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is not restricted to n ∈ N0 and thus does not automatically fulfil the proper

boundary conditions to model a chemical reaction. A modification of the

equation at n = 0 is required, which introduces a proper boundary of the

process:
∂P0(t)

∂t
= w−(1)P1(t) − w+(0)P0(t) . (9.7’)

This occurs naturally if w−(n) vanishes for n = 0, which is always the case

when the constant term referring to migration vanishes, ν = 0. With w−(0) =

0 we only need to make sure that P−1(t) = 0 and obtain Equ. (9.7’). This

will be so whenever we take an initial state with Pn(0) = 0 ∀n < 0, and

it is certainly true for our conventional initial condition, Pn(0) = δn,n0 with

n0 ≥ 0. By the same token we prove that the upper reflecting boundary

for chemical reactions, b = n0, fulfils the conditions of being natural too.

Equipped with natural boundary conditions the stochastic process can be

solved for the entire integer range, n ∈ Z, and this is often much easier than

with artificial boundaries. All the barriers we have encountered so far were

natural.

An overview over a few selected birth-and-death processes is given in

tables 10.1 and 10.2. Commonly, unrestricted and restricted processes are

distinguished [118]. An unrestricted process is characterized by the possibil-

ity to reach all states N (t) = n. A requirement imposed by physics demands

that all changes in state space are finite for finite times, and hence the prob-

abilities to reach infinity at finite times must vanish: limn→±∞ Pn,n0 = 0.

The linear birth and death process in table 10.1 is unrestricted only in the

positive direction and the state N (t) = 0 is special because it represents an

absorbing barrier. The restriction is here hidden and met by the condition

Pn,n0(t) = 0 ∀ n < 0.
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Table 10.1: Comparison of of results for some unrestricted processes. Data are taken from [118, pp.10,11]. Abbre-

viation and notations: γ ≡ λ/µ, σ ≡ e(λ−µ)t, (n, n0) ≡ min{n, n0}, and In(x) is the modified Bessel function.

Process λn µn gn0(s, t) Pn,n0(t) Mean Variance Ref.

Poisson ν 0 sn0 eν(s−1) t (νt)n−n0 eν t

(n−n0)!
, n ≥ n0; n0 > (0, n) n0 + νt νt [39]

Poisson 0 ρ sn0 eρ(1−s) t/s (ρt)n−n0 eρ t

(n0−n)! , n ≤ n0; n0 < (0, n) n0 − ρt ρt [39]

ν ρ sn0 e−(ν+ρ)t+(νs+ρ/s)t
(

ν
ρ

)(n−n0)/2 In0−n(2t
√
νρ) e−(ν+ρ)t n0 + (ν − ρ)t (ν + ρ)t [141]

Birth λn 0
(

1− eλt(1− 1/s)
)−n0 (

n
n0

)

e−n0λ t(1− e−λ t)n−n0 , n ≥ n0; n0 > (0, n) n0 e
λt n0 e

λt(eλt − 1) [10]

Death 0 µn
(

1− e−µt(1− s)
)n0 (n0

n

)

e−nµ t(1− e−µ t)n0−n , n ≤ n0; n0 < (0, n) n0 e
−µt n0 e

−µt(1− e−µt) [10]

ν µn
(

1− e−µt(1− s)
)n0 × exp

(

− ν
µ(1− e−µt)

)

× n0 e
−µt+

(

ν
µ + n0e

−µt
)

× [39]

× exp
(

ν(s− 1)(1 − e−µt)/µ
)

×
(n,n0)
∑

k=0

e−µtk(1−e−µt)n+n0−2k

(n−k)!

(

ν
µ

)n−k
+ν(1−e−µt)

µ ×(1− e−µt)

Birth& λn µn
(

(σ−1)+(γ−σ)s
(γσ−1)γ(1−σ)s

)n0

γn
(n,n0)
∑

k=0

(−1)k
(n+n0−k−1

n−k
)(n0

k

)

× n0 σ
n0σ(γ+1)(σ−1)

γ−1 [10]

Death ×
(

1−σ
1−γσ

)n+n0−k (1−σ/γ
1−σ

)k

λn λn
(

λt+(1−λt)s
1+λt−λt s

)n (

λt
1+λt

)n+n0∑(n,n0)
k=0

(n0

k

)

× n0 2n0λ t

×
(n+n0−k−1

n−k
)

(

1−λ2t2

λ2t2

)k
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Table 10.2: Comparison of of results for some restricted processes. Data are taken from [118, pp.16,17]. Abbreviation

and notations used in the table are: γ ≡ λ/µ, σ ≡ e(λ−µ)t, α ≡ (ν/ρ)(n−n0)/2e(ν+ρ)t; In = I−n ≡ In
(

2(νρ)1/2t
)

where In(x)

is a modified Bessel function; Gn ≡ Gn(ξj , γ) where Gn is a Gottlieb polynomial, Ĝn ≡ Gn(ξ̂j , γ),

Gn(x, γ) ≡ γn
∑n

k=0(1− γ−1)k
(

n
k

)(

x−k+1
k

)

= γnF (−n,−x, 1, 1− γ−1) where F is a hypergeometric function, ξj and ξ̂j are the

roots of Gu−l(ξj , γ) = 0, j = 0, . . . , u− l− 1 and Gu−l+1(ξ̂j, γ) = γ Gu−l(ξ̂j , γ), j = 0, . . . , u− l, respectively; Hn ≡ Hn(ζj , γ),

Ĥn ≡ Hn(ζ̂j , γ), Hn(x, γ) = Gn(x, γ
−1), Hu−l(ζj , γ) = 0, j = 0, . . . , u− l− 1 and Hu+l−1(ζ̂j , γ) = Hu−l(ζ̂j , γ)/γ, respectively.

λn µn Boundaries Pn,n0(t) Ref.

ν ρ u : abs; l : −∞ α
(

In−n0 − I2u−n−n0

)

[39, 210]

ν ρ u : +∞; l : abs α
(

In−n0 − In+n0−2l
)

[39, 210]

ν ρ u : refl; l : −∞ α

(

In−n0 +
(

ν
ρ
1/2 I2u+l−n−n0 +

(

1− ρ
ν

)

)

·∑∞j=2

(

ν
ρ

)j/2
I2u−n−n0+j

)

[39, 210]

ν ρ u : +∞; l : refl α

(

In−n0 +
(

ν
ρ
1/2 In+n0+l−2u +

(

1− ρ
ν

)

)

·∑∞j=2

(

ν
ρ

)j/2
In+n0−2l+j

)

[39, 210]

ν ρ u : abs; l : abs α

(

∑∞
k=−∞ In−n0+2k(u−l) −

∑∞
k=0

(

In+n0−2l+2k(u−l) + I2l−n−n0+2k(u−l)
)

)

[39, 210]

λ(n− l + 1) µ(n− l) u : abs; l : refl γl−n
∑u−l−1

k=0 Gn0−lGn−l σξk
(

∑u−l−1
j=0

Gj

γj

)−1
[211, 262]

λ(n− l + 1) µ(n− l) u : refl; l : refl γl−n
∑u−l

k=0 Ĝn0−lĜn−l σξ̂k
(

∑u−l
j=0

Ĝj

γj

)−1
[211, 262]

λ(u− n) µ(u− n+ 1) u : refl; l : abs γu−n
∑u−l−1

k=0 Hu−n0Hu−nσ−ζk
(

∑u−l−1
j=0 Hjγ

j
)−1

[211, 262]

λ(u− n) µ(u− n+ 1) u : refl; l : refl γu−n
∑u−l

k=0 Ĥu−n0Ĥu−nσ−ζ̂k
(

∑u−l
j=0 Ĥjγ

j
)−1

[211, 262]
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10.1.3 Branching processes in evolution

According to David Kendall’s historical accounts on the centennial of the

origins of stochastic thinking in population mathematics [171, 172] the name

branching process was coined relatively late by Kolmogorov and Dmitriev in

1947 [180]. The interest in stochasticity of the evolution of reproducing pop-

ulations, however, is much older. The origin of the problem is the genealogy

of human males, which is reflected by the development of family names or

surnames in the population. Commonly the stock of family names is eroded

in the sense of steady disappearance of families in particular in small com-

munities. The problem was clearly stated in a book by Alphonse de Candolle

[47] and has been brought up by Sir Francis Galton after he had read de Can-

dolle’s book. The first rigorous mathematical analysis of a problem by means

of a branching problem is commonly assigned to Galton and Reverend Henry

William Watson [301] and the Galton-Watson process named after them has

become a standard problem in branching processes. Apparently, Galton and

Watson were not aware of earlier work on this topic [142], that had been

performed almost thirty years earlier by Jules Bienaymé and reported in a

publication [20]. Most remarkable Bienaymé discussed already the criticality

theorem, which expresses different behavior of the Galton-Watson process

for m < 1, m = 1, and m < 1, where m denotes the expected or mean

number of sons per father. The three cases were called subcritical, critical,

and supercritical, respectively, by Kolmogorov [179]. Watson’s original work

contained a serious error in the analysis of the supercritical case and this has

been detected only by Johan Steffensen [275]. In the years after 1940 the

Galton-Watson model received plenty of attention because of the analogies

of genealogies and nuclear chain reactions. In addition, mathematicians be-

came generally more interested in probability theory and stochasticity. The

pioneering work related to nuclear chain reactions and criticality of nuclear

reactors was done by Stan Ulam at the Los Alamos National Laboratory

[82–85, 138]. Many other applications to biology and physics were found and

branching processes have been studied intensively. By now, it seems, we have

a clear picture on the Galton-Watson process and its history [172].
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Figure 10.5: Continued on next page.
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Figure 10.5: Calculation of extinction probabilities for the Galton-

Watson process. The individual curves show the iterated generating functions

of the Galton-Watson process, g0(s) = s (black), g1(s) = g(s) = p0 + p1s + p2s
2

(red), g2(s) (orange), g3(s) (yellow), and g4(s) (green), for different probability

densities p = (p0, p1, p2). Choice of parameters: supercritical case (upper part)

p = (0.1, 0.2, 0.7), m = 1.6; critical case (middle part) p = (0.15, 0.7, 0.15), m = 1;

subcritical case (lower part) p=(0.7,0.2,0.1), m = 0.4.

The Galton-Watson process. A Galton-Watson process [301] deals with the

generation of objects from objects of the same kind in the sense of reproduc-

tion. These objects can be neutrons, bacteria, or higher organisms, or men

as in the family name genealogy problem. The Galton-Watson process is the

simplest possible description of consecutive reproduction and falls into the

class of branching processes. Recorded are only the population sizes of succes-

sive generations, which are considered as random variables: Z0,Z1,Z2, . . . .

A question of interest is the extinction of a population in generation n, and

this simply means Zn = 0 from which follows that all the random variable

is zero in all future generations: Zn+1 = 0 if Zn = 0. Indeed, the extinction

or disappearance of aristocratic family names was the problem that Galton

wanted to model by means of a stochastic process. In the following presen-

tation and analysis we make use of the two books [8, 135].

In mathematical terms the Galton-Watson process is a Markov chain

(Zn; n ∈ N0) on the nonnegative integers. The transition probabilities are

defined in terms of a given probability function Prob {Z1 = k)} = pk; k ∈ N0

with pk ≤ 0,
∑

pk = 1 have the

P (i, j) = Prob {Zn+1 = j|Zn = i} =







p∗ij if i ≥ 1, j ≥ 0 ,

δ0,j if i = 0, j ≥ 0 ,
(10.12)

wherein δij is the Kronecker delta5 and {p∗ik ; k ∈ N0} is the i-fold convolution

of {pk; k ∈ N0}, and accordingly the probability mass function f(k) = pk is

the only datum of the process. The use of the convolution of the probability

distribution is an elegant mathematical trick for the rigorous analysis of the

5The Kronecker delta is named after the German mathematician Leopold Konecker
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problem. Convolutions in explicit form are quite difficult to handle as we shall

see in the case of the generating function. Nowadays one can use computer

assisted symbolic computation but in Galton’s times, in the 19th century

handling of higher convolutions was quite hopeless.

The process describes an evolving population of particles or individuals

and it might be useful although not necessary to define a time axis. The

process starts with Z0 particles at time T = 0, each if which produces –

independently of the others – a random number of offspring offspring at time

T = 1 according to the probability density f(k) = pk. The total number

of particles in the first generation, Z1 is the sum of all Z0 random variables

where each was drawn according to the pmf f(pk). The first generation

produces Z2 particles at time T = 2, the second generation gives rise to the

third with Z3 particles at time T = 3, and so on. Since discrete times Tn are

equivalent to the numbers of generations n we shall refer only to generations

ion the following. From (10.12) follows that the future development of the

process at any time is independent of the history and this constitutes the

Markov property.

The number of offspring produced by a single parent particle in the n-th

generation is a random variable Z(1)
n where the superscript indicates Z0 = 1.

In general we shall write for the branching process (Z(i)
n ; n ∈ N0) when we

want to express that the process started with i particles. Since i = 1 is the

by far most common case, we write simply Z(1)
n = Zn. Equ. (10.12) tells that

Zn+k = 0 ∀ k ≥ 0. Accordingly, the state Z = 0 is absorbing and reaching

Z = 0 is tantamount to becoming extinct.

In order to analyze the process we shall make use of the probability gen-

erating function

g(s) =
∞
∑

k=0

pk s
k , |s| ≤ 1 , (10.13)

and represents the discrete analogue of Dirac’s delta function:

δij =







0 if i 6= j ,

1 if i = j .
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where s is complex in general but we shall assume here s ∈ R1. In addition,

we define the iterates of the generating function:

g0(s) = s , g1(s) = g(s) , gn+1(s) = g
(

gn(s)
)

, n = 1, 2, . . . . (10.14)

Expressed in terms of transition probabilities the generating function is of

the form

∞
∑

j=0

P (1, j) sj = g(s) and

∞
∑

j=0

P (i, j) sj =
(

g(s)
)i
, i ≥ 1 . (10.15)

Denoting the n-step transition probability by Pn(i, j) and using the Chapman-

Kolmogorov equation we obtain

∞
∑

j=0

Pn+1(1, j) s
j =

∞
∑

j=0

∞
∑

k=0

Pn(1, k)P (k, j) s
j =

=

∞
∑

k=0

Pn(1, k)

∞
∑

j=0

P (k, j) sj =

=

∞
∑

k=0

Pn(1, k)
(

g(s)
)k
.

Writing g(n) =
∑

j Pn(1, j) s
j the last equation has shown that

g(n+1)(s) = g(n)
(

g(s)
)

which yields the fundamental relation

g(n)(s) = gn(s) , (10.16)

and by making use of Equ. (10.15) we find

∞
∑

j=0

Pn(i, j) s
j =

(

gn(s)
)i

. (10.17)

Equ. (10.16) expressed as “The generating function of Zn is the n-iterate

gn(s)”, provides a tool for the calculation of the generating function. As

stated in Equ. (10.12) the probability distribution of Zn is obtained as the
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n-th convolution or iterate of g(s). The explicit form of an n-th convolution

is hard to compute and the true value of (10.16) lies in the calculation of the

moments of Zn and in the possibility to derive asymptotic laws for large n.

For the purpose of illustration we present the first iterates of the simplest

useful generating function

g(s) = p0 + p1 s + p2 s
2 .

The first convolution g2(s) = g
(

g(s)
)

contains ten terms already:

g2(s) = p0 + p0p1 + p20p2 + (p21 + 2p0p1p2) s+

+ (p1p2 + p21p2 + 2p0p
2
2) s

2 + 2p1p
2
2 s

3 + p32 s
4.

The next convolution, g3(s), contains already nine constant terms that con-

tribute to the probability of extinction gn(0), and g4(s) already 29 terms.

It is straightforward to compute the moments of the probability distribu-

tions from the generating function:

∂g(s)

∂s
=

∞
∑

k=0

k pk s
k−1 and

∂g(s)

∂s

∣

∣

∣

s=1
= E(Z1) = m , (10.18a)

∂2g(s)

∂s2
=

∞
∑

k=0

k(k − 1) pk s
k−2 and

∂2g(s)

∂s2

∣

∣

∣

s=1
= E(Z2

1 ) − m ,

var(Z1) =
∂2g(s)

∂s2

∣

∣

∣

s=1
+m − m2 = σ2 . (10.18b)

Next we calculate the moments of the distribution in higher generations and

differentiate the last expression in Equ. 10.14 at |s| = 1:

∂gn+1(s)

∂s

∣

∣

∣

s=1
=

∂g(s)

∂s

(

gn(s)
∣

∣

∣

s=1

) ∂gn(s)

∂s

∣

∣

∣

s=1
=

=
∂g(s)

∂s

∣

∣

∣

s=1

∂gn(s)

∂s

∣

∣

∣

s=1
and

E(Zn+1) = E(Z)E(Zn) or E(Zn) = mn ,

(10.19)

by induction. Provided the second derivative of the generating function at

|s| = 1 is finite, Equ. 10.14 can be differentiated twice:

∂2gn+1(s)

∂s2

∣

∣

∣

s=1
=

∂g(s)

∂s

∣

∣

∣

s=1

∂2gn(s)

∂s2

∣

∣

∣

s=1
+
∂2g(s)

∂s2

∣

∣

∣

s=1

(∂gn(s)

∂s

∣

∣

∣

s=1

)2

,
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and ∂2g(s)
/

∂s2
∣

∣

s=1
is obtained by repeated application. The final result

is:

var(Zn) = E(Z2
n) − E(Zn)

2 =







σ2 mn (mn−1)
m (m−1) , if m 6= 1

nσ2 , if m = 1
. (10.20)

Thus, we have E(Zn) = mn and provided σ = var(Z1) < ∞ the variances

are given by Equ. (10.20).

Two more assumptions are made in order to facilitate the analysis: (i)

Neither the probabilities p0 and p1 nor their sum are equal to one, p0 < 1,

p1 < 1, and p0 + p1 < 1, and this implies that g(s) is strictly convex on the

unit interval 0 ≤ s ≤ 1, and (ii) the expectation value E(Z1) =
∑∞

k=0 k pk is

finite, and from the finiteness of the expectation value follows ∂g/∂s|s=1 is

finite too since |s| ≤ 1.

Eventually we can now consider Galton’s extinction problem of family

names. The straightforward definition of extinction is given in terms of a

random sequence (Zn; n = 0, 1, 2, . . . ,∞), which consists of zeros except a

finite number of positive integer value at the beginning of the series. The

random variable Zn is integer valued and hence extinction is tantamount to

the event Zn → 0. From P (Zn+1 = 0|Zn = 0) = 1 follows the equality

P (Zn → 0) = P (Zn = 0 for some n) =

= P
(

(Z1 = 0) ∪ (Z2 = 0) ∪ · · · ∪ (Zn = 0)
)

=

= lim
n→∞

P
(

(Z1 = 0) ∪ (Z2 = 0) ∪ · · · ∪ (Zn = 0)
)

=

= limP (Zn = 0) = lim gn(0) ,

(10.21)

and the fact that gn(0) is a nondecreasing function of n (see also Fig. 10.6).

We define a probability of extinction, q = P (Zn → 0) = lim gn(0) and

show that m = E(Z1) ≤ 1 the probability of extinction fulfils q = 1, and the

family names disappear in finite time. For m > 1, however, the extinction

probability is the unique solution less than one of the equation

s = g(s) for 0 ≤ s < 1 . (10.22)
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Figure 10.6: Extinction probabilities in the Galton-Watson process.

Shown are the extinction probabilities for the three Galton-Watson processes dis-

cussed in Fig. 10.5. The supercritical process (p = (0.1, 0.2, 0.7), m = 1.6; red)

is characterized by a probability of extinction of q = lim gn < 1 leaving room for

a certain probability of survival, whereas both, the critical (p = (0.15, 0.7, 0.15),

m = 1; black) and the subcritical process (p = (0.7, 0.2, 0.1), m = 0.4; blue) lead

to certain extinction, q = lim gn = 1. In the critical case we observe much slower

convergence than in the super- or subcritical case representing a nice example of

critical slowing down.

It is straightforward to show by induction that gn(0) < 1, n = 0, 1, . . . . From

Equ. (10.21) we know

0 = gn(0) ≤ g1(0) ≤ g2(0) ≤ · · · ≤ q = lim gn(0) .

Making use of the relations gn+1(0) = g
(

gn(0)
)

and lim gn(0) = lim gn+1(0) =

q we derive q = g(q) for 0 ≤ q ≤ 1 – trivially fulfilled for q = 1 since g(1) = 1:

(i) m ≤ 1, then (∂g(s)/∂s) < 1 for 0 ≤ s < 1. Next we use the law of the

mean6 express g(s) in terms of g(1) and for m ≤ 1 we find g(s) > s in

the entire range 0 ≤ s < 1. There is only the trivial solution q = g(q)

with q = 1 and extinction is certain.

6The law of the mean expresses the difference in the values of a function f(x) in terms
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(ii) m > 1, then g(s) < s for s sightly less than one because (∂g/∂s)|s=1 =

m > 1, whereas for s = 0 we have g(0) > 0 and hence we have at least

one solution s = g(s) in the half-open interval [0, 1[. Assume there

were two solutions, for example s1 and s2 with 0 ≤ s1 < s2 < 1 than

Rolle’s theorem named after the French mathematician Michel Rolle

would demand the existence of ξ and η with s1 < ξ < s2 < η < 1

such that (∂g(s)/∂s)|s=ξ = (∂g(s)/∂s)|s=η = 1 but this contradicts the

fact that that g(s) is strictly convex. In addition lim gn(0) cannot be

one because (gn(0);n = 0, 1, . . .) is a nondecreasing sequence. If gn(0)

were slightly less than one then gn+1(0) = g
(

gn(0)
)

would be less than

gn(0) and the series were decreasing. Accordingly, q < 1 is the unique

solution of Equ. 10.22 in [0, 1[.

The answer is simple and straightforward: When a father has on the average

one son or less, the family name is doomed to disappear, when he has more

than one son there is a finite probability of survival 0 < (1−q) < 1, which, of

course, increases with increasing expectation value m, the average number of

sons. Reverend Henry William Watson correctly deduced that the extinction

probability is given by a root of Equ. (10.22). He failed, however, to recognize

that for m > 1 the relevant root is the one with q < 1 [105, 301]. It is

remarkable that it took almost fifty years for the mathematical community

to detect the error that has a drastic consequence for the result.

Replication and mutation as multitype branching process.

of the derivative at one particular point x = x1 and the difference in the arguments

f(b) − f(a) = (b − a) (∂f/∂x)|x=x1
, a < x < b .

The law of the mean is fulfilled at least at one point x1 on the arc between a and b.
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10.1.4 The Wright-Fisher and the Moran process

Here we shall introduce two common stochastic models in population biol-

ogy, the Wright-Fisher model named after Sewall Wright and Ronald Fisher

and the Moran model named after the Australian statistician Pat Moran.

The Wright-Fisher model and the Moran model are stochastic models for

evolution of allele distributions in populations with constant population size

[22]. The first model [92, 318] also addressed as beanbag population genetics

is presumably the simplest process for the illustration of genetic drift and

definitely the most popular one [43, 88, 136, 198] deals with strictly separated

generations, whereas the Moran process [212, 213] based on continuous time

and overlapping generations is generally more appealing to statistical physi-

cists. Both processes are introduced here for the simplest scenarios: haploid

organisms, two alleles of the gene under consideration and no mutation. Ex-

tension to more complicated cases is readily possible. The primary question

that was thought to be addressed by the two models is the evolution of

populations in case of neutrality for selection.

The Wright-Fisher process. The Wright-Fisher process is illustrated in Fig. 10.7.

A single reproduction event is modeled by a sequence of four steps: (i) A gene

is randomly chosen from the gene pool of generation T containing exactly N

genes distributed over m alleles, (ii) it is replicated, (iii) the original is put

back into the gene pool T , and (iv) the copy is put into the gene pool of

the next generation T + 1. The process is terminated when the next genera-

tion gene pool has exactly N genes. Since filling the gene pool of the T + 1

generation depends exclusively on the distribution of genes in the pool of

generation T , and earlier gene distributions have no influence on the process

the Wright-Fisher model is Markovian.

In order to simplify the analysis we assume two alleles A and B, which

are present in aT and bT copies in the gene pool at generation T . Since

the total number of genes is constant, aT + bT = N and bT = N − aT , we
are dealing with a single discrete variable, aT , T ∈ N. A new generation

T + 1 is produced from the gene pool at generation T through picking with
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Figure 10.7: The Wright-Fisher model of beanbag genetics. The gene pool

of generation T contains N gene copies chosen from m alleles. Generation T +1 is

built from generation T through ordered cyclic repetition of a four step event: (1)

random selection of one gene from the gene pool T , (2) error-free copying of the

gene, (3) putting back the original into gene pool T , and (4) placing the copy into

the gene pool of the next generation T + 1. The procedure is repeated until the

gene pool T + 1 contains exactly N genes. No mixing of generations is allowed.

replacement N times a gene. The probability to obtain n = aT+1 alleles A

in the new gene pool is given by the binomial distribution:

Prob (aT+1 = n) =

(

N

n

)

pn
A
pN−n
B

,

pA = aT/N and pB = bT/N = (N−aT )/N with pA+pB = 1 are the individual

probabilities of picking A or B, respectively. The transition probability from

m alleles A at time T to n alleles at time T + 1 is simply given by7,8

pnm =

(

N

n

)

(m

N

)n (

1− m

N

)N−n
. (10.23)

7The notation applied here is the conventional way of writing transitions in physics:

pnm is the probability of the transition n← m, whereas many mathematicians would write

pmn indicating m→ n.
8For doing actual calculations one has to recall the convention 00 = 1 used in prob-

ability theory and combinatorics but commonly not in analysis where 00 is an indefinite

expression.
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Since the construction of th e gene pool at generation T+1 is fully determined

by the gene distribution at generation T , the process is Markovian.

In order to study the evolution of a population an initial state has to be

specified. We assume that the number of alleles A has been n0 at generation

T = 0 and accordingly we are calculating the probability P (n, T |n0, 0). Since

the Wright-Fisher model does not contain any interactions between alleles or

mutual dependencies between processes involving alleles, the process can be

modeled by means of linear algebra. We define a probability vector p and a

transition matrix, P:

P(T ) = p(T ) =













p0(T )

p1(T )

p2(T )
...













and P =













p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...

. . .













.

Conservation of probability provides two conditions: (i) The probability vec-

tor has be normalized,
∑

n pn(T ) = 1 and (ii) has to remain normalized in

future generations,
∑

n pnm = 1.9 The evolution is now simply described by

the matrix equation

p(T + 1) = P · p(T ) or p(T ) = PT · p(0) . (10.24)

Equ. (10.24) is formally identical with the matrix formulation of linear dif-

ference equations, which are extensively discussed in [44, pp.179-216]. The

solutions of (10.24) are commonly analyzed in terms of the eigenvalues of

matrix P [89]

λk =

(

N

k

)

k!

Nk
; k = 0, 1, 2, . . . , (10.25)

and the corresponding eigenvectors. In case of the long-time behavior we only

consider the largest eigenvector or in case of degeneracy all eigenvectors be-

longing to the largest eigenvalue. Stationarity implies p(T + 1) = p(T ) = p̄,

or P p̄ = p̄, a stationary probability distribution is an eigenvector p̄ associ-

ated with an eigenvalue λ = 1 of the transition matrix P.

9A matrix P with this property is called a stochastic matrix.
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Here we are dealing with a case of degeneracy since the largest eigenvalue

λ = 1 is obtained twice from Equ. (10.25): λ0 = λ1 = 1. The corresponding

two eigenvectors are of the form

ζ0 = (1, 0, 0, 0, 0, . . . , 0)t and

ζ1 = (0, 0, 0, 0, 0, . . . , 1)t .
(10.26)

We have to recall that in case of degenerate eigenvalue any properly normal-

ized linear combination of the eigenvectors is also a legitimate solution of the

eigenvalue problem. Here we have to apply the L1-norm and obtain

η = α ζ0 + β ζ1 and α + β = 1 ,

and find for the general solution of the stationary state

η = (1− π, 0, 0, 0, 0, . . . , π)t . (10.27)

The interpretation of the result is straightforward: The allele A becomes

fixated in the population with probability π and is lost with probability

1 − π, and the Wright-Fisher model provides a simple explanation for gene

fixation by random drift. What remains to be calculated is the value of π.10

For this goal we make use of expectation vale of the number of alleles A and

show first that it does not change with generations:

E(aT+1) =
∑

n

npn(T+1) =
∑

n

n
∑

m

pnmpm(T ) =
∑

m

mpm(T ) = E(aT ) ,

where we made use of the relation

N
∑

n=0

n pnm =

N
∑

n=0

n

(

N

n

)

(m

N

)n (

1− m

N

)N−n

=
(

1− m

N

)N
N
∑

n=0

n

(

N

n

)(

m

N −m

)n

= m ,

10Although a stationary state does not depend on initial conditions in the nondegenerate

case, this is not true for the linear combination of degenerate eigenvectors: α and β, and

π are functions of the initial state.
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Figure 10.8: The Moran process. The Moran process is a continuous time

model for the same problem handled by the Wright-Fisher model (Fig. 10.7). The

gene pool of a population of N genes chosen from m alleles is represented by

the urn in the figure. Evolution proceeds via successive repetition of a four step

process: (1) One gene is chosen from the gene pool at random, (2) a second gene

is randomly chosen and deleted, (3) the first gene is copied, and (4) both genes,

original and copy, are put back into the urn. The Moran process has overlapping

generations and moreover the notion of generation is not well defined.

which is solved readily by making use of the finite series

N
∑

n=0

(

N

n

)

n γn = γ N (1 + γ)N−1 .

From the generation independent expectation value we obtain π:

n0 = E(aT ) = lim
T→∞

E(aT ) = N π ,

and the probability for the fixation of A finally is n0/N .

The Moran process. The Moran process introduced by Pat Moran [212] is a

continuous time process and deals with transitions that are defined for single

events. As in the Wright-Fisher model we are dealing with two alleles, A and

B, and the probabilities for choosing A or B are pA and pB, respectively. Unlike
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the Wright-Fisher model there is no defined previous generation from which

a next generation is formed by sampling N genes. Overlapping generations

make it difficult – if not impossible – to define generations unambiguously.

The event in the Moran process is a combined birth-and-death step: Two

genes are picked, one is copied and both template and copy are put back

into the urn, and the second one is deleted (see Fig. 10.8). The probabilities

are calculated form the state of the urn just before the event pA = n(t)/N

and pB =
(

N − n(t)
)

/N where n(t) is the number of alleles A, N − n(t) the
number of alleles B, and N is the constant total number of genes.

The transition matrix P of the Moran model is tridiagonal since only

the changes ∆n = 0,±1 can occur: The number of alleles A, n, remains

unchanged if two A’s or two B’s are chosen, if a pair A+ B is chosen and A

dies n decreases by one, and eventually if A reproduces n goes up by one:

pnm =







































(

1− m
N

)

pA(m) =
(

1− m
N

) (

m
N

)

, if n = m+ 1

(

m
N

)

pA(m) +
(

1− m
N

)

pB(m) =
(

m
N

)2
+
(

1− m
N

)2
, if n = m

(

m
N

)

pB(m) =
(

m
N

) (

1− m
N

)

, if n = m− 1

0 , otherwise ,

and probability conservation,
∑

n pnm = 1, is easily verified.

The transition matrix P = {pnm} has tridiagonal form and eigenvalues

and eigenvectors are readily calculated [212, 213]:

λk = 1 − k(k − 1)

N2
; k = 0, 1, 2, . . . , (10.28)

The first two eigenvectors are the same as found for the Wright-Fisher-model.

The third eigenvector can be used to calculate the evolution towards fixation:

p(t) ≈



















1− n0

N

0
...

0
n0

N



















+
6n0(N − n0)

N(N2 − 1)



















−N−1
2

1
...

1

−N−1
1



















(

1− 2

N2

)t

,

where n0 is the initial number of A alleles [22]. The stationary state is

identical with the fixation equilibrium in the Wright-Fisher model.
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10.2 Master equations in biology

10.3 Neutrality and Kimura’s theory of evolution
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[127] W. Grüner, R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L.
Hofacker, and P. Schuster. Analysis of RNA sequence structure maps by
exhaustive enumeration. II. Structures of neutral networks and shape space
covering. Mh.Chem., 127:375–389, 1996.
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[276] B. Stillman, D. Stewart, and J. Witkowski, editors. Evolution. The
Molecular Landscape, volume LXXIV of Cold Spring Harbor Symposia on
Quantitative Biology. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor, NY, 2009.

[277] R. L. Stratonovich. Introduction to the Theory of Random Noise. Gordon
and Breach, New York, 1963.

[278] I.-M. Sun, R. Wladerkiewicz, and A. Riuz-Carrillo. Histone H5 in the
control of DNA synthesis and cell proliferation. Science, 245:68–71, 1989.

[279] J. M. Svendsen and J. W. Harper. GEN1/Yen1 and the SLX4 complex:
Solution to the problem of Holliday junction resolution. Genes Dev.,
24:521–536, 2010.

[280] J. Swetina and P. Schuster. Self-replication with errors - A model for
polynucleotide replication. Biophys. Chem., 16:329–345, 1982.

[281] L. S. Symington and W. K. Holloman. Resolving resolvases: The final act?
Molecular Cell, 32:603–604, 2008.



BIBLIOGRAPHY 381

[282] P. Tarazona. Error thresholds for molecular quasispecies as phase
transitions: From simple landscapes to spin glasses. Phys.Rev. A,
45:6038–6050, 1992.
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Poisson, Siméon Denis, 227, 277
Prigogine, Ilya, 275

Raleigh, Sir Walter, 118
Rolle, Michel, 351

Schrödinger, Erwin, 118
Serrano, Luis, 88
Siemens, Hermann Werner, 27
Skipper Jr., Robert A., 75
Steffensen, Johan Frederik, 343
Stratonovich, Ruslan Leontevich, 260
Sutton, Walter, 36
Szostak, Jack, 39

Tatum, Edward Lawrie, 90
Tolman, Richard Chace, 281

Turelli, Michael, 75
Turing, Alan, 275

Uhlenbeck, George Eugene, 261
Ulam, Stan M., 343

van Valen, Leigh, 78
Verhulst, Jean François, 10
von Smoluchowski, Marian, 240, 246

Wade, Michael J., 75
Wahlund, Sten, 61
Wallace, Alfred Russel, 9
Watson, Henry William, 343
Watson, James, 90
Weinberg, Wilhelm, 27, 57
Weismann, August, 35
Wiener, Norbert, 247, 255
Wright, Sewall, 3, 67, 79, 352


