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Preface

The current text contains notes that were prepared first for a course on ‘Evo-
lutionary Dynamics’ held at Vienna University in the summer term 2014.
No claim is made that the text is free of errors. The course is addressed
to students of physics, chemistry, biology, biochemistry, molecular biology,
mathematical and theoretical biology, bioinformatics, and systems biology
with particular interests in evolutionary phenomena. Evolution although in
the heart of biology as expressed in Theodosius Dobzhansky famous quote,
"nothing in biology makes sense except in the light of evolution”,
is a truly interdisciplinary subject and hence the course will contain ele-
ments from various disciplines, mainly from mathematics, in particular dy-
namical systems theory and stochastic processes, computer science, chemical
kinetics, molecular biology, and evolutionary biology. Considerable usage of
mathematical language and analytical tools is indispensable, but we have
consciously avoided to dwell upon deeper and more formal mathematical
topics.

Evolution has been shifted into the center of biological thinking through
Charles Darwin’s centennial book 'On the Origin of Species’ [45]. Gregor
Mendel’s discovery of genetics [206] was the second milestone of evolutionary
biology but it remained largely ignored for almost forty years before it be-
came first an alternative concept to selection. Biologists were split into two
camps, the selectionists believing in continuity in evolution and the geneti-
cists, who insisted in the discreteness of change in the form of mutation (An
account of the historic development of mutation as an ides is found in the
recent publication [34]. The unification of two concepts was first achieved
on the level of a mathematical theory through population genetics [92, 318|
developed by the three great scholars Ronald Fisher, J.B.S. Haldane, and
Sewall Wright. Still it took twenty more years before the synthetic theory
of evolution had been completed [202]. Almost all attempts of biologists
to understand evolution were and most of them still are completely free
of quantitative or mathematical thinking. The two famous exceptions are
Mendelian genetics and populations genetics. It is impossible, however, to
model or understand dynamics without quantitative description. Only re-
cently and mainly because of the true flood of hitherto unaccessible data the
desire for a new and quantitative theoretical biology has been articulated
[26,27]. We shall focus in this course on dynamical models of evolutionary
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processes, which are rooted in physics, chemistry, and molecular biology. On
the other hand, any useful theory in biology has to be grounded on a solid
experimental basis. Most experimental data on evolution at the molecular
level are currently focussing on genomes and accordingly, sequence compar-
isons and reconstruction of phylogenetic trees are a topic of primary interest
[232]. The fast, almost explosive development of molecular life sciences has
reshaped the theory of evolution [276]. RNA has been considered as a rather
uninteresting molecule until the discovery of RNA catalysis by Thomas Cech
and Sidney Altman in the nineteen eighties, nowadays RNA is understood as
an important regulator of gene activity [9], and we have definitely not come
near to the end of the exciting RNA story.

This series of lectures will concentrate on principles rather than techni-
cal details. At the same time it will be necessary to elaborate tools that
allow to treat real problems. The tools required for the analysis of dynam-
ical systems are described, for example, in the two monographs [143, 144].
For stochastic processes we shall follow the approach taken in the book [107]
and presented in the course of the Summer term 2011 [36,251]. Some of the
stochastic models in evolution presented here are described in the excellent
review [22]. Analytical results on evolutionary processes are rare and thus it
will be unavoidable to deal also with approximation methods and numerical
techniques that are able to produce results through computer calculations
(see, for example, the article [112,113,115,117]). The applicability of sim-
ulations to real problems depends critically on population sizes that can by
handled. Present day computers can readily deal with 10° to 107 particles,
which is commonly not enough for chemical reactions but sufficient for most
biological problems and accordingly the sections dealing with practical ex-
amples will contain more biological than chemical problems. A number of
text books have been used in the preparation of this text in addition to the
web encyclopedia Wikipedia. In molecular biology, molecular genetics, and
population genetics these texts were [5,125, 130, 136]

The major goal of this text is to avoid distraction of the audience by taking
notes and to facilitate understanding of subjects that are quite sophisticated
at least in parts. At the same time the text allows for a repetition of the
major issues of the course. Accordingly, an attempt was made in preparing a
useful and comprehensive list of references. To study the literature in detail
is recommended to every serious scholar who wants to progress towards a
deeper understanding of this rather demanding discipline.

Peter Schuster Wien, February 2014.



1. Darwin’s principle in mathematical language

Charles Darwin’s principle of natural selection is a powerful abstraction
from observations, which provides insight into the basic mechanism giving
rise to changing species. Species or populations don’t multiply but individu-
als do, either directly in asexual species, like viruses, bacteria or protists, or
in sexual species through pairings of individuals with opposite sex. Variabil-
ity of individuals in populations is an empirical fact that can be seen easily
in everyday life. Within populations the variants are subjected to natural
selection and those having more progeny prevail in future generations. The
power of Darwin’s abstraction lies in the fact that neither the shape and
the structure of individuals nor the mechanism of inheritance are relevant
for selection unless they have an impact on the number of offspring. Oth-
erwise Darwin’s approach had been doomed to fail since his imagination of
inheritance was incorrect. Indeed Darwin’s principle holds simultaneously for
highly developed organisms, for primitive unicellular species like bacteria, for
viruses and even for reproducing molecules in cell-free assays.

Molecular biology provided a powerful possibility to study evolution in its
simplest form outside biology: Replicating ribonucleic acid molecules (RNA)
in cell-free assays [268] play natural selection in its purest form: In the test
tube, evolution, selection, and optimization are liberated from all unneces-
sary complex features, from obscuring details, and from unimportant acces-
sories. Hence, in vitro evolution can be studied by the methods of chemical
kinetics. The parameters determining the “fitness of molecules” are repli-
cation rate parameters, binding constants, and other measurable quantities,
which can be determined independently of in witro evolution experiments,
and constitute an alternative access to the determination of the outcome of
selection. Thereby “survival of the fittest” is unambiguously freed from the
reproach of being the mere tautology of “survival of the survivor”. In ad-

dition, in wvitro selection turned out to be extremely useful for the synthesis
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of molecules that are tailored for predefined purposes. A new area of appli-
cations called evolutionary biotechnology branched off evolution in the test
tube. Examples for evolutionary design of molecules are [166, 176] for nucleic
acids, [25,161] for proteins, and [316] for small organic molecules.

The chapter starts by mentioning a few examples of biological applica-
tions of mathematics before Darwin (section 1.1), then we derive and analyze
an ODE describing simple selection with asexual species (section 1.2), and
consider the effects of variable population size (section 1.3). The next sub-
section 1.4 analyzes optimization in the Darwinian sense, and eventually we

consider generic properties of typical growth functions (section 1.5).

1.1 Counting and modeling before Darwin

The first mathematical model that seems to be relevant for evolution was
conceived by the medieval mathematician Leonardo Pisano also known as
Fibonacci. His famous book Liber abaci has been finished and published in
the year 1202 and was translated into modern English eight years ago [264].
Among several other important contributions to mathematics in Europe Fi-
bonacci discusses a model of rabbit multiplication in Liber abaci. Couples
of rabbits reproduce and produce young couples of rabbits according to the

following rules:

(i) Every adult couple has a progeny of one young couple per month,

(ii) a young couple grows to adulthood within the first month and accord-

ingly begins producing offspring in the second months,
(iii) rabbits live forever, and
(iv) the number of rabbit couples is updated every month.

The model starts with one young couple (1), nothing happens during mat-
uration of couple 1 in the first month and we have still one couple in the
second month. In the third month, eventually, a young couple (2) is born
and the number of couples increases to two. In the fourth month couple 1

produces a new couple (3) whereas couple 2 is growing to adulthood, and
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we have three couples now. Further rabbit counting yields the Fibonacci

sequence:!

month 0 1 2 3 4 5 6 7 8 9
#couples 0 1 1 2 3 5 8 13 21 34

It is straightforward to derive a recursion for the rabbit count. The number
of couples in month (n + 1), f,11, is the sum of two terms: The number
of couples in month n, because rabbits don’t die, plus the number of young

couples that is identical to the number of couples in month (n — 1):

Jos1 = faor+ fn with fo=0 and fi=1. (1.1)

With increasing n the ratio of two subsequent Fibonacci numbers converges
to the golden ratio, fixy1/fr = (1++/5)/2 (For a comprehensive discussion of
the Fibonacci sequence and its properties see [124, pp.290-301] or, e.g., [61]).

In order to proof this convergence we make use of a matrix representation

of the Fibonacci model:

" fO _ fn with F = fO fl and F" — fn—l fn '
fl fn+1 fl f2 fn fn+1

The matrix representation transforms the recursion into an expression that

allows for direct computation of the elements of the Fibonacci sequence.

ee e (@)-eas 1) () e

Theorem 1.1 (Fibonacci convergence). With increasing n the Fibonacci

sequence converges to a geometric progression with the golden ratio as factor,
q=(1++5)/2.
Proof. The matrix F is diagonalized by the transformation 7-'-F.T = D

A0
with D = (Ol W The two eigenvalues of F are: ;5 = (14+/5)/2. Since
2

! According to Parmanand Singh [265] the Fibonacci numbers were invented earlier in

India and used for the solution of various problems (See also Donald Knuth [178]).
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number of pairs f,

1 2 3 4 5

generation number n

Figure 1.1: Fibonacci series and geometric progression. The Fibonacci
series (1.1) (blue) is compared with the geometric progression g,, = ¢"/+/5 with ¢ =
(14++/5)/2 (red). The Fibonacci series oscillates around the geometric progression

with decreasing amplitude and converges asymptotically to it.

F is a symmetric matrix the L?-normalized eigenvectors of F, (e, e;) = T,

form an orthonormal set,

1 1
10
A A T-T’z( )
V12 /1423 01

with T’ being the transposed matrix, and T-! = T'. Computation of the

n-th power of matrix F yields

poor.prr =1 (M0 ) o (AT M
0 )\g \/5 )\’il_)\g )\TH—)\S“ )

from which the expression for f, is obtained by comparison with (1.2)

1 n n
fo= ﬁ(/\l —A3) (1.3)
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Because \; > A the ratio converges to zero: lim, ,., Ab/A} = 0, and the
Fibonacci sequence is approximated well by a geometric progression f, ~
gn:%q” with ¢ = (1+/5)/2. O

Since A, is negative the Fibonacci sequence alternates around the geometric
progression. Expression (1.3) is commonly attributed to the French mathe-
matician Jacques Binet [21] and named after him. As outlined in ref. [124,
p-299] the formula has been derived already hundred years before by the
great Swiss mathematician Leonhard Euler [80] but was forgotten and redis-

covered.

Thomas Robert Malthus was the first who articulated the ecological and
economic problem of population growth following a geometric progression
[193]: Animal or human populations like every system capable of repro-
duction grow like a geometric progression provided unlimited resources are
available. The resources, however, are either constant or grow — as Malthus
assumes — according to an arithmetic progression if human endeavor is in-
volved. The production of nutrition, says Malthus, is proportional to the land
that is exploitable for agriculture and the gain in the area of fields will be a
constant in time — the increase will be the same every year. An inevitable
result of Malthus’ vision of the world is the pessimistic view that populations
will grow until the majority of individuals will die premature of malnutrition
and hunger. Malthus could not foresee the green revolutions but he was also
unaware that population growth can be faster than exponential — sufficient
nutrition for the entire human population is still a problem. Charles Darwin
and his younger contemporary Alfred Russel Wallace were strongly influ-
enced by Robert Malthus and took form population theory that in the wild,
where birth control does not exist and individuals fight for food, the major
fraction of of progeny will die before they reach the age of reproduction and

only the strongest will have a chance to multiply.
Leonhard Euler introduced the notions of the exponential function in the

middle of the eighteenth century [81] and set the stage for modeling growing
populations by means of ordinary differential equations (ODEs). The growth
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rate is proportional to the number of individuals or the population size N

dN
— =7rN 1.4
where the parameter r is commonly called Malthus or growth parameter.

Straightforward integration yields:

N(t) dN t
/ v / dt and N(t) = Npexp(rt) with No= N(0). (15)
Noy N 0
Simple reproduction results in exponential growth of a population with N (¢)
individuals.
Presumably not known to Darwin, the mathematician Jean Francois Ver-
hulst complemented the concept of exponential growth by the introduction
of finite resources [292-294]. The Verhulst equation is of the form?

dN N

where N(t) again denotes the number of individuals of a species X, and K
is the carrying capacity of the ecological niche or the ecosystem. Equ. (1.6)

can be integrated by means of partial fractions (v = 1/K):

- @@ == - + ,
N NI —=7N) N N N L1—7N
and the following solution is obtained

K
Ny + (K — NO) exp(—rt)

N(t) = Ny (1.7)
Apart from the initial condition Ny, the number of individuals X at time
t = 0, the logistic equation has two parameters: (i) the Malthusian parameter
or the growth rate r and (ii) the carrying capacity K of the ecological niche
or the ecosystem. A population of size Ny grows exponentially at short
times: N(t) ~ Nyexp(rt) for K > N, and ¢ sufficiently small. For long

2The Verhulst equation is also called logistic equation and its discrete analogue is the
logistic map, a standard model to demonstrate the occurrence of deterministic chaos in a

simple system. The name logistic equation was coined by Verhulst himself in 1845.
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Figure 1.2: Solution curves of the logistic equations (1.7,1.13). Upper plot:
The black curve illustrates growth in population size from a single individual to
a population at the carrying capacity of the ecosystem. The red curve represents
the results for unlimited exponential growth, N(¢) = N(0)exp(rt). Parameters:
r =2, N0) =1, and K = 10000. Lower plot: Growth and internal selection is
illustrated in a population with four variants. Color code: C' black, N; yellow,
Ny green, N3 red, Ny blue. Parameters: fitness values f; = (1.75,2.25,2.35,2.80),
N;(0) = (0.8888,0.0888, 0.0020,0.0004), K = 10000. The parameters were ad-
justed such that the curves for the total populations size N(t¢) coincide (almost)

in both plots.
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times the population size approaches the carrying capacity asymptotically:
lim; ,o N(t) = K.

The two parameters r and K are taken as criteria to distinguish different
evolutionary strategies: Species that are r-selected exploit ecological niches
with low density, produce a large number of offspring each of which has a low
probability to survive, whereas K-selected species are strongly competing in
crowded niches and invest heavily in few offspring that have a high proba-
bility of survival to adulthood. The two cases, r- and K-selection, are the
extreme situations of a continuum of mixed selection strategies. In the real
world the r-selection strategy is an appropriate adaptation to fast chang-
ing environments, whereas K-selection pays in slowly varying or constant

environments.

1.2 The selection equation

The logistic equation can be interpreted differently and this is useful is the
forthcoming analysis: In the second term — —(N/K)rN — the expression
rN/K is identified with a constraint for limiting growth: rN/K = ¢(t),

v _ N(r-o) . (1.6)

The introduction of ¢(t) gives room for other interpretations of constraints
than carrying capacities of ecosystems. For example, ¢(¢) may be a dilution
flux in laboratory experiments on evolution in flow reactors [234, pp.21-27].
Equ. (1.6%) falls into the class of replicator equations, dx/dt = x F(x) [253],
which describe the time development of the concentrations of replicators X.

Equ. (1.6”) can be used now for the derivation of a selection equation in
the spirit of Darwin’s theory. The single species X is replaced by several
variants forming a population, T = {X;,Xs,...,X,}; in the language of
chemical kinetics competition and selection are readily cast into a reaction

mechanism consisting of n independent, simple replication reactions:

fi
(A)—i—Xj —_— 2Xj, 7=12....n. (1.8)
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Figure 1.3: Solution curve of the selection equation (1.13). The system
is studied at constant maximal population size, N = K, and relative concen-
trations are applied: x; = N;/K. The plots represent calculated changes of
the variant distributions with time. The upper plot shows selection among
three species X; (yellow), X (green), and X3 (red), and then the appearance
of a fourth, fitter variant X, (blue) at time ¢ = 6, which takes over and
becomes selected thereafter. The lower plot presents an enlargement of the
upper plot around the point of spontaneous creation of the fourth species
(X4). Parameters: fitness values f; = (1,2,3,7); z;(0) = (0.9,0.08,0.02,0)
and x4(6) = 0.0001.
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The symbol A denotes the material from which X; is synthesized (It is put
in parentheses, because we assume that it is present in access and its con-
centration is constant therefore). The numbers of individuals of the variants
are denoted by N;(t), or in vector notation N(t) = (Ny(t), Na(t), ..., N,(t))
with Y7 | N;(t) = C(t). A common carrying capacity is defined for all n

variants:

The Malthus parameters are given here by the fitness values f1, fo, ..., fu,
respectively. For individual species the differential equations take on the
form
% = N; (fj — %gf)(t)) :j=1,2,...,n with
L& (1.9)
o(t) = c > fiNi(t)
i=1

being the mean fitness of the population. Summation over all species yields

a differential equation for the total population size

% —C (1 - %) o(t) . (1.10)

Stability analysis is straightforward: From dC/dt = 0 follow two stationary
states of equ. (1.10): (i) C = 0 and (ii) C' = K.? For conventional stability
analysis we calculate the (1 x 1) Jacobian and obtain for the eigenvalue

a(dc/at) C
=~ o(t)

a0\ C2 09
) K oC -

— —= | 20(t) - K

< ( o(1) ~ K22
Insertion of the stationary values yields A\;) = ¢ > 0 and A\ = —¢ < 0, state
(i) is unstable and state (ii) is asymptotically stable. The total population

size converges to the value of the carrying capacity, lim; ., C(t) = C = K.

3There is also a third stationary state defined by ¢ = 0. For strictly positive fitness val-
ues, f; > 0Vi=1,2,... n, this condition can only be fulfilled by N, =0V:i=1,2,...,n,
which is identical to state (i). If some f; values are zero — corresponding to lethal variants
— the respective variables vanish in the infinite time limit because of dN;/dt = —¢(t) N;
with ¢(t) > 0.
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Equ. (1.10) can be solved exactly yielding thereby an expression that con-

tains integration of the constraint ¢(t):

K . ¢
CW = OO R e " e /O o(r)dr

where C'(0) is the population size at time ¢ = 0. The function ®(¢) depends

on the distribution of fitness values within the population and its time course.
For fi = fo = ... = f, = r the integral yields ® = rt and we retain equ. (1.7).
In the long time limit ¢ grows to infinity and C(¢) converges to the carrying
capacity K.

At constant population size C = C' = K equ. (1.9) becomes simpler

dN;

=N (fime): i=12.m. (1.9)

and can be solved exactly by means of the integrating factor transformation

(329, p. 3221£.]:
Z,(8) = N;(t) exp (/0 $(7) dT) | (1.11)

Insertion into equ. (1.9") yields

b - [ 18) () -
— 7, exp ( /0 —¢(T),d¢) (1 o) .

dZ;
=%, j=12...n o dZ/di = F-Z, (1.12)
where F is a diagonal matrix containing the fitness values f; (j =1,2,...,n)

as elements. Using the trivial equality Z;(0) = N,(0) we obtain for the

individual genotypes:

C
221 Ni(0) exp(fit)

Equ. (1.13) encapsulates Darwinian selection and optimization of fitness in

N;(t) = N;(0) exp(f;t)

=12 ...,n. (1.13)

populations that will be discussed in detail in section 1.4.
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The use of normalized or internal variables x; = N;/C provides certain
advantages and we shall use them whenever we are dealing with constant

population size. The ODE is of the form

dz; . .
d—t] = fjxj - $J¢(t) =Ty <f] - ¢(t)>7 ] = 1, 2, o with

n (1.14)
o(t) = Z fizi

i=1

the solution is trivially the same as in case of equ.(1.9):
(0 il
2(t) = Q) ~1,2,....n. (1.15)

S a0 ep(fd) T

The use of normalized variables, > | x; = 1, defines the unit simplex, SS) =
{0 <o <1Vi=1,....nAY ",z = 1}, as the physically accessible
domain that fulfils the conservation relation. All boundaries of the simplex —
corners, edges, faces, etc. — are invariant sets, since z; =0 = dx;/dt =0
by equ. (1.14).

Asymptotic stability of the simplex follows from the stability analysis
of equ. (1.10) and implies that all solution curves converge to the unit sim-
plex from every initial condition, lim; . (Z?Zl a:l(t)> = 1. In other words,
starting with any initial value C(0) # 1 the population approaches the unit
simplex. When it starts on §S,, it stays there and in presence of fluctuations
it will return to the invariant manifold. As long as the population is finite,
0 < C < 400, and since N;(t) = z;(t) - C(t), we can restrict population
dynamics to the unit simplex without loosing generality and characterize the
state of a population at time ¢ by the vector #(t) which fulfils the L) norm
Yo zi(t) =1 (as an example see fig. 1.4). In the next section 1.3 we shall
consider variable C'(t) explicitly.

1.3 Variable population size

Now we shall show that the solution of equ. (1.9) describes the internal equi-
libration for constant and variable population sizes as long as the popu-
lation does neither explode nor die out, 0 < C(t) < 400 [71]. The va-

lidity of theorem 1.2 as will be shown below is not restricted to constant
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fitness values f; and hence we can replace them by general growth functions
G;(Ny,...,N,) = G;j(N) or fitness functions F;(N) with G,;(N) = F;(N)N;
in the special case of replicator equations [253]: dN;/dt = N;(F;(N)—¥(t))
where W(t) comprises both, variable total concentration and constraint.
Time dependence of the conditions in the ecosystem can be introduced in
two ways: (i) variable carrying capacity, K (t) = C(t), and (ii) a constraint or
flux (t),* where flux refers to some specific physical device, for example to a
flow reactor. The first case is given, for example, by changes in the environ-
ment as there are periodic changes like day and night or seasons. In addition
there are slow non-periodic changes or changes with very long periods like
climatic change. Constraints and fluxes may correspond to unspecific or spe-
cific migration.® Considering time dependent carrying capacity and variable
constraints simultaneously, we obtain
dN; N;
5 =GN - K(Jt)

e(t); 7=1,2,...,n. (1.16)

Summation over the concentrations of all variants X; and restricting the
analysis to slowly changing environments — K (¢) varies on a time scale that
is much longer than the time scale of population growth C'(¢) — we can assume
that the total concentration is quasi equilibrated, C' ~ C' = K, and obtain a

relation between the time dependencies of flux and total concentration:

) =Y G - 5 o

C(t) =C(0) + /0 (Z G;(N) — W)) dr .

The proof for internal equilibration in growing populations is straightforward.

(1.17)

4There is a difference in the definitions of the fluxes ¢ and o: ¢(t) = ¢(t)/C(t).
5 Unspecific migration means that the numbers N; of individuals for each variant X;

decrease (or increase) proportional to the numbers of individuals currently present in the
population, dN; = EN;dt. Specific migration is anything else. In a flow reactor, for
example, we have a dilution flux corresponding to unspecific emigration and an influx of

one or a few molecular species corresponding to specific immigration into the reactor.
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Theorem 1.2 (Equilibration in populations of variable size). Evolution in
populations of changing size approaches the same internal equilibrium as evo-
lution in populations of constant size provided the growth functions are homo-
geneous functions of degree vy in the variables N;. Up to a transformation of
the time axis, stationary and variable populations have identical trajectories

provided the population size stays finite and does not vanish.

Proof. Normalized variables, z; = N;/C with > "  x; = 1, are introduced
in order to separate of population growth, C(t¢), and population internal

changes in the distribution of variants X;. From equations (1.16) and (1.17)
with C' = C' = K and N; = Cx; follows:

dz; _ 1

The growth functions are assumed to be homogeneous of degree 7 in the
variables® N;: G;(N) = G;(Cz) = C7" G;(x). and we find

L dzy
Cr 1 dt

=Gj(x) —2;» Gi(m):; j=12,....n,
=1

which is identical to the selection equation in normalized variables for C' = 1.
For v = 1 the concentration term vanishes and the dynamics in populations
of constant and variable size are described by the same ODE. In case v # 1
the two systems still have identical trajectories and equilibrium points up to

a transformation of the time axis (for an example see section 4.2):

t
dt =C"1dt and t=1t,+ [ C7'(t)dt,
to
where t, is the time corresponding to ¢ = 0 — commonly {, = 0. From

equ. (1.18) we expect instabilities at C' = 0 and C' = oo. O

6A homogenous function of degree 7 is defined by G(Cx) = C7G(z). The degree
v is determined by the mechanism of reproduction. For sexual reproduction according
to Ronald Fisher’s selection equation (2.9) we have v = 2 [92]. Asexual reproduction

discussed here fulfils v = 1.
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The instability at vanishing population size, lim C' — 0, is, for example, also
of practical importance for modeling drug action on viral replication. In
the case of lethal mutagenesis [30,31,283] medication aims at eradication
of the virus population, C' — 0, in order to terminate the infection of the
host. At the instant of virus extinction equ. (1.9) is no longer applicable (see
chapter 6.2).

1.4 Optimization

For the discussion of the interplay of selection and optimization we shall
assume here that all fitness values f; are different. The case of neutrality will

be analyzed in chapter 10.3 and without loosing generality we rank them:
fi>fo> ... > fu1 > fu. (119)
The variables x;(t) fulfil two time limits:

limz;(t) =2;(0) Vj=1,2,...,n by definition, and

t—0

) liff j =1

lim z;(t) =

fmreo o0vj=2...,n.

In the long time limit the population becomes homogeneous and contains only
the fittest genotype X;. The process of selection is illustrated best by differ-
ential fitness, f; — ¢(t), the second factor in the ODE (1.14): The constraint
o(t) = Y.r, fixi = [ represents the mean fitness of the population. The
population variables xz; of all variants with a fitness below average, f; < ¢(¢),
decrease whereas the variables xj, with f;, > ¢(t) increase. As a consequence
the average fitness ¢(t) is increasing too and more genotypes fall below the
threshold for survival. The process continues until the fittest variant is se-
lected. Since another view of optimization will be needed in chapter 2, we
present another proof for the optimization of mean fitness without referring

to differential fitness.

Theorem 1.3 (Optimization of mean fitness). The mean fitness ¢(t) = f =
Yowy fizi with Y77 x; = 1 in a population as described by equ. (1.14) i

»

non-decreasing.
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Proof. The time dependence of the mean fitness or flux ¢ is given by

' i=1 =1
- foxi _Zfixiz:fjxj = (1.20)
=1 i=1 =1

— 2
== () =var{f} 2 0.
Since a variance is always nonnegative, equ. (1.20) implies that ¢(¢) is a non-

decreasing function of time. O

The condition var{f} = 0 is met only by homogeneous populations. The

one containing only the fittest variant X; has the largest possible mean fit-
ness: f = ¢max = f1 = max{f;;j = 1,2,...,n}. ¢ cannot increase any
further and hence, it was been optimized by the selection process. The state
of maximal fitness of population T = {Xy,..., X, },
Z|max{e(r)) = {71 = L,x; = 0Vi = 2,...,n} = Py, is the unique stable
stationary state, and all trajectories starting from initial conditions with
nonzero amounts of Xy, 1 > 0, have P; as w-limit. An illustration of the
selection process with three variants and the trajectories are plotted on the
unit simplex S:(,}) is shown in figure 1.4.

Gradient systems [143, p.199] facilitate the analysis of the dynamics, they
obey the equation

dx
e —grad{V(z)} = —-VV(x) (1.21)

and fulfil criteria that are relevant for optimization:

(i) The eigenvalues of the linearization of (1.21) evaluated at the equilib-

rium point are real.

(i) If &y is an isolated minimum of V' then @, is an asymptotically stable
solution of (1.21).

(iii) If «(t) is a solution of (1.21) that is not an equilibrium point, then
V(a}(t)) is a strictly decreasing function and the trajectories are per-

pendicular to the constant level sets of V.
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Figure 1.4: Selection on the unit simplex. In the upper part of the figure we
show solution curves (t) of equ. (1.15) with n = 3. The parameter values are:
fi=3[t71], fo=2[t"1], and f3 = 1[t7}], where [t~!] is an arbitrary reciprocal
time unit. The two sets of curves differ with respect to the initial conditions:
(i) 2(0) = (0.02,0.08,0.90), dotted curves, and (i) (0) = (0.0001,0.0999, 0.9000),
full curves. Color code: z1(t) black, z2(t) red, and z3(t) green. The lower part of

)

the figure shows parametric plots «(¢) on the unit simplex Sgl . Constant level sets

of ¢(x) = f are shown in grey. The trajectories refer to different initial conditions.
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Figure 1.5: Typical functions describing unlimited growth. All functions
are normalized in order to fulfil the conditions zyp = 1 and dz/dt|;—g = 1. The
individual curves show hyperbolic growth (z(¢) = 1/(1 — t); magenta; the dotted
line indicates the position of the instability), exponential growth (z(t) = exp(t);
red), parabolic growth (2(t) = (1+t/2)?; blue), linear growth (2(¢) = 1+t; black),
sublinear growth (z(t) = /1 + 2t; turquoise), logarithmic growth

(2(t) = 1+ log(1 + t); green), and sublogarithmic growth (z(t) = 1 4 ¢/(1 + t);

yellow; the dotted line indicates the maximum value zyax: limy o0 2(t) = Zmax)-

(iv) Neither periodic nor chaotic solutions of (1.21) do exist.

The relation between gradients systems and optimization is clearly seen from
the first part of (iii): Replacing the minus signs in equ. (1.21) by plus signs
reveals that V (2(t)) is non-decreasing and approaches a (at least local) max-
imum in the limit £ — oco. As easily seen from figure 1.4 the trajectories of
(1.14) are not perpendicular to the constant level sets of ¢(x) and hence,
equ. (1.14) is not a gradient system in the strict sense. With the definition
of a generalized inner product corresponding to a Riemannian metric [261],
however, the selection equation can be visualized as a generalized gradient

and oscillations as well as deterministic chaos can be excluded [255].
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1.5 Growth functions and selection

It is worth considering different classes of growth functions z(t) and the be-
havior of long time solutions of the corresponding ODEs. An intimately
related problem concerns population dynamics: What is the long time or
equilibrium distribution of genotypes in a normalized population, lim, .. 2(t)
provided the initial distribution has been ay? Is there a universal long time
behavior, for example selection, coexistence or cooperation, that is charac-
teristic for certain classes of growth functions?

Differential equations describing unlimited growth of the class

dz
— f.n 1.22
will be compared here. Integration yields two types of general solutions for

the initial value z(0) = z

1—n)

2(t) = (20" + (1 — n)ft)l/( for n#1 and (1.22a)
2(t) = 2y - et for n=1. (1.22b)

In order to make growth functions comparable we normalize them such that
they fulfil the two conditions zy = 1 and dz/ dt|;—o = 1. For both equs. (1.22)
this yields zo = 1 and f = 1. The different classes of growth functions, which
are drawn in different colors in figure 1.5, are characterized by the following

behavior:

(i) Hyperbolic growth requires n > 1; for n = 2 it yields a solution curve
of the form z(t) = 1/(1 —t). Characteristic is the existence of an
instability in the sense that z(t) approaches infinity at some critical
time, limy_, 2(f) = oo with ¢, = 1. The selection behavior of hy-
perbolic growth is illustrated by the Schlogl model:” dz;/dt = f;z7;
j =1,2,...,n. Depending on the initial conditions each of the repli-

cators X; can be selected. X,, the species with the highest replication

"The Schldgl model is tantamount to Fisher’s selection equation with diagonal terms
only: f; =aj;;j=1,2,...,n [242].
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parameter, f,, = max{f;i = 1,2,...,n} has the largest basin of at-
traction and the highest probability to be selected. After selection has
occurred a new species X; is extremely unlikely to replace the cur-
rent species X,,, even if its replication parameter is substantially higher,

fr > fmn. This phenomenon is called once-for-ever selection.

Exponential growth is observed for n = 1 and described by the so-
lution z(t) = e'. It represents the most common growth function in
biology. The species X,, having the highest replication parameter,
fm = max{fi;i = 1,2,..., N}, is always selected, lim; ,o. z,, = 1. In-
jection of a new species X, with a still higher replication parameter,
fr > fm, leads to selection of the fitter variant X, (fig.1.3).

Parabolic growth occurs for 0 < n < 1 and for n = 1/2 has the solution
curve z(t) = (1 —t/2)?. Tt is observed, for example, in enzyme free
replication of oligonucleotides that form a stable duplex, i.e. a complex
of one plus and one minus strand [295]. Depending on parameters and

concentrations coexistence or selection may occur [311].

Linear growth follows from n = 0 and takes on the form z(t) = 1+ t.
Linear growth is observed, for example, in replicase catalyzed replica-

tion of RNA at enzyme saturation [17].

Sublinear growth occurs for n < 0. In particular, for n = —1 gives rise
to the solution z(t) = (1 + 2¢)1/2 = /1 + 2t.

In addition we mention also two additional forms of weak growth that do not

follow from equ. (1.22):

(vi) Logarithmic growth that can be expressed by the function z(t) = zy +

In(1+ ft) or 2(1) = 1 +In(1 + ¢) after normalization, and

(vii) sublogarithmic growth modeled by the function z(t) = zo + ft/(1+ ft)

or z(t) =1+1t/(1 +t) in normalized form.

Hyperbolic growth, parabolic growth, and sublinear growth constitute fam-

ilies of solution curves that are defined by a certain parameter range (see
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figure 1.5), for example a range of exponents, Ny < 7 < Npignh, Whereas expo-
nential growth, linear growth and logarithmic growth are critical curves sepa-
rating zones of characteristic growth behavior: Logarithmic growth separates
growth functions approaching infinity in the limit t — oo, lim;_,o, 2(t) = o0
from those that remain finite, lim; ;o 2(t) = 200 < 00, linear growth sepa-
rates concave from convex growth functions, and exponential growth eventu-
ally separates growth functions that reach infinity at finite times from those
that don’t.
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2. Mendel’s genetics and recombination

Darwin’s principle of natural selection was derived from a wealth of ob-
served adaptations that he had made during all his life and in particular
on a journey all around the world, which he made as the naturalist on
H.M.S. Beagle. Although adaptations are readily recognizable in nature with
educated eyes, very little was evident about the mechanisms of inheritance
except perhaps the general principle that children resemble their parents to
some degree. Similarity in habitus manifests itself nowhere so clearly as with
identical twins, and this was, of course, already noticed long time before ge-
netics has been discovered and analyzed. Although twins were of interest to
scholars since the beginnings of civilization, for example in the fifth century
B.C. the Greek physician Hippocrates had been studying similarity in the
course of diseases in twins, the modern history of twin research was initiated
only since the nineteenth century by the polymath Sir Francis Galton, who
was a cousin of Charles Darwin. The lack of insight into the mechanisms of
inheritance, however, caused him and many other scientists and physicians
afterwards — among them also the population geneticist Ronald Fisher [91] —
to miss the difference between monozygotic (MZ) or identical and dizygotic
(DZ) or fraternal twins. Before Fisher’s failure, however, this difference had
been recognized already by the German physician and pioneer of population
genetics Wilhelm Weinberg [303] and later rediscovered and documented by
the German physician Hermann Werner Siemens [263].

Darwin’s ideas on inheritance focussed on the concept of pangenesis,
which assumed that tiny particles from cells, so called gemmules, are trans-
mitted from parents to offspring and maternal and paternal features are
blended in the progeny. Pangenesis, however, was wrong in two important
aspects: (i) Not all cells contribute to inheritance only the germ cells [304]
and (ii) inheritance occurs in discrete packages nowadays called genes, many

features, for example the colors or leaves, flowers or fruits, are discrete rather

27
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than continuously varying. Here we shall start with a discussion of Gre-
gor Mendel’s experiments on Pisum sativum, the garden pea [206], and Hi-
eracium, the hawkweed [207], and after that introduce elementary population
genetics and, in particular, we derive the Hardy-Weinberg equilibrium, and
analyze Fisher’s selection equation and the fundamental theorem. Finally we

shall discuss Fisher’s criticism on Mendel’s work.

2.1 Mendel’s experiments

The Augustinian friar Gregor Mendel performed a series of experiments with
plants under controlled fertilization (For a detailed outline of Mendel’s ex-
periments and patterns of inheritance in general see [125, pp.27-66]. Luckily
Mendel was choosing the garden pea, Pisum sativum as the object of his
studies. His works are remarkable for at least two reasons: (i) Mendel im-
proved the experimental pollination technique in such a way that unintended
fertilization could be excluded (Among more than 10000 plants, which were
carefully examined, only in a very few cases an indubitable false impregna-
tion by foreign pollen had occurred), and (ii) he discovered a statistical law
and therefore he had to carry out a sufficiently large number of individual
experiments before the regularities became evident.

Mendel’s contributions to evolutionary biology were twofold:
(i) He discovered two laws of inheritance, Mendel’s first law called the law of
segregation — the hereditary material is cut into pieces that represent individ-
ual characters in the offspring, and Mendel’s second law called independent
assortment — the hereditary characters from father and mother come into a
pool are combined anew without reference to their parental combinations.
(ii) By careful planning and recording of experiments he found two modes
of hereditary transmission: Dominance — one of the two parental features is
reproducibly transmitted to the offspring whereas the second one disappears
completely in the first generation (F1) —and recessiveness — a feature that has
disappeared in the first generation will show up again if hybrid individuals
of the first generation are crossed among each other (F2).

Gregor Mendel was choosing seven characters for experimental recording;:
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Figure 2.1: Mendelian genetics. The rules of genetic inheritance are illustrated
by means of a simple sketch. Flowers appear in two colors, white and red. Two
plants that are homozygous at the color locus are cross-fertilized and yield a
generation of heterozygotes (F1). Cross-fertilization of F1 plants yields the
second generation F2. Two cases are distinguished: dominance (lhs) and
semi-dominance (rhs). In case of dominance the heterozygote exhibits the
same features as the homozygote of the dominant allele (red color in the
example), and this leads to a ratio of 1:3 in the phenotypes of the second
generation F2. The heterozygote of an intermediate pair of alleles shows an

intermediate feature (pink color) and then the ratio of phenotypes is 1:2:1.
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The difference in the form of ripe seeds. Round or roundish versus
irregularly angular and deeply wrinkled, studied in 60 fertilizations on

15 plants.

The difference in the color of the seed endosperm. Pale yellow, bright
yellow or orange versus more or less intense green, studied in 58 fertil-

izations on 10 plants.

The difference in the color of the seed-coat. White or gray, gray-brown
or leather-brown with or without violet spotting, studied in 35 fertil-

izations on 10 plants.

The difference in the form of the ripe pods. Simply inflated versus
deeply constricted and more or less wrinkled, studied in 40 fertilizations

on 10 plants.

The difference in the color of the unripe pods. Light to dark green versus

vividly yellow, studied in 23 fertilizations on 5 plants.

The difference in the position of the flowers. Axial (distributed along
the main stem) versus terminal (bunched at the top of the stem), stud-

ied in 34 fertilizations on 10 plants.

The difference in the length of the stem. Long (1.8 to 2.1 m) versus
short (25 to 50 cm) distinguishable for healthy plants grown in the

same soil, studied in 37 fertilizations on 10 plants.

Mendel first created hybrids from plants with opposite forms of the seven

characters and these hybrids constitute the generation F1, which is genet-

ically homogeneous. Crossings of two (genetically identical) individuals of

generation F1 leads three different genotypes in the F2 generation. For all

the characters he has been studying he observed two different phenotypes

with a ratio around 3:1 (table 2.1). Mendel’s correct interpretation is illus-

trated in fig. 2.1: All (diploid) organisms carry two alleles at every locus, they

are homozygous if the two alleles are identical and heterozygous if the alleles

are different. Cross-fertilization of two homozygous plants yields identical
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Figure 2.2: Human blood types as an example for codominance. The
sketch shows the erythrocytes of the four human blood types with the antigens
expressed on the cell surface (top row). In the middle row we see the antibodies
that are present in the blood plasma after contact with the corresponding antigens.
No antibodies are developed against antigens that are recognized as self by the

immune system (bottom row).

offspring. Since this is not the case if one or both parents are heterozygous,
this criterion can be used to identify homozygous individuals. When two
identical genotypes of the F1 generation are cross-fertilized, three different
genotypes are obtained, the two homozygotes and two heterozygotes.!
Mendel’s observation implied that the heterozygotes and one of the two
homozygotes developed the same phenotype. All seven characters correspond

to this situation and the following forms were present a higher frequency:

(i) the round or roundish form of the seeds,

In Mendelian genetics the two heterozygotes are indistinguishable because it is as-
sumed that the same phenotype is formed irrespectively whether a particular allele of
an autosome come from the father or from the mother. All chromosomes except the sex

chromosomes are autosomes and they are present in two copies in a diploid organism.
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(ii) the yellow color of the endosperm,

(iii) the gray, gray-brown or leather-brown color of the seed coat,
(iv) the simply inflated form of the ripe pods,

(v) the green coloring of the unripe pod,

(vi) the axial distribution of the flowers along the stem, and

(vii) the long stems.

The figure shows in addition the ratios of phenotypes when one individual
of the F1 generation is cross fertilized with a homozygous plant of the F2
generation. Later such an allele pair has been denoted as dominant-recessive.
In table 2.1 we show the detailed results of Mendel’s experiments and point
a two features that a typical for a statistical law: (i) the large number of
repetitions, which are necessary to be able to recognize the regularities and
(ii) the rather small deviations from the ideal ratio three. In section 2.6 we
shall analyze Mendel’s data by means of the x?-test, a statistical reliability
test that has been introduced around nineteen hundred by the Karl Pearson.

From Mendel’s experiment we conclude that every diploid organism car-
ries two copies of each (autosomal) gene. The copies are separated during
sexual reproduction and combined anew. Alleles shall be denoted by sans-
serif letters, in a dominant-recessive allele pair we shall denote the dominant
allele by an upper-case letter and the recessive allele by a lower-case letter,
A and a, respectively. The four zygote are then AA, Aa, aA, and aa where
the first three genotypes express the same phenotype. Although dominance
is by far the more common feature in nature, other form exist and they are
also familiar to careful observers and naturalists.

Incomplete dominance or semi-dominance is a form of intermediate in-
heritance in which one allele for a specific trait is not completely dominant
over the other allele, and a combined phenotype is the results (fig. 2.1, rhs):
The phenotype expressed by the heterozygous genotype is an intermediate of
the phenotypes of the homozygous genotypes. For example, the color of the
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Table 2.1: Results of Gregor Mendel’s experiments with the garden pea
(pisum sativum). The list contains all results of Mendel’s crossing experiments
in which the parents different in one character. the ration between phenotypes
is very close to three that is the ideal ration derived from Mendel’s principle of

inheritance.

Char. Parental phenotype F1 F2 F2 ratio
1 round x wrinkled seeds | all round | 5174 / 1859 2.96

2 yellow X green seeds all yellow | 6022 / 2001 3.01
3 purple X white petals all purple 705 / 244 3.15
4 inflated x pinched pods | all inflated | 882 / 299 2.95
5 green X yellow pods all green 428 / 152 2.82
6 axial x terminal flowers | all axial 651 / 207 3.14
7 long x short stems all axial 787 /277 2.84

snapdragon flower in homozygous plants is either red or white. When the red
homozygous flower is cross-fertilized with the white homozygous flower, the
result yields a pink snapdragon flower. A similar form of incomplete domi-
nance is found in the four o’clock plant where in pink color is produced when
true bred parents of white and red flowers are crossed. The lack of dominance
is expressed in the notation through choosing upper-case letters for both al-
leles, for example the alleles A and B give rise to the four genotypes AA, AB,
BA, and BB whereby the two heterozygotes produce the same phenotype.
When plants of F1 generation are self pollinated the phenotypic and geno-
typic ratio of the F2 generation will be same and is 1:2:1 (Red:Pink:White),
because three phenotypes can be distinguished. The intermediate color com-
monly is a result of pigment concentration: One allele, R, produces the red
color, the other one 0 does not give rise to color expression, and then RR has

twice as much red pigment than RO.

Codominance is another genetic mechanism that leads to two alleles on
an equal footing. The allelic products coexist in the phenotype and the

contributions of both alleles at the single locus are clearly visible and do not
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overpower each other. Codominance is different from incomplete or semi-
dominance, where the quantitative interaction of allele products produces
an intermediate phenotype like the pink snapdragon obtained by crossing
homozygous plants with red and white flowers. In case of codominance the
hybrid genotype derived from a red and a white homozygous flower will
produce offspring that have red and white spots. As an well studied example
of codominance we mention the human ABO blood type system, because it
has a very simple explanation on the molecular level (fig.2.2). Three alleles

from six diploid genotypes which develop four phenotypes:

genotype | phenotype
AA A
BB B
00 0
AB AB
A0 A
BO B

Codominance of the two alleles A and B leads to the blood type AB where
the two alleles coexist in the phenotype. The explanation is straightforward:
The red blood cells called erythrocytes express characteristic antigens on the
cell surface and antibodies are developed against non-self antigens (fig. 2.2).
The blood types determine a possible antigen-antibody reaction that causes
mixed blood samples to agglutinate or forms blood clumps. If this happens
after a blood transfusion the patient develops a very serious usually lethal
acute hemolytic reaction. Red blood cell compatibilities are readily derived
from fig. 2.2: AB type individuals can receive blood from any group but can
donate only to other AB individuals, 0 type individuals in contrary can donate
blood to all blood types but receive blood only from individuals of the 0
group, A group individuals can receive blood from A and 0 type individuals,
and analogously B blood is compatible with samples from B and 0 type
individuals.

As an example for dominance in human genetics we consider the rhesus

(Rh) blood group system. It is highly complex and dealing with about fifty
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antigens, out of which five, D, C, ¢, E, and e being the most important ones.
The term rhesus (Rh) factor is commonly used for the D/d allele pair on one
locus. Rh positive and Rh negative refer to the D antigen only, because the

d allele expresses no antigen (like the 0 allele):

genotype | phenotype
DD Rh D positive
Dd Rh D positive
dd Rh D negative

The rhesus factor plays a role in blood transfusion but is also responsible
for Rh D hemolytic disease of the newborn. If the genotype of the mother
is dd (Rh negative) sensitization to Rh D antigens caused by feto-maternal
blood transfusion through the placenta can lead to the production of mater-
nal anti-D antibodies that will effect any subsequent pregnancy and lead to
the disease in case the baby is Rh D positive. The vast majority of cases
of Rh disease can be prevented by modern antenatal care through injections
of anti-D antibodies called Rho(D) immune globulin. The prevalence of Rh
negative people varies substantially in different ethnic groups. The Rh neg-
ative phenotype is most common (~ 30%) among the Basque people and
quite common among the other Europeans (~ 16 %) and very rare (=~ 1%
and less) in Asian and Native American populations. African Americans are

intermediate (=~ 7 %).

2.2 The mechanism of recombination

Recombination of packages of genetic information during sexual reproduc-
tion was kind of a mystery as long as the mechanism at the molecular level
was unknown or unclear. Cell biology and in particular the spectacular de-
velopment of molecular biology shed light on the somewhat obscure seeming
partitioning of genetic information into packages. Already August Weismann
had the correct idea that there is a fundamental difference between cells in
the germ-line and somatic cells [304,305] and inheritance is based on germ-

line cells alone. The germ-line cells fall into two classes, sperms and eggs,
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Figure 2.3: The life cycle of a diploid organism. The life cycle of a typical
diploid eukaryote consists of a haploid phase with v = n chromosomes (blue) that
is initiated by meiosis and ends with the fusion of a sperm and an egg cell in
order to form a diploid zygote. During the rest of the life cycle each somatic cell
of the organism has v = 2n chromosomes in n — 1 autosomal pairs and the sex
chromosomes (red). Special cell lines differentiate into meiocytes, which undergo

meiosis and form the gametes.

which differ largely in the amount of cytoplasm that they contain: In the
sexual union of sperm and egg forming a zygote the egg contributes almost
the entire cytoplasm. The nuclei of egg and sperm cells are of approximately
the same size and therefore the nuclei were considered as candidates for har-
boring the structures that are responsible for inheritance. A sketch of the
typical diploid life cycle with a long diploid phase and a short haploid stage
providing the frame for sexual reproduction is shown in Fig.2.3. In the eigh-
teen eighties the German biologist Theodor Boveri demonstrated that within
the nucleus the chromosomes were the vectors of heredity. It was also Boveri
who pointed out that Mendel’s rules of inheritance are consistent with the
observed behavior of chromosomes and developed independently from Walter
Sutton in 1902 the chromosome theory of inheritance. The ultimate proof

of the role of chromosome was provided by the American geneticist Thomas
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Hunt Morgan who started with systematic crossing experiments with the

fruit fly drosophila around 1910.

2.2.1 Chromosomes

Chromosomes are complex structures consisting of DNA molecules and pro-
teins. The necessity to organize DNA structure becomes evident from con-
sidering its size: The DNA molecule of a human consists of 2x3x10? base
pairs and in fully stretched state the double-helical DNA molecule would
be 6x10 - 0.34nm~ 2m long. Clearly, such a long molecule can only be
processed successfully in an compartment with the diameter of a eucaryotic
cell when properly condensed to smaller size. Mammalian cells vary consid-
erably in size: Among the smallest are the red blood cells with a diameter of
about 0.76 ym and among the largest cells are are the nerve cells that span a
giraffe’s neck and which can be longer than 3m. Analogously human nerve

cells may be as long as 1 m. The size of the average human cell, however, lies
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in the range 1 < d < 10 um. In Fig.2.2 we present a sketch of a duplicated
chromosome after completed condensation. The condensation of the DNA
leads to a length contraction by six orders of magnitude, i.e. from 2m to
about 2 ym. It occurs in several steps and involves histones and other pro-
teins. Histones are positively charged (basic) proteins that bind strongly to
the negative charged DNA molecule. Their sequence and structure is highly
conserved in evolution. Here we give an idea only of the first steps, which is
the formation of chromatin from core histones, linker histones, and DNA. An
protein octamer built from two molecules each of the histones H2A, H2B, H3,
and H4 forms the core of a nucleosome around which the DNA is wrapped
twice. The resulting structure looks like beads on a string an has a diam-
eter of d ~10nm. Linker histones arrange nucleosomes forming a solenoid
structure with six nucleosomes symmetrically arranged in one complete turn
and a diameter of d ~10nm. There are three homologous linker histones,
H1, H5 and H1°, which apparently can replace each other and have addi-
tional specific functions [278]. With the help of scaffold proteins the solenoid
structure is condensed further during interphase (see Fig.2.5) yielding the
active chromosome that is again condensed further through addition of more
scaffold proteins, and eventually the metaphase chromosome is formed that
is ready for cell division.

The numbers of chromosomes is variable and characteristic for species.
They are divided into autosomes and sex chromosomes (subsection 2.2.2 and
vary substantially in size. Human cells have 46 chromosomes, 22 pairs of
autosomes and on pair of sex chromosomes. Chromosome 1 is the largest, it
is almost 250 million base pairs long and carries to present-day knowledge
4316 genes. Chromosome 21 is the smallest human chromosome, it is 47 mil-
lion bases long and codes for 300 to 400 genes. Comparison of chromosome
numbers in different species shows. Our closest relatives, Gorillas and chim-
panzees have 48 chromosomes, domestic cats 38, dogs 78, cows 60, and horses
64. The variation among fishes is remarkable: Fugu has the smallest genome
— only 392.4 million base pairs, which is about 1/8 of the human genome —
and 44 chromosomes, guppy the popular aquarium fish 46 and the goldfish

100-104. Somewhat more complex is the chromosome number with birds:
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The domestic pigeon has 18 large chromosomes and 60 microchromosomes
and similarly chicken with 10 chromosomes and 60 microchromosomes, and
eventually the pretty bird kingfisher 132 total. The chromosome numbers
in plants are highly variable as well: the thale cress, arabidopsis thaliana,
has 10 chromosomes and the pea, pisum sativum, 24, and the pineapple 50.
The well-studied yeast, saccharomyces cerevisiae, has 32 chromosomes. Fi-
nally, we make a glance on prokaryotes. The eubacterium Escherichia coli
has a single circular chromosome, which when fully stretched is many orders
of magnitude larger than the cell itself, but no histones like other eubacte-
ria. DNA is condensed mainly by supercoiling and the process is assisted
by specific enzymes called topoisomerases [162]. Topoisomerases, in general,
resolve the topological problems associated with DNA replication, transcrip-
tion, recombination, and chromatin remodeling in a trivial but highly efficient
way: They introduce temporary single- or double-strand breaks into DNA,
unwind, and ligate again.

After DNA replication and condensation into chromosomes the two sis-
ter chromatids have a long and a short arm (Fig.2.2) and they are joined
at the centromere that is also the point of attachment of the microtubules,
which organize chromosome transport during cell division. In order to pre-
vent loss of DNA ends during cell division at the tips, the chromosomes carry
telomeres, which are stretches of short repeats of oligonucleotides that can
be understood as disposable buffers blocking the ends of the chromosomes.
In case of vertebrates the repeat in the telomeres is TTAGGG. Part of the
telomeres are consumed during cell division and replenished by an enzyme
called telomerase reverse transcriptase. Cells, which have completely con-
sumed their telomeres, are destroyed by apoptosis and in rare cases they
find ways of evading programmed destruction and become immortal cancer
cells. In 2009 Elizabeth Blackburn, Carol Greider, and Jack Szostak were
awarded the Nobel Prize in Physiology and Medicine for the discovery of
how chromosomes are protected by telomeres and the enzyme telomerase.
The telomeres are tightly bound to the inner surface of the nuclear enve-
lope during prophase 1 (see Fig.2.6) and play an important role in pairing

homologous chromosomes during meiosis.
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2.2.2 Chromosomes and sex determination

A diploid organism (Fig.2.3) carries v = 2n chromosomes forming n — 1
pairs of autosomes and the pair of sex (determining) chromosomes. Sex is
basic to diploid life and therefore the fact that there are several entirely
different sex-determination systems has a kind of strange appeal. Three
different chromosomal systems are known, one system changes the common

haploid-diploid relation, and others invoke external parameters:

system female male species
XX/XY XX XY almost all mammals including man,
some insects (drosophila), some plants, ...
XX /X0 XX X0 insects, ...
IW/ZZ W /7 birds, some fish, some reptiles and insects, ...
haplo- 2n n hymenoptera (most), ...
diploid spider mites, bark beetles, rotifers, ...
temper- warm cold some reptiles, few birds , ...
ature medium | extreme | other reptiles, ...
infection | infected not butterflies (Wolbachia infection), ...
infected | some nematodes, ...

Since the XX/XY sex-determination found in man is almost universal among
mammals one is inclined to consider it as the only sex-determining sys-
tem in nature but this is utterly untrue. The XX/XY-determination is wide
spread in nature and this helps to believe it is the only one. The XX/XO0-
determination can be visualized as a XX/XY-system in which the already
smaller Y-chromosome has been ultimately lost. An intermediate situation
is found with the fruit-fly drosophila: In some variants (or species) the male
carries a Y-chromosome whereas it has none in other variants. In the ZW/ZZ
sex-determination system the female rather than the male carries the two dif-
ferent sex chromosomes. In the haplodiploid sex-determination system the
male is haploid and the entire kinship relations are different from those in
the conventional diplodiploid systems. The coefficients of relationship for
parent and offspring expressed in the percentage of shared genes (1=100 %)
are [317):
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haplodiploid | diplodiploid

relative female | male | female | male
daughter 1/2 1 1/2 1/2
son 1/2 - 1/2 1/2
mother 1/2 1/2 1/2 1/2
father 12 | - | 1/2 | 1/2

identical twin - - 1 1

full sister 3/4 | 12 | 1/2 | 1/2
full brother 1/4 1/2 1/2 1/2

In the case of haplodiploidy sisters are more closely related than in diploid-
diploid organisms and this has been used as support for the frequent oc-
currence of eusociality in hymenoptera, in particular bees, wasps, and ants
(131, 132]. Kinship in haplodiploid organisms as explanation for colony for-
mation and altruistic behavior had one major problem: Termites are diploid
organisms and form gigantic colonies with a complex caste system. Recently
it was shown that the evolution of eusociality can be explained and modeled
mathematically by means of natural selection [225]. Sex determination by

nest temperature

2.2.3 Mitosis and meiosis

Here we can present a few some basic facts of this very extensive field of
cytology and molecular biology, which is outlined in more detail in text books
(for example, [5] and [125]) and which represents also a discipline of cutting-
edge research [222]. From Fig. 2.3 follows that a diploid organism needs — at
least — two types of cell divisions: (i) A division mechanism, which in general
creates two identical diploid cells from one diploid precursor cell, and (ii) a
mechanism, which creates haploid cells from a diploid precursor in order to
allow for the formation of a diploid zygote through merging of two haploid
cells during mating. The two most common and almost universal natural cell
division mechanisms, mitosis and meiosis, are sketched in Figs. 2.5 and 2.6.
In general, both mechanisms are symmetric in the sense that the two or four

daughter cells are equivalent. Asymmetric cell divisions in the sense that the
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offspring cells are intrinsically different play a role in embryonic development
[139], in particular with stem cells [177]. As an example we mention the
nematode Caenorhabditis elegans where several successive asymmetric cell
divisions in the early embryo are critical for setting up the anterior/posterior,
dorsal ventral, and left/right axes of the body plan [119].

In mitosis one diploid cell divides into two diploid cells that — provided no
accident has happened — carry the same genetic information as the parental
cell and the over-all process is simple duplication (Fig.2.5). Homologous
chromosomes behave independently during mitosis — and this distinguishes
it from meiosis. The problem that has to be solved, nevertheless, is of
formidable complexity: A molecule of about 2m length has to be copied
in a cell of about 10 um diameter and than divided equally during cell di-
vision. Long before the advent of molecular biology cell division has been
studied extensively by means of light microscopy and the different stages
shown in Fig.2.5 were distinguished. DNA replication takes place in the
interphase nucleus and each chromosome is transformed into two identical
sister chromatids, in prophase we have the sister chromatids in perfect align-
ment and ready for cell division then the nuclear membrane dissolves and in
metaphase the chromosomes migrate to the equator of the cell. Microtubules
form and attach to the centromeres (Fig.2.2) in anaphase and telophase the
sister chromatids are pulled apart and to the two opposite poles of the cell.
At the end of telophase the cell splits into two daughter cells and nuclear
membrane are formed in both cells.

Meiosis is initiated like mitosis by DNA replication but instead of cell
division two organized cell divisions follow with no second replication phase
in between. Accordingly one diploid cell is split into four haploid gametes
during meiosis. The major difference between the two cell division scenar-
ios occurs in prophase 1 and metaphase 1: The two duplicated homologous
chromosomes are pairing and crossover between the four chromatids is disen-

tangled by homologous recombination.? During prophase 1 the tight binding

2Homologous recombination is the precise notion of recombination during meiosis since
there are also other forms of recombination in the sense of exchange of genetic material,

for example, with bacterial conjugation or multiple virus infection of a single cell.
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daughter cells

telophase

interphase prophase metaphase anaphase 2n
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Figure 2.5: Mitosis. Mitosis is the mechanism for the division of nuclei associated
with the division of somatic cells in eukaryotes. During interphase that comprises
of three stages of the cell cycle — gap 1 (G1), synthesis (S), and gap2 (G2) —
the DNA of each chromosome replicates and each chromosome is transformed
into two sister chromatids, which lie side by side. The mitosis stage of the cell
cycle (M) starts with prophase when the sister chromatids become visible in the
light microscope. During metaphase the sister chromatid pairs are moving to the
equatorial plane of the cell. In anaphase microtubules being part of the nuclear
spindle attach to the centromeres (small orange balls in the sketch), separate the
sister chromatids, and pull them in opposite direction towards the cellular poles.
In telophase the separation is completed and a nuclear membrane forms around
each nucleus and cell division completes mitosis. The sketch shows the fate of
a single chromosome, which is present in two differently marked copies (red and
bright violet) that appear in identical form in the two daughter cells. Mitosis
produces two (in essence) genetically identical diploid (2n) daughter cells from one
diploid cell (2n). Here and in Fig.2.6 we do not show the nuclear membrane in
order to avoid confusion. During interphase, the first part of prophase, and in the
daughter cells the compartment shown is the nucleus whereas the circles mean the

entire cell during the stages of segregation.

between the sister chromatids is weakened and eventually resolved through
the formation of a large complex in which all four chromatids of the two dupli-
cated homologous chromosomes are aligned by means of an extensive protein

machinery. This process is slow as prophasel may occupy 90% or more
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prophase 2
telophase 1
interphase prophase 1 metaphase 1 anaphase 1 2n
! @9‘9%%‘ <
2n
gametes
telophase 2

prophase 2 metaphase 2 anaphase 2
n
DO
n
n
n

Figure 2.6: Meiosis. Meiosis in the mechanism by which diploid or-
ganisms produce haploid germ cells from a diploid precursor cell. The
process is initiated like mitosis in prophase I but then in metaphase 1
the duplicated chromosomes are paired yielding a four chromatid complex,
which is the stage where homologous recombination occurs (see Fig.2.7).
We show one crossing over of DNA double strands that is disentangled
by recombination.  Then follow two divisions without a synthetic phase
— anaphase 1 —telophase 1 —prophase 2—metaphase 2— anaphase 2—telophase 2 —
and eventually after the second division we end up with four different gametes.
The sketch shows the fate of a chromosome pair, which is initially present in
two differently marked homologous copies (red and bright violet) during one DNA
replication and two consecutive divisions into four daughter cells. Meiosis produces

four genetically different haploid gametes (n) from one diploid cell (2n).
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Figure 2.7: Crossover and recombination. Crossover occurs in the meiotic
prophase 1 or metaphasel during pairing of homologous stretches from all four
chromatids. Both forms single crossover and multiple crossover shown in the upper
and lower parts of the figure, respectively, are possible and in general all four
strands may be involved in it. Resolution of crossover through special mechanisms
involving breaking and linking of the DNA double strands in chromatids leads
two recombination shown on the rhs of the figure. Since at least one crossover is
obligatory in meiosis — if no crossover occurs the process is arrested in metaphase 1,
all four haploid gametes are genetically mixed and different unless the diploid

organism has been homozygous in all genes.

of the total time of meiosis. The tightly aligned homologs form crossovers
that can be seen as chiasmata in metaphase 1. Crossovers are resolved lead-
ing to recombination in the four chromatids and four different chromosomes
are formed (For the sake of simplicity only one crossover event is shown in
Fig.2.6). In anaphase 1 and telophase 1 the eventually recombined duplicated
homologous chromosomes segregate and enter after cell division as two sepa-
rate diploid cells into the second division cycle initiated through prophase 2.
Metaphase 2 is analogous to the metaphase in mitosis: homologous chromo-
somes align in the region of the cell equator segregate during anaphase 2 and
telophase2 and finally end up in four genetically mixed haploid gametes.

Incase of heterozygosity the gametes are also genetically different.
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In prophase 1 and metaphase 1 of meiosis individual chromatids pair with
the other homologous chromosome with the help of a large protein machin-
ery called the recombination complex (see [5, chapter 21]). Tight packing
of the four chromatids of the duplicated homologous chromosomes together
with the protein machinery and produces a very large synaptonemal complex.
The processes in the synaptonemal complex may last for days and longer
and eventually, prophase 1 ends through disassembling of the synaptonemal
complex and initiating metaphasel. Chiasmata being the visual point of
crossing-over of chromatid strands that might have occurred already before
and during the formation of the complex appear during the phase of disas-
sembly. Resolution of crossover in consequence leads to recombination. The
chromosomes determining the sex of the carrier may behave differently from
autosomes. In mammals female sex chromosomes XX behave like autosomes
during meiosis. Male sex chromosomes — XY in mammals — however, require
special features during meiosis. Although the X and the Y chromosome in a
male are not homologous they too must pair and undergo crossover during
prophasel in order to allow for normal segregation in anaphasel. Pair-
ing, crossing-over, and segregation are made possible because there are small
regions of homology between X and Y at one end or both ends of the chro-
mosomes. The two chromosomes pair and crossover in these regions during
prophase 1 and ensure thereby that each sperm cell receives either one X or
one Y chromosome — and neither both nor none — and the sperm cells deter-
mine whether the zygote develops into a female or male embryo, respectively.
Meiosis is regulated differently in female and male mammals. In males meio-
sis begins begins in sperm precursor cells called spermatocytes in the testes at
puberty and then goes on continuously. It takes about 24 days for a human
spermatocyte to complete meiosis. In females the egg precursor cells, the
oocytes begin meiosis in the fetal ovary but arrest after the synaptonemal
complex has disassembled in metaphasel. Oocytes complete meiosis only
after the female has become sexually mature and the oocyte is released from
the ovary during ovulation and the released oocyte completes meiosis only
if it is fertilized. In humans some oocytes my be arrested in netaphase1 for

40 years or more. There are specific stop and start mechanisms in female
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meiosis that are lacking in the male. Finally, we remark that according to
the current state of knowledge meiosis goes wrong frequently and this leads
to early abortion or serious damage of the embryo.

Crossover occurs before the first cell division in meiosis and can be seen in
the microscope in the form of a chiasma where a chromatid strands switches
from one chromosome to the other. Chiasmata or crossovers are resolved by
splitting and ligating DNA and eventually genes from homologous but differ-
ent chromatids find itself recombined on the same chromosome. As shown in
Fig. 2.7 a single crossover is sufficient to produce four different chromosomes.
Double and multiple crossovers may occur as well and they give rise to a
great variety of gene patterns. How are crossover and recombination related
to Gregor Mendel’s laws of inheritance? Linkage equilibrium in population
genetics is achieved when the association of alleles at two or more loci is
random. In other words, Mendel made the assumption of random assort-
ment of alleles, which is at the same time the basis for linkage equilibrium
and accordingly, every deviation from it is called linkage disequilibrium. This
deviation can be cast into a quantitative relation. For the sake of simplicity
we consider a haplotype® for two loci A and B with two alleles each, and the

following frequencies for all possible combinations:
[AlBl] = T11, [Ale] = T12;, [AZBl] = @1, and [A2Bz] = T22.

These frequencies are assumed to be normalized, }, - x;; = 1, and this leads

to the following frequencies of the alleles:
[Al] = p1 = 211+ 712, [Ag] = p2 = 291 + 292, and py +pp =1,
Bil =g =zn+za, B =@ =rptrn,andg+¢=1.

At linkage equilibrium we obtain from trivial statistics z;; = p;q; and de-
fine the linkage disequilibrium by the deviation of the real value from the

equilibrium value:

D = x11 — pin = 11T — Ti12T21 - (2-1)

3A haplotype in genetics is a combination of alleles at adjacent locations on the chro-
mosome that are transmitted together. A haplotype may be one locus, several loci, or an

entire chromosome depending on the number of recombination events that have occurred.
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Expressing the state of a population with respect to haplotypes on finds
the phrases "two alleles are in linkage disequilibrium” for D # 0, and al-
ternatively linkage equilibrium stands for D = 0. Because of the various
conservation relations linkage disequilibrium is a one-parameter manifold as

follows from the table relating haplotype and allele frequencies:
Al A2 total
Bl |zu=pin+D |z0n=pn —D | ¢

By | zi2=piga —D | 22 =p2o +D | @
total D1 P2 1

Sometimes the parameter D is normalized

9 min{p;q1,pago} if D <0

with D = .
max min{piqa, p2q1} if D >0
As an alternative to 1) the correlation coefficient between pairs of loci is used
(For a comparison of various linkage disequilibrium measures see, e.g., [50]):
D
r= —. (2.2)
P1P29142

The frequency of recombination between two loci ¢ can be used to demon-
strate that linkage disequilibrium converges to zero in absence of other evo-
lutionary factors than Mendelian segregation and random mating. The fre-

quency of the haplotype A;B; is given by the difference equation

xﬁbﬂ) = (1-¢) a:ﬁ’ + cpiq . (2.3)

This equation is readily interpreted: A fraction (1—c) of the haplotypes have
not recombined and hence are present in the next generation, multiplication
by xﬁb) yields the fraction of the not-recombined haplotypes that are A;By,
and a fraction ¢ did recombine the two loci. Random mating presupposed we
compute the fraction of the haplotype under consideration: The probability
that A; is at locus A is p; and the probability that the copy has B; at locus
B. Since the alleles are initially on different loci the events are independent

and the probabilities can be simply multiplied. Rewriting of Equ. (2.3) yields

xﬁ?*” —pga = (1—¢ <$§711) — ]91Q1> or Doy = (1—¢)D,,
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which for an initial linkage disequilibrium of Dy takes on the form

D, = (1—=¢)"Dy. (2.4)
As time progresses and the number of generations approaches infinity we find

lim D, = 0,

n—oo

since lim,, ,.(1 — ¢)” = 0 because of 0 < 1 — ¢ < 1. After a sufficiently
number of generations linkage disequilibrium will disappear due to recombi-
nation. The smaller the distance between the two loci, however, the smaller
will be the frequency of recombination ¢, and the slower will be the rate of

convergence of D towards zero.

2.2.4 Molecular mechanisms of recombination

The first molecular mechanism of crossover and recombination has been pro-
posed by Robin Holliday in 1964 [150] (For a more recent account see [273]).
It centers around the notion of a Holliday junction (Fig. 2.8), which is a cova-
lently linked crossing of two double-helical DNA strands.* Holliday junctions
combining largely homologous stretches of DNA — as, for example, in case
of paired chromatids — can migrate by means of a simple base pair opening
and base pair closing mechanism. As shown in the lower part of Fig. 2.8 two
DNA double helices become longer and the other two are shortened during
migration. According to current knowledge, which is far from satisfactory
understanding, homologous crossing-over of chromatid strands is highly reg-
ulated with respect to (i) number and (ii) location. There is at least one
crossover event between the members of each homolog pairs because this
is necessary for normal segregation in metaphase 1, and there is crossover
interference inhibiting crossover points to be closer than some critical dis-
tance. Although the required two strand breaks occurring during meiosis can
be located almost everywhere on the chromosome, they are not distributed

uniformly: They cluster at hot spots where the chromatin is accessible, and

4Tn order to distinguish DNA single strands and double strands as used, for example,

in Fig. 2.7 we indicate 5~ and 3’ends of the single strands.
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Figure 2.8: The Holliday junction of two DNA double helices. At the
Holliday junction two stretches of double-helical DNA exchange strands. The
upper part of the figure present to schematic views of a Holliday junction, which
are interrelated by rotating the upper right part of the sketch by 180° around the
diagonal. The lower part shows the base-pair opening and closure mechanism by

which Holliday junctions migrate.

they occur only rarely in cold spots such as heterochromatin regions around
centromeres and telomeres.

The so-called Holliday model for DNA crossover is sketched in Fig.2.9
[150]. It is initiated by breaks in two DNA single strands called nicks, each
one situated at one of two aligned DNA molecules. We consider three loci,
A, B, and C, with two alleles each, (Aa),(B,b), and (C,c), and the break

occurs somewhere in the region between locus A and locus B. In the next
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Figure 2.9: The Holliday model for DNA crossover. The model shows the
formation of a Holliday junction through the repair of two DNA single strand cuts
(nicks) and the resolution of the junction resulting in recombination (6; cut along
axis ) or repair (7; cut along $)). Primed letters indicate opposite polarity of the
DNA-strand (3’—5"). For details see text.
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Figure 2.10: The double strand break repair (DSBR) model for DNA
crossover. The double strand repair model starts from a double strand break
and a H’-exonuclease produces sequence gaps. Strand invasion, DNA-synthesis
and second end capture leads to a structure with two Holliday junctions that can
be resolved to yield either double strand break repair (resolution at a & b or a & 3)
or crossover and recombination (resolution at a & ( or o & b). Newly synthesized

DNA stretches are shown as dashed lines. For details see text.
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step the open ends are linked to the other DNA molecules resulting in a
Holliday junction. The junction migrates and finds an appropriate site for
resolving the crossover somewhere between locus B and locus C. The result-
ing Holliday junction can be cleaved in two ways, one yielding a recombined
DNA with a heteroduplex at locus B and one repaired molecules without
recombination but still showing the heteroduplex at B. One of the most im-
portant results of the Holiday model was to demonstrate the relation between
crossover and DNA damage repair. As outlined in Fig.2.9 (2) the process is
initiated by two single strand breaks (nicks), which are closed through the
formation of a strand switch from one double helix to the other forming
thereby a Holliday junction (3). The Holliday junction migrates along locus
B until it reached a point appropriate for resolution (4) and then an enzyme
called Holliday junction resolvase cuts and ligates the DNA strands elimi-
nating the entanglement of the two DNA double helices (5). The resolution
is possible in two different ways: (i) a vertical cut () and (ii) a horizontal
cut (9). The vertical cut resolves the Holliday junction into a structure in
which the two chromatid strands show crossover leading to recombination
(6) whereas the horizontal cleavage is leading to a structure in which the two
nicks have been repaired (7). In both cases the structures differ from the
original double helical strands at locus B where they have now heteroduplex
pairings Bb. The Holliday-model was complemented ten years after its inven-
tion by the more general Meselson-Radding model [208], which starts from
a single-strand break in one DNA molecule that becomes the site of strand
displacement by a DNA-polymerase. The displaced single-strand pairs with
the complementary sequence of a second homologous DNA-molecule and it
induces thereby a single strand break in the latter. Migration of the Holliday
junction and its resolution is similar to the Holliday-model. One difference
between the two models is that the heteroduplex region is confined to one
DNA molecule at the beginning in the Meselson-Radding model but is always
found in both DNA molecules in the Holliday model.

Work on plasmids in yeast [231] has shown that double strand gap repair
can lead to crossing-over but does not always do so. The corresponding
double-strand-break repair (DSBR) model is sketched in Fig.2.10. It starts
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Figure 2.11: Enzymatic resolution of chiasmata. Three enzymatic resolution pathways of a double strand break
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from a double-strand-break (1) and action of 5-exonucleases as well as some
(or no) double strand degradation lead to a structure with free 3’-ends (2).
These ends are the active agents in the forthcoming steps: One strand with
an active 3’-end invades the double helix of the homologous chromatid and
initiates DNA double strand synthesis (3) until the free 3’-end is captured
(4). Completion and gap closure on both double helices leads to a structure
with two Holliday junctions (5). The resolution of the two junctions leads
either to break repair (6) or crossover and recombination (7) depending on
the direction of the cuts in the Holliday junctions: Both cuts horizontal or
both cuts vertical yields break repair whereas one cut horizontal and one
cut vertical produces crossover. Four years after the proposal of the DSBR-
model it was tested for recombination of phage A and plasmid Adv [274, 284].
The most relevant new feature of this paper for the DSBR-model was that
a topoisomerase has been suggested to resolve the Holliday junctions. Later
topoisomerases were indeed identified that did precisely this job [257,258].
Research on Holliday junctions and their resolution led to a rather confus-
ing multiplicity of possible pathways and a variety of endonuclease enzymes
called resolvases were identified in prokaryotes [60], in yeast [23,230] and
eventually also in human cells [37]. In essence, three different pathways for
DSBR where found to be most prominent [307]. New light has been shed
on the problem when three enzymes from different organisms where shown
to promote Holliday junction resolution in analogous manner: the resolvases
RuvC from Escherichia coli, Yenl from yeast and GEN1 from human cells
[157]. In Fig.2.11 we show a sketch of the three pathways taken from [281].
The first two steps are identical with the corresponding steps in the DSBR
model in Fig.2.10, one Holliday junction results from DNA strand invasion
(3), and then both single strand are completed to full double helices (4). Here
we have the first branching point: Either the two open ends are ligated and
the second Holliday junction is formed (5) (as in the simple DSBR model) or
structure (4) is directly resolved by the protein complex y =Mus81-Emel,
which cleaves the asymmetrically [23,151] and produces a crossover product
(11). Two pathways branch out from the double Holliday junction structure
(5): One pathway makes use of the protein complex o =BLM-Topollla-
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RMI1 and disentangles the structure by two concerted topoisomerase dou-
ble strand openings and closures (7) [32,320]. The resulting final product
is a double strand repair structure with a heteroduplex region in one dou-
ble strand (9). The third pathway engages the above mentioned resolvase,
£ =GEN1 or §=Yenl, respectively, and resolves the double Holliday junc-
tion structure symmetrically by one vertical and one horizontal cut (8) as
also shown in Fig. 2.10) leading thereby to crossover (10). Although the 2008
paper [281] had the promising title Resolving Resolvases: The Final Act?,
research on Holliday junction resolution remained an exciting story until now
217,279].

After having had a glance on the enormously complicated processes of
meiosis and the state of the art in understanding its molecular mechanisms
we shall now return to the formal aspects and repeat the basic facts. re-
combination pure. Homologous chromatid strands do not pair in full length
during meiotic prophasel but show deviations in the sense that different
stretches are aligned to different chromatids, and this leads to chiasmata,
crossover and recombination. At least one crossover and recombination event
per chromosome is required for successful meiosis, since cells without chi-
asmata get arrested in metaphasel and are eliminated through apoptosis.
In essence recombination serves three purposes: (i) repair of double strand
breaks that have occurred during replication or pairing, (ii) enabling segre-
gation in metaphase 1 of meiosis, and (iii) creating genetic diversity through

recombination.
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2.3 Recombination and population genetics

The basic assumption in Mendelian genetics that the genetic information of
the parents is split into pieces and recombined in the offspring is introduced
by means of a simple relation governing the evolution of genotype distribu-
tions for two alleles at a single locus in discrete manner. Fisher’s selection
equation is an ODE handling an arbitrary number of alleles again at a single

locus.

2.4 Hardy-Weinberg equilibrium

The dynamics of recombination is illustrated easily by means of the so called
Hardy-Weinberg equilibrium that has been derived independently by God-
frey Harold Hardy [134] and Wilhelm Weinberg [303]. The content of the
Hardy-Weinberg equilibrium is the relation between allele frequencies and
genotype frequencies in a single locus model. Implicit in the validity of the
Hardy-Weinberg equilibrium are ten assumptions, which are often made in

population genetics and which we summarize here for clarity [136, p.74]:
(i) organisms are diploid,
(ii) reproduction is sexual,
(iii) generations are discrete and nonoverlapping,
(iv) genes under consideration have two alleles,
(v) allele frequencies are identical in males and females,
(vi) mating partners are chosen at random,
(vii) populations sizes are infinite meaning very large in practice,
(viii) migration is negligible,
(ix) mutation can be ignored, and

(x) natural selection does not affect the alleles under consideration.
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Figure 2.12: The Hardy-Weinberg equilibrium. The equilibrium frequencies

of the three genotypes, = = [AA] (red), y = [Aa] (green), and z = [aa] (blue), are

plotted as a function of the frequency of the dominant allele A, p = [A]/([A] + [a]).

The frequency of the recessive allele is ¢ = 1 — p = [a]/([A] + [a]).
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Figure 2.13: De Finetti illustration of the Hardy-Weinberg equilibrium.

The three genotype frequencies are plotted on a unit simplex Sz: = +y + z = 1.
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These ten assumptions are often addressed as the Hardy-Weinberg model. In
order to derive the relations we assume a diploid population with two alleles
A and a where A is dominant and with p and ¢, p + ¢ = 1, being the allele
frequencies of A and a in the population. At Hardy-Weinberg equilibrium we

obtain the three genotype frequencies
v =[AAl = p*, y = [Aa] = 2pq, z = [aa] = ¢*. (2.5)

In order to show the one-step convergence towards the equilibrium rela-
tions we start from an initial population T, with a distribution of genotypes
(AA),(Aa), and (aa) being = : y : z = pg : 2qo : 7o, respectively, fulfilling the
condition py + 2qo + ro = 1. The sum is now written as (py + qo) + (qo + 70),
we build the square of both sides and find:

P+ 20+ 11 = (po+q)” + 2(po+q)(g0+10) + (go+70)° = 1.

The individual frequencies are p; = (po + @)%, @1 = (po + qo)(qo + 70) and
r1 = (qo+10)?, which is already Hardy’s result for random mating (2.5). The

equivalence condition is readily verified:

Ey = ¢ —piry = <(Po+QO)(QO+7“0)>2 - (p0+QO)2(QO+7”0)2 = 0. (2.6)

It is straightforward to show now that for all generations after the first one

the Hardy-Weinberg equilibrium is fulfilled:

pa = (p1+ Q1)2 = p% +2p1qq + CI% =
= (po + qo)* ((Po + q0)* + 2(po + @) (g0 + 70) + (g0 + ro)2> = (po+q)?*.

Accordingly p, = p; and this remains so in all succeeding generations. The
same holds for the other two genotypes.

The generalization of the Hardy-Weinberg equilibrium to n alleles is
straightforward: Assume a distribution (pq, pa, ..., p,) for n alleles A, Ay ... A,
with >°" | p; = 1 and then the Hardy-Weinberg equilibrium is achieved when
the genotype frequencies fulfil

i = [AA] = pf and y; = [AA] = 2pip;; 1, =1,2,...,n. (2.7)
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This equation will be the basis for Fisher’s selection equation, which will
be discussed in the next section 2.5. Another straightforward generalization
the case of polyploidy that leads to a genotype distribution according to
the binomial distribution for tetraploidy and two alleles, A and a, with the

frequencies (p, ¢) we find
[AAAA] = p*, [AAAa] = 4p’q, [AAaa] = 6p*¢*, [Aaaal = 4pq®, [aaaa] = ¢*.

The derivation of the completely general form, n alleles and m-ploidy, is left
to the reader as an exercise.

As an example of Hardy Weinberg equilibrium in case of dominance we
consider the human Rh blood groups (see section 2.1). The dominant allele
D codes for the Rhesus antigen, which is presented on the surface of red
blood cells, whereas the d allele fails to code for the antigen. Accordingly,
the two genotypes DD and Dd unfold the Rhesus positive phenotype (Rh'),
whereas dd has the Rhesus negative phenotype (Rh™). The frequency of Rh™
phenotypes among American Caucasians is about 0.858, leaving 14.2 % for
Rh™ people [216]. Left with this information only the data are insufficient
to calculate the genotype frequencies, because there is no way to distinguish
between DD and Dd since both give rise to the Rh*™ phenotype. Under
the assumption of random mating, however, the relative proportions of DD
and Dd genotypes are given by the Hardy-Weinberg principle: The genotype
frequencies at equilibrium are given by p?, 2pg, and ¢?, respectively. An
estimate of ¢ from the known frequency of the homozygote [dd] = ¢? is
straightforward:®> From ¢ = 0.142 we obtain ¢ ~ 1/0.142 = 0.3768. The
result is easily generalized: If R is the frequency of homozygous recessive
genotypes in a population of N individuals, then ¢ and its standard deviation

o9 are obtained from

1-R
j = d i) = _ 2.
q VR and o(q) N (2.8)

5The remark estimate refers to the uncertainty, how well the assumption of random
mating is fulfilled. Accordingly, we denote the estimated values for the allele frequencies

by p and ¢ in order to distinguish them from the exact values p and ¢, respectively.
6The standard deviation is calculated under the assumption of a binomial distribution

in the limit of the normal distribution: o = \/p4/N = /(1 —§) ¢/n.
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From ¢ we obtain p = 1 — ¢ = 0.6232 and we calculate for the genotype
frequencies: [DD] = p? = 0.3884, [Dd] = 2p¢ = 0.4696, and [dd] = ¢° =
0.1420, and 54.7 % of the Rh™ people are heterozygous. No x?-test is possible
in this case because there are zero degrees of freedom (subsection 2.6.1).

It is remarkable that the Hardy-Weinberg principle is considered as the
basis of many models in population genetics, although on cannot assume that
the ten conditions listed above a fulfilled in reality. Many test for random
mating (item vi) based on deviations from the Hardy-Weinberg equilibrium
have been developed, for example [76,129], and it was shown that devia-
tions are quite common. Sten Wahlund had shown that a subdivision of a
population in subpopulations leads to a reduction of heterozygosity [299].
Even when the subpopulations are in Hardy-Weinberg equilibrium, the total
population is not. Another critical point is the absence of effects of natural
selection (item x), which is a typical idealization and very hard to check in-
dependently of deviations from Hardy-Weinberg equilibrium. Therefore it is
advisable to consider the Hardy-Weinberg formula as a reference state and to
analyze deviations as consequences of the lack of validity of the basic assump-
tions. We shall come back to the delicate problem of generality, explanatory

adequacy, scope, and applicability in the next chapter 3.

2.5 Fisher’s selection equation and the fundamental theorem

Here, we present only the continuous time approach more common stochastic
models with discrete generations will be discussed in chapter 8. In order to
study the process of selection among n alleles at a single locus under random
mating and recombination Ronald Fisher’s [92] conceived a selection equation
for alleles:

d; _ ¢ »3 "
% _ ;&jix]{ti . szz@ikxixk = I (; A5 l5 — ¢) (29)

i=1 k=1
n n
with ¢ = Z Z QiR Tixy; - (2.10)
i=1 k=1
The variables z; are the allele frequencies in the population. The two con-

ditions a;; > 0Vi,5 = 1,2,...,nand x; > 0Vi = 1,2,...,n will guarantee
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app=ap=ay=d and ap=ay=ap=a3;=ap3=ayp =g

Figure 2.14: Selection dynamics of three alleles at one locus. Selection
is shown in the space of normalized allele concentrations, 2?21 r; = 1, which is
the unit simplex S3. In the general case, the dynamical system has seven
stationary points. For the sake of simplicity we consider the symmetric case
with equal diagonal and equal off diagonal elements of the parameter matrix
A. If the diagonal elements dominate, d > ¢, all three corners represent
asymptotically stable states (z; = 1, 2o = 1, and x3 = 1). For larger off-
diagonal elements, d < g, the only asymptotically stable state is the center
of the simplex, x; = 25 = x3 = 1/3. Color code: asymptotically stable states

in red, saddle points and sources in blue.

#(t) > 0. Summation of allele frequencies, Y ., z;(t) = c(t), yields again an
equation for de/ dt that is identical to (1.10) and hence, the population is
confined again to the unit simplex for """, z;(0) = 1. The rate parameters

a;; form a quadratic matrix

a;pr Q12 ... QAip

91 Q9292 ... QA9pn

Ap1 Ap2 ... QOpp
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The dynamics of equ. (2.9) may be very complicated for general matrices A
and involve oscillations as well as deterministic chaos [243,253]. In case of
Fisher’s selection equation, however, we are dealing with a symmetric matrix
for biological reasons,” and then the differential equation can be subjected
to straightforward qualitative analysis.

Qualitative analysis of equ.(2.9) yields 2" — 1 stationary points, which
depending on the elements of matrix A may lie in the interior, on the
boundary or outside the unit simplex s, In particular, we find at max-
imum one equilibrium point on the simplex and one on each subsimplex
of the boundary. For example, each corner, represented by the unit vector
e, = {z, = 1,2; = 0Vi # k}, is a stable or unstable stationary point. In
case there is an equilibrium in the interior of s it may be stable or unstable
depending on the elements of A. In summary, this leads to a rich collection
of different dynamical scenarios, which share the absence of oscillations or
chaotic dynamics.

The coordinates of the stationary points are derived through solution of
the equations derived from (2.9) by putting dx;/dt = 0 for i = j, k,[ with
Tj+a,+x3=1and x; =0VYi ¢ (j,k,1):

corner 7j: T; =1
edge jk: T; = L LR B gk
(ij —2ajk—|—akk ajj —2ajk+akk
. Z; Zy, Z
face Ajkl : T =2 T, = —, 1 = — with
J g D k D l D W

2
Zj = @jagk + aipay + gy — QjpQr — G105 — Qgpdy ,
2
Zx = ajjap + aj + agjay — ajajp — apaq — ajjay
2
Z = ajy + ajagk + a0k — Qg — QiR — Q550kk

D=2;+Z+ 7.

"Fisher’s equation is based on the assumption that phenotypes are insensitive to the
origin of the parental alleles on chromosomes. Phenotypes derived from genotype A;A;
are assumed to develop the same properties, no matter which allele, , on the chromosomal
locus comes from the mother and which comes from the father. New results on human

genetic diseases have shown, however, that this assumption can be questioned.
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Local stability analysis on the simplex S3 through diagonalization of the

(2 x 2) Jacobian yields for the corners
corner j . )\1 = Qi — Qjj, )\2 = a1 — Gjj ,
and for the edges

(ajr — aj;)(ae — ax)
A5 — 26Lj]€ + apk

edge jk: M\ =

2
_ajjak.k — ajjakl — ajlakk — Cij -+ CijCle -+ ajkak.l

Aoy =

aj; — 2a, + agg
The corner j is asymptotically stable for (aj, aj;) < a;; or in other words,
if the homozygote A;A; has higher fitness than the two heterozygotes A;A;
and A;A;. The stationary point on the edge jk is unstable for (ajj, agr) > aji
because \; is positive. We dispense here for a more detailed discussion of
the eventually quite sophisticated situation and refer to the simplified model
discussed below.

The calculation of the eigenvalues of the Jacobian at the stationary point
in the interior of the face Ajkl is even more involved but, nevertheless, can
be computed analytically. We present the results for the stationary point on
the face Ajkl in order to demonstrate the strength and the limits of machine

based symbolic computation. For the two eigenvalues of the Jacobian we
find:

2 .
/\172 = (Ql + \/QQ)/(QD ) with
Ql = (akl — Cka) P1 + (aﬂ — ijj) P2 and
Q2 = <(@jl — ajj)(am — arr) — (ae — az)(a, — &kz)>P1P2 ,
2
Py = ajraq — ajran — agjagp + ajag + ajay — aj
2
Py = ajpan — ajray — ajag, + azag + agpag — ay;
D = a2 2 2 y y
= ajk + ajl + Ay — Ak — A5;Q1 — Apea+
+ 2(ajjam + ajiare + ajpay — @R — GjRGr — Ga5)

(2 when completely expanded becomes a sixth order polynomial in aj; with

more than 120 terms. Although fully analytical the expressions are pro-
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hibitive for further calculations and will be studied numerically in practical

calculations.

A simple example of a three-allele one-locus model is shown on Fig. 2.14:

The matrix of rate parameters is simplified to

ai; G2 a13 d g g
A = Qg1 G22 Q23 = g d gl ,
g g d

31 dz2 (33

which has only two parameters the diagonal terms d representing the fitness
of the homozygotes, and g the off-diagonal elements for the heterozygotes.
From a1 = ass = azz = d and a9 = a3 = asz = g we have () = 0. In this
fully symmetric case the coordinates of stationary points and the eigenvalues

of the Jacobian fulfil very simple expressions:

corner (1,0,0) : M=X=d—f
11 1

edge (57570) : /\1:_/\2:_§(g_d)
111 1

face (g,g,g) )\1—)\2——§(g—d)

The critical quantity here is the difference between the off-diagonal and the
diagonal term of matrix A, g—d. Aslong as d > g is fulfilled — corresponding
to higher fitness of homozygotes, A;A; and A;A;, than heterozygotes, A;A;
and A;A; — the corners are stable stationary points and depending on initial
conditions one allele, A; or A;, is selected. For overdominance of heterozy-
gotes, g > d, the stable points are on the edges or in the interior of the face
(Fig.2.14). Multiple stationary states do occur and more than one may be
stable and the outcome of population dynamics need not be uniquely de-
fined. Instead depending on initial conditions the distribution of alleles may
approach one of the local optima [4, 86, 147, 245].

In order to analyze the behavior of the mean fitness ¢(¢) we introduce

mean rate parameters a; = Z?Zl a;jxj, which facilitate the forthcoming anal-
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ysis. The time dependence of ¢ is now given by

n n n n n n n
= 2 E Zj E ;T E ajpTy — 2 E Tj E ;T E Tk, E Qpely =
j=1  i=1 k=1 j=1 =1 k=1 (=1
n n n
= 2 E rja; — 2 E T a E Tpap =
j=1 j=1 k=1

=2(<a®> - <a>?) = 2varfa} > 0. (2.11)

Again we see that the flux ¢(¢) is a non-decreasing function of time, and
it approaches an optimal value on the simplex. This result is often called
Fisher’s fundamental theorem of evolution (see, e.g., [86]). As said above,
multiple stationary states do occur and more than one may be stable. This
implies that the optimum, ¢() is approaching, need not be uniquely defined.
Instead ¢(t) may approach one of the local optima and then the outcome of
the selection process will depend on initial conditions [4, 86, 147, 245].

Three final remarks are important for the naive interpretation of Fisher’s
fundamental theorem: (i) Selection in the one-locus system when it follows
Equ. (2.9) optimizes mean fitness of the population, (ii) the outcome of the
process need not be unique since the mean fitness ¢ may have several local
optima on the unit simplex, and (iii) optimization behavior that is suscep-
tible to rigorous proof is restricted to the one locus model since systems
with two or more gene loci may show different behavior of ¢(¢). In partic-
ular, epistasis, linkage disequilibrium, and frequency dependent fitness may
lead to situations in which the mean fitness is decreasing [214]. The conven-
tional opinion considered the fundamental theorem as wrong and a mistake
of Ronald Fisher who — by the way — made so many other important contri-
butions to mathematics, statistics, and population genetics.

Recalling Fisher’s own verbal formulation of the fundamental theorem:

The rate of increase of the mean fitness of any species at any time is equal
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to its genetic variation at that time, allow for many different interpretations.
A more recent reinterpretation the theorem [103,228] tries to rehabilitate
Fisher’s claim for universality. These interpretations are based on partition-
ing genetic variation in additive and nonadditive, in other words epistatic,
effects and intrinsic and environment caused contributions. The misunder-
standing of Fisher’s original intensions is mainly attributed to the thirty
years controversy about the meaning of natural selection between Fisher and
Wright. We shall come back to these differences in view when we discuss
Fisher’s theorem and Wright’s concept of adaptive landscapes in the light of

a general theory of evolution (chapter 3).

2.6 Evaluation of data and the Fisher-Mendel controversy

Derivation and experimental verification of statistical laws requires a firm
mathematical theory of testing whether or not the observed regularity fol-
lows significantly from the harvested data. Ronald Fisher criticized Mendel’s
work [93] and brought up the argument that Mendel’s data are too good and,
presumably, were slightly manipulated by the author. Fisher’s paper was the
beginning of a seventy years long debate and eventually led to a monograph
stating that it is high-time to end the controversy [104]. It is fair to say
that Mendel work in essence has been rehabilitated but Fisher’s statistical
perfection in data analysis created a new standard in th e validation of sta-
tistical laws. We dispense from here from all historical details but use the
Mendel-Fisher discussion to digress on statistical methods that allow for an

evaluation of the statistical significance of harvested data.

2.6.1 The y2-distribution

The conventional statistical test for data from random sampling is called
Pearson’s y2-test, because it has been introduced by the statistician Karl
Pearson [233] and assesses two kinds of comparisons: (i) a quality test that
establishes whether or not an observed value distribution differs from a the-
oretical distribution, and (ii) a test of independence that assesses whether

paired observations on two variables are independent of each other.
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Figure 2.15: The p-value in significance test of null hypothesis. The figure
shows the definition of the p-value. The bell-shaped curve (red) is the probability
density function (PDF) of possible results. Two specific data points are shown one
at values above the most frequent outcome at © = 5 near x = 7 (green) and the
other one at z ~ 3.5 (blue). The p-value — not to be mistaken for a score — is the
cumulative probability of more extreme cases, i.e., results that are further away of
the most frequent outcome than the data point and obtained as the integral under
the PDF. Depending of the position of the observed result this integral has to be

taken to higher (green) or lower (blue) values of x, respectively.

The test is based on the y2-distribution with the following properties:®
X:(z) is a one-parameter probability distribution, which is defined on the
positive real axis (support: x € [0, +00) ), and which is defined as the sum
of the squares of k£ independent random variables Z, ..., Z;, that fulfil the

standard normal distribution:

k
0 -y 2,
=1

The parameter k is the number of the degrees of freedom. The distribution

8Tn case it is important to distinguish between the test statistics and the y2-distribution

the test is named Pearson X2 test.
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of Q is given by

1
probability density function: f(z;k) = —/———
2:T(3)

1

k x
lative distribution function: F(z;k) = —— — =
cumulative distribution function (x; k) F(§)7<272) ,
whereby xi(z) = f(x;k). The functions I'(z), v(s,2) and I'(s,z) are the
Gamma function and the lower and the upper incomplete Gamma function,

respectively:

I'(z) = / e 't*1dt and T'(n) = (n—1)!; ,n €Ny,
0
v(s,2) = / e 't~ dt, and
0

[(s,z) = / et dt .

The x? density and distribution functions are available in tables that were
used before the ubiquitous availability of computers, which allow for straight-
forward calculation of numerical values from the functions available in all
statistics packages. Since I'(1) = 1 the case k = 2 is particularly simple and

serves as an example:
1 Z x x
f(z;2) = 56’5 and F(z;2) = / flz;2)de = 1—e2 .
0

The integration starts here at = 0 rather than at *+ = —oo because the
support of the distribution is restricted to the positive real axis.

In order to perform a specific test the start is to define the null hypothesis
that is the assumption of a theoretical distribution of the measured values
commonly in form of an expected partitioning of N observations in n cells.
In case of a discrete uniform distribution as null hypothesis — as it is very

often the case — the theoretical frequency is given by

Other common null hypotheses are the assumption of a normal, a Poisson

or a binomial distribution. Next the test statistic is calculated according to
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Figure 2.16: Calculation of the p-value in significance test of null hypoth-
esis. The figure shows the p-values from Equ. (2.14) as a function of the calculated
values of X2 for the d-values 1 (black), 2 (red), 3 (yellow), 4 (green), and 5 (blue).
The highlighted area at the bottom of the figure shows the range where the null
hypothesis is rejected.

Pearson’s cumulative test statistic

X? = iu (2.13)

i=1

where v; is the number of observations that were falling into cell C;. The
cumulative test statistic X? converges to the y? distribution in the limit
N — 0o —just as a mean value of a stochastic variable, Z = Zf\il z; converges
to the expectation value limy_,o Z = E{Z}. This implies that X2 is never
exactly equal to y? and the approximation that will always become better
when the sample size is increased. Usually a lower limit is defined for the
number of entries in the cells to be considered, values between 5 and 10 are
common.

Now the number of degrees of freedom d of the theoretical distribution
to which the data are fitted has to be determined. The number of cells,

n, represents the maximal number of degrees of freedom, which is reduced
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by m = s 4+ 1 where s is the number of parameters used in fitting of the
distribution of the distribution of the null hypothesis and accordingly we have
d = n—m. Considering the uniform distribution that is parameter free we find
d = n—1 and this is readily interpreted: Because the data fulfil Y ", m; = N
only n — 1 cells can be filled independently. Eventually, we determine the
p-value of the data sample as a measure of statistical significance. Precisely,
the p-value is the probability of obtaining a test statistic that is at least as
extreme as the actually observed one under the assumption that the null
hypothesis is true. We call a value a more extreme than b if a is less likely to
occur under the null hypothesis as b. As shown in Fig. 2.15 this probability
is obtained as the integral below the PDF from the calculated X2-value to

+00. In case of the x? distribution we have

p = /Jrooxfl(a:)dx =1- /0 a(r)de =1 — F(X*d), (2.14)

X2
which involves the cumulative distribution function F(z;d) defined in
Equ. (2.12). Commonly, the null hypothesis is rejected when p is smaller
than the significance level: p < o with 0.001 < o < 0.05. If the condition
p < « is fulfilled one says the null hypothesis is statistically significantly
rejected.

A simple example is used for the purpose of illustration: Two random
samples of N animals was drawn from a population, v; were males and 1»
were females with 14 + v5 = N. The first sample,

(170 — 161) + (152 — 161)?
322
p=1-F(0.503;1) = 0.478,

N =322, 1, =170, 1y, =152 : X2 = = 0.503,

clearly supports the null hypothesis that that males and females are equally
frequent since p > a =~ 0.05. The second sample,

(207 — 233.5)2 + (260 — 233.5)2
233.5

p=1—F(6.0151) =0.0142,

N = 467, vy = 207, vy = 260 : X2 = =6.015,

leads to a p-value, which definitely is at the lower limit or below the critical

limit and the rejection of the null hypothesis is statistically significant.
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The test of independence is relevant for situations when an observation
registers two outcomes and the null hypothesis is that these outcomes are
statistically independent. Each observation is allocated to one cell of a two-
dimensional array of cells called a contingency table (see next section 2.6.2).
In the general case there are m rows and n columns in a table. Then, the

theoretical frequency for a cell under the null hypothesis of independence is

_ ZZ:1 Vik ZZ; Vkj
N )

where N is the (grand) total sample size or the sum of all cells in the table.
The value of the X? test-statistic is

) G (v —ei)?
X2 = Sl 2.1

g ; = (2.16)
Fitting the model of independence reduces the number of degrees of freedom
by m = m+mn—1. Originally the number of degrees of freedom is equal to the
number of cells, m - n, and after reduction by = we have d = (m —1)-(n—1)
degrees of freedom for comparison with the x? distribution.

The p-value is again obtained by insertion into the cumulative distribution
function, p = 1 — F(X?;d), and a value of p less than a predefined critical
value, commonly p < 0.05, is considered as justification for rejection of the
null hypothesis or in other words the row variable does not appear to be

independent of the column variable.

2.6.2 Fisher’s exact test

As a second example out of many statistical significance test developed in
mathematical statistics we mention Fisher’s exact test for the analysis of
contingency tables. In contrast to the y2-test Fisher’s test is valid for all
sample sizes and not only for sufficiently large samples. We begin by defining
a contingency table, which in general is a m X n matrix M where all possible
outcomes of one variable = enter the columns in one row and distribution
of outcomes of the second variable y is contained in the columns for a given

row. The most common case — and the one that is most easily analyzed — is
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2 x 2, two variables with two values each. The the contingency table has the

form
T To total
Y1 a b a+b
Yo c d c+d
total | a+c¢c b+d| N

where every variable, x and y, has two outcomes and N = a+ b+ c—+d is the
grand total. Fisher’s contribution was to prove that the probability to obtain

the set of values (1, x2,y1,y2) is given by the hypergeometric distribution
N—
(i) G=t)
)

k N-—

3 () 0=t)
)

1=0 v
where N € N = {1,2,...}, p € {0,1,...,N}, v € {1,2,..., N}, and the
support k € {max(0,v+pu—N),..., min(u, v)}. Translating the contingency

probability mass function f,, (k) =
(2.17)

cumulative density function F),, (k) =

table into the notation of probability functions we have: a =k, b = p — k,
c=v—k,and d = N+k—(p+v) and hence Fisher’s result for the probability

of the general 2 x 2 contingency table is

a C

(aﬁ\:c) B alblcld! NI '

(YD @b e+ d) (a+ )l (b+d)!

(2.18)

where the expression on the rhs shows beautifully the equivalence between
rows and columns. We present the right- or left-handedness of human males
or females as an example for the illustration of Fisher’s test: A sample con-
sisting of 52 males and 48 females yields 9 left-handed males and 4 left-handed
females. Is the difference statistically significant and allows for the conclu-
sion that left-handedness is more common among males than females? The
calculation yields p &~ 0.10 which is above the critical value 0.001 < a < 0.05
and p > « confirms the rejection of the assumption that men are more likely
to be left-handed for these data.
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3. Fisher-Wright debate and fitness landscapes

Although Ronald Fisher, J.B.S. Haldane, and Sewall Wright were united
in their search for compatibility of Mendelian genetics and Darwinian se-
lection, they differed strongly in their view on the existence and nature of
a universal mechanism of evolution. In particular Fisher and Wright were
engaged for more than thirty years in a heavy debate and each of both was
more or less convinced that he had the solution to the problem [266]. No
end of the debate occurred and no end was insight until Fisher’s death in
1962. Interestingly the debate got a revival in 1997 when Jerry Coyne, Nick
Barton and Michael Turelli [41] claimed that Fisher had the right theory and
Wright’s model is of minor importance if not dispensable at all. Inspired by
this one-sided point of view Michael Wade and Charles Goodnight gave an
answer in the same journal [297] wherein they argued that Fisher’s theory
cannot be applied to a variety of relevant phenomena in population genet-
ics and is far away from being fully general. Accordingly, there is plenty of
room for other theoretical approaches Wright’s model being the most promi-
nent one at the current state of knowledge [297]. In two follow-up papers
[42,120] the Fisher-Wright debate has been reignited and began to interest
philosophers: Robert Skipper classified this scientific contest as a relative
significance controversy and presented a proposal for a solution in the future
that will be discussed in section 3.2. First, however, we shall present a new
interpretation of Fisher’s fundamental theorem that tries to rescue generality

and relevance of this evolutionary optimization principle.

3.1 Fisher’s fundamental theorem revisited

In section 2.5 Fisher’s differential equation combining recombination and se-
lection has been presented and analyzed. It describes the evolution of the

allele distribution at a single locus. The variables are the normalized allele
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dsenv

dSipt + dSgny = dS = 0 d(I)env"' dq)ns = d¢

Figure 3.1: Comparison of thermodynamical entropy and mean fitness.
The extremum principle of the entropy in thermodynamics applies to isolated
systems, which are systems that sustain neither exchange of energy nor exchange
of matter with their environment, and it is of the form dS/dt < 0 where S is
the total entropy of the system (lhs of the figure). Isolated systems may house
open systems that exchange energy and/or matter with their environment being
part of the isolated system. The open system (white circle in the sketch) by itself
does not fulfil the second law criterium because entropy can be exported to or
imported from the environment: No maximum principle holds for Siyt. Fisher’s
fundamental theorem is sketched on the rhs. The change in the mean population
fitness is partitioned into two contributions, d¢ = d¢ng + d@eny, out of which only
one, d¢yg fulfils the maximum principle. Color code: The ranges of validity of the
unidirectionality principle are indicated by red lines.

frequencies, > " | z; = 1, the concentrations of the diploid genotypes are fully
determined by the assumption of Hardy-Weinberg equilibrium. In essence,
this is the gene’s eye view as it has been popularized by Richard Dawkins [46].
The quantity that is nondecreasing and hence optimized is the mean repro-
duction rate of the allele distribution at the locus, ¢(t) = >0 | D 1| @iz
This function ¢(t) obeying a directionality principle (Equ. (2.11)) was some-
times considered as an off-equilibrium equivalent to the entropy in equilib-
rium thermodynamics ([48]; for a more recent review see [49]), which accord-
ing to the second law fulfils universal unidirectionality in isolated systems,
dS/dt > 0. In Fig.3.1 we present a sketch of the optimization principles in
thermodynamics and in evolution. The major difference between both cases
of unidirectionality concerns the range of validity: The thermodynamic prin-

ciple holds globally, and need not be fulfilled in open subsystems whereas the



EVOLUTIONARY DYNAMICS 77

fundamental theorem is valid only for a subset of factors influencing mean
fitness ¢. This subset can be identified with natural selection. For reasons
the will become clear within the next paragraphs the more recent and more
elaborate interpretations of the fundamental theorem suggest that such an
correspondence is not justified. It is, however, fair to say that Fisher himself
stressed the limitation of the analogy [228, pp.346,347].

At first it is important to emphasize that Fisher’s theorem as expressed
by Equ. (2.11) is neither wrong not inexact. The (justified) critique concerns
the very limited applicability. As said before the theorem does not apply
in the two locus case when the two genes interact — a phenomenon that is
called epistasis, there must be no linkage disequilibrium implying the neces-
sity of random mating, and all other nonadditive genetic interactions must be
zero. As we shall see later on, Fisher’s large population size theory (L[P]ST)!
several of the jeopardizing deviations become small and unimportant in the
limit Fisher is considering [62, 87,228, 236]. Secondly, as Ronald Fisher him-
self stressed several times, the (total) mean fitness of a population in nature
can only fluctuate around zero because otherwise the population would either
explode or collapse and die out.? How can this undeniable fact be reconciled
with the Darwinian principle of optimizing fitness? The explanation of the
contradiction The variation in the mean fitness is split into two different con-
tributions: (i) the increase in mean fitness caused by natural selection, and
(ii) the change in mean fitness caused by the environment where we define the

environment as everything contributing to changes except natural selection:

d¢ - d¢ns + d¢env 5 (31)

and @ns = Y,y > iy QikZ; Ty is obeying the directionality principle. The no-

tation of d¢e,, being the change in mean fitness caused by the environment

IFisher’s theory is often abbreviated as LPST, sometimes as LST. We shall adopt here

the shorter three letter version.
2Cases of such explosions are known but very rare. If, for example, a species is trans-

ferred into a new environment where other species predating on them are missing extremely
rapid population growth occurs, which corresponds to a (temporarily) large positive mean
fitness. Examples are the rabbits in Australia and several cases of insect proliferations

causing major damage.
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sounds weird, and makes sense only in the gene’s eye view. Then, epistatic
effects coming from other genes through interaction may look as environmen-
tal influence for the gene under consideration. The interpretation of other
contributions to d¢e,, is even more difficult. However, with this definition
Fisher’s fundamental theorem can be rescued also its range of applicability
has shrunk to the small white area in Fig.3.1 and definitely F'TNS cannot
be applied to the total d¢ as it is done in the conventional interpretation.
There are still a number of problems with the subtler recent interpretation
but most of them can be straightened out by careful argumentation [228].
A straightforward interpretation of the two views on Fisher’s fundamental
theorem concerns the nature of the time derivative:

Ius
>
ot 20,

env

. : do .
conventional view: — >0, new view:

The conventional view was dealing with the total differential whereas the
new view considers the partial differential at constant environment.

The important issue touched upon above can now find an answer. The
gain in mean fitness of the allele population resulting from natural selection
is compensated by the changes in the environment. Accordingly, we have
doeny < 0 or in other words for the gene the environment deteriorates to
such an extent that the stationarity of the (eco)system is maintained. This
compensation effect reminds of Leigh van Valen’s red queen hypothesis:® ...
and the Red Queen said to Alice: ”In this place it takes all the running you
can do, to keep in the same place. ...”. This sentence is commonly used as a
metaphor for the requirement of continuing development of an evolutionary
system in order to maintain its (total) fitness relative to the (environmental)
system it is coevolving with. Transferring the metaphor to Fisher’s (peculiar)
definition of environment this means for the allele population at a given
locus: As its mean fitness increases by natural selection the environment

deteriorates to about the same amount.

3The Red Queen is a fictional character in Lewis Carroll’s fantasy novella, Through the
Looking-Glass, which is often mistaken with the Queen of the Heart in Carroll’s previous

book Alice’s Adventures in Wonderland.
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Figure 3.2: Sewall Wright’s fitness landscape. The landscape has been intro-
duced as a metaphor to illustrate evolution [319]. Populations or subpopulations
of species are climbing on landscape with multiple peaks and optimize fitness in
a non-descending or adaptive walk until they occupy local maxima. The fitness
landscape is constructed through assigning a fitness value to every node of the sup-
port graph. Genotype space in Wright’s original concept is recombination space
and as such it is high-dimensional. In the simple sketch here the graph on which
the landscape is plotted is a so-called path graph P,, which consists of n nodes on
a straight line.

3.2 The Fisher-Wright controversy

Ronald Fisher’s model of evolution, the large population size theory (LST),
is based (i) on the assumption of large panmictic populations,® (ii) on muta-
tion and natural selection as the major process driving evolutionary change,
(iii) additive genetic effects and context independence of alleles, and (iv) re-

finement of existing adaptations in a stable and slowly changing environment

4 Panmizis or panmizia means that there are no restrictions of any kind — be it genetic,

physical or geographical — in mating. Mating partners are chosen fully at random.
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as the ultimate driving force for evolution. Seen from this point of view the
factors giving rise to deviations from the fundamental theorem are minor cor-
rections of the global picture. For example, random drift plays a dominant
role in small population, when genetic effects are predominantly additive and
context independent, epistasis and pleiotropy are negligible.

Sewall Wright’s model contrasts Fisher’s view in many aspects. His model
consists of three logical phases: (i) Random drift leads to semi-isolated sub-
populations or demes within the global population, which are losing fitness
because of accidental loss of fittest genotypes by the mechanisms of Mullers
ratchet,® (ii) natural selection acts on complex genetic reaction networks and
raises the mean fitness of subpopulations, (iii) interdemic selection raises
the mean fitness of the global population. Eventually, environmental change
shifts the adaptive peaks of mean fitness and drives the dynamics of evolution
[228].

Depending on the species under consideration both evolutionary scenar-
ios, the Fisher scenario and the Wright scenario, can be realized. None of the
two models of evolution has internal inconsistencies that would allow for re-
jection. Thus the dispute between the two scholars is — what the philosophers
call — a relative significance controversy. Both concepts are valid approaches
that apply only to a limited subset of evolutionary scenarios and multiplic-
ity of theoretical approaches is unavoidable at least at the current state of
knowledge. In contrast to the view of most biologists and some philosophers
(see, e.g., [266]) I think there is no need to believe that there will never be
a uniform theory of evolution [249]. The unification, however, will not come
on the phenomenological level of biology, it will be the result of a compre-
hensive theoretical biology that has its basis at the molecular level. The
basis of this optimistic view comes from examples from physics: Electricity
and magnetism were seen as largely unrelated phenomena unless the unifying
theory of electromagnetism was born that found its elegant completion by

James Clerk Maxwell who conceived the famous Maxwell equations.

SHermann Joseph Muller considered a random drift process in a finite population.
Stochasticity (see chapter 8) will cause a loss of the fittest genotype at some instant, then

the fittest genotype of the rump population will be lost, and so on [90, 220,221].
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Figure 3.3: Path graphs and binary sequence spaces. The structure of bi-
nary sequence spaces Q; follows straightforwardly from the graph Cartesian prod-
uct of the path graph Ps. The definition of the graph Cartesian product is shown
on the lhs of the figure. The sketch on the rhs presents the construction of binary
sequence spaces: Q1 = Pa, Qo =Py @ Py, Q3 = Po ® Qg = Py ® Po ® Po, and so
on, and Q; = (P2).

3.3 Fitness landscapes on sequence spaces

Sewall Wright’s original landscape metaphor was fitness plotted on recombi-
nation space as support. Recombination space is a discrete space with every
possible allele combination or genome represented by a point. It is huge as
Wright has already recognized: For the modest number of two alleles per
gene and about 4000 genes for a bacterium like Escherichia coli there are
24000 — 1.3 x 102 combinations, and for the human genome with some
30000 genes this number raises to 2300 = 7.9 x 10%3°, These numbers
are so far outside any imagination that one doesn’t need to comment them.
If we assume independent variation corresponding to the absence of linkage
disequilibrium recombination space would have a dimension of several thou-
sand but only two points in every direction — a bizarre object indeed but
such a structure is typical for discrete spaces of combinatorial objects which

are assembled from a set of building blocks. The structure of recombination
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Figure 3.4: Four letter sequence spaces. The sequence space derived from
the four letter alphabet (AT(U)GC; k = 4) are the Hamming graphs H(l,4).
The Hamming graph for a single nucleotide is the complete graph H(1,4) = K4
(Ihs) and for the 16 two letter sequences the space is H(2,4) = K4y ® K4 (rhs).
The general case, the space of sequences of chain length I, H(l,4) is the graph
Cartesian product with [ factors Ky4.

space has been studied in some detail [269,272] but we dispense here from
reviewing it, because we shall be mainly concerned with another discrete
formal space, the sequence space here and in the forthcoming chapters.
Despite enormous progress in synthetic biology [137,196] the possibilities
to construct gene combinations at will are still very limited. For example,
oscillatory gene networks [75] and genetic toggle switches [108] were engi-
neered in bacteria, and various synthetic genetic regulatory elements were
introduced into eukaryotic cells [11, 13], but engineered recombination is still
not achievable at present. Engineering sequences with mutations at arbi-
trary positions has become routine thirty years ago already [96, 155, 184] and
searching a space of sequences is much easier than searching recombination

space therefore.

The idea of sequence space without the explicit notion has been used to
order strings in informatics for quite some time (see, e.g., [133]) before the

word has been coined for proteins [201] and nucleic acids [65]. Like recombi-
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nation space sequence space is a discrete formal space where each sequence
is represented by a point (see, for example, Fig. 4.7 where the sequence space
of binary sequences of length [ is used for illustration). The sequence space
for binary sequences is a hypercube ); of dimension [ where [ is the sequence
length of the string. The building principle of sequence spaces by means of
the graph Cartesian product is illustrative and can be used for sequences over
arbitrary alphabets and, in particular, also for the natural AT(U)GC alpha-
bet. The Cartesian product of two graphs is illustrated in Fig. 3.3 by means
of two path graphs:% The product graph, P ® P is two-dimensional and
has P on its horizontal and P on its vertical margin, respectively. There
are many ways to visualize binary sequence spaces as hypercubes — one, the

consecutive product of Py graphs is illustrated in Fig. 3.3:
Q =P,OP®...0P =(P) . (3.2)

The advantage of the construction of sequence spaces a graph Cartesian
products has the advantage of being generalizable. If we choose a complete
graph K, as unit the consecutive Cartesian product yields the corresponding

sequence space for sequences of chain length I:
Q" = K(w) = K. ®0 K, ®...0 K =(K)". (3.3)

The most important case is the natural alphabet with k = 4 (Fig. 3.4).
Both recombination and sequence spaces are characterized by high di-
mensionality and this makes it difficult to visualize distances. Considering,
for example, the binary sequence space for strings of chain length [ = 10 that
contains 2! = 1024 sequences. Were sequence space a (one dimensional)
path graph, the longest distance would be 1023. In two dimensions is would
be 62 and on the hypercube Q%) it is shrunk to only 10. Both recombination
and sequence space are metric spaces. The most natural metric for sequence
spaces is the Hamming distance dy (see section 4.3.1), for recombination
spaces the construction an appropriate metric is somewhat more involved

and can be done by using graph theory [272].

6A path graph P, is a one-dimensional graph with n nodes. Two nodes at the ends

have vertex degree one and all other n — 2 nodes have vertex degree two.
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A landscape is obtained through plotting some property on a graph as
support (see Fig.3.2). On a fitness landscape fitness values are assigned to
the nodes of sequence space. The mathematical analysis of typical landscape
properties, for example correlation functions, on discrete spaces require spe-
cial techniques that are based on the us