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Abstract: Evolution through mutation and selection in populations of asexu-

ally replicating entities is modeled by ordinary differential equations (ODEs) that

are derived from chemical kinetics of replication. The solutions of the mutation-

selection equation are obtained in terms of the eigenvectors of the value matrix

W = Q · F with Q being the matrix of mutation frequencies and F the diagonal

matrix of fitness values. The stationary mutant distribution of the population is

given by the largest eigenvector of W called quasispecies Ῡ. In absence of neutral-

ity a single variant, the master sequence Xm, is present at highest concentration.

The stationary frequency of mutants is determined by their Hamming distance

from the master, by their fitness values, and by the fitness of their neighbors in

sequence space. The quasispecies as a function of the mutation rate, Ῡ(p), may

show a sharp transition from an ordered regime into the uniform distribution (Π)

at p = p cr that is called error threshold. Three phenomena that are separable

on model landscapes coincide at p = p cr: (i) steep decay in the concentration of

the master sequence, (ii) phase transition like behavior, and (iii) a wide range of

random replication where Ῡ is the uniform distribution. “Realistic” model land-

scapes based on current knowledge of nucleic acid structures and functions show

error thresholds but also other sharp transitions, where one quasispecies distribu-

tion is replaced by another quasispecies with a different master sequence at critical

mutation rates p = p tr. Groups of nearest neighbors of high fitness are strongly

coupled by mutation, behave like a single entity and are unlikely to be replaced

in phase transitions. Such “strong quasispecies” – consisting of a master sequence

and its most frequent mutants – maintain their identity over the entire range of

mutation frequencies from p = 0 to the error threshold at p = p cr. Neutrality in

the sense of identical fitness values for two or more sequences with Hamming dis-

tances dH < 3 leads to strongly coupled clusters of variants, which remain stable in

the limit lim p → 0. Nearest neighbor or next nearest neighbor sequences appear

at fixed ratios in the stationary distributions. Random selection of sequences by

random drift occurs only at Hamming distances dH ≥ 3.

Key words: error threshold – fitness landscapes – molecular evolution – mutation

rates – neutral evolution – quasispecies – virus populations.

∗Working Paper # 12-06-006 of the Santa Fe Institute
†Address: Institut für Theoretische Chemie der Universität Wien

Währingerstraße 17, A-1090 Wien, Austria
E-Mail: pks @ tbi.univie.ac.at , and
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
E-Mail: pks @ santafe.edu .

1



1 Introduction

About forty years ago Manfred Eigen [1] conceived a molecular theory of

evolution based on chemical kinetics of replication and mutation as well as

other knowledge from molecular biology, which has been extended, worked

out in detail and presented in a number of publications [2–6]. Population

dynamics is described by means of ordinary differential equations (ODEs)

as in chemical kinetics. The replicating molecular entities are RNA or DNA

molecules in test tube evolution experiments or genomes in the evolution of

viroids, viruses, bacteria or higher organisms. In the original formulation

the theory was thought to provide the proper frame for understanding pre-

biotic evolution [1,4,7]. The theory is focused around two new concepts: (i)

the quasispecies , which is the stationary mutant distribution in an asexually

reproducing population of genotypes related by mutation, and (ii) the hyper-

cycle, which is the simplest functional complex that suppresses competition

of reproducing entities and allows for formation of an ensemble through cyclic

mutual dependence. The theory of quasispecies has provided new insight into

populations of viruses and was and is successfully applied to virus evolution

and the development of novel antiviral therapies.

The quasispecies consists of a fittest genotype, the master sequence, sur-

rounded by a cloud of frequent mutants and it replaces the notion of a single

wild type genome in populations operating at high mutations rates like, for

example RNA virus populations [8], as used in conventional population ge-

netics. The most important result of quasispecies theory is the existence of

an error threshold: Error accumulation leads to a complete breakdown of in-

heritance, if the (single point) mutation rate parameter p is larger than some

critical value, p > p cr. Accordingly, Darwinian evolution requiring ordered

reproduction or at least partial conservation of genomes is possible only the

range 0 ≤ p ≤ p cr, which sets an upper bound to acceptable mutation rates,

pmax = p cr. Values for p cr as a function of genome length (ν) and fitness val-

ues (fj) were derived by an approximation neglecting mutational backflow

consisting of mutations from mutants back to the master sequence [1]. The

first combined analytical and numerical study on a quasispecies with explicit

consideration of all sequences in sequence space was published in 1982 [9] and

gave insights into the structure of stationary mutant distributions as a func-

tion of the mutation rate parameter (p). Both approaches used, indirectly

or directly, a simple distribution of fitness values: The master sequence has

higher fitness than the rest of the population, which is assumed to have iden-

tical fitness values. Later the name single peak fitness landscape has been
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given to this simple fitness distribution. The transition from the ordered

to the random replication2 regime is sharp and the sharpness increases with

the chain length of polynucleotides, ν. At constant replication accuracy the

error threshold defines a maximum chain length (ν < νmax) and this pro-

vides a limit for the length of genomes or polynucleotide sequences that can

be reproduced faithfully. The error threshold has been applied to prebiotic

scenarios in order to estimate the limitation of chain elongation in enzyme

free replication [7] and by the same token the threshold defines an upper

bound for the genome lengths of viruses, which are replicated by low accu-

racy replicases without proof reading [10]. Alternatively, the error threshold

defines a maximal mutation rate, p < p cr = pmax, for replication of genomes

of the same chain lengths and has been exploited for the development of new

antiviral drugs that increase the mutation rate through interfering with the

replication of virus genomes [11].

This review consists of two parts: (i) an updated overview of the con-

ventional quasispecies theory that focusses of the landscape concept (sec-

tions 2-5) and (ii) insights into quasispecies dynamics derived from the use

of conventional and new classes of landscapes (sections 6-8). After a brief

introduction into the landscape concept, chemical kinetics of replication is

introduced by means of the flow reactor as as appropriate open system. Then,

Charles Darwin’s natural selection is modeled by means of the mathematics

that was known at Darwin’s lifetime already. Quasispecies theory is reviewed

and the concept of the error threshold is introduced. Subsection 5.6 contains

some new results on the nature of the error threshold and the approxima-

tions applied in the derivations. The second part starts by distinguishing

simple and realistic landscapes. “Realistic”3 landscapes are constructed in a

way that mimics current knowledge on landscapes derived from biopolymer

structure and function as well as from virus evolution. In essence, three new

results were obtained. First, the error threshold phenomenon consists of a

superposition of three features that coincide on some model landscapes and

on the “realistic” landscapes studied here: (i) a steep decay of the stationary

concentration of the master sequence, x̄m(p), at small mutation rate param-

eters p, (ii) a sharp transition of the quasispecies Ῡ(p) at the critical value

p = p cr, and (iii) an extension of the domain of random replication from the

point p = p̃ = κ−1 to a broad plateau covering the whole range p cr < p ≤ p̃.

2Random replication expresses the fact that error accumulation destroys the
relation between template and copy and inheritance is no longer possible.

3Realistic is put here between quotation marks, because we want to indicate
that the knowledge on detailed shapes of landscapes is still incomplete.
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Figure 1: Path graphs and binary sequence spaces. The structure of binary
sequence spaces Ql follows straightforwardly from the graph Cartesian product of
the path graph P2. The definition of the graph Cartesian product is shown on
the lhs of the figure. The sketch on the rhs presents the construction of binary
sequence spaces: Q1 = P2, Q2 = P2 ⊗ P2, Q3 = P2 ⊗Q2 = P2 ⊗ P2 ⊗ P2, and so
on, and Ql = (P2)

l. Qν is a hypercube of dimension ν.

The choice of suitable model landscapes allows for a separation of the three

features. Second, some “realistic” landscapes sustain quasispecies that are

not dominated by a single master sequence but by a cluster of commonly

four neighboring sequences in sequence space with high fitness values. These

clusters show unusual stability, are not replaced in phase transitions, and

were called strong quasispecies therefore. Third, pairs and groups of neutral

sequences with Hamming distances dH = 1 and dH = 2 form strongly cou-

pled clusters that are stable in the entire range of mutation rates up to the

error thresholds. No such coupling exists for more distant pairs of sequences

(dH ≥ 3), which are subjected to Kimura’s random selection therefore. A

digression on lethal mutants (section 9) and an account on limitations and

perspectives of the quasispecies concept (section 10) finish the review.

2 Combinatorial spaces and landscapes

The replicating molecular entities are understood as strings X over some

alphabet Aκ with κ digits. Two alphabets are frequently used: (i) the bi-

nary alphabet A2 = {0, 1} with κ = 2 and the natural nucleobase alphabet

A4 = {A,U,G,C} with κ = 4.4 Binary sequences are used here mainly for

4Here we shall be mainly dealing with RNA molecules. For DNA sequences U

is automatically replaced by T.
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simplicity since they show many features of four letter sequences but can

be handled much more easily. It is also worth noticing that RNA molecules

with reduced alphabets make perfect structures with ribozyme5 functions

(see [12] for κ = 3 and [13] for κ = 2). Without simplification binary se-

quences can be used to code for sequences over four letter alphabets (see

subsection 5.1). Polynucleotide sequences or genomes are viewed as elements

of the entire set of possible sequences, which constitutes a formal metric

space called sequence space. All possible sequences of a given length ν form

a combinatorial manifold and hence sequence space belongs to the class of

combinatorial spaces [14].

The idea of sequence space without the explicit name has been used to

order strings in informatics for quite some time (see, e.g., [15]) before the

word has been coined for proteins [16] and nucleic acids [1]. The sequence

space for binary sequences is a hypercube Qν of dimension ν where ν is the

length of the string. The building principle of sequence spaces by means of

the graph Cartesian product is illustrative and can be used for sequences over

arbitrary alphabets and, in particular, also for the natural AUGC alphabet.

The Cartesian product of two graphs is illustrated in figure 1 by means of

two path graphs:6 The product graph, P(1) ⊗ P(1) is two-dimensional and

carries P(1) on its horizontal and P(2) on its vertical margin, respectively.

There are many ways to visualize binary sequence spaces as hypercubes –

one, the consecutive product of P2 graphs is illustrated in figure 1:

Qν = P2 ⊗ P2 ⊗ . . . ⊗ P2 =
(

P2

)ν
. (1)

The construction of sequence spaces a graph Cartesian products has the

advantage of being generalizable. If we choose a complete graph Kκ as unit

the consecutive Cartesian product yields the corresponding sequence space

for sequences of chain length ν:

Q(κ)
ν = K(l, κ) = Kκ ⊗ Kκ ⊗ . . . ⊗ Kκ =

(

Kκ

)ν
. (2)

The most important case is the natural alphabet with κ = 4 (figure 2).

Sequence spaces are characterized by high dimensionality, and this makes

it difficult to imagine distances. Considering, for example, the binary se-

quence space for strings of chain length ν = 10 that contains 210 = 1024

sequences. Were sequence space a (one dimensional) path graph, the longest

5A ribozyme is a catalyst built from RNA with functions like a protein enzyme.
The name is derived from ribo(nucleic acid en)zyme.

6A path graph Pn is a one-dimensional graph with n nodes. Two nodes at the
ends have vertex degree one and all other n − 2 nodes have vertex degree two.
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Figure 2: Four letter sequence spaces. The sequence space derived from
the four letter alphabet (AUGC; κ = 4) are the Hamming graphs H(l, 4). The
Hamming graph for a single nucleotide is the complete graph H(1, 4) = K4 (lhs)
and for the 16 two letter sequences the space is H(2, 4) = K4 ⊗ K4 (rhs). The
general case, the space of sequences of chain length ν, H(ν, 4) is the graph Cartesian
product with ν factors K4.

distance would be 1023. In two dimensions is would be 62 and on the hy-

percube Q(2)
10 it is shrunk to only 10. The most natural metric for sequence

spaces is the Hamming distance dH.7

The concept of a fitness landscape goes back to a metaphor used by the

American population geneticist Sewall Wright [18]: Fitness is plotted on a

support that is given by a (discrete) recombination space where each pos-

sible allele combination of the genotype is represented by a node [19, 20].

Populations and subpopulations of species are assumed to migrate on such

fitness landscapes until they find a local fitness optimum where they stay

until a change in the environmental conditions eliminates the peak. Wright

assumed fitness landscapes to be rugged with a multitude of peaks, but in

the days of his publication fitness was a rather abstract quantity that was

inaccessible to precise measurement and moreover very little was known on

the allele composition of genomes. The situation has changed completely

over the years, the fitness values of individual variants – molecules, viruses

or bacteria – can now be measured (see, e.g. [21–24]), and a rapidly growing

body of knowledge in particular in virology sets the stage for a quantitative

population biology at the molecular level. A recent example of a large scale

7The Hamming distance named after Richard Hamming counts the number of
positions in which two aligned sequences differ. The appropriate alignment of two
sequences requires knowledge of their functions [17]. Here, we shall be concerned
only with the simplest case: end-to-end alignment of sequences of equal lengths.
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study on HIV-1 aims at an understanding of the fitness landscape and the

changes of viral fitness on medication [25]. The size of sequence spaces, how-

ever, is (still) prohibitive for an exhaustive experimental determination of

fitness landscapes even in the simplest cases. Consequently the application

of model landscapes is unavoidable (see, e.g., [26]). Simple examples of such

landscapes are the additive fitness landscape (see e.g. [27]) where each mu-

tation away from the fittest sequence causes the same additive detrimental

contribution and, the multiplicative fitness landscape (see, e.g., [28] or [29])

where the detrimental contribution is a factor, or the single peak fitness land-

scape [9]. More complex landscapes are based on a deterministic as well as

a random components. The so-called Nk-model proposed and developed by

Stuart Kauffman [30, 31] may serve as a prominent example.

Here we intend to combine knowledge from experimentally measured fit-

ness values, mutation studies on biomolecular structures as well as plausible

inter- and extrapolations in order to get the required information for comput-

ing and analyzing quasispecies dynamics. The name “realistic” rugged fitness

landscapes (RRL) is suggested to be used for landscapes that are based on

three parameters: (i) the fitness of the fittest sequence, the master sequence

Xm with fitness fm, (ii) the mean fitness of all sequences with the exception

of the master sequence, f̄ = f̄−m, and (iii) the band width d of a random

scatter of fitness values around the mean value f . The details of the scatter

can be defined individually, for example, by the seeds of the pseudorandom

number generator. A major problem of the random approach concerns the

relation to experimental data: How can we reduce the number of required

empirical parameters in such a way that a direct comparison between theo-

retical predictions and experimental measurements becomes possible? Here

we make an attempt in this direction, which is based upon a combination of

mathematical analysis and numerical computation.

Population dynamics of sequences that have the same fitness is, in princi-

ple, not accessible through ODEs because the time development of an ensem-

ble of neutral sequences is a purely stochastic process without a deterministic

drift term. Ever since Motoo Kimura’s approach [32, 33], which allowed for

handling neutrality within population genetics, neutral evolution is under-

stood as a diffusion like process in sequence space that requires a stochastic

approach. The major result of the neutral theory is that the loss of variants

and the approach towards a homogeneous population does not require fitness

differences. Since the outcome of the stochastic process is completely unde-

termined, the notion of random selection characterizes the phenomenon well.

It is worth noticing that the time span required for the approach towards ho-

7



mogeneity in the population increases with decreasing fitness difference until

it reaches a finite maximal value for differential fitness zero. It is also impor-

tant to recognize that slightly smaller fitness does not lead to elimination of

the less fitter variant in finite time as described by the nearly neutral theory

of evolution developed by Tomoko Ohta [34–36]. Closely related neutral se-

quences behave differently from the predictions of Kimura’s neutral theory

(see section 8).

3 Replication in the flow reactor

Selection and evolution cannot take place at thermodynamic equilibrium.

Required is an open system that exchanges matter and energy with an en-

vironment. The flow reactor (figure 3) is sufficiently simple and suitable

for both theoretical modeling and experimental work particularly in chemi-

cal engineering [37]. Reactors with similar functions but extensive external

control were and are used in microbiology and have different names char-

acterizing the special conditions of the cell culture like chemostat [38, 39],

turbidostat [40,41] or cellstat [42]. Dispensing from all technical details two

features of a continuously stirred tank reactor (CSTR) as shown in figure 3

are important: (i) Continuous influx of a stock solution provides the ma-

terials that are consumed by the reactions in the reactor and the increase

in volume is compensated by an equal outflux of reactor solution, and (ii)

spatial homogeneity is assumed to be achieved (almost) instantaneously by

efficient stirring. In addition, temperature control is assumed to be provided

by a heat bath, in other words heat produced or consumed by the reactions in

the reactor is considered to be compensated by an isothermal environment.

The population dynamics of n classes of replicating entities or replicators,

(X1,X2, . . . ,Xn) with the concentrations xt = (x1, x2, . . . , xn)t 8 is modeled

comprehensively by a system of irreversible chemical reactions embedded in

the flow reactor, which as said provides an energy and material flow in order

8In general vectors are understood as (n×1) matrices. In order to save printing
space we shall commonly write them in transposed form indicated by ’t’.
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to sustain non-equilibrium conditions

?
k

−−−→ A , (3a)

A + Xj

kj

−−−→ 2Xj ; j = 1, . . . , n , (3b)

Xj

dj

−−−→ B ; j = 1, . . . , n , (3c)

B
h

−−−→ A , and (3d)

A , X(i) , B
d

−−−→ � . (3e)

The molecular species A stands for the material required to synthesize a

molecule X(j) on a molecule X(j) acting as template in the sense of a copying

process. The species A enters the system in a zeroth order reaction with a

constant rate k and is either used in the synthesis of one of the X(j) molecules,

or degraded with a first order rate d [A].9 The replicators X(j) are either

degraded with a rate dj [X(j)] to yield compounds B, which can be recycled

with rate parameter h in order to return A into the system, or they are

removed or degraded like A and B with rate parameter d in an unspecific

process. Real experimental studies will be carried out under conditions were

some reactions can be neglected, and mathematical analysis will not consider

all possible reactions but use a suitable subset. If, for example, recycling of

material is negligible the reactions (3c) and (3d) as well as the molecular

species B can be omitted.

The implementation of mechanism (3) requires some physical setup, for

example a flow reactor as shown in figure 3. The supply of material is pro-

vided by an influx of stock solution with concentration [A] = a0 resulting

in k = r a0, the recycling reaction is neglected (h = 0), and the unspecific

degradation is replaced by the outflux of the reactor, d = r. With these

assumptions the kinetic ordinary differential equations are the form

da

dt
= − a

(

r +

n
∑

i=1

ki ci

)

+ r a0 , (4a)

dcj
dt

=
(

kj a − (dj + r)
)

cj ; j = 1, . . . , n , and (4b)

db

dt
=

n
∑

i=1

dj cj − r b . (4c)

9Concentrations, a, will be indicated by square brackets [A]. For replicators we
use particle numbers, Nj , or concentrations, [Xj] = cj , respectively. See also the
notations in the appendix.
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stock solution reaction mixture

a0 r [*] r

Figure 3: The flow reactor for the evolution of RNA molecules. A
stock solution containing all materials for RNA replication ([A] = a0) including
an RNA polymerase flows continuously at a flow rate r into a well stirred tank
reactor (CSTR) and an equal volume compensating for the influx and containing
a fraction of the reaction mixture ([?] = {a, b, ci}) leaves the reactor (For different
experimental setups see, e.g., Watts [43]). The population of RNA molecules
(X1,X2, . . . ,Xn) is present in numbers N1, N2, . . . , Nn with N =

∑n
i=1 Ni) in the

reactor and fluctuates around a mean value, N±
√

N . RNA molecules replicate and
mutate in the reactor, and the fastest replicators are selected (see [44, pp.21-60]).
The RNA flow reactor has been used also as an appropriate model for computer
simulations [45–47]. There, other criteria for selection than fast replication can
be applied. For example, fitness functions are defined that measure the distance
to a predefined target structure and mean fitness increases during the approach
towards the target [47].
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The flow rate r is the mean reciprocal residence time of a volume element in

the reactor, r = τ−1
R . Equation (4) sustains (n + 1) stationary states, which

are fulfilling the conditions ȧ = 0, ḃ = 0, ċj = 0 for j = 1, 2, . . . , n. Every

stationarity conditions for one particular class of replicating molecules Xj

c̄j

(

kj ā − (dj + r)
)

= 0

has two solutions (i) c̄j = 0 and (ii) ā = (dj + r)/kj. Since any pair of

type (ii) conditions is incompatible,10 only two types of solutions remain:

(i) c̄j = 0 ∀ j = 1, 2, . . . , n, the state of extinction, because no replicat-

ing molecule survives and (ii) n states with c̄j = (a0/(dj + r) − 1/kj) r and

c̄k = 0 ∀ k 6= j. Steady state analysis through linearization and diagonal-

ization of the Jacobian matrix at the stationary points yields the result that

only one of the n states is asymptotically stable, and this is the one referring

to species Xm that is defined by

km a0 − dm = max{ajkj − dj , j = 1, 2, . . . , n} . (5)

Accordingly, species Xm is selected and we denote this state as state of se-

lection. The proof is straightforward and yields simple expressions for the

eigenvalues λk (k = 0, 1, . . . , n) of the Jacobian matrix when degradation is

neglected, dj = 0 (j = 1, 2, . . . , n). For the state of extinction we find

λ0 = − r and λj = kj a0 − r . (6)

It is asymptotically stable as long as r > km a0 is fulfilled. If r > kma0 then

r > kj a0 ∀ j 6= m is valid by definition because of the selection criterion (5)

for dj = 0. For all other n pure states, {c̄j = a0 − r/kj , c̄j = 0 , j 6= i} the

eigenvalues of the Jacobian are:

λ0 = − r ,

λj = − kj a0 + r , and

λi = − r

kj
(ki − kj) ∀ i 6= j.

(7)

All pure states except the state at which Xm is selected (state of selection:

cm = 0 , cj = 0 , j = 1, . . . , n, j 6= m) have at least one positive eigenvalue

and are unstable. Therefore we have proven the occurrence of selection of

the molecular species with the largest value of kj (or kj a0−dj , respectively),

because only at c̄m 6= 0 all eigenvalues of the Jacobian matrix are negative.

10In this section degenerate or neutral cases with di = dj and ki = kj are
excluded (see also section 8).
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It is worth indicating that the dynamical system (4) has a invariant mani-

fold W
(a0)
n+2: w̄ = ā+b̄+

∑n
i=1 c̄i = a0. From ẇ = ȧ+ḃ+

∑n
i=1 ċi = (a0−w) r we

find by straightforward integration that the sum of all concentrations, w(t),

follows a simple exponential relaxation process towards the asymptotically

stable steady state w̄ = a0:

w(t) = a0 −
(

a0 − w(0)
)

exp(−r t) ,

with the flow rate r being the relaxation constant.

4 The selection equation

As illustrated and analyzed in section 3 the basis of Darwinian selection

is reproduction, which may be reduced to an overall autocatalytic reaction

step, A + Xj → 2Xj . The system is simplified further by assuming that

the material consumed in the reproduction process, A, is present in excess:

[A] = a0, and we indicate the buffering of the concentration by means of

parentheses, (A) + Xj → 2Xj. The concentration of A is constant and can

be absorbed in the rate constant: fj = kj [A] = kj a0. In addition we neglect

the degradation terms by putting dj = 0 ∀ j. In terms of chemical reaction

kinetics selection based on pure reproduction is described by the dynamical

system

dcj
dt

= fj cj − ci
c0

n
∑

i=1

fi ci = ci

(

fi −
∑n

i=1 ci
c0

φ(t)

)

; j = 1, 2, . . . , n ,

φ(t) =
1

∑n
i=1 ci

n
∑

i=1

fi ci = f .

(8)

The variables cj(t) are the concentrations of the genotypes Xj as before, c0 is

the total concentration of the invariant manifold S
(c0)
n : c̄ =

∑n
j=1 cj(t) = c0.

The quantities fj are reproduction rate parameters corresponding to over-

all replication rate constants in molecular systems or, in general, the fitness

values of the genotypes. A global flux φ(t) has been introduced to compensate

for the net growth of the system. In the particular case here it is identical

to the mean fitness of the population.

Transformation to relative concentrations, xj = cj/c,
∑n

i=1 xi(t) = 1 and
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c0 = 1 simplifies further analysis:11

dxj

dt
= fj xj − xj

n
∑

i=1

fi xi = xj(fj − φ) with

φ =
n
∑

i=1

fi xi = f and i = 1, 2, . . . , n .

(9)

Because of this conservation relation,
∑n

i=1 xi(t) = 1, only n− 1 variables xj

are independent. In the space of n Cartesian variables, Rn, the x-variables

represent a projection of the positive orthant onto the unit simplex

S
(1)
n =

{

xi ≥ 0 ∀ i = 1, 2, . . . , n ∧
n
∑

i=1

xi = 1

}

. (10)

The simplex S
(1)
n is an invariant manifold of the differential equation (9).

This means that every solution curve x(t) =
(

x1(t), x2(t), . . . , xn(t)
)

that

starts in one point of the simplex will stay on the simplex forever. Moreover,

the boundary of the simplex consists of invariant subsimplices [48] and no

trajectory can cross it neither from inside to outside – contradicting non-

negativeness of particle numbers or concentrations – nor from outside to

inside.

In order to analyze the stability of S
(1)
n we relax the conservation relation

∑n
i=1 xi(t) = c(t) 6= 1 and assume that only the conditions

{fj > 0 ∧ 0 ≤ xj(0) <∞}∀ i = 1, 2, . . . , n ,

are fulfilled. According to this assumption all replication rate parameters

are strictly positive – a condition that will be replaced by the weaker con-

dition fi ≥ 0 ∀ i 6= k ∧ fk > 0 below – and the concentration variables are

non-negative quantities. Asymptotic stability of the unit simplex requires

that all solution curves converge to the simplex from every initial condition,

limt→∞

(

∑n
i=1 xi(t)

)

= 1.

This conjecture is readily proved: From
∑n

i=1 xi(t) = c(t) follows

dc

dt
= c (1 − c)φ(t) with φ(t) > 0 . (11)

For dc/ dt = 0 we find the two stationary states: a saddle point at c̄ = 0

and an asymptotically stable state at c̄ = 1. There are several possibilities

to verify its asymptotic stability, we choose to solve the differential equation

and find:

c(t) = 1 −
(

1 − c(0)
)

exp

(

−
∫ t

0

φ(τ)dτ

)

.

11Care is needed for the application of relative concentrations, because the total
concentration c(t) might vanish and then relative concentrations become spurious
quantities.
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Starting with any initial value c(0) the population approaches the unit sim-

plex. When it starts on Sn it stays there and returns to it also in presence of

fluctuations.12 Therefore, we can restrict population dynamics to the simplex

without loosing generality and characterize the state of a population at time

t by the vector x(t) which fulfils the L(1) norm
∑n

i=1 xi(t) = 1.

The necessary and sufficient condition for the stability of the simplex,

φ(t) > 0, enables us to relax the condition for the rate parameters fi. In

order to have a positive flux it is sufficient that one rate parameter is strictly

positive provided the corresponding variable is non-zero:

φ(t) > 0 =⇒ ∃k ∈ {1, 2, . . . , n} such that fk > 0 ∧ xk > 0 .

For the variable xk it is sufficient that xk(0) > 0 holds because xk(t) ≥ xk(0)

when all other products fjxj were zero at t = 0. This relaxed condition for

the flux is important for the handling of lethal mutants with fj = 0.

The time dependence of the mean fitness or flux φ is given by

dφ

dt
=

n
∑

i=1

fi
dxi

dt
=

n
∑

i=1

fi

(

fixi − xi

n
∑

j=1

fjxj

)

=

=
n
∑

i=1

f 2
i xi −

n
∑

i=1

fixi

n
∑

j=1

fjxj =

= f 2 −
(

f
)2

= var{f} ≥ 0 . (12)

Since a variance is always nonnegative, equation (12) implies that φ(t) is a

non-decreasing function of time. The value var{f} = 0 refers to a homoge-

neous population of the fittest variant, then φ(t) cannot increase any further

and hence, it has been optimized during selection.

It is also possible to derive analytical solutions for equation (9) by a

transform called integrating factors ([49], p.322ff.):

zj(t) = xj(t) exp

(
∫ t

0

φ(τ)dτ

)

. (13)

Insertion into (9) yields

dzj

dt
= fjzj and zj(t) = zj(0) exp(fjt) ,

xj(t) = xj(0) exp(fjt) exp

(

−
∫ t

0

φ(τ)dτ

)

with

exp

(
∫ t

0

φ(τ)dτ

)

=
n
∑

i=1

xi(0) exp(fit) ,

12Generalization to arbitrary but finite population sizes c 6= 1 is straightforward:
For

∑n
i=1 xi(0) = c0 the equation dxj/dt = fjxj − (xj/c0)

∑n
i=1 fixi,

j = 1, 2, . . . , n plays the same role as equation (9) did for
∑n

i=1 xi(0) = 1.
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Figure 4: Selection on the unit simplex S
(1)
3 . In the upper part of the figure

we show solution curves x(t) of equation (9) with n = 3(4). The parameter values
are: f1 = 1 [t−1], f2 = 2 [t−1], f3 = 3 [t−1], and f7 = 7 [t−1]where [t−1] is an
arbitrary reciprocal time unit. Initial conditions: x(0) = (0.90, 0.08, 0.02, 0) and
x4(6) = 0.0001. Color code: x1(t) yellow, x2(t) green, x3(t) red, and x4(t) blue.
X4is injected into the previously equilibrated system at time t = 6 as a fitter
variant, which takes over in rather short time.

The lower part of the figure shows parametric plots x(t) on the simplex S
(1)
3 .

Constant level sets of φ are straight lines (grey). Choice of parameters: f1 = 1 [t−1],
f2 = 2 [t−1], and f3 = 3 [t−1].

where we have used zj(0) = xj(0) and the condition
∑n

i=1 xi = 1. The

solution finally is of the form

xj(t) =
xj(0) exp(fjt)

∑n
i=1 xi(0) exp(fit)

; j = 1, 2, . . . , n . (14)

Under the assumption that the largest fitness parameter is non-degenerate,

max{fj ; j = 1, 2, . . . , n} = fm > fj ∀ j 6= m, every solution curve fulfill-
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Figure 5: A molecular view of replication and mutation. The replication
device E, commonly a replicase molecule or a multi-enzyme complex (violet) binds
the template DNA or RNA molecule (Xj , orange) in order to form a replication

complex E ·Xj with a binding constant Hj = h
(j)
1 [E][Xj ]

/

h
(j)
2 [E ·Xj] and replicates

with a rate parameter fj. During the template copying process reaction channels
leading to mutations are opened through replication errors. The reaction leads to a
correct copy with frequency Qjj and to a mutant Xk with frequency Qkj commonly
with Qjj � Qkj ∀ k 6= j. Stoichiometry of replication requires

∑n
i=1 Qij = 1, since

the product has to be either correct or incorrect. The reaction is terminated by
full dissociation of the replication complex. The sum of all activated monomers is
denoted by A.

ing the initial condition xi(0) > 0 approaches a homogenous population:

limt→∞ xm(t) = x̄m = 1 and limt→∞ xj(t) = x̄j = 0 ∀ j 6= m, and the flux ap-

proaches the largest fitness parameter monotonously, φ(t) → fm (Examples

are shown in figure 4).

Qualitative analysis of stationary points and their stability yields the

following results:

(i) The only stationary points of equation (9) are the corners of the simplex,

represented by the unit vectors ek = {xk = 1, xi = 0 ∀ i 6= k},
(ii) only one of these stationary points is asymptotically stable, the corner

where the mean fitness φ adopts its maximal value on the simplex (em:

x̄m = 1 defined by max{fi; i = 1, 2, . . . , n} = fm > fi ∀ i 6= m), one corner

is unstable in all directions, a source where the value of φ is minimal (es:

x̄s = 1 defined by min{fi; i = 1, 2, . . . , n} = fs < fi ∀ i 6= s), and all other

n− 2 equilibria are saddle points, and

(iii) since xi(0) = 0 implies xi(t) = 0 ∀ t > 0, every subsimplex of S
(1)
n is

an invariant set, and thus the whole boundary of the simplex consists of

invariant sets and subsets down the corners [48] (which represent members

of class S
(1)
1 ).
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5 The mutation-selection equation

Correct replication and mutation are visualized as parallel reaction channels.

An example of a simple molecular mechanism meeting this concept is shown

in figure 5: The template Xj binds to the replicase E forming a complex E·Xj

with a binding constant Hj = h
(j)
1 [E][Xj ]

/

h
(j)
2 [E ·Xj], replication is initiated

with a rate parameter kj, and then during the replication process the various

reaction channels are opened through replication errors. At the end of the

replication process template and correct copy or mutant – formed with the

probabilities Qjj or Qij , respectively – dissociate from the enzyme. This

mechanism is a rough description of what happens in viral RNA replication

by virus specific replicases.

In formal terms mutation is readily introduced into the mechanism (3)

by replacing equation (3b) by

A + Xj

Qijkj

−−−→ Xi + Xj ; i, j = 1, . . . , n , (15)

the rate parameter kj determines the rate at which some new molecule X(i)

is synthesized on the template Xj, which is kj [Xj ] [A], and Qij describes the

fraction of replication events that lead to the synthesis of precisely Xi. Hence

Qjj is the fraction of correctly copied molecules and Qij is the fraction of

mutations Xj → Xi. Since we assume here that the enumeration i = 1, . . . , n

is exhaustive – all possible molecules are preexisting even if most of them are

not (yet) in the system x(i)(t) = 0 at time t – we have the conservation rule
∑n

i=1Qij = 1 or, in other words, every copy is either correct or incorrect,

and the mutation matrix

Q =













Q11 Q12 . . . Q1n

Q21 Q22 . . . Q2n

...
...

. . .
...

Qn1 Qn2 . . . Qnn













,

is a stochastic matrix with the elements of a given column summing up to

one. In case one makes the assumption of equal probabilities for Xj → Xi

and Xi → Xj , as it is made for example in the uniform error rate model

(see below and [2,6]), Q is symmetric and hence a bistochastic matrix where

summation over all elements in the rows yields one as well.

5.1 Mutation

The uniform error rate model assumes that the mutation rate parameter

per site and replication event, p, is independent of the position along the
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polynucleotide chain.13 Under this assumption all elements of the mutation

matrix Q can be expressed in terms of three parameters only no matter how

long the genomes are:

Qji = Qij = (1 − p)ν−dij pdij = (1 − p)ν εdij with ε =
p

1 − p
. (16)

Apart from chain length ν and mutation rate parameter p equation (16)

contains the Hamming distance between two sequences Xj and Xi, which

is the number of positions in which the two aligned sequences differ [50]:

dij = dH(Xi,Xj).

Individual replicators X(j) – molecules, viruses bacteria, or higher organ-

isms – have genomes, which are polynucleotides, RNA or DNA, and every

reproduction events is necessarily accompanied by genome replication. In

a two letter alphabet we represent the genomes as binary strings of chain

length ν, which are individual points in sequence space (see figure 6),

Xi = (0010010110011· · ·10) ,

Xj = (0010110110001· · ·10) ,

and the distance between them is expressed as Hamming distance –

dH(Xi,Xj) = dij = 2 in the example shown above. Natural polynucleotides

of chain length ν can be represented by binary sequences of chain length

2ν where the individual nucleobases of the four letter alphabet are encoded

by two digits each, for example C≡ 00, U≡ 01, A≡ 10, and G≡ 11. A

particular sequence and its binary encoding look, for example

Xk = ( C |A |U |U |A |G |A | · · · |A ) ,

Xk = (00|10|01|01|10|11|10| · · · |10) .

Complementarity in base pairs, C≡G and U=A is thereby retained provided

the grouping in doublets of binary symbols is respected. Computation of

Hamming distances between four letter sequences in binary encoding required

some care: 00→ 11 corresponding to C→G is a single point mutation of

Hamming distance dH = 1 whereas two digits are changed in the binary

encoded sequences, 10→ 11 is only a change in a single digit, it corresponds

to A→G and the Hamming distance is dH = 1 for binary and four letter

sequences in this case.

13Uniform error rates or symmetry in the direction of mutations is commonly
not fulfilled in nature. It is here introduced as a simplification, which facilitates the
derivation of exact solutions of the differential equation (18). Moreover, neither
the assumption of uniform error rates nor the condition of a symmetric mutation
matrix Q are essential for the forthcoming analysis.
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Figure 6: Mutant classes in sequence space. The sketch shows the sequence
space for binary sequences of chain length ν = 5, which are given in terms of
their decadic encodings: ”0”≡ 00000, ”1”≡ 00001, . . . , ”31”≡ 11111. All pairs
of sequences with Hamming distance dH = 1 are connected by red lines. The
number of sequences in mutant class k is

(ν
k

)

.

5.2 Replication-mutation dynamics

The implementation of mechanism (3) with reaction (15) instead of (3b) in

the flow reactor (figure 3), whereby degradation is replaced by the outflux,

d = d(j) = r, leads to the kinetic differential equations

da

dt
= − a

(

r +

n
∑

i=1

ki ci

)

+ r a0 , (17a)

dcj
dt

= a

(

n
∑

i=1

Qji ki ci

)

− r cj ; j = 1, . . . , n . (17b)

Equation (17) can be analyzed straightforwardly [44, pp.21-60] but the results

are more difficult to interpret than those derived from an idealized model,

which is of almost general validity.

The simplifications were introduced by Eigen [1], they are essentially

the same as those used in the previous section 4 or in population genetics

[51, 52], and they concern two assumptions: (i) the material required to

synthesize replicators is assumed to be present in excess, a(t) = a0, and
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can be absorbed in the rate parameter, fj = kja0, and (ii) the increase in

replicator concentrations is compensated by means of an unspecific (dilution)

flux φ(t). Condition (ii) leads to a constant total concentration of replicators,

c0 = c(t) =
∑n

i=1 ci(t), which allows for normalization of variables, xj(t) =

cj(t)/c0 with
∑n

i=1 xi(t) = 0, and eventually the dynamics in populations of

replicating and mutation molecules is cast into the differential equation

dxj

dt
=

n
∑

i=1

Qij fj xi − xj ·φ ; j = 1, 2, . . . , n with φ =

n
∑

i=1

fixi = f . (18)

It has been proven that the solution curves xj(t) are – up to a transformation

of the time axis – independent of the total concentration as long as c(t) stays

finite and does not vanish, c(t) 6= {0,∞} [4].14

The mean fitness or flux φ(t) does not contain mutation terms because

of the conservation relation
∑n

i=1Qji = 1. A straightforward summation

yields an equation for the time dependence of the total concentration, which

is identical to equation (11)

dc

dt
= c

(

1 − c

c0

)

φ(t) , (19)

which sustains three stationary solutions, (i) P1 : c̄ = c0 and (ii) P2 : c̄ = 0.

The third stationary state P3 is defined by φ(t) = 0 and it is identical to

P2.
15 The stability of the steady states can be analyzed by differentiation

with respect to the total concentration c:

∂

∂c

(

dc

dt

)

= φ(t) − c

c0

(

2φ(t) − c0
∂φ

∂c

)

− c2

c0

∂φ

∂c
= −λ .

Insertion of the stationary solutions yields

λ(1) = −φ|c=c0 < 0 and λ(2) = φ|c=0 = 0

The first steady state P1 is asymptotically stable: c(t) decreases for c > c0

and increases for 0 < c < c0. The second state, P2 is marginally stable,

any fluctuation δc > 0 leads to λ(2) > 0, and implies progression towards

increasing values of c until P1 has been reached. The concentrations at state

P2 are confined to the simplex S
(c0)
n and after normalization the accessible

14Equation 18, accordingly, does not apply to situations of vanishing populations
like lethal mutagenesis in virology where is has wrongly be used for comparison
[53,54].

15For strictly positive fitness values, fi > 0∀ i = 1, 2, . . . , n, the condition φ = 0
can only be fulfilled by xi = ci = 0∀ i = 1, 2, . . . , n, which is identical to state P2. If
some fi values are zero – corresponding to lethal variants – the respective variables
vanish in the infinite time limit because of dci/dt = −ci φ(t) with φ(t) > 0.
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space for the variables x(j) is the unit simplex S
(1)
n defined in equation (10).

Asymptotic stability of P2 implies that the system converges to the unit

simplex, as it did without mutations. For initial values of the variables

chosen on the simplex,
∑n

i=1 xi(0) = 1, it remains there.

There is one important difference between the replication and the replication-

mutation system: In the latter the boundary of the unit simplex, S
(1)
n , is not

invariant. Although no orbit starting on the simplex will leave it, which is a

conditio sine qua non for chemical reactions requiring non-negative concen-

trations, trajectories flow from outside into S
(1)
n . In other words, the condition

xj(0) = 0 does not lead to xj(t) = 0 ∀ t > 0 (figure 7). The chemical inter-

pretation is straightforward: If a variant Xj is not present initially, it can be

formed through a mutation event.

5.3 Numerical solution

Before discussing the role of the flux φ in the selection-mutation system with

respect to optimization, we shall derive exact solutions of equation (18) by

means of the integrating factor transformation as in the mutation-free case

(see [49, p.322ff.] and [55, 56]). At first the variables xj(t) are transformed:

zj(t) = xj(t) · exp

(
∫ t

0

φ(τ)dτ

)

.

From
∑n

i=1 xi(t) = 1 follows straightforwardly, again as in the selection-only

case,

exp

(∫ t

0

φ(τ)dτ

)

=

n
∑

i=1

zi(t) .

What remains to be solved is a linear first order differential equation

dzj

dt
=

n
∑

i=1

Qji fi zi ; j = 1, 2, . . . , n or
dz

dt
= Q · F z . (20)

which is readily achieved by means of standard linear algebra. We define a

matrix W = {Wji = Qji fi} = Q · F where F = {Fii = fiδij} is a diagonal

matrix, and obtain dz/ dt = W · z. Provided matrix W is diagonalizable,

which will always be the case when the mutation matrix Q is based on real

chemical reaction mechanisms, we can transform variables by means of the

two n× n matrices B = {bij} and B−1 = H = {hij} (i, j = 1, . . . , n),

z(t) = B · ζ(t) and ζ(t) = B−1 · z(t) ,

such that B−1 ·W ·B = Λ is diagonal and its elements, λk, are the eigenvalues

of the matrix W. The right-hand eigenvectors of W are given by the columns
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of B, bj = (bi,j ; i = 1, . . . , n), and the left-hand eigenvectors by the rows of

B−1 = H, hk = (hk,i; i = 1, . . . , n), respectively. These eigenvectors are

the normal modes of selection-mutation kinetics. For strictly positive off-

diagonal elements of W, implying the same for Q which says nothing more

than every mutation Xi → Xj is possible although the probability might be

extremely small, Perron-Frobenius theorem holds (see, for example, [57] and

next paragraph) and we are dealing with a non-degenerate largest eigenvalue

λ0,

λ0 > |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . ≥ |λn| , (21)

and a corresponding dominant eigenvector b0 with strictly positive com-

ponents, bi0 > 0 ∀ i = 1, . . . , n.16 In terms of components the differential

equation in ζ has the solutions

ζk(t) = ζk(0) exp(λk t) . (22)

Transformation back into the variables z yields

zj(t) =
n−1
∑

k=0

bjk βk(0) exp(λk t) , (23)

with the initial conditions encapsulated in the equation

βk(0) =

n
∑

i=1

hki zi(0) =

n
∑

i=1

hki xi(0) . (24)

From here we obtain eventually the solutions in the original variables xj

through normalization

xj(t) =

∑n−1
k=0 bjk βk(0) exp(λk t)

∑n
i=1

∑n−1
k=0 bik βk(0) exp(λk t)

. (25)

For sufficiently long times the contribution of the largest eigenvalue domi-

nates the summations and we find for the stationary solutions

x̄j(t) =
bj0 β0(0) exp(λ0 t)

∑n
i=1 bi0 β0(0) exp(λ0 t)

, (26)

which represent the components of the quasispecies.

Perron-Frobenius theorem comes in two versions [57] which we shall now

consider and apply to the selection-mutation problem. The stronger version

provides a proof for six properties of the largest eigenvector of non-negative

primitive matrices17 T:

16We introduce here an asymmetry in numbering rows and columns in order
to point at the special properties of the largest eigenvalue λ0 and the dominant
eigenvector b0.

17A square non-negative matrix T = {tij ; i, j = 1, . . . , n; tij ≥ 0} is called prim-

itive if there exists a positive integer m such that Tm is strictly positive: Tm > 0

which implies Tm = {t(m)
ij ; i, j = 1, . . . , n; t

(m)
ij > 0}.
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(i) The largest eigenvalue is real and positive, λ0 > 0,

(ii) a strictly positive right eigenvector b0 and a strictly positive left eigen-

vector h0 are associated with λ0,

(iii) λ0 > |λk| holds for all eigenvalues λk 6= λ0,

(iv) the eigenvectors associated with λ0 are unique up to constant factors,

(v) if 0 ≤ B ≤ T is fulfilled and β is an eigenvalue of B, then |β| ≤ λ0,

and, moreover, |β| = λ0 implies B = T,

(vi) λ0 is a simple root of the characteristic equation of T.

The weaker version of the theorem holds for irreducible matrices18 T. All

the above given assertions hold except (iii) has to be replaced by the weaker

statement

(iii) λ0 ≥ |λk| holds for all eigenvalues λk 6= λ0.

Irreducible cyclic matrices can be used straightforwardly as examples in order

to demonstrate the existence of conjugate complex eigenvalues (An example

is discussed below). Perron-Frobenius theorem, in its strict or weaker form,

holds not only for strictly positive matrices T > 0 but also for large classes

of mutation or value matrices (W ≡ T being a primitive or an irreducible

non-negative matrix) with off-diagonal zero entries corresponding to zero

mutation rates. The occurrence of a non-zero element t
(m)
ij in Tm implies

the existence of a mutation path Xj → Xk → . . . → Xl → Xi with non-

zero mutation frequencies for every individual step. This condition is almost

always fulfilled in real systems (for exceptions see section 9).

5.4 Complex eigenvalues

In order to address the existence of complex eigenvalues of the value matrix

W we start by considering the straightforward case of a symmetric mutation

matrix Q. Replication rate parameters, fi are subsumed in a diagonal matrix:

F = {fi · δi,j ; i, j = 1, . . . , n}, the value matrix is the product W = Q ·F, and,

in general, W is not symmetric. A similarity transformation,

F
1
2 · W · F− 1

2 = F
1
2 · Q · F · F− 1

2 = F
1
2 · Q · F 1

2 = W′ .

18A square non-negative matrix T = {tij; i, j = 1, . . . , n; tij ≥ 0} is called ir-

reducible if for every pair (i, j) of its index set there exists a positive integer
mij ≡ m(i, j) such that t

mij

ij > 0. An irreducible matrix is called cyclic with pe-
riod d, if the period of (all) its indices satisfies d > 1, and it is said to be acyclic
if d = 1.
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Figure 7: The quasispecies on the unit simplex. Shown is the case of

three variables (x1, x2, x3) on S
(1)
3 . The dominant eigenvector, the quasispecies

denoted by b0, is shown together with the two other eigenvectors, b1 and b2. The
simplex is partitioned into an optimization cone (white; red trajectories) where
the mean replication rate f̄(t) is optimized, a second zone, the master cone where
f̄(t) always decreases (white; blue trajectory), and two other zones where may
increase, decrease or change nonmonotonously (grey; green trajectories). In this
illustration X3 is chosen to be the master sequence. Solution curves are presented
as parametric plots x(t). In particular, the parameter values are: f1 = 1.9 [t−1],
f2 = 2.0 [t−1], and f3 = 2.1 [t−1], the Q-matrix was assumed to be bistochastic with
the elements Qii = 0.98 and Qij = 0.01 for i, j = {1, 2, 3}. Then the eigenvalues
and eigenvectors of W are:

k λk b1k b2k b3k

1 2.065 0.093 0.165 0.742

2 1.958 0.170 1.078 -0.248

3 1.857 1.327 -0.224 -0.103

The mean replication rate f̄(t) is monotonously increasing along red trajecto-
ries, monotonously decreasing along the blue trajectory, and not necessarily
monotonous along green trajectories.

yields a symmetric matrix [58], since F
1
2 · Q · F 1

2 is symmetric if Q is. Sym-

metric matrices have real eigenvalues, a similarity transformation does not

change the eigenvalues and hence W has only real eigenvalues if Q is sym-

metric.

The simplest way to yield complex eigenvalues is introduction of cyclic

symmetry into the matrix Q in such a way that the symmetry with respect
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to the main diagonal is destroyed. An example is the matrix

Q =



















Q11 Q12 Q13 . . . Q1n

Q1n Q11 Q12 . . . Q1,n−1

Q1,n−1 Q1n Q11 . . . Q1,n−2

...
...

...
. . .

...

Q12 Q13 Q14 . . . Q11



















,

with different entries Qij . For equal replication parameters the eigenvalues

contain complex n-th roots of one, γn
k = 1 or γk = exp(2πik/n), i = 1, . . . , n,

and for n ≥ 3 most eigenvalues come in complex conjugate pairs. As men-

tioned earlier symmetry in mutation frequencies is commonly not fulfilled in

nature. In case of point mutations the replacement of one particular base

by another one does usually not occur with the same frequency as the in-

verse replacement, G→A versus A→G for example. Needless to stress, cyclic

symmetry in mutation matrices is also highly improbable in real systems.

The validity of Perron-Frobenius theorem, however, is not effected by the

occurrence of complex conjugate pairs of eigenvectors. In addition, it is

unimportant for most purposes whether a replication-mutation system ap-

proaches the stationary state monotonously or through damped oscillations

(see next paragraph).

5.5 Optimization

In order to consider the optimization problem in the selection-mutation case,

we choose the eigenvectors of W as the basis of a new coordinate system (see,

for example, figure 7):

x(t) =

n
∑

i=1

xk(t) ei =

n−1
∑

k=0

ξk(t) · bk ,

wherein the vectors ei are the unit vectors of the conventional Cartesian

coordinate system and bk the eigenvectors of W. The unit vectors represent

the corners of S
(1)
n and in complete analogy we denote the space defined by

the vectors bk as S̃
(1)
n . Formally, the transformed differential equation

dξk
dt

= ξk (λk − φ) , k = 0, 1, . . . , n− 1 with φ =
n−1
∑

k=0

λkξk = λ

is identical to equation (9) and hence the solutions are the same,

ξk(t) = ξk(0) exp

(

λk t −
∫ t

0

φ(τ) dτ

)

, k = 0, 1, . . . , n− 1 ,
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as well as the maximum principle on the simplex S̃
(1)
n

dφ

dt
=

n−1
∑

k=0

dξk
dt

λk =

n−1
∑

k=0

ξk λk (λk − φ) = < λ2 > − < λ >2 ≥ 0 . (12a)

The difference between the representation of selection and selection-mutation

comes from the fact that the simplex S̃n does not coincide with the physically

defined space Sn (see figure 7 for a three-dimensional example). Indeed,

only the dominant eigenvector b0 lies in the interior of S
(1)
n : It represent

the stable stationary distribution of genotypes, the quasispecies Ῡ towards

which the solutions of the differential equation (18) converge. All other n−1

eigenvectors, b1, . . . ,bn−1 lie outside S
(1)
n in the physically inaccessible range

where one or more variables xi are negative. The quasispecies Ῡ represented

by b0 is commonly dominated by a single genotype, the master sequence

Xm, having the largest stationary relative concentration: x̄m � x̄i ∀ i 6= m,

reflecting fm > fi ∀ i 6= m – and the same sequence in the elements of the

matrix W: Wmm > Wii ∀ i 6= m – and for sufficiently small mutation rates p:

Wim � {Wmm,Wii} ∀ i 6= m. As sketched in figure 7 the quasispecies is then

situated close to the unit vector em in the interior of S
(1)
n .

For the discussion of the optimization behavior the simplex is partitioned

into three zones: (i) The zone of maximization of φ(t), the (large) lower

white area in figure 7 where equation (12a) holds and which we shall denote

as optimization cone,19 (ii) the zone that includes the unit vector of the

master sequence, em, and the quasispecies, b0, as corners, and that we shall

characterize as master cone,19 and (iii) the remaining part of the simplex

S
(1)
n (two zones colored grey in figure 7). It is straightforward to proof that

increase of φ(t) and monotonous convergence towards the quasispecies is

restricted to the optimization cone [59]. From the properties of the selection

equation (9) we recall and conclude that the boundaries of the simplex S̃
(1)
n

are invariant sets. This implies that no orbit of the differential equation (18)

can cross these boundaries. The boundaries of S
(1)
n , on the other hand, are

not invariant but have the restriction that they can be crossed exclusively in

one direction: from outside to inside.20 Therefore, a solution curve starting

19The exact geometry of the optimization cone or the master cone is a polyhe-
dron that can be approximated by a pyramid rather than a cone. Nevertheless,
we prefer the inexact notion cone because it is easier to memorize and to imagine
in high-dimensional space.

20This is shown easily by analyzing the differential equation, but follows also
from the physical background: No acceptable process can lead to negative particle
numbers or concentrations. The process, however, can start at zero concentrations
and this means the orbit begins at the boundary and goes into the interior of the

physical concentration space, here the simplex S
(1)
n .
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in the optimization cone or in the master cone will stay inside the cone where

it started and eventually converge towards the quasispecies, b0.

In zone (ii), the master cone, all variables ξk except ξ0 are negative and ξ0

is larger than one in order to fulfill the L(1)-norm condition
∑n−1

k=0 ξk = 1. In

order to analyze the behavior of φ(t) we split the variables into two groups,

ξ0 the frequency of the quasispecies and the rest [59], {ξk; k = 1, . . . , n− 1}
with

∑n−1
k=1 ξk = 1 − ξ0:

dφ

dt
= λ2

0ξ0 +

n−1
∑

k=1

λ2
kξk −

(

λ0ξ0 +

n−1
∑

k=1

λkξk

)2

.

Next we replace the distribution of λk values in the second group by a single

λ-value, λ̃ and find:

dφ

dt
= λ2

0ξ0 + λ̃2(1 − ξ0) −
(

λ0ξ0 + λ̃(1 − ξ0)
)2

.

After a view simple algebraic operations we find eventually

dφ

dt
= ξ0 (1 − ξ0) (λ0 − λ̃)2 . (27)

For the master cone with ξ0 ≥ 1, this implies dφ(t)/dt ≤ 0, the flux is a

non-increasing function of time. Since we are only interested in the sign of

dφ/dt, the result is exact, because we could use the mean value λ̃ = λ̄ =

(
∑n−1

k=1 λkξk)/(1 − ξ0), the largest possible value λ1 or the smallest possi-

ble value λn−1 without changing the conclusion. Clearly, the distribution of

λk-values matters for quantitative results. As it has to be, equation (27)

applies also to the optimization cone and gives the correct result that φ(t) is

non-decreasing. Decrease of mean fitness or flux φ(t) in the master cone

is readily illustrated: Consider, for example, a homogeneous population

of the master sequence as initial condition: xm(0) = 1 and φ(0) = fm.

The population becomes inhomogeneous because mutants are formed. Since

all mutants have lower replication rate constants by definition, (fi < fm

∀ i 6= m), φ becomes smaller. Finally, the distribution approaches the qua-

sispecies b0 and limt→∞ φ(t) = λ0 < fm.

An extension of the analysis from the master cone to the grey zones, where

not all ξk values with k 6= 0 are negative, is not possible. It has been shown

by means of numerical examples that dφ(t)/dt may show nonmonotonous

behavior and can go through a maximum or a minimum at finite time [59].
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5.6 Mutation rates and error threshold

In order to illustrate the influence of mutation rates on the selection process

we apply (i) binary sequences, (ii) the uniform error rate approximation (16)

Qij = p dij (1 − p) ν−dij = (1 − p) ν ε dij with ε =
p

1 − p

with dij being the Hamming distance between the two sequences Xi and Xj ,

ν the chain length and p the single point mutation or error rate parameter

per site and replication, and (iii) a simple model for the distribution of fitness

values known as single-peak fitness landscape [9],

f(Yk) =







f0 if k = 0 = (m) ,

f if k = 1, . . . , ν (k 6= m) .
(28)

All sequences are ordered in mutant classes Yk with respect to the Hamming

distance from the master sequence. In absence of neutrality the zero-error

class contains only the master sequence (Y0 : {Xm ≡ X0}), the one-error

class comprises all single point mutations, the two-error class all double point

mutations, etc.21 Since the error rate p is independent of the sequence and

because of the assumption of a single-peak fitness landscape all molecules be-

longing to the same mutant class have identical fitness valued f(k) = {f0, f},
it is possible to introduce variables for entire mutant classes Γk (figure 6):

yk =
∑

j , Xj∈Γk

xj , k = 0, 1, . . . , ν ,
ν
∑

k=0

yk = 1 . (29)

The mutation matrix Q has to be adjusted to transitions between classes

[9, 60]. For mutations from class Γl into Γk we calculate:

Qkl =

min(k,l)
∑

i=l+k−ν

(

k

i

)(

ν − k

l − i

)

p k+l−2i(1 − p) ν−(k+l−2i) . (30)

The mutation matrix Q for error classes is not symmetric, Qkl 6= Qlk as

follows from equation (30).

The approaches to calculate error thresholds – numerical solutions and

analytical approximations – are discussed here in rather fussy detail, because

we shall make use of them later in the analysis of mutationally coupled clus-

ters. In the following we present the zero mutational backflow approximation,

an approach by Raleigh-Schrödinger perturbation theory and the numerical

results computed for the (full) mutation-selection equation.

21Centering the quasispecies around the master sequence suggests to use decadic
equivalents for the individual (binary) sequences: X0 = 000. . .00, X1 = 000. . .01,
X2 = 000. . .10, · · · ,X2ν−1 = 111. . .11 .
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Figure 8: The quasispecies as a function of the point mutation rate p.
The plot shows the stationary mutant distribution of sequences of chain length ν =
50 on a single-peak fitness landscape as a function of the point mutation rate p. The
upper part contains the approximate curves obtained through neglect of mutational
backflow according to equation (32) and is compared with the numerical results
presented in the lower part of the figure. Plotted are the relative concentration
of entire mutant classes (figure 6): ȳ0 (black) is the master sequence Xm ≡ X0,
ȳ1 (red) is the sum of the concentrations of all one-error mutants of the master
sequence, ȳ2 (yellow) that of all two-error mutants, ȳ3 (green) that of all three-error
mutants, and so on. In the perturbation approach the entire population vanishes
at a critical mutation rate p cr called the error threshold (which is indicated by
a broken gray line at p cr = 0.04501; the total concentration c̄(0)(p) is shown in
violet) whereas a sharp transition to the uniform distribution (Π)is observed with
the numerical solutions. In the uniform distribution the concentration of class k
is given by

(ν
k

)

/2ν with a largest value of ȳ25 = 0.1123 and a smallest value of
ȳ0 = ȳ50 = 8.8818 × 10−16. Choice of parameters: fm = 10, f = fj = 1∀ j =
1, . . . , ν; j 6= m, and hence f−m = 1.
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Zero mutational backflow. Neglect of mutational backflow from mutants to

the master sequence allows for the derivation of analytical approximations

for the quasispecies [1, 5]. The backflow is of the form

Φm←(i) =
n
∑

i=1

Qmifix̄i =
n
∑

i=1

Wmi x̄i ,

and if Wmi << |Wmm −Wii| (i 6= m) is fulfilled Qmi = 0 ∀ i = 1, . . . , n; i 6= m

is a valid approximation for small mutation rates [9]. Insertion into equa-

tion (18) yields the following ODE for the master sequence22

dx
(0)
m

dt
= (Wmm − φ) x(0)

m = (Qmm fm − φ) x(0)
m . (31a)

dx
(0)
j

dt
= Wjm x

(0)
m − φ x

(0)
j = Qjm fm x

(0)
m − φ x

(0)
j . (31b)

The differential equation (31a) sustains two stationary states: (i) x̄
(0)
m = 0,

the state of extinction, and (ii) Qmmfm − φ = 0. In the latter case we split

φ as we did previously:

φ =

n
∑

i=1

fi x
(0)
i = fm x

(0)
m +

n
∑

i=1,i6=m

fi x
(0)
i = fm x

(0)
m + (1 − x(0)

m ) f−m

with f−m =
1

1 − xm

n
∑

i=1,i6=m

fi xi .

Insertion into condition (ii) yields

Qmm fm − fm x̄
(0)
m − (1 − x̄(0)

m ) f−m ,

which can be evaluated to yield an expression for x̄
(0)
m . For known concen-

trations of the master sequence we obtain the concentration of the mutants

from equation (31b). For simplicity we introduce the assumption of the single

peak landscape leading to f−m = f :

x̄
(0)
j =

Qjm fm x̄
(0)
m

(fm − f) x̄
(0)
m + f

.

which after some algebraic operations leads to an equation for the stationary

concentrations of all members of the quasispecies

x̄(0)
m =

Wmm − f−m

fm − f−m

=
Qmm − σ−1

m

1 − σ−1
m

, (32a)

x̄
(0)
j = εdi0 x̄(0)

m ; j = 1, . . . , n , j 6= m (32b)

with σm = fm

/

f−m = fm

/

f .

22The superscript ‘(0)’ stands for zeroth order perturbation theory and means
(total) neglect of mutational backflow, although the approach does not correspond
to a defined order of perturbation theory (see next paragraph).
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The superiority σm is a measure of the advantage in fitness the master has

over the rest of the population, and f−m is the mean fitness of this rest.23 In

case of the single peak fitness landscape we have the trivial result: f−m = f .

The superiority of the master sequence can also be understood as an empirical

quantity that can be determined through direct measurements of replication

efficiencies of cloned sequences.

The stationary concentration of the master sequence x̄m as a function

of the error rate p, and according to equation (32b) also the concentration

of all other sequences x̄j belonging to the quasispecies vanish at the critical

error rate p cr. An illustrative example is shown in figure 8. The stationary

concentrations for all sequences except the master sequence pass through a

maximum before the vanish at p = p cr and the position of this maximum,

p = pmax, for sequence Xi can be obtained from the implicit equation

Q(pmax (di0 − νpmax) = (1 − pmax)
ν (di0 − νpmax) = di0 σ

−1
m .

The maximum is shifted towards the error threshold with increasing dis-

tance from the maser sequence. The value of p cr is readily calculated from

equation (32):

x̄(0)
m = 0 =⇒ Qmm − σ−1

m = (1 − p cr)
ν − σ−1

m = 0 ,

p cr = 1 − σ−1/ν
m or ν ln(1 − p cr) = − ln σm and

p cr = pmax ≈ ln σm

ν
and νmax ≈ ln σ

p
,

(33)

where the relation ln(1 − z) ≈ 1 − (z + . . .) ∀ − 1 ≤ z < 1 has been used.

Truncation after the first term in z is valid for sufficiently small error rates.

The error threshold has two meanings: (i) for constant chain length ν

the genetically tolerable error rate is limited, p < pmax = p cr and (ii) for a

given replication accuracy the length of polynucleotide that can be faithfully

replicated is limited by ν < νmax. Relation (i) is important in virology and

relation (ii) has been used in models of enzyme-free prebiotic reproduction

of oligo- and polynucleotides [7]. RNA viruses commonly have mutation

rates close to the error threshold [10]. The error rates can be increased

by pharmaceutical drugs interfering with virus replication and accordingly,

a new antiviral strategy has been developed, which drives virus replication

into an error catastrophe [11,62]. Recently, a direct extinction mechanism of

lethal mutagenesis in virus infections has been extensively discussed [53,54].

23An exact calculation of f−m is difficult because it requires knowledge of the
stationary concentrations of all variants in the population: x̄i; x = 1, . . . , n. For
computational details see [3, 5, 6, 61].
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Zero mutational backflow fails to account for the quasispecies at mutation

rates above the threshold p cr: Perron-Frobenius theorem states that the

concentrations of all members of the quasispecies are positive definite: x̄i >

0 ∀ i = 1, . . . , n but zero mutational backflow yields x̄i = 0 ∀ i = 1, . . . , n at

p = p cr. Considering the problem more closely this is no surprise since the

zero mutational backflow assumption violates the conditions for the validity

of the theorem: The requirement for matrix W was irreducibility and this

implies that every sequence can be reached from every other sequence in a

finite number of mutation steps – zero mutational backflow implies that the

master cannot be reached from the mutants. Beyond the error threshold we

have to consider either full first order perturbation theory or the numerical

solutions. The manipulation of the elements of the matrix Q has also the

consequence that the stationary total concentration c̄(0) =
∑n

i=1 x̄
(0)
i is not

constant but vanishes at the error threshold

c̄(0)(p) =
1

Q

Q− σ−1
m

1 − σ−1
m

.

Clearly, the excellent agreement between the zero mutational backflow ap-

proximation and the exact solution is fortuitous but as many examples have

shown it is quite general and it would be worth to search for the reason.

Perturbation theory. Application of first and second order Rayleigh-Schrödinger

perturbation theory to calculate the quasispecies Ῡ as a function of the mu-

tation rate has been performed in the past [9]. Here we present the full

analytical first order expressions x̄
(1)
i (p). The second expressions are rather

clumsy and bring only limited improvement for small mutation rates p.

The largest eigenvalue is the same by zero mutational backflow and in

first order perturbation theory:

λ
(0)
0 = λ

(1)
0 = Wmm = Qmm fm .

For the computation of the largest eigenvector we make use of the first order

expression from perturbation theory of the matrix W (32b):24

x̄
(1)
j =

Wjm

Wmm −Wjj
x̄(1)

m ; j = 1, . . . , n , j 6= m .

Making use of the normalization condition
∑n

i=1 x̄
(1)
i = 1 we obtain for the

master sequence

x̄(1)
m =

1

1 +
∑n

i=1,i6=m
Wim

Wmm−Wii

.

24As a matter of fact, the first order perturbation expressions are used in the
zero mutational backflow approximation for the calculation of the concentrations
of the mutants, because
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Figure 9: Quasispecies calculated by perturbation theory. The upper plot
presents a comparison of the stationary concentration of the master sequence in

the zero mutational backflow approximation, x̄
(0)
m (p) (red), with first order per-

turbation theory, x̄
(1)
m (p) (blue), and numerical solution x̄m (black). The violet

curve is the total concentration in the zero mutational backflow approximation,

c̄(0) =
∑n

i=1 x̄
(0)
i . The lower plot is an enlargement of the curves at low muta-

tion rates demonstrating that both approximations almost coincide with the exact
solution curve. The error threshold indicated by a broken vertical line occurs at
p = p cr = 0.2057. Choice of parameters: n = 10, f0 = 10 [t−1], and f = 1 [t−1].

Straightforward calculations yield for the stationary concentrations

x̄(1)
m (p) =

Q (1 − σ−1
m )

1 −Qσ−1
m

, (34a)

x̄
(1)
j (p) =

Qim

Q (1 − σ−1
m )

x̄(0)
m ; j = 1, . . . , n , j 6= m (34b)

with Q = (1 − p)ν .
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As shown in figure 9 the curve x̄
(1)
m (p) extends to the point p = p̃ = 1

2
and

further, but it does not pass precisely through the uniform distribution,

x̄(1)
m (1

2
) =

(

1

2

)ν 1 − σ−1
m

1 − ( 1
2
)νσ−1

m

.

The deviation of x̄
(1)
m from numerical solution is much larger than in the zero

mutational backflow approximation approximation and the error threshold

phenomenon is not detectable. In summary, first order perturbation theory

provides a consistent approximation to the eigenvalues and eigenvectors of

the value matrix W. The results, however, are not nearly as good as those

of the zero back mutation approach. Improvements by second order are

possible at very small error rates but the calculations are rather tedious

and the solutions for the eigenvalue λ
(2)
0 become unstable for larger error

rates [9]. A combination of zero mutation flux approximation and first order

perturbation theory in the sense of equations (31a) and (34b) [1, 9] leads to

slightly better results than the zero mutation flux approach alone but is not

recommended because of the lack of consistency.

Numerical solutions. Full solutions can be computed numerically through

solving the eigenvalue problem of matrix W for different values of of the

mutation rate p, and for a typical example the normalized concentrations

of error classes ȳ(k)(p) are shown in figure 8. The agreement between the

numerical results and the zero mutational backflow curve for the master

class, ȳ0(p) in the region above the error threshold is remarkable indeed.

The other solution curves ȳ(k)(p) (k 6= 0) agree well too but the deviations

become larger with increasing k.

The numerical solution for the master sequence (black curve) decreases

monotonously from p = 0 to p = p̃ = 1/2, this is between two points for

which analytical solutions exist. At vanishing error rates, lim p → 0, the

master sequence is selected, limt→∞ x0(t) = limt→∞ y0(t) = ȳ0 = x̄0 = 1,

and all other error classes vanish in the long time limit. Increasing error

rates are reflected by a decrease in the stationary relative concentration of

the master sequence and a corresponding increase in the concentration of

all mutant classes. Except ȳ0(p) all concentrations ȳk(p) with k < ν/2 go

through a maximum at values of p that increases with k – as in case of zero

mutational backflow where we had an implicit analytical expression for the

maximum, and approach the curves for ȳν−k – whereas the zero mutational

backflow curves still go through a maximum because they vanish at p = p cr.

At p = p̃ = 1/2 we have p̃ = 1 − p̃ for binary sequences, and again the

eigenvalue problem can be solved exactly. The value matrix W = Q · F is of
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the form

W =
1

2ν















1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1















·















f1 0 . . . 0

0 f2 . . . 0
...

...
. . .

...

0 0 . . . f















=
1

2ν















f1 f2 . . . fn

f1 f2 . . . fn

...
...

. . .
...

f1 f2 . . . fn















.

The matrix W consists of n identical columns and hence has n−1 singularities

corresponding to eigenvalues λi = 0 ∀ i = 1, . . . , n − 1. The n-th eigenvalue

follows from the trace of the matrix W since the trace is invariant under the

similarity transformation Λ = B−1 · W · B and hence

n−1
∑

i=0

λi =
1

2ν

n
∑

i=1

fi and hence λ0 =
1

2ν

n
∑

i=1

fi .

The largest eigenvalue λ0 is strictly positive and the corresponding largest

eigenvector b0 is given by the uniform distribution:

b0 =
1

2ν
(1, 1, . . . , 1)t .

All normalized stationary concentrations, x̄1 = x̄2 = . . . = x̄n = 1/2ν, are the

same. The individual class variables are given by ȳk =
(

ν
k

) /

2ν . The uniform

distribution (Π) is a result of the fact that correct digit incorporation and

point mutation are equally probable for binary sequences at p̃ = 1/2 = 1− p̃

and therefore we may characterize this scenario as random replication.25 It

is worth mentioning that the range of high mutation rates p̃ ≤ p ≤ 1 is

also meaningful: At p = 1 the complementary digit is incorporated with

ultimate accuracy, 0→ 1 and 1→ 0, and accordingly, the range at high p-

values describes error-prone complementary or plus-minus replication [9].

The special situation at the error threshold is the occurrence of an (al-

most) uniform distribution far away from the point p = p̃ – in figure 8 the

critical mutation rate is p cr = 0.045 � p̃ = 0.5 (figure 15 illustrates the ex-

tension of the domain of the uniform distribution). As we shall see in the next

section 6, the error threshold on the single peak landscape is characterized

by the coincidence of three phenomena: (i) the concentration of the master

sequence becomes very small and this is expressed in term of level crossing

values ȳ0(p)|p=p(1/M)
= 1/M where M is 100, 1000 or higher depending on

the size of 2ν , (ii) a sharp change in the quasispecies distribution within a

narrow band of p-values that reminds of a phase transition [63–67], and (iii) a

transition to the uniform distribution, which implies that the domain within

25The extension to sequences over an alphabet with κ classes of digits is
straightforward. In the frame of uniform errors random replication occurs at
p̃ = 1/κ = (1 − p̃)/(κ − 1). For the natural four letter alphabet we have p̃ = 1/4.
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Figure 10: Existence of the error threshold. The plots represent the exact
solution (black) together with the zero mutational backflow approximation (green),
the uniform backflow approximation (red) and the error-class one backflow approx-
imation (red). The numerically exact solution is entrapped between the uniform
and the one error-class approximation. Since both approximations converge to
zero in the limit of long chain lengths (ν → ∞) the exact curve does as well. The
error threshold as indicated by a broken vertical line occurs at p = p cr = 0.2057.
Choice of parameters: n = 10, f0 = 10 [t−1], and f = 1 [t−1].

which the uniform distribution is fulfilled to a high degree of accuracy has

the form of a broad plateau (p cr = 0.045 < p < p̃ = 0.5 in figure 8). It is

worth considering the numerical data from the computations shown in the

figure: p cr = 0.04501 from zero mutational backflow versus the level crossing

values p(1/100) = 0.04360, p(1/1000) = 0.04509, and p(1/10000) = 0.04525.
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Proof for the existence of an error threshold. In this paragraph we present a

rigorous proof for the existence of an error threshold on the single peak land-

scape in the sense that the exact solution converges to the zero mutational

back flow result in the limit of infinite chain length ν. Previously we stated

that the agreement between the (exact) numerical solution for the stationary

quasispecies and the zero mutational backflow in surprisingly good and here

we shall give a rigorous basis for this agreement. The proof proceeds in three

steps: (i) Models are derived that provide upper and lower bounds for the

exact solution, (ii) the models are evaluated analytically in order to yield

expressions for the relative stationary concentration of the master sequence

Xm at the position of the error threshold, x̄
(flow)
m (p cr), and (iii) we show that

the values for the upper and the lower bound coincide in the limit ν → ∞.

The zero mutational backflow approximation neglects backflow completely;

now we introduce two other approximations that are based on model back-

flows that represent lower and upper bounds for the exact backflow. Com-

putation of the mutational backflow requires either knowledge of the distri-

bution of concentrations of all sequence of an assumption about it. In order

to be able to handle the problem analytically the backflow must lead to an

autonomous equation for the master concentration x0. The minimal back-

flow can be estimated by the assumption of a uniform distribution (Π) for

all sequences except the master. In this case all sequences contribute equally

no matter whether a particular sequence is close to the master sequences or

far apart. For the concentrations xi = (1 − x
(Π)
0 )/(n− 1) ∀ i = 1, . . . , n with

n = κν we obtain under the further assumption of a single peak landscape

and the uniform error rate model the ODE for x
(Π)
0 :

dx
(Π)
0

dt
= x

(Π)
0 (Q00f0 − φ) + f

1 − x
(Π)
0

n− 1

with φ = f + (f0 − f) x
(Π)
0

(35)

The stationary concentration is obtained as the solution of a quadratic equa-

tion

x̄
(Π)
0 =

Qf0 − f − fγ(1 − Q) +

√

(

Qf0 − f − fγ(1 − Q)
)2

+ 4(f0 − f)(1 − Q)fγ

2(f0 − f)

with Q = Q00 = (1 − p)ν and γ =
1

n − 1

Insertion of the value of the mutation rate parameter at the error threshold, p =

p cr = 1 − σ−1/ν or Q = (1 − p cr)
ν = σ−1 leads to the result

x̄
(Π)
0 (p cr) =

1

2

√

1 + 4σ(n − 1) − 1

σ(n − 1)
, (36)
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which yields in the limit of long chains or large ν-values

x̄
(Π)
0 (p cr) ≈ 1√

σ n
=

1√
σ κν

. (36’)

Ultimately the value of the stationary concentration of the master sequence decays

exponentially with one halt of the chain lengths as exponent: x̄
(Π)
0 (p cr) ∝ κ−ν/2.

It is straightforward to show that the uniform mutational backflow approximation

becomes exact at the point p = p̃ and insertion in the quadratic equation yields:

x̄
(Π)
0 (1

2
) =

(

1

2

)ν
. Generalization, of course, is straightforward and yields p = p̃ and

insertion in the quadratic equation yields: x̄
(Π)
0 (1/κ) =

(

1/κ
)ν

In order to find an upper bound for the stationary solution of the master se-

quence we assume that mutational backflow comes only form the sequences in the

one error class, Γ
(0)
1 , which can be assumed to be present at equal concentrations,

xi = (1 − x
(I)
0 )/ν, and

∑ν
i=1 xi = 1 − x0. All other sequences except the master

sequence and the one error class are absent. Pointing at the fact that Γ
(0)
1 rep-

resents the entire mutant cloud we shall denote this distribution by I. For the

corresponding elements of the mutation matrix Q we use the usual expressions,

which are all equal: Q0i = Q0(1) = Q01 ∀ i = 1, . . . , ν. The ODE for the master

sequence is then again autonomous and can be readily solved for the stationary

state:

dx
(I)
0

dt
= x

(I)
0 (Q00f0 − φ) + Q01 f (1 − x

(I)
0 )

with φ = f + (f0 − f)x
(I)
0 .

(37)

The stationary concentration is again obtained from a quadratic equation of similar

structure as before

x̄
(I)
0 =

Q00f0 − Q01f − f +

√

(

Q00f0 − Q01f − f
)2

+ 4(f0 − f)Q01f

2(f0 − f)

with Q00 = (1 − p)ν and Q01 = (1 − p)ν−1 p .

It is shown straightforwardly that the curve for the class one backflow passes

through the point p = p̃ = κ−ν . For the stationary concentration of the master

sequence at the error threshold we find

x̄
(I)
0 (p cr) = − Q01 f

2 (f0 − f)
+

√

Q01 f

f0 − f
·
√

1 +
Q01 f

4 (f0 − f)
, (38)

with three components. Before we can discuss the individual terms we have to

examine the asymptotic dependence of the mutation rate p on the chain length ν,

which is encapsulated in the series expansion

Q01 = (1 − p)ν−1 p = p − (ν − 1) p2 +
(ν − 1)(ν − 2)

2
p3 − · · ·

with the first term being p. The critical mutation rate can be approximated by

p cr ≈ ln σ/ν and we can consider equation (38). The negative term in equation
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shows an asymptotic dependence on the chain length of ν−1, the first factor behaves

asymptotically like 1/
√

ν whereas the second factor converges to unity. What

remains in the limit of long chains or large ν-values is

x̄
(I)
0 (p cr) ≈

√

f ln σ

f0 − f
· 1√

ν
=

√

ln σ

σ − 1
· 1√

ν
. (38’)

The value of the stationary concentration of the master sequence decays with the

reciprocal square root of the chain length: x̄
(I)
0 (p cr) ∝ 1/

√
ν. Although the class

one uniform distribution is not an impressively good upper bound for the exact

solution curve, it is sufficient for our purpose here because x̄
(I)
0 (p cr) vanishes in

the limit ν → ∞.

In summary the four values of the solution of the mutation-selection equa-

tion (18) and the three approximation appear in the following order at the critical

mutation rate p cr:

x̄0-value at the mutation rate

mutational backflow notation p = 0 p = p cr p̃ = 1
κ

class one uniform x̄
(I)
0 (p) 1

√

ln σ/(σ − 1) · 1/
√

ν κ−ν

exact x̄0(p) 1 computed κ−ν

all uniform x̄
(Π)
0 (p) 1 1/

√

σκν κ−ν

zero x̄
(0)
0 (p) 1 0 negative

The exact solution is indeed entrapped between the two approximations for the

mutational backflow and, since both converge asymptotically to zero the exact

curve approaches the zero mutational backflow approximation in the limit of long

chains. All four curves (figure 10) start at the point x̄m(0) and all except the zero

backflow approximation end at the correct value p̃ = κ−ν . The stationary master

concentrations at the critical mutation rate p = p cr illustrate the relative impor-

tance of the mutational backflow (figure 38): Zero backflow assumption causes the

stationary concentration x̄
(0)
0 to vanish. The all uniform backflow is a little more

than one half of the computed exact value, and this approximation is a excellent

lower bound for the exact solution. The error one class backflow is about three

time as large as the exact solution. Nevertheless it is an upper bound for the

real mutation flow and serves the purpose for which it is intended here. If one

is interested in an approximation apart from this proof the zero mutational back

flow approximation x̄
(Π)
0 (p) in the region 0 ≤ p < p cr and the uniform backflow

approximation in the entire range are suitable approximations. In particular the

uniform backflow approximation is well suited because it is exact for p = 0 and

p = p̃ = 1/κ and it has also a correct asymptotic behavior in the long chain limit

at the error threshold.

The error threshold has been put in relation to phase transitions [63–65]. Here,

we are in a position to prove the behavior of the exact solution curve x̄0(p) in the
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Figure 11: Some examples of model fitness landscapes. The figure shows
five model landscapes with identical fitness values for all sequences in a given
error class: (i) the single peak landscape (upper left drawing), (ii) the hyperbolic
landscape (upper right drawing, black curve), (iii) the step-linear landscape (lower
left drawing), (iv) the multiplicative landscape (upper right drawing, red curve),
and (v) the additive or linear landscape (lower right drawing). Mathematical
expressions are given in the text.

limit ν → ∞. The critical mutation rate converges to the value zero: limν→∞ p cr =

limν→∞ ln σ/ν = 0. At the same time we have limν→∞ x̄0 = 0 for p > 0 and

thus the quasispecies degenerates to an “L”-shaped distribution, x̄0(0) = 1 and

x̄0(p) = 0∀ p > 0, and we are left with a pathological phase transition at p cr = 0.

6 “Simple” landscapes

The existence and form of the error threshold turned out to be dependent on

the nature of the fitness landscape [68]. In particular, two types of landscapes

that are commonly used in population genetics, the additive and the mul-

tiplicative landscape, don’t show error thresholds at all. In addition to the

single peak landscape four examples of simple model landscapes are com-

pared, in which identical fitness values are assigned to all members of the

same mutant class:

(i) the additive or linear landscape

f(Yk) = fk = f0 − (f0 − f) k/ν ; k = 0, 1, . . . , ν ,

(ii) the multiplicative landscape

f(Yk) = fk = f0

(

f
f0

)k/ν

; k = 0, 1, . . . , ν ,

(iii) the hyperbolic landscape

f(Yk) = fk = f0 − (f0 − f) (ν+1
ν

) ( k
k+1

) ; k = 0, 1, . . . , ν , and
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(iv) the step-linear landscape

f(Yk) = fk =







f0 − (f0 − f) k/h if k = 0, 1, . . . , h− 1 ,

f if k = h, . . . , ν .

In order to be able to compare the different landscapes the values of f were

chosen such that all landscapes are characterized by the same superiority of

the master sequence: σm = σ0 = f0

/

f−0 with f−0 =
∑n

i=1 yifi

/

(1 − y0).

Since the distribution of concentrations is not known a priori we have to

make an assumption. As said in the previous subsection 5.6 the uniform

distribution extends down to the error threshold for decreasing mutation

rates and hence, the assumption of the uniform distribution in the calculation

of f is well justified,

f =
(

f−0 (2ν − 1) − f0 (2ν−1 − 1)
) /

2ν−1 , (39a)

f =

(

(

f−0 (2ν − 1) + f0

)1/ν

− f
1/ν
0

)ν

, (39b)

f =
(

f−0 ν (2ν − 1) − f0 (2ν − ν + 1)
) /

(2ν(ν − 1) + 1) , (39c)

f =
f−0 (2ν − 1) − f0

(

∑h−1
k=0

(

ν
k

)

h−k
h

− 1
)

∑h−1
k=0

(

ν
k

)

k
h

+
∑ν

k=h

(

ν
k

) . (39d)

In figures 12 and 13 the solution curves ȳk(p) are compared for the three

landscapes showing error thresholds, single-peak, hyperbolic and step-linear.

The superiority was adjusted to σ0 = 10 be means of equation (39). As

already seen in figure 8 the calculated value for p cr coincides perfectly with

the position of the transition on the single-peak landscape, and the p-values

for concentration level crossing lie close together and near p cr (see table 1)

indicating a rather steep decrease of ȳ0 in the range on the left-hand side

of the transition to the uniform distribution. The decrease of ȳ0 is flat-

ter on the hyperbolic landscape, the actual transition occurs slightly above

the error threshold on the single-peak landscape and does not result in the

uniform distribution. Instead we observe a mutant distribution above the

error threshold, which changes slightly with p. On the step-linear landscape,

eventually, the curve of ȳ0 is even flatter, the transition is shifted further to

higher p-values, and the transition leads to the uniform distribution as in

the single-peak case (for an explanation see the discussion of the additive

landscape).

Next we consider two examples of landscapes, which do not sustain error

thresholds, the additive or linear landscape and the multiplicative landscape.

As shown in figure 14 the change from the homogeneous distribution at p = 0
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Figure 12: Error thresholds on different model landscapes. The figures
show stationary concentrations of mutant classes as functions of the error rate,
ȳk(p), for sequences of chain length ν = 100 with f0 = 10 and f−0 = 1 on three
different model landscapes: the single peak landscape (upper part, f = 1), the
hyperbolic landscape (middle part, f = 10/11), and the step-linear landscape
(lower part, f = 1). The dashed line indicates the value of the error threshold
calculated by zero mutational backflow, p cr = 0.022768.

42



Figure 13: Error thresholds on different model landscapes. The three
figures are enlargements of the plots from in figure 12. Stationary concentrations
of mutant classes, ȳk(p), are shown for the single peak landscape (upper part), the
hyperbolic landscape (middle part), and the step-linear landscape (lower part; see
the caption figure 12 for details).

43



Table 1: Concentration level crossing near the error threshold. The
decline of the master class, ȳ0 = x̄0, at p-values below the error threshold p cr is
illustrated by means of the points p(1/M) where ȳ0(p) crosses the level 1/M for
the three fitness landscapes that sustain error thresholds. Parameters: ν = 100,
f0 = 10, and f−0 = 1.

Landscape Level crossing Error threshold

p(1/100) p(1/1000) p(1/10000) p cr

Single-peak 0.02198 0.02274 0.02282 0.02277

Hyperbolic 0.01450 0.01810 0.02036 0.02277

Step-linear 0.01067 0.01774 0.02330 0.02277

to the uniform distribution at p = p̃ is gradual without any abrupt change.

The stationary concentrations of all error classes Γk in the range 1, . . . , bν/2c
pass through a maximum, whereas the others with higher class indices change

monotonously until they reach the value ȳk =
(

ν
k

)

/2ν = ȳk =
(

ν
ν−k

)

/2ν at p̃.

Fast decay of the concentration of the master class ȳ0(p) is observed in both

cases but no abrupt change in the stationary mutant distribution occurs and

the domain of the uniform distribution is restricted to p = p̃ (figure 15).

Knowing now the behavior of the quasispecies on the single-peak and the

linear landscape an interpretation of the observed plots for the step-linear

landscape is straightforward: In the range of small Hamming distances from

the master sequence the fitness landscape has the same shape as the linear

landscape and for small mutation rates the quasispecies is dominated by se-

quences, which are near the master in sequence space, at higher mutation

rates p sequences that are further away from the master gain importance,

and indeed we observe a similarity of the quasispecies with that on the lin-

ear landscape at small p-values whereas an error threshold and the uniform

distribution beyond it are observed at higher mutation rates p. In the step-

linear landscape the position of the step, h can be varied as well. For the

parameters f0 = 10 and f = 1 we observe error thresholds in the range

0 ≤ h ≤ 35, at higher h-values it becomes softer and eventually around

h = 45 it has completely disappeared.26 A useful indicator for the existence

of an error threshold is the upper envelope of all individual curves ȳk(p): The

absence of a threshold leads to a monotonous decrease off the envelope (fig-

26Like in physics we distinguish hard and soft transitions. A hard transition is
confined to a very narrow range of the order parameter – here the error rate p –
and becomes steeper and steeper as the system grows to infinity.
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Figure 14: Model landscapes not sustaining error thresholds. The figures
show stationary concentrations of mutant classes as functions of the error rate,
ȳk(p), for sequences of chain length ν = 100 with f0 = 10 and f−0 = 1 on two
different model landscapes: the multiplicative landscape (f = 0.09472; upper part:
range of the error threshold; middle part: full range), and the additive or linear
landscape (f = 0.001; lower part). The fitness value f leading to a superiority
σ0 = 10 is negative for the linear landscape and accordingly a small positive value
has been chosen instead.

ure 14 whereas an error threshold manifests itself in a pronounced minimum

of the envelope just below p cr (figure 13).

The comparison of the quasispecies development as a function of the

mutation rate p between the single-peak and the multiplicative landscape

shown in figure 15 illustrates the interpretation that the uniform distribution

being the exact solution at p = p̃ is extended to lower p-values down to the

error threshold. The stationary concentrations of error classes, ȳk(p) are

almost perfect straight lines over the whole range for landscapes that sustain

error thresholds, whereas on the additive and the multiplicative landscape

the curves for ȳk(p) and ȳν−k(p), which have identical values in the uniform
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Figure 15: Comparison of landscapes with and without error thresholds.

The figures show stationary concentrations of mutant classes as functions of the
error rate, ȳk(p), for sequences of chain length ν = 100 with f0 = 10 and f−0 = 1 on
two different model landscapes: the single-peak landscape (f = 1; upper part), and
the multiplicative landscape (f = 0.09472; lower part). The uniform distribution
(Π) representing the exact solution at p = p̃ = 1/2 extends over the whole range
from the threshold at p = p cr to p = p̃ in case of the single-peak landscape.

distribution don’t meet visually before the point p = p̃ on the multiplicative

landscape.

The fact that the behavior of quasispecies depends strongly on the nature

of the fitness landscape is not surprising. Fitness values after all play the

same role as rate parameters in chemical kinetics and the behavior of a sys-

tem can be changed completely by a different choice of rate parameters. The

most relevant but also most difficult question concerns the relation between

rate parameters and observed stationary distributions: Can we predict the

quasispecies from a knowledge of the fitness landscape? Or the even more

difficult inverse problem [69]: Does the observed behavior of the quasispecies

allow for conclusions about the distribution of fitness values? A few regu-
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larities can be recognized already from the simple model landscapes: (i) fast

decay of the master concentration, ȳ0(p) may occur without the appearance

of a sharp transition, (ii) a sharp transition may occur on fitness landscapes

with gradually changing fitness values provided the decay of f(Yk) with k is

sufficiently steep, (iii) a sharp transition may occur without leading to the

uniform distribution, and (iv) the appearance of the uniform distribution at

p cr-values lower than p̃ requires a flat part of the fitness landscapes in the

sense that fitness values of neighboring classes are (almost) the same.

7 “Realistic” rugged landscapes (RRL)

The majority of data on the relation between sequences and molecular prop-

erties comes from structural biology of biopolymers, in particular RNA and

protein. RNA secondary structures provide a simple and mathematically ac-

cessible example of a realistic mapping of biopolymer sequences onto struc-

tures [70]. The RNA model is commonly restricted to the assignment of a

single structure to every sequence but the explicit consideration of subopti-

mal conformations is possible as well [71]. Two features are characteristic

for landscapes derived from RNA molecules: (i) ruggedness – pairs of se-

quences situated nearby in sequence space, i.e., having Hamming distance

dH = 1, may give rise to very similar or entirely different structures and

properties – and (ii) neutrality – two or more sequences may have identical

structures and properties.27 Both properties are easily illustrated by means of

RNA secondary structures, which are defined in terms of Watson-Crick and

G − U base pairs: Exchange of one nucleobase in a base pair, e.g., C → G

in G ≡ C, may open the base pair, destroy a stack and eventually lead to an

entirely different structure with different properties, or leave the structure

unchanged, e.g., A → G in A = U. Neutrality is equally well demonstrated:

Exchanging both bases in a base pair may leave structure and (most) prop-

erties unchanged, G ≡ C → C ≡ G may serve as an example. Evolutionary

dynamics is clearly influenced by the shape of fitness landscapes and the in-

terplay of the two characteristic features was found to be essential for the

success of evolutionary searches [46,47,73]. Methods were developed recently

that allow for efficient construction of fitness landscapes for catalytically ac-

tive RNA molecules [74]. Ruggedness and neutrality are not restricted to

RNA-molecules, similar results providing direct evidence were found with

27Identical in the context of neutrality does not mean identical in strict math-
ematical sense but indistinguishable for the experimental setup or for natural se-
lection [33,72].
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proteins [75] and simple organisms like viruses [25]. Apart from a few ex-

ceptions experimental comprehensive information on fitness landscapes or

conformational free energy surfaces is still rare but the amount of reliable

data is rapidly growing. It seems to be appropriate therefore to conceive

and construct model landscapes that account for the known features and to

study evolutionary dynamics on them.

Rugged fitness landscapes, which are more elaborate than the simple ones

discussed in section 6, have been proposed. The most popular example is the

Nk-model conceived by Stuart Kauffman [30, 31, 76] that is based on indi-

vidual loci on a genome and interactions between them: N is the number of

loci and k is the number of interactions. A random element, which is drawn

from a predefined probability distribution – commonly the normal distribu-

tion – and which defines the interaction network, is added to the otherwise

deterministic model: N and k are fixed and not subjected to variation. Here

a different approach is proposed that starts out from the nucleotide sequence

of a genome rather than from genes and alleles, and consequently it is based

on the notion of sequence space. Ruggedness (this section 7) and neutrality

(see section 8) are introduced by means of tunable parameters, d and λ, and

pseudorandom numbers are used to introduce random scatter, which reflects

the current ignorance with respect to detailed fitness values and which is

thought to be replaced by real data when they become available in the near

future.

A new type of landscapes, the realistic rugged landscape (RRL), is in-

troduced and analyzed here. Ruggedness is modeled by assigning fitness

differences at random within a predefined band of fitness values with ad-

justable width d. The highest fitness value is attributed to the master se-

quence Xm
.
= X0, fm = f0, and the fitness values of all other sequences are

obtained by means of the equation

f(Xj) = fj =







f0 if j = 0 ,

f + 2d(f0 − f)
(

η
(s)
j − 0.5

)

if j = 1, . . . , κ l ,
(40)

where η
(s)
j is the j-th output random number from a pseudorandom number

generator with a uniform distribution of numbers in the range 0 ≤ η
(s)
j ≤ 1.

The random number generator is assumed to have been started with the

seed s,28 which will be used to characterize a particular distribution of fitness

values (figure 16). The parameter d determines the amount of scatter around

28The seed s indeed determines all details of the landscape, which is completely
defined by s and the particular type of the pseudorandom number generator as
well as by f0, f , and d.
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the mean value f̄−0 = f , which is independent of d: d = 0 yields the single

peak landscape, and d = 1 leads to fully developed or maximal scatter where

individual fitness values fj can reach the value f0. A given landscape can be

characterized by

L = L(λ, d, s; ν, f0, f) , (41)

where λ is the degree of neutrality (see section 8; here we have λ = 0).

The parameters ν, f0 and f have the same meaning as for the single peak

landscape (28).

Two properties of realistic rugged landscapes fulfilled by fitness values

relative to the mean except the master, ϕj = fj − f ∀ j = 0, . . . , κ ν − 1,

are important: (i) the ratio of two relative fitness values of sequences within

the mutant cloud is independent of the scatter d and (ii) the ratio of the

relative fitness values of a sequence from the cloud and the master sequence

is proportional to the scatter d:

ϕj

ϕk
=

η
(s)
j − 0.5

η
(s)
k − 0.5

; j, k = 1, . . . , κ ν − 1 and (42a)

ϕj

ϕ0
= 2 d

(

η
(s)
j − 0.5

)

; j = 1, . . . , κ ν − 1 . (42b)

The second equation immediately shows that
∑κν−1

j=1 ϕj = 0.

7.1 Single master quasispecies

We are now in a position to explore whether or not the results derived from

simple model landscapes are representative for mutation-selection dynamics

in real populations. At first the influence of random scatter on quasispecies

and error thresholds will be studied. The chain length for which diagonaliza-

tion of the value matrix W can be routinely performed lies at rather small

values around ν = 10 giving rise to a matrix size of 1 000 × 1 000. Accord-

ingly, it has to be confirmed first whether or not such a short chain length is

sufficient to yield representative results. In figure 17 the stationary concen-

trations of mutant classes, ȳk (k = 0, 1, . . . , 10) are shown for different band

widths d of random scatter: The purely deterministic case d = 0 representing

the single-peak landscape, d = 0.5, and d = 0.95, the maximal scatter that

sustains a single quasispecies over the entire range, 0 ≤ p < p cr.
29 Despite

the short chain length of ν = 10 the plots reflect the threshold phenomena

rather well, the width of the transition to the uniform distribution is hardly

29As shown below in detail (figure 22) individual quasispecies may be replaced
by others at certain critical p-values, p tr. For a given scatter s the number of such
transitions becomes larger with increasing values of d.
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Figure 16: Realistic rugged fitness landscapes. The landscapes for binary
sequences with chain length ν = 10 are constructed according to equation (40).
In the upper plot the band width of random scatter was chosen to be d = 0.5
and a seed of s = 919 was used for the random number generator. For the lower
plot showing maximal random scatter d = 1 and s = 637 was applied. Careful
inspection allows for the detection of individual differences. The broken blue lines
separate different mutant classes.

changing, and values for level crossing (section 6 and table 1) are shifted to-

wards smaller p(1/M)-values with increasing d. Answering the initial question,

computer studies with ν = 10 are suitable for investigations on quasispecies

behavior.

For d > 0 the fitness values for individual sequences within one class are

no longer the same and hence the curves x̄j(p) differ from each other and form

a band for each class that increases in width with the amplitude d of the ran-
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Figure 17: Error thresholds on a realistic model landscape with different

random scatter d. Shown are the stationary concentrations of classes ȳj(p) on
the realistic landscape with s = 023 for d = 0 (upper plot), d = 0.5 (middle plot),
and d = 0.95 (lower plot). The error threshold calculated by zero mutational
backflow lies at p cr = 0.009486 (black dotted line), the values for level crossing
decrease with the width of random scatter d (blue dotted lines). Other parameters:
ν = 10, f0 = 1.1, and f = 1.0.
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Figure 18: Error threshold and decay of the master sequence X0. Shown
are the stationary concentrations of the master sequence x̄0(p) and the level cross-
ing values p(1/100) (vertical lines) on a landscape with s = 023 for d = 0 (black),
d = 0.5 (blue), and d = 0.950 (grey). The error threshold lies at p cr = 0.094857
(red). The lower plot enlarges the upper plot and shows the level x̄0 = 0.01 (dotted
horizontal line, black). Other parameters: ν = 10, f0 = 1.1 and f = 1.0.

dom component (figure 19). The separation of the bands formed by curves

belonging to different error classes is always recognizable at sufficiently small

mutation rates p but the bands overlap and merge at higher p-values. As

expected the zone where the bands begin to mix moves in the direction p = 0

with increasing scatter d. Interestingly, the error threshold phenomenon is

fully retained thereby, only the level-crossing value p(1/100) is shifted towards

lower error rates (figures 18, 19, and 20). Indeed, the approaches towards the

uniform distribution on the landscape without a random component (d = 0)

and on the landscape with d = 0.5 are very similar apart from the rela-
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Figure 19: Quasispecies on a realistic model landscape with different

random scatter d. Shown are the stationary concentrations x̄j(p) on a landscape
with s = 491 for d = 0 (upper plot), d = 0.5 (middle plot), and d = 0.9375 (lower
plot) for the classes Γ0, Γ1, and Γ2. In the topmost plot the curves for all sequences
in Γ1 (single point mutations, dH(X0,X(1)) = 1) coincide, and so do the curves in
Γ2 (double point mutations, dH(X0,X(2)) = 2) since zero scatter, d = 0, has
been chosen. The error threshold calculated by zero mutational backflow lies at
p cr = 0.066967. Other parameters: ν = 10, f0 = 2.0, and f = 1.0.
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Figure 20: Level-crossing values for the master sequence of differ-

ent model landscape with different random scatter d. Shown are
the level crossing values for M = 100 as functions of the random scat-
ter p(1/100)(d). The error threshold calculated by zero mutational backflow
lies at p cr = 0.0117481. Color code for different seeds s: 023 = orange,
229 = red, 367 = green, 491 = black, 577 = chartreuse, 637 = blue, 673 = yellow,
877 = magenta, 887 = turquoise, 919 = blue violet, and 953 = hot pink. Other pa-
rameters: ν = 10, f0 = 1.1, and f = 1.0.

54



mutation rate p

re
la

ti
v
e
 c

o
n
c
e
n
tr

a
ti
o
n

(
)

x
p

i

mutation rate p

re
la

ti
v
e
 c

o
n
c
e
n
tr

a
ti
o
n

(
)

x
p

i

tr

mutation rate p

re
la

ti
v
e
 c

o
n
c
e
n
tr

a
ti
o
n

(
)

x
p

i

tr

Figure 21: A realistic model landscape with a transition between qua-

sispecies. Shown are the stationary concentrations x̄j(p) on a landscape with
s = 023 for d = 0.5 (upper plot), d = 0.999 (middle plot), and fully developed
scatter d = 1.0 (lower plot). Other parameters: ν = 10, f0 = 1.1, and f = 1.0.
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Figure 22: A realistic model landscape with multiple transitions be-

tween quasispecies. Shown are the stationary concentrations x̄j(p) on a land-
scape with s = 637 for d = 0.5 (upper plot), d = 0.995 (middle plot), and fully
developed scatter d = 1.0 (lower plot). Other parameters: ν = 10, f0 = 1.1, and
f = 1.0.
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tively small shift towards lower p-values, whereas the shift for d = 0.95 is

substantially larger and the solution curve x̄0(p) is curved upwards more

strongly. Closer inspection of the shift of the level-crossing value shows non-

monotonous behavior for some landscapes: The level crossing value is shifted

towards larger p-values at first, passes a maximum value and then follows the

general shift towards lower values of p with increasing scatter d (figure 20).

In addition, transitions between quasispecies may be observed at critical

mutation rates p = p tr: One quasispecies, Υ0, which is the stationary solution

of the mutation-selection equation (18) in the range 0 ≤ p < p tr, is replaced

by another quasispecies, Υk, which represents the stationary solution above

the critical value up to the error threshold p tr < p < p cr, or up to a second

transition, (p tr)1 < p < (p tr)2. More than two transitions are also possi-

ble, an example is shown in figure 22 (lower plot). The mechanism by which

quasispecies replace each other is easily interpreted [59]:30 The stationary mu-

tational backflow from the sequences Xi (i = 1, . . . , n) to the master sequence

X0 is determined by the sum of the product terms ψ0 =
∑n

i=1W0i = Q0ifi

and likewise for a potential master sequence Xk, ψk =
∑n

i=0,i6=k Wki = Qkifi.

The necessary – but not sufficient – condition for the existence of a transition

is ∆ψ = ψ0 − ψk < 0. Since the fitness value f0 is the largest by definition

we have f0 > fi (i = 1, . . . , n) and at sufficiently small mutation rates p the

differences in the values, ∆ω = ω0 − ωk = W00 −Wkk = Q00f0 −Qkkfk > 0,

will always outweigh the difference in the backflow, ∆ω > |∆ψ|. With in-

creasing values of p, however, the replication accuracy and ∆ω will decrease

because of the term Q00 = Qkk ≈ (1 − p)ν in the uniform error approxi-

mation. At the same time ∆ψ will increase in absolute value and provided

∆ψ < 0 there might exist a mutation rate p = p tr smaller than the threshold

value p tr < p cr at which the condition ∆ω + ∆ψ = 0 is fulfilled and conse-

quently, the quasispecies Υk is the stable stationary solution of equation (18)

at p > p tr. The influence of a distribution of fitness values instead of the

single value of the single-peak landscapes can be predicted straightforwardly:

Since f0 is independent of the fitness scatter d the difference f0 − fk will de-

crease with increasing scatter d. Accordingly, the condition for a transition

between quasispecies can be fulfilled at lower p-values and we expect to find

one or more transitions preceding the error threshold p cr. No transition can

occur on the single peak landscape but as d increases and the difference ∆ω

becomes smaller and it becomes more likely that the difference in backflow

becomes sufficiently strong for a replacement of Υ0 by Υk below p cr. Fig-

30Thirteen years after this publication the phenomenon has been observed in
quasispecies of digital organisms [77] and was called survival of the flattest.
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ure 21 presents a typical example: No quasispecies transition is found up to

a random scatter of d = 0.95. Then, a soft transition becomes observable

at d = 0.975 and eventually dominates the plot of the quasispecies against

the mutation rate p at random scatter close to the maximum (d = 0.995 and

d = 1.0). An example with multiple transitions increasing in number with

increasing d is shown in figure 22.

An explicit computation of the transition point p = p tr has been per-

formed some time ago [59]. A simple model is used for the calculation of the

critical value that is based on a zero mutational flow assumption between

the two quasispecies. The value matrix W corresponding to all 2ν sequences

of chain length ν is partitioned into two diagonal blocks and the rest of the

matrix: (i) Block Ῡ0 contains sequence X0 with the highest fitness value f0,

which is the master sequence in the range 0 ≤ p < p tr and all its one-error

mutants X
(0)
(1) = {Xj ∈ Γ

(0)
1 } with a fitness value f

(0)
1 , (ii) block Ῡm contains

sequence Xm with the fitness value fm, which is the master sequence in the

range p tr ≤ p < p cr, and all its one-error mutants X
(m)
(1) = {Xj ∈ Γ

(m)
1 } with a

fitness value f
(m)
1 , and (iii) the rest of the matrix W is neglected completely

as all entries are set equal zero:

W = qν



































f0 f
(0)
1 ε · · · f

(0)
1 ε · · · 0 0 · · · 0

f0ε f
(0)
1 · · · f

(0)
1 ε2 · · · 0 0 · · · 0

...
...

. . .
...

. . .
...

...
. . .

...

f0ε f
(0)
1 ε2 · · · f

(0)
1 · · · 0 0 · · · 0

0 0 · · · 0 · · · fm f
(m)
1 ε · · · f

(m)
1 ε

0 0 · · · 0 · · · fmε f
(m)
1 · · · f

(m)
1 ε2

...
...

. . .
...

. . .
...

...
. . .

...

0 0 · · · 0 · · · fmε f
(m)
1 ε2 · · · f

(m)
1



































.

Each block is now represented by a 2 × 2 matrix

W0 = qν

(

f0 ν f
(0)
1 ε

f0ε f
(0)
1

(

1 + (ν − 1)ε2
)

)

and

Wm = qν

(

fm ν f
(m)
1 ε

fmε f
(m)
1

(

1 + (ν − 1)ε2
)

)

.

Calculation of the two largest eigenvalues λ0 and λm yields the condition for

the occurrence of the transitions: λ0 = λm. The result is

p tr = 1 −
√

1 − ϑ tr

ν − 1
, (43)

58



Table 2: Computed and numerically observed quasispecies transitions.

In the table we compare the numerically observed values of p at transitions between
quasispecies, p tr, with the values calculated from equation (43), (p tr)eval, and the
error thresholds, p cr. The table is adopted from [59].

Chain length Qsp. Ῡ0 Qsp. Ῡm Critical mutation rates

ν f0 f
(0)
1 fm f

(m)
1 p tr (p tr)eval p cr

20 10 1 9.9 2 0.0520 0.0567 0.1130

50 10 1 9.9 2 0.0362 0.0366 0.0454

50 10 1 9.9 5 0.0148 0.0147 0.0470

50 10 1 9.0 5 0.0445 0.0456 0.0453

with ϑ tr being the result of the equation

ϑ tr =
1

2

(

α + β − γ +
√

(α + β − γ)2 − 4αβ
)

with (43’)

α = ν − f0 − fm

f
(m)
1 − f

(0)
1

,

β = ν − f0fm(f
(m)
1 − f

(0)
1 )

f
(0)
1 f

(m)
1 (f0 − fm)

, and

γ =
(f0f

(0)
1 − fmf

(m)
1 )2

(ν − 1)f
(0)
1 f

(m)
1 (f0 − fm)(f

(m)
1 − f

(0)
1 )

.

Although the complexity of these equations is prohibitive for further manip-

ulations, the accuracy of the zero mutational flow approximations is relevant

for the next subsection 7.2 were we shall apply a similar approximation. The

corresponding table 2 is reproduced from [59]. The agreement is very good

indeed but is cases where p tr and p cr are very close it can nevertheless happen

that the calculated value lies above the error threshold.

7.2 Clusters of coupled sequences

A certain fraction of landscapes gives rise to characteristic quasispecies dis-

tributions as a function of the mutation rate p that is substantially different

from the one shown in figure 22 and discussed above. No transitions are

observed, not even at fully developed scatter d = 1 (figure 23). Another fea-

ture concerns the classes to which the most frequent sequences belong. On

the landscape defined by s = 919 these sequences are the master sequence

(X0; black curve), one one-error mutant (X4; red curve), and one two-error
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Figure 23: Error thresholds on a realistic model landscape with different

random scatter d and transitions between quasispecies. The landscape
characteristic is s = 919. Shown are the stationary concentrations x̄j(p) for d = 0.5
(upper plot), d = 0.995 (middle plot), and fully developed scatter d = 1.0 (lower
plot). Other parameters: ν = 10, f0 = 1.1, and f = 1.0.
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Figure 24: Mutation flow in quasispecies. The sketch shows two typical situ-
ations in the distribution of fitness values in sequence space. In the upper diagram
(s = 637) the fittest two-error mutant, X768, has its fittest nearest neighbor, X769,
in the three-error class Γ3, and the fittest sequence in the one-error neighborhood
of X4 (being the fittest sequence in the one-error class), X68, is different from X768,
the mutational flow is not sufficiently strong to couple X0, X4, and X68, and tran-
sitions between different quasispecies are observed (figure 22). The lower diagram
(s = 919) shows the typical fitness distribution for a strong quasispecies: The
fittest two-error mutant, X516, has its fittest nearest neighbor, X4, in the one-error
class Γ1 and it coincides with the fittest one-error mutant. Accordingly, the three
sequences (X0, X4, and X516) are strongly coupled by mutational flow and a strong
quasispecies is observed (figure 23).

mutant (X516; yellow curve).31 The three sequences are situated close-by in

31Näıvely we would expect a band of one-error sequences at higher concentration
than the two-error sequence.
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sequence space – Hamming distances dH(X1,X4) = dH(X4,X516) = 1 and

dH(X1,X516) = 2)– form a cluster, which is dynamically coupled by means

of strong mutational flow (figure 24). Apparently, such a quasispecies is not

likely to be replaced in a transition by another one that is centered around

a single master sequence and accordingly, we call such clusters strong qua-

sispecies . The problem that ought to be solved now is the prediction of the

occurrence of strong quasispecies from know fitness values.

First, a heuristic is mentioned that serves as an (almost perfect) diagnostic

tool for detecting whether or not a given fitness landscape gives rise to a

strong quasispecies: (i) For every mutant class we identify the sequence with

the highest fitness value, f0, (f(1))max = f(Xm(1)), (f(2))max = f(Xm(2)), . . . ,

and call them class-fittest sequences. Next we determine the fittest sequences

in the one-error neighborhood of the class-fittest sequences. Clearly, for the

class k-fittest sequence Xm(k) this sequence lies either in class k − 1 or in

class k+ 1.32 Simple combinatorics is favoring classes closer to the middle of

sequence space. Any sequence in the two-error class, for example, has two

nearest neighbors in the one-error class but n − 2 nearest neighbors in the

three-error class. To be a candidate for a strong quasispecies requires that

– against probabilities – the fittest sequence in the one-error neighborhood

of Xm(2) lies in the one-error class: (f(Xm(2))m(1)
)max with (Xm(2))m(1) ∈ Γ1

and preferentially, this is the fittest one-error sequence, (Xm(2))m(1) ≡ Xm(1).

Since all mutation rates between nearest neighbor sequences in neighboring

classes are the same – (1 − p)n−1p within the uniform error model – the

strength of mutational flow is dependent only on the fitness values, and the

way in which the three sequences were determined guarantees optimality

of the flow: If such a three-membered cluster was found it is the one with

the highest internal mutational flow for a given landscape. Figure 24 (lower

picture, s = 919) shows an example where such three sequences form a

strongly coupled cluster. There is always a fourth sequence – here X512 –

belonging to the cluster but it may play no major role because of low fitness.

The heuristic presented was applied to 21 fitness landscapes with different

random scatter and three strong quasispecies (s =401, 577, and 919) were

observed. How many would be expected by combinatorial arguments? The

probability for a sequence in Γ2 to have a neighbor in Γ1 is 2/10 = 0.2

and, since the sequence Xm(1) is fittest in Γ1 and hence also in the one-

error neighborhood of Xm(2), this is also the probability for finding a strong

quasispecies. The sample that has been investigated in this study comprised

32For class k = 1 we omit the master sequence X0, which trivially is the fittest
sequence in the one-error neighborhood, and search only in class k = 2.
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21 landscapes an hence we expect to encounter 21/5 = 4.2 cases, which is

– with respect to the small sample size – in agreement with the three cases

that we found.

The suggestion put forward in the heuristic mentioned above – a cluster

of sequences coupled by mutational flow that is stronger within the group

than to the rest of sequence space because of frequent mutations and high

fitness values – will now be analyzed and tested through the application of

perturbation theory. Instead of a single master sequence we consider a master

cluster of sequences and then proceed in full analogy to subsection 5.6 by

applying zero mutational backflow from the rest of sequence space to the

cluster. In order to be able to deal with a cluster of sequences we rearrange

the value matrix W:

W =



































W11 W12 · · · W1k W1,k+1 · · · W1n

W21 W22 · · · W2k W2,k+1 · · · W2n

...
...

. . .
...

...
. . .

...

Wk1 Wk2 · · · Wkk Wk,k+1 · · · Wkn

Wk+1,1 Wk+1,2 · · · Wk+1,k Wk+1,k+1 · · · Wk+1,n

...
...

. . .
...

...
. . .

...

Wn1 Wn2 · · · Wnk Wn,k+1 · · · Wnn



































. (44)

The upper left square part of the matrix W will be denoted by wm. It rep-

resents the core of the quasispecies in the sense of a mutationally coupled

master cluster, Cm = {Xm1, . . . ,Xmk}, and after neglect of mutational back-

flow from sequences outside the core we are left with the eigenvalue problem

wm ζmj = λmj ζmj ; j = 0, . . . , k − 1 . (45)

In the uniform error rate model the elements of the mutation matrix Q are

of the form

Qmi,mj = (1 − p)n−dmi,mj pdmi,mj = (1 − p)n−k qmi,mj with

qmi,mj = (1 − p)k−dmi,mj pdmi,mj

Apart from the reduced dimension the eigenvalue problem (45) is in com-

plete analogy to the eigenvalue problem in subsection 5.3. The common

factor (1 − p)n−k leaves the eigenvectors unchanged and is a multiplier for

the eigenvalues: λmj ⇒ (1 − p)n−k λmj ∀ j = 0, . . . , k − 1. Only the largest

eigenvalue λm0 and the corresponding eigenvector ζm0 – with the components

ζ
(m0)
i and

∑k
i=0 ζ

(m0)
i = 1 – are important for the discussion of the quasis-

pecies. By the same tokens as in subsection 5.6, equation (32a), we obtain

63



the stationary solution

c̄(0)m =
λm0 (1 − p)n−k − f−m

fm − f−m

with

x̄
(0)
mj = ζ

(m0)
j c̄(0)m ; j = 1, . . . , k , and

fm =

k
∑

i=1

ζ
(m0)
i fi and f−m =

n
∑

i=k+1

x̄ifi

/ n
∑

i=k+1

x̄i .

(46)

The calculations of the concentrations of the sequences not belonging to the

master core is straightforward but more involved than in the case of a single

master sequence. We dispense here from details because we shall not make

use of the corresponding expressions. In the forthcoming examples we shall

apply a modified single peak landscape where all sequences except those in

the master core have the same fitness values f and then the equation f−m = f

is trivially fulfilled.

For the purpose of illustration of the analysis of sequence clustering in

strong quasispecies full numerical computations are compared with the zero

mutational backflow approximation for the four membered cluster on the fit-

ness landscape L(λ = 0, s = 919, d = 1.00) in figure 25. Although differences

are readily recognized and the agreement between the full calculation and

the approximation is not as good as in the case of a single master sequence,

the appearance of the cluster is very well reproduced by the zero mutational

backflow approximation. In particular, the relative frequencies of the four

sequences forming the cluster are reproduced well. In comparison to the

full calculation, the critical mutation rate at the error threshold, the point

p = p cr at which the entire quasispecies υ(0) vanishes, appears at a higher

p-value than the level crossings of the full calculation. The difference in the

critical mutation rates is readily interpreted: The full calculation is based

on a landscape with fully developed random scatter whereas the zero muta-

tional backflow calculation compares best with a four peak landscape where

the four peaks correspond to the members of the cluster (X0, X4, X516, X512)

and all other sequences have identical fitness values. In order to show that

this interpretation is correct the cluster has been implemented on a single

peak landscape (d = 0) with the same fitness values (f0 = 1.1 and f = 1.0)

and the error threshold on this landscape is shifted slightly to higher values

of the mutation rate parameter p. The agreement with the zero mutational

backflow approximation is remarkably good. This agreement can be taken

as a strong indication that the interpretation of strong quasispecies being a

result of the formation of mutationally linked clusters of sequences within

the population.
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Figure 25: Zero backflow approximation for a quasispecies on a realistic

model landscape. The landscape characteristic is L(λ = 0, d = 1.00, s = 919).
Shown are the stationary concentrations x̄j(p)(0) (j = 1, 2, 3, 4) for the cluster
obtained through zero mutational backflow (upper plot), the results of the full
numerical computation (middle plot), and of a full numerical computation where
the cluster was implemented on the single peak landscape (lower plot, d = 0).
Other parameters: ν = 10, f0 = 1.1, and f = 1.0.
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Table 3: Strong quasispecies. Shown are error thresholds and level crossing
values for three cases of strong quasispecies.

Random seeds s = 401 s = 577 s = 919

j fitness j fitness j fitness

Core sequences 0 1.1000 0 1.1000 0 1.1000

64 1.0981 64 1.0951 4 1.0966

16 1.0772 256 1.0894 512 0.9296

80 1.0987 320 1.0999 516 1.0970

j p(1/100) j p(1/100) j p(1/100)

Level crossing, d = 0 0 0.01396 0 0.01410 0 0.01320

64 0.01406 64 0.01402 4 0.01348

16 0.01318 256 0.01377 512 0.00828

80 0.01389 320 0.01410 516 0.01304

Level crossing, d = 1 0 0.008443 0 0.006921 a 0 0.007876

64 0.008359 64 0.006481 4 0.008385

16 0.007003 256 0.006440 512 - - - b

80 0.007876 320 0.006733 516 0.007476

Error threshold (p cr) 0.01134 0.01145 0.01087

a The quasispecies with s = 577 shows a small smooth transition just above

the error threshold. The following three sequences have the same or higher

level crossing values: p(1/100)(X899) = 0.008026, p(1/100)(X931) = 0.007186, and

p(1/100)(X962) = 0.006842.

b The stationary concentration x̄512(p) never exceeds nor reaches the value 0.01.

Three strong quasispecies with the values s = 401, 577, and 919 were

found among the 21 landscapes studied here. The most important computed

data are summarized in table 3. Like in the single master case on the single

peak landscape the level crossing values p(1/100) occur at higher mutation rates

than the error threshold (see figure 18). The shift in the strong quasispecies

is about ∆p = 0.0265 somewhat larger than that for the single master lying

at ∆p = 0.00226. In the single master case the error threshold was calculated
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to be p cr = 0.094875 whereas here it is shifted to higher p-values by about

∆p = 0.0046. The interpretation is straightforward: The core taken together

has a higher effective fitness than a single master and this is reflected by

the shift to higher mutation rates. This shift is smallest in case of the core

with s = 919 being the in agreement with a particularly small fitness value

of one of the two class 1 mutant (f512 = 0.9296). In fact, the core in this

case consists practically of three sequences only: X0, X4, and X516. In the

computation with fully developed scatter (d = 1) for the strong quasispecies

with s = 577 we observe p(1/100)-values that are smaller than in the other two

cases. Again the explanation is straightforward: There is a small and smooth

transition at a p tr value just below the error threshold and the stationary

concentration of the master beyond the transition is higher than that of the

dominating sequence in the core, x̄899 > x̄0, and the p(1/100)-value for the

sequence X899 is indeed higher, p(1/100)(X899) = 0.008026.

The mutation rate at which the last stationary concentration crosses the

value 1/100 shows some scatter: For the twenty one random landscapes that

were investigated here it amounts to p(1/100)(Xlast) = 0.00812±0.00071. Inter-

estingly the values for strong quasispecies lie close together at p(1/100)(Xlast) =

0.0084. The observed scatter in the level crossing of the concentration of Xlast

is definitely smaller than that found for the master sequence (p(1/100)(X0) in

figure 20), which is an obvious result since x̄0 decays to small values at tran-

sitions that occur before the error threshold, at values p tr < p cr.

8 “Realistic” rugged and neutral landscapes (RNL)

The second property of realistic fitness landscapes mentioned in section 7

is neutrality and the challenge is to implement it together with ruggedness.

In order to be able to handle both features together we conceived a two

parameter landscape: (i) the random scatter is denoted by d as before and

(ii) a degree of neutrality λ is introduced. The value λ = 0 means absence of

neutrality and λ = 1 describes the completely flat landscape in the sense of

Motoo Kimura’s neutral evolution [33]. The result of the theory of neutral

evolution that is most relevant here concerns random selection: Although

fitness differences are absent, one randomly chosen sequence is selected by

means of the stochastic replication mechanism, X → 2X and X → �. For

most of the time the randomly replicating population consists of a dominant

genotype and a number of neutral variants at low concentration.

An important issue of the landscape approach is the random positioning
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of neutral master sequences in sequence space, which is achieved by means

of the same random number generator that is used to compute the random

scatter of the other fitness values obtained from pseudorandom numbers with

a uniform distribution in the interval 0 ≤ η ≤ 1:

f(Xj) =



































f0 if j = 0 ,

f0 if η
(s)
j ≥ 1 − λ ,

f + 2d
1−λ

(f0 − f)
(

η
(s)
j − 0.5

)

if η
(s)
j < 1 − λ ,

j = 1, . . . , κ l; j 6= m .

(47)

The rugged and neutral fitness landscape (47) is the complete analogue to

the rugged fitness landscape (40) under the condition that several master

sequences exist, which have the same highest fitness values f0. The fraction

of neutral mutants is determined by the fraction random numbers, which

fall into the range 1 − λ < η ≤ 1, apart from statistical fluctuations this

fraction is λ. At small values of the degree of neutrality λ isolated peaks of

highest fitness f0 will appear in sequence space. Increasing λ will result in

the formation of clusters of sequences of highest fitness. Connecting all fittest

sequences of Hamming distance dH = 1 by an edge results in a graph that

has been characterized as neutral network [14, 78]. Neutral networks were

originally conceived as a tool to model, analyze, and understand the mapping

of RNA sequences into secondary structures [70,79,80]. The neutral network

in RNA sequence-structure mappings is the preimage of a given structure

in sequence space and these networks can be approximated in zeroth order

by random graphs [81, 82]. Whereas neutral networks in RNA sequence-

structure mappings are characterized by a relatively high degree of neutrality

around λ ≈ 0.3 and sequence space percolation is an important phenomenon,

we shall be dealing here with much lower λ-values.

8.1 Small neutral clusters

The two smallest clusters of fittest sequences have Hamming distances dH = 1

and dH = 2 (figure 26). In the former case we are dealing with a minimal

neutral neutral network, in the latter case the Hamming distance two se-

quences are coupled through two intermediate sequences similarly as in the

core of strong quasispecies. An exact mathematical analysis for both cases

is possible in the limit of vanishing mutation rates, lim p → 0 [59], led to
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Figure 26: Neutral networks in quasispecies. The sketch presents four spe-
cial cases that were observed on rugged neutral landscapes defined in equation (47).
Part a shows the smallest possible network consisting of two sequences of Ham-
ming distance dH = 1 observed with s = 367 and λ = 0.01. Part b contains two
sequences of Hamming distance dH = 2, which are coupled through two dH = 1
sequences; it was found with s = 877 and λ = 0.01. The neutral network in
part c has a core of three sequences, surrounded by five one-error mutants, one of
them having a chain of two further mutants attached to it; the parameters of the
landscape are s = 367 and λ = 0.1. Part d eventually shows a symmetric network
with three core sequences and four one-error mutants attached to it, observed with
s = 229 and λ = 0.1. Choice of further parameters: n = 10, f0 = 1.1, f = 1.0, and
d = 0.5. Color code: core sequences in black, one-error mutants in red, two-error
mutants in yellow, and three-error mutants in green.

results that differ from Kimura’s neutral theory:

lim
p→0

x̄I =
1

2
, lim

p→0
x̄II =

1

2
for dH(XI,XII) = 1 , (48a)

lim
p→0

x̄I =
α

1 + α
, lim

p→0
x̄II =

1

1 + α
for dH(XI,XII) = 2 , (48b)

lim
p→0

x̄I = 1 , lim
p→0

x̄II = 0 or lim
p→0

x̄I = 0 , lim
p→0

x̄II = 1 ,

for dH(XI,XII) ≥ 3 . (48c)

If the two neutral fittest sequences, XI and XII, are nearest neighbors in

sequence space, dH(XI,XII) = 1, they are present at equal concentrations

in the quasispecies in the low mutation rate limit, in case they are next
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nearest neighbors in sequence space, dH(XI,XII) = 2, they are observed at

some ratio α, and in both cases none of the two sequences vanishes. Only for

Hamming distances dH(XI,XII) ≥ 3 Kimura’s scenario of random selection

occurs. It is important to stress a difference between the two scenarios, the

deterministic ODE approach leading to clusters of neutral sequences and

the random selection phenomenon of Motoo Kimura: In the quasispecies we

have strong mutational flow within the cluster of neutral sequences – which

is not substantially different from the flow within the non-neutral clusters

in subsection 7.2 – and this flow outweighs fluctuations. In the random

replication scenario mutations don’t occur and the only drive for change in

particle numbers is random fluctuations. For Hamming distances dH of three

and more the mutational flow is too weak to counteract random drift.

The question now is whether or not the exact results derived for lim p→ 0

are of more general validity. In order to find an answer numerical compu-

tations of quasispecies as functions of the mutation rate p were performed.

Random landscapes with a degree of neutrality of λ = 0.01 were searched

and indeed the desired small networks with distances dH = 1 and one for

dH = 2 between the master sequences were found for s = 367 and s = 877

(figure 26, parts a and b, respectively). Figures 27 and 29 show the solutions

curves x̄j(p) for the two examples of small neutral clusters. The concentra-

tion ratios of the two fittest sequences fulfil the predictions of the analytical

approach in the limit of small mutation rates, lim p → 0: The ratio for X0

and X64 in the Hamming distance one case, x̄0(0)/x̄64(0) = 1, and some fi-

nite ratio x̄518(0)/x̄546(0) = α = 1.2259 in the Hamming distance two case,

respectively.

Figure 27 illustrates the dependence of the quasispecies formed by two

master sequences of Hamming distance dH = 1 on the mutation rate p. The

extrapolation of the exact result, x̄0/x̄64 = 1 to nonzero mutation rates turns

out to be successful: Indeed, the red curve behind the black curve is hardly

to be seen in the topmost plot as well as in the enlargement (middle plot). A

precise calculation of this ratio shows a slight increase until at p̂ = 0.009405

a maximum of x̄0(p̂)/x̄64(p̂) = 1.0610 is reached. Then the ratio decreases

and apparently becomes unity again at p̃ = 0.5. The plot of all stationary

concentrations in the quasispecies belonging to the network a in figure 26

shows an interesting detail: The non-master sequence with the highest con-

centration, X324, does not belong to the combined one-error neighborhood of

the two master sequences but lies at Hamming distance dH = 2 and dH = 3

from the two masters, X0 and X64, respectively. The explanation follows

straightforwardly from an inspection of the fitness landscape. Sequence X324
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Figure 27: Cluster on a weakly neutral rugged model landscape with

s = 367. The plot in the middle is an enlargement of the topmost plot. in
the bottom plot only the curves of the dominant cluster, consisting of the two
master sequences, X0 and X64, their one-error neighborhoods, and the third fittest
neutral sequence X324, are shown. Further parameters: n = 10, f0 = 1.1, f = 1.0,
λ = 0.01, d = 0.5. Color code see appendix.
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Figure 28: A small neutral cluster in a quasispecies. The color code from
the appendix that is different from figure 26 is used: X0 black, the one-error mutant
X64 red, the two-error mutants in yellow, and the fittest three-error mutant X324

in green.

belongs to the class of fittest neutral sequences but it is not coupled by an

edge to the dominant network (figure 28). Instead it forms an Hamming

distance two cluster together with X64 with X68 and X320 being the inter-

mediates. The plot at the bottom of figure 27 contains the curves of the

stationary concentrations of the Hamming distance one master pair (black

and red) and their complete one-error neighborhood (red and yellow, re-

spectively) together with that of the neutral sequence X324. It is interesting

that all curves of the neighborhood sequences and the curve of X324 have

their maxima at almost the same position near p ≈ 0.05 whereas the max-

ima of all other curves (comparison with the middle plot of figure 28) are

shifted towards higher p-values. An error threshold expressed by means of

p1/100-values occurs at somewhat higher mutation rates than in the case of

a single master sequence: p1/100(X0) = 0.01073 and p1/100(Xlast) = 0.01082

with Xlast ≡ X64 compared to p1/100(X0) = 0.01065 in the non-neutral case.

As expected the Hamming distance one pair is equivalent to a master that

is slightly stronger than a single sequence. Indeed, the fitness value of X64 is

raised from f64 = 1.04923 to f64 = 1.1 on the landscape with neutrality.

An isolated cluster with a distance dH = 2 between the two master se-

quences, {X518,X546}, has been observed on the rugged neutral landscape

with λ = 0.01 and s = 877. In the limit p → 0 the two fittest neutral se-

quences X518 and X546 are present at the stationary concentrations x̄518 =

0.5507 and x̄546 = 0.4493, respectively, and their ratio is x̄518(0)
/

x̄546(0) =

α(0) = 1.2259. Both stationary concentrations decrease with increasing p-

values, the ratio increases at first but then decreases and approaches the

value one corresponding to the uniform distribution: limp→p̃=1/2 α(p) = 1.

The function α(p) passes a (local) maximum of α(p) = 1.29 at p = 0.00441

(see figure 29, plot at the bottom). The plot in the middle of the figure

demonstrates that the two sequences lying in between the master pair, X514

and X550, appear at higher concentrations than the rest of the one-error
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Figure 29: Quasispecies on weakly neutral rugged model landscape with

s = 877. The topmost part of the figure refers to the landscape with s = 877 and
presents the solution curves for the master pair, {X518,X546} and their one-error
mutants. The plot in the middle is an enlargement and highlights the curves for
the two intermediate sequences X514 and X550 in pastel blue. The plot at the
bottom shows the ratio between the stationary concentrations of the two master
sequences, α(p). Further parameters: n = 10, f0 = 1.1, f = 1.0, λ = 0.01, d = 0.5.
Color code see appendix.
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Figure 30: Quasispecies on weakly neutral rugged model landscape with

s = 877. The topmost part of the figure refers to the landscape with s = 877 and
presents all solution curves Further parameters: n = 10, f0 = 1.1, f = 1.0,
λ = 0.01, d = 0.5. Color code see appendix.

cloud.33 It is interesting to note that the landscape L(λ = 0.01, s = 877) sus-

tains another Hamming distance two pair of fittest sequences {X0,X132} with

the intermediates X4 and X128. This second cluster is in competition with

the first cluster as shown in figure 30 and gains in concentration with increas-

ing mutation rates p, passes through a maximum and then decays through

an error threshold to the uniform distribution at p = p̃. The position of

the error threshold again is estimated by means of the p1/100-values and one

finds p1/100(X518) = 0.01053 and p1/100(X546) = 0.01022 with X518 ≡ Xlast.

On this neutral landscape the corresponding non-neutral master sequence is

33In the case shown here, the two intermediate sequences have very similar fitness
values, f514 = 1.017 and f550 = 1.012. Large fitness differences can outweigh the
advantage caused by the mutation flow from both master sequences.
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Figure 31: Quasispecies with two neutral master sequences. The sketch
contains a set of sequences in order to demonstrate the role of neutrality in the de-
termination of the consensus sequence of a population. Two fittest sequences with
Hamming distance dH = 1 (upper picture) lead to an ambiguity at one position.
Mutations at other positions are wiped out by statistics whereas the one-to-one
ratio of the two mater sequences leads to a 50/50 ratio of two nucleobases at the
position of the mutation. The lower picture refers to two master sequences with
Hamming distance dH = 2: Ambiguities are obtained at two positions and the ra-
tios of the nucleobases are given approximately by the value of α in equation(48b).
The two intermediates are present in small stationary concentrations only but they
are, nevertheless, more frequent than the other one-error mutants (see figure 29).

more stable than the cluster as expressed by p1/100(X0) = 0.01075. This fact

is difficult to interpret, because the original master X0 is not member of the

cluster, which accordingly is situated in another part of sequences space with

different fitness values of the neighboring sequences.

Eventually we consider a simple practical consequence of the existence

of fittest neutral pairs of Hamming distance dH = 1 and dH = 2 for the

sequence analysis in populations. Despite vast sequence heterogeneity [83],

in particular of virus populations, average or consensus sequences are fairly

insensitive to individual mutations provided the population size is sufficiently
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Figure 32: Quasispecies on rugged neutral model landscapes I. Shown
are the stationary concentrations for the landscape L(λ = 0.1, d = 0.5, s = 229).
The topmost plot is drawn with the color code of the appendix, the plot in the
middle applies the color code of the neutral network in figure 26d with the curves
of sequences not belonging to the net in grey. The plot at the bottom is an
enlargement of the plot in the middle. Other parameters: ν = 10, f0 = 1.1, and
f = 1.0.
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Figure 33: Quasispecies on rugged neutral model landscapes II. Shown
are the stationary concentrations for the landscape L(λ = 0.1, d = 0.5, s = 367).
The topmost plot is drawn with the color code of the appendix, the plot in the
middle applies the color code of the neutral network in figure 26 c with the curves
of sequences not belonging to the net in grey. The plot at the bottom is an
enlargement of the plot in the middle. Other parameters: ν = 10, f0 = 1.1, and
f = 1.0.
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large. Individual deviations in mutant sequences cancel through averaging

in population with single master sequences. This will not be the case in the

presence of neutral variants. In the 50/50 mixture of two master sequences

with mutant clouds surrounding both the sequence difference between the

masters is not going to cancel by averaging and ambiguities remain. Consid-

ering now the two cases discussed here: (i) two master sequences at Hamming

distance one present at equal concentrations and (ii) two master sequences

at Hamming distance two present at a concentration ratio α, we expect to

find sequence averages as sketched in figure 31. In the former case a 50/50

mixtures of two nucleotides is expected to occur at one position on the se-

quence, and in the latter case two positions will show nucleobase ambiguities

with the ratio α.

8.2 Medium size neutral clusters

An increase in the degree of neutrality λ will results in the appearance of

larger neutral networks that are scattered all over sequence space. We start

here by the introduction of the adjacency matrix as an appropriate reference

state of neutral networks and the discuss two examples of more complex

neutral networks that are observed in form of quasispecies on landscapes

Ln(λ = 0.1, d = 0.5, s).

The adjacency matrix of a graph contains an entry one at every off diago-

nal element that corresponds to an edge in the graph. We have, for example,

the adjacency matrix A

A =

















0 0 1 0 0

0 0 1 0 0

1 1 0 1 0

0 0 1 0 1

0 0 0 1 0

















for the graph:

.

Now we consider a neutral network corresponding to this graph and obtain

for the mutation matrix Q:

Q =



















(1 − p)n (1 − p)n−2p2 (1 − p)n−1p (1 − p)n−2p2 (1 − p)n−3p3

(1 − p)n−2p2 (1 − p)n (1 − p)n−1p (1 − p)n−2p2 (1 − p)n−3p3

(1 − p)n−1p (1 − p)n−1p (1 − p)n (1 − p)n−1p (1 − p)n−2p2

(1 − p)n−2p2 (1 − p)n−2p2 (1 − p)n−1p (1 − p)n (1 − p)n−1p

(1 − p)n−3p3 (1 − p)n−3p3 (1 − p)n−2p2 (1 − p)n−1p (1 − p)n



















.
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In the limit of small mutation rates we neglect all powers f(p) ∈ o(p) and

after multiplication with the fitness matrix F = f0·I, where I is the identity or

unit matrix, the result is the value matrix in the zeroth order approximation

W (0) = f0 p
n−1 ·

















1 − p 0 p 0 0

0 1 − p p 0 0

p p 1 − p p 0

0 0 p 1 − p p

0 0 0 p 1 − p

















.

Since neither the addition of a constant to the diagonal elements nor the mul-

tiplication by a common factor changes eigenvectors, the adjacency matrix

and the matrix W (0) have identical eigenvectors. Accordingly, the adjacency

matrix of the neutral network is the appropriate reference for quasispecies

rugged neutral landscapes. Clearly, this has been the case for the small clus-

ter shown in figure 27 where the dominant eigenvector of the trivial adjacency

matrix
(

0 1

1 0

)

simply is ζ
(0)
0 = (1

2
, 1

2
)t ,

and represents also the solution of the mutation selection equation (18) for

p = 0.

In figure 32 the quasispecies as a function of the mutation rate, Ῡ(p) is

shown for the landscape L(λ = 0.1, d = 0.5, s = 229). The neutral network

consists of seven sequences, three of them form a linear inner core and four

are attached to it on the periphery (figure 26d). The dominant eigenvector

of the adjacency matrix is of the form

ζ
(0)
0 = (0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1) = (x̄184, x̄504, x̄248, x̄760, x̄728, x̄600, x̄729)

t .

The figure shows that the relative concentration within the quasispecies in

the sense of three more frequent and four less frequent sequences are perfectly

maintained almost up to the error threshold. The level crossing of the three

core sequences occurs at: p1/100(X248) = 0.007712, p1/100(X760) = 0.007307,

and p1/100(X728) = 0.007413.

The neutral network on the landscape L(λ = 0.1, d = 0.5, s = 367) has

a more complicated structure than the symmetric seven membered neutral

cluster discussed in the previous paragraph. It contains ten individual se-

quences and has the form shown in figure 26 c: A core of three sequences

is surrounded by five nearest neighbors and has a tail consisting of one

Hamming distance two and one Hamming distance three sequence. Also
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Table 4: Neutral networks and adjacency matrix. The largest eigenvector
of the adjacency matrix of the neutral network in figure 26 c is compared with the
quasispecies calculated for a small value of the mutation rate p.

Class No. j ζ0(Xj)
a ζ

(0)
0 (Xj)

b

Core 1 79 0.196220 0.196281

2 207 0.156240 0.156284

3 143 0.143652 0.143688

Class 1 4 175 0.090212 0.090231

5 71 0.090206 0.090231

6 75 0.090212 0.090231

7 111 0.090206 0.090231

8 135 0.066039 0.066053

Class 2 9 687 0.052585 0.052934

Class 3 10 751 0.024177 0.024177

a The entries in this column are the components of the quasispecies expressed as

the elements of the largest eigenvector of the value matrix W computed with a

mutation rate p = 1 × 10−6.

b The entries in this column are the components of the largest eigenvector ζ
(0)
0 of

the adjacency matrix of the graph representing the fittest neutral network on the

landscape L(λ = 0.05, d = 0.5, s = 367).

for this more involved topology the low mutation rate limit of the quasis-

pecies, limp→0 Ῡ(p), converges exactly to the largest eigenvector of the ad-

jacency matrix (table 4). The three core sequences stay together for the

whole range of p-values up to the error threshold that is reached in terms

of level crossing at: p1/100(X79) = 0.007649, p1/100(X207) = 0.007462, and

p1/100(X143) = 0.007704. It is not easy to guess that four out of the five

nearest neighbor sequences have identical values in the eigenvector of the ad-

jacency matrix – and it is the tail-free sequence, X135, and not the sequence

carrying the tail, X175, which is different from the other four.

Further increase in the degree of neutrality, λ, gives rise to extended neu-

tral networks, which eventually percolate whole sequence space. Whether or

not such large clusters of neutral sequences play a role in real biology cannot
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Figure 34: Lethal mutants and replication errors. The model for lethal
mutants corresponding to a single peak landscape with k1 = 1 and k2 = . . . = kn =
0 is studied in the flow reactor. The concentrations of the master sequence (black)
and the mutant classes (red, dark orange, light orange, etc.; full lines) are shown
as functions of the error rate p. For the purpose of comparison the parameters
were chosen with ν = 20, r = 1, a0 = 2, and η = 2. The plots are compared to the
curves for the master sequence (grey; broken curve) and the one error class (light
red; broken curve) of a quasispecies on the single peak landscape with ν = 20,
f0 = 2, f = 1, and hence σ = 2.

be said in the moment but more empirical knowledge on fitness landscapes

will help to decide this question.

9 Lethal mutations

Many antiviral drugs are powerful because they increase the mutation rate

and drive virus populations to extinction but for a satisfactory molecu-

lar explanation of the mechanism the required information on the fitness

landscape is still missing. Nevertheless, lethal mutagenesis is an important

phenomenon and simplified models providing phenomenological explanations

have been developed.34 It is important to note that a quasispecies can ex-

ist also in cases where the Perron-Frobenius theorem is not fulfilled. As an

example we consider an extreme case of lethality that allows for analytical

solutions: Only the master genotype X0 has a positive fitness value, f0 > 0

and f1 = . . . = fn−1 = 0, and hence only the entries Wk0 = Qk1f0 of matrix

34An early paper [84] claimed that zero fitness values are incompatible with the
existence of quasispecies and error threshold. The result, however, turned out to be
an artifact of a rather näıve linear sequence space, since later works demonstrated
that selection and mutation on realistic sequence spaces sustains error thresholds
also in presence of lethal variants [85,86].
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W are nonzero:

W =













W00 0 . . . 0

W10 0 . . . 0
...

...
. . .

...

Wn−1, 0 0 . . . 0













and Wk = W k
00













1 0 . . . 0
W10

W00
0 . . . 0

...
...

. . .
...

Wn−1, 0

W00
0 . . . 0













.

Accordingly, W is not primitive but under suitable conditions Ῡ = x̄ =

(Q00, Q10, . . . , Qn−1, 0) is a stable stationary mutant distribution and forQ00 >

Qj0 ∀ j = 1, . . . , n−1 – correct replication occurs more frequently than a par-

ticular mutation – genotype X0 is the master sequence. On the basis of a

rather idiosyncratic mutation model consisting in a one-dimensional chain of

genotypes the claim was raised that no quasispecies can be stable in pres-

ence of lethal mutants and accordingly, no error thresholds could exist [84].

Recent papers [85, 86], however, used a realistic high-dimensional mutation

model and presented analytical results as well as numerically computed ex-

amples for error thresholds in the presence of lethal mutations.

In order to be able to handle the case of lethal mutants properly we have

to go back to absolute concentrations in a realistic physical setup, the flow

reactor applied in section 3 and shown in figure 3. We neglect degradation

and find for X0 being the only viable genotype:35

da

dt
= −

(

n−1
∑

i=0

Qi0k0 c1

)

a + r (a0 − a)

dci
dt

= Qi0k0 a c0 − r ci , i = 0, 1, . . . , n− 1 .

(49)

Computation of stationary states is straightforward and yields two solutions,

(i) the state of extinction with ā = a0 and c̄i = 0 ∀ i = 0, 1, . . . , n − 1, and

(ii) a state of selection of a quasispecies Ῡ that consists of the master sequence

X0 and its mutant cloud at the stationary concentrations ā = r/(Q00k0),

c̄0 = Q00a0 − r/k0, and c̄i = c̄1(Qi0/Q00) for i = 1, 2, . . . , n − 1. As an

example we compute a maximum error rate for constant flow, r = r0, again

applying the uniform error rate model (16):

Q00 = (1 − p)ν and

Qi0 = p di0 · (1 − p)ν− di0 ,

where di0 again is the Hamming distance between the two sequences Xi and

X0. Instead of the superiority σ of the master sequence – that diverges since

f̄−m = 0 because of f1 = . . . = fn−1 = 0 – we define a dimensionless quantity

35We use ki for the rate constants as in section 3, since a(t) is a variable here.
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η0, the carrying surplus of the reactor for the master sequence X0,
36 which

can be defined to be

η =
k0 a0

r0

for the flow reactor. The value of p, at which the stationary concentration of

the master sequence c̄1(p) and those of all other mutants vanishes, represents

the analogue of the error threshold (33), and for the sake of clearness it is

called the extinction threshold . Using ln(1 − p) ≈ −p again we obtain:

pmax ≈ ln η

ν
for small p . (50)

The major difference between the error threshold (33) and the extinction

threshold (50) concerns the state of the population at values p > pmax: Repli-

cation with non-zero fitness of mutants leads to the uniform distribution,

whereas the population goes extinct in the lethal mutant case. Accordingly,

the transformation to relative concentrations fails and equation (9) is not ap-

plicable. In figure 34 we show an example for the extinction threshold with

ν = 20 and η = 2. For this case the extinction threshold is calculated from

(50) to occur at pmax = 0.03466 compared to a value of 0.03406 observed in

computer simulations. In the figure we see also a comparison of the curves

for the master sequence and the one error class in the lethality model and

on single peak landscape. The agreement of the two curves for the master

sequences is not surprising since the models were adjusted to coincide in the

values c̄0(0) = 1 and pmax = ln 2/20. The curves for the one error classes

show some difference that is due to the lack of mutational backflow in case

of lethal variants.

Manfred Eigen and Esteban Domingo originally explained lethal muta-

genesis caused by pharmaceutical compounds increasing the mutation rate

through driving populations beyond the error threshold [11,62]: At mutation

rates above the error threshold replication becomes random, the result is a

complete loss of the genetic information and eventually the viral life cycle

breaks down. Later on James Bull and Claus Wilke studied the dynamics

of lethal mutagenesis in more detail and claimed correctly that population

extinction is a phenomenon independently of catastrophic error accumula-

tion [53, 54] (For a critical review on this subject see [87]). Recently, lethal

mutagenesis and error threshold crossing has been modeled by means of

36The name carrying surplus for η0 ≥ 1 is chosen in order to indicate how far
the reactor is away from the state of extinction at η0 = 1.
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Figure 35: Quasispecies and lethal mutations. The sketch shows the long
time behavior of mutation-selection dynamics in presence of lethal mutations. For
a sufficiently large number of lethal positions (θ < 8) in the virus genotype the
quasispecies goes extinct at the extinction threshold (red) whereas for a smaller
fraction of lethal variants two thresholds are observed: (i) an error threshold (blue)
and an extinction threshold (red). The picture is redrawn from Tejero et al. [86],
figure 2d. Choice of parameters: chain length ν = 20, fm = 15, fk = 3, ϑ = 1.

three-species replication-mutation kinetics with neglect of back mutation [86]

ddcm

dt
=
(

fm(1 − p)ν − ϑ
)

cm ,

ddck

dt
= fm(1 − p)θ

(

1 − (1 − p)(ν−θ)
)

cm +
(

fk(1 − p)θ − ϑ
)

ck , and

ddcj

dt
= fm

(

1 − (1 − p)θ
)

cm + fk

(

1 − (1 − p)θ
)

ck − ϑ cj ; c =
n
∑

i=1

ci ,

(51)

where Xm is the master sequence with the concentration [Xm] = cm and

the replication rate parameter fm, ck and fk refer to the class of non-lethal

mutants, and cj to the class of lethal mutants, ϑ is the uniform degradation

rate parameter for all sequences, ν is the chain length, θ the number of po-

sitions at which mutation yields a lethal variant and, eventually p the single

point mutation rate. This model [86] is characterized by two features: (i)

The concentration of the material consumed in the reproduction process is

assumed to be constant, [A] = a0, and a0 is absorbed in the fitness parameter

fi (i = 1, . . . , n), and (ii) a degradation rate ϑ is introduced for all species.
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In contrast to the selection-mutation equation (18) and the flow reactor dis-

cussed in section 3, the model system (51) does not approach a stationary

state but the total concentration c either grows infinitely or goes extinct.

Figure 35 illustrates the result concerning lethal mutagenesis. There are two

different scenarios of quasispecies development with increasing mutation rate

p, which depend on the degree of lethality that is expressed by the number

of lethal sites d: (i) At low lethality the quasispecies reaches first the error

threshold at p = p cr, passes a range of p-values and then becomes extinct at

p = p ext, and (ii) at sufficiently high degree of lethality the error threshold

merges with the extinction threshold and the quasispecies dies out directly

at p = p ext. It is worth noticing that the stability of the quasispecies against

mutation increases with increasing degree of lethality corresponding to a shift

of the error threshold towards higher mutation rate. Lethal mutagenesis is

understood at the phenomenological level but when it comes to molecular

details, more experimental data and a comprehensive molecular theory is re-

quired. Studies based on more realistic landscapes including lethal variants

into model landscapes in the sense of (40) and (47) are still missing too.

10 Limitations and perspectives

An implicit assumption of the mathematical analysis of Darwinian selection

presented here is the applicability of kinetic differential equations to describe

selection and mutation in populations. In principle the ODE approach ne-

glects finite size effects and hence is exact for an infinite population size only.

Commonly, large numbers of particles, molecules, individuals or agents are

sufficient to justify the use of differential equations. Biological populations,

however, may be relatively small and low frequency mutants may be often

present in a single copy or very few copies only. The uniform distribution

at error rates above the threshold presents an illustrative example that is

relevant for modeling evolutionary dynamics: It can never be achieved in

reality because the numbers of possible polynucleotide sequences are huge

compared to the largest accessible populations ranging from 106 to 1015 indi-

viduals in replication experiments with bacteria, viruses, or RNA molecules.

The human population size is approximately 7 × 109. Typical situations

in biology differ from scenarios in chemistry where large populations are

distributed upon a few chemical species. Are the results derived from the

differential equations then representative for real systems? Two situations

can be distinguished: (i) Individual mutations are rare events and it is ex-

85



tremely unlikely that the same mutation occurs twice or is precisely reversed

after it has occurred, and (ii) mutations are sufficiently frequent and occur

in both directions within the time of observation. The first scenario seems

to be fulfilled with higher organisms. The second scenario is typical for virus

evolution and in vitro evolution experiments with molecules. Bacteria may

be in an intermediate situation. A typical example of the low mutation rate

scenario (i) is Muller’s ratchet named after the American biologist Hermann

Muller [88,89]. Lost mutants are not likely to be replaced, all variants start-

ing with the fittest one will disappear sooner or later, and it is a only matter

of time before a situation is reached where all genotypes have been replaced

by others no matter what there fitness values were (for a comparison be-

tween the error threshold phenomenon and Muller’s ratchet see [84]). The

frequent mutation scenario (ii) allows for modeling and studying the kinetic

equations of reproduction and selection as stochastic processes [60, 90–92] –

examples are multitype branching or birth-and-death processes – chemical

master equations [93], which are amenable to computer simulations [94] (for

an overview of stochastic modeling see, e.g., [95]). The expression for the

error threshold can be readily extended to finite populations [60]. Formation

of stable quasispecies requires a replication fidelity that is the higher the

smaller the population size is.

How relevant is the error threshold in realistic situations? According to

the results presented in subsection 5.6 the question boils down to an ex-

ploration of natural fitness landscapes: Are biopolymer landscapes rugged

or smooth? All evidence obtained so far points towards a rather bizarre

structures of these landscapes. Single nucleotide exchanges may lead to

large effects, small effects or no consequences at all as in the case of neu-

tral mutations. Since biomolecules are usually optimized with respect to

their functions within an organism, most mutations have deleterious effects

or no effect. Biopolymer landscapes have three characteristic features, out of

which all three are hard to visualize: (i) high dimensionality, (ii) ruggedness,

and (iii) neutrality. In case equally fit genotypes are nearest or next nearest

neighbors in sequence space they form joint quasispecies as described in [59].

When they are not closely related, however, neutral evolution in the sense of

Motoo Kimura is observed [33]. Neutrality in genotype space still allows for

the formulation of a selection model in phenotype space [96, 97]. Then, the

variables are concentrations of phenotypes that are obtained through lump-

ing together all concentrations of genotypes, which form the same phenotype

and an analysis similar to the one presented here can be carried out. The

genotypic error threshold is relaxed and the system gives rise to a phenotypic
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error threshold below which the fittest or master phenotype is conserved in

the population. The ODE model is readily supplemented by a theory of phe-

notype evolution based on a new concept of evolutionary nearness of pheno-

types in sequence space [47, 73, 98], which is confirmed by computer simula-

tions of RNA structure optimization in a flow reactor of the type discussed

here [47, 73, 99]. Random drift of populations occurs on neutral subspaces

of sequence space, which is visualized by a series of snapshots showing the

spreading of a population that breaks up into individual clones [99] as it has

been observed already earlier with model simulations [100, 101]. Computer

simulations were also successful in providing evidence for the occurrence of

error thresholds in stochastic replication-mutation systems [102].

The molecular approach to evolutionary phenomena does not only provide

a firm basis that is rooted in chemical kinetics but at the same time it rep-

resents a frame that can be readily extended to complications that are very

likely to be prohibitive for other theories. Complex reproduction mechanisms

can be incorporated into the mutation-selection equations. One successful

example is the detailed multistep reaction of Qβ RNA replication [103–106]:

Different outcomes of the selection processes for different experimental con-

ditions are correctly predicted. The integration of genetic regulation on the

DNA or RNA level into the evolutionary model is not simple but straightfor-

ward, since gene regulation is based on biochemical kinetics. A still unsolved

problem of high current actuality in population dynamics concerns the role

of epigenetics in the evolution of phenotypes [107–110]. A well understood

and illustrative example is provided by the early embryonic development of

the fruit fly drosophila: The embryo is shaped by a cooperative interaction

between maternal and zygotic genes [111, chapter 9] and it is meaningless to

separate genetics and epigenetics in this case. A theoretical approach based

on molecular biology and dealing simultaneously with several generations

might bring the solution.

Acknowledgements

Part of this work and the final wording of the text has been performed during

a visit at the Santa Fe Institute. The author expresses his gratitude to the

University of Vienna and the Santa Fe Institute for support. He is indebted to

Professor Peter Stadler, University of Leipzig for several fruitful discussions.

87



References

[1] M. Eigen. Selforganization of matter and the evolution of biological
macromolecules. Naturwissenschaften, 58:465–523, 1971.

[2] M. Eigen and P. Schuster. The hypercycle. A principle of natural
self-organization. Part A: Emergence of the hypercycle.
Naturwissenschaften, 64:541–565, 1977.

[3] M. Eigen and P. Schuster. The hypercycle. A principle of natural
self-organization. Part B: The abstract hypercycle. Naturwissenschaften,
65:7–41, 1978.

[4] M. Eigen and P. Schuster. The hypercycle. A principle of natural
self-organization. Part C: The realistic hypercycle. Naturwissenschaften,
65:341–369, 1978.

[5] M. Eigen, J. McCaskill, and P. Schuster. Molecular quasispecies.
J. Phys. Chem., 92:6881–6891, 1988.

[6] M. Eigen, J. McCaskill, and P. Schuster. The molecular quasispecies.
Adv.Chem. Phys., 75:149–263, 1989.

[7] M. Eigen and P. Schuster. Stages of emerging life - Five principles of early
organization. J.Mol. Evol., 19:47–61, 1982.

[8] E. Domingo, C. K. Biebricher, M. Eigen, and J. J. Holland. Quasispecies

and RNA Virus Evolution: Principles and Consequences. Landes
Bioscience, Austin, TX, 2001.

[9] J. Swetina and P. Schuster. Self-replication with errors - A model for
polynucleotide replication. Biophys. Chem., 16:329–345, 1982.

[10] J. W. Drake. Rates of spontaneous mutation among RNA viruses.
Proc. Natl. Acad. Sci. USA, 90:4171–4175, 1993.

[11] E. Domingo, ed. Virus entry into error catastrophe as a new antiviral
strategy. Virus Research, 107(2):115–228, 2005.

[12] J. Rogers and G. F. Joyce. A ribozyme that lacks cytidine. Nature,
402:323–325, 1999.

[13] J. S. Reader and G. F. Joyce. A ribozyme composed of only two different
nucleotides. Nature, 420:841–844, 2002.

[14] C. M. Reidys and P. F. Stadler. Combinatorial landscapes. SIAM Review,
44:3–54, 2002.

[15] R. W. Hamming. Error detecting and error correcting codes. Bell

Syst. Tech. J., 29:147–160, 1950.

[16] J. Maynard-Smith. Natural selection and the concept of a protein space.
Nature, 225:563–564, 1970.

[17] D. W. Mount. Bioinformatics. Sequence and Genome Analysis. Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, NY, second edition,
2004.

88



[18] S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in
evolution. In D. F. Jones, editor, Int. Proceedings of the Sixth International

Congress on Genetics, volume 1, pages 356–366, Ithaca, NY, 1932.
Brooklyn Botanic Garden.

[19] P. F. Stadler and G. P. Wagner. Algebraic theory of recombination spaces.
Evolutionary Computation, 5:241–275, 1997.

[20] B. R. M. Stadler, P. F. Stadler, M. Shpak, and G. P. Wagner.
Recombination spaces, metrics, and pretopologies. Z. phys. Chem.,
216:217–234, 2002.

[21] C. K. Biebricher. Quantitative analysis of mutation and selection in
self-replicating RNA. Adv. Space Res., 12(4):191–197, 1992.

[22] P. Carrasco, J. A. Darós, P. Agudelo-Romero, and S. F. Elena. A real-time
RT-PCR assay for quantifying the fitness of tobacco etch virus in
competition experiments. J.Virological Methods, 139:181–188, 2007.

[23] H. Ahn, H. La, and L. J. Forney. System for determining the relative
fitness of multiple bacterial populations without using selecitve markers.
Appl. Environ.Microbiol., 72:7383–7385, 2006.

[24] C. F. Pope, T. D. McHugh, and S. H. Gillespie. Methods to determine
fitness in bacteria. Methods Mol. Biol., 642(3):113–121, 2010.

[25] R. D. Kouyos, G. E. Leventhal, T. Hinkley, M. Haddad, J. M. Whitcomb,
C. J. Petropoulos, and S. Bonhoeffer. Exploring the complexity of the
HIV-1 fitness landscape. PLoS Genetics, 8:e1002551, 2012.

[26] S. Gavrilets. Fitness Landscapes and the Origin of Species. Princeton
University Press, Princeton, NJ, 2004.

[27] T. Aita and Y. Husimi. Fitness landscape of a biopolymer participating in
a multi-step reaction. J.Theor. Biol., 191:377–390, 1998.

[28] G. Woodcock and P. G. Higgs. Population evolution on a mutiplicative
single-peak fitness landscape. J.Theor. Biool., 179:61–73, 1996.

[29] L. P. Maia, D. F. Botelho, and J. F. Fontanari. Analytical solution of the
evolution dynamics on a multiplicative-fitness landscape. J.Math. Biol.,
47:453–456, 2003.

[30] S. Kauffman and S. Levin. Towards a general theory of adaptive walks on
rugged landscapes. J.Theor. Biol., 128:11–45, 1987.

[31] S. A. Kauffman and E. D. Weinberger. The N-k model of rugged fitness
landscapes and its application to the maturation of the immune response.
J.Theor. Biol., 141:211–245, 1989.

[32] M. Kimura. Evolutionary rate at the molecular level. Nature, 217:624–626,
1968.

[33] M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge
University Press, Cambridge, UK, 1983.

[34] T. Ohta. Slightly deleterious mutant substitutions in evolution. Nature,
246:96–98, 1973.

89



[35] T. Ohta and J. H. Gillepie. Development of neutral and nearly neutral
theories. Theor. Pop. Biol., 49:128–142, 1996.

[36] T. Ohta. Mechanisms of molecular evolution. Porc. Natl. Acad. Sci. USA,
99:16134–16137, 2002.

[37] L. D. Schmidt. The Engineering of Chemical Reactions. Oxford University
Press, New York, 1998.

[38] A. Novick and L. Szilard. Description of the chemostat. Science,
112:715–716, 1950.

[39] V. Bryson and W. Szybalski. Microbial selection. Science, 116:45–51, 1952.

[40] P. Sorgeloos, E. Van Outryve, G. Persoone, and A. Cattoir-Reynaerts. New
type of turbidostat with intermittent determination of cell density outside
the culture vessel. Applied and Environmental Microbiology, 31:327–331,
1976.

[41] T. G. Watson. The present status and future prospects of the turbibostat.
J.Appl. Chem.Biotechnol., 22:5832–5838, 1971.

[42] Y. Husimi, K. Nishigaki, Y. Kinoshita, and T. Tanaka. Cellstat – A
continuous culture system of a bacteriophage for the study of the mutation
rate and the selection process at the DNA level. Rev. Sci. Instrum.,
53:517–522, 1982.

[43] A. Watts and G. Schwarz, editors. Evolutionary Biotechnology – From

Theory to Experiment, volume 66/2-3 of Biophysical Chemistry, pages
67–284. Elesvier, Amsterdam, 1997.

[44] P. E. Phillipson and P. Schuster. Modeling by Nonlinear Differential

Equations. Dissipative and Conservative Processes, volume 69 of World

Scientific Series on Nonlinear Science A. World Scientific, Singapore, 2009.

[45] W. Fontana and P. Schuster. A computer model of evolutionary
optimization. Biophys. Chem., 26:123–147, 1987.

[46] M. A. Huynen, P. F. Stadler, and W. Fontana. Smoothness within
ruggedness. The role of neutrality in adaptation.
Proc. Natl. Acad. Sci. USA, 93:397–401, 1996.

[47] W. Fontana and P. Schuster. Continuity in evolution. On the nature of
transitions. Science, 280:1451–1455, 1998.

[48] P. Schuster, K. Sigmund, and R. Wolff. Dynamical systems under constant
organization I. Topological analysis of a family of non-linear differential
equations – A model for catalytic hypercycles. Bull.Math. Biol.,
40:734–769, 1978.

[49] D. Zwillinger. Handbook of Differential Equations. Academic Press, San
Diego, CA, third edition, 1998.

[50] R. W. Hamming. Coding and Information Theory. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition, 1986.

[51] D. L. Hartl and A. G. Clark. Principles of Population Genetics. Sinauer
Associates, Sunderland, MA, third edition, 1997.

90



[52] C. O. Wilke. Quasispecies theory in the context of population genetics.
BMC Evolutionary Bioloy, 5:e44, 2005.

[53] J. J. Bull, L. Ancel Myers, and M. Lachmann. Quasispecies made simple.
PLoS Comp. Biol., 1:450–460, 2005.

[54] J. J. Bull, R. Sanjuan, and C. O. Wilke. Theory for lethal mutagenesis for
viruses. J.Virology, 81:2930–2939, 2007.

[55] C. J. Thompson and J. L. McBride. On Eigen’s theory of the
self-organization of matter and the evolution of biological macromolecules.
Math. Biosci., 21:127–142, 1974.

[56] B. L. Jones, R. H. Enns, and S. S. Rangnekar. On the theory of selection of
coupled macromolecular systems. Bull.Math. Biol., 38:15–28, 1976.

[57] E. Seneta. Non-negative Matrices and Markov Chains. Springer-Verlag,
New York, second edition, 1981.

[58] D. S. Rumschitzki. Spectral properties of Eigen evolution matrices.
J.Math. Biol., 24:667–680, 1987.

[59] P. Schuster and J. Swetina. Stationary mutant distribution and
evolutionary optimization. Bull.Math. Biol., 50:635–660, 1988.

[60] M. Nowak and P. Schuster. Error thresholds of replication in finite
populations. Mutation frequencies and the onset of Muller’s ratchet.
J.Theor. Biol., 137:375–395, 1989.

[61] P. Schuster. Mathematical modeling of evolution. Solved and open
problems. Theory in Biosciences, 130:71–89, 2011.

[62] M. Eigen. Error catastrophe and antiviral strategy.
Proc. Natl. Acad. Sci. USA, 99:13374–13376, 2002.
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Notation

building blocks and degradation products M,A,B, . . . ,

numbers of particles of M,A,B, . . . , NM, NA, NB, . . . ,

concentrations of M,A,B, . . . , [M] = m, [A] = a, [B] = b, . . . ,

replicating molecular species X0,X1,X2, . . . ,

validity for all individual species of type i X(i),

numbers of particles of X1,X2, . . . , N1, N2, . . . ,

concentrations of X1,X2, . . . , [X1] = c1, [X2] = c2, . . . ,

relative concentrations of X1,X2, . . . , [X1] = x1, [X2] = x2, . . . ,

quasispecies Υ = {X0,X1, . . . } ,

fitness values f0, f1, . . . , f̄−m =
∑

i6=m fi

1−xm
= f ,

master sequence X0 or Xm , fm = max{fi} ∀ i ,

notation of classes Γk, X(k) sequences ∈ Γk ,

partial sums of relative concentrations yk =
∑

i∈Γk
xi ,

“realistic” landscape L(λ, d, s; ν, f0, f) ,

flow rate, influx concentration in the CSTR r ,a0 ,

rate parameters di, ki, fi, . . . i = 1, 2, . . . ,

global regulation flux φ(t) ,

chain length of polynucleotides ν ,

superiority of the master sequence Xm σm = fm

/

f̄−m ,

population entropy S =
∑

i xi ln xi ,

fitness landscape L(ν, f0, f, λ, d, s) ,

degree of neutrality λ ,

width of random scatter 0 ≤ d ≤ 1 ,

seeds for random number generator s .
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Color code

The color code for error classes is used in figures showing concentration plots
on the binary sequence space with ν = 10.
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