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Abstract

Regulation of gene activities is studied by means of computer assisted mathematical analysis of ordinary differential equations (ODEs)

derived from binding equilibria and chemical reaction kinetics. Here, we present results on cross-regulation of two genes through

activator and/or repressor binding. Arbitrary (differentiable) binding function can be used but systematic investigations are presented for

gene–regulator complexes with integer valued Hill coefficients up to n ¼ 4. The dynamics of gene regulation is derived from bifurcation

patterns of the underlying systems of kinetic ODEs. In particular, we present analytical expressions for the parameter values at which

one-dimensional (transcritical, saddle-node or pitchfork) and/or two-dimensional (Hopf) bifurcations occur. A classification of

regulatory states is introduced, which makes use of the sign of a ‘regulatory determinant’ D (being the determinant of the block in the

Jacobian matrix that contains the derivatives of the regulator binding functions): (i) systems with Do0, observed, for example, if both

proteins are activators or repressors, to give rise to one-dimensional bifurcations only and lead to bistability for nX2 and (ii) systems

with D40, found for combinations of activation and repression, sustain a Hopf bifurcation and undamped oscillations for n42. The

influence of basal transcription activity on the bifurcation patterns is described. Binding of multiple subunits can lead to richer dynamics

than pure activation or repression states if intermediates between the unbound state and the fully saturated DNA initiate transcription.

Then, the regulatory determinant D can adopt both signs, plus and minus.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Theoretical work on gene regulation goes back to the
1960s (Monod et al., 1963) soon after the first repressor
protein had been discovered (Jacob and Monod, 1961). A
little later the first paper on oscillatory states in gene
regulation was published (Goodwin, 1965). The interest in
gene regulation and its mathematical analysis never ceased
(Tiwari et al., 1974; Tyson and Othmer, 1978; Smith, 1987)
and saw a great variety of different attempts to design
models of genetic regulatory networks that can be used in
systems biology for computer simulation of gen(etic and
e front matter r 2007 Elsevier Ltd. All rights reserved.
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met)abolic networks.1 Most models in the literature aim at
a minimalist dynamic description which, nevertheless, tries
to account for the basic regulatory functions of large
networks in the cell in order to provide a better under-
standing of cellular dynamics. A classic in general
regulatory dynamics is the monograph by Thomas and
D’Ari (1990). The currently used mathematical methods
comprise application of Boolean logic (Thomas and
Kaufman, 2001b; Savageau, 2001; Albert and Othmer,
2003), stochastic processes (Hume, 2000) and deterministic
dynamic models, examples are Cherry and Adler (2000),
Bindschadler and Sneyd (2001) and Kobayashi et al. (2003)
and the recent elegant analysis of bistability (Craciun et al.,
1Discussion and analysis of combined genetic and metabolic networks

has become so frequent and intense that we suggest to use a separate term,

genabolic networks, for this class of complex dynamical systems.
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Nomenclature

A;B;C; . . . metabolites
½A� ¼ a; ½B� ¼ b; ½C� ¼ c; . . . concentrations (Depending

on conditions the symbols express concentra-
tions or activities.) of metabolites

G1;G2 genes
½G1� ¼ g1; ½G2� ¼ g2 concentrations of genes
Q1;Q2 transcribed (m)RNAs
½Q1� ¼ q1; ½Q2� ¼ q2 concentrations of RNAs
P1;P2 translated proteins
½P1� ¼ p1; ½P2� ¼ p2 concentrations of proteins
G1 � P2 ¼ H1;G2 � P1 ¼ H2 gene–protein complexes
½G1 � P2� ¼ ½H1� ¼ h1 concentrations of complexes
½G2 � P1� ¼ ½H2� ¼ h2

K1 ¼
½G2�½P1�

½H2�
¼

g2�p1
h2

dissociation constants

K2 ¼
½G1�½P2�

½H1�
¼

g1�p2
h1

kq1 ; k
q

2 transcription rate constants

kp1 ; k
p

2 translation rate constants

dq1 ; d
q

2 RNA degradation rate constants

dp1 ; d
p

2 protein degradation rate constants

F1ðp2Þ;F2ðp1Þ binding (rate) functions (In case basal
transcription is included the functions FiðpjÞ

contain also kinetic coefficients (see Section 3.3).)
g1; g2 coefficients for basal transcription

W1 ¼
k
q
1
�kp1

d
q
1
�dp1

; W2 ¼
k
q
2
�kp2

d
q
2
�dp2

ratios of rate constants

f1 ¼
dp1

kp1
f2 ¼

dp2

kp2

Dðp1; p2Þ regulatory determinant

�kq1 kq2 kp1 kp2

0 qF 1

qp2

� �
qF2

qp1

� �
0

�������
�������

P ¼ ðp1; p2Þ point in protein concentration space

P̄k ¼ ðp̄
ðkÞ
1 ; p̄

ðkÞ
2 Þ stationary point (The superscripts will

be dropped in cases where ambiguity can be
excluded.)

2Computer assistance in simple problems may involve computation of

solutions for equations but does not require full simulations of regulatory

dynamics.
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2006). In vivo constructs and selection experiments
(Elowitz and Leibler, 2000; Gardner et al., 2000; Guet
et al., 2002; Yokobayashi et al., 2002; Thattai and
Shraiman, 2003) provide insight into regulatory dynamics
and better understanding of genabolic networks. Apart
from diverse minimalist models (Hartwell et al., 1999),
relatively few articles are concerned with the mechanistic
prerequisites for the occurrence of certain dynamic features
based on positive and negative feedback loops (Thomas
and Kaufman, 2001a; Ferrell, 2002) like stability, bist-
ability, periodicity or homeostasis.

The basic gene regulation scenario that underlies the
calculations presented here is sketched in Fig. 1 and has
been adopted from the booklet by Ptashne and Gann
(2002). Two classes of molecular effectors, activators and
repressors, determine the transcriptional activity of a gene,
whose activity is classified according to three states: (i)
‘naked’ DNA is commonly assumed to have a low or basal
transcription activity (basal state), (ii) transcription rises to
the normal level when (only) the activator is bound to the
regulatory region of the gene (active state) and (iii)
complexes with repressor are inactive no matter whether
the activator is present or not (inactive state). We consider
here cyclic regulatory interaction: 1! 2 and 2! 1. The
basal state is sometimes also characterized as ‘leaky
transcription’. We shall use this notion here for a general
term in the kinetic equations that describes unregulated
transcription. Effectors often become active as oligomers,
commonly dimers or tetramers, and therefore we shall also
refer to cases where more than one molecule has to bind
before regulation becomes effective. Mathematical ap-
proaches to binding equilibria that are of relevance in
gene regulation have been reviewed recently (Schuster,
2005). The genetic regulatory system is completed by
introducing translation of the transcribed mRNAs into
protein regulators. Both classes of molecules, mRNAs and
proteins, undergo degradation through a first-order reac-
tion. DNA, the molecular realization of genes, is assumed
to be present at constant concentration. Transcription,
translation and degradation are multi-step processes and
follow rather involved reaction mechanisms. A carefully
studied example of such a multi-step process is template-
induced RNA synthesis commonly called plus–minus RNA
replication (Biebricher et al., 1983; Biebricher and Eigen,
1987). However, when monomers and enzyme, the
bacteriophage Qb replicase, are present in excess, the
overall kinetics follow simple first-order rate laws. We shall
adopt simple kinetic first-order expressions for transcrip-
tion and translation here.
Following our approach gene regulatory systems can be

grouped into two classes: (i) simple systems, which are
characterized by cyclic regulation (1! 2; 2! 1) and for
which a complete (computer assisted) qualitative analysis
can be carried out analytically,2 and (ii) complex systems
for which qualitative analysis is pending because of hard
computational problems or principal difficulties. In both
classes the binding functions may be arbitrarily compli-
cated provided they are differentiable. The distinction
between the two classes is made in Section 3.2 by means of
a function D, the so-called ‘regulatory determinant’, which
is obtained as a product of only two elements of the
Jacobian matrix. In particular, all cross-regulatory two-
gene systems are of class (i) no matter how sophisticated
the binding functions are. In a forthcoming study (Schuster
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Fig. 1. Basic principle of gene regulation. The figure sketches the regulated recruitment mechanism of gene activity control in prokaryote cells as

discovered with the lac genes in Escherichia coli (Ptashne and Gann, 2002). The gene has three states of activity, which are regulated by the presence or

absence of glucose and lactose in the medium: State I, basal state called ‘leaky transcription’ occurs when both nutrients are present and it is characterized

by low-level transcription; neither the activator, the CAP protein, nor the lac-repressor protein are bound to their sites on DNA. State II, activated state is

induced by the absence of glucose and the presence of lactose and then CAP is bound to DNA, but lac-repressor protein is absent. Finally, when lactose is

absent the gene is in the inactive state no matter whether glucose is available or not. Then, the lac-repressor protein is bound to DNA and transcription is

blocked. The promoter region of the DNA carries specific recognition sites for the RNA polymerase in addition to the binding sites for the regulatory

proteins.
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et al., 2006) we shall present analogous results for cases
in which the calculation is more involved as it involves
more elements of the Jacobian. These systems include
two-gene systems where the genes have double regula-
tory functions, for example, self-repression and cross-
activation, and regulatory systems with more than
two genes apart from those with cyclic symmetry of
regulation (1! 2; 2! 3; . . . ;N ! 1), which also fall into
class (i).

Here, we present the analysis of the ordinary differential
equations (ODEs) derived from chemical reaction kinetics
of gene regulation under the assumption of fast binding
equilibria. Only a few new results are presented in this
contribution. Instead we exploit the analytical approach
further than in other papers and present a new access to
bifurcation analysis that allows for straightforward classi-
fication of dynamical systems for gene regulation. Quali-
tative analysis of the dynamical systems is performed and
yields stationary points in form of the roots of high-order
polynomials as well as simple expressions derived through
differentiation of binding functions for the prediction of
bifurcations and their nature (e.g. transcritical, saddle-
node, pitchfork or Hopf bifurcation). Then follows a
discussion of some special cases with one-step binding
functions and Hill coefficients up to n ¼ 4 as well as two
examples of more complicated binding functions. Occa-
sionally, we mention continuations of the phase portraits
of ODEs into octants with negative concentrations when
they are useful for an understanding of the regulatory
dynamics.

2. Kinetic equations

2.1. Binding equilibria

The DNA is assumed to carry two genes, G1 and G2,
which have binding sites for effectors, activators and/or
repressors in the promoter region. Binding of the proteins
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4The equilibrium constants applied are macroscopic dissociation
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is assumed to occur fast compared to transcription and
translation, and accordingly the equilibrium assumption is
valid. The binary interaction is restricted to cross-regula-
tion of the two genes: the translation product of gene G1

controls the activity of gene G2 and vice versa. In other
words, the activity of gene G1 is a function F1 of the
equilibrium concentration of protein P2, denoted by p̄2,
and gene G2 is likewise controlled by P1 as expressed by F 2

and p̄1, respectively. Since the number of DNA molecules is
assumed to be constant, both genes are present at the same
total concentrations: ðg1Þ0 ¼ ðg2Þ0 ¼ g0. In general, the
equilibrium is of the form

G1 þ n2P2 !
g0F 1ðp̄2;n2;...Þ

G1 � ðP2Þn2 and ð1Þ

G2 þ n1P1 !
g0F 2ðp̄1;n1;...Þ

G2 � ðP1Þn1 . ð2Þ

For the simplest possible case, binding equilibria of
monomers, n1 ¼ n2 ¼ 1, and mass action we obtain3

G1 þ P2 !
K�12

G1 � P2 and ð3Þ

G2 þ P1 !
K�11

G2 � P1. ð4Þ

With K1 ¼ ½G1�½P2�=½G1 � P2� and K2 ¼ ½G2�½P1�=½G2 � P1�

the equilibrium concentration of the gene–protein complex
is expressed by

½G1 � P2� ¼ c̄1 ¼ g0 �
p̄2

K2 þ p̄2

� g0 �
ðp̄2Þ0

K2 þ ðp̄2Þ0
,

½G2 � P1� ¼ c̄2 ¼ g0 �
p̄1

K1 þ p̄1

� g0 �
ðp̄1Þ0

K1 þ ðp̄1Þ0
,

where we approximate the equilibrium protein concentra-
tions by the total concentrations, p̄1 � ðp1Þ0 and p̄2 � ðp2Þ0,
assuming that the numbers of genes are much smaller than
the numbers of effector molecules. In order to formulate
cross-regulation of two genes in versatile form we general-
ize the dimensionless binding functions, F j ; j ¼ 1; 2, to
cooperative interactions with arbitrary exponents n:

Gene ‘1’

F
ðactÞ
1 ðp2;K2; nÞ ¼

pn
2

K2 þ pn
2

activation;

F
ðrepÞ
1 ðp2;K2; nÞ ¼

K2

K2 þ pn
2

repression;

8>>><>>>:
Gene ‘2’

F
ðactÞ
2 ðp1;K1; nÞ ¼

pn
1

K1 þ pn
1

activation;

F
ðrepÞ
2 ðp1;K1; nÞ ¼

K1

K1 þ pn
1

repression:

8>>><>>>: ð5Þ

Here, ‘rep’ and ‘act’ stand for repression and activation,
respectively, where either the free gene, Gj, or the complex,
GjPi, initiates transcription. The exponent n, in particular
when determined experimentally, is called the Hill
coefficient. (See Hill, 1910; Cantor and Schimmel, 1980,
3It will turn out that the usage of dissociation rather than binding

constants is of advantage and therefore we define K ¼ ½G�½P�=½G � P�.
p. 864ff.) The Hill coefficient n is related to the molecular
binding mechanism. In simple cases n is the number of
protein monomers required for saturation of binding to the
DNA.
More than one parameter will be required for describing

binding equilibria that involve more than one protein
subunit. To illustrate by means of an example, we consider
consecutive binding of four ligands P2 to gene G1,

G1 þ 4P2 !
K�121

Hð1Þ1 þ 3P2 !
K�122

Hð2Þ1 þ 2P2 !
K�123

Hð3Þ1 þ P2 !
K�124

Hð4Þ1 ,

where HðkÞ1 ¼ G1 � ðP2Þk, the complex formed by the gene
with k protein monomers. If the only complex that is active
in transcription were Hð4Þ1 the binding function would adopt
the form4

F
ðactÞ
1 ðp2;K21; . . . ;K24Þ

¼
p4
2

K21K22K23K24 þ K22K23K24 p2 þ K23K24 p2
2 þ K24 p3

2 þ p4
2

.

Examples of other binding functions will be discussed
together with the results derived for the individual systems.

2.2. Reaction kinetics

The transcription reactions come in two variants, an
activating mode (corresponding to state II of Fig. 1) and
a repressing mode (corresponding to state III of Fig. 1).
The basal state (state I) can be included in the activating or
the repressing mode as we shall see later. The kinetic
reaction mechanism for transcription then has the follow-
ing form:

G1 � P2!

e
k
q
1
G1 þQ1 activation;

G1!

e
k
q
1
G1 þQ1 repression;

8>>>><>>>>: ð6Þ

G2 � P1!

e
k
q
2
G2 þQ2 activation;

G2!

e
k
q
2
G2 þQ2 repression:

8>>>><>>>>: ð7Þ

In case of activation, the regulator–gene complexes
are transcribed, whereas the complexes are inactive in
repression and then transcription is mediated by the free
genes.
In contrast to DNA, the transcription products, the

mRNAs Q1 and Q2, as well as the regulators, the proteins
P1 and P2, have only finite lifetime because of decay
reactions. For translation of mRNAs and for degradation
constants. For equivalent microscopic constants the individual terms in

the denominator receive the binomial coefficients, ð1; 4; 6; 4; 1Þ, as factors
(Cantor and Schimmel, 1980).
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of mRNAs as well as proteins we find

Qi!
kpi

Qi þ Pi; i ¼ 1; 2 translation, ð8Þ

Qi!
d
q
i
0; i ¼ 1; 2 degradation and ð9Þ

Pi!
dpi

0; i ¼ 1; 2 degradation. ð10Þ

Translation and degradation reactions are modelled as
simple single step processes. The approximation for
translation is well justified in case of excess monomers,
ribosomes and other translation factors (as mentioned in
the Introduction). Simple degradation reactions are always
of first order. Since the total concentration of the genes is
constant and since we shall apply only binding functions
that are proportional to g0, we can absorb the DNA
concentration in the rate constant for transcription:
kqi ¼

f
kqi g0. As a consequence the rate parameters have

different dimensions ½kqi � ¼ ½m� t�1� and ½kpi � ¼ ½d
q

i � ¼

½dpi � ¼ ½t
�1� where m stands for ‘molar’ and t stands for

‘time’. These substitutions are advantageous in a second
aspect too: the regulatory functions are dimensionless, no
matter whether we are using simple hyperbolic or higher
order binding equilibria.

Now, we are in a position to write down the kinetic
differential equations for all four molecular species, Q1, Q2,
P1 and P2, derived from two genes:

dqi

dt
¼ _qi ¼ kqi F iðpjÞ � dqi qi; i ¼ 1; 2; j ¼ 2; 1 and ð11Þ

dpi

dt
¼ _pi ¼ kpi qi � dpi pi; i ¼ 1; 2. ð12Þ

Accordingly, the dynamical system contains eight kinetic
parameters and two binding functions. Except for the
binding functions F iðpjÞ the system is linear. This property
will be important for analyzing the Jacobian matrix and
determining the stability of stationary points.

3. Qualitative analysis

3.1. Determination of stationary points

In order to derive equations for the stationary or fixed
points of the dynamical system (11), (12) we introduce four
ratios of reaction rate parameters,

Wi ¼
kqi kpi

dqi dpi
and fi ¼

dpi

kpi
; i ¼ 1; 2, (13)

that simplify the expressions obtained from
_qi ¼ _pi ¼ 0; i ¼ 1; 2:

p̄i � WiF iðp̄jÞ ¼ 0; i ¼ 1; 2; j ¼ 2; 1. (14)

The binding functions are normalized, 0pF ip1, and hence
the equilibrium concentrations of proteins are confined to
values in the range 0pp̄ipWi with i ¼ 1; 2. For mass action
the binding functions are rational functions, F iðp̄jÞ ¼
Niðp̄jÞ=Diðp̄jÞ with Ni and Di being two polynomials in p̄j,
and then the two Eq. (14) can always be written as two
coupled polynomials whose roots define the stationary
points. Examples will be given in the forthcoming sections.
The stationary values of the mRNA concentration are
proportional to the stationary protein concentrations:

q̄i ¼ fi p̄i; i ¼ 1; 2. (15)

Again we point at a difference in dimensions: ½Wi� ¼ ½m�,
whereas the fi’s are dimensionless. Stationary concentra-
tions are completely defined by the two ratios of kinetic
constants, W1 and W2 (and, of course, by the parameters in
the functions F1 and F2).
Apart from an initial phase determined largely by the

choice of the four initial values qið0Þ; pið0Þ (i ¼ 1; 2), the
projection of the trajectories ðq1ðtÞ; q2ðtÞ; p1ðtÞ; p2ðtÞÞ onto
the ðq1; q2Þ subspace shows close similarity to that onto the
ðp1; p2Þ plane. For stability analysis it is sufficient therefore
to consider the fixed points and their properties on either of
the two subspaces. We choose the ‘protein’ subspace P ¼
fpi; piX0 8i ¼ 1; 2g since protein concentrations are calcu-
lated more directly. It is worth noticing that the positions
of the stationary points, P̄ ¼ ðp̄1; p̄2Þ 2 P, depend only on
W1 and W2 and not on all eight kinetic parameters.
Substitution of p̄2 ¼ W2F 2ðp̄1Þ yields the solution

p̄1 � W1F 1ðW2F2ðp̄1ÞÞ ¼ 0. (16)

Eq. (16) leads to high-order polynomials for nonlinear
binding functions which, nevertheless, are computed
straightforwardly for general n for the simple binding
functions (5). For activation–activation, activation–repres-
sion and repression–repression, we obtain

p̄1 � p̄n�n
1 Wn

2 � p̄n�n�1
1 W1W

n
2 þ K2 �

Xn

k¼0

p̄
nðn�kÞ
1

n

k

� �
Kk

1

 !
¼ 0,

(17)

K2 �
Xn

k¼0

p̄
nðn�kÞþ1
1

n

k

� �
Kk

1

 !
þ ðp̄1 � W1ÞðW2K1Þ

n
¼ 0 and

(18)

ðp̄1 � W1ÞK2 �
Xn

k¼0

p̄
nðn�kÞ
1

n

k

� �
Kk

1

 !
þ p̄1 � ðW2K1Þ

n
¼ 0,

(19)

respectively. The equilibrium concentration p̄2 is readily
obtained from

p̄2 ¼
W2 � p̄n

1

K1 þ p̄n
1

for ð17Þ and

p̄2 ¼
W2 � K1

K1 þ p̄n
1

for ð18Þ and ð19Þ.

It follows from Eq. (17) that the origin is always a fixed
point for activation–activation systems, P̄1 ¼ ð0; 0Þ, corre-
sponding to both genes silenced. The degree of the
polynomials in p̄1, pn ¼ n2 þ 1, increases with the square
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of the Hill coefficient and thus already reaches 17 for n ¼ 4.
Nevertheless, we never obtained more than three or
four real roots through numerical solution (for np4).
Obviously, we have an even number of real roots for
n odd (1 and 3) and an odd number of real roots for n even
(2 and 4).

The high degree of the polynomials prohibits direct
calculations based on Eqs. (17)–(19) but the expressions are
suitable for computing, for example, the limits of the
equilibrium concentrations for strong and weak binding,
limK1;2! 0 and limK1;2!1, respectively. The results
are shown in Table 1 and they correspond completely to
the expectations. When the limits are taken for both
constants simultaneously the limiting concentrations are
independent of the Hill coefficient n—not unexpectedly
since all functions Fiðp̄j;Kj ; nÞ approach either zero or one
in these limits. Examples of individual dynamical systems
will be discussed in Section 4 and therefore we mention
only one general feature here: in the strong binding limit
the combination activation–activation leads to two active
genes or to silencing of both genes, whereas we have
alternate activities—‘1’ active and ‘2’ silent or ‘1’ silent and
‘2’ active—in the repression–repression system. Weak
binding, on the other hand, silences the genes in the
act2act case and leads to full activities in rep2rep
systems.

In the next Section 3.2 we shall again make use of Eqs.
(17)–(19) and derive limits of functions for the strong
binding case, which are applied to the analysis of the
regulatory dynamics in parameter space.
Table 1

Protein concentrations in the strong and weak binding limits

System Strong binding: limKj ! 0

j p̄1 p̄2

act2acta 1 0 0

W1
Wn

K2 þ Wn
2

W2

2 0 0

W1 W2
Wn

K1 þ W
1; 2 0 0

W1 W2

act2rep 1 0 0

2 W1 W2
K1

K1 þ W
1; 2 0 0

rep2rep 1 W1 0

2 0 W2

1; 2 W1 0

0 0

0 W2

The limits were calculated from Eqs. (17)–(19) by taking the limits limK1 !
aThe solution ðp̄1 ¼ 0; p̄2 ¼ 0Þ is a double root in the strong binding limit.
3.2. Jacobian matrix

The dynamical properties of the ODEs (11), (12) are
analyzed by means of the Jacobian matrix and its
eigenvalues. For the combined vector of all variables,
x ¼ ðx1; . . . ;x4Þ ¼ ðq1; q2; p1; p2Þ, the Jacobian matrix A has
a useful block structure:

A ¼ aij ¼
q _xi

qxj

� �
¼

Qd Qk

Pk Pd

 !

¼

�dq1 0 kq1
qF 1

qp1

kq1
qF1

qp2

0 �dq2 kq2
qF 2

qp1

kq2
qF2

qp2

kp1 0 �dp1 0

0 kp2 0 �dp2

0BBBBBBBBBB@

1CCCCCCCCCCA
. ð20Þ

This block structure of matrix A largely facilitates the
computation of the 2n eigenvalues (Marcus, 1987; Kovacs
et al., 1999. Since the matrices Qd and Pk commute,
QdPk ¼ PkQd , the relation

Qd Qk

Pk Pd

�����
����� ¼ jQdPd �QkPkj

holds. In certain cases, in particular for all forms of cyclic
regulation of genes including cross-regulation of two genes,
GN ) G1 ) G2 ) � � � ) GN for arbitrary N (Schuster
Weak binding: limKj !1

j p̄1 p̄2

1 0 0

2 0 0

n
1

1; 2 0 0

1
W1

Wn
2

K2 þ Wn
2

W2

n
1

2 0 W2

1; 2 0 W2

1
W1

K2

K2 þ Wn
2

W2

2 W1 W2
K1

K1 þ Wn
1

1; 2 W1 W2

0 and/or limK2 ! 0 or limK1 !1 and/or limK2 !1, respectively.
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Fig. 2. Eigenvalues of the Jacobian matrix (20). The four eigenvalues of a

two-gene system, e1, e2, e3 and e4, are plotted as functions of D around the

point D ¼ 0 as reference. The dimension of the ordinate axis is reciprocal

time, [t�1]. At D ¼ 0 and different values of dq1 , dq2 , dp1 and dp2 we observe

four negative real eigenvalues of the Jacobian, which are turning into

complex conjugate pairs at the values D ¼ D1, D ¼ D2 and D ¼ D3. At

DoneD and at DHopf the fixed point changes stability. The one dimensional

bifurcation lies at negative values of D since DoneDo0, whereas DHopf40,

and thus the Hopf bifurcation appears always at positive D values. Color

code: Real eigenvalues are drawn in black and the real parts of complex

conjugate pairs of eigenvalues are shown as red lines.
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et al., 2006), the secular equation, jA� eEj ¼ 0 (where E is
unit matrix), is of the form5

ðeþ dq1 Þðeþ dq2 Þðeþ dp1 Þðeþ dp2 Þ þD ¼ 0 with

D ¼ kq1 kq2 kp1 kp2

0
qF1

qp2

qF2

qp1

0

���������

��������� ¼ �kq1 kq2 kp1 kp2
qF1

qp2

�
qF2

qp1

.

ð21Þ

Since D determines the eigenvalues of the Jacobian A we
call it the regulatory determinant of the dynamical system:
knowledge of D is sufficient to analyze the stability of fixed
points and to calculate the parameter values at bifurcation
points.

At D ¼ 0 the eigenvalues of the Jacobian are the set of
all four negative degradation rate constants, �dqi and �dpi
(i ¼ 1; 2), ordered by value: e1 ¼ �minfdq1 ; d

q

2 ; d
p

1 ; d
p

2 g is
the largest and e4 ¼ �maxfdq1 ; d

q

2 ; d
p

1 ; d
p

2 g is the smallest
eigenvalue of A. In the non-degenerate case, i.e. when
all degradation rate parameters are different, the eigenva-
lues correspond to four points on the negative (reciprocal
time) axis represented by the ordinate axis in Fig. 2.
For a fixed point P̄ 2 P with D ¼ 0 this implies asymptotic
stability. Non-generic cases with double or multiple real
roots at D ¼ 0 imply also asymptotic stability; only
the analytical continuation then yields one or more
complex conjugate pairs of eigenvalues with negative real
parts.

Fig. 2 shows a plot of the individual eigenvalues as
functions of D. All curves together form a quartic equation
rotated by p=2, and the shape of the fourth-order
polynomial determines the bifurcation pattern. At increas-
ing negative values Do0, i.e. in the negative D direction in
Fig. 2, the two eigenvalues e2 and e3 approach each other
and, at some point, D ¼ D1 this pair of real eigenvalues
merges and becomes a complex conjugate pair of
eigenvalues. The largest and the smallest eigenvalue, e1
and e4, remain single-valued. Because of the shape of a
quartic equation, the largest eigenvalue e1 increases and the
lowest eigenvalue e4 decreases in the negative D direction.
The condition e1 ¼ 0 occurs at the position D ¼ D̄oneD,
which is defined by

D̄oneD ¼ �dq1 � d
q

2 � d
p

1 � d
p

2 . (22)

Here, the fixed point P̄ðp̄1ðDÞ; p̄2ðDÞÞ changes stability and
becomes unstable for DoD̄oneD. Since only one eigenvalue
is involved, the corresponding bifurcation is one-dimen-
sional, for example, a transcritical, a saddle-node or a
pitchfork bifurcation (For examples see Section 4). From
5Generalization to N genes is straightforward: we have 2N variables and

2N factors rather than four, and the function D depends on N protein

concentrations.
Eq. (22) follows the condition for the stability of fixed
points with negative D:

P̄ with Dðp̄1; p̄2Þo0 is stable iff W1 � W2 �
qF1

qp2

�
qF 2

qp1

o1.

(23)

The stability of fixed points P̄ with negative values of D,
like their positions ðp̄1; p̄2Þ, is determined by the two
parameter combinations W1, W2, and the derivatives of the
binding functions F1 and F 2. For DoD̄oneD the fixed point
is unstable, and the largest eigenvalue e1 is real and
positive.
In the direction of positive values, D40, the eigenvalues

approach each other in pairs: (e1; e2) and (e3; e4). If the two
eigenvalues in such a pair become equal at some value
D40, at the values D2 and D3 in Fig. 2, the two negative
real eigenvalues merge and give birth to a complex
conjugate pair with negative real part. The real parts of
the two complex conjugate pairs behave like the upper part
of a quadratic equation rotated by p=2 and hence the real
part of the pair formed by the two larger eigenvalues,
l1 ¼ Rðe1; e2Þ, increases with increasing D. As indicated in
Fig. 2 it may cross zero at some point D ¼ D̄Hopf. There the
fixed point loses stability through a Hopf bifurcation. The
value of D can be computed (see the Appendix) and one
obtains

D̄Hopf

¼
ðdq1 þ dq2 Þðd

q

1 þ dp1 Þðd
q

1 þ dp2 Þðd
q

2 þ dp1 Þðd
q

2 þ dp2 Þðd
p

1 þ dp2 Þ

ðdq1 þ dq2 þ dp1 þ dp2 Þ
2

.

ð24Þ
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6Since function (28) is symmetric with respect to all four rate parameters

all four partial derivatives have identical analytical expressions.
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If 0pDoD̄Hopf is fulfilled for some fixed point P̄ 2 P with
positive D, the fixed point is stable:

P̄ with Dðp̄1; p̄2Þ40 is stable iff

�
kq1 � k

q

2 � k
p

1 � k
p

2

D̄Hopf

qF1

qp2

�
qF 2

qp1

o1. ð25Þ

P̄ is unstable for D4D̄Hopf, and at D ¼ D̄Hopf we expect a
marginally stable point with concentric orbits in a (small)
neighborhood of P̄. In summary, all fixed points P̄ 2 P are
asymptotically stable in the range D̄oneDoDoD̄Hopf (see
the Appendix), all four eigenvalues are real between
D1oDoD2.

Eq. (21) can be solved easily if all degradation rate
parameters are equal, dq1 ¼ dqn ¼ dp1 ¼ dp2 ¼ d:

ðeþ dÞ4 þD ¼ 0¼)ei ¼ �d þ
ffiffiffiffiffiffiffiffi
�D

4
p

; i ¼ 1; . . . ; 4.

Similarly, the eigenvalues are readily calculated if all RNA
and all protein degradation rates are the same: dq1 ¼ dq2 ¼

dq and dp1 ¼ dp2 ¼ dp yields

ðeþ dqÞðeþ dpÞ ¼ �
ffiffiffiffiffiffiffiffi
�D
p

,

where the computation boils down to solving two
quadratic equations.

For a given fixed point the function Dðp̄1; p̄2Þ determines
the bifurcation behavior of the system. In all examples with
simple binding functions of type (5), the derivatives
qF1=qp2 and qF2=qp1 are either positive or negative for
all (non-negative) values of the concentrations p1 and p2.
Indeed we find Dðp̄1; p̄2Þp0 for activation of both genes
(act–act) and repression of both genes (rep–rep), whereas
combinations of activation and repression, (act–rep) and
(rep–act), yield always non-negative values, Dðp̄1; p̄2ÞX0.
Calculation of the regulatory determinant for arbitrary n is
straightforward and yields

D ¼ �kq1 kq2 kp1 kp2
n2K1K2p̄

n�1
1 p̄n�1

2

ðK1 þ p̄n
1Þ

2
ðK2 þ p̄n

2Þ
2
. (26)

Here, the minus sign holds for act–act and rep–rep
whereas the plus sign is true for act–rep and rep–act. In
the act–act case, insertion of the coordinates of the fixed
point at the origin, P̄1 ¼ ð0; 0Þ, yields the very general result
that P̄1 is always stable for nX2 because we obtain D ¼ 0
in this case.

Eqs. (17)–(19) are useful in searching parameter space
for bifurcations. Auxiliary variables can be used to define
manifolds on which the search is carried out. As an
illustrative example we consider the search for a Hopf
bifurcation along the one-dimensional manifold defined by
(kq1 ¼ w1 � s, kq2 ¼ w2 � s, K1 ¼ l1=s, K2 ¼ l2=s) in the
act–rep system (18). From these relations follows Wi ¼ dis

with d1 ¼ ðk
p

1 =ðd
q

1 dp1 ÞÞw1 and d2 ¼ ðk
p

2 =ðd
q

2 dp2 ÞÞw2, respec-
tively. The computation of the equilibrium concentrations
for large s is straightforward and yields for n41 (an
example for n ¼ 1 is presented in Section 4.2)

p̄1 ¼ a1 � s2=ðn
2þ1Þ with a1 ¼

d1ðd2l1Þ
n

l2

� �1=ðn2þ1Þ

and

p̄2 ¼ a2 � s�2n=ðn2þ1Þ with a2 ¼
l1

ðd1ðd2l1Þ
n3=ðn2þ1Þ

 !n=ðn2þ1Þ

.

Insertion into the expression for the regulatory determi-
nant leads to exact cancellation of the powers of s and we
find in the

limit of large s:Dlim � kq1 kq2 kp1 kp2
n2

W1W2
¼ dq1 dq2 dp1 dp2 n2.

(27)

This value has to be compared with the condition for the
occurrence of a Hopf bifurcation (24). As an example of an
application we analyze the function

Hðdq1 ; d
q

2 ; d
p

1 ; d
p

2 ; nÞ ¼ Dlim=D̄Hopf

¼ n2 dq1 dq2 dp1 dp2 ðd
q

1 þ dq2 þ dp1 þ dp2 Þ
2

ðdq1 þ dq2 Þðd
q

1 þ dp1 Þðd
q

1 þ dp2 Þðd
q

2 þ dp1 Þðd
q

2 þ dp2 Þðd
p

1 þ dp2 Þ

ð28Þ

to show whether or not act–rep systems with Hill
coefficient n41 can undergo a Hopf bifurcation at certain
parameter values and sustain undamped oscillations. A
value H41 indicates that a limit cycle exists for sufficiently
large values of s. The maximum of H is computed by
partial differentiation with respect to the degradation rate
constants6

qH

qdq1

 !
¼ 0 ¼) ðdq1 Þ

3
ðdq2 þ dp1 þ dp2 Þ þ ðd

q

1 Þ
2
ððdq2 Þ

2
þ ðdp1 Þ

2

þ ðdp2 Þ
2
Þ � 3dq1 ðd

q

2 dp1 dp2 Þ

� dq2 dp1 dp2 ðd
q

2 þ dp1 þ dp2 Þ ¼ 0.

This cubic equation is hard to analyze but the question
raised here can be answered without explicit solution. We
assume dq2 ¼ dp1 ¼ dp2 ¼ d and obtain

ðdq1 � dÞðdq1 þ dÞ2 ¼ 0 ¼) dq1 ¼ d and

Hðd; d; d; d; nÞ ¼
n2

4
.

By numerical inspection we showed that any deviation
from uniform degradation rate parameters leads to a
smaller value for the maximum of H. In the strong binding
limit the act–rep system with n ¼ 2 is confined to values
Hp1 and indeed no limit cycle has been observed. Systems
with nX3, however, show values of Hmax ¼ n2=441 in
certain regions of parameter space, and they do indeed
sustain undamped oscillations. For the fixed point in the
positive quadrant the D value increases from weak to
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7Considering the limits, lims!0P̄kðsÞ and lims!1P̄kðsÞ with k ¼ 1; 2; . . .,
is important for all fixed points, for example, in order to recognize

equivalent and non-equivalent paths through parameter space.
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strong binding and this completes the arguments for the
non-existence of undamped oscillation for n ¼ 2.

3.3. Basal transcription

The basal state shown in Fig. 1 is often characterized as
‘leaky transcription’ since it leads to low levels of mRNA.
In order to take basal activity formally into account we add
(small) constant terms, g1 and g2, to the binding functions
(5) and find for activation and repression

F
ðactÞ
1 ðp2Þ ¼ g1 þ

pn
2

K2 þ pn
2

¼
g1K2 þ ð1þ g1Þp

n
2

K2 þ pn
2

,

F
ðrepÞ
1 ðp2Þ ¼ g1 þ

K2

K2 þ pn
2

¼
ð1þ g1ÞK2 þ g1p

n
2

K2 þ pn
2

,

F
ðactÞ
2 ðp1Þ ¼ g2 þ

pn
1

K1 þ pn
1

¼
g2K1 þ ð1þ g2Þp

n
1

K1 þ pn
1

,

F
ðrepÞ
2 ðp1Þ ¼ g2 þ

K1

K1 þ pn
1

¼
ð1þ g2ÞK1 þ g2p

n
1

K1 þ pn
2

. ð29Þ

Basal transcription activity is readily incorporated into the
analytic procedure described here. The computation of
fixed points is straightforward although it involves more
terms. Since the constant terms vanish through differentia-
tion, the regulatory determinant and the whole Jacobian
matrix depend on basal transition only via the changes in
the positions of the fixed points, P̄k ¼ ðp̄

ðkÞ
1 ; p̄

ðkÞ
2 Þ. The rate

coefficients gi measure basal transcription activity relative
to the fully developed regulated activity, F iðpjÞ ¼ 1. It is
worth noticing that the rate coefficients gi are dimension-
less—as the binding functions FiðpjÞ are—and, therefore,
the full rate parameters for leaky transcription are obtained
by multiplication: kqi gi.

For gene regulation leaky transcription is most important
in cases where both genes are activated. Activation without
basal transcription allows for irreversible silencing of both
genes since they can be turned off completely and after
degradation of the activator proteins the system cannot
recover its activity. In mathematical terms the origin, P̄ð0; 0Þ,
is an asymptotically stable fixed point. Basal transcription
changes this situation because some low-level protein
synthesis is always going on and the origin is a fixed point
no longer. In the forthcoming Section 4 we shall consider
several examples where leaky transcription has been included.

4. Selected examples

Examples for activation and repression were considered for
non-cooperative binding (n ¼ 1) as well as for cooperative
binding (nX2) up to n ¼ 4. In addition, examples were
included where intermediate complexes are active in transcrip-
tion. In agreement with the limits of stationary protein
concentrations (Table 1) the calculations reported in this
section show that at low ratios of W=K all systems sustain
asymptotically stable stationary states in the positive quadrant
including the origin, all except very few (see Table 4) undergo
a bifurcation at some larger value of W=K and reach,
thereafter, the biologically relevant or regulated state. The
changes in the dynamical patterns in parameter space are
investigated by means of an auxiliary variable s that defines a
path in parameter space (see Section 3.2). The range in
parameter space with low values of W=K is characterized by
low ratios of reaction rate parameters and/or high dissociation
parameters of the regulatory complexes, which is tantamount
to low binding constants or low affinities. It will be denoted
here as the unregulated regime, because the dynamics in this
range is not suitable for regulatory functions. In contrast, the
parameter range with high ratios of W=K above the bifurcation
value will be called the regulated regime since bistability or
oscillations (or sometimes both) occur in this region. In the
cases discussed here we shall investigate paths through
parameter space that lead from the unregulated to the
regulated regime which can be achieved, for example, by
assuming W / s and K / s�1.7 For all pure activation–activa-
tion and repression–repression systems the function D is non-
positive and hence Hopf bifurcations, and limit cycles derived
from them, can be excluded. Instead one-dimensional
bifurcations, transcritical, saddle-node and pitchfork bifurca-
tions, are observed, the latter two resulting in bistability of the
system. Activation–repression yields non-negative values of D

and hence the systems may reach oscillatory states via the
Hopf bifurcation mechanism. Cases in which intermediate
complexes are active in transcription were included as
examples of regulatory determinants D that can adopt positive
as well as negative values and therefore may sustain
oscillations and bistability at different parameter values.
For integer Hill coefficients nX2 the binding curves have

sigmoidal shape and multiple steady states or oscillatory
behavior emerges. As mentioned in Section 3.1 the
polynomials for the computation of the positions of fixed
points have an odd or even number of real solutions for
even or odd Hill coefficients n (two or four solutions for n

odd and one or three solutions for n even). Despite the high
degrees of the polynomials in p̄1 or p̄2 (n2 þ 1) we did not
detect more stationary states up to n ¼ 4. Although our
searches of the high-dimensional parameter spaces were
not exhaustive, it is unlikely that fixed points remained
unnoticed. The small number of distinct states causes the
dynamic patterns of the cooperative systems with different
nX2 to be qualitatively similar, with an exception being
activation–repression where the characteristic nonlinear
behavior, oscillations, is observed only for nX3.
4.1. Activation–activation cases

The binding functions for these cases are

F1ðp2Þ ¼ g1 þ
pn
2

K2 þ pn
2

and F 2ðp1Þ ¼ g2 þ
pn
1

K1 þ pn
1

.

(30)
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Fig. 3. Position and stability of the two fixed points in the two-gene non-

cooperative activation–activation system according to Eq. (31). The upper

part of the figure shows the regulatory determinant D as a function of the

auxiliary variable s for both fixed points P̄1 and P̄2 (stable fixed points:

black line; unstable fixed points: gray line). According to Eq. (22) we

observe a transcritical bifurcation at the value s ¼ soneD ¼
ffiffi
5
p

4
¼ 0:559,

which is indicated by &. Both D functions adopt the value D̄oneD ¼ �1

and exchange stability at this point. The fixed point at the origin, P̄1, is

asymptotically stable for sosoneD whereas P̄2 shows stability above this

value. The lower plot presents the position of the two fixed points as a

function of s (coordinates: p̄1 full line, p̄2 broken line if different from p̄1;

stability of the fixed point is indicated by black curves, instability by gray

curves). The fixed point P̄2 becomes stable when it enters the positive

orthant. Parameter values: kq1 ¼ kq2 ¼ 1, K1 ¼ 0:5=s, K2 ¼ 2:5=s, kp1 ¼

kp2 ¼ 2 and dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1.
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The discussion of activation–activation cases is organized
in three subsections: (i) non-cooperative binding (g1 ¼
g2 ¼ 0, n ¼ 1), (ii) cooperative binding (g1 ¼ g2 ¼ 0, nX2)
and (iii) leaky transcription (g1a0; g2a0).

Non-cooperative binding: The search for stationary points
leads to two solutions:

P̄1 ¼ ð0; 0Þ and P̄2 ¼
W1W2 � K1K2

W2 þ K2
;
W1W2 � K1K2

W1 þ K1

� �
.

(31)

For W1W24K1K2 the fixed point P̄2 is inside the positive
quadrant of protein space and it is stable as can be readily
verified by means of Eq. (23). At the critical value W1W2 ¼
K1K2 the two fixed points exchange stability as required
for a transcritical bifurcation. Although the state at
negative concentrations is irrelevant for gene regulation,
its existence explains the instantaneous onset of gene
transcription at the bifurcation point, above which
(s4soneD) the origin becomes unstable. A special example
is shown in Fig. 3: the path through parameter space is
defined by K1 ¼ 0:5=s and K2 ¼ 2:5=s (the other para-
meters are summarized in the caption of Fig. 3). The limits
for the position of the two fixed points are: (i) P̄1 stays at
the origin for all s and (ii) for P̄2 we compute lims!0 P̄2 ¼

ð�1;�1Þ and lims!1 P̄2 ¼ ð2; 2Þ.
It is worth considering the physical meaning of the

stability condition for P̄2. The parameters W are the squares
of the geometric means of the formation rate constants
divided by the degradation rate constants, the K’s are the
reciprocal binding constants and, hence, both genes are
active for sufficiently large formation rate parameters and
high binding affinities. The combination activation–activa-
tion with non-cooperative binding shows modest regula-
tory properties. It sustains two states: (i) a regulated state
where both genes are transcribed and (ii) a state of
‘extinction’ with both genes silenced.

Cooperative binding: For the simplest example, n ¼ 2, the
expansion of Eq. (16) yields a polynomial of degree five.
Numerical solution leads to one or three solutions in the
positive quadrant including the origin, which correspond to
one or three steady states. The origin represents one fixed
point, P̄1 ¼ ð0; 0Þ, that in contrast to the non-cooperative
system is always stable.8 Searching parameter space in the
direction of increasing transcription rate parameters,
ðkq1 ¼ w1 � s; k

q

2 ¼ w2 � sÞ, and/or decreasing dissociation
constants of regulatory complexes, ðK1 ¼ l1=s;K2 ¼

l2=sÞ, yields a saddle-node bifurcation when the condition
D ¼ D̄oneD of Eq. (22) is fulfilled (Fig. 4). At this
bifurcation point, which separates the unregulated regime
(with the origin being the only stable state) from the
regulated regime, two new fixed points P̄2 and P̄3 appear
and branch off, thereby fulfilling the conditions DoD̄oneD

and D4D̄oneD, respectively. The fixed point P̄2 is
8This result follows straightforwardly from a computation of the

derivatives in the Jacobian, which yields D ¼ 0 at the origin for all Hill

coefficients n41.
unstable—at least for some range in parameter space—
whereas the fixed point P̄3 is asymptotically stable since D

can only adopt negative signs (examples with no sign
restriction on D are discussed in Section 4.5 dealing with
cases intermediate between activation and repression).
Raising the Hill coefficient from n ¼ 2 to 3 and to 4 has
little effect on the position of the bifurcation point. As
shown in Table 2 we find somewhat smaller values of s at
the bifurcation point for the higher Hill coefficients, but the
changes are much smaller than for either the activation–
repression or the repression–repression system. In addition
this weak dependence may be replaced by even weaker or
no dependence on n when the implementation of the
auxiliary variable s is changed.

Leaky transcription: The effect of leaky transcription is
illustrated in Figs. 5 and 6. Leaky transcription commonly
occurs at very low levels and accordingly we choose g to lie
in the range 1� 10�3ogo0:1.9 For gi40 (i ¼ 1; 2) the
fixed point at the origin is shifted either into the negative or
into the positive quadrant such that exactly one fixed point
is in each quadrant. The fixed point in physical protein
space is always asymptotically stable, the one outside
physical space is unstable. The scenario shown in Fig. 5
9The rate coefficient g is dimensionless and expresses leaky transcription

relative to controlled transcription at its highest level, FiðpjÞ ¼ 1 (see

Section 3.3).
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Fig. 4. Position and stability of the fixed points in the two-gene

cooperative activation–activation system with Hill coefficient n ¼ 2.

Positions and stabilities of fixed points are plotted as functions of the

auxiliary variable s, which determines the binding constants:

K1 ¼ K2 ¼ 0:5=s. The upper part of the figure shows the regulatory

determinant as a function of the auxiliary variable s (stable fixed points:

black line; unstable fixed points: gray line). One fixed point situated at the

origin, P̄1 ¼ ð0; 0Þ, is stable for all parameter values. The systems shows a

saddle-node bifurcation at s ¼ 0:5 through which the two fixed points, P̄2

and P̄3, are created (&). The lower part presents the positions of the fixed

points as functions of s (coordinates: p̄1 ¼ p̄2; stability of the fixed point is

indicated by black curves, instability by gray curves). Choice of the other

parameters: kq1 ¼ kq2 ¼ 2, kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1.
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starts out from the position of the transcritical bifurcation
in the limit g! 0. Accordingly, two states fulfilling the
criteria mentioned above emerge at g40, the unstable state
appears in the negative quadrant, P̄1 ¼ ðp̄

ð1Þ
1 o0; p̄ð1Þ2 o0Þ,

and the stable fixed point is always inside the positive
quadrant, P̄2 ¼ ðp̄

ð2Þ
1 40; p̄ð2Þ2 40Þ.

The plots in Fig. 6 illustrate the influence of weak basal
transcription on the activation–activation regulatory sys-
tem around the transcritical bifurcation point of the
unperturbed system. An auxiliary variable is defined by
K1 ¼ 0:5=s and K2 ¼ 2:5=s (the other parameter values are
given in the caption of Fig. 6). For g1 ¼ g2 ¼ 0 a
transcritical bifurcation is observed at s ¼ 0:56. Small
gamma values give rise to avoided crossing: at some
distance from the virtual crossing point the two states are
very close to those of the pure activation system and the
continuation of these states at the other side of the virtual
bifurcation point is readily recognized. The splitting for
increasing gX0 at exactly this point was shown in the
previous Fig. 5.
The cooperative case of activation ðn ¼ 2Þ with leaky

transcription provides an illustrative example of a system
with two saddle-node bifurcations, ðsoneDÞ1 and ðsoneDÞ2,
which gives rise to hysteresis. Fig. 7 presents the fixed
points as functions of spontaneous transcription rate
parameter g. In this figure the parameters were chosen
such that the system has only one fixed point at lim g! 0,
the stable origin. With increasing values of g the system
undergoes a saddle-node bifurcation that leads to the
regulated regime with two asymptotically stable fixed
points, one at high and one at low stationary protein
concentrations, separated by a saddle. Further increase
in g, however, leads to a second saddle-node bifurcation
that annihilates the stable state originating from the
origin together with the unstable saddle. The state that
eventually remains is the high-activity state (both
genes active) which originates in the first saddle-node
bifurcation.
As shown in Fig. 7 the sequence of bifurcations gives rise

to hysteresis in the range between the two bifurcation
points, ðsoneDÞ1osoðsoneDÞ2. Coming from high values of g
the system stays in the high-protein-concentration branch
(as long as it is not shifted to the low-concentration state by
fluctuations). The low-protein-concentration branch, on
the other hand, is reached from s values below ðsoneDÞ1.
The existence of a single stable state at high values of s

and with high protein concentrations is easy to interpret in
the light of reaction kinetics: with increasing g values
spontaneous transcription will, at some point, dominate
and then only the non-regulated stationary state exists.
This situation, however, is unlikely to occur in realistic
biological systems, because unregulated transcription is
common at very low levels only. The second saddle-node
bifurcation—although not natural—could well be of
interest for the design of artificial regulatory systems since
it allows for up and down regulation of gene activity in an
intermediate range.
4.2. Activation–repression cases

The binding functions for these case are

F1ðp2Þ ¼ g1 þ
pn
2

K2 þ pn
2

and F 2ðp1Þ ¼ g2 þ
K1

K1 þ pn
1

.

(32)

The discussion of activation–repression cases is organized in
two subsections: (i) non-cooperative binding (g1 ¼ g2 ¼ 0,
n ¼ 1) and (ii) cooperative binding (g1 ¼ g2 ¼ 0, nX2).
Leaky transcription (g1a0; g2a0) will be mentioned later in
a comparison of all different regulation scenarios.

Non-cooperative binding: The conditions of stationary
concentrations lead to a quadratic equation with two
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Table 2

Dependence of the bifurcation point on the Hill coefficient n

System Bifurcation type Parameter variation Variable s at bifurcation

n ¼ 2 n ¼ 3 n ¼ 4

act2acta Saddle-node K1 ¼ K2 ¼ 0:5=sb 0.5 0.422 0.296

act2rep Hopf K1 ¼ K2 ¼ 0:5=sb – 2.772 0.5

rep2rep Pitchforkc K1 ¼ K2 ¼ 0:5=sb 0.5 0.106 0.033

The value of the auxiliary variable s at the bifurcation point that separates the unregulated regime and the regulated regime is compared for different

cooperative regulation modes and Hill coefficients n ¼ 2; 3; 4. In order to allow for comparison equivalent paths through parameter space were chosen for

all three classes of systems.
aIn case of act2act other paths through parameter space lead to small or almost vanishing dependencies of the bifurcation value of s on the Hill

coefficient n, for example, we found s ¼ 0:79; 0:81; 0:78 for n ¼ 2; 3; 4, kq1 ¼ kq2 ¼ 2 � s, K1 ¼ K2 ¼ 0:5=s and s ¼ 1; 0:96; 0:90 for kq1 ¼ kq2 ¼ 2 � s,

K1 ¼ K2 ¼ 1=s, respectively (all other parameters being one).
bThe other parameter values were: kq1 ¼ kq2 ¼ 2 and kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1.
cThe pitchfork bifurcation becomes a saddle-node bifurcation, when the symmetry consisting of identical parameters for genes 1 and 2 is broken (see

Figs. 12 and 13).
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Fig. 5. Position and stability of the two fixed points in the two-gene non-

cooperative activation–activation system with leaky transcription: g-
dependence. Leaky transcription is introduced into the system exactly at

the transcritical bifurcation point (&). The upper plot shows Dðp̄1; p̄2Þ for
both fixed points as a function of an auxiliary variable s, which measures

the extent of basal transcription, g1 ¼ g2 ¼ 0:001 � s (stable fixed point:

black line; unstable fixed point: gray line). The lower plot presents the

positions of the two fixed points (coordinates: p̄1 full line, p̄2 broken line if

different from p̄1; stability of the fixed point is indicated by black curves,

instability by gray curves). For s40 the fixed point p̄1 lies in the negative

quadrant and is unstable, Do� 1. The fixed point P̄2 is always situated in

the physical protein space, the positive quadrant, and it is asymptotically

stable since 0XDX� 1 is fulfilled. Choice of parameters: kq1 ¼ kq2 ¼ 1,

K1 ¼ 0:892857, K2 ¼ 4:464286, kp1 ¼ kp2 ¼ 1, dq1 ¼ dq2 ¼ 2 and

dp1 ¼ dp2 ¼ 1.
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Fig. 6. Position and stability of the two fixed points in the two-gene non-

cooperative activation–activation system with leaky transcription: K-

dependence. In contrast to Fig. 5 basal transcription occurs at a constant

rate g1 ¼ g2 ¼ 0:001 as a function of the equilibrium parameters, K1 ¼

0:5=s and K2 ¼ 2:5=s. The upper plot shows Dðp̄1; p̄2Þ for both fixed points

as a function of an auxiliary variable s in the neighborhood of the

transcritical bifurcation at s ¼ 0:56 for g1 ¼ g2 ¼ 0 (stable fixed point:

black line; unstable fixed point: gray line). The lower plot presents the

positions of both points in the same range of s (coordinates: p̄1 full line, p̄2
broken line if different from p̄1; stability of the fixed point is indicated by

black curves, instability by gray curves). For s40 the fixed point P̄1 lies in

the negative quadrant and is unstable, Do� 1. The fixed point P̄2 is

always situated in the physical protein space, the positive quadrant, and it

is asymptotically stable since 0XDX� 1 is fulfilled. Choice of other

parameters: kq1 ¼ kq2 ¼ 1, kp1 ¼ kp2 ¼ 1, dq1 ¼ dq2 ¼ 2 and dp1 ¼ dp2 ¼ 1.

S. Widder et al. / Journal of Theoretical Biology 246 (2007) 395–419406
solutions:

p̄1 ¼ �
1

K2
ðK1ðW2 þ K2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1ðW2 þ K2Þ
2
þ 4W1K1W2K2

q
Þ.

(33)
This equation has one positive and one negative solution
for p̄1. For known p̄1 the second protein concentration is
calculated from

p̄2 ¼
W2K1

K1 þ p̄1

.

Combining this equation with p̄1 ¼ W1p̄2=ðK2 þ p̄2Þ allows
us to prove that both variables, p̄1 and p̄2, have the same
sign: from p̄240 follows p̄140 and vice versa; from Eq.
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Fig. 7. Position and stability of the three fixed points in the two-gene

cooperative activation–activation system with leaky transcription. The

influence of basal transcription activity on the bifurcation behavior of the

act–act system with n ¼ 2 is illustrated by variation of g as in Fig. 5

according to g1 ¼ g2 ¼ 0:001 � s. The system passes through two saddle-

node bifurcations (both marked by &) at s ¼ 23:81 and 74.92, and it

shows hysteresis. The upper part presents Dðp̄1; p̄2Þ for the three fixed

points as functions of the auxiliary variable s: P̄1 and P̄3 are stable, P̄2 is

unstable (stable fixed points: black line; unstable fixed point: gray line).

The lower part shows the positions of the three fixed points which lie on

the line p1 ¼ p2 because of the symmetry in the rate constants

(coordinates: p̄1 ¼ p̄2 full line; stability of the fixed point is indicated by

black curves, instability by gray curves). Choice of parameters:

kq1 ¼ kq2 ¼ 2, K1 ¼ K2 ¼ 1:1 and kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1.
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(33) follows jp̄1j4K1 for p̄1o0 and this leads to p̄2o0.
Accordingly, one fixed point, P̄1, lies inside the negative
quadrant of the ðp1; p2Þ space, is unstable and plays no role
in biology. The second stationary point, p̄2, is characterized
by two positive concentration values, lies inside the positive
quadrant and is stable.

It is straightforward to show that the regulatory
determinant never exceeds the value D ¼ D̄Hopf by applying
the same procedure for calculating the limits as in Eqs. (27)
and (28). Thereby one obtains for the substitution by
auxiliary variables, kq1 ¼ w1 � s, kq2 ¼ w2 � s, K1 ¼ l1=s,
K2 ¼ l2=s, W1 ¼ d1 � s and W2 ¼ d2 � s:

limit of large s: p̄1 ¼ a1 � s; p̄2 ¼
l1d2
a1
�
1

s
with
a1 ¼
l1d2
2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

l2d1
l1d2

s
� 1

 !
and

lim
s!1

D ¼ Dlim ¼ kp1 kp2
w1w2l1l2

l1d2 þ l2a1
.

The analytical treatment proves that D converges to a finite
value Dlim whereas p̄1 diverges and p̄2 approaches 0 for
s!1. It is interesting to note that another choice of s

involving only the dissociation constants, K1 ¼ l1=s,
K2 ¼ l2=s, yields the same result (after replacing w1 and
w2 by kq1 and kq2 , respectively). To verify DlimoD̄Hopf is
hard to perform analytically, but easily done numerically.
As expected the non-cooperative activation–repression
system does not sustain (undamped) oscillations.
Although the fixed point P̄1 is irrelevant for biology, its

properties are, nevertheless, useful for the analysis of the
dynamical system in the sense of continuation into the
neighboring quadrants. In particular, it allows for an
inspection of condition (25). Differentiation shows that the
function Dðp1; p2Þ of Eq. (21) is always positive and the
observation of a Hopf bifurcation cannot be excluded. For
the parameter set kq1 ¼ kq2 ¼ kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼

dp2 ¼ 1 and K1 ¼ K2 ¼ 1=s the regulatory determinant
adopts indeed the value D ¼ D̄Hopf ¼ 4 for s ¼ 2 at
P̄1 ¼ ð�2;�1

3
Þ. For so2 the fixed point P̄1 is unstable

and trajectories spiral out of P̄1.
In summary, the system shows only the scenario of the

unregulated regime for non-negative concentrations, since
no bifurcations are observed to states that sustain
undamped oscillations or bistability in the positive quad-
rant. A single stationary state is stable for all values of the
physical parameters and, thus, there is no potential for the
regulatory properties discussed here.

Cooperative binding: The activation–repression case with
n ¼ 2 is characterized by a non-negative regulatory
determinant (DX0), but as discussed in Section 3.2 the
maximal value of D is insufficient for a Hopf bifurcation.
The system exhibits only one stable fixed point and no
undamped oscillations can occur. In other words, the
act2rep systems with n ¼ 2, like the non-cooperative case
with n ¼ 1, show only an unregulated regime. We remark,
however, that other interesting regulatory properties may
arise from such negative feedback loops: homeostasis as
demonstrated in Tyson et al. (2003) serves as an example.
For nX3, however, a Hopf bifurcation is predicted and a

limit cycle can be observed for sufficiently strong binding
(Figs. 8 and 9). Systems of this class exhibit periodically
changing gene activities. Oscillation in regulatory systems
can be used as a pacemaker inducing periodicity into
metabolism as is observed in circadian and other rhythms.
The qualitative picture of the bifurcation diagram is
essentially the same for higher Hill coefficients (nX4).
Along equivalent trajectories leading from the unregulated
to the regulated regime the Hopf bifurcation occurs at
substantially smaller s values than for n ¼ 3. In other
words, the regulated domain in parameter space—here the
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Fig. 8. Position and stability of the fixed point in the two-gene cooperative

activation–repression system with Hill coefficient n ¼ 3. The upper part of

the figure shows the regulatory determinant which is non-negative (DX0)

as a function of the auxiliary variable s (kq1 ¼ kq2 ¼ 2s, K1 ¼ K2 ¼ 0:5=s;

stable fixed point: black line; unstable fixed point: gray line). D increases

with increasing values of s. At s ¼ 1:2903 (vertical line in the plots) a Hopf

bifurcation (	) is observed: the central fixed point becomes unstable and a

limit cycle appears (see Fig. 9). The lower part of the figure shows the

coordinates of the fixed point (coordinates: p̄1 full line, p̄2 broken line;

stability of the fixed point is indicated by black curves, instability by gray

curves). Choice of other parameters: kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1.
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the trajectories spiralling inwards, the lower plot was recorded for s ¼ 2:5
(Dð2:5Þ ¼ 4:5265) where the fixed point is unstable and a stable limit cycle

is observed. The trajectories spiral from outside towards the limit cycle.

For initial conditions near the unstable fixed point the limit cycle is

approached through spiralling outwards (not shown). Color code: The

projection of the trajectory onto the mRNA concentration subspace,

ðq1ðtÞ; q2ðtÞÞ, is shown in red and the projection onto the protein subspace,
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domain that contains an unstable fixed point and a limit
cycle—becomes larger with increasing cooperativity as
expressed by higher Hill coefficients.

4.3. Repression–repression cases

The binding functions for the repression–repression
scenario are

F1ðp2Þ ¼ g1 þ
K2

K2 þ pn
2

and F 2ðp1Þ ¼ g2 þ
K1

K1 þ pn
1

.

(34)

The discussion of repression–repression cases is organized in
two subsections: (i) non-cooperative binding (g1 ¼ g2 ¼ 0,
n ¼ 1) and (ii) cooperative binding (g1 ¼ g2 ¼ 0, nX2).
Leaky transcription (g1a0; g2a0) will be mentioned later in
a comparison of all different regulation scenarios. In the
third subsection we compare genetic switches with different
Hill coefficients (n ¼ 2; 3 and 4).
Non-cooperative binding: Again, two stationary solutions
are obtained as solutions of a quadratic equation

K2p̄
2
1 þ ðW2K1 � W1K2 þ K1K2Þp̄1 � W1K1K2 ¼ 0,

and the same relation as in the previous section:

p̄2 ¼
W2K1

K1 þ p̄1

.

As in the previous example it can be proven that p̄1 and p̄2

always have the same sign at both fixed points. One of the
two solutions is unstable and lies in the negative quadrant
whereas the other one, the physically meaningful solution,
is situated in the positive quadrant and it is asymptotically
stable. The observed stabilities are readily predicted from
inspection of Eq. (21): since D is non-positive we have
either four real negative eigenvalues or two real eigenvalues
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Fig. 10. Position and stability of the fixed points in the symmetric two-

gene cooperative repression–repression system with n ¼ 2. The one-

dimensional bifurcation is a pitchfork (marked by &) at the value s ¼

0:7937 for the following choice of parameters: kq1 ¼ kq2 ¼ 2 � s, K1 ¼

K2 ¼ 0:5=s and kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1. The topmost plot

shows the dependence of the regulatory determinants on s (because of

symmetry the values of D at P̄2 and P̄3 are identical; stable fixed points:

black line; unstable fixed point: gray line). In the middle we present the

positions of the fixed points as function of s (coordinates: P̄1ðp̄1 ¼ p̄2Þ full

line; stability of the fixed point is indicated by the black curve, instability

by the gray curve; the two broken lines show the coordinates of the other

two fixed points P̄2 and P̄3). The figure at the bottom presents a

parametric plot of the positions of all fixed points, P̄k ¼ ðp̄
ðkÞ
1 ðsÞ; p̄

ðkÞ
2 ðsÞÞ

(stable points: black lines full and broken, unstable point: gray line).
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and a complex conjugate pair with a real part lying
between the other two (Fig. 2). The stable fixed point is
identified by 0XDX� 1, the unstable one by Do� 1.

In the non-cooperative binding case the repression–re-
pression combination gives rise to only one stable state
corresponding to the unregulated scenario. Hence, it is not
suitable for regulation.

Cooperative binding: The cooperative repression–repres-
sion system is the prototype of a genetic switch. At low
affinities the system sustains one asymptotically stable
stationary state. In the regulated regime it shows bistability
consisting of two asymptotically stable states that can be
characterized as G1 active and G2 silenced and vice versa,
G2 active and G1 silenced. The two states are separated by
a saddle point (P̄1 in Fig. 10 and P̄4 in Fig. 12,
respectively). For symmetric choices of parameters, imply-
ing that all parameters for G1 have values identical to those
of the corresponding parameters for G2, a pitchfork
bifurcation separates the unregulated regime from the
regulated regime (Fig. 10). The fixed point P̄1 becomes
unstable and two new fixed points, P̄2 and P̄3, correspond-
ing to two regulatory states emerge. Both are stable and
they occur at mirror symmetric positions relative to the line
p1 ¼ p2 bisecting the positive quadrant: P̄2 ¼ ða; bÞ and
P̄3 ¼ ðb; aÞ with a4b. At P̄2 G1 shows higher activity than
G2, and at P̄3 the situation is inverse, G2 shows higher
activity than G1. Considering identical paths through
parameter space the position of the pitchfork bifurcation
is shifted towards smaller values of the auxiliary parameter
s in the series n ¼ 2; 3; 4 (Table 2). Apart from this
difference the bifurcation patterns are remarkably similar
in the parametric plot shown in Fig. 11.

Introducing asymmetry through different values for kq1
and kq2 and/or K1 and K2, respectively, removes the
degeneracy and converts the pitchfork into a saddle-node
bifurcation (Figs. 12 and 13). The fixed point of the
unregulated regime (P̄1) is transformed continuously into
one of the two regulatory states. In particular, this is the
state that has the higher rate constant kq and/or the
smaller complex dissociation constant K (P̄3 in the figure).
The second regulatory state, the one which is characterized
by the smaller kq and/or the larger K value (P̄2 in the
figure), is created together with the saddle point at the
bifurcation. As illustrated nicely by the parametric plots in
the middle and at the bottom of Fig. 12, the stable fixed
point of the unregulated regime is attracted towards the (no
longer extant) pitchfork bifurcation. Such a phenomenon is
often called the influence of a ‘ghost’ on bifurcation lines or
trajectories. The transition from the saddle-node to the
pitchfork bifurcation is seen best in the plots of the fixed
point positions as functions of the auxiliary parameter s

shown in Fig. 13: the diagram converges smoothly towards
the ‘pitchfork’ in the symmetric case (Fig. 10).

Genetic switches with different Hill coefficients: The
regulatory properties of repression–repression systems are
of primary interest in computations of genabolic networks
because of their switching potential. As said above, the
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Fig. 12. Position and stability of the fixed points in the asymmetric two-

gene cooperative repression–repression system with n ¼ 2. The pitchfork

bifurcation of the symmetric case (Fig. 10) is replaced by a saddle-node

bifurcation (marked by &) that occurs here at soneD ¼ 1:1515 for the

parameter choice: kq1 ¼ 1:9 � s, kq2 ¼ 2:1 � s, K1 ¼ 0:55=s, K2 ¼ 0:45=s and

kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1. The topmost plot shows the depen-

dence of the regulatory determinant D on s (stable fixed points: black line;

unstable fixed point: gray line). The distinction between P̄1 and P̄3 is made

for illustration, they represent the same fixed point at different ranges of s.

The position of P̄1 
 P̄3 at s ¼ 1:1515 is marked by the arrow. In the

middle we present the corresponding parametric plot of the positions of all

fixed points, P̄k ¼ ðp̄
ðkÞ
1 ðsÞ; p̄

ðkÞ
2 ðsÞÞ (stable points: black lines full and

broken, unstable point: gray line). The plot at the bottom differs from the

middle plot in the choice of parameters: kq1 ¼ 1:999 � s, kq2 ¼ 2:001 � s,
K1 ¼ 0:501=s, K2 ¼ 0:499=s; the bifurcation occurs at soneD ¼ 0:8105 ð Þ.

5

4

3

2

1

0

0 1 2 3 4 5

p1

p
2

Fig. 11. Position of fixed points in the two-gene cooperative repression–

repression system. The parametric plot shows a superposition of the

pitchfork diagrams for the Hill coefficients n ¼ 2; 3 and 4 with the varied

parameters kq1 ¼ kq2 ¼ 2 � s and K1 ¼ K2 ¼ 0:5=s defining the path

through parameter space. Choice of the other parameters:
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value of s at the pitchfork or saddle-node bifurcation
decreases substantially for increasing Hill coefficients
(Table 2). Two more properties are highly relevant in the
context of regulation: (i) the ‘pitchforks’ in parametric
plots for different Hill coefficients are surprisingly similar
(Fig. 11) and (ii) the regulatory selectivity increases
strongly in the sequence n ¼ 2, 3 and 4 (Table 3).

The superposition of the three pitchfork diagrams in
Fig. 11 reveals astonishing agreements of the plots for three
different Hill coefficients (n ¼ 2; 3; 4). This general beha-
vior is changed slightly only when different paths through
parameter space are chosen as long as the kinetic
parameters are scaled by kq1 ¼ w1 � s and kq2 ¼ w2 � s.
Constant values of K1 and K2, for example, have little
influence on the diagram. If the dissociation constants,
however, are varied, for example, K1 ¼ l1=s and
K2 ¼ l2=s, and two kinetic parameters are chosen to be
constant, the bifurcation diagram changes shape substan-
tially. The differences in the plots are explained readily by
inspection of the limits derived for the paths through
parameter space. As an example we present the limits of the
fixed points for the two cases mentioned above (see also
Table 1):

W1 ¼ d1 � s; W2 ¼ d2 � s; K1;K2:

lim
s!0

P̄1 ¼ ð0; 0Þ; lim
s!1

P̄1 ¼ ð1;1Þ,

lim
s!1

P̄2 ¼ ð1; 0Þ; lim
s!1

P̄3 ¼ ð0;1Þ,

W1;W2; K1 ¼ l1=s; K2 ¼ l2=s:

lim
s!0

P̄1 ¼ ðW1;W2Þ; lim
s!1

P̄1 ¼ ð0; 0Þ,

lim
s!1

P̄2 ¼ ðW1; 0Þ; lim
s!1

P̄3 ¼ ð0; W2Þ.
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Fig. 13. The transition from saddle node to pitchfork bifurcation in the

asymmetric two-gene cooperative repression–repression system with

n ¼ 2. The coordinates of fixed points are given as functions of the

auxiliary parameter s. The choice of the constant parameters is the same as

in Fig. 12, kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1 and kq1 ¼ 1:9 � s,
kq2 ¼ 2:1 � s, K1 ¼ 5=s, K2 ¼ 0:45=s (upper plot) or kq1 ¼ 1:999 � s,
kq2 ¼ 2:001 � s, K1 ¼ 0:501=s, K2 ¼ 0:499=s (lower plot), as is the notation

of fixed points P̄k, k ¼ 1; . . . ; 4. In particular, P̄1 and P̄3 are the same fixed

point at s values before and after the saddle-node bifurcation. The

coordinates of fixed points p̄
ðkÞ
1 ðsÞ and p̄

ðkÞ
2 ðsÞ are shown as full and broken

lines, respectively. The pitchfork bifurcation of the symmetric case

(Fig. 10) is replaced by a saddle-node bifurcation (marked by &) that

occurs here at s ¼ 1:1515 (upper plot) and s ¼ 0:8105 (lower plot). The

lower plot is suggestive for the transition between the two bifurcation

types: as ðkq1 � kq2 Þ ! 0 and ðK1 � K2Þ ! 0 the two coordinates of the

fixed points P̄1 and P̄4 approach each other and the points converge to

positions on the line p1 ¼ p2, whereas the opposite coordinates become

pairwise identical for P̄2 and P̄3, ðp̄
ð2Þ
1 � p̄

ð3Þ
2 Þ ! 0 and ðp̄

ð3Þ
1 � p̄

ð2Þ
2 Þ ! 0.

Accordingly the two stable fixed points occupy symmetric positions with

respect to p1 ¼ p2. Color code: Chartreuse: stable fixed point P̄1ð¼ P̄3Þ;

turquoise: stable fixed point P̄2; violet: stable fixed point P̄3ð¼ P̄1Þ; red:

unstable fixed point P̄4.

10The mole fractions are defined by x̄1 ¼ p̄1=ðp̄1 þ p̄2Þ and

x̄1 ¼ p̄1=ðp̄1 þ p̄2Þ.
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Simultaneous variation of the W parameters and the
equilibrium constants K results in the same behavior as
variation of the former parameters alone. Clearly, only
patterns with the same limits are comparable and in the
current example we chose the former case, variation of
kinetic parameters with or without variation of dissocia-
tion constants.
In Table 3 the efficiency of genetic switches is compared
for different Hill coefficients. The numbers illustrate the
effect of higher order cooperativity: the higher the value of
n, the larger is the selective power of the switch. At s ¼ 4,
for example, we find the mole fractions10x̄2 ¼ 0:067, 0.030
and 0.015 for the protein of the silenced gene for the Hill
coefficients n ¼ 2; 3 and 4, respectively. Since the pitchfork
diagrams are not very different for the three cases the
efficiency in silencing is caused by the different values of s

at comparable points. An illustration of this argument is
given by the bifurcation point itself which occurs at s ¼

1; 0:211 and 0.069 for n ¼ 2; 3 and 4, respectively.
Summary: Cooperative repression–repression systems

are recognized for their importance as genetic switches.
Hill coefficients higher than n ¼ 2 have two properties that
are relevant for regulation: (i) the regulated regime
comprises a larger domain in parameter space and (ii) the
selectivity of the regulatory function increases with
increasing n.

4.4. Influence of basal transcription on bifurcation patterns

The influence of basal transcription on all three classes of
regulatory systems (act2act, act2rep and rep2rep) is
compared in Fig. 14. For simplicity the diagrams show
only the symmetric cases, g1 ¼ g2 ¼ g and W1 ¼ W2 ¼ W, and
the systems with the lowest values of the Hill coefficient at
which the characteristic bifurcation pattern appears (n ¼ 2
for act2act and rep2rep, and n ¼ 3 for act2repÞ. All
three systems have in common that the bifurcations vanish
at sufficiently large values of g4gcrit and then the systems
sustain only one stable state. Below gcrit we find the specific
bifurcation pattern for the systems in a certain range
Wð1ÞcritoWoWð2Þcrit: the bifurcation at low values of W is
compensated by an inverse bifurcation of the same class
at higher W values. For all systems the inverse bifurcation
point approaches infinity for vanishing basal transcription:
limg!0 W

ð2Þ
crit ¼ þ1. There is, however, one characteristic

difference between the three bifurcation diagrams: the
lower bifurcation line has a negative slope in the act2act
system but a positive slope in the two other classes,
act2rep and rep2rep. This implies that for increasing
basal transcription gogcrit the saddle-node bifurcation
occurs at lower values of W, whereas increasing basal
activity drives the first bifurcation to higher W values in the
other two classes of systems.

4.5. Two examples of intermediate regulation

In order to illustrate the bifurcation pattern with respect
to regulatory determinants D that can change sign we
consider two examples of regulation by intermediate
complexes: (i) a combination of activation and intermedi-
ate regulation and (ii) a combination of repression and
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Table 3

Position of the bifurcation point in repression–repression systems and switching efficiency for different Hill coefficients n ¼ 2; 3; 4

n Variable s at bifurcation Position p̄1 ¼ p̄2 Silencing efficiencya

s ¼ 1:5 s ¼ 2:5 s ¼ 4:0

2 1 1 (1.577, 0.423) ð1:775; 0:225Þ ð1:866; 0:134Þ
3 0.2109 1.333 ð1:989; 0:156Þ ð1:996; 0:096Þ ð1:998; 0:061Þ
4 0.0685 1.500 ð2:000; 0:080Þ ð2:000; 0:049Þ ð2:000; 0:031Þ

The values in the table are sampled on equivalent paths through parameter space with the following parameter values: kq1 ¼ kq2 ¼ 2, K1 ¼ K2 ¼ 1=s and

kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1. Because of symmetry the bifurcation is of pitchfork type.
aThe values in parentheses represent the stationary concentrations of regulator proteins, ðp̄1, p̄2Þ, at the fixed point P̄1 for the given value of the auxiliary

variable s.
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intermediate regulation. Both cases have a Hill coefficient
n ¼ 4. The four complexes formed by successive binding
are shown together with the various forms of potential
transcriptional regulation in Fig. 15. The four dissociation
constants are multiplied to yield the following combina-
tions:

k11 ¼ K11 � K12 � K13 � K14; k12 ¼ K12 � K13 � K14,

k13 ¼ K13 � K14; k14 ¼ K14,

k21 ¼ K21 � K22 � K23 � K24; k22 ¼ K22 � K23 � K24,

k23 ¼ K23 � K24; k24 ¼ K24.

As mentioned in Section 2.1 the equilibrium parameters
used here are macroscopic dissociation constants.

In the first system the saturated complex Hð4Þ1 ðF1ðp̄2ÞÞ

and the ‘intermediate 2’ Hð2Þ2 ðF2ðp̄1ÞÞ initiate transcription
and the binding functions are of the form

F1ðp̄2Þ ¼
p̄4
2

k21 þ k22 p̄2 þ k23 p̄2
2 þ k24 p̄3

2 þ p̄4
2

and

F2ðp̄1Þ ¼
k13p̄2

1

k11 þ k12 p̄2 þ k13 p̄2
1 þ k14 p̄3

1 þ p̄4
1

.

Computation of the regulatory determinant D is straight-
forward and yields
Dðp̄1; p̄2Þ ¼ � kq1 kq2 kp1 kp2

�
k13 p̄1 p̄3

2ð2k11 þ k12 p̄1 � k14 p̄3
1 � 2p̄4

1Þð4k21 þ 3k22 p̄2 þ 2k23 p̄2
2 þ k24 p̄3

2Þ

ðk11 þ k12 p̄2 þ k13 p̄2
1 þ k14 p̄3

1 þ p̄4
1Þ

2
ðk21 þ k22 p̄2 þ k23 p̄2

2 þ k24 p̄3
2 þ p̄4

2Þ
2
.

Dðp̄1; p̄2Þ ¼ kq1 kq2 kp1 kp2

�
k13k21p̄1ð2k11 þ k12 p̄1 � k14 p̄3

1 � 2p̄4
1Þðk22 þ 2k23 p̄2 þ 3k24 p̄2

2 þ 4p̄3
2Þ

ðk11 þ k12 p̄2 þ k13 p̄2
1 þ k14 p̄3

1 þ p̄4
1Þ

2
ðk21 þ k22 p̄2 þ k23 p̄2

2 þ k24 p̄3
2 þ p̄4

2Þ
2
.

In principle, D can adopt plus and minus signs and a Hopf
bifurcation may occur in addition to the one-dimensional
bifurcation of act2act systems. The system sustains one or
three stationary states. The state at the origin is always
stable. Then it passes through two bifurcations as a
function of the auxiliary variable s. The first of them is a
saddle-node bifurcation at s ¼ soneD, which is found in all
cooperative activation–activation systems. The bifurcation
gives birth to one stable and one unstable state. The new
stable state moves outwards in the positive quadrant, i.e. to
larger values of p̄1 and p̄2, and the unstable state moves
inwards. As shown in Fig. 16 the system indeed passes a
Hopf bifurcation at s ¼ sHopf and a stable limit cycle is
formed.
The second example of intermediate regulation combines

repression ðF1ðp̄2ÞÞ and an active intermediate complex
ðF 2ðp̄1ÞÞ. Here G1 and the ‘intermediate 2’ Hð2Þ2 are the
active transcription forms. The two regulatory functions
are given by

F1ðp̄2Þ ¼
k21

k21 þ k22 p̄2 þ k23 p̄2
2 þ k24 p̄3

2 þ p̄4
2

and

F2ðp̄1Þ ¼
k13 p̄2

1

k11 þ k12 p̄2 þ k13 p̄2
1 þ k14 p̄3

1 þ p̄4
1

.

Computation of the regulatory determinant D now yields
Again, plus and minus signs are possible and as documen-
ted in Fig. 17 two bifurcations, the pitchfork bifurcation
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Fig. 14. The influence of basal transcription on the bifurcation patterns of

gene regulation. The topmost plot presents the positions of the saddle-

node bifurcations of the act2act system with Hill coefficient n ¼ 2 in the

ðW; gÞ plane. In the area enclosed by the curves we observe three stationary

states, elsewhere one stable stationary state. The plot in the middle refers

to the act2rep system with Hill coefficient n ¼ 3: oscillations occur below

the bifurcation curve. The plot at the bottom shows the analogous curve

of the rep2rep system with Hill coefficient n ¼ 2. Three steady states are

observed between two (opposite) pitchfork bifurcations, i.e. in the area

below the curve. Other parameters: K1 ¼ K2 ¼ 0:5, and

kq1 ¼ W1 ¼ kq2 ¼ W2, kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1 for the middle

plot.

Fig. 15. Intermediate complexes as active forms in transcription. A four-

step binding equilibrium of four monomers to a binding site in the gene

regulatory region is shown as an example for the dynamics of regulation

by means of active intermediate complexes. Three intermediate complexes,

Hð1Þi , Hð2Þi and Hð3Þi , are potential candidates for transcription.
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Fig. 16. Position and stability of the three fixed points in the two-gene

cooperative system with intermediate activation and a Hill coefficient of

n ¼ 4. The active entities are Hð4Þ1 and Hð2Þ2 . A saddle-node bifurcation (&)

and a Hopf bifurcation (	) are observed at s ¼ 2:023 and 3.671,

respectively. Choice of parameters: kq1 ¼ kq2 ¼ 2 � s, k11 ¼ k12 ¼ � � � ¼
k24 ¼ 0:5=s and kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1. The upper plot

shows D as a function of the auxiliary variable s (stable fixed points:

black lines; unstable fixed points: gray lines). The lower plot is a

parametric plot of the positions of all fixed points as functions of s: P̄k ¼

ðp̄
ðkÞ
1 ðsÞ; p̄

ðkÞ
2 ðsÞÞ; k ¼ 1; 2; 3 (stable fixed points: full and broken black lines;

unstable fixed points: full and broken gray lines).
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which is typical for cooperative rep2rep systems and a
Hopf bifurcation, are indeed observed.

Without showing details we mention that the Hopf
bifurcation was not observed for all systems with
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Fig. 17. Position and stability of the three fixed points in the two-gene

cooperative system with intermediate repression and Hill coefficient n ¼ 4.

The active entities are G1 and Hð2Þ2 . A pitchfork bifurcation (&) and a

Hopf bifurcation (	) are observed at s ¼ 3:834 and 17.96, respectively.

Choice of parameters: kq1 ¼ kq2 ¼ 1 � s, k11 ¼ k12 ¼ � � � ¼ k24 ¼ 1 and

kp1 ¼ kp2 ¼ dq1 ¼ dq2 ¼ dp1 ¼ dp2 ¼ 1. The plot shows the positions of all

fixed points as functions of s: P̄k ¼ ðp̄
ðkÞ
1 ðsÞ; p̄

ðkÞ
2 ðsÞÞ; k ¼ 1; 2; 3 (stable fixed

points: full and broken black lines; unstable fixed points: full and broken

gray lines).
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regulatory determinants D that can have plus or minus
sign. For example, no oscillations are observed in the
systems transcribing H

ð4Þ
1 and ‘intermediate 1’ H

ð1Þ
2 or G1

and ‘intermediate 1’ Hð1Þ2 , respectively. More examples are
listed in Table 5. The situation in these cases is analogous
to the activation–repression system with Hill coefficient
n ¼ 2: the regulatory determinant D adopts positive values
but does not exceed D ¼ DHopf for all tested values and
approached limits.
5. Numerical sampling of parameter space

The results derived from selected examples are summar-
ized and augmented by numerical explorations of para-
meter space in this section. Numerical sampling was
performed in an explorative manner in order to learn
whether or not more complicated cases exist where the
computer assisted analytic approach applied here is
doomed to fail. For the sampling approach we assumed a
constant total gene concentration of g0 ¼ 1 in suitable
arbitrary units (see Section 6). All rate and equilibrium
parameters, pk; k ¼ 1; 2; . . . ; were allowed to adopt values
in the range �9:25p log pkp9:25 corresponding to ap-
proximately 10�4ppkp104. Individual values were
sampled by means of a random number generator
assuming uniform distribution on the logarithmic scale.
A typical sample consisted of some ten thousand points
and the distribution of different dynamical behaviors was
evaluated by simple frequency counting. The results are
summarized in Tables 4 and 5. Despite relatively small
samples all qualitative forms of dynamic behavior were
detected by the numerical sampling procedure.
Table 4 also presents an overview of all activation and
repression cases with simple Hill-type functions (5) for n ¼

1; 2; 3 and 4. Basal activation or leaky transcription were
also included. Almost all systems under consideration show
an unregulated and a regulated regime separated by a
bifurcation. The only exceptions are non-cooperative
systems and the act2rep system with Hill coefficient
n ¼ 2.
Not all intermediate cases were investigated but the

examples shown in Table 5 are representative. They show
transitions from behavior characteristic of one basic
regulatory combination to another, for example, from
act–rep to act–act in the table. The pure combinations
have their well-defined characteristic behavior, Hopf
bifurcation and undamped oscillations for act–rep and
one-dimensional bifurcation and bistability for act–act
and rep–rep. The intermediate cases form a smooth
transition in the sense that they combine both scenarios,
first one-dimensional bifurcation and second Hopf bifurca-
tion (one example combining both scenarios is shown in
Fig. 16). The best studied and documented example is the
case for Hill coefficient n ¼ 4 in the table. All five objects
from the naked gene to the complex with four monomers
bound to DNA that can possibly initiate transcription are
considered in the table. The pure systems show oscillations
or bistability (with one state being the origin) and the
intermediate complexes combine both behaviors—‘inter-
mediate 1’ and ‘intermediate 2’—or they behave like the
act–act system—‘intermediate 3’.
A very similar situation is encountered for the repressio-

n–intermediate system. We cannot give the details here, but
Fig. 17 shows a parametric plot for one intermediate case,
G1 and Hð2Þ2 , that exhibits both, a one-dimensional
bifurcation leading to bistability with one state having
one gene active and the other one silenced and the second
state vice versa. Later, with increasing W=K ratios one state
becomes unstable and gives birth to a stable limit cycle via
a Hopf bifurcation.

6. Discussion

The work reported here aims at the presentation of a
straightforward and fairly simple mathematical technique
that allows for full characterization of the dynamical
patterns for gene regulation by transcription kinetics
following Eqs. (11) and (12). The procedure can be
extended to investigations of the entire parameter space
since, despite a rather large number of kinetic parameters
and equilibrium binding constants, only very few quantities
determine the dynamical pattern of the system—as
encapsulated in the fixed points and their stabilities:
stationary mRNA concentrations (15) are proportional to
stationary protein concentrations (14) and therefore it is
sufficient to study the dynamical systems in the protein
subspace. Moreover, the fixed points in protein space
depend only on the binding function and one rational
expression of kinetic parameters, Wj ¼ ðk

q

j kpj Þ=ðd
q

j dpj Þ, for
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Table 4

Results of bifurcation analysis of systems with simple binding functions (5) for activation and repression

Regulation G1 Regulation G2 Dynamical patterna Number of non-negative rootsb Bifurcation type

Type F1ðp2Þ n1 Type F2ðp1Þ n2

Activation p2
K2 þ p2

1 Activation p1
K1 þ p1

1 EjS 1j2 (2) Transcritical

Activation p2
K2 þ p2

1 Repression K2

K1 þ p1

1 S 1 (2)

Repression K2

K2 þ p2

1 Repression K2

K1 þ p1

1 S 1 (2)

Activation p22
K2 þ p22

2 Activation p21
K1 þ p21

2 EjBðE;SÞ 1j3 (5) Saddle-node

Activation p22
K2 þ p22

2 Repression K1

K1 þ p21

2 S 1 (5)

Repression K2

K2 þ p22

2 Repression K1

K1 þ p21

2 SjBðS1;S2Þ 1j3 (5) Pitchfork or saddle-node

Activation p32
K2 þ p32

3 Activation p31
K1 þ p31

3 EjBðE;SÞ 1j3 (9) Saddle-node

Activation p32
K2 þ p32

3 Repression K1

K1 þ p31

3 SjO 1j1 (9) Hopf

Repression K2

K2 þ p32

3 Repression K1

K1 þ p31

3 SjBðS1;S2Þ 1j3 (9) Pitchfork or saddle-node

Activation p42
K2 þ p42

4 Activation p41
K1 þ p41

4 EjBðE;SÞ 1j3 (17) Saddle-node

Activation p42
K2 þ p42

4 Repression K1

K1 þ p41

4 SjO 1j1 (17) Hopf

Repression K2

K2 þ p42

4 Repression K1

K1 þ p41

4 SjBðS1;S2Þ 1j3 (17) Pitchfork or saddle-node

Basalþ activation g1 þ
p2

K2 þ p2

1 Basalþ activation g2 þ
p1

K1 þ p1

1 S 1 (2)

Basalþ activation
g1 þ

p22
K2 þ p22

2 Basalþ activation
g2 þ

p21
K1 þ p21

2 SjBðS1;S2ÞjS 1j3j1 (5) Saddle-nodejsaddle-node

Equilibrium points were computed by means of Eq. (14) and the regulatory determinant D (21) was used for stability analysis.
aThe sequence of states is obtained by increasing (kq1 ; k

q

2 ) at constant values of the other parameters, states are separated by j and the dynamical patterns are characterized by the following symbols:

E 
 stable fixed point at the origin P̄ð0; 0Þ corresponding to both genes silenced, S 
 stable fixed point in the positive quadrant, p̄140; p̄240, BðP̄i; P̄jÞ 
 two stable fixed points separated by a saddle

and O 
 limit cycle.
bNumbers of observed fixed points with p̄1X0; p̄2X0 before and after the bifurcations are separated by j, the number in parentheses is the degree of the polynomial derived from Eq. (14). It is

tantamount to the maximal number of fixed points.
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Table 5

Results of numerical sampling of systems with randomly chosen parameter valuesa

Regulation G1 Regulation G2 Dynamical patternb Bifurcation type Frequencies of patterns

Type F1ðp2Þ n1 Type F2ðp1Þ n2

Activation p22
k21 þ k22p2 þ p22

2 Repression k11
k11 þ k12p1 þ p21

0/2 S 1

Activation p22
k21 þ k22p2 þ p22

2 Intermediate k12p1
k11 þ k12p1 þ p21

1/2 EjBðE;SÞ Saddle-node 0:603j0:397

Activation p22
k21 þ k22p2 þ p22

2 Activation p21
k11 þ k12p1 þ p21

2/2 EjBðE;SÞ Saddle-node 0:663j0:337

Activation p23

k21 þ k22p2 þ k23p22 þ p23
3 Repression k11

k11 þ k12p1 þ k13p2
1 þ p13

0/3 SjO Hopf 0:998j0:002

Activation p23

k21 þ k22p2 þ k23p22 þ p23
3 Intermediate k12p1

k11 þ k12p1 þ k13p2
1 þ p13

1/3 EjBðE;SÞjO Saddle-nodejHopf 0:642j0:354j0:004

Activation p23

k21 þ k22p2 þ k23p22 þ p23
3 Intermediate k13p21

k11 þ k12p1 þ k13p2
1 þ p13

2/3 EjBðE;SÞjO Saddle-nodejHopf 0:715j0:283j0:002

Activation p23

k21 þ k22p2 þ k23p22 þ p23
3 Activation p13

k11 þ k12p1 þ k13p2
1 þ p13

3/3 EjBðE;SÞ Saddle-node 0:720j0:280

Activation p42
k21 þ k22p2 þ k23p22 þ k24p32 þ p42

4 Repression k11
k11 þ k12p1 þ k13p2

1 þ k14p31 þ p41

0/4 SjO Hopf 0:988j0:012

Activation p42
k21 þ k22p2 þ k23p22 þ k24p32 þ p42

4 Intermediate k12p1
k11 þ k12p1 þ k13p2

1 þ k14p31 þ p41

1/4 EjBðE;SÞjO Saddle-nodejHopf 0:673j0:321j0:006

Activation p42
k21 þ k22p2 þ k23p22 þ k24p32 þ p42

4 Intermediate k13p21
k11 þ k12p1 þ k13p2

1 þ k14p31 þ p41

2/4 EjBðE;SÞjO Saddle-nodejHopf 0:740j0:258j0:002

Activation p42
k21 þ k22p2 þ k23p22 þ k24p32 þ p42

4 Intermediate k14p31
k11 þ k12p1 þ k13p2

1 þ k14p31 þ p41

3/4 EjBðE;SÞ Saddle-node 0:751j0:249

Activation p42
k21 þ k22p2 þ k23p22 þ k24p32 þ p42

4 Activation p41
k11 þ k12p1 þ k13p2

1 þ k14p31 þ p41

4/4 EjBðE;SÞ Saddle-node 0:742j0:258

aThe frequencies of bifurcation patterns are derived from a large number (N410 000) of randomly chosen combinations of parameters. The values for a parameter p are taken from the interval

�9:25p logpp9:25 under the assumption of a uniform distribution of logp (see also Section 5).
bThe sequence of states is obtained by increasing (kq1 ; k

q

2 ) at constant values of the other parameters, states are separated by j and the dynamical patterns are characterized by the symbols described in

the footnote of Table 4.
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11The term pure indicates that the complex active in transcription is

either fully saturated—Hð4Þ in Fig. 15 implying activation (act)—or

unbound—G in Fig. 15 indicating repression (rep).
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every gene. The stationary protein concentrations are
obtained as solutions of polynomials. Since the polyno-
mials are of high degrees for cooperative systems (Hill
coefficient nX2) a combined analytical and computational
technique, consisting of the numerical calculation of the
polynomial roots, is mandatory. Despite high degrees
the polynomials allow for an analytical handling of limits
like high and low binding affinities. Local stability analysis
is performed in terms of the eigenvalues of the Jacobian
matrix at fixed points.

In this contribution we presented examples for a (quite
general) class of genetic regulations—denoted here as
simple—where the analysis of the Jacobian is largely
facilitated by its structure (21): computation of the
regulatory determinant D is sufficient for the stability
analysis of fixed points. At two computable critical values,
DoneD and DHopf, the fixed points become unstable through
a one-dimensional bifurcation or a Hopf bifurcation,
respectively. Fixed points are stable in between,
DoneDoDoDHopf. It is important for generalizations that
DoneD is always negative whereas DHopf always has positive
sign. For two-gene systems the class simple is constituted
by cross-catalysis which expresses that regulatory binding
functions depend only on the concentration of the protein
derived from the other gene: F1ðp2Þ and F2ðp1Þ. Apart from
this restriction the binding functions can be arbitrarily
complicated, only differentiability is required for the
computation of D: examples for more complicated cases
analyzed here are leaky transcription (two terms) and
intermediate complexes as transcription initiators.

The approach can be readily extended to more than two
genes and there the properties of the class simple are
fulfilled by catalytic cycles consisting of a closed loop of
regulatory functions, GN ) G1 ) G2 ) � � � ) GN for
arbitrary N. A description of such regulatory systems by
means of dynamical graphs has been reported in Remy et
al. (2003). One concrete example of a regulatory loop with
N ¼ 3 is the repressilator Elowitz and Leibler (2000) which
has been analyzed in detail (for example, in Müller et al.,
2006). On the other hand, there are also examples of two-
gene systems that do not fall under the classification simple,
for example, self-activation and cross-repression or self-
repression and cross-activation, because then the regula-
tory binding functions depend on the concentrations of
both proteins: F 1ðp1; p2Þ and F2ðp1; p2Þ. Attempts to
generalize our approach and to group these non-simple

systems into subgroups according to the dynamical
structure related to the difficulty of analysis are under
way (Schuster et al., 2006).

The dynamical pattern of gene regulation has been
analyzed for several cooperative binding functions, F1ðp2Þ

and F2ðp1Þ, with different Hill coefficients by means of a
new technique using the regulatory determinant Dðp1; p2Þ

introduced and defined in Eq. (21). We computed and
classified only the generic dynamic features and the
bifurcation patterns which were found in full agreement
with the literature wherever results from previous studies
were available. No attempt has been made yet to make a
complete search in parameter space, nor did we try in this
paper to adjust to experimental data. Therefore, concen-
trations and parameter values were chosen to illustrate best
the basic features of the bifurcation diagrams and the
oscillatory dynamics. A forthcoming study will deal with
fitting regulatory dynamics to experimental data by making
use of inverse methods (Engl et al., 1996; Woodbury, 2002).
A particularly challenging problem is reverse engineering
of bifurcation patterns, first approaches to this problem are
now available (Lu et al., 2006).
All cooperative systems (except activation–repression

with Hill coefficient n ¼ 2) show an unregulated and a
regulated regime. The regulated regime is reached at
sufficiently high values of the ratio W=K implying that: (i)
transcription and translation are fast enough compared to
mRNA and protein degradation and (ii) binding is
sufficiently strong. The pure systems11 fall into three
classes: act2act, act2rep, and rep2rep. Each class has
its own regulatory characteristic: (i) act2act leads to both
genes active or both genes silenced, (ii) act�rep results in
oscillatory activity of the two genes and (iii) rep2rep
represents a bistable switch with the two states: (i) G1

active and G2 silenced and vice versa, (ii) G1 silenced and
G2 active. In pure systems D is either always negative
(act2act and rep2rep) or always positive (act2rep) and
accordingly we find bistability only in the first two classes
of systems and oscillations occur exclusively in the third
class. More complicated binding functions may give rise to
mixed behavior resulting from simultaneous appearance of
one-dimensional and Hopf bifurcations in the same
bifurcation diagram. The cases of intermediate regulation
discussed in Section 4.5 may serve as examples.
The model for gene regulation and the technique for

analyzing regulatory dynamics presented here provides a
fast tool for computational bifurcation analysis. The
parameter spaces of small genetic networks with several
genes can be scanned completely. Regulatory systems can
be classified into simple and non-simple systems according
to the structure of the Jacobian matrix. Simple systems are
accessible to a highly efficient combined analytical and
computational approach. Analytical expressions are avail-
able for the computation of bifurcation points. The current
procedure will be developed further into an automatic tool
for the exploration of entire parameter spaces that is
applicable to systems with several genes (up to approxi-
mately five genes). Future work aims also at an up-scaling
to systems with many genes.
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Appendix A. Condition for a Hopf bifurcation

In order to compute the value D̄Hopf (Fig. 2) where the
two-gene system looses stability at positive values of D, we
use the criterion by Liénard–Chipart (see Gantmacher,
1998, p. 221). According to that criterion, the eigenvalues
of the Jacobian have strictly negative part if and only if the
zeroth, second and fourth coefficient of the secular
equation as well as the second and fourth Hurwitz
determinant are positive. The latter two are determinants
of 2� 2 and 4� 4 matrices, respectively, whose non-zero
entries are coefficients of the secular equation.

From Eq. (21), the zeroth and the second coefficient
are always positive, and the fourth coefficient is positive
for D4� dq1 dq2 dp1 dp2 . The second Hurwitz determinant
is always positive because it expands to an expression
in dq1 ; d

q

2 ; d
p

1 ; d
p

2 with positive coefficients. The fourth
Hurwitz determinant is a quadratic polynomial in D. With
the help of the computer algebra system Maple, one finds
that it has two real roots, corresponding to the values

Dtrans ¼ �dq1 dq2 dp1 dp2 and (22)

D̄Hopf ¼
ðdq1 þ dq2 Þðd

q

1 þ dp1 Þðd
q

1 þ dp2 Þðd
q

2 þ dp1 Þðd
q

2 þ dp2 Þðd
p

1 þ dp2 Þ

ðdq1 þ dq2 þ dp1 þ dp2 Þ
2

.

(24)

Between these two roots it is positive because its leading
coefficient is negative, the eigenvalues of the Jacobian have
strictly negative real parts and the corresponding fixed
point is asymptotically stable.
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