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Summary: The binding equilibria of activator and repressor to the regula-
tory segments of a gene are studied by conventional thermodynamics. Five
different scenarios are analyzed: (i) A single regulator binds to the DNA,
(ii) activator and repressor bind competitively to a single site, (iii) activa-
tor and repressor bind to two different sites, (iv) two activator molecules,
and (v) four activator molecules are required for gene expression. Inde-
pendent, cooperative, and anti-cooperative binding are distinguished for
the cases (iii), (iv), and (v). Simplified functions with computable max-
imal deviations from the exact solutions are derived for the equilibrium
concentrations in order to provide a rigorous basis for modelling genetic
regulation.

1 Introduction and notation

The basic scenario that underlies the calculations presented here is sketched
in figure 1 and has been taken from the booklet by Ptashne & Gann [1].
Two classes of molecular effectors, activators and repressors, decide on the
transcriptional activity of a gene, whose activity is classified according to
three states: (i) ‘Naked’ DNA is commonly assumed to have a low or basal
transcription activity (basal state), (ii) transcription rises to the normal level
when (only) the activator is bound to the regulatory region of the gene (active
state), and (iii) complexes with repressor are inactive no matter whether the
activator is present or not (inactive state). In this first part we consider
only the binding equilibria of regulatory molecules to binding sites within the
non-translated regulatory regions of genes and we shall leave all kinetic issues
to the second part of this technical report. We shall discuss four different
problems in separate sections: (i) single regulator binding, (ii) competitive
binding of two different regulator molecules to the same site, (iii) binding
of two ligands to two sites, and (iv) binding of one ligand at two or more
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binding sites. At the beginning we consider a single binding site and a
single regulatory molecule. This problem is identical to the well studied pre-
equilibrium in Michaelis-Menten kinetics [2] (For a conventional presentation
see [3]; a recent study on the quasi-steady state assumption for bimolecular
reactions and further references are found in [4]). We include this example
here for tutorial purposes. In addition, it allows for full analytical treatment
whereas only combined numerical and analytical procedures are successful
in all other cases. Chemical schemata for the mechanisms of binding two
ligands are summarized in figure 2. Although activator and repressor for
a given gene bind to different sites on DNA (figure 1), we consider also
the case of competitive binding, because it provides a useful reference that
allows for less involved calculations. As third and main example we analyze
the binding of two regulators, activator and repressor, to two distinct binding
sites on DNA. We shall investigate the case of (complete) independence of
the sites and contrast it by cooperative and anti-cooperative binding of the
two ligands. Finally, in our forth and last example we discuss binding of the
same ligand to two or more binding sites. Two different mechanisms will be
studied: (i) consecutive binding of ligands, one after the other, and (ii) ligand
dimer or oligomer formation and binding to the site in one step (figure 24).

The notation applied throughout this part is the following: Chemical
species are denoted be upper case sanserif letters, e.g the activator A or the
complex C≡ A · G. Equilibrium constants are either formulated as associ-
ation constants and written upper case roman italics, e.g. Kj, or we shall
use Greek letters, e.g. κj when it is advantageous to apply dissociation con-
stants.1 Lower case roman letters are applied for the concentration variables,
e.g. the equilibrium concentration c = [C]. To indicate total concentrations
of species we shall use the subscript ‘0’ and we have, for example, g0 = g + c
in the simple binding case.

2 Single regulator binding equilibrium

The simple single regulator binding equilibrium (figure 2, topmost reaction)
is dealing with three variables, the concentrations of three species, g = [G],
a = [A], and c = [C] = [A ·G], which are determined by three equations, two
conservation relations and one equilibrium constant:

g0 = g + c , a0 = a + c , and K =
c

a · g = κ−1 . (1)

1For all four equilibria in figure 2 the binding constants Kj have the dimension of a
reciprocal concentration, mol−1·L, whereas the dimensions of the κj ’s are concentrations,
mol·L−1.
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Figure 1: Basic principle of gene regulation. The figure sketches the
regulated recruitment mechanism of gene activity control in prokaryote cells
as discovered with the lac genes in Escherichia coli [1]. The gene has three
states of activity, which are regulated by the presence or absence of glucose
and lactose in the medium: State I, basal state occurs when both nutrients
are present and it is characterized by low level transcription; neither the
activator, the cap protein, nor the lac-repressor protein are bound to their
sites on DNA. State II, activated state is induced by the absence of glucose
and the presence of lactose and then cap is bound to DNA, but lac-repressor
protein is absent. Finally, when lactose is absent the gene is in the inactive

state no matter whether glucose is available or not. Then, the lac-repressor
protein is bound to DNA and transcription is blocked. The promotor region
of the DNA carries specific recognition sites for the RNA polymerase in
addition to the binding sites for the regulatory proteins.
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Figure 2: Three binding mechanisms in gene regulation. The topmost
case is the simple binding equilibrium where the formation of the activator-
DNA complex initiates transcription. It is identical to the pre-equilibrium
in Michaelis-Menten kinetics [2, 3]. In the middle we illustrate competitive
binding of two regulatory molecules, e.g. activator and inhibitor. There is
only one binding site and the activity of the two complexes is determined
by the nature of the bound molecules which may be either an activator or
an inhibitor. The example at the bottom describes the real situation where
activator and repressor are bound at different sites [1]. The four binding
equilibria have to fulfil the relation: K1 · K3 = K2 · K4 = K. Lack of
interaction of the two ligands in their binding sites on the DNA inplies K1 =
K4 and K2 = K3. The extent of cooperative or anti-cooperative binding is
measured properly in terms of a cooperativity parameter σ = K1 · K2/K.

Calculation of the solutions for g, c, and a of (1) leads to a quadratic equa-
tion that has one positive and one negative root. Only the positive root is
physically meaningful and hence the free concentration of the gene g and the

4



Figure 3: Single regulator binding equilibrium. The topmost curves represent

the concentration of the complex C≡A·G, c, computed according to equation (3) [black]

and its approximation γ (5) [red] as functions of the total concentration a0. The other

two parameters were chosen to be unity: g0 = 1 and K = 1. In the middle we show

the analogous curves for the concentration of free gene, g(a0) and χ(a0), according to

equations (2) and (4), respectively. The curve in the third diagram is the difference

between the exact and the approximated curves: f(κ, a0, g0) = g(κ, a0, g0)−χ(κ, a0, g0) =

−c(κ, a0, g0) + γ(κ, a0, g0) for constant κ and g0 (κ = g0 = 1).
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gene-regulator complex c are uniquely determined by

g = −1

2

(

κ + a0 − g0 +
√

(κ + a0 − g0)2 + 4κg0

)

(2)

c =
1

2

(

κ + a0 + g0 −
√

(κ + a0 + g0)2 − 4a0g0

)

. (3)

It is useful to note that the two expressions of the square root are identical:

√

(κ + a0 − g0)2 + 4κg0 =
√

(κ + a0 + g0)2 − 4a0g0 .

The second expression is preferable since it makes evident the symmetry in
the replacement a0 ⇔ g0 which is a consequence of the binding mechanism.
Accordingly, the free concentration of A fulfils:

a = −1

2

(

κ − a0 + g0 +
√

(κ + a0 + g0)2 − 4a0g0

)

.

For both equations, (2) and (3), we search now for approximations that are
no more complex than simple rational expressions in order to be able to
use them for modelling genetic networks. The simplest approximation is to
replace the free concentration of the regulator, a, by its total concentration
a0. Then we find

g ≈ χ = g0
1

1 + Ka0

= g0
κ

κ + a0

(4)

c ≈ γ = g0
a0

κ + a0

. (5)

The approximations become exact in the limits lim a0 → 0 and lim a0 → ∞.
In figure 3 we show a plot of the difference between the exact solution and
the approximation,

f(κ, a0, g0) = g(κ, a0, g0) − χ(κ, a0, g0) = −
(

c(κ, a0, g0) − γ(κ, a0, g0)
)

.

This function exhibits a maximum at some value [a0]max[f(κ,a0,g0)] < g0 and
approaches zero in the two limits mentioned above.

The position of the maximal deviation computed in the direction of the
a0-axis, a0 = [a0]max[f(κ,a0,g0)] = a

(max)
0 is readily calculated from the condition

max
{

f =
∣

∣

∣
c − γ

∣

∣

∣

}

=⇒ ∂f

∂a0

= 0 =
∂c

∂a0

− ∂γ

∂a0

.
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Figure 4: Single regulator binding equilibrium. The upper part of
the figure shows the concentration of the complex C=A·G c(a0, g0) and its
approximation γ(a0, g0) as functions of the total concentrations a0 and g0.
The lower plot presents the (positive) difference between the two functions
f(κ, a0, g0) = |c(κ, a0, g0) − γ(κ, a0, g0)| for constant K = κ = 1.

The quantity a
(max)
0 fulfils a cubic equation, which can be simplified by a

straightforward change of the variable a
(max)
0 → α = κ + a

(max)
0 :

2 α3 − (3κ + g0) α2 − 2g0κ α + g0κ(4κ + g0) = 0 . (6)

The roots of this cubic equation provide an illustrative example for the exis-
tence of spurious solutions. Equation (6) sustains three real roots for g0 > 0.
At sufficiently low values of g0 the largest root is the physically meaningful
solution. The other two roots branch in the form of a parabola opening to
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Figure 5: Maximal deviation of the approximation γ(κ, a0, g0) from

the binding function c(κ, a0, g0). The topmost curves represent solutions of

the cubic equation (6). The largest root [black] is the physically meaningful solu-

tion between g0 = 0 and the crossing point of the two positive roots. From there

on the smaller of the two positive roots [black] is the actual solution (see text).

The two lower figures represent the maximal absolute error of the approximation

∆
(abs)
max (κ, g0) = |c(κ, [a0]max[f(κ,a0,g0)], g0)−γ(κ, [a0]max[f(κ,a0,g0)], g0)| [black] together with

the relative error ∆
(rel)
max(κ, g0)/c(κ, [a0]max[f(κ,a0,g0)], g0) [red].
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the right that has the leftmost point at the position (a0, g0) = (−κ, 0) (fig-
ure 5). The position on the g0-axis at which the two positive solutions of the
cubic equation cross, g0 = g0,cross, can be calculated from the condition of a
vanishing discriminant of the cubic equation (figure 6):

D = −κ g0

432

(

g 4
0 + 5κ g 3

0 − 5κ2 g 2
0 − 72κ3 g0 + 108κ4

)

=

= −κ g0

432
(g0 − 2κ)2 (g3

0 + 7κg2
0 + 9κ2g0 − 54κ3

)

. (7)

The condition D = 0 is fulfilled at two values of g
(1)
0,cross(κ) = 0 and at

the point g
(2)
0,cross(κ) = 2κ. Equation (6) has three real roots on both sides of

g
(2)
0,cross implying D < 0 and consequently, for constant κ, D(g

(2)
0,cross) represents

a maximum of D(g0). This is straightforwardly shown by differentiation and
the condition ∂D/∂g0|κ=const = 0:2

∂D

∂g0

= − κ

432
(g0 − 2κ)

(

5g3
0 + 30g2

0κ + 45g0κ
2 − 54κ3

)

,

(

gext
0

)

1
= 0.762793κ ,

∂2D

∂g2
0

∣

∣

∣

∣

g0=(gext

0 )
1

= +11.7473κ4 =⇒ minimum ,

(

gext
0

)

2
= 2 κ ,

∂2D

∂g2
0

∣

∣

∣

∣

g0=(gext

0 )
2

= −196 κ4 =⇒ maximum .

The discriminant D(g0) is a fifth-order polynomial and we finalize the dis-
cussion by summarizing all five roots of D(g0) = 0: (g0)1 = 0, (g0)2,3 = 2κ,
and two complex conjugate roots (g0)4,5 = −3κ(3 ± i

√
3)/2.

For values of g0 above the crossing point the correct solution is the second
largest root of the cubic equation. It is straightforward to find out from where
the spurious solution originates: At one instant in the derivation the cubic
equation (6) both sides of the equation were squared in order to eliminate the
square root, and this operation allows for additional solutions (which results
from expressions with different signs before the operation).

From the proper solution of (6) we can easily calculate the absolute and
relative maximal error in the binding function:

∆(abs)
max (κ, g0) =

∣

∣

∣
c(a

(max)
0 ) − γ(a

(max)
0 )

∣

∣

∣
and (8)

∆(rel)
max(κ, g0) =

∣

∣

∣
c(a

(max)
0 ) − γ(a

(max)
0 )

∣

∣

∣

/

c(a
(max)
0 ) . (9)

2The exact value of (gext
0 )1 is κ

[

−2 +
(

5
32+

√
111

)1/3

+
(

5
32+

√
111

)1/3
]

.
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g0

D

Figure 6: Discriminant of the cubic equation (6). The figure shows the

discriminant D defined in equation (7) as a function of g0 for κ = 1. One ‘double

root’ (D = 0) is always found at g0 = 0 and the condition for a second ‘double

root’ occurs at g0 = 2κ. At this position the first derivative, dD/dg0, vanishes as

well. As shown in the text the discriminant has a maximum at g0 = 2κ and hence

we observe three real roots of the cubic equation at both sides, g0 = κ + ε and

g0 = κ − ε.

Both errors are shown as functions of g0 for constant κ in figure 5. Asymptot-
ically for large g0, the deviation from the exact value increases linearly with
increasing total concentration of the gene. The relative error, however, shows
parabolic increase corresponding to an asymptotic

√
g0 proportionality.

Finally we consider changes in the free concentrations as a result of adding
activator or gene. These response functions are obtained by straightforward
differentiation:

∂g

∂a0

= −1

2

(

1 − κ + a0 − g0
√

(κ + a0 + g0)2 − 4a0g0

)

, (10)

∂g

∂g0

=
1

2

(

1 +
κ − a0 + g0

√

(κ + a0 + g0)2 − 4a0g0

)

, (11)

∂c

∂a0

=
1

2

(

1 − κ + a0 − g0
√

(κ + a0 + g0)2 − 4a0g0

)

, and (12)

∂c

∂g0

=
1

2

(

1 − κ − a0 + g0
√

(κ + a0 + g0)2 − 4a0g0

)

. (13)
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It is readily verified that the derivatives fulfil the equations:

∂g

∂a0

= − ∂c

∂a0

and
∂g

∂g0

+
∂c

∂g0

= 1 .

The derivatives of the approximations χ(a0, g0) and γ(a0, g0) fulfil the anal-
ogous equations,

∂χ

∂a0

= − ∂γ

∂a0

and
∂χ

∂g0

+
∂γ

∂g0

= 1 ,

but differ in the whole range 0 ≤ a0 < ∞. Only in the limit lim a0 → ∞ all
derivatives approach zero as expected.

3 Binding of two ligands to one site

Binding of activator and repressor to the same regulation site of the gene on
the DNA leads to the three state model shown in the middle of figure 2. Five
variables, a, c, f , g, and h, are determined by three conservation relations,

g0 = g + c + f (14)

a0 = a + c (15)

h0 = h + f , (16)

and two equilibria,

K1 =
c

a · g and K2 =
f

h · g . (17)

Elimination of the variables for the complexes is straightforward and intro-
ducing dissociation rather than binding constants, κ1 = K −1

1 and κ2 = K −1
2 ,

we find:

g = g0

/

(

1 +
a0

κ1 + g
+

h0

κ2 + g

)

,

a = κ1 a0

/

(κ1 + g) ,

h = κ1 h0

/

(κ1 + g) .

Further, elimination of a and h yields a cubic equation for the free gene
concentration g as a function of the three total concentrations, a0, h0, and
g0, and the two dissociation constants, κ1 and κ2:

g3 + g2(κ1 + κ2 + a0 + h0 − g0) +

+ g
(

κ1κ2 + κ2a0 + κ1h0 − (κ1 + κ2)g0

)

− κ1κ2g0 = 0 . (18)
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The cubic equation has three real roots in the positive parameter orthant,
(a0 > 0, h0 > 0, g0 > 0), as can be easily verified by considering the discrim-
inant of equation (18) shown in figure 7. The discriminant D is negative for
all values (a0 > 0, h0 > 0, g0 ≤ 0) and vanishes for a0 = h0 = 0 indicating
a double root for this condition. Closer inspection shows that two of the
three roots are negative and we are thus dealing with one and hence unique
acceptable solution g < 0. In figure 8 we illustrate the different behavior of
the three roots.

The other variables are readily obtained from equations (14-17):

a =
κ1 a0

κ1 + g
and c =

a0 g

κ1 + g
, (19)

h =
κ2 h0

κ2 + g
and f =

h0 g

κ2 + g
. (20)

In figure 9 we show the concentrations a functions of a0 and g0, respectively.
Applying the same strategy to find an approximation for the free concen-

tration of the activator complex c(a0, h0, g0), which consisted simply in the
replacement of a and h by a0 and h0, respectively, we obtain

γ(a0, h0, g0) =
κ2 a0 g0

κ1κ2 + κ2a0 + κ2h0

=
K1a0 g0

1 + K1a0 + K2h0

. (21)

The error introduced by this approximation is shown in the plots presented
in figure 10 and can be analyzed similarly as in the case of the simple binding
equilibrium. The approximation is exact in the limits a0 → 0, a0 → ∞, and
h0 → ∞:

lim
a0→0

c(a0, h0, g0) = lim
a0→0

γ(a0, h0, g0) = 0 ,

lim
a0→∞

c(a0, h0, g0) = lim
a0→∞

γ(a0, h0, g0) = g0 , and

lim
h0→∞

c(a0, h0, g0) = lim
h0→∞

γ(a0, h0, g0) = 0 .

In addition, the absolute error in the competitive binding case is very similar
to that in the simple binding equilibrium.

4 Binding of two ligands to two sites

In this section we shall discuss the complete binding mechanism of activa-
tor and repressor (figure 2). Binding of ligands to two different sites raises
the problem of interaction between the sites. We shall distinguish here the
case of independence (section 4.3) from mutual interaction between ligands
(section 4.4), which can be cooperative or anti-cooperative.
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g0

a0

D(a ,g )0 0

Figure 7: Discriminant of the cubic equation (18). The topmost plot shows

the discriminant D as a function of a0 and g0. It is negative for all values a0 > 0

and h0 > 0 with g0 ≥ 0. The two lower plots show D(a0, h0) for smaller and larger

values of |D|.
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g(a ,h )0 0

a0

h0

g(a ,h )0 0

a0
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g(a ,h )0 0
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Figure 8: Solutions of the cubic equation (18). The plots represent all three

roots of the cubic equation for K1 = K2 = 1 and g0 = 1: (i) The positive root corre-

sponding to the unique physically acceptable solution in the topmost part of the figure

as a function of the total concentration of activator and repressor, g = g3(a0, h0), (ii) the

constant root g2(a0, h0) = −1, and (iii) the second negative root g1(a0, h0). The analogous

plots g(a0, g0) show also one positive and two negative roots.
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Figure 9: Equilibrium concentrations of competitive binding. The top-

most curves present the dependence of the equilibrium concentrations on the total gene

concentration g0 for the ‘symmetric’ case κ1 = κ2 = 1 where we have h(g0) = a(g0) and

f(g0) = c(g0). The two lower plots refer to an ‘asymmetric’ joyce of equilibrium parame-

ters, κ1 = 0.5 and κ2 = 2, and show the equilibrium concentrations as functions of g0 and

a0, respectively. Color code: g black, a red, c yellow, h blue, and f green.
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a0

g0

g( ,g ) - ca (a ,g )0 0 0 0

Figure 10: Approximation of the activator complex concentration in

competitive binding. The concentration of the activator complex is ap-
proximated by the function γ(a0, h0, g0) of equation (21). The first two plots
show the error ∆(abs)(a0, h0, g0) = γ(a0, h0, g0) − c(a0, h0, g0) as a function of
a0 and h0, the other two plots as a function of a0 and h0.

4.1 Calculation of the equilibrium concentrations

The four state model in figure 2 with six variables, a, c, f , g, h, and m, gives
rise to three conservation relations,

g0 = g + c + f + m (22)

a0 = a + c + m (23)

h0 = h + f + m , (24)

and three equilibria,

K1 =
c

a · g , K2 =
f

h · g and K = K1K3 = K2K4 =
m

a · h · g . (25)

First we eliminate all variables for the complexes and find for g, a, and h:

g =
g0

1 + K1a + K2h + Kah

a =
1

1 + K1g

(

a0 − h0 + h(1 + K2g)
)

h =
1

1 + K2g

(

h0 − a0 + h(1 + K1g)
)

.
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The expression for a as a function of g is the result of a quadratic equation
and already fairly involved,

a =
A(g)

2(1 + K1g)Kg
with A(g) = −(1 + K1g)(1 + K2g) − Kg(h0 − a0) + D(g)

(26)

D(g) =
√

(1 + K1g)2(1 + K2g)2 + 2(1 + K1g)(1 + K2g)Kg(h0 + a0) + K2g2(h0 − a0)2 .
(27)

The second root of the quadratic equation leads to negative concentrations
and can be ignored therefore. Defining in addition

H(g) = −(1 + K1g)(1 + K2g) − Kg(a0 − h0) + D(g) , (28)

we obtain a final implicit equation for g:

4(1 + K1g)(1 + K2g)Kg(g0 − g) =

= 2(1 + K2g)K1gA(g) + 2(1 + K1g)K2gH(g) + A(g)H(g) . (29)

The equation is well conditioned for numerical solution in the physically
relevant range, 0 ≤ g ≤ g0, and it will be used to compute equilibrium
concentrations.

In order to test the implicit equation for the free enzyme concentration, g
in (29), we compute the solution for K = 0 and {K1, K2} 6= 0, which should
coincide with the previous example of competitive binding. Inserting K = 0
into equation (27) yields

D =
√

(1 + K1 g)2(1 + K2 g)2 = (1 + K1 g)(1 + K2 g) .

Further insertion of this result into (26) results in A(g) = 0 and a(g) = 0/0.
We apply now the rule of de l’Hospital,

a(g) =
Z(g,K)

N(g, Z)
=

limK→0

(

dZ
dK

)

limK→0

(

dN
dK

) ,

and find

lim
K→0

a(g) =
2g a0

2g (1 + K1g)
=

a0

1 + K1g
.

Application of the same strategy to h(g) and insertion into the conservation
relation (22) with m = 0 because of (25) with K = 0 yields the equation

g0 = g

(

1 +
K1 a0

1 + K1 g
+

K2 h0

1 + K2 g

)

,
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which is the corresponding equation for the case of competitive binding (sec-
tion 3). In addition the results derived from equation (29) are readily verified
by means of integration of the kinetic equation (See Part II: Binding Kinet-
ics).

After evaluation of the implicit equation for the free gene concentration
g we are in a position to compute all other variables beginning with the
concentration of the activator complex c:

c(a0, h0, g0) =

=
1

2K g

(

−

(

1 + K1g + Kg(h0 − g0 + g)
)

+

√

(

1 + K1g + Kg(h0 − g0 + g)
)

2
+ 4KK1a0g2

)

(30)

f(a0, h0, g0) =

=
1

2K g

(

−

(

1 + K2g + Kg(a0 − g0 + g)
)

+

√

(

1 + K2g + Kg(a0 − g0 + g)
)

2
+ 4KK2h0g2

)

(31)

m(a0, h0, g0) = g0 − g(a0, h0, g0) − c(a0, h0, g0) − f(a0, h0, g0) (32)

a(a0, h0, g0) = a0 − c(a0, h0, g0) − m(a0, h0, g0) (33)

h(a0, h0, g0) = h0 − f(a0, h0, g0) − m(a0, h0, g0) (34)

In figures 11 and 12 we show several examples of binding equilibria for the
two binding sites case.

4.2 Concentrations at limits

Before we shall discuss an approximation to the equilibrium concentrations
we consider the behavior of the six concentration variables in the three limits
discussed in the previous section, lim a0 → 0, lim a0 → ∞, lim h0 → 0, and
lim h0 → ∞ in the system with two binding sites. We start by the rather
trivial limit lim a0 → 0. The three auxiliary functions adopt the forms:

D(g) = (1 + K1g)(1 + K2g) + Kgh0 , A(g) = 0 , and H(g) = 2Kgh0 .

Insertion into the implicit equation for g yields three solutions: (i) g = 0, (ii)
g = −κ1, and (iii) the only physically acceptable solution

g2 + (h0 − g0 + κ2) g − κ2 g0 = 0 ,

which is identical to the binding equilibrium G + H 
 F. In consequence of
this result we have lima0→0 c(a0, h0, g0) = 0.

Next we consider the limit lim a0 → ∞, implying a0 � {h0, g0} and
g � g0, that is somewhat more subtle. First we find D(g) ≈ 1+Kga0, A(g) ≈
2Kga0, and a ≈ a0. All molecular species that can bind do not contain A

will vanish in this limit, lima0→∞ g = 0, lima0→∞ f = 0. In particular, we
have

lim
a0→∞

h0 = h + m and lim
a0→∞

g0 = c + m .
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Figure 11: Equilibrium concentrations of binding to two binding sites.

The topmost curves present the dependence of the equilibrium concentrations on the total

gene concentration a0 for an asymmetric choice of equilibrium parameters, K = 1,K1 =

0.5,K2 = 2. The ‘symmetric’ case K = K1 = K2 = 1 is shown in the middle and the

opposite asymmetric choice, K = 1,K1 = 2,K2 = 0.5 is presented at the bottom. It is

worth pointing out that we have an accidental degeneracy, m(a0) = c(a0) and f(g0) =

g(g0) in the topmost plot. Interestingly, the free concentration of h does not depend on

a0, which is a consequence of the assumption K = K1 · K2 (See section 4.3). Color code:

g black, a red, c yellow, h blue, f green, and m purple.
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Figure 12: Equilibrium concentrations of binding to two binding sites.

The topmost curves present the dependence of the equilibrium concentrations on the

total gene concentration g0 for the ‘symmetric’ case K = K1 = K2 = 1 where we have

h(g0) = a(g0) and f(g0) = c(g0). The plot at the bottom shows the curves as a function of

h0 for the same choice of equilibrium parameters (‘symmetric’ case; this plot is identical

to figure 11, middle plot when we exchange {h, f} ↔ {a, c}). The plot in the middle refer

to an ‘asymmetric’ joyce of equilibrium parameters, K = 1, K1 = 0.5, and K2 = 2, and

shows the equilibrium concentrations as a function of g0. Color code: g black, a red, c

yellow, h blue, f green, and m purple.
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a0

h0

g(a ,h )0 0

a0

g0

g(a ,g )0 0

a0

g0

c(a ,g )0 0

Figure 13: Solutions of the implicit equation (29) for the free gene and

the activator complex concentration. The topmost and the middle plot show g

as functions of (a0, h0) and (a0, g0) according to equation (29). The plot at the bottom

presents the concentration of the activator complex c(a0, g0) as expressed by equation (30).
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Straightforward calculation for the limit lim a0 → ∞ yields

lim
a0→∞

c =
1

2K

(

−(K1 + K(h0 − g0) +
√

K2
1 + K(h0 − g0)2 + 2K1K(h0 + g0)

)

(35)

lim
a0→∞

h =
1

2K

(

−(K1 − K(h0 − g0) +
√

K2
1 + K(h0 − g0)2 + 2K1K(h0 + g0)

)

(36)

lim
a0→∞

m = g0 − lim
a0→∞

c = h0 − lim
a0→∞

h (37)

lim
a0→∞

f =
lima0→∞ m

K a0
= 0. (38)

Accordingly lima0→∞ f(a0, h0, g0) = 0 as argued above.
The limit lim h0 → ∞, implying h0 � {a0, g0} and g � g0 can be handled

by symmetry arguments and accordingly we have

lim
h0→∞

c(a0, h0, g0) = 0 . (39)

Similarly, the limit lim h0 → 0 leads to a simple equilibrium G + A 
 C

with the consequence

lim
h0→0

c(a0, h0, g0) =
1

2

(

κ1 + a0 + g0 −
√

(κ1 + a0 + g0)2 − 4a0g0

)

. (40)

The behavior of approximations in relation to the exact expression is dis-
cussed in the next section 4.3.

4.3 Independent binding

In case the two ligands bind independently or, in other words, the binding
equilibrium of one effector is not influenced by absence or presence of the
second effector the over-all binding constant fulfils the relation K = K1 · K2

or K1 = K4 and K2 = K3, respectively. The whole system is described
now by two rather than three equilibrium parameters. With respect to the
calculations of free concentrations the reduction of parameters provides only
a minor simplification. It is straightforward to show, however, that fulfilling
this relation is responsible for the fact that h is independent of the input
concentration a0 as seen, for example, in figure 11. The same is true, of
course, when we consider a as a function of h0 (figure 12). As we model
binding to two independent sites, we may argue, why should a change in the
total concentration of one effector influence the second effector that binds to
the other site. Thus the result is not unexpected, but we shall, nevertheless,
derive it from conservation relations and equilibrium parameters. Partial
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differentiation of equations (22-25) yields:

∂g

∂a0

+
∂c

∂a0

+
∂f

∂a0

+
∂m

∂a0

= 0 (41)

∂h

∂a0

+
∂f

∂a0

+
∂m

∂a0

= 0 (42)

∂a

∂a0

+
∂g

∂a0

+
∂m

∂a0

= 1 (43)

∂c

∂a0

= K1

(

a
∂g

∂a0

+ g
∂a

∂a0

)

(44)

∂f

∂a0

= K2

(

h
∂g

∂a0

+ g
∂h

∂a0

)

(45)

∂m

∂a0

= K3

(

h
∂c

∂a0

+ c
∂h

∂a0

)

= K4

(

a
∂f

∂a0

+ f
∂a

∂a0

)

. (46)

From K3 c · f = K2 g ·m we derive an equation that contains exclusively the
derivatives of c and g:

(1 + K2g + K3c + K3h)
∂c

∂a0

= − (1 + K2g + K3c + K2h)
∂g

∂a0

.

Now we introduce the condition for independent binding sites, K2 = K3 and
obtain the following three results:

∂c

∂a0

= − ∂g

∂a0

, (47)

∂f

∂a0

= − ∂m

∂a0

, and (48)

∂h

∂a0

= 0 . (49)

As expected and as seen from a comparison of figures 11 and 17 the indepen-
dence of h caused by (∂h/∂a0) = 0 is found only in the case of independent
binding sites. The derivatives presented in figure 14 are further confirmation
of all three relations (47-49).

Next we try to find an approximation for the case of independent binding
sites. In the equation

c = K1 a · g = g0
K1 a

1 + K1 a + K2 h + K ah
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Figure 14: Derivative of concentrations. The topmost plot shows the first
partial derivatives of the concentrations g, a, h, c, f , and m with respect to
a0 for the parameters K = K1 = K2 = 1 and the total concentrations h0 =
g0 = 1. The plot in the middle is an enlargement in order to demonstrate
the symmetry in the derivatives: (∂c/∂a0) = −(∂g/∂a0) and (∂m/∂a0) =
−(∂f/∂a0). The plot at the bottom was computed with K = 1, K1 = 0.5,
K2 = 0.3, and h0 = g0 = 1. Color code: (∂g/∂a0) black, (∂a/∂a0) red,
(∂c/∂a0) yellow, (∂h/∂a0) blue, (∂f/∂a0) green, and (∂m/∂a0) purple.
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the free concentrations of activator and repressor are replaced by the total
concentrations, a ≈ a0 and h ≈ h0. Introduction of the independent binding
sites approximation, K = K1K2, allows for factorization of the denominator,
1 + K1a0 + K2h0 + K1K2a0h0 = (1 + K1a0)(1 + K2h0), and eventually we
find:

γ(g0, a0, h0) = g0 ·
K1a0

1 + K1a0

· 1

1 + K2h0

. (50)

Comparisons of the functions c(a0, g0) and γ(a0, g0) and their difference are
presented in terms of plots in figures 15 and 16.

It is worth to consider the behavior of c(a0, h0) and its approximation
γ(a0, h0) in the limits of vanishing and large values of a0 and h0. The exact
limits were already presented in equation (35-40). For the approximation we
derive easily the cases where the asymptotic behavior is correct:

lim
a0→0

γ(a0, h0, g0) = 0 and (51)

lim
h0→∞

γ(a0, h0, g0) = 0 . (52)

The other two limits where γ does not vanish require more care, since we
observe differences between the exact analysis and the approximation there.
In particular, we find

lim
a0→∞

γ(a0, h0, g0) =
g0

1 + K2h0

and (53)

lim
h0→0

γ(a0, h0, g0) = g0
K1a0

1 + K1a0

. (54)

In figure 16 the error in the limit a0 → ∞ is easily recognized, since the tilt in
the surface indicates a change in the sign if the deviation. The interpretation
of the differences between c and γ is straightforward: The limits in both
cases, (53) and (54), are represented by the equilibrium of complex formation,
A + G 
 C and an error results from the replacement a ≈ a0 and h ≈ h0.

4.4 Cooperative binding of two different ligands

In the previous we assumed that the two binding sites are independent. In
other words binding of the second ligand was neither facilitated nor impeded
by the presence of the first one, and hence the equilibrium constant were
identical: K1 = K4, K2 = K3, and K = K1K2. Now we shall introduce
a cooperativity parameter that measures the deviation from independent
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a0

h0

c(a ,h )0 0

a0

h0

g(a ,h )0 0

a0

h0

g(a ,h ) - c(a ,h )0 0 0 0

Figure 15: Concentration of the activator complex (30) and the inde-

pendent binding approximation. The topmost plot shows c(a0, h0) according to

equation (30). In the middle we show the approximation γ(a0, h0) according to equa-

tion (50). The plot at the bottom presents the difference γ(a0, h0) − c(a0, h0). Choice of

parameters: K = K1 = K2 = 1 and g0 = 1.
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a0

h0

| (a ,h ) - c(a ,h )|g 0 0 0 0

a0

h0

| (a ,h ) - c(a ,h )|g 0 0 0 0

a0

h0

| (a ,h ) - c(a ,h )|g 0 0 0 0

Figure 16: Absolute value of the error in the independent binding ap-

proximation (50). All three plots show the absolute value of γ(a0, h0)− c(a0, h0)

from three different view points. Choice of parameters: K = K1 = K2 = 1 and

g0 = 1.
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Figure 17: Cooperative binding to two different sites. The plots show
the six concentrations, g, a, c, h, f , and m, as a function of a0 The choice
of parameters is: K = 0.75, K1 = 0.5, K2 = 0.1, h0 = 2, and g0 = 2.5 for
the topmost plot, K = 0.75, K1 = 0.1, K2 = 0.5, h0 = 2, and g0 = 2.5 for
the plot in the middle, and K = 1, K1 = 2.5, K2 = 5, h0 = g0 = 1 for the
plot at the bottom. The upper two examples represent cases of cooperative
binding, whereas the plot at the bottom is an anti-cooperative case. Color
code: g black, a red, c yellow, h blue, f green, and m purple.
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Figure 18: The fraction of occupied sites Y0 as a function of total

concentration g0. The figures refers to a series of equilibrium constants,
K1 = K2 = 1 and K = 0.125, 0.25, 0.5, 1, 2, 4, 8 (Series I). The total concen-
trations of the ligands were constant, a0 = h0 = 1. Color code: K =0.125
green, 0.25 cyan, 0.5 blue, 1 violet, 2 red, 4 orange, and 8 yellow.

binding:

σ =
K1K2

K
and K3 =

K2

σ
, K4 =

K1

σ
. (55)

The value σ = 1 is tantamount to no interaction and was discussed above
(section 4.3, 0 < σ < 1 is representative for the cooperative case in which
the second ligand has higher affinity to the target than the first, and σ > 1
finally characterizes anti-cooperativity where binding of the second ligand is
made more difficult by the presence of the first ligand. All three cases find
straightforward physical interpretation: (i) no interaction is typical when
the two binding sites are far apart and binding of the first ligand does not
change the conformation of the macromolecule, (ii) cooperativity may have
different causes – the first ligand, for example, provides a binding site for
the second one, which is then bound by the target as well as by the first
ligand, or a conformational change induces by the first ligand may increase
the affinity for ligand number two – and (iii) anti-cooperativity may result
from steric hindrance between the ligands to close-by binding sites or from
conformational changes. Three typical examples of binding equilibria are
shown in figure 17. Condition (49) is no longer valid and accordingly h
varies with a0.
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4.4.1 The binding function Y

The consequences of cooperative binding are illustrated best in terms of the
binding function

Y (a, h) =
[number of occupied sites]

[total number of sites]
=

c + f + 2m

2g0

=

=
1

2
· K1 a + K2 h + 2 K a h

1 + K1 a + K2 h + K a h
, (56)

which describes the fraction of occupied binding sites as a function of the
ligand concentrations, and which is normalized, 0 ≤ Y ≤ 1. The first def-
inition of the binding function allows also for usage of total concentrations,
Y0(a0, h0, g0) since we have the concentration of the complexes, c, f , and m
available form equations (30-32). For the sake of simplicity, however, the
binding function is often discussed in terms of the free ligand concentrations,
a and h, only. We shall consider here both cases, the fraction of occupied
sites as a function of total as well as free concentrations.

Comparison of Y0(a0, h0, g0) and Y (a, h) shows a difference already at the
first glance: Y0 depends on the total concentration of the gene, g0, whereas
Y (a, h) does not. The dependence of Y0 is shown for constant ligand total
concentrations in figure 18. We notice almost linear relations and as expected

lim
g0→0

Y0(a0, h0, g0) = Y (a0, h0, 0) = Y (a, h) , (57)

since in the absence of the gene we have a = a0 and h = h0.
In figure 19 we show the results of numerical computations of the binding

function Y0 from c, f , m, and g0, and plot Y as a function of the total con-
centrations a0 and h0 for constant g0 and different values of the equilibrium
constants. The ratio of these parameters is color coded in the figure: yellow
indicates the largest value of ratio K/K1 or K/K2, green the smallest value,
violet represents the non-cooperative case K = K1 = K2 = 1, which fulfils
the condition for independent binding of the two effectors, K = K1K2 (sec-
tion 4.3), and thus separates the curves for cooperative binding from those
showing anti-cooperativity. Cooperative binding is often associated with a
sigmoid binding function.3 An inspection of figure 19, middle plot, shows,
however, that the curve for K/K1 = K/K2 = 2 is not sigmoid and only the
two curves for K/K1 = K/K2 = 4 and 8 fulfil this criterion. Hence, the
notions of cooperativity and sigmoid binding curves are not equivalent. We

3The notion sigmoid indicates an ‘S’-shape of the binding curve and is understood in
contrast to a hyperbolic curve, which results, for example, for binding of a single ligand or
for independent binding.
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Figure 19: The fraction of occupied sites Y0 as a function of total concen-

trations a0 and h0. The upper two figures refer to one series of equilibrium constants,

K1 = K2 = 1 and K = 0.125, 0.25, 0.5, 1, 2, 4, 8 (Series I) whereas the bottom figure shows

the series K = 1 and K1 = K2 = 8, 4, 2, 1, 0.5, 0.25, 0.125 (Series II). The total concentra-

tion of the gene was constant, g0 = 1. Color code: (0.125;8) green, (0.25;4) cyan, (0.5;2)

blue, (1;1) violet, (2;0.5) red, (4;0.25) orange, and (8;0.125) yellow, where the first and the

second number in the parentheses refer to the varied parameters of series I and series II,

respectively; upper two figures a0/2 black.
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Figure 20: Sketch of the definition of the direction α for the variation

of Y (a, h). The direction α in the (a, h) plane of concentration space for the
differentiation of Y (a, h) is chosen to fulfil α = a + h. An identical sketch
holds for α0 in (a0, h0).

repeat: cooperative binding implies K > K1K2 and anti-cooperativity means
K < K1K2. In the remaining part of this paragraph and in section 5.1.2 we
shall analyze the relation between cooperativity and sigmoid binding curves
in more detail.

4.4.2 Derivatives of the binding function

.Sigmoid curves have an inflection point where the sign of the second deriva-
tive changes sign.4 Therefore we shall consider now first and second deriva-
tives of the binding function Y0(a0, h0, g0). Numerical differentiation yields
the two partial derivatives ∂Y0/∂a0 and ∂Y0/∂h0. The directions of these two
partial derivatives correspond to two orthogonal vectors in the (a0, h0)-plane
of concentration space (figure 20). The actual differential dY0 is a linear
combination of the two partial derivatives depending on the applied changes
in a0 and h0 corresponding to direction in the plane of the concentrations:

dY0 =

(

∂Y0

∂a0

)

da0 +

(

∂Y0

∂h0

)

dh0 .

In order to be able to compare with the analogous system with two identical
ligands (section 5.1 we choose the direction α = a+h as sketched in figure 20
corresponding to dα0 = da0 + dh0. In other words, the change in total
concentrations a0 and h0 is the same. This yields for the first derivative

dY0

dα0

=

(

∂Y0

∂a0

)

+

(

∂Y0

∂h0

)

.

4For the relation between the second derivative and the curvature of a function y = f(x)
see section 5.1.2.
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Figure 21: First and second derivatives of the binding function

Y0(a0, h0, g0) plotted against total concentrations. The derivatives were
computed numerically by using the functions c, f , and m according to equa-
tion (56). The curves refer to series I of figure 19, K1, K2, and g0 remain
unchanged (K1 = K2 = 1, g0 = 1) and K = 0.125, 0.25, 0.5, 1, 2, 4, 8. Color
code: K = 0.125 green, 0.25 cyan, 0.5 blue, 1 violet, 2 red, 4 orange, and 8
yellow.

The the second differential d2Y0 is of the general form

d2Y0 =

(

∂2Y0

∂a2
0

)

da2
0 + 2

(

∂2Y0

∂a0∂h0

)

da0 dh0 +

(

∂2Y0

∂h2
0

)

dh2
0 .
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Repeating now the consideration concerning the direction α we find for the
second derivative

d2Y0

dα2
0

=

(

∂2Y0

∂a2
0

)

+ 2

(

∂2Y0

∂a0∂h0

)

+

(

∂2Y0

∂h2
0

)

.

The results of the numerical computations are shown in figure 21. The first
derivatives are always positive and approach zero in the limit of large total
concentrations of the ligands, a0 = h0. Our choice of variation in K at con-
stant values of K1 and K2 leads to the same tangent in the limit α0 → 0
which happens to be 0.5 in our example. The behavior of the second deriva-
tive is more interesting for the discussion of sigmoid curves. As expected
d2Y0/dα2

0 is negative everywhere in the anti-cooperative case and for inde-
pendent binding sites, K ≤ K1K2. A positive second derivative for small
values of a0 occurs only for K > 2K1K2. Then, the binding function Y0 has
an inflection point at some value a0 > 0 and is ’S’-shaped. In the range
K1K2 < K < 2K1K2 we observe a hyperbolic shape of Y0(α0) despite coop-
erativity in the sense of the definition applied here stating that the second
ligand is bound stronger than the first one.

The dependence of the binding function Y (a, h) on the free concentrations
a and h allows for straightforward analysis since the derivatives are obtained
by analytical differentiation. We begin with the first partial derivatives of
Y (a, h):

∂Y

∂a
=

K1 + 2K h + KK2 h2

2(1 + K1a + K2h + K ah)2
(58)

∂Y

∂h
=

K2 + 2K a + KK1 a2

2(1 + K1a + K2h + K ah)2
. (59)

As required by the symmetry of the kinetic system (figure 2) the two equation
are interchangeable under the substitutions a ↔ h and K1 ↔ K2. The change
of Y with α is obtained by summation of the two partial derivatives:

dY

dα
=

K1 + K2 + 2K (a + h) + K (K1 a2 + K2 h2)

2(1 + K1a + K2h + K ah)2
. (60)

For the partial second derivatives we obtain:

∂2Y

∂a2
= −(K1 + K h)(K1 + 2K h + KK2 h2)

(1 + K1a + K2h + K ah)3
, (61)

∂2Y

∂a∂h
= − (−1 + K ah)(K − K1K2)

2(1 + K1a + K2h + K ah)3
, (62)

∂2Y

∂h2
= −(K2 + K a)(K2 + 2K a + KK2 a2)

(1 + K1a + K2h + K ah)3
. (63)
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Figure 22: The fraction of occupied sites Y and their derivatives as

functions of the free concentrations a and h. The series of equilibrium
constants was chosen to be K1 = K2 = 1 and K = 0.125, 0.25, 0.5, 1, 2, 4, 8
(Series I). The total concentration of the gene was constant, g0 = 1. Color
code: 0.125 green, 0.25 cyan, 0.5 blue, 1 violet, 2 red, 4 orange, and 8 yellow,
and in the topmost figure: a0 black.
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Figure 23: Comparison of the binding functions Y0(a0, h0, g0) and

Y (a, h) and their derivatives. The two binding functions are compared
for the equilibrium parameters K1 = K2 = 1 and K = 4, and g0 = 1 for
Y0. This parameter choice belongs to the cooperative binding regime. Color
code: Y blue, dY/dα cyan, d2Y/dα2 green.

The second derivative in α is computed again by summation

∂2Y

∂α2
= − 1

(1 + K1a + K2h + K ah)3
·

·
{

(K1 + K2)
2 − 2K + 3K(K2a + K1h) + (64)

+ K
(

(2K + K1K2)(a
2 + h2) + (K − K1K2)ah

)

+ K2(K1a
3 + K2h

3)

}

.

Plots of Y (a, h) as well as its derivatives for different values of the equilibrium
constants are summarized in figure 22. We observe striking similarity between
the two binding functions Y0 and Y and their first and second derivatives.

Similar arguments as used in the case of equation (57) for Y0 can be
used to show that the derivatives of the two functions converge in the limit
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lim g0 → 0, and we find

lim
g0→0

dY0(α0, g0)

dα0

=
dY (α)

dα
, (65)

lim
g0→0

d2Y0(α0, g0)

dα2
0

=
d2Y (α)

dα2
. (66)

We remark that it is somewhat tricky to reach numerical convergence of
the second derivative d2Y0(α0, g0)/dα2

0 in the limit lim g0 → 0. In order
to see how the two series of curves differ for nonzero values of total DNA
concentration we compare at the value g0 = 1 that has also been used before
(figures 19-22). The qualitative agreement is complete and the observed
quantitative differences are readily explained by the inequalities a0 ≥ a and
h0 ≥ h. In other words and somewhat sloppily phrased: More a0 than a
or more h0 than h, respectively, is needed to cause the same effect on the
binding curves. Therefore the function Y0 and its derivatives appear stretched
in comparison to Y and its derivatives.

5 Binding of a single ligand to several binding sites

In this section we study binding equilibria of a single ligand to the regulatory
region of a gene. In particular we shall consider two and four binding sites.
There is ample experimental evidence [1] that effectors may bind to DNA as
two or more molecules, for example, in the form of dimers or higher oligomers.
We shall analyze two different situations: (i) consecutive binding of single
ligand molecules and (ii) dimerization or oligomerization of the ligand and
binding to DNA as oligomer.

5.1 Two binding sites

In this section we present the analysis of two identical ligands binding coop-
eratively to two (neighboring) binding sites:

G + 2A
K1


 C + A
K2


 M .

Herein, C and M represent the complexes G·A and A·G·A, respectively. The
non-cooperative case is characterized by independence of the binding equi-
libria for the two activator molecules. Because of statistical factors this case
does not coincide with K1 = K2. In an alternative pathway the activator A

forms first a dimer before it binds to the gene G:

G + 2A
KD


 G + D
KB


 M .
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Figure 24: Gene activation by two identical activator molecules. The
sketch shows a situation where gene activation occurs through binding of two
activator molecules, which bind either consecutively or after dimer formation.
The four binding constants are not independent and fulfil: K1 · K2 = KD ·
K3 = K. Accordingly we may use K1, KD, and K as three independent
equilibrium constants.

If both pathways are relevant, as indicated in figure 24, we have the ther-
modynamic condition K1 · K2 = KD · KB. We shall start with the complete
mechanism and discuss the two limiting cases thereafter.

5.1.1 Dimerization and consecutive binding

The full reaction scheme of figure 24 is characterized by two conservation
relations

g0 = g + c + m and (67)

a0 = a + c + 2d + 2m , (68)

and three equilibria

K1 =
c

g · a , KD =
c

a2
, and K =

m

g · a2
. (69)

Conventional calculations yield a forth order equation in the free concen-
tration of A, whereby we use again the dissociation constants rather than
binding constants, κ1 = K−1

1 , κD = K−1
D , and κ = K−1:

a4 +
κ1κD + 2κ

2κ1

a3 +
(2κ1 + κD)κ + κ1κD(2g0 − a0)

2κ1

a2 +

+
κdκ(κ1 + g0 − a0)

2κ1

a +
κDκ a0

2
= 0 . (70)

39



The other concentrations are readily obtained from a:

g =
κ1κ g0

κ1κ + κa + κ1a2
, c =

g a

κ1

, d =
a2

κD

, and m =
g a2

κ
. (71)

The binding function in this case has the form

Y =
c + 2m

2g0

=
κ a + 2κ1 a2

2(κ1κ + κ a + κ1 a2)
. (72)

Two properties of the binding function Y are of interest: (i) As in the previous
case of activator-repressor binding, Y (a) does not depend on g0, and (ii) it
does not depend explicitly on dimer formation. Indeed, the expression (72)
is identical with the one we shall obtain for the binding mechanism without
the dimer pathway. Consecutive binding of two identical molecules requires
a special consideration of binding equilibria: Since G has two binding sites
for the activator and M has two equivalent activator molecules bound in the
complex, a statistical factor of 2 or 1

2
is required to account for the difference

between the macroscopic constants, K1 and K, respectively, and the local or
microscopic equilibrium parameters as outlined in section 5.1.2.

In figure 25 we show three examples for the dependence of equilibrium
concentrations on a0 with different combinations of equilibrium constants
K1, K, and KD. A comparison of the lower two plots is of interest, because
only KD has been changed in this case and hence the binding function Y (a)
remains formally unchanged. The difference between the two plots concerns
indeed dimer formation which dominates in the middle plot. Thus, although
the actual shape of Y (a0) may be very different, the relation between Y , m,
and c seems to only slightly effected.

5.1.2 Consecutive binding

Now we restrict the mechanism in figure 24 by eliminating the dimer and
have as introduced at the beginning of this chapter

G + 2A
K1


 C + A
K2


 M .

The system is determined by two total concentrations and two equilibrium
constants:

g0 = g + c + m and a0 = a + c + 2m , (73)

K1 =
c

g · a and K =
m

g · a2
= K1 K2 . (74)
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Figure 25: Binding of two activator molecules to the gene with and

without dimer formation. The plots show the five concentrations, g, a,

c, d, and m, and the binding function Y as a function of a0. The choice

of parameters is: K = K1 = KD = 1, K = 4, K1 = 0.25, KD = 8, and

K = 4, K1 = 0.25, KD = 0.125, for the upper, middle and lower plot, respec-

tively. The total gene concentration was constant: g0 = 1. Color code: g black, a

red, c yellow, d green, m purple, and Y blue.
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A A

AA

j = 0

j = 1

j = 2

Figure 26: Degeneracy of ligand binding to two sites. A regulatory unit
on DNA has two identical binding sites leading to a twofold degeneracy of the
state with single occupancy (j = 1), which results in differences between the
local or microscopic and the measurable or macroscopic binding constants.

For the purpose of comparison we shall also use the reciprocal equilibrium
parameters: κ = K−1 and κ1 = K−1

1 .
Standard calculations yield the expressions for the free concentrations of

the molecules and their complexes:

a3 +
K1 + K(2g0 − a0)

K
a2 +

1 + K1(g0 − a0)

K
a − a0

K
= 0 , (75)

g =
g0

1 + K1a + Ka2
, (76)

c = 2 (g0 − g) − (a0 − a) , and m = (a0 − a) + (g0 − g) . (77)

The binding function is the same as in the previous example:

Y =
c + 2m

2g0

=
K1a + 2Ka2

2(1 + K1a + Ka2)
=

κ a + 2κ1 a2

2(κ1κ + κ a + κ1 a2)
. (72)

Before we shall analyze this binding function we make a comparison with
the binding function of the activator-inhibitor binding which we recall from
section 4.4.1:5

Ỹ (a, h) =
1

2
· K̃1 a + K̃2 h + 2 K̃ a h

1 + K̃1 a + K̃2 h + K̃ a h
. (56)

Now we assume the two ligands, the activator and the inhibitor to be iden-
tical, H≡A, h = a, and K̃1 = K̃2 and find:

Ỹ (a, h) =
1

2
· 2 K̃1 a + 2 K̃ a2

1 + 2 K̃1 a + K̃ a2
.

5In order to be able to distinguish between the two cases we marked the functions and
constants of section 4.4.1 by tilde (̃·).
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As expected the binding function Ỹ becomes identical with Y of equation (72)
if we set K1 = 2K̃1 and K = K̃. For the second sequential binding constants
follows K2 = K/K1 = 1

2
(K̃/K̃1). This apparent difference is readily inter-

preted by the statistical factors originating form the degeneracy of single
ligand binding to two identical sites (figure 26). In this situation we have to
distinguish between macroscopic or global binding constants and microscopic

or local binding constants. The global constants are measured by experimen-
tal determination. In other words the observed difference in the comparison
performed above results from the fact that the molecules A and H giving rise
to equation (56) are distinguishable whereas the two molecules A considered
in equation (72) are not. As show in figure 26 this gives rise two the factors
2 and 1

2
between the global and the local binding constants for the first and

the second step, respectively.
In order to derive general binding functions for local constants, γ, we

introduce the following notation formulated for dissociation constants:

K−1
1 = κ1 =

1

2
γ1 , K−1

2 = κ2 = 2 γ2 , and K−1 = κ = γ1 · γ2 . (78)

The binding function rewritten in terms of local dissociation constants reads:

Y (a) =
(γ2 + a) a

γ1γ2 + 2 γ2 a + a2
. (79)

Calculation of the derivatives of the binding function is straightforward:

dY

da
= γ2

γ1γ2 + 2γ1a + a2

(γ1γ2 + 2γ1a + a2)2
and (80)

d2Y

da2
= 2γ2

γ1γ2(γ1 − 2γ2) − 3γ1γ2a − 3γ1a
2 − a3

(γ1γ2 + 2γ1a + a2)3
. (81)

The non-cooperative case is now easy to analyze by putting γ1 = γ2 = γ,
and we find:

Y (a) =
a

γ + a
,

dY

da
=

γ

(γ + a)2
, and

d2Y

da2
= − 2γ

(γ + a)3
.

As mentioned before the non-cooperative binding function is a hyperbola6

with the second derivative d2Y/da2 = −2/γ2 in the limit lim a → 0 exactly
as found for independent binding of to different regulator proteins.

6This can be verified easily since y = x/(1 + x) =⇒ (x + 1)(y − 1) + 1 = 0 is indeed
the conventional hyperbola, x2 − y2 = 2 rotated by ϕ = −π/4 and shifted such that the
center coincides with the point (x, y) = (−1, 1).
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Figure 27: Binding of two activator molecules as dimer to the gene.

Equilibrium concentrations as a function of the total activator concentration a0.

The equilibrium constants are KD = κD = 1 and K = κ = 1. The total gene

concentration was constant: g0 = 1. Three approximations to m(a0) are shown:

µ0, µ1, and µ2 (dotted lines; definitions see in the text). Color code: g black, a

red, d green, m purple, µ0 yellow-green, µ1 blue-green, and µ2 cyan.

Finally, we make a remark concerning the curvature of a function and its
second derivative that is relevant for the diagnosis of a sigmoid curve. The
(extrinsic) curvature of a function y(x) in two dimensions is defined as

γ(x) =
d2y

dx2

/ (

1 +

(

dy

dx

)2)3/2

. (82)

To be sigmoid implies that the curve starts with positive curvature at
a = a0 = 0, with increasing a or a0 the curvature decreases, goes to zero and
finally becomes negative. From equation (82) follows that the second deriva-
tive is equally well suited for the qualitative discussion since the denominator
is always positive and thus leaves the sign of the expression unchanged.

5.1.3 Dimer binding

The alternative pathway to consecutive binding is dimer formation and bind-
ing of the dimer

G + 2A
KD


 G + D
KB


 M .
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Again we are dealing with two conservation relations and two equilibrium
constants

g0 = g + m and a0 = a + 2d + 2m , (83)

KD =
d

a2
and K =

m

g · a2
= KB KD . (84)

In this case the use of dissociation rather than biding constants, κD = K−1
D

and κ = K−1, is of advantage. Computation of equilibrium concentrations
requires the (numerical) solution of the quartic equation:

a4 +
κD

2
a3 +

2κ + κD(2g0 − a0)

2
a2 +

κDκ

2
a − κDκ a0

2
= 0 . (85)

All other equilibrium concentrations follow straightforwardly from the free
concentration of A

g = g0
κ

κ + a2
, d =

a2

κD

, and m = g0
a2

κ + a2
. (86)

The binding function has a particularly simple form,

Y (a) =
2m

2g0

=
a2

κ + a2
, (87)

and for g0 = 1 it is identical with the concentration of the activated complex
M. A plot of the equilibrium concentration versus a0 is shown in figure 27.

In order to derive suitable approximations for the concentration of the
active activator-gene complex, m, we start by approximating a by a0 in
equation (88) as we did before and obtain:

µ0(κ, a0) = g0
a2

0

κ + a2
0

(88)

Although µ0 becomes exact in the limits lim a0 → 0 and lim a0 → ∞, it is
a rather bad approximation as we can see in figure 27. Without invoking
an additional parameter we can find a much better approximation µ1(a0, κ̃)
by applying a constant κ̃ that is determined by the condition that the ap-
proximation µ1(κ̃, a0) = is exact not only in above mentioned the limits but
coincides with m also at the point a0 = ã0 with m(ã0) = g0/2. Using equa-
tions (85) and (86) we find:

ã0 =
√

κ̃ = 2κB +
√

κ + g0 and µ1 = g0
a2

0

(2κB +
√

κ + g0)2 + a2
0

(89)
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The improvement of the approximation is evident in figure 27. Still further
improvement is possible through adjustment of the exponent n = 2 ⇒ ñ.
The additional condition to be fulfilled is an identical tangent of m(a0) and
µ2(a0, κ̃, ñ) at the point a0 = ã0:

∂m

∂a0

∣

∣

∣

∣

a0=ã0

=
∂µ2

∂a0

∣

∣

∣

∣

a0=ã0

=
ñ · g0

4(2κB +
√

κ + g0)
,

ñ =
4(2κB +

√
κ + g0)

g0

∂m

∂a0

∣

∣

∣

∣

a0=ã0

and

µ2(a0, κ̃, ñ) = g0
añ

0

(2κB +
√

κ + g0)2 + añ
0

. (90)

The adjusted value for κ = κD = g0 = 1 is ñ = 4/3. The approximation
has now become excellent but we were using the exact tangent to the equi-
librium concentration of M that, of course is not available without solving
equation (85).

5.1.4 Properties of the functions an/(κn + an)

In the previous section 5.1.3 we used a binding function of the general class:

Y (a, κ, n) =
an

κn + an
. (91)

Here we shall analyze now some properties of these two-parameter functions
and relate them to the conventional notions of cooperativity. Clearly, the
general properties of a binding function are fulfilled by equation (91):
(i) lima→0 Y (a, κ, n) = 0, (ii) lima→∞ Y (a, κ, n) = 0, and (iii) Y (a, κ, n) is
monotonously increasing with a. Next we shall study first and second deriva-
tives of Y (a, κ, n) and consider their behavior in the limit lim a → 0.

Differentiation is straightforward and yields:

∂Y

∂a
=

nκn an−1

(κn + an)2
and (92)

∂2Y

∂a2
= − nκn an−2 (an(n + 1) + kn(1 − n))

(κn + an)3
. (93)
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Figure 28: The binding function Y (a) = an/(κn + an) and its deriva-

tives. The binding functions and the first and second derivative are shown
as functions of a for κ = 1 and different values of n. Color code: n = 0.5
yellow-green, 0.75 blue-green, 1 blue, 1.33 blue-violet, 1.67 red-violet, 2 red,
2.5 orange, and 3 yellow.
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In the limit lim a → 0 the functions Y show a variety of different behavior:

lim
a→0

∂Y

∂a
=











0 if n > 1 ,

κ−1 if n = 1 , and

∞ if n < 1 .

,

lim
a→0

∂2Y

∂a2
=































0 if n > 2 ,

+2κ−2 if n = 2 ,

+∞ if 2 > n > 1 ,

−2κ−2 if n = 1 , and

−∞ if n < 1 .

.

These results are easily interpreted by considering the analytical continuation
of Y -functions to negative a-values where they are available. For n = 2, for
example, Y (a) is well approximated by Y (a) ≈ κ−2 · a2 around a = 0 and
thus behaves like a parabola with the minimum at the origin and a second
derivative of 2κ−2 there. By the same token the origin is an inflection point
for n = 3 since Y (a) ≈ κ−3 · a3 has a vanishing derivative at a = 0. For the
non-cooperative case n = 1 we find

lim
a→0

∂Y

∂a
=

1

κ
and lim

a→0

∂2Y

∂a2
= − 2

κ2

in agreement with our previous observations for several special cases. At
a = 0 the curve for non-cooperative binding starts with positive slope and
negative second derivative. Examples of binding curves Y (a, κ, n) and their
derivatives are shown in figure 28.

In summary, the binding functions Y (a, κ, n) show highly different be-
havior for different values of n with a few important features:

(i) Negative values of n describe inhibition whereas, as seen in the previous
section 5.1.3, the positive values correspond to activation.

(ii) The functions have an analytical continuation into negative values of a
only for integer n.

(iii) The non-cooperative case has a negative second derivative at the origin
a = 0 and in this aspect the simplified functions are very similar to the
exact curves discussed before.

5.2 Four binding sites

Finally, we shell consider two cases of binding four identical molecules to
a target: consecutive binding and binding as a tetramer that is formed by
association of two dimers.
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Figure 29: Degeneracy of ligand binding to four sites. A regulatory
unit on DNA has four identical binding sites leading to fourfold, sixfold, and
fourfold degeneracy of the state with single, double, and triple occupancy
(j = 1, 2, 3), respectively. This degeneracy results in differences between the
local or microscopic and the measurable or macroscopic binding constants.

5.2.1 Consecutive binding

In consecutive binding the ligands associate with the target one at a time:

G + 4A
K1


 C + 3A
K2


 B + 2A
K3


 F + A
K4


 M .

We have two conservation rules and four equilibrium constants to determine
the six unknown concentrations:

g0 = g + c + b + f + m and a0 = a + c + 2b + 3f + 4m , (94)

K1 =
c

g · a , K2 =
b

c · a , K3 =
f

b · a , and K4 =
m

f · a . (95)

As in most of the previous sections we shall use dissociation rather than
binding constants, κj = K−1

j ; (j = 1, 2, 3, 4). The computation of equilib-
rium concentrations requires solution of a quintic equation:

a5 + (κ4 + 4g0 − a0) a4 + κ4(κ3 + 3g0 − a0) a3 +

+ κ4κ3(κ2 + 2g0 − a0) a2 + κ4κ3κ2(κ1 + g0 − a0 )a −
− κ4κ3κ2κ1 a0 = 0 .

(96)
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It is not difficult to recognize the built-up principle of this equation that
allows for straightforward extension to an arbitrary number of consecutively
bound ligands. The equilibrium concentrations of the other species are read-
ily obtained from known a:

g =
κ4κ3κ2κ1 g0

κ4κ3κ2κ1 + κ4κ3κ2 a + κ4κ3 a2 + κ4 a3 + a4
, (97)

c =
a · g
κ1

, b =
a · c
κ2

, f =
a · b
κ2

, and (98)

m = g0
a4

κ4κ3κ2κ1 + κ4κ3κ2 a + κ4κ3 a2 + κ4 a3 + a4
. (99)

Then we find for the binding function

Y (a) =
c + 2 b + 3 f + 4 m

4 g0

=

=
κ4κ3κ2 a + 2 κ4κ3 a2 + 3 κ4 a3 + 4 a4

4 (κ4κ3κ2κ1 + κ4κ3κ2 a + κ4κ3 a2 + κ4 a3 + a4)
.

(100)

Examples of plots of the equilibrium concentrations as functions of a0 are
shown in figures 30 and 31.

In the case of binding identical ligands at equivalent sites requires to
consider statistical factors as we did already in section 5.1.2. The situation
with four ligands is sketched in figure 29. Here, we derive now the expressions
for the general case of j ligands binding to n equivalent sites. If all ligand
combinations for given n and j are equivalent the statistical factor ω

(n)
j is

the number of combinations of j objects, the ligands, chosen from a set of
n objects, the sites, and this is simply the binomial coefficient

(

n
j

)

. Next we
consider the binding equilibrium between the occupation numbers j − 1 and
j. The state final state ’j’ has degeneracy

(

n
j

)

and the initial state is
(

n
j−1

)

fold degenerate and this yields for the macroscopic equilibrium constant

Kj =
ω

(n)
j

ω
(n)
j−1

· χj =

(

n
j

)

(

n
j−1

) · χj =
n − j + 1

j
· χj ,

where χj is the microscopic equilibrium parameter corresponding to Kj. In
terms of dissociation equilibria, which we are using preferentially here, the re-
lation between microscopic constants, γj = χ−1

j , and macroscopic constants,

κj = K−1
j is of the form

κj = g
(n)
j γj =

ωj−1(n)

ω
(n)
j

· γj =
j

n − j + 1
· γj . (101)
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Figure 30: Consecutive binding of four ligands. The plots show the the
equilibrium concentrations and the binding ration Y as functions a0 at g0 = 1.
The topmost plot corresponds to κ1 = κ2 = κ3 = κ4 = 1. The middle and
lower plots are examples for the non-cooperative and the cooperative case
and correspond to the middle and lower plot in figure 31, respectively. The
values of the equilibrium constants are given in the caption of figure 31. Color
code: g black, a red, c yellow, b blue-green, f green, m purple, and Y blue.
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Figure 31: Initial phase of consecutive binding of four ligands. The
plots show the the equilibrium concentrations and the binding function at
low values of a0. The upper, middle, and lower plot represent examples for
anti-, non-cooperative and cooperative binding. The equilibrium constants
were: κ1 = ργ/4 and 3κ2/2 = 2κ3/3 = κ4/4 = γ with ρ = 0.0625, 1, 16 and
γ = 2, 1, 0.5, respectively, and g0 = 1. Color code: g black, a red, c yellow, b
blue-green, f green, m purple, and Y blue.
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For our special case with n = 4 we have accordingly

κ1 =
1

4
γ1 , κ2 =

2

3
γ2 , κ3 =

3

2
γ3 , and κ4 = 4 γ4 .

In general, and as we have seen in the case of two binding sites, we find
that the product of all κ’s is equal to the product of all γ’s:7 κ1κ2κ3κ4 =
γ1γ2γ3γ4. It is straightforward now to compute the binding function in terms
of microscopic equilibrium constants:

Y (a) =
a (γ2γ3γ4 + 3 γ3γ4 a + 3 γ4 a2 + a3)

γ1γ2γ3γ4 + 4 γ2γ3γ4 a + 6 γ3γ4 a2 + 4 γ4 a3 + a4
. (102)

All γ’s are equal in the non-cooperative case, γ1 = γ2 = γ3 = γ4 = γ and
then we obtain the hyperbolic binding curve Y (a) = a/(γ + a) as expected.
Figures 30 and 31 show several examples of equilibrium concentrations and
binding curves. For the anti-cooperative and the cooperative cases we as-
sumed that only the first microscopic dissociation constant differs from the
others: γ1 = ρ · γ and γ2 = γ3 = γ4 = γ.

Two results derived from first and second derivatives of the binding func-
tion are of general interest:

lim
a→0

∂Y

∂a
=

1

γ1

and (103)

lim
a→0

∂2Y

∂a2
=

2(3γ1 − 4γ2)

γ2
1 γ2

. (104)

As in the dimer binding case the binding curve Y (a) thus starts with a
negative curvature at a = 0 and not with curvature zero. The curves for the
cooperative cases γ1 > γ2 ≥ 3γ1/4 are not sigmoid.

It is possible to generalize the results shown above to arbitrarily long
chains of consecutive binding of n ligands: Equation (103) is valid for all
integer n ≥ 1, and for the second derivative (104) we find:

lim
a→0

∂2Y

∂a2
=

2
(

(n − 1) γ1 − n γ2

)

γ2
1 γ2

. (105)

In the limit n → ∞ the curvature of the binding function Y (a) vanishes
indeed for γ1 = γ2 and then the non-cooperative case separates sigmoid and
hyperbolic binding functions.

7The same holds, of course, for the product of all K’s and all χ’s.
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Figure 32: Binding of four activator molecules as tetramer to the gene.

Equilibrium concentrations as a function of the total activator concentration a0.

The total gene concentration was constant: g0 = 1. The equilibrium constants

were κD = κT = κB = 1 for the upper and middle plot, and κD = 4, κT = 1, and

κB = 0.25 for the plot at the bottom. Three approximations to m(a0) are shown:

µ0, µ1, and µ2 (dotted lines; definitions see in the text). Color code: g black, a

red, d yellow, t green, m purple, µ0 yellow-green, µ1 blue-green, and µ2 cyan.
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5.2.2 Tetramer binding

Our last example of ligand binding involves dimerization and tetramerization
prior to binding to the DNA:

G + 4A
KD


 G + 2D
KT


 G + T
KB


 M .

Two conservation relation and three binding equilibria determine the five
unknown equilibrium concentrations:

g0 = g + m and a0 = a + 2d + 4t + 4m , (106)

KD =
d

a2
, KT =

t

d2
, and KB =

m

g · t . (107)

For convenience we us dissociation constants, κD = K−1
D , κT = K−1

T , and
κB = K−1

B . The equilibrium concentration of A is obtained from the equation

a8 +
κDκT

2
a6 +

κ2
DκT

4
a5 +

4κ2
DκT κB + κ2

DκT (4g0 − a0)

4
a4 +

+
κ3

Dκ2
T κb

2
a2 +

κ4
Dκ2

T κB

4
a +

κ4
Dκ2

T κBa0

4
= 0 .

(108)

The other equilibrium concentrations follow from a in the following equations:

g = g0
κ2

DκT κB

κ2
DκT κB + a4

, (109)

d =
a2

κD

, t =
a4

κ2
DκT

, and (110)

m = g0
a4

κ2
DκT κB + a4

. (111)

Since we have only one complex containing the gene the binding function is
simply Y (a) = m/g0.

In complete analogy to section 5.1.3 we derive the same hierarchy of
approximations. In the zeroth order approximation, µ0(a0), we replace a
by a0, in first order, µ1(a0), the equilibrium constants in the denominator
are chosen such that the approximation and m(a0) coincide at the point
m(ã0) = g0/2, and finally in µ2(a0) the tangent at this point is adjusted to
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coincide with the tangent of m(a0):

µ0(κD, κT , κB, a0) = g0
a4

0

κ2
DκT κB + a4

0

, (112)

µ1(κD, κT , κB, a0) = g0
a4

0

ã4
0 + a4

0

with (113)

ã0 = 4κB + 2
√

κT κB +
√

κD

√
κT κB + 2g0 ,

µ2(κD, κT , κB, ñ, a0) = g0
añ

0

ãñ
0 + añ

0

with (114)

ñ =
4 ã0

g0

∂m

∂a0

∣

∣

∣

∣

a0=ã0

.

The quality of the improvements is shown in figure 32. For equal equilibrium
constants, κD = κT = κB = 1, the optimally adjusted value is ñ = 13/9 and
the approximated curve µ2(a0) is almost indistinguishable from the exact
curve m(a0), the middle plot enlarges the behavior of the curves at small a0-
values where deviations are recognizable. The approximation is somewhat
less good for different values of the equilibrium constants (bottom plot in
figure 32).

6 Concluding remarks

A few results of this analysis of biologically relevant binding equilibria seem
to go beyond the conventional approach. First, present day computational
facilities allow for a straight forward approach combining mathematical anal-
ysis with numerical calculations. Neither higher order equations nor quan-
tities that are obtainable only in implicit form are an obstacle for rigorous
investigations of the rather complicated expressions.

Second, it was possible to derive justifiable approximations that are
suitable for the application in modelling genetic regulatory netwoks and
metabolic networks. In addition, the approximations can be analyzed in
detail and improvements of the conventionally used approaches are possible
without a large increase in the numerical efforts.

Third, we presented a lengthy analysis of the relation between sigmoid
binding functions and cooperative binding, and we were able to show that
these two notions are not equivalent. There exist a domain of cooperative
binding next to the non-cooperative case where the binding functions are not
sigmoid.
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