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Abstract Evolution is a highly complex multilevel pro-
cess and mathematical modeling of evolutionary phenom-
enon requires proper abstraction and radical reduction to
essential features. Examples are natural selection, Men-
del’s laws of inheritance, optimization by mutation and
selection, and neutral evolution. An attempt is made to
describe the roots of evolutionary theory in mathematical
terms. Evolution can be studied in vitro outside cells with
polynucleotide molecules. Replication and mutation are
visualized as chemical reactions that can be resolved,
analyzed, and modeled at the molecular level, and
straightforward extension eventually results in a theory of
evolution based upon biochemical kinetics. Error propa-
gation in replication commonly results in an error threshold
that provides an upper bound for mutation rates. Appear-
ance and sharpness of the error threshold depend on the
fitness landscape, being the distribution of fitness values in
genotype or sequence space. In molecular terms, fitness
landscapes are the results of two consecutive mappings
from sequences into structures and from structures into the
(nonnegative) real numbers. Some properties of genotype—
phenotype maps are illustrated well by means of sequence—
structure relations of RNA molecules. Neutrality in the
sense that many RNA sequences form the same (coarse
grained) structure is one of these properties, and charac-
teristic for such mappings. Evolution cannot be fully
understood without considering fluctuations—each mutant
originates form a single copy, after all. The existence
of neutral sets of genotypes called neutral networks, in
particular, necessitates stochastic modeling, which is
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introduced here by simulation of molecular evolution in a
kind of flowreactor.
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Introduction

Although most of individual ideas concerning biological
evolution were raised already in the eighteenth century and
earlier, the concept of population-level evolution based on
variation and natural selection is due to the great naturalist
Charles Darwin who derived it from a wealth of observa-
tions. Almost at the same time, Greogor Mendel uncovered
the laws of inheritance by performing carefully designed
breeding experiments with plants and statistical evaluation
of the results. About 60 years later the path-breaking dis-
coveries of both scholars were united by the work of the
famous mathematician and population geneticists Ronald
Fisher: Early population genetics describes the interplay of
genetics and selection by means of differential equations.
Modeling in population genetics has been an enormous
abstraction since differential equations can encapsulate
only certain features of population dynamics. Stochasticity,
for example, is missing and mutation, the driving force of
innovation is not part of the model but operates rather like
a deus ex machina injecting new genotypes into the system.
Deviations from Mendel’s laws were detected and descri-
bed by quantitative phenomenology of genetic recombi-
nation but no satisfactory mechanistic explanation was
available.

Molecular biology originating from the determination of
biopolymer structures (Judson 1979) provided a new and
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solid foundation of biology rooted in physics and chemis-
try. Reproduction could be reduced to replication of
nucleic acid molecules, recombination and mutation fell
out as biochemical reactions just as correct copying of
molecules. Since molecules replicate readily in proper
assays outside cells, evolution can be studied in cell-free
system allowing for analysis by the full repertoire of
methods from physics and chemistry: modeling evolution
in vitro became a case study in chemical kinetics. The
development of novel and highly efficient sequencing
techniques for DNA (Maxam and Gilbert 1977; Sanger
et al. 1977) changed molecular genetics entirely. The
whole cell or the complete organism rather than individual
biomolecules became the object of investigations and new
disciplines, now aiming at a true exploration of the
chemistry of life, originated. Genomics, for example,
determines the genetic information of organisms through
DNA sequencing, proteomics explores the full set of cel-
lular proteins and their interactions, metabolomics is
dealing with cellular metabolism as a gigantic network of
biochemical reactions, functional genomics and systems
biology, eventually, head for describing all functions of
biomolecules and modeling the dynamics of whole cells.
Needless to say, present day molecular biology is not yet
there, but new experimental and computational techniques
are making fast progress and this highly ambitious goal is
not completely out of reach.

This review starts out from an attempt to implement
evolutionary thinking from Darwin and Mendel to Fisher in
mathematical language (“Darwinian selection in mathe-
matical language” section). Then, we focus on evolution in
simple systems seen from a molecular perspective. In
particular, the focus is laid on the interplay of mutation and
selection (“Mutation driven evolution of molecules” sec-
tion), and we shall make an attempt to include phenotypic
properties in the model of evolution. The role of stochas-
ticity in evolution of molecules, in particular neutrality
with respect to selection, is investigated by means of
computer simulation (“Modeling evolution shape in silico”
section). The contribution is finished by “Concluding
remarks” section).

Darwinian selection in mathematical language

In Charles Darwin’s centennial work on the Origin of
Species (Darwin 1859), we do not find a single mathe-
matical equation. Accordingly, we can only speculate how
Darwin might have formulated his theory of natural selec-
tion in case he had used mathematical language. Charles
Darwin according to his own records had read Robert
Malthus’ (1798) Essay on the Principle of Population and
was deeply impressed by the effects of population increase
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in the form of a geometric progression or exponential
growth. Animal or human populations—according to
Malthus—grow exponentially like every system capable of
reproduction and the increase in the production of nutrition
is at best linear as expressed by an arithmetic progression
when we assume that the gain in land exploitable for
agriculture is constant in time, i.e., the increase in the area
of fields is the same every year. An inevitable result of the
Malthusian vision of the world is the pessimistic view that
populations will grow until the majority of individuals will
die premature of malnutrition and hunger. Charles Darwin
and also his younger contemporary Alfred Russell Wallace
took from Malthus’ population theory that in the wild,
where birth control does not exist and individuals fight for
food, the major fraction of progeny will die before they
reach the age of reproduction and only the strongest will
have a chance to multiply. Natural selection, ultimately,
appears as a result of exponential growth and finite carrying
capacity of ecosystems. Presumably not known to Darwin
the Belgium mathematician Jean Frangois Verhulst com-
plemented the theory of exponential growth by the intro-
duction of finite resources (Verhulst 1838). The Verhulst or
logistic equation is of the form

dN N

—=rN{1—-—= 1
N, ( K) , (1)
where N denotes the number of individuals of species X. It
can be solved exactly,

K

N =N O) oy F & = N 0) Jexp (=)

(2)

Apart from the initial number of individuals of X, N(0),
the Verhulst equation has two parameters: (i) the Mal-
thusian parameter or the growth rate r and (ii) the car-
rying capacity K of the ecological niche or the ecosystem.
A population of size N(0) grows exponentially at short
times: N(f) =~ N(0) exp(rt) for N(0) < K at ¢ sufficiently
small. As shown in Fig. 1, the population size approaches
the carrying capacity asymptotically for long times:
lim,_., N(t) = K.

The two parameters are taken as criteria to distinguish
different evolutionary strategies: Species that are r-selected
exploit ecological niches with low density, produce a large
number of offspring each of which has a low probability to
survive to adulthood, whereas K-selected species are
strongly competing in crowded niches and invest heavily in
few offspring that have a high probability to survive to
adulthood. The two cases, r- and K-selection, are the
extreme situations of a continuum of mixed selection
strategies. In the real world, the r-selection strategy is an
appropriate adaptation to fast changing environments,
whereas K-selection pays in slowly varying or constant
environments.
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Fig. 1 Exponential growth and finite carrying capacity. The figure
compares solution curves for the Verhulst equation (2) and exponen-
tial growth, y(f) = y(0) exp(rt) (black and red curve, respectively).
The variable of the Verhulst equation is normalized: x(f) = N(t)/K
with lim,_,, x(r) = 1 and 0 < x(r) < 1 for 0 < x(0) < 1. Choice of
parameters: r=0.2, K =1, and x(0) = y(0) = 0.02. Unrestricted
exponential growth outgrows any constant or linearly growing
resource. In the print version red appears as gray

The Verhulst equation can be used to derive a selection
equation in the spirit of Darwin’s theory. The single species
X is replaced by several species or variants forming a pop-
ulation: IT = {X;, X5, ..., X,,}, the numbers of individuals
are represented by a vector N(7) = (N(f), Nx(?), ..., Ny(1))
with """ | N;(r) = C(z). The carrying capacity is defined for
all n species together: lim,_., Y+, N;(t) = K. The Malthus
parameters or fitness values are denoted by fi, f5, ..., fu
respectively. The differential equations for individual spe-
cies are now of the form

W (5 ge0) wim oo zyN 3)

being the mean fitness of the population. Summation of
over all species yields a differential equation for the total
population size

dC Cc
—=C|1——|¢(t 4
i —c(1-5)s0 @
that can be solved analytically

K
C(r) = C(0)

C(0) + (K — C(0))e?
with @ = /¢(f)dr,

0

where C(0) is the population size at time ¢ = 0. The
function ®(¢) depends on the distribution of fitness values
within the population and its time course. For
fi =f, = - =f, = r the integral yields ® = r¢, and we
retain Eq. 2. In the long time limit, ® grows to infinity and
C(¢) converges to the carrying capacity K.

As an exercise, we perform stability analysis: From
dC/dt = 0 follow two stationary states of Eq. 4: (i) C = 0
and (ii) C = K.' For conventional stability analysis, we

calculate the (1 x 1) Jacobian and obtain for the
eigenvalue

_o(dc/dr) aqb C?0¢
4="%0 _¢()__ 20() ~ X3¢ ) ~Kac
Insertion of the stationary values yields A = +¢ > 0 and

M0 = _¢ <0, state (i) is unstable and state (ii) is
asymptotically stable. The total population size converges
to the value of the carrying capacity, lim,_.., C(f) = K as,
of course, derived already from the exact solution.

The primary issue in the multi-species case is to
describe the time course of the distribution of species
within the population. For this goal, we introduce nor-
malized variables: x;(r) = Ni(t)/C(t) with Y " | x;(r) = 1.
The ODE in normalized variables,

dy _ o
=l = 9()),

n Zﬁxl n (5)
ZfN = fo,,

j=1,2,....n with

i=1

Equation 5 can be solved exactly by means of integrating
factor transformation (Zwillinger 1998, p. 322ff):

) =0 -exp( - [ (01,

which after insertion into (3) and solution for z;(f) yields
x;(0) - exp(fit)

x(t) = ST (6)

Z}xz’(o) -exp(fit)

Two properties of the selection process that are relevant for
evolution follow straightforwardly (Fig. 2): (i) The mean
fitness, ¢(?) is a non-decreasing function of time, and (ii) a
population variable x;(f) increases if and only if the dif-
ferential fitness of the corresponding species is positive,
0¢i(t) =f; — ¢(t) > 0, and decreases if and only if the
differential fitness is negative, 6¢,(1) = f; — ¢(r) <O.

First, we present a proof for the first statement (non-
decreasing ¢): The time dependence of the mean fitness or
flux ¢ is given by

' There is also a third stationary state defined by ¢ = 0. For strictly
positive fitness values, f; >0V i = 1, 2, ..., n, this condition can only
be fulfilled by x; = 0V i = 1, 2, ..., n, which is identical to state (i).
If some f; values are zero—corresponding to lethal variants—the
respective variables vanish in the infinite time limit because of
dx/dt = —¢(t) x; with ¢(r) > 0.

@ Springer



74

Theory Biosci. (2011) 130:71-89

» X3

0.8 S
0.6

4
0.2 /

0 200 400 600 800 1000
time t

population variable

0.015
0.01
0.005 —
0 == T 1.00
-0.005
-0.01 +40.99
-0.015
-0.02

1.01

» 803, O(t)

\

variable

0 200 400 600 800
time t

1000

Fig. 2 Differential fitness and selection. In the upper part of the figure,
we show the time development of a population at constant population
size, C = K = 1. The three species differ in initial presence and fitness
values: X, x1(0) = 0.759, fi = 0.99 (yellow); X, x,(0) = 0.240,
f> = 1.00 (green); X3, x3(0) = 0.001, f3 = 1.01 (red). The lower part
of the figure compares differential fitness of individual species, d¢;; j =
1,2, 3 (yellow, green, and red; left ordinate scale), and the mean fitness
of the population, ¢ () (black; right ordinate scale). The population
variable of a species increases if the differential fitness is positive and
decreases for negative differential fitness (as follows directly from a
comparison of the two plots). The mean fitness is a non-decreasing
function of time. In the print version red appears as the darkest gray and
other colors differ in their gray-value

(:1_(?: Zﬁxi = Zfi fixi —xiZfi)?i
i—1 i=1 J=1

=320 fn > fig =17 — (F)°= var{f} > 0.
i=1 i=1 j=1
(7)

Since a variance is always nonnegative, Eq. 7 implies that
¢(?) is a non-decreasing function of time, and hence it is
optimized during selection. O

The second statement (differential fitness d¢);) is trivial
but provides insight into the selection mechanism. At¢t = 0
all population variables with a fitness below average, i.e.,
with a negative differential fitness, d¢p < 0, will decrease,
all variables with d¢ > 0 will increase. The result is an
increase in ¢(f) in agreement with Eq. 7. As time pro-
gresses and ¢(f) increases, more and more species fall
under the d¢ < O-criterion, will decrease and finally dis-
appear. Ultimately, only the species with the largest fitness
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value, X, : fi, = max{fi,fa,....fu}, will remain and the
mean fitness has reached its maximal value: ¢(¢) = f,,.
Selection of the fittest has occurred!

The Augustinian monk Gregor Mendel was a contem-
porary of Charles Darwin and had the missing piece of
Darwin’s theory, a mechanism of inheritance (Mendel
1866, 1870) in hand, but his works were ignored by evo-
lutionary biologists until the turn of the century. The
English statistician and geneticist Ronald Fisher succeeded
in uniting natural selection with Mendelian genetics (Fisher
1930). His selection equation describes the evolution of the
distribution of alleles at a single gene locus:

dX' n n
CT; = i —x50(1) = x| Y axi — (1)

i=1 i=1

:xj(fj—qﬁ(t))7 with f; = Zaﬁf,-,j: 1,2,...,n
i=1

and ¢(t) = Z Zajixixj- (8)
=1 =T

The variables denote the frequencies of the alleles in the
population x; = [X;], normalization yields » ', x; = 1,
and a; is the fitness of the (diploid) genotype X;X;. A
diploid organisms carries two alleles of each gene on a
autosome’—one being transferred from the father and one
coming from the mother—and the contribution to the
change of the frequency of allele X; in time is proportional
to the fitness of the genotype, a;;, and the frequencies of the
two alleles, x; and x;. In conventional genetics the proper-
ties of a phenotype are assumed to be independent of the
origin of alleles—it does not matter whether the alleles
comes form the father or from the mother—and therefore,
we have a;; = a; (Fig. 3): The matrix of fitness values
A = {ay} is symmetric. In this case, it is straightforward to
prove that ¢(f), the mean fitness of the alleles is a non-
decreasing function of time as shown for the simple
selection case analyzed in Eq. 7.

In contrast to the simple selection case (3), Fisher’s
selection equation may have several asymptotically stable
stationary states and therefore the outcome of selection
depends on initial conditions. A straightforward example is
provided by higher fitness of the homozygote genotypes
compared to the heterozygote: the states corresponding to the
homozygotes X;X; and XX, (x; = 1, x, =0 and x; = 0,
x, = 1, respectively) are asymptotically stable whereas
the heterozygous states X;X, and X)X,
0.5) is unstable.® Unfortunately—but fortunately for

(X1 =x =

2 All chromosomes are autosomes except the sexual chromosomes X
and Y.

3 In case matrix A is not symmetric, the dynamical system (10) may
show more complex dynamics like oscillations, deterministic chaos,
etc.
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Fig. 3 Mendelian genetics and sexual reproduction. In sexual
reproduction the two copies of a gene X in a diploid organism are
separated to yield two haploid gametes. In the offspring the two genes
in the two gametes are combined at random resulting in recombina-
tion. The figure sketches the progeny of two heterozygous organ-
isms—these are organisms carrying two different alleles of the gene.
The fitness of the diploid phenotype, X; X;, is denoted by a;;

population geneticists and theoretical biologists because it
provided and provides a whole plethora of problems to
solve—Fisher’s selection equation holds only for indepen-
dent genes. Two and more locus models with gene interac-
tion turned out to be much more complicated and no
generally valid optimization principle has been found so far:
Natural selection in the sense of Charles Darwin is an
extremely powerful optimization heuristic but no theorem.
Nevertheless, Fisher’s fundamental theorem is much deeper
than the toy version that has been presented here. The
interested reader is referred to a few, more or less arbitrarily
chosen references from the enormous literature on this issue
(Price 1972; Edwards 1994; Okasha 2008).

Mutation driven evolution of molecules

Molecular biology was born when Watson and Crick
published their centennial paper on the structure of DNA.
Further development provided information on the chemis-
try of life at a breathtaking pace (Judson 1979). A closer
look on the structure of DNA revealed the discrete nature
of base pairing—two nucleotides make a base pair that fits
into the double helix or they do not. With this restriction,
the natural nucleobases allow only for four combinations:
AU, UA, GC, and CG. This fact is sufficient for an
understanding of the molecular basis of genetics: genetic
information is of digital nature and multiplication of
information is tantamount to copying. Mutation, the pro-
cess that leads to innovation in evolution, was disclosed as
imperfect reproduction or an error in the copying process.
Correct reproduction and mutation at the molecular level
are seen as parallel chemical reactions (figure 4). In order

to guarantee inheritance, correct copying must occur more
frequently than mutation (as indicated in the figure cap-
tion). In “The kinetic model of replication and mutation”
section, we shall cast this intuitive statement into a quan-
titative expression, whereby for the sake of simplicity only
point mutations will be considered. This, however, should
not mean that other changes in genomes like insertions,
deletions, duplications, and other genome rearrangements
are unimportant.

The more general a model is, the wider is its range of
applicability. The enormous success of Darwin’s natural
selection is its almost universal applicability and this
results from the lack of specific assumptions on the process
of multiplication and variation. On the other hand, speci-
ficity is required for working out mathematical models,
which can provide explanation for observations and which
are suitable for experimental test. DNA replication is an
extremely complicated process involving some twenty
proteins,* and has not yet been studied thoroughly by
biochemical kinetics. Compared to DNA replication, rep-
lication of RNA viruses, in particular bacteriophages, is
rather simple in the sense that it usually requires only a
single enzyme. Since the mechanism of replication has
been resolved down to molecular details in few systems
only, we describe here replication by the specific replicase
from the bacteriophage Qf (Biebricher and Eigen 1988;
Eigen and Biebricher 1988; Nakaishi et al 2002; Hosoda
etal 2007) as an illustration of complete bottom-up
understanding of evolution in vitro.

Virus-specific RNA replication

Qf-replicase is a virus-specific, RNA-dependent RNA
polymerase and amplifies suitable RNA molecules in a
medium containing the activated nucleotides, ATP, UTP,
GTP, and CTP, in excess (Mills et al 1967). in early
experiments Qf-replicase was isolated from Escherichia
coli bacteria infected by Qf bacteriophage, at present
production of the enzyme makes use of genetic engineer-
ing.” Replication of Qf-RNA is initiated by a single strand
RNA molecule that binds to the enzyme Qf-replicase at
sequence specific recognition sites (Brown and Gold 1996;
Kiippers and Sumper 1975). Through enzyme action, the

4 Protein synthesis in vivo is regulated by a complex network
controlling gene activity called gene expression. The network
involves regulation of transcription (DNA — RNA), post-transcrip-
tional modification and maturation of the messenger-RNA, its
translation into protein, and post-translational modification before
the protein unfolds its function.

5 Qp-replicase is an enzyme consisting of four subunits. Three
subunits are host proteins involved in translation, the ribosomal
protein S; and the elongation factors Ef-Tu and Ef-Ts. The fourth
subunit is a virus-specific protein encoded by the viral RNA.
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Fig. 4 A molecular view of replication and mutation. The replicase
molecule (violet) binds the template RNA molecule (X, orange) with a
binding constant K; = k;/k_; and replicates with a rate parameter f;.
The reaction leads to a correct copy with frequency Q;; and to a mutant
Xy with frequency Qy; with Qj; > Oy V k # j. Stoichiometry of

template strand is completed—nucleotide after nucleotide
in the direction from the 3’- to the 5’-end—and forms
locally a double-helical RNA duplex. The process of rep-
lication follows a simple principle making use of strand
complementarity and is often denoted as complementary
replication: Like in the historical silver-based photography,
the plus strand acts as template for the synthesis of the
minus strand, and vice versa, the minus strand is the
template for plus strand synthesis. In vivo and in vitro,
Qf-replicase plays a twofold role: (i) It increases the
accuracy of replication by reinforcing correct base pairing
(A=U and G=C) and (ii) it assists separation of the two
complementary strands—template and newly synthesized
RNA molecule—in the RNA duplex into individual strands
during replication (Mills et al 1967; Weissmann 1974).
Strand separation is essential for successful replication,
because dissociation of the complete RNA duplex is ther-
modynamically so unfavorable that it does not occur at the
temperature applied for replication.® In Qf RNA replica-
tion, the whole length RNA duplex helix is never formed
since the double helical stretch needed for template poly-
merization is separated into a plus and a mins strand on the
fly (Fig. 5), both strands form their energetically favored
specific single strand structures and prevent duplex for-
mation. In this context it is worth mentioning that an
enzyme-free experiment of cross-catalytic reproduction of
RNA molecules with rich single strand structure has been
successful (Lincoln and Joyce 2009).

S Standard amplification of single stranded DNA by means of the
polymerase chain reaction (PCR) is a frequently used technique for
replication that circumvents isothermal duplex dissociation by means
of a temperature program: Single stranded DNA is completed to a
double helical duplex by means of a polymerase from Thermophilus
aquaticus (Taq), the duplex is dissociated into single stands at
higher temperature, and cooling of single strands completes the cycle
(see also Cahill et al. 1991).

@ Springer

replication requires » ;_; Q; = 1, since the product has to be either
correct or incorrect. The sum of all activated monomers is denoted by M.
In the print version the mutant spectrum differs in the gray-value from
lightest for X; to darkest for X,

Complementary replication is as efficient for population
growth as direct replication is: after internal stationarity
has been achieved, the plus—minus ensemble grows like a
single unit of reproduction. Under the conditions of a
closed system (no exchange of materials with the envi-
ronment, see Fig. 6) RNA replication passes three phases
of growth: exponential growth, linear growth, and satura-
tion (Biebricher et al. 1983, 1984, 1985). Selection and
Darwinian evolution require exponential growth and
accordingly, an open system is indispensable in order to
maintain replication within the exponential phase (Phil-
lipson and Schuster 2009, chaps. 2, 3) by means of a flow.
The easiest way to achieve this goal is to supply all
materials consumed in RNA synthesis by a constant influx
and to remove RNA in excess by an outflux that, in
addition, compensates also for the increase in volume
caused by the influx. The relatively low accuracy of viral
RNA replication (see section: “The error threshold of
reproduction”) produces a sufficiently rich variety of
variants that provide the basis for in vitro evolution
(Joyce 2007).

The kinetic model of replication and mutation

The kinetic reaction mechanism of RNA replication in
vitro has been studied in great detail (Biebricher et al.
1983, 1984, 1985): Under suitable conditions, excess rep-
licase and nucleotide triphosphates (ATP, UTP, GTP, and
CTP), the concentration of the RNA plus—minus ensemble
grows exponentially (Fig. 6). The population maintains
exponential growth when the consumed material is
replenished either by a suitable flow device or serial
transfer of small quantities of the reaction mixture into
fresh medium (Spiegelman 1971). Under these conditions,
replication kinetics can be simplified and properly descri-
bed by the differential equation:
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Fig. 5 Sketch of RNA
replication by Qp-replicase. An
RNA template—here the plus-
strand of the SV11 variant of
Qp-RNA (Biebicher and Luc,
1992)—is bound to the replicase
and replication proceeds by
adding single activated
nucleotides one after the other &
to the growing product, the -
minus strand. The replicase 2
operates on single stranded o
stretches. Double helical 5' oo
structural elements on the
template strand are opened
when they are encountered by
the enzyme. Still on the enzyme,
the duplex formed during
replication is separated in order
to allow for independent
structure formation of both
strands

Adenine

Guanine O

dx; - . .
=2 Qifxi — ¢y, j=12,.on with (1)
i=1

n dx
= Z fixi or in vector notation i Q-

i=1

F—¢(1)x,
9)

where x is an n-dimensional column vector; Q and F are
n X n matrices. The matrix Q contains the mutation
probabilities—Q)j; referring to the production of X; as an
error copy of template X,—and F is a diagonal matrix whose
elements are the replication rate parameters or fitness values
fi (Fig. 4). Equation 9 can be transformed into a linear ODE
by means of integrating factor transformation and than
solved by means of an eigenvalue problem (Thompson and
McBride 1974; Jones et al. 1976):

200 =x(0)-exp | [ $(c)dr |
0

%:Q-Fz:Wz andW=B-A-Blor
A=B!.W.B,

with A being a diagonal matrix containing the eigenvalues
of W, 4y, A1, ..., 4,—1. Whenever a path of consecutive
single point mutations can be found from every X; to every
X; the matrix W is primitive’ and fulfils Perron—Frobenius

T A square non-negative matrix 7= {t;; i,j =1, ..., n; t; > 0} is
called primitive if there exists a positive integer m such that 7" is

7
baq
o
o
o
oo
e e T e T e e e
AL OB
i o,
ig "

Uracil [ ]

Cytosine

theorem (Seneta 1981, pp. 3, 22). Accordingly, the largest
eigenvalue, /o, is strictly positive and non-degenerate and
the corresponding right hand eigenvector §, has only
positive entries. The calculation of the solutions x; is
somewhat lengthy but straightforward:

n—1 n

Z bjk Z hkix,-(O) CXp(lkI)
k=0 i=1

xi(t) = — , J=12...,n
Z z by Z hk,-xi(O) exp(lkt)
=1 k=0 i=1

(10)
The new quantities in this equation are the elements of the
two transformation matrices:
B={b;j=1,2,...,mk=0,1,...,n— 1} and
B™'={hy;k=0,1,...n—1;j=1,2,...,n}
The columns of B and the rows of B™' represent the right

hand and left hand eigenvectors of the matrix W. For
example, we have

Footnote 7 continued
strictly positive: 7" > 0 which implies 7" = {t,(-jm); Lj=1,...,nm tf-]'-”) >
0}.
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Fig. 6 Kinetics of RNA replication in closed systems. The time
course of RNA replication by Qf-replicase shows three distinct
growth phases: (i) an exponential phase, (ii) a linear phase, and (iii) a
phase characterized by saturation through product inhibition
(Biebricher et al. 1983, 1984, 1985). The experiment is initiated by
transfer of a very small sample of RNA suitable for replication into a
medium containing Qpf-replicase and the activated monomers, ATP,
UTP, GTP, and CTP in excess (consumed materials are not
replenished in this experiment). In the phase of exponential growth,
there is shortage of RNA templates, every free RNA molecule is
instantaneously bound to an enzyme molecule and replicated, and the
corresponding over-all kinetics follows dx/dt = fx resulting in
x(t) = xq - exp(ft). In the linear phase, the concentration of template
is exceeding that of enzyme, every enzyme molecule in engaged in
replication, and over-all kinetics is described by dx/dt = k' - e(()E’ =k,
wherein e{? is the total enzyme concentration, and this yields after
integration x(f) = xo + k. Further increase in RNA concentration
slows down the dissociation of product (and template) RNA from the
enzyme—RNA complex and leads to a phenomenon known as product
inhibition of the reaction. At the end, all enzyme molecules are
blocked by RNA in complexes and no more RNA synthesis is
possible, c¢(f) — ¢,

Since A9 > Ay > Ay -+ > 4,1, the stationary solution
contains only the contributions of the largest eigenvector,

o

bjo Z hoix;(0)
lim Xj(t) = )fj = =1

1—00

j=12,...n (11)

n )

> bio Y hoixi(0)
=i

In other words, {, describes the stationary distribution of
mutants and represents the genetic reservoir of an asexually
reproducing species similarly to the gene pool of a sexual
species. For this reason, {, has been called qguasi-species.

The error threshold of reproduction

The dependence of quasi-species on the frequency of
mutation is considered in this subsection. In general, the
mutation rate is not tunable, but it can be varied within
certain limits in suitable experimental assays. In order to
illustrate, mutation rate dependence and to subject it to
mathematical analysis, a simplifying model assumption
called uniform error rate model is made (Eigen 1971).

@ Springer

The error rate per nucleotide and replication, p, is assumed
to be independent of the position and the nature of the
nucleotide exchange (for example, A - U, A - G or
A — C occur with the same frequency p and the total error
rate at a given position is 3p). Then the elements of the
mutation matrix Q depend only on three quantities: the
chain length of the sequence to be replicated, ¢, the error
frequency p, and the Hamming distance between the tem-
plate, X;, and the newly synthesized sequence, X;, denoted
by djj,}
Qi = (1= (k= Dp) W p% = (1 = (= 1p)'e
with ¢ = #.
l—(k—1)p

The size of the nucleotide alphabet is denoted by x—for
natural polynucleotides we have k = 4 corresponding to
{A, U(T),G,C}. The explanation of the two terms in Eq. 12
is straightforward: The two sequences differ in d? positions
and hence ¢ — ds nucleotides have to be copied correctly,
each contributing a factor 1 — (x — 1)p, and df,{ errors
with frequency p have to be made at certain positions.
Since the Hamming distance is a metric, we have dﬁf- =dj;,
and within the approximation of the uniform error rate
model, the mutation matrix Q is symmetric.

For p =0, we encounter the selection case (6): in
absence of degeneracy—all fitness values f; are different—
the species of highest fitness, the master sequence X,,, is
selected and all other variants disappear in the long time
limit. The other extreme is random replication, a condition
under which all single nucleotide incorporations, correct or
incorrect, namely A - A, A - U, A > G, and A - C,
are equally probable and occur with frequency p = 0.25.
Generalization from four to x letters is straightforward:
Then, for p = k" all elements of matrix Q are equal to kK *
where / is again the sequence length. If all sequences are
considered in the model the matrix W contains n = K’
identical rows and takes on the following form at p = p

(12)

fl f2 fn
W ot H oo
hoho h

The uniform distribution IT={x;=n"'V j=1,2,...,
n  withn = '} is the eigenvector corresponding to the
largest eigenvalue g = x* >, fi, whereas all all other
eigenvalues of W vanish.” In the whole range 0 < p < lc*l,

the stationary distribution changes from the homogeneous

8 The Hamming distance d;-' between two strings, X; and X; of equal
length counts the number of positions in which the two end-to-end
aligned strings differ (Hamming 1986).

° Tt can be proven by means of a recursion that the eigenvalues of the
matrix W fulfill the relation "' (2 — k¢ 320, f) = 0.
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population, Z,, = {X,, = 1,X; = 0Vj # m} to the uniform
distribution I1. A remark concerning the uniform distribu-
tion is required: the number of possible polynucleotide
sequences —k’ = 4" for natural molecules—exceeds by far
any accessible population size already for small RNAs with
¢ ~ 30. Although Eq. 10 predicts the uniform distribution
in theory, no stationary population is possible in practice, and
we expect populations to drift randomly through sequence
space (Derrida and Peliti 1991; Huynen et al. 1996; and
“Modeling evolution in silico” section). A limitation of
modeling by differential equations is encountered [see also
the localization threshold of mutant distributions (McCaskill
1984; Eigen et al. 1989)].

Between the two extremes, the function X,(p) was
approximated by Manfred Eigen through neglect of back-
flow from mutants to the master sequence. He obtained for
dx,,/dt = 0 (Eigen 1971):

i, fom -
xm@mm - = Qmm — 0,

f;n

n

> fi%i
i=1,itm

1— %,

(13)

The quantity ¢,, = f,,/f_ is denoted as the superiority of
the master sequence. In this rough, zeroth order
approximation, the frequency of the master sequence
becomes zero at a critical value of the mutation rate
parameter, p,..x, for constant chain length ¢ or at a maximal
chain length /.., for constant replication accuracy p,

with f_,, =

Ing,
(k—=1)p’

respectively. The critical replication accuracy has been
characterized as error threshold of replication. As we shall
see in the “Fitness landscapes and error thresholds” sec-
tion, the error threshold reminds of a phase transition in
which the quasi-species changes from a mutant distribution
centered around a master sequence to some other distri-
bution that is only weakly dependent on p or independent at
all, for example the uniform distribution.'® In other words,
the solution that becomes exact at p =p is closely
approached at p = p,,.x already. For the purpose of illus-
tration for a superiority of g,, = 1.1 and a chain length of
¢ = 100, we obtain p,.x = 0.00032 compared to p = 0.25.

Both relations for the error threshold, maximum replica-
tion accuracy and maximum chain length, were found to
have practical implications: (i) RNA viruses replicate at
mutation rates close to the maximal value (Drake 1993). A
novel concept for the development of antiviral drugs makes

Inag,

G- i

pmax ~

10" A sharp transition from the structured quasi-species to the uniform
distribution is found for the single-peak landscape and some related
landscapes only (see “Fitness landscapes and error thresholds”
section.

use of this fact and aims at driving the virus population to
mutation rates above the error threshold (Domingo 2005).
(ii) There is a limit in chain length for faithful replication that
depends on the replication machinery: the accuracy limit of
enzyme-free replication is around one error in one hundred
nucleotides, RNA viruses with a single enzyme and no proof
reading can hardly exceed accuracies of one error in 10,000
nucleotides, and DNA replication with repair on the fly
reaches one error in 10® nucleotides. For prokaryotic DNA
replication, post-replication repair increases the accuracy to
107°-107"'°, which is roughly one mutation in 300 dupli-
cations of bacterial cells (Drake et al. 1998).

Fitness landscapes and error thresholds

The approximation of the error threshold through neglect
of mutational back-flow (13) caused the results to be
independent of the distribution of replication parameters of
mutants, since only the mean replication rate, f_,,, enters
the expression. As a matter of fact, the appearance of an
error threshold and its shape depend on the fitness land-
scape (Wiehe 1997; Phillipson and Schuster 2009,
pp. 51-60). In this subsection we shall now consider the
influence of the distribution of fitness values in two steps:
(i) different fitness values are applied for sequences with
different Hamming distances from the master sequence,
and (ii) different fitness values are assigned to individual
sequences. In the first case, all sequences X; with Hamming
distance dﬂzi = k fall into the error class k. Although the
assumption that all sequences in a given error class have
identical fitness is not well justified on the basis of
molecular data, it turns out to be useful for an under-
standing of the threshold phenomenon.

The following five model landscapes or fitness matrices
F={F; =f; - 0;} were applied (Fig. 7): (i) the single-peak
landscape corresponding to a mean field approximation, (ii)
the hyperbolic landscape, (iii) the step-linear landscape,
(iv) the multiplicative landscape, and (v) the additive or
linear landscape. Examples for the dependence of the
quasi-species distribution on the error rate are shown in
Fig. 8.

For analyzing error thresholds, it is useful to consider
three separable features: (i) the decay in the frequency of
the master sequence—ux,,(p) — O in the zeroth order
approximation (13), (ii) the phase transition-like sharp
change in the mutant distribution, and (iii) the transition
from the quasi-species to the uniform distribution. All the
three phenomena coincide on the single-peak landscape
(Fig. 8; upper part). Characteristic for most hyperbolic
landscapes is an abrupt transition in the distribution of
sequences according to (ii) but—in contrast to the single-
peak landscape—the transition does not lead to the uniform
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Mathematical Modeling of Evolution — Erratum

The denominator in equation (13) in Peter Schuster, Theory in Biosciences 130:71-89,
2011, page 79 is missing. The correct equation is of the form

and fop; = 72?:1"#77” it )
f-m 1—Zm

—1
_ — 0. .
mszmmi_lm with oy = 4™
1—om,
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Fig. 7 Some examples of model fitness landscapes. The figure shows
five model landscapes with identical fitness values for all sequences in
a given error class: (i) the single peak landscape (f(X,) = fo and
fX) =1V j=1, ..., n; upper left drawing), (ii) the hyperbolic
landscape (f(X;) = fo — (fo — f)(n + 1)jl(n(G + 1)) Vj =0, ..., n; upper
right drawing, black curve), (iii) the step-linear landscape (f(X)) = fy

distribution, instead another distribution is formed that
changes gradually into the uniform distribution, which
becomes the exact solution at the point p = p. The step-
linear landscape illustrates the separation of the decay
range (i) and the phase transition to the uniform distribu-
tion (ii and iii). In particular, variation in the position of the
step (‘c’ in Fig. 7) that the phase transition point p;,,x shifts
towards higher values of p when the position of the step
moves towards higher error-classes, whereas the decrease
in the decay of the master sequence moves in opposite
direction. The additive and the multiplicative landscape,
the two landscapes that are often used in population
genetics, do not sustain threshold-behavior. On these two
landscapes, the quasi-species is transformed smoothly with
increasing p into the uniform distribution.

Error thresholds on realistic fitness landscapes can be
modeled straightforwardly by the assumption of a scattered
distribution of fitness values within a given band of width
d for all sequences except the master sequence'’

" The data obtained from biomolecules suggest a high degree of
ruggedness for the landscapes derived for structures and functions:
nearby sequences may lead to identical or very different structures.
By the same token functions like fitness values may be the same or
very different for close by lying genotypes. Ruggedness is an intrinsic
property of mapping from biopolymer sequences into structures or
functions.
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—(fo—filkVj=0, .. kand iX)=f,Vj=k+ 1, ..., n; lower left
drawing), (iv) the multiplicative landscape (X)) = fo (]”,,/fo)//” Vj =
0, ..., n; upper right drawing, red curve), and (v) the additive or
linear landscape (X)) = fo — (fo — f)i/n ¥V j =0, ..., n; lower right
drawing). In the print version red appears as gray

F(X) = fom +d(nnali) —
j=1,2,.. k' j#m.

In this expression ’#,q(j)’ i1s @ random number drawn from
some random number generator with a uniform distribution
of numbers in the range 0 < 5,,4(j) < 1 with j being the
index of the consecutive calls of the random function and
d is the band width of fitness values. Similarly the uniform
error rate model (12) is only a rough approximation to the
distribution of mutation frequencies. In order to relax the
stringent constraint here, we define a local mutation rate p;
for each position k (k = 1, 2, ..., £) along the sequence and
assume again that the individual p; values vary within a
given band width. The computational capacities of today
allow for studies of error thresholds at the resolution of
individual sequences up to chain lengths n = 10. Further
increase in computational power raises expectation to be
able to reach n = 20, which in case of binary sequences is
tantamount to the diagonalization of 10° x 10° matrices.
Three questions are important in the context of resolu-
tion of fitness values down to individual sequences: (i)
How does the dispersion of fitness values expressed in
terms of the band width d change the characteristics of the
error threshold, (ii) how does variation in local mutation
rates influence error threshold and (iii) what happens if two
more sequences have the same maximal fitness value f,,,.
The answers to question (i) and (ii) follow readily from the

0.5) — 1, (14)
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Fig. 8 Error thresholds on different model fitness landscapes.
Relative stationary concentrations of entire error classes yi(p) (k =
0,1,....0y = Z?:l,d,,(x,.xm):kxi) are plotted as functions of the
mutation rate p (the different error classes are color coded, dy(X;,X,,)
= 0, black; duX;p,X,) =1, vred; duyX,X,) =2, yellow,
du(X, X)) = 3, chartreuse; dy(X;,X,,) = 4, green, etc). The pictures
at the top show the threshold behavior on the single-peak fitness
landscape (enlarged on the right hand side) where the three conditions
(i), (ii), and (iii)—decay of master, phase transition, and transition to
uniform distribution—coincide. The two pictures in the middle were
computed for the hyperbolic landscape (enlarged on the right hand

calculated results: the position at which the frequency of
the master sequence in the population reaches a given small
value migrates towards smaller f-values with increasing
band width d. This observation agrees fully with expecta-
tion because the fitness value closest to f,, becomes larger
for broader bands of fitness values. The scatter of fitness
values at the same time broadens the transition. Relaxation
of the uniform error rate assumption causes smoothing of
the error threshold and a shift of p,,., towards higher values
of p.

Degeneracy of fitness values implies that two or more
genotypes have the same fitness and this is commonly
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side) where the phase transition leads to a distribution that changes
gradually into the uniform distribution and (i) has a slight offset to the
left of (ii). The left-hand figure at the bottom corresponds to the step-
linear landscape and fulfils (ii) and (iii) whereas (i) has a large offset
to the left, and eventually the additive landscape (bottom, right-hand
side) does not sustain an error threshold at all. Parameters used in the
calculations: ¢ = 100, f,, = fo = 10, f, = 1 (except the hyperbolic
landscape where we used f, = 0.9091 in order to have f_, = 1 as for
the single peak landscape), and ¢ = 5 for the step-linear landscape. In
the print version red appears as the darkest gray and other colors
differ in their gray-value

denoted as neutrality in biology. An investigation of the
role of neutrality requires an extension of Eq. 14. A certain
fraction of sequences, expressed by the degree of neutrality
A, is assumed to have the highest fitness value fj, and the
fitness values of the remaining fraction 1 — A are assigned
as in the non-neutral case (14). This random choice of
neutral sequences together with a random dispersion of the
other fitness values yields an interesting result: random
selection in the sense of Motoo Kimura’s neutral theory of
evolution (Kimura 1983) occurs only for sufficiently dis-
tant fittest sequences. In full agreement with the exact
result derived for the limit p — 0 (Schuster and Swetina
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1988) we find that two fittest sequences of Hamming dis-
tance dy = 1, two nearest neighbors in sequence space, are
selected as a strongly coupled pair with equal frequency of
both members. Numerical results demonstrate that this
strong coupling occurs not only for small mutation rates,
but extends over the whole range of p values from p = 0 to
the error threshold p = ppax. For clusters of more than two
Hamming distance one sequences, the frequencies of the
individual members of the cluster are obtained from the
largest eigenvector of the adjacency matrix. Pairs of fittest
sequences with Hamming distance dy = 2, i.e., two next
nearest neighbors with two sequences in between, are also
selected together but the ratio of the two frequencies is
different from one. Again coupling extends from zero
mutation rates up to the error threshold p = py.x. Strong
coupling of fittest sequences manifests itself in virology as
systematic deviations from consensus sequences of popu-
lations as is indeed observed in nature. For fittest sequences
with dy > 3 random selection chooses one sequence
arbitrarily and eliminates all others as predicted by the
Kimura’s neutral theory of evolution.

Mapping sequences into structures

Modeling evolution of molecules by means of chemical
kinetics solves one vital problem of the theory of evolution:
fitness can be determined independently of the evolution-
ary process by measuring the rate parameters of replication
and the sometimes raised argument that survival of the
fittest is nothing but a tautology, because there is no other
way to measure fitness except running evolution, is obso-
lete. A full understanding of evolution, however, is con-
fronted with enormous complexity even in the simple case
of nucleic acid molecules in the test tube. How does the
fitness of a molecule change in response to mutation? This
question is tantamount to asking for the prediction of
molecular function from known biopolymer sequences,
which is a notoriously hard problem. Commonly prediction
of function is addressed in two steps: (i) prediction of
structure from known sequence and (ii) prediction of
function from known structure. Both tasks are hard in
general and useful solutions are available for special cases
only. An exception are RNA structures on the level of so-
called secondary structures: Structure prediction is acces-
sible by mathematical and computational methods
(Schuster 2006). The discreteness of nucleotide interac-
tions—either two nucleotides form a base pair or they do
not—facilitates the analysis of RNA structures and allows
for the application of efficient dynamic programming
algorithms to structure prediction (Hofacker et al. 1994a;
Zuker and Stiegler, 1981; Zuker, 1989a, b). The relation
between structure and function can be modeled straight-
forwardly for a number of special cases. One example, is
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binding between RNA molecules called RNA hybridization
(Hofacker et al. 1994b; Dimitrov and Zuker 2004).

The basic principle of folding RNA sequences into
secondary structures is double helix formation, in essence
the same as used in nucleic acid replication: the single
stranded molecule folds back onto itself when the sequence
allows for (partial) duplex formation (Fig. 9) whereby the
driving force is lowering Gibbs free energy. Since base
pairing logic applies as well to structure formation as to
replication, secondary structures are objects that can be
analyzed by means of combinatorics. Simple logic on one
hand side is counteracted by complexity originating from
nonlocal interactions. As illustrated in the example of
Fig. 9 distant nucleotides as well close by lying ones may
form base pairs. The full three-dimensional structure of
RNA molecules is built through forming additional
nucleotide interactions called tertiary interactions, which
are often stabilized by divalent cations, especially by
Mg?®. Tertiary interactions are either sequence specific
and can be catalogued therefore (Leontis et al. 2006) or
they follow a general principle like, for example, end-on-
end’ stacking of helices from secondary structure (Moore
1999).

Because of the discreteness of RNA structure space,
mappings from RNA sequence space into structure space
can be addressed by combinatorics and have been studied
extensively (Fontana et al 1993; Schuster et al. 1994;
Reidys et al. 1997; Fontana and Schuster 1998b; Stadler
et al. 2001). Six properties of these mappings appear to be
relevant for evolution (Schuster 2006):

(i) The numbers of RNA sequences exceed by far the
numbers of RNA secondary structures and neutrality
with respect to structures is inevitable.

(i) Sequences folding into the same structure form
neutral networks that are the pre-images of structures
in sequence space.

(iii) Depending on the degree of neutrality, neutral
networks are either connected or split into compo-
nents. The critical connectivity threshold depends
only on the number of letters in the nucleotide
alphabet.

(iv) Neutral networks in the conventional {A,U,G,C} -
space are larger and more likely to be connected than
neutral networks in the binary or {G,C}-space.

(v) Neutral networks are embedded in sets of sequences
that are compatible with the structure.'?

(vi) The intersection of the compatible sets of two
structures is always non-empty. In other words, for

12’ Compatibility means that the sequence can form the structure but
not necessarily as the minimum free energy structure.
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Fig. 9 The secondary structure of a typical transfer RNA. The
nucleotide sequence folds back on itself through forming double
helical stacks whenever sequence complementarity allows for it (left
hand sketch; individual stacks are color coded). In the symbolic
notation, a secondary structure is represented by an equivalent string
with parentheses and dots whereby each single nucleotide is
represented by a dot, each base pair by a parenthesis, and mathemat-
ical notation applies (string at the bottom of the figure). The
secondary structure is converted into the full three-dimensional

two given structures it is always possible to find a
sequence that can form both.

Evidence for the existence and strong hints on the
properties of neutral networks come from RNA selection
experiments (Schultes and Bartel 2000; Held et al. 2003;
Huang and Szostak 2003). For a more complete under-
standing of neutrality in evolution of molecules further
development of the theory and appropriate experiments are
needed.

Modeling evolution in silico

Stochasticity is essential for evolution—each mutant after
all starts out from a single copy and random drift in the
sense of Motoo Kimura is a pure stochastic phenomenon. A
large number of studies have been conducted on stochastic
effects in population genetics (Blythe and McKane 2007).
Not too much work, however, has been done so far on the
development of a general stochastic theory of molecular
evolution. We mention two examples representative for
others (Jones and Leung 1981; Demetrius et al. 1985). In
the latter case, the reaction network for replication and
mutation was analyzed as a multi-type branching process,
and it was proven that the stochastic process converges to

A

MCCAGACUGAAYAUCUGG-
AAUUCGCACCA-3’end

60
?’hl\ |\| l\-':‘q-llllll7|0-l.lﬁﬂ-hnd
DD DO
)13_3 SOL 5'-end
wd %8
WA I
;., 15 &)
S a—
-
o)
30 H=H 40

)Y

structure by forming additional stabilizing interactions between
nucleotides (right hand sketch). One general principle in tertiary
structure formation is extension of helices through ’end-on-end’
stacking: The green helix extends the red one, and the violet helix
extends the blue one in the figure above. The molecular example
shown is the phenylalanyl-transfer RNA (tRNA.;,.) from the yeast
Saccharomyces cerevisiae. The letters D, M, Y, T,and P denote
modified nucleotides

the solutions of the deterministic Eq. 9 in the limit of large
populations.

In order to simulate the interplay between mutation
acting on the RNA sequence and selection operating on
RNA structures, the sequence-structure map has to be
turned into an integral part of the model (Fontana and
Schuster 1987; Fontana et al. 1989; Fontana and Schuster
1998b): The sequence is the genotype and the RNA sec-
ondary structure represents the phenotype. The simulation
tool starts from a population of RNA molecules and sim-
ulates chemical reactions corresponding to replication and
mutation in a continuous stirred flow reactor (CSTR) by
using Gillespie’s algorithm (Gillespie 1976, 1977, 2007).
Fitness parameters are predefined functions of RNA
structures—Eq. 15 presents an example. Molecules repli-
cate in the reactor and produce correct copies and mutants
according to a stochastic version of the mechanism shown
in Fig. 4, the material consumed is supplied by a contin-
uvous influx of stock solution into the reactor, and excess
material is removed by means of an outflux compensating
the increase in volume. Whenever a new sequence is pro-
duced by mutation, the corresponding structure and its
fitness are calculated. The stochastic process in the reactor
is constructed to have two absorbing states: (i) extinction—
all RNA molecules are diluted out of the reaction vessel,
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and (ii) success—the reactor has produced the predefined
target structure. The population size determines the out-
come of the computer experiment: Below N = 18 the
reactor goes into extinction with a probability greater 0.5
and it reaches the target with a high probability close to one
for population sizes N > 20. For sufficiently large popu-
lations the probability of extinction is very small, for
population sizes reported here, N > 1000, extinction has
been never observed.

In target search problems the replication rate of a
sequence X, representing its fitness f;, is chosen to be a
function of the Hamming distance between the symbolic
notations of the structure formed by the sequence,
S, = fiXy) and the target structure S,

1

fi(Sk, S7) = ot dn (S S/

(15)
An adjustable parameter o is introduced in order to avoid
infinite fitness when the target is reached (here it was chosen
to be 0.1). The fitness increases when S, approaches the
target, a trajectory is completed when the population reaches
a sequence that folds into the target structure. A typical
trajectory is shown in Fig. 10. In this simulation a homog-
enous population consisting of N molecules with the same
random sequence and the corresponding structure is chosen
as initial condition. The target structure was chosen to be the
well-known secondary structure of phenylalanyl-transfer
RNA (tRNA phe) shown in Fig. 9. The mean distance to
target of the population decreases in steps until the target is
reached (Fontana et al. 1989; Fontana and Schuster 1998a, b;
Schuster 2003). Individual (short) adaptive phases are
interrupted by long quasi-stationary epochs.

Optimization dynamics in phenotype space is recon-
structed in terms of a time ordered series of structures that
leads from an initial structure S; to the target structure Sy
This series, called the relay series, is a uniquely defined and
uninterrupted sequence of structures in the flow reactor. It is
retrieved through backtracking, that is in opposite direction
from the final structure to the initial structure: the procedure
starts by highlighting the final structure and traces it back
during its uninterrupted presence in the flow reactor until the
time of its first appearance. At this point, we search for the
parent structure from which it descended by mutation. Now,
we record time and structure, highlight the parent structure,
and repeat the procedure. Recording further backwards
yields a series of structures and times of first appearance,
which ultimately ends in the initial population.'* Usage of
the relay series and its theoretical background allows for

13 1t s important to stress two facts about relay series: (i) The same
shape may appear two or more times in a given relay series series.
Then, it was extinct between two consecutive appearances. (ii) A
relay series is not a genealogy which is the full recording of parent-
offspring relations a time-ordered series of genotypes.
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Fig. 10 A trajectory of evolutionary optimization. The topmost plot
presents the mean distance to the target structure of a population of
1000 molecules. The plot in the middle shows the width of the
population in Hamming distance between sequences and the plot at
the bottom is a measure of the velocity with which the center of the
population migrates through sequence space. Diffusion on neutral
networks causes spreading on the population in the sense of neutral
evolution Huynen et al (1996). A remarkable synchronization is
observed: At the end of each quasi-stationary plateau a new adaptive
phase in the approach towards the target is initiated, which is
accompanied by a drastic reduction in the population width and a
jump in the population center (the top of the peak at the end of the
second long plateau is marked by a black arrow). A mutation rate of
p =0.001 was chosen, the replication rate parameter is defined in Eq.
15, and initial as well as target structure are shown in Table 1

classification of transitions (Fontana and Schuster 1998a;
Stadler et al. 2001): Minor or frequent transitions occur
almost instantaneously, they are manifested by small chan-
ges in the structures commonly involving one or two base
pairs, and major or rare transitions, which require random
drift in neutral subspaces in order to find an appropriate
starting point for the successful mutation. Major transition
are accompanied by larger structural changes (Fontana and
Schuster 1998a; and Fig. 11).

Inspection of the relay series together with the sequence
record on the quasi-stationary plateaus provides an expla-
nation for the stepwise approach towards the target and
allows for a distinction of two scenarios:

(i) The structure is constant and we observe neutral
evolution in the sense of Kimura’s theory of neutral
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Fig. 11 The relay series of an
in silico evolution experiment.
The relay series consists of 44
steps leading from the initial
structure S; = Sy to the target
structure S; = S44. Lower case 0;
roman letters (a, b, c,... )

indicate major transitions and

lower case Greek letters (a, f3, y QL S
...) identify closely related S ( P
structures. The background A/ .
color indicates stretches of =
closely related structures in the
relay series. It is worth noticing
that the same structures can
appear several times in the relay
series (e.g., shapes /9-30). The

construction of relay series is — a
described in the text. The figure 12 13 > 14 15 16 17
is taken from Fontana and 4 O ~y O g & &

Schuster (1998a, suppl. 1)
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evolution (Kimura 1983). In particular, the numbers of The diffusion of the population on the neutral network is
neutral mutations accumulated are proportional to the  illustrated by the plot in the middle of Fig. 10 that shows
number of replications in the population, and the  the width of the population as a function of time (Schuster
evolution of the population can be understood as a  2003). The population width increases during the quasi-
diffusion process on the corresponding neutral net- stationary epoch and sharpens almost instantaneously after
work (Huynen et al. 1996, see also Fig. 10). a sequence had been produced that allows for the start of a
(i) The process during the stationary epoch involves  new adaptive phase in the optimization process. The sce-
several structures with identical replication rates and  nario at the end of the plateau corresponds to a bottle neck
the relay series reveal a kind of random walk in the  of evolution. The lower part of the figure shows a plot of
space of these neutral structures. the migration rate or drift of the population center and
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confirms this interpretation: On the plateaus the drift is
very slow but becomes fast at the end of the plateau when
the population center moves quickly or ‘jumps’ in
sequence space from one point to another point from where
a new adaptive phase can be initiated (as manifested by the
peaks in Fig. 10). A closer look at the figure reveals the
coincidence of the three events: (i) collapse-like narrowing
of the population spread, (ii) jump-like migration of the
population center, and (iii) beginning of a new adaptive
phase.

It is worth mentioning that the optimization behavior
observed in a long-term evolution experiment with Esch-
erichia coli (Lenski et al. 1991) can be readily interpreted
in terms of random searches on a neutral network. Starting
with twelve colonies in 1988, Lenski and his coworkers
observed after 31,500 generation or 20 years, a great
adaptive innovation in one colony (Blount et al. 2008).
This colony developed a kind of membrane channel that
allows for uptake of citrate, which is used as buffer in the
medium. The colony thus conquered a food source that led
to a substantial increase in colonial growth. The mutation
leading to citrate import into the cell is reproducible with
earlier isolates of this particular colony that has apparently
traveled on the neutral network to a position from where
the adaptive mutation is within reach. All other eleven
colonies did not give rise to mutations with similar func-
tion. The experiment is a nice demonstration of contin-
gency in evolution: the conquest of the citrate resource
does not happen through a single highly improbable
mutation but by means of a mutation with standard prob-
ability from a particular region of sequence space where
the population had traveled in one case out of twelve—
history matters, or repeating Theodosius Dobzhansky’s
(1977) famous quote: “Nothing makes sense in biology
except in the light of evolution”.

Table 1 collects some numerical data harvested by
sampling of evolutionary trajectories under identical con-
ditions."* Individual trajectories show enormous scatter in
the time or in the number of replications required to reach
the target. The mean values and the standard deviations
were obtained from statistics of trajectories under the
assumption of log-normal distributions. Despite the scatter,
three features are unambiguously detectable:

(i) The search in GC sequence space takes about five
times as long as the corresponding process in AUGC
sequence space in agreement with the difference in
neutral network structure (Schuster, 2003, 2006).

(i) The time to target decreases with increasing popula-
tion size.

14 Jdentical means here that everything was kept unchanged in the
computer experiments except the seeds for the random number
generator.
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(iii)) The number of replications required to reach target
increases with population size.

Combining items (ii) and (iii) allows for a clear con-
clusion concerning time and material requirements of the
optimization process: fast optimization requires large
populations whereas economic use of material suggests to
work with small population sizes just sufficiently large to
avoid extinction.

A simulation study on the parameter dependence of in
silico RNA evolution has been reported recently (Kupczok
and Dittrich 2006). Increase in mutation rate leads to an
error threshold phenomenon that is closely related to the
one observed with quasi-species on a single-peak landscape
as described above (Eigen et al. 1989). Evolutionary opti-
mization becomes more efficient'> with increasing error
rates until the error threshold is reached. Further increase in
the error rate leads to an abrupt breakdown of the optimi-
zation process. As expected, the distribution of replication
rates or fitness values f; in sequence space is highly relevant
too: steep decrease of fitness with the distance to the master
structure—represented by the target that has the highest
fitness value—Ileads to sharp threshold behavior reminding
of a single-peak landscape, whereas flat landscapes show
broad maxima of optimization efficiency without an indi-
cation of a threshold-like behavior.

Concluding remarks

The exceedingly complex phenomenon of evolution takes
place on multiple organizational levels, which range from
cell organelles and cells to organs, organisms and popu-
lations. All these levels are different manifestations of the
phenotype. A comprehensive description is not yet at hand
and mathematical modeling as well as experimental studies
inevitably have to concentrate on individual aspects or
modules of the system. Nevertheless, the reductionists’
program to partition the whole into tractable subsystems
and to reconstitute it with the detailed knowledge of a
lower level of description turned out to be impressively
successful. In case of the cell, for example, molecular
biology has first reduced the highly complex entity to
individual biomolecules—nucleic acids, proteins, carbo-
hydrates, lipids and others—and subjected the parts to
biochemical and biophysical analysis. Next followed the
study of the supramolecular complexes, molecular
machines, and organelles within the cell. Starting with
genomics and proteomics in the nineteen nineties and

15 Efficiency of evolutionary optimization is measured by average
and best fitness values obtained in populations after a predefined
number of generations.
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Table 1 Statistics of the optimization trajectories

Alphabet Population size Number of runs Real time from start to target Number of replications [107]
N ng Mean value o Mean value o

AUGC 1000 120 900 +1380 —542 1.2 +3.1-0.9
2000 120 530 +880—-330 1.4 +3.6 —1.0
3000 1199 400 +670 —250 1.6 +44 —-12
10000 120 190 +230 —100 23 +53 —-1.6
30000 63 110 +97 —52 3.6 +6.7 2.3
100000 18 62 +50 —28 - -

GC 1000 46 5160 +15700 —3890 - -
3000 278 1910 +5180 —1460 7.4 +35.8 —6.1
10000 40 560 +1620 —420 - -

The table shows the results of sampled evolutionary trajectories leading from a random initial structure S, to the structure of tRNAP™, §;. as
target. Simulations were performed with an algorithm introduced by Gillespie (1976, 1977, 2007). The time unit is here undefined and real time
implies proportionality to real measurements of time. A mutation rate of p = 0.001 per site and replication was used. The mean and standard
deviation were calculated under the assumption if a log-normal distribution that fits the data of the simulations. For less than 50 runs, no statistics

is given for the number of replication because the uncertainty is too large

The structures S; and S7 were used in the optimization:

Sz (O (G22I (o))
B (((((CH () ((((G=N)))) RN ((((GRS))) D))

continuing with systems biology at the turn of the century
the object of investigation at the molecular level has been
shifted from single molecules to higher units, cells, organs,
and eventually organisms. The goal of the new biology is
to complete the bottom-up approach from chemistry and
physics and to provide a novel access to the understanding
of the complexity of life as well as to develop new tools
and techniques for the exploration of biology specific
phenomena. Still there is a long way to go before this goal
will be reached and the unsolved problems exceed by far
the available solutions, but the contours of a new and
comprehensive theoretical biology that is rooted in math-
ematics, physics, and chemistry are already apparent.
Evolution of molecules, viruses, and bacteria is studied
under simplified conditions in vitro and in silico, and, in
principle, allows for the incorporation of molecular
mechanisms of reproduction, mutation, and recombination
into the equations of the evolutionary process. Chemical
kinetics of virus specific RNA replication is well under-
stood and even in this very simple case the process or
reproduction is quite complicated. Modeling DNA repli-
cation kinetics at full molecular resolution is still a great
challenge but solvable by means of the current experi-
mental techniques. If replication is already so complicated,
how can the Darwinian theory of variation and selection be
fairly simple and work? The answer is straightforward:
Only the numbers of individuals, parents and progeny, are
counted and the internal structure of the replicating entities,
molecules, cells, organisms or societies, plays no role.
Moreover replication in nature does never operate under

conditions of excess of nucleic acids, because cellular
division controls the number of genetic information carri-
ers. Virus reproduction in the host cell is the only well
known counterexample: Replication continues until the
available resources are exhausted. Genetics like natural
selection was discovered on a completely empirical basis.
No explanations were at hand, neither for the observations
nor for the deviations from the idealized ratios. In the
second half of the twentieth century, an understanding of
the Mendelian rules was provided by the molecular
approach to heredity and at the same time a natural
explanation was given for the deviations from them. Epi-
genetics was invoked as a deus ex machina in order to
explain phenomena that escaped explanations by genetics.
Recently, most of these previously strange observations
found a straightforward explanation on the molecular level.

Modeling evolution by differential equations is well
established and—although not yet available—a compre-
hensive stochastic approach will complement conventional
modeling. Computer simulation of chemical kinetics of
evolution is still in an early state and the simulations are
lacking a more systematic approach. One still unsolved
problem concerns the parameter space for molecular
properties. A true wealth of data is currently obtained in
genomics and related disciplines but only some of them
will be useful for modeling evolution. The problem is how
to find the pearls in a mess of rubbish. A second major
limitation comes from the hyper-astronomical size of
sequence space containing k' different genotypes. At
present, all genotypes can be considered routinely for short
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chain lengths up to ¢ = 10. Extension to ¢ = 20 provides
already a challenge to numerical methods even for binary
sequences, since the number of genotype interactions
reaches a magnitude of 10° x 10°. Nature itself provides
the solution: Whole sequence spaces are never covered,
clones are confined to tiny parts of the space and drift
slowly by the mechanisms of evolution. The enormous size
of sequence space, on the other hand, provides a con-
vincing explanation for the existence of bacterial species:
Their genomes are so far apart in sequence space that they
do not require reproductive isolation. Despite steady
migration they won’t meet and merge.

The real complexity in biology arises from genotype—
phenotype relations. Simple model landscapes are used in
population genetics but they are far from being realistic and
lead to wrong predictions. Even in the simplest case of in
vitro evolution of molecules, the genotype—phenotype map
requires understanding of the folding of biopolymer
sequences into structures and the derivation of function from
structure. This understanding as well as the predictive power
of theories and algorithms in this field is still poor. Never-
theless, a few hints can be derived already from these simple
model systems. Mappings involving biopolymers are com-
monly rugged, and optimization on rugged landscapes is an
especially hard problem, because search strategies including
the evolutionary approach involving populations are trapped
very likely in some minor local optimum. The solution is
obvious from the properties of biopolymers: nearby
sequences may give rise to entirely different structures and
functions but very often they lead to phenotypes that are
indistinguishable by selection or neutral. Biological land-
scapes are not only rugged they are also characterized by a
fairly high degree of neutrality. Sequence space is high-
dimensional and this implies the existence of a large number
of independent directions—commonly denoted as orthogo-
nal. If the population during an adaptive walk in one direc-
tion is caught in a local optimum, there is a good chance that
an escape from the trap is possible in some other direction
where neutral sequences are found. A landscape structured in
this way—ruggedness accompanied by a sufficiently high
degree of neutrality—enables stepwise optimization: Short
adaptive phases are supplemented by long quasi-stationary
periods of random drift on neutral networks. At the same
time the optimization process receives a memory on its past:
Because of the high dimensionality of sequence space,
individual trajectories are unique in the long run. A popu-
lation migrating along a path collects series of stochastic
events, which are not repeatable. Short term migration of
populations, however, can be reproduced and this leads to an
interesting kind of biological contingency: the recent past is
repeatable whereas developments taking long time and col-
lecting long series of mutations are not. Although the
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underlying dynamics is very different, the physicist will be
reminded a little bit of irreversibility in thermodynamics.
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What Is a Quasispecies? Historical Origins
and Current Scope

Esteban Domingo and Peter Schuster

Abstract The quasispecies concept is introduced by means of a simple theoretical
model that uses as little chemical kinetics and mathematics as possible but fully in
the spirit of Albert Einstein who said: “Things should be made as simple as possible
but not simpler.” More elaborate treatments follow in the forthcoming chapters. It is
shown that the most important results of the theory, in particular the existence of
error thresholds, are not dependent on simplifying assumptions concerning the
distribution of fitness values. Error thresholds are regularly found on landscapes
with large and irregular scatter of fitness. After the introduction to theory, it will be
shown how experimental data on the evolution of molecules or viruses may be fit to
the theoretical model.
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1 Evolution on the Cross-Road of Chemistry and Biology

A theory of evolution at the molecular level was conceived by Manfred Eigen
(Eigen 1971; Eigen and Schuster 1977, 1978a, 1978b) through merging population
dynamics with the knowledge of molecular biology. In this way, evolution could be
integrated into chemical kinetics without losing the characteristic features of biol-
ogy, in particular the role of genetic information stored in nucleic acid molecules
and the nature of mutations were fully preserved. The key to evolution is repro-
duction, and at the level of DNA or RNA, reproduction is replication, which can be
simply understood as copying of genetic information, which is error prone in
general but can be error free or correct in a particular replication event. Modeling
the basic property of molecular copying mechanisms, correct replication and
mutation are parallel chemical reaction channels (Fig. 1) and accordingly, the same
model assumptions hold for low and high mutation rates. The assumption that
mutation is a byproduct of replication is straightforward for virus populations. One
important consequence of this assumption is the factorization of fitness and muta-
tion effects that is indispensable for the fitness landscape concept, which turned out
to be very useful in understanding viral infection (see, e.g., Kouyos et al. 2012). In
population genetics, for particular in the Crow—Kimura model of asexual evolution
(Crow and Kimura 1970, p. 265), replication and mutation are considered as
independent events, but there an entirely different mechanism is assumed: Mutation
is not related to reproduction and occurs by external action during the whole
lifetime of the organism. In order to be able to study evolution of molecules,
environmental conditions may be kept constant in the model, but the extension to
changing condition is straightforward.

General results derived from the theory of molecular evolution in constant
environment are as follows:

(1) In error-free replication,
A+X;y —2Xy; k=1,2,...n, (1)

selection in the sense of Charles Darwin’s survival of the fittest results from
chemical reactions approaching a stable stationary state, and is a straightfor-
ward consequence of the reaction mechanism. The approach toward stationa-
rity is accompanied by optimization of the mean fitness of the population.
Accordingly, the mean fitness of the population f is steadily increasing during
the selection process, the selected molecular species X, is the one with the
highest fitness value: f,, = max(fi, f5, ..., f,), and survival of the fittest is
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(ii)

tantamount to optimization of the fitness of the entire population. The final
result of selection is unique, a stationary homogeneous population containing
only the fittest molecular species X,,, no matter what the initial sequence
distribution in the population was (provided it contained X,, at some, maybe
very small amount).

Errors occurring during the replication process,

produce mutations (Fig. 1) and change the features of correct replication
kinetics discussed in (i). After sufficiently long time, the replication—mutation
process approaches a stationary state, which does not consist of not a single
fittest species X, only but is a collective of replicating variants, symbolized by
v. The name “quasispecies” has been coined for this longtime sequence
distribution in order to point at the fact that asexual reproduction like sexual
reproduction forms genetic reservoirs, which provide pools of variants for
future evolution. For a given parameter set, the quasispecies is unique: No
matter what the population looked like initially the same longtime sequence
distribution will result. The question of fitness optimization is more subtle than
in the previous case (i): For most initial conditions, fitness will increase during
the replication—mutation process and selection of the quasispecies v is

D+ 0+
9y B+ 0 +
Jj /z;' :
A + )(}.- —_— A Xj' T )(‘J + X}; +
\ :
)’(‘D + X}; +

Fig. 1 A molecular view of replication and mutation. The replication device E (violet), commonly
a single replicase molecule—as in polymerase chain reaction (PCR) or in many examples of
simple viruses—or a multienzyme complex binds the template DNA or RNA molecule (X,
orange) in order to form a replication complex E - X; and replicates with a rate parameter f;.
During the template-copying process, reaction channels leading to mutations are opened through
replication errors. The reaction leads to a correct copy with frequency Qj; and to a mutant X with
frequency Q. Commonly, we have Q;; > Q; for all k # j. In other words, correct replication
dominates mutant formation. Stoichiometry of replication requires Y ., Q; = 1, since the product
has to be either correct or incorrect. The reaction is terminated by full dissociation of the
replication complex. The sum of all activated monomers is denoted by A. A consequence of the
model is factorization of the contributions from fitness and mutation: wy; = Qy; * f;
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(iv)
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accompanied by an increase of the mean fitness f like in the mutation-free
selection process. Nevertheless, situations are possible where this is not the
case. Consider, for example, a homogeneous initial population consisting of
the fittest genotype X,, only; then replication and mutation will create the
quasispecies that contains other sequences too; these sequences have lower
fitness; and mean fitness of the population is doomed to decrease during
quasispecies formation: The paradigm of fitness optimization is invalidated.
More complex cases can be constructed by choosing appropriate initial
conditions, and then, the mean fitness may even change non-monotonously
and go through a maximum or minimum during the approach toward the
quasispecies y. Optimization of mean fitness is not a global property in
replication—mutation systems, but it is confined to a certain region of initial
conditions. This region, the optimization region, is by far the largest part of the
space of all possible initial conditions, and accordingly, optimization is
observed in the majority of all replication—mutation experiments, artificial or
in nature. Consequently, the Darwinian principle is a very powerful heuristic
in the replication—mutation system, despite not being a universal law.

The population structure of quasispecies shows some regularities that turn out
to be important for applications. The distribution of mutants is centered around
a most frequent sequence called the “master sequence” X,,,, which commonly
but not always is the sequence with largest fitness. The frequency of a mutant
X, in the stationary distribution is determined by two quantities: (a) the
minimum number of point mutations or the Hamming distance dy,,, separating
X, from the master X,,,, and (b) the difference in the fitness values of the two
sequences, f,, — fi- Quasispecies theory explains also an empirical fact: The
mean sequence of a population called the consensus sequence coincides with
the master sequence unless the mutation rate is very high.

Considering the quasispecies as a function of the mutation rate p, a threshold
phenomenon is predicted by the theory: Error-free replication leads to a
quasispecies that contains the master sequence exclusively; the relative
amount of the master sequence decreases gradually with increasing mutation
rate p until a maximum mutation rate p... is reached above which no sta-
tionary population exists; and no stable transfer of genetic information from
generation to generation is possible (Fig. 2).

Chemical kinetics of RNA replication by means of virus-specific replicases is a
rather complicated multistep process, but as Christof Biebricher (Biebricher 1983;
Biebricher et al. 1983) has shown, conditions can be found under which the
mechanism follows to a good approximation the simple autocatalytic overall
kinetics mentioned above (Eq. 2). The conditions for the occurrence of the simple
kinetics are excess material for RNA synthesis, here denoted by A, and replicating
enzyme an RNA-specific RNA polymerase in excess to the template polynucleotide
X,. Few enzymes can support synthesis of infectious viral genomic RNA in the test
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Fig. 2 The error threshold. The stationary frequency of the master sequence X,, is shown as a
function of the local mutation rate p. In the approximation neglecting mutational backflow, the
function X,(p) is almost linear in the particular example shown here. In the insert, the
approximation (black) is shown together with the exact solution (red). The error rate p has two
natural limitations: (i) The physical accuracy limit of the replication process provides a lower
bound for the mutation rate, and (ii) the error threshold defines a minimum accuracy of replication
that is required to sustain inheritance and sets an upper bound for the mutation rate. Parameters
used in the calculations: binary sequences, [ = 6, o = 1.4131

tube in the way QP replicase does (Biebricher 1983). Important advances in the
enzymology of viral RNA replication have been made by Craig Cameron and his
colleagues working with poliovirus polymerase. They devised simplified
template-primer molecules that have allowed calculation of basic kinetic parameters
for nucleotide incorporation, and the quantification of polymerase fidelity, an
extremely important development, that will be discussed in several chapters of this
book [(Castro et al. 2005) and references therein].

DNA replication involving some twenty or more proteins and enzymes is much
more complex than RNA replication, but again suitable conditions can be found
where the process can be approximated by simple autocatalysis (Eq. 2). Life cycles
of viruses follow a complex multistep process with the overall stoichiometry
A + X — n X with n being the number of virions produced in one life cycle through
the infection of a single cell. This process obeys the same laws as simple autoca-
talysis with the only difference that n reaction channels corresponding to n virions
are chosen simultaneously rather than a single one (Fig. 1). Bacteria and more
complex organisms adopt highly complex and perfectly controlled mechanisms of
cell division that allow for modeling by simple autocatalysis since reproduction
occurs at the level of cells rather than at the level of molecules. Simple autocatalysis
(Eq. 2), direct or as overall kinetics, is the basis for the applicability of replication—
mutation kinetics (Fig. 1) to the analysis of evolutionary phenomena sketched in the
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next section. It is not unimportant to verify the overall mechanism of reproduction
in order to make sure that quasispecies theory in the form presented here is
applicable, particularly in the case of cell-free evolution of molecules.

2 A Few Quantitative Relations

The replication—mutation mechanism sketched in Fig. 1 can be cast into ordinary
differential equations as used in conventional chemical kinetics:

dJCj n - . B n n
E:;ijkak—xjf,J: 17...,11 Wlth f:;f;.x, ;X,' (3)

The symbols used in this equation are as follows: The extensive variable
x; = [X] is the amount of species X present in the system expressed as concen-
tration, but sometimes the usage of particle numbers X; = [X|] is of advantage, f; is
the fitness of species X;. f is the mean fitness of the population, and Oji finally is the
frequency with which species X; is produced as an error copy of X; (Fig. 1).
Considering the population as a whole, we introduce a total concentration or

population size ¢ = >, x; and % =37, % Since all replication products are

either correct or incorrect, we have a conservation relation 27:1 Ojx = 1, the term

— > xf = —c¢f compensates exactly the population growth Y7 >7p | Oufixs,
and the total concentration or population size is constant.

Exact solutions of Eq. (3) can be derived via an eigenvalue problem, and this
implies that they are available in numerical form only (Jones et al. 1976; Eigen
et al. 1989; Thompson and McBride 1974). For many purposes, however,
approximations are perfect when they can be obtained in analytical form. We shall
present here simple and illustrative expressions that are accurate enough for almost
all practical purposes.

The most efficient approximation in this context is based on the assumption of
“zero mutational backflow” (Eigen 1971): If the mutational flow from species X to
species X; is denoted by @, .;, we can symbolize the flow from the master to the
mutation cloud by ®,, ., where (j) stands forj =1, ..., n; j # m. Then, mutational
backflow from the cloud to the master is written ®,,. ;. In other words, only
mutations from the master sequence to the various mutants are allowed and all back
mutations, X; — X,,, are forbidden. To be consistent, all mutations within the
mutant cloud are neglected too. Equation (3) implies constant population size, and
the modification of the mutation term requires a compensation in the flow term
—x;f, which when introduced leads to a useful approximation for small mutation
rates (see Chap. 4). Eigen leaves the flow term unchanged, and accordingly, the
population size is no longer a constant. We shall denote this procedure that will turn
out a posteriori as extremely successful as “phenomenological approach.”
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The mutation rate for single nucleotides, denoted by p, is assumed to be inde-
pendent of the position on the sequence or, in other words, mutations are assumed
to occur with the same frequency at each site. This approximation has been char-
acterized as “uniform error rate” assumption, and it simplifies substantially the
calculation of the mutation rates Q. The probability to be copied correctly is the
same for all sequences X; and has the form

Ou=0=(1-p) foralk=1,...,n, (4a)

where [ is the chain length of the polynucleotide. This equation comprises the trivial
fact that for error-free replication, p = 0, all copies are correct. Then, the fraction of
correct replicas decreases monotonously with increasing mutation rate p (Fig. 2).
The error containing copies X; are obtained with the frequency

O = (1—p) %p% = Qe with e=p/l—p (4b)

The exponent dj, is the Hamming distance between the two sequences X; and X;.
The Hamming distance is the (minimal) number of positions in which the two
sequences differ. With these approximations and notations, it is straightforward to
calculate the stationary concentration of the master sequence X, that we denote

by 565,(,)):
i - no 30
30 =27 % & with g, =27 and f,m:—zl*‘v'*mf —, (52)
B “m ¢ -z

where ¢ =3, 56,(»0) and where we indicate stationary concentrations by a hat and
the zero mutational backflow approximation by the superscript “(0)”. The mean
fitness of all sequences except the master or, in other words, the mean fitness of the
mutants is denoted by f_,,, and finally, g, is the superiority of the master expressing
the ratio of the fitness of the master and the mean fitness of the rest of the popu-

lation. For the mutants X;, we obtain by the same token

— o (U 0,;1) :
fm 7]?' " (fm _ﬁ)(fm _ffm)

In essence, the frequency at which a mutant is present in the quasispecies
depends on two quantities: (i) the Hamming distance d;,, between sequence X; and
the master X,,—the closer related to the master a sequence is the higher is its share
in the stationary distribution—and (ii) the fitness difference between X, and X;—
the higher the fitness of the mutant, the higher is its frequency in the quasispecies.
Accordingly, a quasispecies is not some arbitrary collective of variants but a highly
ordered distribution with a master sequence in the center and mutant cloud sur-
rounding it in sequence space.

50 = g S50

(5b)

pks@tbi.univie.ac.at
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Within the phenomenological approach, the stationary concentration of the
master sequence as well as the concentrations of the mutations contains a factor
(Q — a,,!), which expresses the dependence of the concentrations on the mutation
rate p, and vanishes if the condition Q = 0;1 is fulfilled. The mutation rate p,,, at
which this happens is easily calculated:

1 1
o=(1 —pmax)l: 0',;1 leading t0  ppax & % ne

The notation p,,.x points already at the fact that a conventional quasispecies
exists only in the range 0 <p <pmax. As discussed in the next paragraph, at
mutation rates higher than the threshold value, we get no information on the nature
of the longtime solution of the replication—mutation system from the phenomeno-
logical approach. The phenomenon of a maximal mutation rate as described by
Eq. (6) has been called the “error threshold”: In order to guarantee evolutionary
stability of the genetic information stored in nucleic acid sequences, the inaccuracy
of replication must not exceed some critical value, which is defined by the sequence
length [ and the superiority of the master sequence o, Alternatively, when the
replication accuracy is given by some replication machinery, the error threshold
defines some polynucleotide chain length [, that cannot be exceeded without
jeopardizing inheritance of genetic information. A comparison of the genome
lengths of organisms from viroids to higher eukaryotes with replication machineries
of largely different copying fidelity (Gago et al. 2009) yields a clear cut inverse
relation between mutation rates and genome sizes. The error threshold concept has
inspired an active field of antiviral research termed “virus transition into error
catastrophe” or “lethal mutagenesis”, consisting in virus extinction through
defective viral gene products induced by excess of mutations (Chaps. 7 and 14).

It is important to stress that the existence of error thresholds is not restricted to a
few model landscapes of fitness values. On the contrary, and as outlined in Chap. 5,
all fitness distributions with strong scatter of the individual values show the
threshold phenomenon and the width of the transition depends on the broadness of
the dispersion of fitness values.

3 What Happens Beyond Error Threshold?

Since almost all analytical expressions of the quasispecies theory that are used in
applications were derived within the frame provided by the phenomenological
approach, we shall have a closer look on this assumption here. In particular, the
error threshold in Eq. (6) has been derived from the application of the zero
mutational backflow approximation to the mutation term, and therefore, it is
legitimate to ask whether this result is a real phenomenon or an artifact of the
approximation. First, we compare with the exact solution of Eq. (3) and consider
the correct stationary concentration of the master sequence, X,,, and its
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Fig. 3 The phenomenological approach. In the plot, the (exact) stationary solutions (fill lines) are
compared with the results derived from the phenomenological equations (dashed lines). The violet
dashed line is the total relative concentration or population size in the phenomenological approach.
The relative concentration of the master sequence (black) and the one-error class (y; (p); red) agree
well with the exact curves, whereas in case of all other error classes, the agreement is very poor
(see, for example, y,(p), yellow). The error threshold derived from the (exacf) computation is
Per = 0.00507 (dashed blue line obtained from level-crossing and from class-merging as outlined in
Chap. 5) and compares well to the value p., = 0.00475 (gray dashed line) of the phenomenological
approach. Choice of parameters: [ = 20, single peak landscape with f,, = 1.1 and f= 1.0

approximation, J%S,? ). In order to facilitate the comparison, we assume that all

sequences in a given error class have the same fitness. As illustrated in Fig. 3, there
is little difference in the curves for master sequence and for the class of single point
mutations. We remark that for sequences with two or more errors, this is not the
case and the reasons for agreement and disagreement can be readily analyzed
(Chap. 4 and Schuster 2012). Here, we use a plausibility argument: The dominant
contribution to the mutational flow to one-error mutants comes from the master
sequence, and it is taken into account correctly by the zero mutational backflow
approximation. For mutants with two and more errors, the largest mutation flow
comes from the mutants with one error less and mutations coming from other
mutants are neglected. The take home lesson is that the phenomenological approach
(5a) provides an excellent approximation for the master (5a) and the class of
mutants carrying a single point mutation but only for them.

Whereas the stationary solution of the phenomenological approach is zero at the
error threshold and becomes negative for p > p,.x and thus no acceptable solution is
available above threshold, the exact stationary solution becomes almost indistin-
guishable from the uniform distribution, which contains all variants—master
sequence and mutants—at the same concentrations: X,, =X} = - =X, = C / K,
where « denotes the size of the nucleotide alphabet. Numbers x' are
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“hyperastronomical,” for example, there are 3 x 10'?° different sequences for the
smallest viroid genome with the size [ ~ 200 in the natural alphabet (x = 4).
Population sizes in evolution experiments with replicating molecules are the largest
that can be achieved, they may be as large as 10'°, and this implies that in a sample
with uniform concentrations, we would be dealing with values in the range
X ~ 107195, This result simply tells that uniform concentrations cannot exist, the
only conceivable alternative are clonal populations migrating in the huge space of
all sequences (Derrida and Peliti 1991; Huynen et al. 1996), and indeed no sta-
tionary population can exist for p > p..x. The enormous size of sequence space has
another consequence that will be important in several other contributions in this
book: In practice, all realistic populations of viruses, viroids, or polynucleotide
molecules are local in sequence space and no global solutions exist in reality. Under
favorable circumstances like in case of the quasispecies, the global solutions
coincide with some local solutions for all practical purposes. In other words, we can
use the results of the quasispecies concepts up to a certain Hamming distance, and
for mutants being further away from the master sequence, the results have no
practical meaning. As described in several chapters of this book, many important
phenotypic changes in viruses depend on one or few mutations. That is, the tran-
sitions between different phenotypes depend on short distance migrations (small
Hamming distances) within the locally occupied sequence space.

4 Origin of the Experimental Quasispecies Concept

When the development of quasispecies theory and hypercyclic organization was
well advanced (Eigen 1971; Eigen and Schuster 1979), Charles Weissmann and his
colleagues were in the process of founding “reverse genetics”, a term first proposed
by Weissmann four decades ago (Weissmann et al. 1977). The principles of reverse
genetics were established using the RNA Escherichia coli bacteriophage Qf as
model system. Sol Spiegelman had achieved replication of Qff RNA in the test tube
(in the absence of cells or cells extracts) by using QB RNA as template, purified Qf
replicase and a host factor protein as the replicative machinery, and nucleoside
triphosphates under adequate ionic conditions (particulary the presence of Mg*).
This reaction mixture supported efficient synthesis and many-fold amplification of
genomic QB RNA (Mills et al. 1967). The experimental system allowed in vitro
RNA evolution experiments by introducing selective pressures (intercalating dyes,
ribonuclease, etc.) during RNA synthesis. The in vitro evolution experiments of
Spiegelman were one of the incentives of Eigen to develop his first mathematical
treatment of error-prone replication (Eigen 1971).

Weissmann and colleagues applied the in vitro QB RNA synthesis with the
purpose of producing specific, site-directed mutants in bacteriophage Qf and to
analyze the biological consequences of the mutation introduced. Until then, the
standard procedure in genetics was to generate mutations at random by chemical
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mutagenesis and then select and study viruses (or cells) with a desired phenotypic
trait. Hence, the term “reverse genetics” refers to the opposite strategy, to generate a
precisely known mutation at a genomic site and to study its consequences.

One of the QB RNA genomic regions of interest at the time was the 3'-extra-
cistronic (untranslated) region (3’-UTR) because of its conservation among related
bacteriophages. Weissmann’s team developed the procedure to generate specific 3'-
UTR mutations taking advantage of a unique property of Q replicase that allowed
a stepwise QB RNA synthesis (by limiting the types of nucleoside triphosphates
made available to the replicase at each synthesis step) until a desired position at the
growing minus (complementary) strand was reached. Then, a mutagenic nucleotide
analogue was incorporated at the selected position, and the complementary strand
synthesis completed by allowing the reaction to proceed with the four standard
nucleotides (Flavell et al. 1974). While a first mutation introduced at 3'-UTR
position 16 was not viable despite the RNA being efficiently replicated by Qp
replicase (Flavell et al. 1974), a mutant RNA with an A — G transition at position
40 (termed mutant 40) from the 3'-end yielded progeny virus upon transfection on
E. coli spheroplasts (Domingo et al. 1976). However, the mutant reverted to the
wild type with a kinetics sufficiently slow to permit quantifying the proportion of
mutant 40 and true wild-type revertants as a function of passage number.
Competition between wild type and mutant 40 QP phages in E. coli, and reversion
of the mutant to wild type in the course of serial passages, allowed Eduard
Batschelet to calculate a mutation rate for the G — A reversion of 107 substitu-
tions per genome doubling (Batschelet et al. 1976). Despite the calculation referring
to a single genomic site, the value obtained is quite representative of mutation rates
for RNA viruses that were subsequently estimated by other procedures (Steinhauer
and Holland 1986; Eigen and Biebricher 1988; Ward and Flanegan 1992; Drake
1993; Drake and Holland 1999; Sanjuan et al. 2010).

In the course of the experiments on site-directed mutagenesis, the RNA of many
biological clones of bacteriophage QB was analyzed by T;-oligonucleotide fin-
gerprinting, a method of nucleotide sequence sampling used at the time because
cDNA synthesis, molecular cloning, and rapid sequencing were not available.
Martin Billeter had sequenced and mapped in the Qf genome the large T,-oligo-
nucleotides so that changes in the fingerprints could be interpreted by the occur-
rence of point mutations in the RNA (Billeter 1978). The result of the survey of
biological clones was astonishing: Virtually, the RNA of each biological clone from
a multiply passaged phage population differed in one to two nucleotide positions
from the average sequence of the corresponding parental population. Experiments
in which individual biological clones were passaged to generate heterogeneous
populations led to the following conclusion “A Qf phage population is in a
dynamic equilibrium, with viable mutants arising at a high rate on the one hand, and
being strongly selected against on the other. The genome of Qf phage cannot be
described as a defined unique structure, but rather as a weighted average of a large
number of individual sequences ” (Domingo et al. 1978).

We know now that this statement applies to RNA viruses in general, as evidenced
by work by many authors, initiated with foot-and-mouth disease virus (FMDV) by
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Esteban Domingo and colleagues (Domingo et al. 1980; Sobrino et al. 1983) and
vesicular stomatitis virus (VSV) by John Holland and colleagues (Holland et al.
1979, 1982). The early work on experimental quasispecies with bacterial, animal,
and plant RNA viruses, as well as its impact for RNA genetics, was reviewed during
the decade that followed the initial Qf work (Domingo et al. 1985, 1988).

5 Quasispecies Theory and Experimental RNA Virus
Quasispecies

During the 1970s, transdisciplinarity in science was less intense than today prob-
ably because of limited means of information exchange among practitioners of
different scientific disciplines. Also, while theoretical physicists often asked general
and fundamental issues of broad significance, experimental biologists focused on
more detailed questions. Molecular biologists approached basic (but specific)
problems of genome organization and expression, while virologists aimed at
understanding viruses as disease agents. In the prevalent view at the time, disease
mechanisms were unrelated to evolutionary concepts, a situation which is no longer
tenable at present. Despite science compartmentalization, Manfred Eigen held a
highly multidisciplinary Max Planck Winter Seminar at the Swiss village of
Klosters, a stimulating scientific forum that continues until nowadays. In Winter
1978, Weissmann presented the experimental results on Qf genome heterogeneity,
and Figen was thrilled to see the principles of quasispecies theory at work with a
real virus. This key Klosters encounter and its impact have been described
(Domingo et al. 1995, 2001; Holland 2006; Domingo et al. 2012), and it was the
beginning of a stimulating collaboration between theoreticians and experimentalists
that is partly responsible for the writing of the present book.

There is general agreement among theoretical biologists and experimental
virologists that the QB population dynamics is directly connected with the gener-
ation of mutant distributions inherent to quasispecies theory. Nevertheless, a few
population geneticists questioned the relevance of quasispecies theory for RNA
viruses and some are still questioning it today. The main point in their argument
goes as follows: RNA viruses are steadily evolving and cannot form stationary
mutant distributions as required by quasispecies theory because there is not enough
time for reaching a mutational equilibrium, and therefore, RNA virus populations
cannot be seriously approached within the framework of quasispecies theory.
Instead, the claim is raised that RNA virus heterogeneity is an extension of the
classical concept of genetic polymorphism known in population biology since the
1960s, the only distinctive feature being that mutation rates of RNA viruses are
orders of magnitude higher than standard mutation rates of cells. It is worth noting
that classical population genetics is based on the assumption of small mutation
rates, and in the classical concept of polymorphism, alleles that were not present in
at least 10 % of individuals of a biological species were not counted as polymorphic
sites (Spiess 1977). Deep sequencing applied to analyses of mutant spectra is
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presently revealing the presence of many minority genomes at much lower levels
(for example, at the 0.1-1 % level that is the current range of cutoff values for
reliable mutant frequencies), which are relevant players in the continuous dynamics
of replacement of some minority subpopulations by others. This dynamics can
certainly not be identified with genetic polymorphism in the classical sense.

Two points must be added here regarding the suitability of quasispecies as a
theoretical framework for viral population dynamics. First, quasispecies theory is an
extension of populations dynamics in order to make it fit for the incorporations of
molecular data, and therefore, it is not incompatible with the classical Wright—
Fisher models of mutation—selection balance (Wilke 2005). In fact, quasispecies
theory enables going one step further due to the internal interactions within a
mutant spectrum that converts the entire viral quasispecies into a unit of selection.
Intra-mutant spectrum interactions can be of complementation (individuals display
lower replicative fitness than the ensemble) or interference (infectivity of fully
infectious individuals can be suppressed by the mutant ensemble). Several chapters
of this book deal with intra-mutant spectrum interactions that frequently occur
through trans-acting proteins expressed from viral genomes (see Chaps. 10 and 14).
In the mutant distributions of quasispecies theory, the critical element that permits
the quasispecies to behave as a unit of selection is the connectivity among closely
related genomes established through frequent mutation. Cross talk among genomes
is very intense when genomes are close neighbors in sequence space although more
distant interactions may be also established thanks to the high connectivity of
sequence space (Eigen and Biebricher 1988) (Chap. 4). Selection does not pull an
individual but a connected set of individuals.

The equilibrium argument is worth being considered in more detail. It is com-
monplace stating that nothing on the Earth is at thermodynamic equilibrium
because our planet as such is exposed to a steady flow of energy and entropy that
goes from sun into outer space but nevertheless, there exists a plentitude of phe-
nomena that are perfectly described by quasi-equilibrium theories. The notion
quasi-equilibrium expresses the fact that a system looks as if it were in an equi-
librium state within a certain time span but is changing on longer time scales. What
matters here is not the fact of change in the long run, but the validity of timescale
separation. In rigorous mathematical terms, the problem is characterized as center
manifold reduction (Carr et al. 1981). In a nutshell, it says that the final state is
approached in two phases (i) a fast process leading from the initial conditions to the
center manifold, and (ii) a slow process during which the population moves along
the center manifold to some final state. The question whether or not a
quasi-equilibrium hypothesis can be justified, boils down to the existence or non
existence of a center manifold (see Chap. 4). Here, we illustrate the concept of
center manifold reduction by addressing its meaning for viruses and virus evolu-
tion: (i) The fast process is the formation of a mutation-balanced clan of sequences
consisting of the master sequence and its most frequent mutants that are, in essence,
derived from single or at maximum double nucleotide exchange mutations, and
(ii) the selection-based and neutral drift of the population through the appearance of
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rare mutations and the occurrence of environmental changes. A necessary condition
for the existence of center manifold and the meaningfulness of the quasispecies
concept as well as any other quasi-equilibrium model is the formation of frequent
mutants that occurs faster than the environment changes or, in other words, the
environment is essentially constant during the formation of the mutation-balanced
clans. In case of viroids and almost all RNA viruses, the postulation of a
quasi-equilibrium seems to be on the safe side because the mutation rate is in the
order of one per replication event (Gago et al. 2009). One remark about the fre-
quency of mutations is important here: According to Eq. (4b), this frequency is
proportional to the mutation rate raised to a power being the Hamming distance
between the mutant sequence X; and the master sequence X,,, &dn. Since the
mutation rate p—or & = p/(1 — p)—is small and the Hamming distance between to
virus genomes can vary enormously, we shall be always dealing with a core of
frequent mutants being at quasi-equilibrium with the master sequence and a
plethora of rare variants whose appearance are a stochastic events. Neutrality with
respect to fitness is another biological phenomenon that requires notions of sta-
tionarity, which are more sophisticated than simple quasi-equilibria (see Chap. 4).

Extensions of quasispecies theory to finite populations and variable fitness
landscapes have been developed by many authors, including Eigen himself (Nowak
and Schuster 1989; Alves and Fontanari 1998; Eigen 2000; Wilke et al. 2001;
Nowak 2006; Ochoa 2006; Saakian and Hu 2006; Saakian et al. 2006; Takeuchi
and Hogeweg 2007; Saakian et al. 2009; Park et al. 2010; Schuster 2010a, 2010b).
Finite quasispecies populations in variable fitness landscapes are further treated in
Chaps. 3 and 4 of this book. In theoretical biology, it is quite frequent to develop a
deterministic model in mathematically solvable terms and then to extend it to real
situations by introducing stochastic components in the model formulation. The
same schools that initially opposed quasispecies suggested also that the heteroge-
neity of mutant spectra had been overestimated due to misincorporations during the
enzymatic procedures involved in the preparation of molecular clones for nucleo-
tide sequencing. As discussed elsewhere (Arias et al. 2001; Domingo et al. 2004),
these arguments have proven incorrect since the impact of artifactual mutations can
be controlled, and they have not affected significantly the heterogeneity measure-
ments. Application of deep sequencing methodologies has amply confirmed the
extensive genomic heterogeneity of RNA virus populations (Chap. 8), in agreement
with the results obtained by classic biological or molecular cloning and Sanger
sequencing.

Thus, quasispecies theory (despite its limitations, see last section) has provided
the theoretical framework to interpret key characteristics of RNA viral populations:
extreme genetic heterogeneity, mutant ensembles acting as a unit of selection,
evolution (both short-term or intra-host and long-term or inter-host) understood
fundamentally as replacement of genome subpopulations by others, and movements
in sequence space as the basis to generate new phenotypes which are extremely
relevant to virus biology. These aspects are amply discussed in different chapters of
the present volume.
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Despite the overwhelming evidence of quasispecies dynamics for RNA viruses
in their natural environment, a few geneticists still advocate using undefined terms
such as “variation” (or similar) rather than quasispecies. Avoidance of the term
quasispecies may be acceptable provided scientists are aware of the nature of viral
populations. However, unexpected side effects can derive from ambiguous terms.
Millions of dollars and euros have gone into projects on antiviral and vaccine
strategies doomed to failure because quasispecies dynamics was not incorporated as
a relevant feature prior to the designs. Thus, there are pressing scientific (and even
economic!) arguments to incorporate the term quasispecies in the fields of exper-
imental and clinical virology. Several chapters of this book cover relevant aspects.

Different definitions of quasispecies have been used in physics, chemistry, and
biology. In physics, quasispecies has been defined as a cloud in sequence space. To
chemists, quasispecies are mutant swarms composed of related, nonidentical
genomic sequences, the definition most familiar to virologists. To biologists,
quasispecies is the target of selection, without the term implying a modification of
the species concept in biology. In connection with the present volume, the most
widely used quasispecies definition in virology is as follows: “a collection of related
viral genomes subjected to a continuous process of genetic variation, competition,
and selection that act as a unit of selection” (Domingo et al. 2012). Interesting new
developments outside virology may require some more general definition of
quasispecies that render it applicable to non-replicative systems. Some such
developments are summarized next.

6 Extensions of Quasispecies to Non-viral Systems

Replication with a regular production of error copies is not privative of viruses, but
it is a feature shared by cellular and subcellular systems endowed with replicative
machineries that display limited template-copying fidelity. Connections have been
made between viral quasispecies and cellular collectivities in two aspects:
(i) error-prone replication with its ensuing competition dynamics among cells and
(ii) collective behavior arising from interacting cell ensembles [for review see (Mas
et al. 2010; Ojosnegros et al. 2011; Domingo et al. 2012; Solé et al. 2014)].
Concerning the first aspect, error-prone replication is prominent in mutator
bacteria (which are characterized by mutation rates which are 102 to 10*-fold larger
than standard bacterial mutation rates) as well as in cancer cells. In both cases,
enhanced mutation rates provide a selective advantage to the cells, either to expand
the range of phenotypes for increased adaptability or to enhance cellular prolifer-
ation. A difference with viral quasispecies is in place here. The capacity of
exploration of the sequence space available to viruses is far greater than the capacity
exhibited by cells. The main reason is the difference in genome size between cells
and viruses in relation to the usual population size of viruses and cellular organisms
in nature. As an example, a viral genome of 10,000 nucleotides has a maximum of
3 x 10* single mutants, a number which is lower than the population size of many
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viruses, that can attain 10'° to 10'* particles per infected individual. All single
mutants and many multiple mutants are potentially present (excluding fitness
effects) in a viral population infecting a single host. In contrast, the potential
number of single mutants in a mammalian genome will approach 10'°, a far larger
value than the population size of mammalian species. These and other parameters
[population heterogeneity, number of mutations needed for a biological change, and
fecundity or the capacity to generate progeny; see further discussion in (Domingo
et al. 2012)] render quasispecies a far more effective adaptive strategy for viruses
than for cells, even if their population dynamics follow similar principles.

Cancer cell dynamics has been extensively studied both theoretically and from a
clinical perspective. Martin Nowak reviewed the conceptual origins of cancer
viewed as a genetic disease, the types of genetic lesions that render cancer cells an
error-prone system that favors tumor progression, and the basic mathematics of
tumor cell proliferation (Nowak 2006). Very early work emphasized the relevance
of cancer cell heterogeneity, clonal evolution, and the consideration of tumor
metastasis as an adaptive process (Nowell 1976; Nicolson 1987). Recent models
view cancer as cell collectivities that have restricted their functional genetic
information to that required for cell integrity and proliferation, but free of the
constraints inherent to cellular differentiation (Gatenby and Frieden 2002; Sol¢ et al.
2014). This is reminiscent of the result of evolution of QB RNA in the test tube (the
classic Spiegelman—Weissmann passage experiments discussed earlier) in which
maintenance of RNA infectivity was no longer needed, and the only remaining
requirement to the RNA was to replicate. In the words of the authors: “What will
happen to the RNA molecules if the only demand made is the Biblical injunction,
multiply, with the biological proviso that they do so as rapidly as possible?”” (Mills
et al. 1967). The result was selection of RNAs with extensive deletions than were
adapted to bind efficiently to the replicase and to undergo rapid replication;
infectivity was rapidly lost.

The search for the minimum requirements for cancer cell proliferation may help
providing the basis to produce an error catastrophe in cancer (Solé and Deisboeck
2004; Fox and Loeb 2010), following the strategy under investigation for viruses
(Chaps. 7 and 14). Tumor cell heterogeneity is a determinant of adaptability and
limits the efficacy of anticancer drugs, because of the ease of selection of
drug-escape mutant cells through several molecular mechanisms. The problem of
treatment failure due to selection of drug resistance within a tumor cell population is
very similar to that faced in the case of viral infections (Chaps. 12 and 14), and
strategies alternative to the standard anticancer chemotherapeutic protocols have
been suggested (Gatenby et al. 2009; Luo et al. 2009). In the course of adaptive
RNA virus evolution in natural environments, in particular during intra-host
expansions of viral populations, mutation rates are expected to remain constant,
except in rare cases in which a specific fidelity mutation may be incorporated in the
viral polymerase gene and become dominant. In contrast, the cascade of molecular
events during cancer progression, mainly mutations that increase the cell division
rate and mutations that increase the cellular mutation rate (that include tumor
suppressor genes, oncogenes and genetic instability genes), is more complex. As a
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consequence, and interestingly, mutation rates are unlikely to remain constant
through tumor progression. Evolutionary dynamics under constant versus increas-
ing mutation rates deserves further theoretical and experimental investigation.

Concerning collective behavior due to cell to cell interactions, they have been
also recognized within tumors, in particular regarding competition between fitter
chemosensitive cells and less fit, drug-resistant cells during therapy (Gatenby
et al. 2009). A parallel with the internal interactions among components of mutant
spectra in viruses (Chaps. 10 and 14) has been also found in the behavior of
bacterial collectivities [(Ojosnegros et al. 2011) and references therein]. In partic-
ular, quorum sensing in bacteria has been proposed as a factor to modulate viru-
lence, so that an important biological trait is the result of cooperative interactions
among individuals.

Recently, a striking conceptual parallelism has been established between the
conformational heterogeneity of prions and viral quasispecies (Li et al. 2010;
Weissmann et al. 2011; Weissmann 2012). Prions are infectious agents composed
only of protein, without a nucleic acid. They are propagated through transmission of
a misfolded form of a cell-coded protein (Castilla et al. 2008; Barria et al. 2009).
Despite having the same amino acid sequence, distinguishable prion “strains” are
characterized by different conformations. A “mutation” in a prion represents a
change in conformation that may occur through environmental changes and confer
altered pathogenic potential and drug sensitivity (Ghaemmaghami et al. 2009;
Mahal et al. 2010). As in the case of viruses, both drug-resistant and
drug-dependent prions can be selected (Oelschlegel and Weissmann 2013). Prion
populations are heterogeneous in the sense that they include subsets of protein
molecules with minority conformations, a parallel with the minority components of
mutant spectra of viral quasispecies (Weissmann et al. 2011; Bateman and
Wickner 2013; Vanni et al. 2014). Conformational variants can be either positively
selected or remain in equilibrium with other variants (conformomers). In remark-
able parallelism with viral quasispecies, the population size of a prion subjected to
amplification can be a determinant of its evolution, and bottleneck transfers lead to
reduced “replicative fitness” of prions (Vanni et al. 2014). How can such a parallel
Darwinian behavior of a replicative and a non-replicative system originate?
Mutations in genetic systems are the result of elementary molecular fluctuations
events that determine base mispairings. Similar fluctuations may influence amino
acid—amino acid interactions that determine protein conformation. A specific con-
formation may act as a nucleation point for the conversion of neighbor proteins into
a similar conformation (Bernacki and Murphy 2009). Certainly, it would be
extremely interesting to develop a theory for Darwinian evolution in non-genetic
systems, search for protein transitional states and Darwinian behavior in proteins
other than prions, and define the molecular basis of collective conformational
transitions in protein ensembles. Such research may open new avenues for the
control of neurological disease. Thus, the basic concepts emanating from quasi-
species are permeating many domains of biological sciences, a demonstration of the
experiment-provoking power of quasispecies theory.
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7 Limitations and Strengths of the Quasispecies Concept

The concept of quasispecies refers to the level of populations in a homogeneous or
mostly homogeneous environment, and this need not be realistic in case of real
virus infections in heterogeneous host populations. In a sufficiently diverse popu-
lation, for example, the master sequence in one host need not coincide with the
master sequence in another host. Heterogeneity of environments may be important
for many other reasons, but these are not quasispecies specific problems.
Theoretical epidemiology is struggling with the effects of complex environments as
well, and this for rather long time already.

In its current form, quasispecies theory does not account for stochastic effects.
Small particle numbers up to several hundred infectious units can be important
because of the autocatalytic nature of the replication process, and special stochastic
effects such as incomplete packaging of genome segments in viruses with a seg-
mented genome such as influenza A or early extinction due to replication accidents
may need to be taken into account by virus-specific modeling. The major problem
with stochastic modeling is not of principal nature. It concerns the numerical
simulation techniques that are extremely time consuming even for medium-size
systems and the unavailability of analytical methods for many component systems.
The current best way to overcome this problem is to sacrifice generality and to
construct virus group-specific stochastic models.

Although conceptually rooted in the same grounds as population genetics, the
theory of the quasispecies has several advantages and can be more easily extended:

(1) The model is constructed at the molecular level, and this provides a frame that
can be readily adapted to the desired level of details. The replication—mutation
reaction (2) comprises the simplest conceivable mechanism. Provided one
does not spare the effort, a detailed viral mechanism, for example, the RNA
bacteriophage replication kinetics (Biebricher et al. 1983), could be introduced
into the kinetic differential equations, and numerical analysis based on kinetic
differential equations would be possible. By the same token, entirely different
forms of reproduction can be incorporated, for example, the proliferation of
prions (Weissmann et al. 2011) or mitosis of cancer cells (Gatenby and
Frieden 2002; Gatenby et al. 2009). In the future, it will be desirable and
possible to integrate complex regulation of gene expression into molecular
models. Important examples are RNA-based epigenetic mechanisms.

(i1) Inherent in the molecular replication—mutation mechanism that understands
mutation as a parallel reaction channel to correct copying is the possibility to
factorize the selective value into one factor coming from the spectrum of
fitness values and a second factor containing mutation frequencies. This
handle on separability is not only an important tool for theoretical work but it
also suggests to adopt two different strategies in the development of antiviral
agents: reduction of fitness through interfering, for example, with the binding
of the virus to the replication machinery or increase in mutation rate in order to
drive the replicating virus beyond the error threshold.
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(iii) The conventional quasispecies concept is based on the assumption that pop-
ulations have reached a stationary or a quasi-stationary state. Although the
validity of this assumption may be questionable, replication—-mutation
dynamics provides an appropriate tool for rigorous tests based on the center
manifold theorem. The time a population system requires for a close approach
to quasi-stationarity is well defined as a first passage time in the stochastic
model and has been studied in the past [for an example with more references
on this topic see the publication by Marin et al. (2012)]. Nevertheless, more
detailed investigations are required to adapt the quasispecies theory questions
concerning appropriate times, for example, the optimal duration of patient
treatments.

(iv) Virus evolution is determined by the fitness landscape, which may be dynamic
in a changing environment. Given a high degree of ruggedness as follows
form empirical data, e.g., Kouyos et al. (2012) or the experience with bio-
polymer landscapes (Schuster 2006) quasispecies will commonly be unstable
against changes in mutation rates. Quasispecies theory makes the prediction
that migration into other regions in sequence space where “strong quasispe-
cies” can be formed makes the population evolutionary stable (Chap. 4).

The application of quasispecies theory to the understanding of virus dynamics in
infected organisms has opened the way to a rational design of antiviral interventions
which until now have been basically an empirical endeavor. The increasing
applicability of next generation, deep sequencing of viral populations as they
replicate in their hosts, has unveiled the complexity of natural mutant spectra and
estimates of relative fitness levels of minority genomes (Chap. 8). These analyses
should permit personalized treatments with selected standard inhibitors and
virus-specific mutagenic agents, used sequentially or in combination (Chap. 14).
These are important practical consequences derived from the new understanding of
viral populations that became clear when populations were examined under the
focus of quasispecies theory.
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Quasispecies on Fitness Landscapes

Peter Schuster

Abstract Selection—mutation dynamics is studied as adaptation and neutral drift on
abstract fitness landscapes. Various models of fitness landscapes are introduced and
analyzed with respect to the stationary mutant distributions adopted by populations
upon them. The concept of quasispecies is introduced, and the error threshold
phenomenon is analyzed. Complex fitness landscapes with large scatter of fitness
values are shown to sustain error thresholds. The phenomenological theory of the
quasispecies introduced in 1971 by Eigen is compared to approximation-free
numerical computations. The concept of strong quasispecies understood as mutant
distributions, which are especially stable against changes in mutations rates, is
presented. The role of fitness neutral genotypes in quasispecies is discussed.
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1 Fitness Landscapes

The idea of an adaptive landscape or fitness landscape is commonly attributed to
Wright (1931, 1932, 1988) who introduced it as a metaphor underlying the illus-
tration of evolution as hill-climbing on a multi-peak potential (hyper)surface.’
According to McCoy (1979), the concept of evolution as an adaptive process on a
fitness landscape has been used the first time much earlier by Janet (1895) in order
to provide an explanation for the lack of intermediate forms of species in the fossil
record. Wright’s shifting balance model of evolution consists of three phases:
(i) random genetic drift splitting the global population in subpopulations, (ii) se-
lection within subpopulations, and (iii) selection between subpopulations. The
mean fitness of the population is assumed to decrease during phase (i) and to
increase during phases (ii) and (iii). Wright’s illustration visualizes a genotype
recombination space with several alleles per locus. Before Watson and Crick
published their model of the molecular structure of DNA (Watson and Crick 1953),
the process creating mutations was not an integral part of the theory of evolution,
operated like a deus ex machina unseen in the background, and could not be
systematically related to moves in genotype space. Wright’s fitness landscape is
mapped upon a two-dimensional sketch of genotype space and contains many local
peaks upon which his model of evolution is approaching the highest fitness opti-
mum. Wright’s model and the metaphor have been heavily debated in the following
years [see, e.g., Provine (1986), Ruse (1996), and for a more recent well-founded
analysis of Wright’s landscape concept, we recommend Skipper (2004)]. Here, we
shall understand the notion of landscape in a rigorous way as a mapping of
genotypes onto nonnegative real numbers representing the fitness parameters,
which enter the deterministic or stochastic dynamical systems describing the evo-
lution of populations.

Evolution as an adaptive walk. Two basic elements define an adaptive walk: (i) a
potential surface built upon genotype space and (ii) a move set being the collection
of allowed changes of genotypes. Although Wright himself stresses
multi-dimensionality of fitness landscapes as they are built upon genotype or
sequence space,” which is a support of very high dimension, his landscapes,
however, are always sketched on a continuous two-dimensional caricature of
sequence space (Wright 1988, p. 117). Fisher (1941) challenges the usefulness of
the two-dimensional metaphor by remarking correctly that the number of local
optima decreases when the dimensionality of the support is raised, and in view of
the enormously high dimensionality of genotype space, a single-peak landscape

"The expression hypersurface points at the fact that fitness landscapes are surfaces in
high-dimensional space. Since we shall be dealing here almost exclusively with such
high-dimensional objects, we drop the prefix ‘hyper.’

*The genotype space in Wright’s seminal paper (Wright 1932) is a space of genes, whereas we use
virus genomes as elements of genotypes space. Accordingly, genotype space is identical with the
space of DNA or RNA sequences of the chain length of virus genomes.
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mutant classes 0 1 2 3 4 5

number of sequences 1 5 10 10 5 1

Fig. 1 Sketch of the binary sequence space with [ = 5. The sequence space ng) contains 32
sequences, which are indicated here by their equivalent decadic numbers and the assignments
0=C and 1=G: 0="00000"="CCCCC', 1="00001"="CCCCG', 2="00010"=
*CCCGC,...,31 ="11111'="GGGGG'. Individual sequences are grouped in classes I'; that
are defined by their Hamming distance to the reference sequence “CCCCC', d]% = k. The numbers

of binary sequences in each I'y are given by the binomial distribution: |[I';] = (Z)

will result that makes the sophisticated shifting balance process unnecessary since
the summit can be reached by mutation and selection alone.

Sequence space (Fig. 1) is discrete, and local optima are simply defined by
points that are higher in fitness than all their neighbors. Who the neighbors of a
given genotype are is defined by the move set as the set of all sequences, which can
be reached by a single move. Clearly, redefining the moves may turn local optima
into saddle points or vice versa. An adaptive walk is a trajectory in sequence space
that fulfills the condition of non-decreasing fitness f, = f(X;) in a time-ordered
series of genotypes X(¢) = Xy:

(X(I]) = Xl,X(l‘z) = Xg,. . .,X(l‘n) = Xn) with
H<th<...<t, and fi<pH<...<fy,

(1)

where we have implicitly assumed that the walk ends at a peak. The adaptive
process is an illustration of evolutionary or natural selection in the sense of
Darwin’s survival of the fittest, although it is important to note that the adaptive
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walk refers to a single trajectory, whereas evolution deals with optimization of
mean fitness in a population. Equation (1) has an immediate consequence for
adaptive walks: The same sequence cannot be visited twice or more times unless the
instances are separated exclusively by sequences of identical fitness or, in the other
words, loops can occur only if the trajectory is confined to a neutral subset of
sequences called a neutral network (Reidys et al. 1997). Adaptation on fitness
landscapes is a frequently analyzed topic, and a large number of original papers,
reviews, and books are available. Representative for others we mention here
Gavrilets (1997), Jain and Krug (2007), McGhee (2007), Walsh and Blows (2009).
Point mutations and sequence space. Here, we are interested in population dynamics
of viruses and other asexually reproducing species, and accordingly, genotype space
will be represented by sequence space Q, which is an abstract space where every
different sequence of nucleotides is represented by a point and the distance between
pairs of sequences X; and X; is given by the Hamming distance d? (Hamming 1950,
1986). The simplest and most straightforward move set in sequence space Q is point
mutations, leading to single nucleotide exchanges d;.l = 1. Figure 1 sketches the
sequence space of binary sequences—sequences over an alphabet with x = 2 letters

—of chain length [ = 5 denoted by ng) and shows a natural grouping of sequences
with respect to a given reference sequence into classes: A class I' is the set of all
sequences at Hamming distance d? = dy = k from a reference sequence Xy:

I = {Xild% = k. 2)

Accordingly, dg = 0 defines the reference sequence Xy = I'y, which is a class by
itself, the class I'; with dy = 1 contains all one-error mutants, class ', with dy = 2
all two-error mutants, etc., and eventually I'; with dy =1 is the class whose
members have different nucleotides from the reference at all positions. In the binary
alphabet, this is the (unique) complementary sequence of the reference, || = 1
(where we denote the cardinality of a class by the absolute value symbol) and we
have X,i_; = I'}. In the four-letter alphabet, this class contains |I'j| = (k — 1)’ = 3!
different sequences where x as said is the number of different nucleotides in the
alphabet.

Simple fitness landscapes. In the early days of population genetics and later on
before extensive computer work became accessible rather, drastic simplifications
were necessary for any modeling of adaptive walks on fitness landscapes. For
example, the same fitness is assigned to all sequences within a given mutant class.
The fitness of the genotype of largest fitness, the master genotype Xy, is the ref-
erence value f; and, in addition, at least one second fitness value f, is required that
still needs to be specified. For simple landscapes, the most straightforward defini-
tion chooses f,, as the lowest fitness value found in the population and assumes that
all genotypes in a given class have the same fitness. Two typical assumptions are as
follows: (i) additive fitness and (ii) multiplicative fitness (Fig. 2). In the first case,
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Fig. 2 Examples of simple fitness landscapes. The upper sketch shows three landscapes for which
the fitness values of the different classes of sequences are given by continuous functions of the
class index k: (i) the additive landscape (3a) in blue, (ii) the multiplicative landscape (3b) in red,
and (iii) the hyperbolic fitness landscape (3c) in black. In the lower drawing, we present (iv) a
single-peak landscape (3d) with a discontinuity in the derivative 9f /0k at k = 0 (black) and (v) the
single-peak linear landscape (3e) where the discontinuity is located at k = h

every mutation decreases the fitness value of the master genotype by a constant
amount Af /I, and hence, the fitness of the genotypes in class I'y, fi = f(I}) is

k
fk:fo—AfY with 0<Af = (fo —fu) <fo;k=0,...,L (3a)
The second case, multiplicative fitness, is characterized by

fi=t- ()" with 0<y, = (h/fo) <Lk =0,...,L (3b)

Both cases are appropriate—if at all—for genes only and not for whole genotypes,
since the basic argument for the usage of models (3a) or (3b) is the concept that
species are located in local optima of fitness landscapes; hence, all mutations of
reasonable probability are deleterious and reduce fitness. In addition, multiple
mutations are assumed to have cumulative effects. As illustrated in Sect. 2, these
requirements are not fulfilled by DNA of RNA sequences and point mutations as
move set.
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For the purpose of comparison, we mention a third landscape, the hyperbolic
fitness landscape, which too has a continuous derivative 9f /Ok:

1
fk:fo—Af];% with 0<Af = (fo —fu) <fo; k=0,...,L (3¢c)

The hyperbolic landscape is special, because it shares some features with land-
scapes that exhibit discontinuities in the derivative.

Eventually, we consider fitness landscapes that are modeled by functions with
discontinuities in the derivatives. The most popular representative of this type of
landscapes is the single-peak landscape, which reminds of the mean field
approximation often used in physics: The highest fitness value, fj, is assigned to the
master genotype, and all other genotypes are assumed to have identical fitness, f;,
(Fig. 2).

_Jfo fork=0,
fk_{fn fork=1,...,1 (3d)

A generalization of the single-peak landscape characterized as single-peak linear
landscape combines features of linear and single-peak landscapes: Fitness
decreases linearly in the range 0 < k <’ and is constant for the rest of the domain,
h<k<lI

_ [ fo— At fork=0,1,...h—1, , _
fk_{fn fork =h,...,1 h=1,...,1 (3e)

The landscapes (3a)—(3d) are completely described by the two parameters fy and f;,.
Only the case (3e) requires a third parameter /& defining the position of the dis-
continuity. We remark that single-peak linear landscapes with 7 = 1 are identical to
single-peak landscapes and a landscape with 7 = [ is a linear landscape.

Fully resolved fitness landscapes. A fitness landscape is denoted as fully resolved
when individual fitness values are determined for or assigned to different sequences
and not only to classes as in case of simple fitness landscapes. The number of fitness
values required is ' where x denotes the number of different digits in the alphabet,
e.g., k = 2 for binary sequences and x = 4 for natural nucleic acids. Within the last
fifteen years, plenty of progress has been made in the determination of fitness values
and trajectories of adaptive evolution of viruses (Betancourt and Bollback 2006;
Elena and Sanjudn 2007) and successful attempts were made to measure distribu-
tions of fitness effects (Sanjudn et al. 2004). In general, exploration of fitness
landscapes by site-directed mutagenesis is restricted to small neighborhoods—
variants with Hamming distance dy = 1,2, 3—from the master sequence X, or, in
other words, to local areas in sequence space. Global information on fully resolved
fitness landscapes of real systems is still far out of reach because of high dimen-
sionality and hyper-astronomical numbers of sequences. It is also important to
stress that fitness values and landscapes depend strongly on environmental effects
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and therefore, they can be determined efficiently only in approaches where a suf-
ficiently large number of parameters can be kept constant, for example, in exper-
imental evolution.

One of the earliest assays for experimental evolution was developed by
Spiegelman and coworkers (Mills et al. 1967; Spiegelman 1971): RNA molecules
from the bacteriophage Qp were transfected into a stock solution containing excess
of all materials required for replication—the four RNA building blocks,
ATP,UTP,GTP,CTP, and the enzyme Qp-replicase—under suitably controlled

2@

conditions such as pH, ionic strength, and Mg~". Spiegelman’s test tube experiment
is an extreme example of adaptive evolution by loss of function since the RNA in
the test tube needs little more than a suitable binding site for the enzyme and
accordingly, the chain length of the viral RNA is reduced from [ = 4217 to a few
hundred through fitness increasing deletions. Detailed investigations of RNA
replication kinetics revealed the molecular mechanism of in vitro evolution
(Biebricher 1983; Biebricher et al. 1983, 1984, 1985). The most striking result of
these very elegant and systematic studies is the observation that the selection
mechanism changes with an increasing concentration ratio of RNA to replicating
enzyme because of a change in the rate-limiting step of the multi-step kinetics,
which consists of binding the RNA to the enzyme, initiation and propagation of
complementary step synthesis, and product release. For the landscape concept, this
finding has the immediate consequence that extracellular RNA evolution takes
place upon different landscapes depending on whether or not enzyme is supplied in
excess.

One of the most extensive construction and analysis of a viral fitness landscape
has been performed in clinical studies with the human immunodeficiency RNA
retrovirus (HIV-1) (Kouyos et al. 2012). Fitness is measured as the in vitro
reproductive capacity of HIV-derived amplicons that were prepared and inserted
into a constant resistance test vector (Kouyos et al. 2011). The empirical basis of the
study is ~ 70,000 clinical HIV-1 isolates taken in the absence of drug treatment or
in the presence of a single drug chosen from a collection of fifteen. The fitness
landscape is derived from this data set by means of a statistical model predicting
fitness from the amino acid sequences of entire HIV protease (99 aa)® and parts of
HIV reverse transcriptase (a heterodimer consisting of p66 with 560 aa and p52
with 440 aa) with a total chain length of 460. Landscapes are constructed by fitting
of parameters to data from 65,000 isolates as training set, and the remaining 5000
are used as test for the predictive power of parameter set. The landscape fitted to the
fitness values of the drug-free isolates is taken as reference. Two features, which
will be analyzed and discussed in Sect. 2, were found to be characteristic for the
HIV fitness landscape: (i) ruggedness in the sense of containing many local fitness
maxima and (ii) neutrality expressed as an appreciable fraction of sample points
share the same fitness. In addition, but nor surprisingly from the molecular point of
view, the results confirm that epistasis is highly important since the effect of a given

Here, ‘aa’ stands for ‘amino acid residue.’

pks@tbi.univie.ac.at



68 P. Schuster

point mutation depends strongly on the presence or absence of other mutations in
the isolate.* Although the HIV study (Kouyos et al. 2011) is very extensive indeed
and reaches the upper limit that can be achieved straightforwardly at present, a
commentary (Weinreich 2011) correctly says that much more work in theory and
experiment is needed in order to allow for clinically valuable predictions. As
examples of bacterial landscapes, we mention a study of fitness landscape defined
by gene expression levels in the core metabolism of Methylobacterium extorquens
(Chou et al. 2014) and an extensive analysis of epistatic interactions in the fitness
landscape of Escherichia coli (Beerenwinkel et al. 2007).

Tunable resolved fitness landscapes with random assignments. Despite the enor-
mous progress in the empirical determination of fitness landscapes reported in the
previous paragraph, models for assigning fitness value to genotypes are required.
There are, for example, 8 x 10*°® different RNA sequences of the chain length of
the QP-bacteriophage, and even if the vast majority of sequences are functionless as
genotypes, the remainder would be beyond all technical bounds. Accordingly,
model landscapes that allow for fast calculation of a large number of fitness values
were invented. We mention here two of them: (i) the random Nk landscape (RNKL)
proposed by Kauffman (Kauffman and Levin 1987; Kauffman and Weinberger
1989) and (ii) the realistic rugged landscape (RRL) and its variant the realistic
neutral landscape (RNL) introduced by the author (Schuster 2012, 2013).
Random Nk fitness landscapes. The RNKL (Altenberg 1997) is a stochastic model
that generates fitness values f; for binary sequences of chain length / = N. In other
words, we are dealing with a genotype consisting of N loci and two alleles at each

locus: X; = ()c?),)c(")7 .. .,x%)) with xi(i) €{0,1}Vi=1,2,...,N. The fitness of the
genotype X; is assumed to be the average of the fitness components d)l(’ ) contributed
by the individual loci:

LS 00000 ) ()
fi=fX) == O (x5 X, X5 5 X
i =1(X)) N;:I ( 1% 1) @
with x e (V) x9 xy; 1+ all 1 different.

3

The fitness component of position i in sequence X;, d)l(’) clearly depends on the

allele at this position, xl@, and through epistatic interactions, it depends also on the

alleles at k other positions denoted by xg) with [ = 1,... k; I # i. Two possibilities

were considered by Kauffman: (i) adjacent neighborhoods and (ii) random

“Considering single nucleotides as sites in structural RNA elements requires complementarity of
the nucleobase at another locus for the formation of a base pair, and accordingly, the two sites are
strongly coupled epistasis (see Sect. 2).
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neighborhoods. In the first case, the k genes lying closest to position i on the
chromosome are chosen, whereas in the second case, the genes are chosen at
random. Epistatic contributions are calculated by assuming a house of cards model
of fitness effects as proposed by Kingman (1978); see also (Kingman 1980, p. 15):
When an allele at one locus is changed, the fitness components of all alleles, which
interact with this locus, are changed without correlations to their previous values.
The metaphor illustrates the situation as follows: If a single card is pulled out of a
house of cards, the house collapses and must be rebuilt from scratch.

The parameter k is designed as a tunable parameter for the ruggedness of the

landscape: k = 0 implies a smooth, single-peak linear landscape often called Mount
Fuji landscape, and the maximal value k = n — 1 gives rise to fully developed
randomness. The Nk landscape for k = 2 was shown to be closely related to a spin
glass Hamiltonian in the sense that the Nk model describes a special class of spin
glasses (Kauffman 1993, p. 43) [for more details, see Reidys and Stadler (2001,
2002)]. The Nk landscape with two adjacent neighbors (k = 2), for example, can be
derived from a linear chain of genes by closing it to a loop, and in the random
model, of course, no such assumption is required.
Realistic random fitness landscapes. In order to introduce a random distribution of
fitness values in the single-peak fitness landscape, we consider a band of fitness
values for all sequences except the master sequence. The lack of detailed empirical
data is supplemented by a random input and a tunable parameter d that determines
the width of this band, and neglecting neutrality, the fitness values are calculated
from the expression (Schuster 2013, p. 608):

fo ifj=0,
f“ﬂ:ﬁ:{ﬁ+mmﬂ@”—aﬁ ifj=1,.. .6 — 1. (5a)

The parameters f, and f, are defined as before, and #;(s) is the jth output of a
pseudorandom number generator that has been started by using s as seed. In order
to make the procedure fully determined, the method used in the generation of
pseudorandom numbers has to be specified. In addition, we need to predefine the
distribution of the pseudorandom numbers. Here, we use a uniform distribution on

the unit interval, 0 < 11}'?) <1.
Neutrality can be readily incorporated into RRLs by means of a tunable degree

of neutrality, A: The fitness value f; is assigned to the master sequence and to all

)

sequences X; with pseudorandom numbers 1 < n}‘y <1 — 4, and random scatter in

the sense of Eq. (5a) is chosen for all other sequences:

Jo if j=0,

fo if n”>1-2,

fot 2547 —0.5) it pY <14,
j=1,.. k= 1;j#m.

fX) = (5b)
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As shown in Eq. (5b), the interval 0 < n;s) <1 — Ais stretched to the full bandwidth
of d for the determination of the remaining f-values. Clearly, Eq. (5a) results from

(5b) through setting A = 0 which is tantamount to no neutrality. Accordingly, an
RRL or RNL is fully characterized by:

RNL : £ = L(I, x,fo,fn; A,d,s) and 6

RRL : £ = L(I, k,fy,/4;0.0,d,s). ©)
It is important to stress that the definition of realistic random landscapes according
to (5a, 5b) does not allow for landscape design since the relation between the
random seed s and the calculated fitness values is too complicated in order to allow
for a reconstruction by an inverse method. This concept of landscapes can be rather
understood as a mean for performing a kind of experiment in computational biology
in three steps: (i) choose seeds for the random number generator, e.g.,
s€{000, ...,999}, (ii) compute landscape L(, k,fo,fu; 4,d,s) in the form of the
fitness values f(X;),j=1,..., x! — 1, and (iii) compute and analyze the mutant
distribution Y'(d, 4; p, ).

The two major questions that will be studied in the rest of this chapter are:
(i) How does the quasispecies distribution change as a function of the mutation rate
p; and (ii) do abrupt transitions at critical mutation rates, p,, exist, and if they exist,
how do they depend on the extend of random scatter d? The answer to the second
question is of particular importance because doubts have been raised whether or not
the scenarios derived from single-peak landscapes are specific for this simple
landscape, and accordingly might not be relevant for more general rugged land-
scapes [(Baake and Wagner 2001; Charlesworth 1990; Wiehe 1997); see Sect. 4].

2 Sequence Structure Mappings

In the previous section, we introduced several classes of fitness landscapes and
mentioned the available empirical support for two general features of real land-
scapes: (i) ruggedness and (ii) neutrality. Here, we present additional arguments for
this conjecture by considering the properties of known genotype—phenotype map-
pings. In experimental evolution with molecular systems (Biebricher 1983), the
genotype is considered as a polynucleotide sequence, DNA or RNA, and the
phenotype is the molecular structure. Predicting biopolymer structures from known
sequences is still kind of a scientific art, but in case of simplified structures of RNA
molecules, so-called secondary structures, it is possible to derive shapes by
simultaneous consideration of free energies of substructures and some principles
from combinatorics. Secondary structures of polynucleotides are graphically illus-
trated listings of nucleotide pairs where the graphs of structures are equivalent to
representations by strings over a three-letter alphabet: (i) ‘(" opening of a base pair,
(ii) )’ closing of a base pair, and (iii) ‘*’ an unpaired nucleotide. The assignment of

pks@tbi.univie.ac.at



Quasispecies on Fitness Landscapes 71

opening parentheses to closing parentheses of base pairs follows mathematical
rules, i.e., the first parenthesis opens a nucleotide pair and matches the parenthesis
that encloses a complete set of closed parentheses. As an example, we show the
string representation of the reference structure Sy in Fig. 4

where the three left opening parentheses match the three rightmost closing paren-
theses and the three inner parentheses form the hairpin loop.

Landscapes are built from sequences by two consecutive mappings: (i) the map
of biopolymer sequences into molecular structures [for a review of the RNA model,
see, e.g., Schuster (2003, 2006)] and (ii) the map from structures into molecular
properties. In a given and constant environment, replication parameters tantamount
to fitness values are functions of molecular structures. The current paradigm of
structural biology is based on the conjecture that structures can be derived from
sequences, and molecular properties in the form of parameters in functions are
derivable from structures:

sequence = structure = function.

Sequences, structures, and parameters in functions are objects of metric spaces
(Fig. 3), and relations between them are defined by mappings. The Hamming

£000600000006000 #seq . #str ‘ L\ ‘ ‘
! %m e ==
s 17 SNVIVIVIVIVIVIVIVIVIVIVIVIVIN M X
: =t X
A i L MO M N % 02
e tet, 5 17 7
N= N e
GGGGGGGGGGGGGGGGG CCCCCCa24)))))) time
sequence space shape space
D: (9,dy) = (S,ds) Y: (S,dg) =
X —_— S =dX) —_— =¥Y(S)
sequence structure

Fig. 3 The paradigm of structural biology. The relation between sequence, structure, and fitness is

sketched as a sequence of two mappings from sequence space (Q(127)) into shape space (8(127)) and
from shape space into nonnegative real numbers (R ). In order to facilitate drawing, sequences
are assumed to chosen from a two-letter alphabet (C,G). For [ = 17, sequence space contains
217 = 131,072 sequences, which form 530 different acceptable RNA secondary structures
(Schuster 2006). These structures determine the fitness values f. Sequence space and shape space
are metric spaces with the Hamming distance dy and some structure distance d, representing the
metric. Parameter space is based on real numbers R, and the absolute value of the difference,
Ifi — f;| = dj, is the metric
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Fig. 4 Structures of the one-error mutant spectrum of a small RNA molecule. The figure presents
the structures of all 51 single point mutations of sequence Xy. In total, 16 different structures Sy
with k =0, 1,...,15 were obtained. Structure Sy in the center is the structure of the reference
sequence X, and it is most frequent and occurs 15 times. The structures on the periphery are
ordered according to their appearance in the series of consecutive mutations (Fig. 5). Inserted in
the arrows pointing from Sy to the individual structures S; are (i) the numbers of occurrence
(color) and (ii) the base pair distance d(s)k (larger numbers in gray). All drawings of structures begin
at the 5-end of the RNA, which is always the left end of the graph or string (in upright
positioning), nucleotides are shown as beads, and base pairs are connected by a colored thick line.
Colors encode number of base pairs: red 7, black 6, green 5, blue 4, pink 3, and lavender 2

distance dy (Fig. 1) is the natural metric in sequence space for point mutations as
the dominant changes in sequences. The base pair distance dy can be chosen as a
metric in shape space being the space of all RNA secondary structures that can be
formed by all sequences of a given length /. It is defined as the number of base pairs
in which two structures differ, for example, the base pair distance between the
structures Sy and S; (Fig. 4),

pks@tbi.univie.ac.at



Quasispecies on Fitness Landscapes 73
s { (- -)))-)))} e
L))
The three inner base pairs of the hairpin loop (Fig. 4) remain the same, but the three
outer base pairs are replaced by three other base pairs, and this leads to a structure
distance of d, = 3+3 = 6, since three base pairs have to be removed first and
then three base pairs are added.

At the current state of the art, a determination of kinetic parameters from
structures is not possible without largely simplifying assumptions. In a previous
evolution model, we estimated replication parameters either by the free melting
energies of structures, —AG} or more elaborately by cooperative melting of
stacking regions (Fontana et al. 1989; Fontana and Schuster 1987) and assumed the
degradation rates to be determined by the unpaired nucleotides in the structure. This
model introduces complex behavior since optimization of fitness leads to frustration
(Toulouse 1977, 1980) in the sense of spin glass theory (Edwards and Anderson
1975; Sherrington and Kirkpatrick 1975). The RNA-based model has been used to
analyze replication and mutation-based evolution in silico in population of up to
10,000 RNA molecules (Fontana and Schuster 1998a, b). In particular, mean fitness
in the population shows a stepwise approach toward the optimum value and tran-
sitions can be classified as minor changes in structure occurring at almost constant
mean fitness and major changes, which are commonly accompanied by fitness
increases.

The bizarre nature of sequence to structure and structure to fitness mappings is
illustrated by means of a simple but nevertheless representative example consisting
of a very small RNA molecule with chain length / =17 and the sequence
X = (AGCUUACUUAGUGCGCU). This chain length is just enough to form a
maximum of seven base pairs, and all properties can be either counted or calculated,
or seen by inspection. Despite its simplicity, the example reflects the most important
features of sequence structure mappings. The minimum free energy structure Sy is

calculated’ for Xo, and a free energy of folding AG(()OOC) = AG8 = —6.39 kcal/mole
is obtained. Then, the same computations are performed for all 51 one-error mutants
of Xy and the numbers of occurrence for the individual structures are enumerated.
The results are shown in Fig. 4: The most frequent structure is the structure of the
reference sequence, Sy, and it is found 15 times, followed by structure S;3, which
appears eight times, S; four times, S3, Sg, Sy, and Sy4 three times each, S;, S and
S5 twice, and finally S,, S4, Ss, S¢, S1; and Sy, which occur only once. Thus, the
local degree of neutrality in sequence space is A(Xo) = 0.29. Considering the free
energy values of folding, 4G in Fig. 5 (upper plot), there is no relation between the
frequency of occurrence and the folding energy: The most stable structure S;
(red) appears three times, whereas the least stable structures S, and Si3 occur

SStandard software packages are available for RNA secondary structure computation, for example,
mfold (Zuker 1989) or the Vienna RNA package (Hofacker et al. 1994; Lorenz et al. 2011).
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Fig. 5 Free energy of folding and base pair distances of one-error mutants. The upper plot shows
the folding energies at 0 °C of the 51 one-error mutants of X,. At each position 1-15, the sequence
of mutants is N— A, N — U N — G, and N — C, where the trivial replacement leaving the
sequence unchanged is omitted (N = {A, U, G, C}). The folding energy of the reference sequence
is shown as dotted line, and the color code refers to the number of base pairs (see caption of
Fig. 4). The lower histogram presents the numbers of structures in the mutant spectrum of X at a

given base pair distance dj, from the reference structure Sy = @(Xo)
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together nine times. As expected, there is appreciable scatter in folding energies
between sequences, which form the same minimum free energy structures.
Additional information on the ruggedness of the free energy landscape is provided
by the correlation length of the folding energies, (/) (Fontana et al. 1991, 1993): For
a chain length / = 17 and the natural four-letter alphabet, a free energy correlation
length of ¢(17) =~ 3.0 is computed, which means that the energy values at Hamming
distance dy = 3 have a correlation coefficient of 1/e = 0.37 with the energy of the
reference sequence Xo, at dy = 10, and this coefficient is only 0.036 implying that the
neighborhood memory on X, has practically faded out and the statistics of the energy
distribution is about the same as found at any randomly chosen point in sequence
space. Eventually, we consider the relation between similarities between structures
as expressed by the base pair distance ds (Fig. 5, lower plot): The most frequently
occurring distance is dy, = 8(9x ), followed by d5, = 1 and d, = 9(7x each), and
dy, =10, d5, =5, and d§, = 6(6,5 and 2, respectively).

The experimental approach to determine fitness landscapes of small RNA
molecules has been profiting substantially from the availability of deep sequencing
and high-throughput methods (Pitt and Ferré-D’Amaré 2010). We mention here
only recent work that succeeded to explore almost the entire sequence space of a
small RNA molecule of chain length [ = 24 (Athavale et al. 2014; Jiménez et al.
2013) and refer to Chap. 3 (this volume) for details.

A comparison of the landscape obtained from mapping structures into folding
energies (Fig. 5) with the Nk model is tantamount to estimating the value of k for
N =1, the chain length of the RNA sequence. In other words, we need to answer
the question: ‘Mutations at how many positions along the sequence change the free
energy of folding?’ Considering the upper plot in Fig. 5, we see that mutations in
the unpaired nucleotides of the hairpin loop leave AG) unchanged, and in addition,
we find seven more mutants exhibiting values close to the reference value. In total,
we have 16 out of 51 mutations leaving 35 cases of change. Normalizing to sites
gives a vague estimate of k = 11 suggesting that on average, 11 positions out of 17
exert influence of the energy of folding. As expected, a realistic landscape built
from sequence-dependent biopolymer properties is very rugged but not completely
uncorrelated as would be an Nk model with k =1— 1 = 16. The correlation
although weak comes from the regularities of mapping structures into folding
energies, and more base pairs yield higher energies in absolute value, for example.

3 Mutations and Population Dynamics

Before the seminal paper by Watson and Crick (1953), the concept of mutation was
nebulous and it required molecular insight in order to conceive appropriate models
for the replication process. After the proposal of the structure of, b-DNA was on the
table; however, one could immediately guess how nucleic acids replicate and
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mutate as the authors themselves stated: ‘It has not escaped our notice that the
specific pairing we have postulated suggests a copying mechanism for the genetic
material.’

Mutation models. Two concepts are currently prevailing, which originate from
different mutation mechanisms: (i) the quasispecies model introduced in 1971 by
[Eigen (1971), Eigen and Schuster (1977)] and (ii) the selection—mutation model
attributed to Crow and Kimura (1970, p. 265, Eq. 6.4.1), which is also know as
paramuse (parallel mutation and selection) model (Baake et al. 1997). Mutation in
the quasispecies model is attributed to the reproduction process, and correct
replication and mutations are visualized as different reaction channels of the same
replication step (Chap. 1, Fig. 1), whereas mutation in the paramuse model is due to
some external process independent of reproduction [Fig. 6; for reviews, see Baake
and Wagner (2001), Burger (1998)]. Nevertheless, the kinetic equations resulting
from both models are closely related. The difference in the mutation mechanism has
biological consequences: The number of mutations is proportional to the number of
reproduction events or generations in the quasispecies model, whereas propor-
tionality with respect to time is predicted by the paramuse model provided the
external driving forces causing mutation are constant. Observations on organisms of
largely different genome size from viroids to higher eukaryotes reveal roughly
constant spontaneous mutation rates for classes of organisms. The mutation rates
per genome and replication event range from 1 found with viroids, RNA viruses,
and also with sexual reproduction of higher eukaryotes to 1/300 for microbes with
DNA-based chromosomes (Drake et al. 1998; Gago et al. 2009). Proportionality
with respect to real time is the basis of the molecular clock model (Ho and Duchéne
2014; Lanfear et al. 2010), which apart from still to be explained vagaries seems to
be correct for vertebrates. Accordingly, it is a matter of the problem under con-
sideration whether quasispecies or paramuse is the model of choice.

At this point, we would like to mention that substantial insight into quasispecies
and error thresholds were gained by showing that the value matrix W of the qua-
sispecies equation is equivalent to the row transfer matrix of a 2p Ising model of
magnetism (Leuthdeusser 1986, 1987). In particular, the analogy to spin systems

A A
+ +
k,; ;
<—9 Xj _— Xj + XJ +
k.
+
. Wji

Fig. 6 The Crow-Kimura model of reproduction and mutation. The Crow—Kimura model
combines error-free reproduction with replication-independent mutation. Although it leads to the
same differential equation (7a) as the quasispecies replication—mutation model shown in Chap. 1
(Fig. 1), the interpretation of the parameters and the physical restrictions on them are different
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allowed for the application of methods forms statistical physics and the general-
ization to spin glasses made it possible to show straightforwardly that the transitions
on simple and more complex landscapes may fulfill the requirements of first-order
phase transitions in the limit of infinite chain lengths / (Tarazona 1992). Similarly, it
was shown that the paramuse model corresponds to the Hamiltonian of an Ising
quantum chain (Baake et al. 1997; Baake and Wagner 2001) and methods from
quantum statistical mechanics were successfully applied in the search for solutions
of the replication—mutation problem [see Chap. 5 and, for example (Bratus et al.
2014; Galluccio 1997; Kang and Park 2008; Park et al. 2010; Saakian and Hu 2006;
Saakian et al. 2004) as well as the review (Baake and Gabriel 1999)].

The kinetic differential equation of the quasispecies model [Chap. 1 (this vol-
ume), Eq. (3)], formulated in normalized variables x; = [X;]/ 32N [Xi] with

N . . . .
> iy % = 1 can be easily written in matrix form,

dy, & _
d_tj = ZjSfixi —xf(t); j=1,...N or
i=1 (7a)
dx _
—=(Q-F—f(t
= (0 F )
where x = (x;,...,xy)" is the column vector of normalized concentrations

Zﬁil xi=1,0={Qy;i,j=1,...,N}, is the mutation matrix—with Q; being the
frequency at which X; is synthesized as a correct (i = j) or erroneous (i # j) copy of
the template X;—and the fitness values f; are contained in the diagonal matrix
F = {F; =f;9;j;i,j = 1,...,N}. The mean fitness of the population is denoted by
F(t) = °X fxi(2). In case of the paramuse model, we obtain:

WY ey o = (Few-fw (b

Jj=

Herein, the mutation matrix is denoted by p.
Both Egs. (7a) and (7b) can be easily cast into identical form by introducing the
value matrix W

%:(W—f(r))x with W=Q-F or W=p+F, (7¢)

respectively. The resulting Eq. (7a—7d) is mildly nonlinear and can be solved by
means of an integrating factor transformation and the solution of the remaining
eigenvalue problem (Eigen et al. 1988, 1989; Jones et al. 1976; Thompson and
McBride 1974). The value matrix W has to be a primitive matrix in order to fulfill
the conditions for the applicability of the Perron—Frobenius theorem (Seneta 1981,
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pp. 3—-11 and 22-23),° which guarantees that (i) the largest eigenvalue is real,
positive, and non-degenerate; and (ii) the largest eigenvector has only strictly
positive components. Exact solutions of Eq. (7c) are obtained through diagonal-
ization of the value matrix: H.W.B = A where the diagonal matrix A = {A;; =
Ji;i=1,...,N} embodies the eigenvalues A;. The matrices H = {h;} and B =
{b;} = H™! fulfill the eigenvalue equations H.W = A.H and W.B = B.A and
contain the left-hand and right-hand eigenvectors of the value matrix W, which in
explicit form are the row vectors hy = (h;,i = 1,...,N) and the column vectors
b; = (bj;i =1,...,N)". The solutions can now be expressed by

%(1) = > e bk o0y huaa(0) exp(/u)
! S Sy bie Yoty hiai(0) exp ()

_ Zivzl bjkﬁk(O)exp()vkt) ith 0) = a h 0
SIS by O enpliay " PO = 2 huan(0)

(7d)

wherein the eigenvalues /; are the rate parameters and the coefficients f3;(0)
encapsulate the initial conditions.

The difference between the two mutation models cannot be seen from these
mathematical results and boils down to two issues: (i) The quasispecies model treats
replication and mutation as parallel reaction channels of one reaction step, and
accordingly, the value matrix is a product of the mutation and the fitness matrix,
whereas reproduction and mutation are independent reaction steps in the paramuse
case and the two matrices are added; and (ii) the mutation matrix Q of the qua-
sispecies is a stochastic matrix, vazl Qi = 1, because a replication has to be either
correct or error-prone, whereas the condition va: 1 & = 0 is used in the paramuse
model. In addition, mutation is commonly restricted to single point mutations in the
paramuse model. As said before, apart from these technical details, the mutation
mechanisms shown in Fig. 1, Chap. 1 (this volume), and Fig. 6 are dealing with
entirely different situations. In the quasispecies model, mutation occurs during the
reproduction process and this is the situation that is relevant for viruses (see
Chaps. 7, 9, 12, and 14, this volume).

Deterministic and stochastic autocatalysis. In order to set the stage for a discussion
of the dynamics of quasispecies formation, we consider first the simple autocat-
alytic chemical reaction A+ X — 2X in the well-defined and controllable envi-
ronment of a flow reactor (Schmidt 2004, p. 87ff). In order to relate to the
quasispecies concept, we interpret simple autocatalysis as a replication—mutation
system in which all individual sequences are lumped together in one species:
X=X ®&X,® ... Xy, and hence, the stochastic and deterministic variables take

on the form C = Zi\[: 1 Xiand ¢ = vazl X;, respectively. A solution containing the

SA matrix W is primitive if (i) all the elements of matrix W are nonnegative and (ii) some finite
power W is a positive matrix, which means that all entries of W" are strictly positive.
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compound A in concentration ao flows into the reactor with a rate parameter r
[vol x time '], and the inflow is compensated by an outflow of the volume of
reactor solution, thus yielding the reaction equations

ag.r

* — A; (8a)
A+ XX, (8b)
Ao, and (8¢)

X0 (8d)

The rate parameter f is the analogue to fitness in the biological models and has the
dimension [vol x mole™! x time~'].” The kinetic differential equations are obtained
straightforwardly

d

e (ap — a)r — fac and

dc (8e
d—t:fac—cr: (fa — r)e,

The equation is also valid for the simplified system with the lumped concentrations
c(t) = SN, x; if we replace the parameter f by the function f(z) = S°r_, fixe(1)/
ZQ’ZI X (1), which represents the mean fitness of the population. Strictly speaking,
the mean fitness is a function of time, and for common initial conditions, it is a
non-decreasing function of time, and then, evolution is tantamount to fitness
optimization. For the purpose of illustration, however, we shall assume a constant
mean fitness corresponding to the rate parameter: f =f. Then, it is straightforward

to analyze the stationary states: da/dr = 0 and dc/dt = 0 give rise to two solutions,
S 1 and S2,

S1

- f e, =ag—r-f~! asymp.stable for ag > r-f~! (8f)
Sg .

=ag, c=0 asymp.stable for ag<r-f!.

S:I QI

State S corresponds to virus infection with a non-vanishing stationary virus con-
centration in the host, whereas S, models a situation where the virus dies out and
the host recovers from the disease. With respect to stability, the two states are
mutually exclusive: Si, the state of infection, requires a minimum amount of sus-
ceptible material—cells or other forms of nutrients—and is asymptotically stable in

the range ag > r/ f, whereas the state of extinction S, is asymptotically stable if

"We remark that autocatalytic steps play the key role in models of theoretical epidemiology.
Features of the mechanism (8a-8g) for autocatalysis in the flow reactor remind, for example, of
dynamical properties of models for infectious diseases (see, e.g., Mollison 1995).
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ap<r/ f . At the inflow concentration ay = r/ f , the system exhibits a transcritical
bifurcation [see, e.g., (Strogatz 1994, pp. 50-52)].

In order to analyze the influence of stochasticity on the reaction scheme (8a—8g),
we formulate a bivariate master equation in the two random variables A and
C= Zivzl Xy, where X} is the random variable associated with Xj, with the
probabilities P4 = P(A(t) = A) and Pc = P(C(r) = C), respectively. This master
equation is the probabilistic analogue to Eq. (8e),

a. é“t(t) = agrPa_1(1) + (fA - C — apr — rA)P(1)

— (FA+1)(C—1) = r(A+1))Pas (1)
aPet) A (82)
T Zf(A—‘r 1)(C — I)Pcfl(l) — (fA . C+rC)Pc<l)

+r(C+1)Pcy1(1),

which describes the probabilistic development of populations starting from initial
probability distributions P4(0) and Pc(0). For practical purposes, sharp initial
distributions, P4(0) = 44, and Pc(0) = d¢ ¢,, are almost always applied, because
they are technically simpler to handle and they allow for direct comparison of the
solutions derived from the ODE (8e) and from the master Eq. (8g). It is straight-
forward to show that the initial condition C(0) = Cy = 0 implies C(¢) = 0 for all
t > 0. Whenever the number of autocatalytic units has reached the value zero, it
remains there or in other words, the state S»(C =0) is an absorbing state or
boundary. This fact represents also the major difference between the deterministic
and the stochastic model of autocatalysis: Since S, is the only absorbing state of the
system, all trajectories have to converge to this state in the limit of infinite time,
lim,_, C(¢) = 0. Under conditions at which the state S; is asymptotically stable in
the deterministic system (8e), ap > r/, 'f, the master equations support a quasista-
tionary state (Nasell 2011): The concentration of the autocatalyst approaches a
constant value, and for a sufficiently large initial number of autocatalytic units C,
C(0) = Cy > Cepi» this value coincides with the value of ¢ at C(¢) ~ ¢ = ag — r/f
and stays at this value for very long time, although the state S, will be reached with
probability one at infinite time. For smaller values of Cy, the system converges to S|
or goes extinct with a probability distribution depending on Cy. In Fig. 7, deter-
ministic solution curves of (8¢) are compared with the results of trajectory sampling
for the master Eq. (8g).

There is one additional fundamental difference between the deterministic and the
stochastic solution, which is also related to the fact that S, is absorbing. The
deterministic equations are formulated in continuous variables, a(z) and x(z), which
can become arbitrarily small without vanishing. This is not true for the stochastic
variables, A(t) and X'(), which are integers by definition and take on only the values
0,1, .. .. For sufficiently small values of X'(0), the system may die out in the early
phase with a certain probability, which decreases with increasing X'(0). The problem
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<« Fig. 7 Autocatalysis in the flow reactor. The figure illustrates two different sources of
stochasticity in autocatalytic systems: (i) Random fluctuations become important at small particle
numbers for every chemical reaction and (ii) the stochastic autocatalytic reaction has an absorbing
boundary for zero autocatalytic units as this may lead to significant differences between the
stochastic and the deterministic system. The topmost plot shows the expectation values of
concentrations within the one standard deviation confidence interval, E + ¢, for the input material
A and the autocatalyst X calculated from a sample of 1000 trajectories calculated by means of an
algorithm attributed to Daniel Gillespie (1977). The expectation values are compared with the
deterministic solution integrated from the ODE (Eq. (8e); dotted lines; x(0) = 10). The plot in
the middle shows the same system with a different initial condition (x(0) = 4). The change in the
deterministic ODE integration concerns the initial phase, and both curves converge to identical
stationary values, but the expectation value of the stochastic process leads to much smaller
stationary amounts of autocatalyst when the initial value x(0) was smaller. The plot at the bottom
is dealing with the same reaction but with ten times larger particle numbers that give rise to smaller
fluctuations relative to the expectation values. Shown are the expectation values within the one
standard deviation confidence interval, E + ¢ for the input material A and the autocatalyst X
calculated from a sample of 100 trajectories. The deterministic solution curves coincide with the
expectation value within the line width. Color code: a(f) and E(.A(t)) red, and x(¢) and E(X(t))
black. Choice of parameters for upper and middle plot: ap = 200, r = 0.5 and f = 0.001; initial
conditions: a(0) = 1 and x(0) = 4 or x(0) = 10; choice of parameters for lower plot: ay = 2000,
r=10.5 and f = 0.0001; initial conditions: a(0) = 10 and x(0) = 100

is easily visualized by considering the probability densities P(.A(t)) and P(X(t)),
which are both bimodal for sufficiently long time and where the two modes corre-
spond to the two states S; and S,. Changing the initial condition, X'(0) changes the
relative weights of the two modes but not the (local) probability distributions around
the modes themselves. In other words, for smaller initial numbers X(0), the prob-
ability to die out in the early phase is larger, more trajectories get absorbed in state
S, and the expectation value E(X'(¢)) is diminished accordingly. This fact is nicely
demonstrated by a comparison of the two plots at the top and in the middle of Fig. 7,
which differ only in the initial condition X(0) = x(0) for which the values 10 or 4
were chosen. The deterministic solution curves converge to the same stationary
values, whereas large differences in the stationary expectation values are observed.
The phenomenon is important in virology and implies that initially small numbers of
infectious units need not result in the development of disease.

Provided X'(0) has been chosen large enough such that bifurcation in the early
phase of the process plays no role, the stochastic expectation value follows the
deterministic ODE solution except minor deviations, which disappear in the
longtime limit when the (quasi-)stationary state is approached. Minor deviations
between the stochastic expectation value and the deterministic solution are observed
in full agreement with the analytic solution for the simple irreversible autocatalytic
reaction A + X — 2X (Arslan and Laurenzi 2008). Such small deviations have to be
expected since the coincidence of the deterministic and the stochastic approach is
true for linear systems only, in particular for first-order chemical reactions (van
Kampen 2007, pp. 122-127). Autocatalysis in the flow reactor exhibits another
feature: The fluctuations in the concentration of input material A meet the expec-

tations for a conventional chemical systems and are near \/N, whereas the
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fluctuations around the expectation values of the concentration of the autocatalyst X
are larger in agreement with the mentioned analytical results.

Deterministic and stochastic quasispecies dynamics. Although total virus popula-
tions are commonly large, the importance of stochastic effects cannot be ruled out
for reasons that are related to the existence of an absorbing boundary S;. As we
outlined for the simple autocatalytic process in the previous paragraph, initial
phases have no influence on the deterministic longtime results but may bias the
stochastic expectation values.

In order to be able to compare deterministic and stochastic results, we choose
again the controllable experimental setup of a flow reactor. The model simplifies the
set of materials required for replication by the assumption of a virtual compound A
that flows into the reactor with a rate parameter r in the form of a solution with
concentration ay. As before, the inflow is compensated by an outflow of the volume
of reactor solution resulting in reaction equations that have been analyzed by
Schuster and Sigmund (1985):

* = A; (%a)

A+ X 5 X+ Xy, ik =1,...,N; (9b)
AL 0; and (9¢)

Xy —0o, k=1,....N, (9d)

where the parameters wj, = Qpfi are the same as used in Egs. (7a) and (7c). The
kinetic differential equations are

da N
i (ap —a)r — a(Zk—lﬁ‘x")’
f i (%)
dxk N
5= a(Zl_Zl Oufixj) —xxr, k=1,...,N,
whereby we applied concentrations, @ = [A] and x; = [X¢|(k = 1,...,N), and made

use of the condition vazl Qi = 1. Equation (9a-9e) can be modeled stochastically
by means of a master equation that allows for numerical computation of trajectories
by means of a simulation algorithm (see Fig. 8), which is attributed to Gillespie
(1977, 2007).

The main issue of this section is a comparison of quasispecies formation
according to (9a—9e) between the deterministic and the stochastic approach.
Replication and mutation at constant total concentration, ¢ = va: | Xi(f) = const,
have been analyzed as a multi-type branching process (Demetrius et al. 1985), and
the major result was that the longtime solutions of the ODE (7a) coincide with the
stationary expectation values of the branching process. Since analytical results are
available for the replication—mutation mechanism in exceptional cases only, the
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Fig. 8 Quasispecies formation in the flow reactor. The plots show the results of sampling 100
trajectories for the reaction mechanism (9a—9e) calculated by means of the Gillespie algorithm
(Gillespie 1977). The smallest possible system was chosen: [ = 2 with a master sequence X; (I'g)
and three mutants X;, X3, and X4, where X, and X3 form the one-error class I'y and yield identical
deterministic solutions, and X4 is the only sequence of the two-error class I',. Shown are the
expectation values within the one standard deviation confidence interval, £+ g, and the
deterministic solutions obtained by integration of the ODE (9¢) (dashed lines). Color code: a(t)
and E(A(t)) red and pink confidence interval, x,(¢) and E(X(t)) black and gray confidence
interval, x,(f) and E(X(t)) yellow and confidence interval shown by thin lines, x3(t) and
E(X5(t)) green and confidence interval shown by thin lines, and x4 () and E(X4(t)) blue and light
blue confidence interval. A single-peak landscape was used, and the uniform error rate model was
applied. Upper plot, choice of parameters: ayp = 200, r = 0.5, f,, = 0.011, f = 0.010 and p = 0.1
and initial conditions: a(0) = x;(0) = x2(0) = x3(0) = x4(0) = 1; lower plot, choice of param-
eters: ap = 2000, r=0.5, f,, =0.0011, f=0.0010 and p=0.1 and initial conditions:
a(0) = x1(0) = x2(0) = x3(0) = x4(0) = 10
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comparison of deterministic and stochastic quasispecies formation in the flow
reactor is made here by means of numerical simulation. We choose two different
initial conditions: (i) uniform distribution far away from the stationary distribution
and (ii) the stationary distribution of the deterministic system. In the former case,
the approach toward the stationary distribution is fast, and apart from some minor
deviations, the expectation value obtained for the quasistationary distribution of the
master equation is identical to the solution of the kinetic ODE (Fig. 8). The qua-
sispecies in the flow reactor exhibits the same feature as autocatalysis: The fluc-
tuations in the concentration of the input material A are near /N, whereas the
fluctuations around the expectation values of concentrations for the members of the
quasispecies, X;, are larger, even larger than for autocatalysis. Again, minor devi-
ation between the stochastic expectation value and the deterministic solution has to
be expected and is observed indeed. Necessarily, the stochastic expectation and the
deterministic result coincide at the stationary values.

A natural question to ask is whether or not the ranking of genotypes according to
the frequency of occurrence in the population is changed through the action of
fluctuations or, in other words, can the fittest genotype temporarily be outgrown by
another sequence in the stochastic system. The answer is straightforward: The most
important source of the fluctuations is self-enhancement of the replication process;
the differences in the expectation values of the individual concentrations, E(X;(z)),
become smaller when the mutation rate increases; and thus, stochasticity may well
interfere with the quasispecies structure in small populations or at high mutation
rates. The two examples in Fig. 8 indicate two different scenarios: At the lower
sample size (ap = 200), the confidence intervals overlap and accordingly, we
cannot expect that the most frequent sequence, which we isolate at some instant 7y,
is the same as the most frequent sequence isolated at ,, or in other words, the
temporarily most frequent molecular species need not be fittest one. For the larger
sample size (ap = 2000), however, the confidence interval of the master sequence
is well separated from the confidence intervals of the mutants and we can expect to
find the master sequence almost always being present at the highest concentration
irrespectively of fluctuations in the concentrations.

In summary, stochastic quasispecies formation meets all expectations from
stochastic chemical kinetics. The most important difference to the deterministic
approach concerns the fact that the quasispecies is quasistationary in the stochastic
model, the only asymptotically stable state is the absorbing boundary, and every
autocatalyst including mutant distributions such as quasispecies has to die out in the
limit + — oo. In practice, this result is of academic interest only and has no con-
sequences for real systems because the time to extinction is of hyper-astronomical
length. A practical consequence, nevertheless, can arise from the bifurcation at
short times: For small particle numbers, Co = >3, X;(0) <10, the replication—
mutation ensemble dies out with a non-negligible probability before it comes close
to the quasistationary distribution. Apart from these specific effects, we obtained the
general results that—not unexpectedly—concentration fluctuations are the more
important and the higher the mutation rates, the smaller the population sizes are.
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4 Quasispecies and Error Thresholds

Three kinds of studies on the dependence of quasispecies on mutation rates were
performed: (i) analytical approximations using simple fitness landscapes and sim-
plifications of the mutation matrix, for example, the uniform error rate model or the
zero mutational backflow approximation; (i) ‘exact’ numerical computations® on
simple fitness landscapes with the full uniform error rate mutation matrix; and
(iii) fully resolved fitness landscapes with the full uniform error rate mutation
matrix. In general, we shall consider here stationary solutions of the replication—
mutation ODE (7c¢) as functions of the error or mutation rate parameter per
nucleotide site and replication denoted by p. In order to be able to handle the
problem in a transparent way, we assume that the mutation rate is independent of
the position on the sequence and characterize this simplifying assumption as the
uniform error rate model. Then, the elements of the mutation matrix take on the
simple form

0s(p) = (1 =p) p% = (1= p)le®l with &=L, (10)

wherein dg’ is the Hamming distance between the two sequences, X; and X;, and p is
the mutation rate parameter. We shall assume further that we are dealing with
binary sequences.” The concept of the error threshold is now introduced in three
paragraphs reporting (i) ‘exact’ numerical results and two approximations, (ii) the
zero mutational backflow assumption, and (iii) the phenomenological approach
conceived by (Eigen 1971).

Solutions without approximation. ‘Exact’ solutions of the replication—mutation
Eq. (7d) are obtained in terms of eigenvalues and eigenvectors of the value matrix
W that, as said before, has to be a primitive matrix in order to fulfill Perron—
Frobenius theorem (Seneta 1981, pp. 3—11 and 22-23). This theorem guarantees
several important properties of the eigenvalues and eigenvectors of W. Two of them
are of particular importance for the analysis of quasispecies and error thresholds:
(i) The largest eigenvalue of W, A; is non-degenerate, real and positive,

/l] > |A2‘ZM3|22MN|; /11 = |/11‘ >0,

and (ii) all components of the right-hand eigenvector b; associated with A, are
strictly positive. Both properties are required for physically meaningful results of
the replication—mutation problem. Uniqueness of the solution means that the sta-
tionary mutant distribution is completely determined by the fitness landscape,

8By the notion ‘exact,” we mean here ‘without approximations.” In order to make clear that
numerical computations can never be exact in the strict sense, we put exact between apostrophes.
°The use of binary sequences (i = 2) facilitates several operations and implies no loss of
generality. Natural four-letter sequences (k = 4) can be encoded by binary sequences of twice
the chain length.
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L=A{fi;k=1,...,N}, and the matrix of mutation frequencies, Q. Exclusively
positive components of the eigenvector b; implies that all mutants are present in the
mutant distribution and no mutant can vanish as a consequence of consecutive
replication and mutation events. The second issue has been discussed already in
Chap. 1 (this volume). It is necessary to distinguish between the deterministic
approach, which allows small concentrations down to any fraction of single
molecules, and the stochastic approach where random variables are restricted to
positive integers, although probabilities and moments of distributions can be
arbitrarily small. In reality, a mutant distribution will consist always of a core of
mutants, which are permanently present, and a fluctuating periphery.

After sufficient long time, the solutions of the replication—mutation Eq. (7d) are
dominated by the largest eigenvalue A;:

X (1) ~ bafi(0)exp(dar) by
i Zi\[:l bi11(0) exp(A12) Zf\’zl biy

The longtime solution is independent of time # and initial conditions f,(0). It is
fully determined by the fitness landscape and the mutation matrix, and it represents
the genetic reservoir of an asexually reproducing species and has been characterized
as quasispecies (Eigen and Schuster 1977, pp. 541, 549 ff.): ‘A quasispecies is
defined as a given distribution of macromolecular species with closely interrelated
sequences dominated by one or several (degenerate) master copies.” Here, we can
make it more precise by saying that the concentration ratios of the individual
components are given by the largest eigenvector b; of the value matrix W. A
quasispecies contains one fittest genotype X,—or in case of neutrality, several
fittest genotypes—surrounded by a cloud of closely related mutants. The dominant
genotype X,, is characterized as master sequence. The relative stationary concen-
trations of individual mutants, X;, are determined by their own fitness f; and by their

. . H _ gH
Hamming distance from the master sequence, dxjx,,, = djm.

The computation of ‘exact’ numerical solutions is facilitated enormously by
using single-peak fitness landscapes (3d) and adopting the uniform error rate
approximation. Then, all mutants in a given class are described by the same ODE

=1X; for larget.

and their concentrations can be lumped together into a class concentration: y;(t) =

fﬁlx,- with X;€ I'y, and N, = <l> (Nowak and Schuster 1989; Swetina and

k
Schuster 1982). Figure 9 shows the mutant distribution of a quasispecies expressed
in class concentrations as a function of the mutation rate parameter p. Starting at
p = 0, where the master sequence represents the selected genotype, the relative
concentration of the master sequence in the quasispecies decreases gradually and
mutants gain in relative amount. At some critical mutation rate, p = py, the qua-
sispecies distribution changes abruptly, and within a short interval 4p, the sequence
distribution approaches the uniform distribution, U =x; = 1/?Vi=1,...,N
(Swetina and Schuster 1982), which is the exact solution at p = % The (approxi-
mate) uniform distribution then remains the stationary solution of the ODE (7a) in

pks@tbi.univie.ac.at



88 P. Schuster

T 1.0 Frer——r—
2 08f S
1=
AN
c L Y
N\
2 o6
m | \
b \
c \
o | \
g 0.4 A
S o.
(&) L \
[0 \
= .
4(—“- - \
3 02 :
| \ |
2 ——————————

0.0 s = :

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
—— mutation rate p ——>

0.12

0.10F /
0.08f >

0.06|

’

0.04F

0.02f

— relative concentration y, (p) ——>

0.00l
0.00180 0.00185 0.00190 0.00195 0.00200

—— mutation rate p ——

Fig. 9 Quasispecies as a function of the error rate. The upper plot shows numerically computed
‘exact’ curves. The dashed gray line indicates the error threshold at p., = 0.001904 obtained by the
phenomenological approach, and the dashed violet curve is the phenomenological total
concentration ¢ (p) obtained from (13). The lower plot is an enlargement and shows the error
threshold derived from the mergence of the concentration curves for complementary classes, Iy and
I';_i (dashed black line at pgfg = 0.001943). According to our knowledge, the work of (Swetina and
Schuster 1982) was the first publication showing this shape of an error-induced transition in
quasispecies. The positions of the error threshold calculated from level crossing are as follows:
p? =0.00192229,0.00194101,0.00194288,0.00194307,and 0.00194308 for ¢ = 10721073,
1074107, and 107°. Parameters: [ = 50, f,, = 1.1,f_,, =f = 1.0

<3 and at p = %L{, it becomes the exact solution. The
transition at p = p, increases in sharpness with increasing chain lengths [ and
reminds of cooperative transitions known in the theory of polymers (Lifson 1961;

the entire range p, <p < 1
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Schwarz 1968; Zimm 1960). Exploiting the analogy of the quasispecies approach
and equilibrium statistical mechanics of a two-dimensional spin lattice Tarazona
(1992) was able to show that the error threshold on the single-peak fitness landscape
corresponds to a first-order phase transition in the limit of infinite chain lengths /.

Two quantitative measures for the location of the error threshold are obtained by
straightforward and simple numerical procedures:

(1) Level crossing determines the p-value at which the curve for the stationary
concentration of the master sequence, X, (p) Crosses a predeﬁned concentra-

tion level, X, (pt(f )) = 1) with ¥ being a threshold value that has to be chosen
small enough for a given chain length L.'” In the example shown in Fig. 9, the
convergence of pf?) with decreasing values of ¥J is very fast. Appropriately, the
converged limit is taken as the position of the transition. We remark that we
are dealing here with semiconvergence because the curve bends off to the at
still lower ¥-values in order to reach the point X,,(}) = 1/2".

(i) Complementary class mergence makes use of the fact that the uniform dis-

tribution implies coalescence of the concentrations, y; = Zi\i L Xi, Xi€l'y, for
complementary  classes  (I'x,I'j—x), since ( Ilc) = ( / _l k> and

Ve =Yk = <]l€>/2’ Accordingly, the p-values p = Efl’;)k at which the

difference 4y = |yx — yi—«| becomes as small as some predefined value
(4k)., = 0 can be taken as the kth coalescence error rate. Then, a measure for
the sharpness of the transition is given by the width of the band spanned by the
different locations of (p,(:é)k; k=0,...[4, ie., Apg,?g) = max((pgf;)k) -

min((pgfg})) ¢ with £ = 0,..., |£]. In the cases studied here, the values (p ((—)L) i

did not change monotonously with k£ but increased from k£ = 0 up to some
maximum value but further on decreased until £ = L%J has been reached
(examples for class mergence are presented in the paragraph error thresholds
on simple landscapes). It is important to stress that both measures for the
location of the transition, the converged value from level crossing as well as
the value from complementary class mergence, yield very similar results for
realistic chain lengths ( > 50) as shown in Fig. 9 for a single-peak landscape.
Despite the fact that we have no analytical expression for py. and p,,, the
numerically calculated values are nicely confirming the existence of the error
threshold as a transition phenomenon of the cooperative transition type.

1OFor sufficiently long sequences, the particular choice 9 = 0.01, 0.001 or 0.0001 is unimportant
because the results for small values are very similar and converge to a limit (see Fig. 9), but for
short chains, the concentration values of the uniform distribution I/ set a lower limit for X,, (p). For
example, in case of [ = 10, the value X,,(3) = 1/2' = 1/1024 is compatible only with the choice
¥ = 1/100 because ¥ = 1/1000 is too close to X, (3).
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The zero mutational backflow approximation. The notion mutational backflow
concerns mutations from the mutant cloud back to the master sequence:

N N
Dx,xy = D Owff= Y Wu. (11)

j=Lj#m j=Lj#m

Zero mutational backflow and the consistent neglect of the mutational flow between
mutants imply that all off-diagonal elements in the mutation matrix Q are zero
except those describing the mutations from the master sequence to the mutant
cloud. In other words, Q contains only the elements in the column of the master
sequence, Qjm;j =1,...,N;j # m, and the diagonal terms, Q;. The replication—
mutation Eq. (7a) is modified and becomes much simpler:

dxyy)

dr = (Qmmfm - ¢)me)7 (123)
dx” )
# = (Qiffi — $)x;" + Qufuxll). (12b)

The superscript ‘(0)’ indicates the approximation. The flow by definition is adjusted
to compensate for the net growth and accordingly takes on the form

1 ([ S
p(x(0) = (Z Qifi” + anfmx£5’>>
i=1 J=Lj#m

(12¢)

1
= 5 () 4 0F(0 —20)).
C

where we applied a single-peak landscape with f_,, = f and the uniform error

approximation Q = (1 — p)l. Stationary solutions of the ODE are readily calculated

since Egs. (12a) and (12c) contain only the variable x(o):

H
30 =0 7%(1 _infi) and X}o) =¢0 = Qdej;_l ) (12d)
m m
The input coming from the fitness landscape, o,, = f,,/f_m, has been called the
superiority of the master sequence, and it weights the fitness of the master sequence,
fm,» against the mean fitness of all sequences except the master sequence:
Fm=30, _mfiXi/ (¢ —xp). The assumption of zero mutational backflow is a
fairly good approximation for small mutation rates (Swetina and Schuster 1982)
and can be used as a reasonably accurate estimate of the stationary concentration of
the master sequence, X,,(p), and the one-error class, y; (p) (see Fig. 11), but fails to
model quasispecies at larger mutation rates, in particular, near the error threshold.
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The phenomenological approach. In the seminal paper on self-organization of
macromolecules, Eigen (1971) introduced a variant of the zero mutational
approximation that also allows for the derivation of analytical solutions for the
stationary concentration. Eigen addressed his approach as phenomenological theory
of selection, and therefore, we shall characterize it here as phenomenological as
well. The approximation is only introduced into the growth term, and the change is
not compensated in the flow ¢. Accordingly, the condition of constant organization
or constant population size of Eq. (7a) is violated, and hence, the total concentra-
tion, ¢©, will be a function of the mutation rate parameter p. The modified
equations are identical with (12a) and (12b), but the flow term is different:

lN
B0 = 5 Dl = g k) +F om0 =) (120

Again, the problem is reduced to an ODE in a single variable and the stationary
solution can be obtained straightforwardly''

.
W0 =97 {0 — gl (0 - 0,0 S, ana
" 13
o _ (1-07,"Q—0,") (12)
o(1 —a,')

The normalized concentrations of the phenomenological approach,

i 0-a, o(1 - a,,!)? _0(l—-0,") __q
© - Gml . (1 - Qo_rzl)(Q_ 6;1) B - Qo-m1 "

o>

and X;O)/ ¢ = XJ(-O) are identical to the solutions of the zero mutational backflow

approximation. This is to be expected from a previously derived very general result,
which states that normalized or relative concentrations are independent of the flow
term ¢ () as long as the growth functions—here vazl Qjfix,—are linear and the
population size c¢(¢) does not vanish (Eigen and Schuster 1978, p. 13). The factor
Q —o,', which is common to all concentrations in the phenomenological
approach, decreases with increasing mutation rate p and eventually becomes zero at
the critical mutation rate p = pe = 1 — 6~ /!, At this point, the total concentration
becomes zero and hence, the whole quasispecies vanishes. The key relation for
survival of the quasispecies is the relation

Q © Om 2 la (14)

"'The stationary concentrations of the phenomenological approach are denoted by the ‘hat’

{0 50 A0

symbol: %), X7 , etc.
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Again the problem is reduced to an ODE in a single variable and the station-
ary solution can be obtained straightforwardly'!

40) _ Q_U’;zll 50 _ €djm(Q—10;L1) and
" l—om' (I—om)? '
13
s (1-Qo,)(@Q—0") 19)
QU-ow')>

The normalized concentrations of the phenomenological approach,

i Q-ont  QU-o0u)? QU-o0u)
¢0) 1—ot (lfQU;ll)(Qfan_@l) N 1—Qom'

— 70

and 565-0) / ¢ = jg_o) are identical to the solutions of the zero mutational
backflow approximation.

11 The stationary concentrations of the phenomenological approach are denoted by
the ’hat’ symbol: 3252), i§0)7 ?),z(co)7 ¢ ete.
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which can be interpreted easily in qualitative terms: The loss of master copies due

to error-prone replication, Q = (1 — p)l, has to be overcompensated by the higher
fitness of the master as expressed by the superiority a,,.

Beyond this error rate, p > p.;, genetic information cannot be transferred to
future generations and therefore, the phenomenon has been characterized as error
threshold. The equation for p., can be elegantly translated into a maximum error
rate or a maximum chain length condition for successful transfer of genetic
information to future generations. Simplified equations,

—iy . Inay Ing,

and  px ~ , (15)
p

pmax:pcrzl_a

were discussed in Chap. 1 (this volume) and are frequently applied to problems in
virology, cancer research, and prebiotic evolution. In virology and cancer research,
the key issue concerns the possibility to extinguish infections or stop proliferation
by driving populations of viruses or cells into extinction by increasing the mutation
rate. Two processes are fundamental for achieving this goal, either replication is
pushed above the error threshold where the genetic information is lost or a large
percentage of lethal variants is produced and the population becomes extinct (see
Tejero et al. (2010) and Chap. 7, this volume). In prebiotic evolution, the phe-
nomenological equation for the error threshold sets a limit to the chain / length of
polynucleotides and thereby also to the information content, which can be faithfully
transferred to future generation on the population level (see, e.g., Eigen and
Schuster 1982).

The most remarkable property of the phenomenological approach is the quality
of the results: As shown in Fig. 9 for a rather short chain length [ = 50, the position
of the transition to the uniform distribution, py, is very close to the critical error rate
por Where the quasispecies vanishes in the phenomenological approach, and the
approximation becomes even better for increasing chain lengths. Here, we shall
analyze the mathematical background of the approximations by considering the
entire range of mutation rate parameters, 0 <p < % As shown in Fig. 11, the

continuation of )%S,? )(p) beyond the error threshold converges in the range of neg-

ative concentrations for p — % to the value

~(0) l :27]—0";1%_ 1
"2 1—-o0,! om — 1

(for binary sequences and 2' >> ,,). The curve 30 )(p) is close to the exact curve

Xm(p) up to the error threshold but then extends to negative values. The comparison
with the consistent zero mutational backflow approximation fcfp(p) shows three
interesting features:
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(1)

(i)

(iif)

Because the zero mutational backflow approximation fulfills the condition of
constant population size, it reaches a positive value at p = %, which lies below
the exact value of X, = 27/,

o o
)—C(O) l _ 1 Om ~ 1 Om )
m\2) T2 1" 2

Apart from very small mutation rates, the curve of the phenomenological

approach fc,(f >(p) lies closer to the exact curve X, than the zero mutational
backflow curve X\’ (p) in the whole range 0 <p < 1.

Qualitatively, the downshift of the curve 5c,(4?> (p) relative to the zero mutational

backflow curve X’ (p) is easily explained: The flux ¢ is larger in the phe-

nomenological approach than in the zero backflow approximation, and, other

things being equal, this shifts the curve to lower values.

No only the relative stationary concentration )Ac,(,? ) (p) is an excellent approxi-

mation for the master sequence but also the curve for the one-error mutants fits

the exact curve very well, ygo) (p) = y1(p), whereas the approach is very poor
for all other sequences with two or more mutations (Fig. 11). This result is
readily explained in terms of the mutation flow (Fig. 10): The sequences of the
one-error class have the master sequence and (I — 1) sequences from the
two-error class in their immediate neighborhood. The master sequence is
described fairly correctly, and for small mutation rates, the sequences in the
two-error class are present in very small concentrations only, and accordingly,
also the absolute error in the stationary concentration is small. Sequences in
the two-error class and in the higher error classes, however, receive mutational
input in the zero backflow approximation only from the master sequence, and
the larger inputs from the next lower error class are neglected.

All results calculated by the phenomenological approach are readily understood in
qualitative terms, the high accuracy obtained in the approximation of the position of
the error threshold, which makes the approach to an extremely useful and
easy-to-handle tool, still waits for an explanation.

k
k-1 § (7 k \? 7 k+1

Fig. 10 Mutational flow in binary sequence space. The figure sketches the mutational flow on a
hypercube. Every sequence has / Hamming distance one neighbors, k neighbors are situated in the
class I'y_, and [ — k neighbors in the class Iy, . This implies that a sequence in I'; produces
one-error mutants for k sequences in class I'y_; and for [ — k mutants in class Iy
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Fig. 11 The zero mutational backflow approximation and the phenomenological approach. In the
upper part of the figure, the exact stationary concentration X,,(p) (black) is compared with the zero
mutational backflow approximation ¥")(p) (blue) and the phenomenological approach i) (p)
(red). Choice of parameters: [ = 10, f,, = 10.0, f_m =f = 1.0, yielding an error threshold
per = 0.2057. The lower plot demonstrates the excellent agreement of the phenomenological
approach (dashed lines) with the exact stationary concentrations of the master X, (p) = yo(p)
(black) and the one-error class y;(p) (red). As outlined in the text, the agreement is poor as
expected for the two-error class (yellow) and all other higher mutational classes (Note that the
dashed yellow curve is hardly distinguishable from the abscissa axis). The error threshold is
indicated by a gray dashed line and the total concentration of the phenomenological approach is
shown in violet. Choice of parameters: [ = 50, f;, = 1.1, f_,, =f = 1.0, and p., = 0.001904

Error threshold on simple landscapes. Quasispecies on different simple fitness
landscapes have been compared previously in several publications (see, e.g., Wiche
1997; Schuster 2011). Here, we summarize only the most relevant findings. Some
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smooth landscapes, for example, the linear (3a) and the multiplicative landscape
(3b), do not exhibit a cooperative transition like abrupt change of the quasispecies
distribution in the (yx,p)-plot (k =0,...,]). In other words, the quasispecies
changes smoothly from the selection of the master sequence,
Y0)=*,=1,%x=0;j=1,...,N,j#m), to the uniform distribution,
T(%) = U. The error threshold on the single-peak landscape (3d) has been discussed
in great detail in the preceding paragraphs: It supports an error threshold near the
position pe = (Q —a,,')/(1 —a,,'). The hyperbolic landscape (3c) shows a
cooperative transition, but it looks different from the error threshold on the
single-peak landscape since it does not directly lead to the uniform distribution /.
The single-peak linear landscape (3e) eventually shows an error threshold provided
the position of the step, h, is located at a sufficiently low class number
k. Interestingly, the error threshold occurs at a higher mutation rate p separated from
the decline of the stationary concentration of the master sequence.

All simple landscapes can be readily classified by resolving the error threshold
phenomenon into three features: (i) a decrease of the stationary concentration of the
master sequence to very small values—still above the uniform concentration
(x,, = 271, (ii) a sharp transition of the quasispecies from the characteristic fitness and
Hamming distance determined distribution of mutants to a different distribution that is
characteristic for high mutation rates, and (iii) the nature of the high mutation rate
distribution that often but not always is the uniform distribution /. Quantitative
measures for the first two criteria have been given in the paragraph on
approximation-free solutions. For feature (i), this is the p-value at which the curve for
the stationary concentration of the master sequence crosses a predefined concentration

level, x,, (pfrﬁ)) = ¢, and for features (ii) and (iii), we recall the mergence of the
stationary concentrations of complementary classes, |yi( L?g)) —j}l_k(pr(géﬂ =0,
where the spectrum of (pgg) k-values defines both the position and the width of the

transition. It is worth remembering that for the examples presented in Fig. 9 and
Table 1 (h = 0), both quantitative measures give the same result, pf) ~ pﬁé’g for
9 =0."

The single-peak linear landscape (3e) with different h-values provides an
excellent study case for the quantitative evaluation of error thresholds (Fig. 12). The
width of the error threshold transition for sequences with / = 10 is compared for the

single-peak landscape and the single-peak linear landscapes with & = 2, 3, and 4."°

>This agreement is not accidental as a simple consideration shows: The lowest mutation rate for
merging two classes is (pmg)o, the p-value where 4y = [yo — yI| = X — )’c,m\ = 0. Since the
concentration of the complementary sequence of the master sequence with dx x_, =l is com-
monly very small, X_,, < X,, we find for ¥ = 0: 4y =~ X,, and pfr> ~ mm(p )k (pmg)o.

3The single-peak linear landscape with i = 1 is 1dentlcal with the single peak fitness landscape.
The error threshold for 7 = 5 extends almost to p = and landscapes with 2 > 5 do not support
error thresholds at all.

pks@tbi.univie.ac.at



96 P. Schuster

Table 1 Concentration level crossing and complementary class mergence near the error threshold

h Level crossing pl(rﬂ) Class mergence pl(,?g

¥ =1/100 ¥ =1/1000 ¥ = 1/10000 0 =1/1000 Apf]?;gm)
0 0.1067 0.1103 0.1110 0.1103-0.1111 0.0008
2 0.1097 0.1227 0.1252 0.1227-0.1282 0.0055
3 0.0999 0.1342 0.1428 0.1342-0.1758 0.0416
4 0.0811 0.1365 0.1626 0.1365-0.3360 0.1995
5 0.0638 0.1244 0.1777 0.1244-0.4453 0.3209
6 0.0513 0.1053 0.1787 - -
7 0.0426 0.0876 0.1650 - -
8 0.0364 0.0737 0.1449 - -
The decline of the master class, Yy = Xy, at p-values near the error threshold p; is illustrated by

means of the points p‘(rﬂ ) where the curves cross the level Xo(p) = ¥. Complementary class

mergence is characterized quantitatively by the band between the lowest and the highest (pf,ﬂ)) I
value. The lowest value is always observed with &k =0 (see Fig. 12). Parameters: [ = 20,
fo =10.0, and f, = 1.0 yielding an error threshold at p., = 0.1088

class index k —>
[¢]

0.00 0.15 0.20 0.25 0.30
critical mutation rate (p()), —>

Fig. 12 The error threshold on single-peak linear landscapes. Shown are the critical mutation rates
at which the curves for the stationary class concentrations approach each other up to a predefined
difference, (p{%)), = [y — yi-«| = 0 with k = 0, 1,..., [5| . The areas in light colors represent the
widths of the transitions. Parameter choice: I = 20, fy = 10.0, f, = 1.0, h = 0 (black), h = 2 (red),

h =3 (yellow), and h = 4 (chartreuse)

Computed values for level crossing and complementary class mergence are shown
in Table 1. The excellent agreement between the lower limit of the complementary

class mergence values, (pgfg))o, and the level crossing value for the same value, psrﬁ )
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Table 2 Complern.entary (p(O;OI)) Additive landscape f; Single-peak landscape

class mergence on single-peak me Jk (3a) fi 3d)

and additive landscapes 3 v =10 v —20 v =10 v =20
0 0.01630 0.002552 0.01164 0.004969
1 0.06791 0.004363 0.01210 0.004977
2 0.17233 0.007967 0.01261 0.004983
3 0.24174 0.012590 0.01282 0.004990
4 0.22508 0.027993 0.01230 0.004997
5 - 0.064427 - 0.005005
6 - 0.113894 |- 0.005011
7 - 0.153431 - 0.005013
8 - 0.162072 |- 0.005009
9 - 0.120962 |- 0.004990
AP&OI) 0.22544 0.15952 0.00118 0.000045
pt(rU-Ul) 0.01634 0.002552 0.01175 0.004969

Complementary class mergence characterized quantitatively by

the bandwidth between the lowest and the highest (pﬁ,l;))k—value

for ¥ = 0.01 is compared for single-peak and linear landscapes
with chain lengths v = 10 and v = 20. In all cases, the lowest
value is always observed with k = 0 (see Fig. 12). In addition, the

values for level crossing of the master class at pl(re )_values with

0 =0.01 are given. Parameters: v =10 and 20, f, = 1.1, and
fn = 1.0 for the single peak and f, = 0.9 for the linear landscape
yielding error thresholds on the single-peak landscape at p., =
0.00949 and p., = 0.00475, respectively

with 0 = 19, is remarkable in all four cases (h = 0,2,3,4).13 For h = 5, the band of

complementary class mergence becomes so broad—0.1244 < pfﬁé 1000) <0.4453 in

the example shown in Table 1—that it extends almost to the limit p = % Forh =6,
no threshold is observed.

Equipped with the quantitative diagnostic tools for the detection of error
thresholds, we return to the comparison of additive (3a) and single-peak landscapes
(3d) in Table 2. The quantitative indicators reflect perfectly the visual inspection of

the yi(p)-curves: For the chain length / = 10, the width of complementary class

merging, Apfggm), for the additive landscape is 200 times as broad as for the

single-peak landscape, and for ! = 20, this factor is even 3500. Indeed, the error
threshold has become very narrow already for short sequences of length / = 20 and

shrinks further with increasing /. In addition, the relation between the two measures,

p§?~°1> ~ (pft?gm))o, is already fulfilled up to 10° for sequences with [ = 20.

In order to provide a hint on the prerequisites for the existence of an error
threshold, we consider the derivative of the simple fitness landscapes with respect to
the class index k (Fig. 13). All landscapes, which have a slope or derivative
|0f (k)/Ok| > o, support error thresholds, whereas all less steep landscapes shown
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Fig. 13 The derivative of simple fitness landscapes. Shown are the derivatives, df /Ok, of the
simple fitness landscapes (3a)—(3e). Choice of parameters: / = 20, fy = 10.0, and f,, = 1.0. Color
code additive fitness (3a) in red, multiplicative fitness (3b) in yellow, hyperbolic fitness (3c) in
chartreuse, single-peak step liner fitness (3e) & = 6 in light blue and h =4 in blue, and the
single-peak fitness (3d) in black. Error thresholds are found on the single peak, the single-peak
linear with & = 4 and the hyperbolic fitness landscapes. On all other landscapes, smooth transitions
fromp=0top= % are observed

smooth transitions. For the examples given in the figure, this threshold values lie
somewhere in the range 1.5 <o, <2.25.

Out of all the simple landscapes analyzed here, only the single-peak landscape
supports an error threshold that fulfills simultaneously the three conditions: (i) fast
decrease of the concentration X, slightly below py., (ii) a sharp transition at psﬁg )
diagnosed by all (pfgg: ﬁ))k—values lying in a narrow interval, and (iii) the uniform
distribution being the high mutation rate distribution.

Error threshold on realistic landscapes. There are families of smooth landscapes in
which no error thresholds occur and this raises the question what we can expect to
happen on realistic landscapes. For this goal, quasispecies as functions of the
mutation rate p were calculated on about twenty different random realistic land-
scapes (RRL, 5a) for sequences of chain length [ = 10."* Two results are relevant for
our purpose here: (i) Quasispecies on realistic random landscapes show error
thresholds and (ii) the position of level crossing as a measure for the error threshold

"“Numerical computations of eigenvalues and eigenvectors become highly demanding with respect
to CPU time and memory above [ = 10. For [ = 20, the diagonalization of the W-matrix with
about the size 10° x 10° requires certain tricks (Niederbrucker and Gansterer 2011), and for
[ = 50, the dimension of W is more than 10'> x 10" and diagonalization is far beyond current
technical capacities.
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<« Fig. 14 Quasispecies on a realistic model landscape (RRL) with different random scatter
d. Shown are the stationary concentrations X;(p) on landscapes £(10,2,2.0,1.0;0.0,d,491) for
d = 0 (upper plot), d = 0.5 (middle plot), and d = 0.9375 (lower plot) for the classes I'y (black),
I'y (red), and I'; (yellow). In the topmost plot, the curves for all single point mutations X; € I'y and
double point mutations X; € I'; coincide because of zero scatter, d = 0. The error threshold

calculated by the phenomenological approach lies at p, = 0.06697 and is indicated by a dashed

gray line, and the positions of the p{"*" values are 0.0778, 0.0716, and 0.0510 for d = 0.0, 0.5,

and 0.9375, respectively (dashed blue lines)

moves to smaller mutation rates pt(rm (d) when the ruggedness of the landscape given

by the parameter d is increased. An illustrative example is shown in Fig. 14 where

we find p"°V(0) = 0.0778, p\*°(0.5) = 0.0716, and p{**"(0.9375) = 0.0510

for the cases shown in the plots. Figure 15 reports the movement of the position of

p;,m.) (d) toward lower mutation rate parameters with increasing scatter and illustrates
the validity of the uniform distribution criterion independently of the extent of
ruggedness as expressed by the parameter d: Despite the small chain length [ = 10,

convergence toward the uniform distribution at transition points far away from

p :% can be observed for all d-values and the pfro ) _value computed from level

crossing is a good indicator for the positions at which merging of the stationary
concentrations for the complementary classes, |j/k(p§,f§) — V& (piﬁg)| = 6, occurs.
Based on the level crossing criterion for the location of the error threshold, we find
that the transition migrates to smaller p-values for higher scatter of the fitness
values. This observation is readily interpreted: An increase in scatter implies that
the difference in fitness values between the master sequence and the sequence with
the next highest fitness value becomes smaller, and a smaller difference in fitness
other factors being unchanged causes the transition to occur at a smaller p-value.

Random scatter of fitness values introduces fitness differences among the
sequences within a given mutant class Iy, and instead of a single curve as found for
d = 0, we obtain a bundle of curves for the individual sequences X, belonging to
this class. For small d-values, corresponding to small scatter of fitness values and
for p-values sufficiently lower than the error threshold, p < p., the curves for the
sequences belonging to given mutant classes form well-separated bands, which
overlap at higher p- or higher d-values (Fig. 14). As seen in the class concentration
plots (Fig. 15), the transition to the uniform distribution becomes somewhat
irregular at high d-values. For example, in the bottom plot, the curves for (k = 4,
|l — k=06)and for (k= 3, — k=7) cross first before they merge, which is due to the
different spectra of f-values within the error classes. Nevertheless, also in these
cases, the uniform distribution I/ is approached although at slightly higher p-values.

In proceeding toward the maximum scatter at the value d = 1, other transitions
apart from the error thresholds are observed for the majority of RRLs (for excep-
tions, see next paragraph). These transitions, positioned at transition mutant rates,
p= (pzr) mark dramatic changes in the stationary mutant distributions, and the
primary quasispecies 1,, which is the stable distribution from the selection state
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<« Fig. 15 Error thresholds on a realistic model landscape with different random scatter d. Shown
are the stationary concentrations of classes y;(p) on the landscapes £(10,2,1.1,1.0;0.0,d,023)
with d = 0 (upper plot), d = 0.5 (middle plot), and d = 0.95 (lower plot). The error threshold
calculated by the phenomenological approach lies at p., = 0.009486 (black dotted line), and the

positions for level crossing decrease with the width of random scatter d and are situated at

p[(rO o = 0.01 175, 0.01079, and 0.00720, respectively (blue dotted lines). For the analogous plots

for fully developed randomness (d = 1.0), see Fig. 17

(» = 0) onwards, is replaced at p = (pg)myk by another quasispecies 1. The
mechanism by which quasispecies replace each other has been worked out ana-
lytically (Schuster and Swetina 1988) and is easily interpreted:'> The stationary
mutational backflow stabilizes master sequences through adding a positive term to
the production function

N
W(Xm) = Wn = Qmmﬁnxm + Z Qmjf]"xj = Qmmfme + gDm<—(j)7

Jj=1j#m

and likewise, we have for a potential master sequence Xy,
W(Xi) = wi = Oufidi + Prj)-

In general, the first term decreases and the second term increases with increasing
p. The necessary—but not sufficient—condition for the existence of a transition is
AP = @, (jy — Pr(j) <0. In other words, the mutational backflow to the original
master sequence of 17y has to be weaker than the backflow to the sequence X; in 1.
Since the fitness value f,, is the largest by definition, we have f,, > f; Vi =1,...,n,
and at sufficiently small mutation rates p, the differences in the selective values,
AY = Ounfn — Oufr > 0, will always outweigh the difference in the backflow,
AP > |AYP|, and the quasispecies 1, is stable. With increasing values of p,

however, the replication accuracy and 4® will decrease because of the term Q,,,, =

O ~ (1 — p)l in the uniform error approximation. At the same time, AY¥ will
increase in absolute value and provided A¥ <0 there might exist a mutation rate

p= pff) smaller than the error threshold value pff) <pe at which the condition

A®+ AY =0 is fulfilled and consequently, the quasispecies 7 is the stable sta-

tionary solution of equation at pt(rq ) < P <pe provided it is not replaced by another

quasispecies in another transition.

The influence of a distribution of fitness values instead of the single value f of the
single-peak landscapes can be predicted straightforwardly: Since f,, is independent
of the fitness scatter d and f; is increasing with increasing scatter, the difference

Thirteen years after this publication, the phenomenon has been observed in quasispecies of
digital organisms (Wilke et al. 2001) and was called survival of the flattest.
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fm — fi will decrease with increasing scatter d. Accordingly, the condition for a
transition between quasispecies can be fulfilled at lower p-values and we expect to
find one or more transitions below the error threshold p.,. No transition can occur
on the single-peak landscape, but as d increases the difference 4® becomes smaller,
and it becomes more and more likely that the difference in backflow A% becomes
sufficiently strong for a replacement of 7, by T below p,.

As an example, we describe the development of quasispecies transitions on a
typical RRL, £(10,2,1.1,1.0;0.0,d,637), between the single-peak scenario
(d = 0) and the full-band random landscape (d = 1). Starting form the unspecific
error threshold scenario (Fig. 9), the error classes unfold into first separated and

later overlapping bands until a scatter of d = 0.85 where the indication of a first pfrq ).

transition appears near the error threshold. At d = 0.925, a transition 7(X,) —
71 (Xa47) can be identified, and this transition is the only transition at the d-values
0.95 and 0.975. Then, at d = 0.995, a second transition appears (see Fig. 16), and
finally, we are dealing with three transitions at full randomness, d = 1. In addition to
the quite common scenario of multiple transitions described here, we found also
landscapes with a single transition at fully developed randomness (see Fig. 17) and
landscapes sustaining no transition at all (see strong quasispecies in the next
paragraph).

An important question is whether or not transitions between quasispecies have
an influence on the convergence toward the uniform distribution ¢/ above threshold.
Intuitively, we might suggest that this is not the case, but it is safer to consider a
specific example. The RRL £(10,2,1.1,1.0;0.0,1.0,023) is chosen, because it
exhibits a single transition, 79(Xo) — 7"1(Xo10), below the error threshold
(Fig. 17). The middle plot shows the quasispecies 7"; centered around the master
sequence Xogpo that is surrounded by three high-fitness sequences in the one-error
class: Xogos, Xgz6, and Xosp, and one additional high-fitness sequence in the
two-error class, Xoy7, which is directly attached to Xg6. This example illustrates
the role of mutational backflow @ in stabilizing quasispecies above the transition.
The lower plot shows the change of the class concentrations y(p) at the transition
Yo(Xo) — T1(Xo10) and at the error threshold, which leads to the uniform distri-
bution U. As expected, the fully developed random scatter smoothens the error
threshold, shifts the lower boundary, min((pifg)) ) of complementary class con-
centration merging to slightly smaller p-values but does not change the basic
property of merging the concentrations of complementary classes (for a concrete
quantitative example, see Table 3).

Finally, we remark that transitions between quasispecies provide a handicap for
evolution because a small change in the mutation rate or in the fitness value may
destabilize stationary mutant distributions, and we conjecture that natural systems
will be driven toward landscapes with stable quasispecies in the sense that no
transitions between quasispecies occur.

Strong quasispecies. A certain fraction of landscapes gives rise to scenarios for
quasispecies as a function of the mutation rate p that are substantially different from
the one discussed above: No transitions between quasispecies are observed not even
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Fig. 16 A model landscape with multiple transitions between quasispecies. The plots present the
stationary concentrations X;(p) on landscapes £(10,2,1.1,1.0;0.0,d, 637) with d = 0.995 (upper
plot) and with fully developed scatter d = 1.0 (lower plot). The following master sequences are
involved in the transitions between quasispecies at d = 1.0: tr;: Yo(Xo) — Y1(Xi003); tra:
Y] (X1003) - Yz (X923); tr3: Yz (X923) g Y"; (X247). The Hamming distances at the transitions are
d:’é),(IOO?,) =7, d3003),(923) =3, and dgzs),(247) =6, respectively. For d = 0.995, the first

transition does not exist; instead, we find Yo(Xo) — Y;(Xop3) and tr3 becomes tr,

at fully developed scatter d = 1.0 (Fig. 18). The most relevant feature of the
quasispecies on these special landscapes concerns the classes to which the most
frequent sequences belong. On the landscape defined by s = 919, these sequences
are the master sequence (Xo; black curve), the one-error mutant (X4; red curve), and
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<« Fig. 17 Error threshold and transition between quasispecies. The landscape
£(10,2,1.1,1.0;0.0,d,023) supports a transition Yo(Xo) — Y1(Xow0) at (pi)g 10 ~ 0.00330
(violet dashed line) and the error threshold computed from level crossing of Xg1¢ with ¢ = 0.01 at
%D % 0.00837. Above the error threshold, which lies at per = 0.00949 (blue dashed line) in the

tr
corresponding  single-peak landscape (d = 0.0), the quasispecies converges to the uniform
distribution ¢/ as immediately seen from the mergence of complementary class concentration
curves. The quasispecies above the transition at p{. is centered around the sequence Xoio
corresponding to Y. It is worth noticing that the one-error class I'y (red) has a class concentration
that exceeds the master sequence by a factor two. This is mainly due to three sequences of high

fitness, Xoos, Xoz6, and Xogn

Table 3 Concentration level crossing and complementary class mergence on landscapes with
random scatter of fitness values

l(é’g))k Random scatter d

k 0.0 0.5 0.7 0.9 0.95 0.975 1.0

0 0.01164 |0.01097 |0.01016 |0.00884 |0.00836 0.00809 0.00776
1 0.01210 |0.01173 [0.01123 |0.01056 |0.01039 0.01030 0.01022
2 0.01261 |0.01292 [0.01256 |0.01161 [0.01124 0.01103 0.01080
3 0.01282 | 0.01601 [0.01768 |0.01933 |0.01972 0.01991 0.02009
4 0.01213 | 0.01283 |0.01199 |0.00962 |0.00821 0.00757 0.00680
pff) 0.01175 |0.01108 [0.01028 |0.00895 |0.00848 0.00820 0.00788
Apl(g; 0.00118 |0.00504 [0.00725 |0.01049 |0.01151* |0.01234* |0.01329%*

Quantitative diagnostic tools are applied to the landscape £(10,2,1.1,1.0;0.0,d,919). The decline
of the master class, yo = Xo, at p-values near the error threshold p.. = 0.00948 is illustrated by means
of the points pfrﬂ) where the curves cross the level Xy(p) =9 = 0.01. Complementary class

mergence is characterized quantitatively by the band between the lowest and the highest (p,(gg) I
value (0 = 0.01). The lowest value is observed at k = 0 for d = 0.0, 0.5, 0.7, and 0.9. For the three
highest random scatters, the lowest value is recorded for k£ = 4 (indicated by an asterisk ‘*”)

the two-error mutant (Xsi6; yellow curve).'® Coming from neighboring classes, the
three special sequences are situated close-by in sequence space—Hamming dis-
tances d(P('))7(4) = d(ﬂ)’(ﬂ@ =1 and d{é),(sm) =2—and form a cluster, which is
dynamically coupled by means of strong mutational flow (Fig. 19). As it turns out,
such a quasispecies is not likely to be replaced in a transition by another one that is
centered around a single master sequence and accordingly, we called such clusters
strong quasispecies. The problem that ought to be solved now is the prediction of
the occurrence of strong quasispecies from know fitness values.

A heuristic is mentioned that serves as an (almost perfect) diagnostic tool for
detecting whether or not a given fitness landscape gives rise to a strong quasis-
pecies: (i) For every mutant class, we identify the sequence with the highest fitness

16Na'1've1y, we would expect a band of one-error sequences at higher concentration than the
two-error sequence.
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Fig. 18 Error thresholds on a model landscape with random scatter d and no transitions between
quasispecies. The landscape £(10,2,1.1,1.0;0.0,d,919) is computed and analyzed. Shown are
the stationary concentrations x;(p) for d = 0.5 (upper plot), for d = 0.995 (middle plot) and for
fully developed random scatter d = 1.0 (bottom plot)
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Fig. 19 Mutation flow in quasispecies. The sketch shows two typical situations in the distribution
of fitness values in sequence space. In the upper diagram (s = 637), the fittest two-error mutant,
X768, has its fittest nearest neighbor, X769, in the three-error class I'5. The fittest sequence in the
one-error neighborhood of the fittest one-error mutant, X4, is Xeg and not 7¢s, and hence, the
mutational flow is not sufficiently strong for coupling the three sequences Xg, X4, and Xgg to a
strong cluster, and transitions between different quasispecies are observed (Fig. 16). The lower
diagram (s = 919) shows the typical fitness distribution for a strong quasispecies: The fittest
two-error mutant, Xsj¢, has its fittest nearest neighbor, X4, in the one-error class I'y, and it
coincides with the fittest one-error mutant. Here, the three sequences (Xo, X4, and Xsi6) are
strongly coupled by mutational flow, and a strong quasispecies is observed (Fig. 18)
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value, fo, (f(1))max = Xn(1))s (f2))max =F (X)), - - -» and call them class-fittest
sequences. Next, we determine the fittest sequences in the one-error neighborhood
of the class-fittest sequences. Clearly, for the class k-fittest sequence X, this
sequence lies either in class k — 1 or in class k + 1.'” Simple combinatorics is
favoring classes closer to the middle of sequence space because they have more

l
members, ( k
two nearest neighbors in the one-error class but I — 2 nearest neighbors in the
three-error class (see Fig. 10). To be a candidate for a strong quasispecies requires
that—against probabilities—the fittest sequence in the one-error neighborhood of
Xin(2) lies in the one-error class: (f(x,), Jmax With (X)) € I't and prefer-

>, in number. Any sequence in the two-error class, for example, has

entially, this is the fittest one-error sequence, (Xm(z))m(1) = X(1)- Since all muta-
tion rates between nearest neighbor sequences in neighboring classes are the same

—(1 - p)"71 p within the uniform error model—the strength of mutational flow is
dependent only on the fitness values, and the way in which the three sequences
were determined guarantees optimality of the flow: If such a three-membered
cluster was found, it is the one with the highest internal mutational flow for a given
landscape. Figure 19 (lower picture, s = 919) shows an example where such three
sequences form a strongly coupled cluster. There is always a fourth sequence—here
Xsi1o—belonging to the cluster, but it may play no major role because of low fitness.
The heuristic presented here was applied to all 21 fitness landscapes with different
random scatter, and three strong quasispecies (s = 401, 577, and 919) were
observed. How many would be expected by combinatorial arguments? The prob-
ability for a sequence in I'> to have a neighbor in I'; is 2/10 = 0.2, and, since the
sequence X,,(j) is fittest in I'; and hence also in the one-error neighborhood of
Xin(2), this is also the probability for finding a strong quasispecies. The sample that
has been investigated in this study comprised 21 landscapes, and hence, we expect
to encounter 21/5 = 4.2 cases, which is—with respect to the small sample size—in
full agreement with the three cases that we found. The suggestion put forward in the
heuristic mentioned above—a cluster of sequences coupled by mutational flow that
is stronger within the group than to the rest of sequence space because of frequent
mutations and high-fitness values—has been analyzed and tested through the
application of perturbation theory (Schuster 2012). We dispense here from details
since we shall not make further use of the corresponding expressions.

In order to study the influence of random scatter on the numerical computation
of the location of the error threshold, we apply the two criteria, level crossing and
complementary class mergence to the strong quasispecies on the landscape
£(10,2,1.1,1.0;0.0,d,919). The results are shown in Table 3. As already shown
for other RRLs, the position of the crossing of Xy migrates to smaller mutation rates

pff) with increasing d. At the same time, the width of the transition increases by

"For class k = 1, we omit the master sequence X,,, which trivially is the fittest sequence in the
one-error neighborhood, and search only in class k = 2.
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about one order of magnitude from Apt(f ) = 0.0012—0.013. Nevertheless, the
quantitative diagnostic tools for the detection of the error threshold on complex
landscapes works perfectly, and in contrast to doubts raised in the literature (Baake
and Wagner 2001; Charlesworth 1990), even the landscapes with fully developed
randomness (d = 1.0) sustain perfect error thresholds.

Selective neutrality. The second property of realistic fitness landscapes mentioned
in Sect. 2 is neutrality, and in Eq. (5b), we made a proposal how neutrality can be
implemented together with ruggedness. The resulting rugged and neutral fitness
landscape (RNL) is characterized by two landscape specific parameters: (i) The
random scatter is denoted by d as in the RRL landscape and (ii) a degree of
neutrality 1. The value 4 = 0 means absence of neutrality and 4 = 1 describes the
completely flat landscape in the sense of Kimura’s neutral evolution (Kimura
1983). The result of the theory of neutral evolution that is most relevant here
concerns random selection: Although fitness differences are absent, one randomly
chosen sequence is selected by means of the autocatalytic replication mechanism,
X — 2X and X — @. For most of the time, the randomly replicating population
consists of a dominant genotype and a number of neutral variants at low concen-
tration. An important issue of the landscape approach is the random positioning of
neutral master sequences in sequence space, which is achieved by means of the
same random number generator that is used to compute the random scatter of the
other fitness values.

The RNL is the complete analogue to the rugged fitness landscape (RRL) under
the condition that several master sequences exist, which have the same highest
fitness values fy. The fraction of neutral mutants is determined by the fraction of
random numbers, which fall into the range 1 — A <# <1, and apart from statistical
fluctuations, this fraction is 4. At small values of the degree of neutrality 4, isolated
peaks of highest fitness f; will appear in sequence space. Increasing A will result in
the formation of clusters of sequences of highest fitness. Connecting all fittest
sequences of Hamming distance dy = 1 by an edge results in a graph that has been
characterized as neutral network (Reidys et al. 1997; Reidys and Stadler 2002).
Neutral networks were originally conceived as a tool to model, analyze, and
understand the mapping of RNA sequences into secondary structures (Griiner et al.
1996a, b; Schuster et al. 1994). The neutral network in RNA sequence structure
mappings is the preimage of a given structure in sequence space, and these net-
works can be approximated in zeroth order by random graphs (Erdds and Rényi
1959, 1960). Whereas neutral networks in RNA sequence structure mappings are
characterized by a relatively high degree of neutrality around 1 =~ 0.3 and sequence
space percolation is an important phenomenon, we shall be dealing here with lower
A-values.

The two smallest clusters of mutationally coupled fittest sequences have
Hamming distances dg = 1 and dy = 2 (Fig. 20). In the former case, we are
dealing with the minimal neutral network of two neighboring sequences; in the
latter case, the Hamming distance of two sequences are coupled through two
intermediate sequences similarly as in the core of strong quasispecies. An exact
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(a) (550

(d)

(c) 751

Fig. 20 Neutral networks in quasispecies. The sketch presents four special cases that were
observed on rugged neutral landscapes defined in Eq. (5b). Part a shows the smallest possible
network consisting of two sequences of Hamming distance dy = 1 observed with s = 367 and
A =0.01. Part b contains two sequences of Hamming distance dy = 2, which are coupled through
two dy = 1 sequences; it was found with s = 877 and 4 = 0.01. The neutral network in part ¢ has
a core of three sequences, surrounded by five one-error mutants, one of them having a chain of two
further mutants attached to it; the parameters of the landscape are s =367 and A = 0.1. Part
d eventually shows a symmetric network with three core sequences and four one-error mutants
attached to it, observed with s = 229 and 4 = 0.1. Choice of further parameters: [ = 10, fo = 1.1,
f=1.0, and d = 0.5. Color code: core sequences in black, one-error mutants in red, two-error
mutants in yellow, and three-error mutants in green

mathematical analysis is possible for both cases in the limit of vanishing mutation
rates, limp — O (Schuster and Swetina 1988). It yielded two results that are dif-
ferent from Kimura’s neutral theory:

S R |
;ﬂxl = E,g%xn =3 for dyy =1, (16a)
lim% = — % lim¥n = ——  ford, —2 (16b)
Pt T T o T T YaXa — <
lim)_q = 1, lim)_Cn =0 or 111’1’1)_(] = 0, lim)_cn = 1,
p—0 p—0 p—0 p—0 (16c)

for dyy, >3.

If the two neutral fittest sequences, X; and Xj, are nearest neighbors in sequence
space, d;IIXH = 1, they are present at equal concentrations in the quasispecies in the
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Fig. 21 Cluster on a weakly neutral rugged model landscapes. The plot at the rop shows the
quasispecies on the RNL £(10,2,1.1,1.0;0.1,0.5,637). The cluster in the core of the
quasispecies is shown in Fig. 20a and consists of two Hamming distance dy = 1 master
sequences, Xy and Xg4, which are present in equal concentrations from p =0 to the error
threshold. Further, we show their one-error neighborhoods, and the third fittest neutral sequence
X324 at Hamming distance d(%).(324) = 3 (green). The bottom plot presents the quasispecies on the
RNL £(10,2,1.1,1.0;0.1,0.5,877). The master pair Xs;g and Xs4¢ has Hamming distance dy = 2
and appears at roughly constant concentration ratio in the quasispecies over the entire range,
0<p<per

low mutation rate limit, and in case they are next nearest neighbors in sequence
space, dixn = 2, they are observed at some ratio o, and in both cases, none of the

two sequences vanishes. Only for Hamming distances d%x" >3, Kimura’s scenario
of random selection occurs. It is important to stress a difference between the two
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scenarios, the deterministic ODE approach leading to clusters of neutral sequences
and the random selection phenomenon of Kimura: In the quasispecies, we have
strong mutational flow within the cluster of neutral sequences—which is not sub-
stantially different from the flow within the non-neutral clusters discussed in the
previous paragraph—and this flow outweighs fluctuations. For Hamming distances
dy of three and more, the mutational flow is too weak to counteract random drift. In
the random replication scenario, mutations do not occur and the only drive for
change in particle numbers is random fluctuations.

In order to check the role of the predictions for the limit p — 0 in the case of
nonzero mutation rates, we search for appropriate test cases by inspection of RNL
landscapes according to (5b). For small degrees of neutrality, we found indeed
suitable neutral clusters on the landscapes (s = 637,14 =0.01 and s =877, =
0.01 both shown in Fig. 21). In full agreement with the exact result, we find that
two fittest sequences of Hamming distance dy = 1 are selected as a strongly
coupled pair with equal frequency of both members and numerical results show that

....... ACAUGCGAA .-« master sequence 1

....... ACAUGCUAA T

....... ACAUGCGAG H
oo ACACGCGAA

- ACGUACGAA
----- ACAUAGGAA
------- ACAUACGAA

master sequence 2

"""" ACAUiCGAA =sees CONSENSUS Sequence

...... ACAGUCAGAA -:-=x= master sequence 1
------ ACAGUCCGAA ---=--- intermediate |
...... AUAAUCCGARA =re=e=s

...... ACAGUCAGCA ere=es

------ GCAGUCAGAA : :

...... ACGGUCAGAA -+e=-:-

...... ACAGUGAGAA --=---- ) )

...... ACAAUCAGAA :-eeeer intermediate I
------ ACAAUCCGAA ------- master sequence 2

------ ACA(;:’UC%GAA consensus sequence

Fig. 22 Quasispecies and consensus sequences in case of neutrality. The upper part of the figure
shows a sketch of sequences in the quasispecies of two fittest nearest neighbor sequences (dy = 1).
The consensus sequence is not unique and differs in a single position where both nucleotides
appear with equal frequency. In the lower part, the two master sequences have Hamming distance
dy =2 and differ in two positions. The two sequences are present at some ratio o that is
determined by the fitness values of other neighboring sequences, and the nucleobases
corresponding to the differences in the two master sequences appear with the same ratio «
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strong coupling does not occur only for small mutation rates but extends over the
whole range of p-values from p = 0 up to the error threshold p = p.,. Examples for
the case dy = 2 are also found on random neutral landscapes, and again, the exact
result for vanishing mutation rate holds up to the error threshold. The existence of
neutral nearest and next nearest neighbors manifests itself in the lack of unique
consensus sequences of populations and has important consequences for the
reconstruction of phylogenies (Fig. 22).

Neutral networks may comprise several sequences, and then, all neutral nearest
neighbor sequences form a strongly coupled master cluster in reproduction. The
distribution of individual members of the cluster in the limit p — 0 is readily
obtained by diagonalization of the adjacency matrix.'® The components of the
largest eigenvector are proportional to the concentrations of elements of the
replication network. Increasing the degree of neutrality 4 gives rise to the formation
of larger neutral networks. Commonly, there is a giant cluster and many small
clusters as predicted by random graph theory.

5 Conclusions and Perspectives

The landscape concept was shown to be applicable to asexually reproducing virus
populations, although fully empirically determined examples are not achievable at
the current state of the art. Realistic landscapes are characterized by two global
features: (i) ruggedness and (ii) neutrality. At sufficiently low mutation rates, all
these landscapes support stationary mutant distribution called quasispecies no
matter how large the random scatter of the individual fitness values is. The fre-
quencies of individual genotypes in quasispecies are determined by their fitness
values and the distances to the master sequence. Contradicting previous conjec-
tures, such realistic landscapes exhibit error thresholds in the sense that the mutant
distributions change abruptly at a certain critical mutations rate, which can be fully
characterized by quantitative criteria. Above threshold, the conventional deter-
ministic description by means of kinetic differential equations yields the uniform
distribution of sequences as stationary solution and hence cannot provide a correct
picture of replication—mutation dynamics. Under these conditions, populations drift
randomly through sequence space in the sense of Kimura’s neutral theory of
evolution.

Although the kinetic equations allow for the derivation of general solutions in
terms of eigenvalue problems, they are limited in reality because numerical com-
putations are facing unsurmountable difficulties even for relatively small sequence
lengths (I ® 50). A phenomenological approach originally proposed by Eigen

"®The adjacency matrix of a graph, A, is a symmetric square matrix that has an entry ap = a; =1
whenever the graph has an edge between the nodes for X; and X, and zero entries everywhere
else.
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introduces simplifications, which allow for straightforward handling of long
genotypes. This approach cannot be deduced from the original equations in a
consistent way but represents an enormously successful heuristic for the calculation
of error thresholds in real-world situations, and fortunately, the results become more
accurate for longer polynucleotide sequences.

A problem for future research concerns the classification of landscapes in view
of the mutation—selection dynamics upon them. We have sketched here two
examples where the quasispecies dynamics can be predicted from the distribution of
fitness values: (i) landscapes supporting strong quasispecies and (ii) landscapes with
a tunable degree of neutrality. These studies make several predictions, and the next
natural step is to test them experimentally and to initiate thereby a dialogue between
theorists and experimentalists. Precisely, this dialogue made physics so successful,
but unfortunately, it is still underdeveloped in biology.

6 Color Code for Sequences and Classes

The individual curves in plots of quasispecies as functions of the mutation rate p are
color coded in order to make them better distinguishable. Most plots refer to a chain
length [ = 10 and adopted the following color code. For concentrations of classes
rather than individual sequences, we use a different color code in order to make
merging of complementary classes better visible.

Class no. Color
Sequences Classes
0 Black Black
1 Red Red
2 Yellow Yellow
3 Green Green
4 Sea green Sea green
5 Blue Blue
6 Magenta Sea green
7 Chartreuse Green
8 Yellow Yellow
8 Red Red
10 Black Black
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