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Conventional population genetics is extended by support dynamics and genotype-
phenotype mapping in order to conceive a comprehensive dynamical model of evo-
lution. Support dynamics describes migration of populations through genotype
space. The relation between genotypes and phenotypes is a core issue of evo-
lution. In the simplest conceivable case, in vitro evolution of RNA molecules,
both phenomena can be incorporated into computer simulations. Application of
replication-mutation kinetics to processes in the space of genotypes led to the no-
tion of quasispecies which has been applied successfully to evolution of molecules
and viruses. In molecular evolution mapping of genotypes into phenotypes is tan-
tamount to sequence-structure relations of RNA molecules. Systematic studies
were performed on secondary structures. They revealed a number of regularities
which are reported. The number of sequences is much larger than the number
of secondary structures and thus neutrality is a central issue of sequence-structure
mappings. Evolution of populations of RNA molecules towards a predefined target
structure were carried out and analyzed in molecular detail. The results derived
for RNA molecules suggested to define a statistical relation of nearness between
phenotypes which constitutes a kind of statistical topology. This probabilistic
concept of neighborhood in sequence space can be generalized and appears to be
of widespread validity in evolution.

1 Introduction

Biological evolution is too complex and too slow for experimental investiga-
tion. In order to make evolutionary phenomena accessible to systematic stud-
ies one needs (i) to reduce generation times in order to speed up evolution,
(ii) to minimize complexity of phenotypes in order to allow for an analysis of
genotype-phenotype relations, and (iii) to shorten genotype lengths in order to
keep possible diversity below a certain limit. All three conditions are fulfilled,
for example, by test-tube experiments on optimization of RNA molecules.1

Evolution of molecules in the test tube is indeed the simplest and the only
currently known realistic system that allows to study the mechanisms of bi-
ological evolution at molecular resolution. Both, the experimental approach
and the development of theory, have reached a point from where on systematic
studies and global investigations of the rules underlying the dynamics of evolu-
tionary processes are required in order to make progress in the understanding

aPublished in: Leif Matsson, ed. Nolinear Cooperative Phenomena in Biological Systems,
pp. 86-112. World Scientific, Singapore 1998.
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of the phenomenon and the design of new conclusive experiments. Although
many successful studies have already been reported and it is generally accepted
now that evolutionary optimization of molecular properties and functions does
not require cellular life, the design of efficient experiments leading to optimal
molecules is anything but trivial. In addition, the currently available data on
the evolution of primitive systems call for a comprehensive theoretical frame
that allows to put them into proper context.

2 Evolution of molecules

The term molecular evolution is currently used for two related but neverthe-
less distinct fields of research: (i) The fast increasing availability of sequences
of natural biomolecules allows to compare sequences of biomolecules with the
same function in different organisms and to reconstruct phylogenetic trees from
these molecular data.2 The theoretical frame of this approach was provided by
the neutral theory of evolution.3,4 (ii) Molecular evolution can also be under-
stood as “evolution of molecules” in the sense the pioneering experiments by
Sol Spiegelman and his coworkers.1,5 Here, we shall be concerned exclusively
with this second research area: in vitro evolution experiments as a tool for
analysing evolutionary phenomena. Work initiated with RNA molecules un-
der conditions suitable for replication gave indeed rise to a whole new field
aiming at studies of the principles of biological evolution in the laboratory.
Experiments with RNA molecules fall essentially into two classes: (i) “batch
procedures” where replicating molecules proliferate according to their repro-
ductive success and (ii) selection techniques with “intervention” where crite-
ria for survival are intoduced by the experimenter. Recently, a spin-off of
these investigations became a new branch of biotechnology called “evolution-
ary biotechnology”. It applies the knowledge of molecular evolution to desing
and preparation of biopolymers for predefined purposes.

The most important prerequisite for test-tube evolution of RNA molecules
is a suitable in vitro replication assay for nucleic acid molecules which takes care
of multiplication of the molecular genotypes. In the days of Sol Spiegelman
RNA replication with virus specific enzymes, so-called RNA replicases, was
the only available assay for this pupose. Currently, many more amplification
systems are available for nucleic acids. The most commonly used techniques
combine both, template induced RNA and DNA polymerization. They are
either based on reverse transcription, polymerase chain reaction (PCR),6 and
transcription or the self-sustained sequence replication (3SR) reaction.7 In the
early experiments an open system was created by means of serial-transfer5

replenishing the replication medium through transfer of small quantities into
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fresh stock solution consisting of activated monomers (ATP, UTP, GTP,
and CTP) and Qβ-replicase in an appropriate buffer. Efficient devices sup-
plying the materials consumed in the replication process were conceived and
built.8 Variation is introduced into populations of molecules through muta-
tions being several classes of replication errors: point mutations, insertions,
and deletions. Rarely, also recombination events occur. Replication assays, in
particular PCR, can be tuned to high error rates9,10 thus providing sufficient
diversity for selection experiments. If still more sequence variation is required,
stretches of random RNA can be inserted (see, for example11).

Serial-transfer turned out to be an efficient tool for the design of optimal
replicators under different environmental conditions. The first experiments
produced RNA molecules whose replication constants were optimal under the
conditions of the stock solution. In later experiments, the replication me-
dia were changed systematically for example by addition of dyes interfering
with base pairing like ethidium bromide, and RNA molecules evolved which
were adapted to the new conditions.12 In recent experiments the evolutionary
technique was applied to the design of RNA molecules which are resistent to
cleavage by specific RNases.8 In order to achieve that goal an automatized ma-
chinery was developed for serial transfer which allows to change experimental
conditions in a precisely controlled way.

An alternative technique providing fresh replication medium continuously
makes use of capillaries through which a zone of replication travels in the man-
ner of a wave front.13 The velocity of the front is brought into an appropriate
range for observation by using a gel as medium. This setup is particularly
interesting for studying the course of molecular evolution since the time co-
ordinate is mapped into space and the history of an experiment is laid down
in the inactive material behind the front of the replicating wave. It might be
retrieved by analysing the gel in the capillaries.

Impressive success of molecular evolution was achived by a combination of
variation and selection with intervention. The best known technique is called
SELEX and is commonly used to design molecules which bind optimally to
given targets.14 The target molecules are bound convalently to a chromato-
graphic column and suitable binders are isolated from the solution containing
a great variety of candidates by retention on the column. Changing the solvent
allows to produce molecules with increasing binding constants through varia-
tion and selection.15 Other techniques based on the use of chemical tags for the
identification of suitable RNA molecules were successful in changing the cat-
alytic properties of natural ribozymes16 as well as in the design of ribozymes
with new catalytic functions.11,17 Although a great variety of experimental
results is now available, it is still very difficult if not impossible to predict
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optimal conditions for the design of biomolecules. Further development in
the theory of molecular evolution is required for efficient planning and tech-
nological exploitation of evolution experiments. Just as chemical engineering
would be doomed to fail without a solid background in chemical kinetics and
material science, evolutionary biotechnology needs a comprehensive theory of
(molecular) evolution for future success.

3 Theory of molecular evolution

Starting with the seminal paper of Manfred Eigen18 a kinetic theory of molec-
ular evolution has been conceived and developed19,20,21 which extends conven-
tional population genetics by considering replication and mutation explicitly
as parallel chemical processes. Replication and mutation are many step poly-
condensation reactions that can be represented to very good approximation
by a simple overall kinetics under allmost all experimental conditions.22 In ab-
sence of RNA catalysis and without selection constraints replication-mutation
kinetics leads to exponential growth of RNA genotypes. Selection constraints
introduce competition into populations in the sense of Charles Darwin’s natural
selection. What causes the problem in modeling evolution is not the complexity
of reactions but rather the hyperastronomically large number of possible geno-
types which grows exponentially with chain length n (4n for polynucleotides).
Such large numbers of species are prohibitive for conventional reaction kinetics
unless (simple) rules are available that allow to compute the rate and equilib-
rium constants of individual species from known properties of phenotypes or, in
particular, from structures being the phenotypes of the RNA molecules. Statis-
tical approaches commonly fail because of the highly complex relations between
sequences and properties of phenotypes. Moreover, properties and functions
of biopolymers are highly sequence specific and cannot be adequately repre-
sented by statistics. Needless to say, predefined “look-up-tables” for billions
of the rate constants are not manageable. On the other hand, models based
on sequence-structure relations and simple rules to derive the rate constants
which are needed to describe RNA evolution are available (see forthcoming
sections).

Sequences can be ordered properly by the usage of sequence space. This
notion of a space of genotypes is orginally due to Sewall Wright.23 A point is
assigned to every genotype or (DNA or RNA) sequence and a distance between
sequences is defined which counts the minimal number of mutations which
are required to interconvert two genotypes. Restriction to point mutations
simplifies the structure of genotype space, since all interconvertible sequences
have the same chain length (n). The sequence space of all binary sequences
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(κ=2; [G,C] or [A,U]) of chain length n is a hypercube of dimension n and that
of natural sequences (κ=4; [A,U,G,C]) is a straightforward generalization of
this hypercube. We remark that a similar mathematically consistent notation
of a metric space has been derived also for recombination24. Insertions and
deletions complicate the conceptual frame of gentotype space but they can be
included heuristically or through computer simulations. In this proposal the
most of the specific examples will be restricted to a point mutation scenario
for which the (generalized) hypercube applies as sequence space.

The kinetic theory of molecular evolution is primarily dealing with inter-
play and balance between mutation creating variability and selection reducing
diversity in populations. In the limit of large populations this replication-
mutation-selection scenario is described by the kinetic equations of evolution
for r different molecular species,

dxj
dt

=

r
∑

i=1

Qij Fi(x)xi − xj Φ(x) ; i, j = 1, 2, . . . , r , (1)

where x = (x1, x2, . . . , xr) and Φ(x) =
∑r

i=1 Fi(x)xi is a selection constraint
that leads to constant populations size and suggests the use of normalized
variables

∑r
i=1 xi = 1. In mass action kinetics the functions Fi(x) specifying

reproduction of genotypes can be expanded in a power series.b

Fi(x) = ki +

r
∑

`=1

ki`x` + . . . . (2)

The first term is by far the most important in molecular evolution since it
describes template induced uncatalyzed replication. Higher order terms refer
to catalyzed replication. Particularly interesting is here the second term which
is linear in Fi(x) and which gives rise to several important special cases in the
limit of error-free replication (Q = {Qij ; i, j = 1, . . . , r} = II, the unit matrix).
These ODE’s describing error free replication were called replicator equations.25

Examples are Fisher’s selection equation, the hypercycle equation, and the
Schlögl model.26 For a detailed mathematical treatment of replicator equations
see.27,28,29,30,31 The replication-mutation case has been analysed in.32,33,34 Here
we shall be concerned only with uncatalyzed replication and mutation.

The simple replication-mutation-selection equation (eq.1 with Fi(x) = ki)
is the basis of the molecular quasispecies concept19 and has been studied in
great detail.35 A quasispecies is defined as the stationary distribution of mu-
tants in an infinite population (see figure 1). It represents the genetic reservoir

bFor the sake of simplicity we assume equal degradation rates or lifetimes for all genotypes
This condition can be relaxed without changing the results discussed here.18,19
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Figure 1: Molecular quasispecies in sequence space. The quasispecies is a stationary mutant
distribution surrounding a (fittest and most frequent) master seqeunce. The frequencies
of individual mutants in the quasispecies are determined by their fitness values and by
their Hamming distances from the master. A quasispecies occupies some region in sequence
space called the population support. In the non-stationary case the (population) support
migrates through sequence scape.
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of asexually replicating species like molecules in the test-tube, viruses, and
bacteria. Stationary mutant distributions can be computed from an appro-
priately transformed linear version of the differential equation (1) by solving
the corresponding eigenvalue problem.36,37 The frequencies of individual mu-
tants are obtained as the components of the lowest eigenvector. A typical
quasispecies consists of a most frequent master sequence or master genotype
Im and its closely related mutants of sufficiently high fitness. Considering the
quasispecies as a function of replication accuracy revealed the existence of a
sharply defined error-threshold. At the critical error rate (the maximal error
rate, pmax, which is compatible with a quasispecies) the nature of the lowest
eigenvalue changes abruptly from an ordered distribution around the master
sequence to the uniform distribution (with all genotypes being present at equal
frequencies).c Because of the hyperastronomically large number of genotypes
a uniform distribution of mutants is incompatible with any real and hence
finite population. The formal result of equal frequencies of all genotypes in
the infinite population can be interpreted as an indication for random drift of
real populations through sequence space in the sense of neutral evolution.3 The
critical error rate is approximated very well by the condition (where the index
“m” refers to the master genotype)

Qmm = Qmin = σ −1
m with σm =

km

k−m

; k−m =

∑r

i=1,i6=m ki

1− xm

. (3)

The existence of stationary mutant distribution in finite populations of size N
requires higher accuracy of replication than in the limit of infinite population
size:38

Qmin(N) = Qmin(∞)

(

1 +
2(σm − 1)√

N
+

2(σm − 1)2

N
+

(σm − 1)3

(
√
N)3

+ . . .

)

.

The series expansion converges very fast alraedy for population sizes N > 100.
The mutation matrixQ is often constructed under the simplifying assump-

tion that mutation rates are independent of the particular nucleotide exchange
and the position on sequence (uniform error-rate model). Then we find for the
probability that genotype Ij is formed as an error-copy of genotype Ii:

Qij = qn−dij (1− q)dij = (1− p)n
(

p

1− p

)dij

. (4)

cThe existence of an error-treshold depends to some extent also on the distribution of fitness
values in sequence space. There are certain classes of flat landscapes which do not support
sharp thresholds and thus are characterized by smooth transitions from the quasispecies to
the uniform distribution.
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Herein q is the single digit accuracy and p = 1 − q the error rate per site
and replication. The Hamming distance between the genotypes Ii and Ij is
denoted by dij . Within this model it is straightforward to compute the critical
threshold value of the error rate:

pmax = 1 − qmin = 1 − σ
− 1

n
m .

Eq.(4) allows to compute mutation probabilities for all pairs of sequences from
a single parameter q and thus solves, in part, the problem to handle very
large numbers of different genotypes by means of a simple rule. Still, the
problem of hyperastronomically large numbers of rate constants (ki) remains.
A novel approach is thus required which allows to derive analytical expressions
or algorithms for the computation of constants from known sequences and the
structures derived from them.

Despite these problems in the development of a comprehensive model for
biological evolution the quasispecies concept has been applied in a heuristic
version to virology.39 In particular, RNA viruses are generally characterized
by low fidelity of their replicases leading to mean error numbers of 0.1 to 10
per replication. Populations of RNA viruses share high genetic diversity with
those of RNA molecules replicating in test-tubes. Although virus populations
live in rapidly varying environments and presumably never reach stationarity,
the quasispecies concept has been adapted successfully and provides completely
new insights into virus evolution which suggest to develop new antiviral strate-
gies.

4 Modelling evolutionary dynamics

Within the last few years we conceived and developed a new concept for
analysing and modeling molecular evolution (For a recent review see 40). The
overwhelming complexity is reduced through partitioning into three simpler
phenomena that can be studied separately (figure 2). Population genetics of
in vitro evolution is, in essence, described by the differential equation (1) or by
suitable stochastic processes adapting it to final population sizes. For exam-
ple, multitype branching processes41 or birth-and-death processes38 were ap-
plied successfully. Population dynamics deals with formation of new genotypes
through mutation and elimination of less fit ones through selection. Details of
population structure do not matter when we are interested in the migration
through sequence space. It is sufficient therefore to consider only the support
of the population.d Support dynamics describes, for example, how adaptive

dThe support of a population in sequence space is the area that is covered by the actually
present genotypes irrespective of their frequency (See figure 1).
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Figure 2: Evolutionary dynamics. Evolution is partitioned into three processes that can be
studied separately: (i) population genetics, (ii) migration of populations, and (iii) genotype-
phenotype mapping. In molecular evolution population genetics is tantamount to chemical
reaction kinetics of replication, mutation and selection. Population support dynamics de-
scribes the migration of populations in in sequence space. Genotype-phenotype mapping
unfolds the biological information stored in polynucleotide sequences. Two classes of map-
pings are distinguished: (i) combinatory maps from one genotype space into another vector
space or another space of non-scalar objects and (ii) landscapes that map genotype space
into the real numbers. In molecular evolution landscapes provide rate constants, equilibrium
constants and other composite scalar properties of phenotypes, for example fitness values.
These landscapes are commonly constructed in two steps: (i) a mapping of polynucleotide
sequences into molecular structures and (ii) an evaluation of structures to yield the (scalar)
molecular properties.

9



dynamics and random drift assist each other in evolutionary optimization. It
defines the regions in sequence space from where new genotypes originate.
The third phenomenon is the unfolding of phenotypes. It is the basis of the
relation between genotypes and phenotypes which is understood as a mapping
from sequence space into shape space. The shape space is a metric space of the
phenotypes formed by all genotypes in sequence space. Distances between phe-
notypes or shapes can be measured in different ways (see42 and next section).
As indicated in figure 2 the three processes are linked by a cyclic relationship
in the sense that genotype-phenotype mapping provides the input for popula-
tion dynamics by laying down the kinetic parameters through the evaluation
of phenotypes. Population genetics creates the input for support dynamics by
deciding on the fate of genotypes through mutation and selection, and eventu-
ally, support dynamics closes the cycle by describing how populations migrate
in sequence space and defining thereby the regions from where new genotypes
come which enter genotype-phenotype mapping. Such cyclic causalities are
typical for self-organisation phenomena.

Population support dynamics is dealing with the migration of populations
through sequence space. The two extremes of support dynamics are: (i) adap-
tive walk and (ii) random drift of populations. An adaptive walk is character-
ized by a succession of genotypes with the restriction that each new genotype
that is created and accepted in the series has to produce a phenotype with
higher or at least the same fitness as the current one. On the level of popula-
tions the “no-downhill-step” condition for adaptive walks is somewhat relaxed
as populations with sufficiently large population sizes can bridge narrow val-
leys with width of a few point mutations (see figure 7). Random drift occurs
in absence of fitness differences and represents the essence of Motoo Kimura’s
neutral theory of evolution.3 It can be interpreted as a diffusion process in se-
quence space. The only currently available analytical approach to population
support dynamics is restricted to evolution on flat fitness landscapes.43 Com-
puter simulation of random drift has shown that growing populations may split
into subpopulations.44,45 Evolution of populations on realistic landscapes has
so far only been studied by computer simulation.45,46,47 These investigations
revealed that evolutionary optimization is a combination of fast adaptive pe-
riods and slow random drift phases and thus occurs in stepwise manner with
two different time scales.

In nature and in laboratory experiments, genotype-phenotype mapping is
the true source of complexity.48 Viral and bacterial phenotypes are already
too complex to be studied systematically at the current state of our knowl-
edge. The fast growing number of completely sequenced genomes, however,
may change the manageability of procaryotic phenotypes. In the simplest con-
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ceivable example of a genotype-phenotype relation, in vitro evolution of RNA,
genotype and phenotype are two features of the same molecule, sequence and
structure, respectively.1 Formation of the phenotype then is tantamount to fold-
ing the randomly coiled sequence into the stable conformation of the molecule.
The structure or, in general, the phenotype links genotype and fitness since the
properties which are relevant for selection are carried by the phenotype (see
next section). Assignment of fitness values to genotypes is commonly done
in two separate steps (A few simplified models, for example the Nk-model
proposed by Stuart Kauffman49,50 and other models related to the theory of
spin glasses,51 omit the consideration of a phenotype and assign fitness values
directly to genotypes):

genotype =⇒ phenotype =⇒ fitness .

The first step, genotype-phenotype mapping Σ, maps one vector space onto
another non-scalar space

Σ : (S; dH) =⇒ (Y; η) ,

and has been characterized as a combinatory map52,42 in order to indicate
that it is no landscape in the strict sense. The set of all sequences is denoted by
S and that of all shapes by Y; dH is the Hamming distance and η a distance
between shapes. Fitness values are functions of the evolutionarily relevant
values properties of phenotypes and, accordingly, a fitness landscape is a
mapping from shape space into the real numbers (figure 2):

Λ : (Y; η) =⇒ IR1 .

The term “landscape” will be used here for mappings from a non-scalar space
(sequence or shape space) into the real numbers, in this very general sense and
irrespectively of its meaning for evolutionary dynamics.53

5 Genotype-phenotype mapping of RNA

Although biopolymer structures represent the simplest conceivable class of phe-
notypes, they are anything but easy to predict from known sequences. The pre-
cise rules which determine how three-dimensional structures are formed from
sequences are not known yet. In case of RNA the empirical material consists,
in essence, of roughly twenty different structures determined by x-ray crystal-
lography and NMR-spectroscopy and thus is much poorer than the structural
information available in case of proteins. RNA, however, has a meaningful level
of coarse-grained structure with less detail, the so-called secondary structure
which is tantamount to a list of Watson-Crick (AU and GC) and GU base
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pairs.e The rules of RNA secondary structure formation are sufficiently simple
to allow for an analysis by means of combinatorics and other rigorous math-
ematical tools.54 RNA secondary structures, on the other hand, are a fairly
realistic representation of many essential features of RNA since they were used
successfully for more than thirty years in biochemistry to interpret RNA reac-
tivities and functions. In the last decade we performed a systematic study on
the mapping of RNA sequences into secondary structures. These investigations
are presumably dealing with the only case of a mapping from genotypes into
phenotypes that is based on a realistic biophysical system and can be studied
at the present state of the art. Several of its features are considered to be
typical for other more complex cases in biology.

Methods to study sequence-secondary structure maps of RNA molecules
are summarized in table 1. The first explorations of RNA shape space were per-
formed by means of computer simulations of evolutionary dynamics46,47 (see
also the next section). Later on autocorrelation functions were determined for
free energy landscapes and sequence-structure maps.42,52,55 These investiga-
tions showed, for example, that landscapes derived from GC-only sequences
are substantially more rugged than those derived from natural sequences with
uniform base composition (25%A, 25%U, 25%G, 25%C). A rigorous mathe-
matical classification of landscapes was derived by comparing different difficult
optimization problems.56,57,58

Recent studies on the relations between RNA sequences and secondary
structures used a mathematical model based on random graph theory,59 ex-
haustive folding of all sequences of given chain length60,61 as well as statistics
of appropriately chosen samples.53,55 These investigations revealed four regu-
larities:

(i) The number of sequences exceeds the number of structures by several
orders of magnitude and hence, sequence-structure maps are many to
one.

(ii) Relatively few common structures are contrasted by many rare structures
which usually play no role in evolution. In the limit of long chains we
have almost all sequences folding in a tiny subfraction of all structures.

(iii) In order to find for any common structure at least one sequence (that
folds into it under the defined criterion) one need not explore whole se-

eThe precise definition for an acceptable secondary structure is: (i) base pairs are not allowed
between neighbors in the sequences (i, i + 1) and (ii) if (i, j) and (k, `) are two base pairs
then (apart from permutations) only two arrangements along the sequence are acceptable:
(i < j < k < `) and (i < k < ` < j), respectively.
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Table 1: Techniques to study mappings from RNA sequence space into the shape space of
secondary structures.

Method Advantages Disadvantages Ref.

Mathematical Random graph Analytical Limited validity of 59

model theory expressions model assumptions

Exhaustive Folding algorithm Exact results Limited to small 60,61

folding and and handling of chain lengths
enumeration large samples

Statistical Inverse folding Applicability to Limited accuracy 42,52

evaluation and random walks long sequences due to statistics 62,63

of samples in sequence space 64

Computer Gillespie Focus on Scanning of small 45,46

simulation algorithm∗ evolution sectors in 47,65

sequence space

∗ The Gillespie algorithm66,67 is used to simulate replication and mutation in a flow reactor.

quence space. It is sufficient to search a relatively small spherical neigh-
borhood of an arbitrarily chosen reference sequence (shape space cov-
ering, see figure 3 and53).

(iv) Common structures are characterized by a high degree of neutrality ex-
pressend by the fraction of nearest neighbors (λ̄) which behave identically
with respect to selection. The sets of sequences folding into them, called
their preimages, form extended neutral networks in sequence space
(figure 4).

The results derived from mappings of RNA sequences into secondary structures
are of more general validity. The partitioning of structures into few common
and many rare ones has been observed also with lattice models of proteins68

and extended neutral networks of proteins were found through inverse folding
using knowledge based empirical potentials of mean force.69

Random graph theory has been applied to model the features of the distri-
bution of sequences in sequence space belonging to a typical neutral network.59

This approach makes only use of the base pairing rules in secondary structures
and distinguishes unpaired bases and base pairs. The generic properties of neu-
tral networks are determined by a single parameter λ̄ representing the fraction
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Sequence Space Shape Space

Figure 3: Shape space covering. In order to find at least one RNA sequence folding into
any common structure it is not necessary to explore whole sequence space. Searching a
(relatively small) spherical environment around any arbitrarily chosen reference sequence is
sufficient. The radius of the covering sphere, rcov , can be readily computed from properly
chosen samples of structures.

of neutral neighbors in sequence space averaged over the whole network.f Rig-
orous mathematical analysis allows to derive analytical expressions for a num-
ber of relevant properties. Neutral networks are, for example, (almost always)
connected and span whole sequence space when λ̄ exceeds a threshold value,
λ̄ > λcr(κ). Below threshold (λ̄ < λcr(κ)) networks are split into components.
Random graph theory predicts that there is one component, the so-called giant
component which is substantially larger than the other components (figure 4).
The threshold value is readily computed from the alphabet size κ:

λcr(κ) =
κ−1

√

1

κ
. (5)

The predictions of random graph theory are fulfilled well by actual neutral
networks.60,61 Exceptions can be interpreted straightforwardly in terns of struc-
tural regularities. Common structures, in general, form connected networks.

Properties (i) to (iv) of genotype-phenotype mappings are highly relevant
for evolution. Restriction of searches to the highly redundant common struc-
tures and shape space covering make evolutionary optimization much simpler

f In the current form the model is based on a factorization of sequence space into a space of
unpaired bases and a space of base pairs. Accordingly, two different λ̄-values, λ̄u and λ̄p,
are used for unpaired bases and base pairs. In natural sequences the two parameters refer to
two different alphabets: [A,U,G,C] and [AU,UA,GC,CG,GU,UG] with κ = 4 and κ = 6,
respectively.
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Giant Component

Figure 4: Neutral networks in sequence space. The lower structure forms a connected neutral
network spanning whole sequence space as shown in the two-dimensional sketch. This class
of network is typical for common structures. The upper part of the figure is an example of
a disconnected network in sequence space which consists typically of a giant component and
many small components. Connectivity of neutral networks depends on the mean fraction of
neutral neighbors (λ̄) of the structure in sequence space.
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than previously thought and provide an explanation for the success of evolu-
tionary biotechnology in searches were a priori probabilities to find a given
sequence are less than 10−100. In addition, shape space covering provides
a powerful tool for the design of efficient protocols for searches in sequence
space.70 The existence of neutral networks is essential for the efficiency of evo-
lutionary searches (figure 7 and45,71,72) since they enable populations to escape
from evolutionary traps in the form of local fitness optima.

The existence of neutral networks can also be considered explicitly in the
derivation of the error threshold (see section 3, eq. 3). The variables for individ-
ual genotypes forming the same phenotype are lumped together, yk =

∑nk
i=1 xi,

and thereby the following kinetic differential equation is obtained,

dyk
dt

=
s
∑

j=1

Q̃jk Fj(y) yj − yk Φ(y) ; j, k = 1, 2, . . . , s , (6)

where y = (y1, y2, . . . , ys) and the same definitions apply as in equation (1)
except for the effective mutation matrix Q̃ whose elements are now functions
of the single digit accuracy q, the degree of neutrality λ̄, and the mean Ham-
ming distances.73 We are considering distributions of phenotypes rather than
genotypes and search for the conditions of stationary phenotype distributions.
The critical replication accuracy of the master phenotype becomes a function
of the superiority aa well as the mean degree of neutrality:73,74

Qmm = Qmin =
1 − λ̄mσm
(1 − λ̄m)σm

. (7)

The limits of the phenotypic error threshold in the (Q, λ̄)-plane are easily
visualized: (i) the phenotypic error threshold converges to the genotypic value,
Qmin = σ −1

m , in the limit λ̄m → 0 and (ii) the minimal replication accuracy
approaches zero in the limit λ̄m → σ −1

m . The second case implies that the
accuracy plays no role in case the degree of neutrality is sufficiently large, i.e.,
when it exceeds the reciprocal value of the superiority.

6 Optimization of RNA structures

Molecular insights into evolution can be obtained by direct computer simula-
tion of the full dynamics illustrated in figure 2. The simulated model system is
based on replication and mutation in populations of RNA molecules subjected
to a selection constraint through regulation of population size and genotype-
phenotype mapping on the level of secondary structures. The population size
is controlled by random elimination of individuals through degradation or di-
lution. Simulation of optimization dynamics serves in essence two purposes:
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(i) The analysis of recorded data allows to give molecular interpretations of
evolutionary processes which can be used for predictions and in the design of
new experiments, and (ii) the results on sequence-structure mapping of RNA
reported in the previous section can be tested with respect to their relevance
in evolution.

The first simulations based on a realistic model of RNA structures were
reported about ten years ago.47 Like in later works populations of thousands
and more RNA genotypes undergo replication and mutation and are subjected
to the constraints of a flow reactor that keeps the population size N constant
within fluctuations of

√
N -size. RNA sequences are folded to yield secondary

structures.g The structures are then evaluated according to predefined rules in
order to compute replication (ki) and degradation rate constants (di). Fitness
in this case is a simple function of these two quantities and the replication
accuracy: wi = kiQii − di. The early computer simulations46,47 revealed,
in essence, two features of evolutionary optimization: (i) the approach to
the target occurs in steps, showing punctuation rather than continuity, and
(ii) optimal fitness values are found with different structures strongly indicat-
ing the occurrence of selective neutrality in the evaluation of phenotypes.

More recently, simulations of this kind were used to show that evolution
on the neutral network of a tRNA-structure corresponds to a diffusion process
where the diffusion coefficient is proportional to the mutation rate.45 In this
simulation as well as in the computer experiment described in figures 5 and 6
degradation has been neglected and the replication rate constants (kα) were
assumed to depend on structure (independently of the sequence folding into it
and thus fulfilling the neutrality condition). In particular, a (fitness) function
of the kind kα = (δ + η(α, τ)/n)−1 was used, where δ is some constant, n the
chain length of the RNA, and η(α, τ) the distance between structure α and the
target structure τ . Most of the evolutionarily important results, however, were
found to be fairly independent of specific choices of constants and the detailed
analytical expression used for the fitness function.

In our most recent works65,77 optimization of RNA structures was studied
through simulations of populations of about one thousand molecules in the flow
reactor. The approach towards the target structure which happened to be a
tRNA clover-leaf occurs again in steps. Periods of fast decrease in distance to
the target are interrupted by long quasi-stationary phases of almost constant

gFolding is usually performed under a free energy minimization criterion. High-performance
versions of Michael Zuker’s folding algorithm75 for sequential and parallel computing which
were developed in our group76 are applied. It should be stressed, however, that the generic
results on sequence-structure maps and evolutionary dynamics presented here are fairly
independent of particular folding criteria, for example maximum matching, minimum free
energy or kinetic folding.64
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Figure 5: Transitions in a computer simulation of RNA optimization towards a tRNA shape.
The figure shows how much optimization has progressed at the macro level by plotting the
population average of the Hamming distance to the target structure. The fitness curve is
superimposed by the relay trace showing the flow of causality from start shape to target
(see text for definitions and figure 6). The approach to the target occurs in 41 steps. Seven
discontinuous or major transitions are marked by vertical lines. The corresponding gener-
alized shifts are named, and the shapes before and after the transition are shown (Except
for the first standard shift to avoid congestion of the figure). All other transitions (after
the first shift) are continuous in the sense that they occur within statistical neighborhoods.
Horizontal intervals before and after the occurrence of a shape in the relay series indicate
periods when the shape is present in the population. The flow reactor was stochastically
constrained to maintain an average of 1,000 sequences of chain length n = 76 and the error
rate was 0.001 per nucleotide.
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Figure 6: Relay series. The full series of 41 relay shapes derived from the computer simulation
of the optimization towards a tRNA target shown in figure 5 is presented. See text for details.
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average fitness (figure 5). The course of the evolutionary optimization process
has been reconstructed by computing the relay series of phenotypes.h The
relay series is the uninterrupted sequence of structures which eventually leads
to the formation of the target structure. In computer simulations the relay
series is resolved in retrospect. Starting from the end of the simulation and
going back in time the population is scanned for continuous presence of the
target shape and the event is determined when it appeared in the population.
By this event (being a point mutation) the target shape was formed from a
precursor or “parent shape”. The reconstruction of the relay series is continued
by determining the parent of the parent and the procedure is repeated until a
shape in the initial population (at t = 0) has been reached. The full relay series
of the computer experiment shown in figure 5 contains 41 structures (figure 6),
six particularly important ones are shown on top of the figure. After an initial
period of rapid improvements (which ends around time t = 100) the course
of optimization shows a striking regularity that can be generalized to more
complex systems. Transitions between structures fall into two classes:

• continuous transitions representing small structural changes and leading
to globally frequent structures in the neighborhood of the neutral network
of the intial structure and

• discontinuous transitions representing large stuctural changes and lead-
ing to globally rare but locally frequent structures (they are named in
figure 6 according to a classification given in65).

Continuous transitions are minor structural changes which occur readily and
involve a statistical nearness condition between neutral networks (see next
section). Discontinuous transitions occur at the ends of the quasi-stationary
periods (there is one exception around time t ≈ 465 which represents a “silent”
discontinuous transition that occurs in the middle of a plateau since it does
not change fitness). A discontinuous transition is usually followed by a cascade
of continuous transitions which are accompanied by fitness increase. Then, the
population approaches the next plateau along which neutral evolution occurs
at approximately constant fitness. In addition, we observe whole families of
shapes appearing simultaneously at discontinuous transitions (especially in-
structive examples are the “shift-transitions” at t ≈ 820 and t ≈ 950 in fig-
ure 5). On the plateaus cycles within these families may occur in the re-
lay series of shapes (examples are the identical shapes 3 and 5 or 7 and 12

hIt should be mentioned here that recordings of evolutionary histories in the sense of relay se-
ries are, in priciple, accessible through the analysis of RNA replication-mutation experiments
in capillaries.13

20



in the relay series of figure 6). Two scenarios were observed in the quasi-
continuous periods: population drift randomly in sequence space and geno-
types vary whereas the phenotype is either constant (for example, the plateau
between at 150 < t < 300) or phenotypes change within one of the above
mentioned families. The drift continues until a point in sequence space is
reached where a fitness-improving discontinuous transition is locally frequent.
Repeated optimization runs from identical initial populations towards the same
target structure but with different “seeds” of the random number generator
proceed through different intermediates. Gross features of the simulations,
however, turned out to be fairly reproducible. These are, for example, the
numbers of steps, the overall features of intermediate shapes, the attainability
of shapes in sequence space as well as the above reported regularities in the
relay series.

A remarkable difference has been observed between AUGC and GC se-
quences: most of the individual runs with populations of AUGC sequences
heading for a tRNA target shape reached the goal within some onethousand-
fivehundred time units. We tried also to search in the same way for GC-only
sequences that form tRNA structures. Although such sequences were obtained
through inverse folding and thus are known to exist, none of the computer sim-
ulations with a population of one thousand individuals was successful within
several thousand time units. The simulations thus confirm what has already
been conjectured from the shorter correlation lengths of GC-only landscapes:
GC sequences form more rugged landscapes and evolutionary optimization on
them is more difficult, accordingly.

The course of evolutionary optimization on realistic landscapes is sketched
in figure 7. Ruggedness of fitness landscapes lacking neutrality causes adaptive
walks of populations to end on nearby local optima. Neutral networks mediate
between different regions in sequence space since populations migrate on them
by random drift. Optimization on landscapes with sufficiently high degree
of neutrality occurs on two time scales: fast periods containing cascades of
adaptive changes are interrupted by long quasi-stationary phases of neutral
evolution during which populations drift randomly on neutral networks until
they reach a local neighborhood that sustains the next major transition.

7 Statistical topology and evolution

The RNA model and the evolutionary dynamics derived from it inspired the
development of a statistical notion of nearness in genotype space that can
be formulated as a kind of statistical topology.65 It allows straighforward
generalization to other evolutionary systems. An evolutionarily relevant notion
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Figure 7: A sketch of optimization in sequence space through adaptive walks of populations.
Adaptive walks allow to choose the next step arbitrarily from all directions where fitness is
(locally) non-decreasing. Because of their quasispecies-like mutant distributions populations
can bridge over narrow valleys with widths of a few point mutations. In absence of selective
neutrality (upper part) they are, however, unable to span larger Hamming distances with
low fitness intermediates. Hence, adaptive walks will end on one of the nearest major fitness
peak. Populations on rugged landscapes with sufficiently high degree of neutrality form
extended neutral networks and evolve by a combination of adaptive walks and random drift
at essentially constant fitness along the network (lower part). Eventually, populations may
reach the global maximum of the fitness landscape.
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of nearness is obtained by restricting the property to be near to frequent
occurence of structures in the neighborhood of neutral sets. Neighborhood
frequency is computed by counting the shapes in all one-error (Hamming-
distance-one) neighborhoods of the genotypes belonging to the network and
then forming the average. Inspection of the frequency of occurencei allows to
identify globally near phenotypes.

Shapes in the statistical nearness relation need not be commutable: shape
α is near shape β does not imply that β is near α. This paradox is easily
resolved by considering neutral networks of largely different sizes: the smaller
network (β) may have the larger one (α) as a frequent neighbor; at the same
time, however, it may occupy only a negligibly small fraction of the positions in
the neighborhood of the larger network and thus β is not near α. Precisely this
situation is found with tRNA’s and structures derived from them by opening
the terminal stack (three-hairpin-RNA): the tRNA forms the smaller network
and is not near the three-hairpin-RNA whereas the three-hairpin-RNA is a
frequent neighbor of the tRNA. Transitions between globally near phenotypes
are continuous and occur readily. Discontinuous transitions occur between
globally distant phenotypes. They are initiated by special genotypes which
meet the sequence requirement that the major changes can occur through a
single point mutation. Preliminary inspection of discontinuous transitions in
the RNA model has shown that they are indeed locally frequent.

The nearness property of phenotypes is not restricted to RNA secondary
structures. It is merely based on a sufficiently large degree of neutrality and
genotype-phenotype relations which fulfil the conditions listed in section 5.
Then, evolution will always appear as a sequence of continuous and discon-
tinuous transitions where the latter depend on special genotype requirements.
The role of neutral evolution is to search for these special genotypes through
random drift.
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