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Abstract: Optimization is studied as the interplay of selection, recombination

and mutation. The underlying model is based on ordinary differential equations

(ODEs), which are derived from chemical kinetics of reproduction, and hence it

applies to sufficiently large – in principle infinite – populations. A flowreactor

(continuously stirred tank reactor, CSTR) is used as an example of a realistic

open system that is suitable for kinetic studies. The mathematical analysis is

illustrated for the simple case of selection in the CSTR. In the following sections

the kinetic equations are solved exactly for idealized conditions. A brief account

on the influences of finite population size is given in the last section.

1 Replication in the flowreactor

Replication and degradation of molecular species Ii (i = 1, 2, . . . , n) in the

flowreactor (figure 1) follows the mechanism

⋆
a0 r

−−−→ A

A + Ii
ki

−−−→ 2 Ii

Ii
di

−−−→ B

A , B , Ii
r

−−−→ ∅ ,

(1)

and is described by the following (n+ 2) kinetic differential equations

ȧ = −
(

n
∑

j=1

ki ci
)

a + r (a0 − a) ,

ċi =
(

ki a − (di + r)
)

ci , i = 1, 2, . . . , n and

ḃ =

n
∑

j=1

dj cj − r b .

(2)

The variables a(t), b(t), and ci(t) are molar concentrations, [A] = a, [B] = b,

and [Ii] = ci, which are defined by a = NA/(V NA), b = NB/(V NA), and

ci = Ni/(V NA) where V is the volume and NA is Avogadro’s number, the

∗Address: Institut für Theoretische Chemie der Universität Wien
Währingerstraße 17, A-1090 Wien, Austria
E-Mail: pks@ tbi.univie.ac.at

1



Figure 1: The flowreactor for the evolution of RNA molecules. A stock
solution containing all materials for RNA replication ([A] = a0) including an RNA
polymerase flows continuously at a flow rate r into a well stirred tank reactor
(CSTR) and an equal volume containing a fraction of the reaction mixture ([∗] =
{a, b, ci}) leaves the reactor (For different experimental setups see Watts [1]). The
flow rate r has the dimension of a reciprocal time [t−1], and τr = r−1 represents the
mean residence time of a volume element in the reactor. The population of RNA
molecules (I1, I2, . . . , In present in the numbersN1, N2, . . . , Nn with N =

∑n
i=1 Ni)

in the reactor fluctuates around a mean value, N ±
√
N . RNA molecules replicate

and mutate in the reactor, and the fastest replicators are selected. The RNA
flow reactor has been used also as an appropriate model for computer simulations
[2–4]. There, other criteria for selection than fast replication can be applied. For
example, fitness functions are defined that measure the distance to a predefined
target structure and mean fitness increases during the approach towards the target
[4].

number of particles in one mole substance. The particle numbers N are

discrete and non-negative quantities, whereas concentrations are assumed to

be continuous because NA = 6.023× 1023mol−1 is very large.1

The equations (2) sustain (n+1) stationary states fulfilling the conditions

ȧ = 0, ḃ = 0, ċi = 0 for i = 1, 2, . . . , n. Every stationarity conditions for one

1An overview of the notation used in this article is found on the last page.
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particular class of replicating molecules Ii

c̄i

(

ki ā − (di + r)
)

= 0

has two solutions (i) c̄i = 0 and (ii) ā = (di + r)/ki. Since any pair of

type (ii) conditions is incompatible,2 only two types of solutions remain:

(i) c̄i = 0 ∀ i = 1, 2, . . . , n, the state of extinction, because no replicating

molecule survives and (ii) n states with c̄j = (a0/(dj + r) − 1/kj) r and

c̄k = 0 ∀ k 6= j. Steady state analysis through linearization and diagonal-

ization of the Jacobian matrix at the stationary points yields the result that

only one of the n states is asymptotically stable, in particular the one for the

species Im that fulfils

km a0 − dm = max{ajkj − dj , j = 1, 2, . . . , n} . (3)

Accordingly, species Im is selected and we call this state the state of selection.

The proof is straightforward and yields simple expressions for the eigenvalues

λk (k = 0, 1, . . . , n) of the Jacobian matrix when degradation is neglected,

dj = 0 (j = 1, 2, . . . , n). For the state of extinction we find

λ0 = − r and λj = kj a0 − r . (4)

It is asymptotically stable as long as r > km a0 is fulfilled. If r > kma0 then

r > kj a0 ∀ j 6= m is valid by definition because of the selection criterion (3)

for dj = 0. For all other n pure states, {c̄i = a0 − r/ki , c̄j = 0 , j 6= i} the

eigenvalues of the Jacobian are:

λ0 = − r ,

λi = − ki a0 + r , and

λj = − r

ki
(kj − ki) ∀ j 6= i.

(5)

All pure states except the state at which Im is selected (state of selection:

cm = a0 − r/km , cj = 0 , j = 1, . . . , n, j 6= m) have at least one positive

eigenvalue and are unstable. Therefore we observe indeed selection of the

molecular species with the largest value of kj (or kj a0 − dj, respectively),

because only at c̄m 6= 0 all eigenvalues of the Jacobian matrix are negative.

It is worth indicating that the dynamical system (2) has a stable manifold

ȳ = ā + b̄+
∑n

i=1 c̄i = a0 since ẏ = ȧ+ ḃ+
∑n

i=1 ċi = (a0 − y) r. The sum of

all concentrations, y(t), follows a simple exponential relaxation towards the

steady state ȳ = a0:

y(t) = a0 −
(

a0 − y(0)
)

exp(−r t) ,

with the flow rate r being the relaxation constant.

2We do not consider degenerate or neutral cases, di = dj and ki = kj , here (see
also section 7).
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2 Selection

As shown in the previous section the basis of selection is reproduction in the

form of a simple autocatalytic elementary step, (A) + Ii → 2Ii. We idealize

the system by assuming that the material consumed in the reproduction

process, A, is present in excess. Therefore, its concentration is constant and

can be subsumed as a factor in the rate constant: fi = ki [A]. In addition we

neglect the degradation terms by putting di = 0 ∀ i. In terms of chemical

reaction kinetics selection based on reproduction without recombination and

mutation is described by the dynamical system

ċi = fi ci −
ci

∑n
j=1 cj(t)

Φ(t) = ci

(

fi −
1

c(t)
Φ(t)

)

, i = 1, 2, . . . , n . (6)

As before the variables ci(t) are the concentrations of the genotypes Ii, the

quantities fi are reproduction rate parameters corresponding to over-all repli-

cation rate constants in molecular systems or, in general, the fitness values

of the genotypes. A global flux Φ(t) has been introduced in order to reg-

ulate the growth of the system. Transformation to relative concentrations,

xi(t) = ci(t)/c(t) with c(t) =
∑n

j=1 ci(t), and adjusting the global flux Φ(t)

to zero net-growth yields:3

ẋi = fi xi − xi

n
∑

j=1

fj xj = xi(fi − Φ) with

Φ =
1

c(t)

n
∑

j=1

fj cj(t) =

n
∑

j=1

fj xj(t) = f and i = 1, 2, . . . , n .

(7)

The relative concentrations xi(t) fulfil
∑n

j=1 xj(t) = 1 and the flux Φ(t) is the

mean growth rate of the population. Because of this conservation relation

only n−1 variables xi are independent. In the space of n Cartesian variables,

R
n, the x-variables represent a projection of the positive orthant onto the

unit simplex (figure 2)

S
(1)
n =

{

xi ≥ 0 ∀ i = 1, 2, . . . , n ∧
n
∑

i=1

xi = 1

}

.

The simplex S
(1)
n is an invariant manifold of the differential equation (7). This

means that every solution curve x(t) =
(

x1(t), x2(t), . . . , xn(t)
)

that starts in

one point of the simplex will stay on the simplex forever.

3Care is needed for the application of relative coordinates, because the total
concentration c(t) might vanish and then relative coordinates become spurious
quantities (see subsection 6.7).
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In order to analyze the stability of S
(1)
n we relax the conservation relation

∑n
i=1 xi(t) = c(t) and assume that only the conditions

{fi > 0 ∧ 0 ≤ xi(0) < ∞}∀ i = 1, 2, . . . , n ,

are fulfilled. According to this assumption all rate parameters are strictly

positive – a condition that will be replaced by the weaker one fi ≥ 0 ∀ i 6=
k ∧ fk > 0 – and the concentration variables are non-negative quantities.

Stability of the simplex requires that all solution curves converge to the unit

simplex from every initial condition, limt→∞

(

∑n
i=1 xi(t)

)

= 1.

This conjecture is proved readily: From
∑n

i=1 xi(t) = c(t) follows

ċ = c
(

1− c

c 0

)

Φ(t) = c (1− c) Φ(t) with Φ(t) > 0 , (8)

and c 0 = 1M being the unit concentration. For ċ = 0 we find the two

stationary states: a saddle point at c̄ = 0 and an asymptotically stable state

at c̄ = 1. There are several possibilities to verify its asymptotic stability, we

choose to solve the differential equation and find:

c(t) =
c(0)

c(0) +
(

1− c(0)
)

exp
(

−
∫ t

0
Φ(τ)dτ

) .

Starting with any positive initial value c(0) the population approaches the

unit simplex. When it starts on Sn it stays there even in presence of fluctu-

ations.4 Therefore, we restrict population dynamics to the simplex without

loosing generality and characterize the state of a population at time t by the

vector x(t) which fulfils the L
(1) norm

∑n
i=1 xi(t) = 1.

The necessary and sufficient condition for the stability of the simplex,

Φ(t) > 0, enables us to relax the condition for the rate parameters fi. In

order to have a positive flux it is sufficient that one rate parameter is strictly

positive provided the corresponding variable is non-zero:

Φ(t) > 0 =⇒ ∃k ∈ {1, 2, . . . , n} such that fk > 0 ∧ xk > 0 .

For the variable xk it is sufficient that xk(0) > 0 holds because xk(t) ≥ xk(0)

when all other products fjxj were zero at t = 0. This relaxed condition for

the flux is important for the handling of lethal mutants with fj = 0.

4Generalization to arbitrary but finite population sizes c 6= 1 is straightforward:
For

∑n
i=1 xi(0) = c0 the equation ẋi = fixi − (xi/c0)

∑n
j=1 fjxj, i = 1, 2, . . . , n

plays the same role as equation (7) did for
∑n

i=1 xi(0) = 1.
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Figure 2: The unit simplex. Shown is the case of three variables (c1, c2, c3) in

Cartesian space R(3) projected onto the simplex S
(1)
3 . The condition x1+x2+x3 = 1

defines an equilateral triangle in R
(3) with the three unit vectors, e1 = (1, 0, 0),

e2 = (0, 1, 0), and e3 = (0, 0, 1) as corners.

The time dependence of the mean fitness or flux Φ is given by

dΦ

dt
=

n
∑

i=1

fiẋi =

n
∑

i=1

fi
(

fixi − xi

n
∑

j=1

fjxj

)

=

=
n
∑

i=1

f 2
i xi −

n
∑

i=1

fixi

n
∑

j=1

fjxj =

= f 2 −
(

f
)2

= var{f} ≥ 0 . (9)

Since a variance is always nonnegative, equation (9) implies that Φ(t) is a

non-decreasing function of time. The value var{f} = 0 refers to a homoge-

neous population of the fittest variant, and then Φ(t) cannot increase any

further. Hence it has been optimized during selection.

It is also possible to derive analytical solutions for equation (7) by a

transform called integrating factors ([5], p.322ff.):

zi(t) = xi(t) exp

(
∫ t

0

Φ(τ)dτ

)

. (10)
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Figure 3: Selection on the unit simplex. In the upper part of the figure we
show solution curves x(t) of equation (7) with n = 3. The parameter values are:
f1 = 1 [t−1], f2 = 2 [t−1], and f3 = 3 [t−1], where [t−1] is an arbitrary reciprocal
time unit. The two sets of curves differ with respect to the initial conditions:
(i) x(0) = (0.90, 0.08, 0.02), dotted curves, and (ii) x(0) = (0.9000, 0.0999, 0.0001),
full curves. Color code: x1(t) green, x2(t) red, and x3(t) black. The lower part of

the figure shows parametric plots x(t) on the simplex S
(1)
3 . Constant level sets of

Φ are straight lines (grey).

Insertion into (7) yields

żi = fizi and zi(t) = zi(0) exp(fit) ,

xi(t) = xi(0) exp(fit) exp

(

−
∫ t

0

Φ(τ)dτ

)

with

exp

(
∫ t

0

Φ(τ)dτ

)

=

n
∑

j=1

xj(0) exp(fjt) ,

where we have used zi(0) = xi(0) and the condition
∑n

i=1 xi = 1. The

solution finally is of the form

xi(t) =
xi(0) exp(fit)

∑n
j=1 xj(0) exp(fjt)

; i = 1, 2, . . . , n . (11)
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Under the assumption that the largest fitness parameter is non-degenerate,

max{fi; i = 1, 2, . . . , n} = fm > fi ∀ i 6= m, every solution curve fulfill-

ing the initial condition xi(0) > 0 approaches a homogenous population:

limt→∞ xm(t) = x̄m = 1 and limt→∞ xi(t) = x̄i = 0 ∀ i 6= m, and the flux ap-

proaches the largest fitness parameter monotonously, Φ(t) → fm (Examples

are shown in figure 3).

Qualitative analysis of stationary points and their stability yields the

following results:

(i) The only stationary points of equation (7) are the corners of the simplex,

represented by the unit vectors ek = {xk = 1, xi = 0 ∀ i 6= k},
(ii) only one of these stationary points is asymptotically stable, the corner

where the mean fitness Φ adopts its maximal value on the simplex (em:

x̄m = 1 defined by max{fi; i = 1, 2, . . . , n} = fm > fi ∀ i 6= m), one corner

is unstable in all directions, a source where the value of Φ is minimal (es:

x̄s = 1 defined by min{fi; i = 1, 2, . . . , n} = fs < fi ∀ i 6= s), and all other

n− 2 equilibria are saddle points, and

(iii) since xi(0) = 0 implies xi(t) = 0 ∀ t > 0, every subsimplex of S
(1)
n is

an invariant set, and thus the whole boundary of the simplex consists of

invariant sets and subsets down the corners (which represent members of

class S
(1)
1 ).

3 Generalized gradient systems

Although Φ(t) represents a Liapunov-function for the dynamical system (7)

and its existence is sufficient for the proof of global stability for selection

of the fittest being the species with the largest fk value, it is of interest

that the differential equation (7) can be interpreted as a generalized gradient

system [6–8] through the introduction of a Riemann-type metric based on a

generalized scalar product defined at position x

[u,v](x) =

n
∑

i=1

ui vi
xi

.

In a gradient system,

ẋi =
∂V

∂xi
(x) , i = 1, 2, . . . , n or ẋ = ∇V (x) , (12)

the potential V (x) increases steadily along the orbits,

dV

dt
=

n
∑

i=1

(

∂V

∂xi

dxi

dt

)

=

n
∑

i=1

(

∂V

∂xi

)2

= ∇V (x) , ∇V (x) ≥ 0.

and it does so at a maximal rate, since the velocity vector, being equal to the

gradient, points at the position of maximum increase of V . In other words,

8



the velocity vector points in the direction of steepest ascent, which is always

orthogonal to the constant level sets of V . In gradient systems we observe

optimization of the potential function V (x) along all orbits.

For the purpose of illustration we choose an example, equation (12) with

V (x) = − 1

2

n
∑

i=1

fix
2
i and

dxi

dt
=

∂V

∂xi

(x) = − fixi .

The time derivative of the potential function is obtained by

dV

dt
=

n
∑

i=1

(

∂V

∂xi

)2

=
n
∑

i=1

f 2
i x

2
i ≥ 0 .

The potential is increasing until it reaches asymptotically the maximal value

V = 0. Solutions of the differential equation are computed by integration:

xi(t) = xi(0) exp(−fit) ∀ i = 1, . . . , n. The result derived from dV/dt is read-

ily verified, since limt→∞ xi(t) = 0 ∀ i = 1, . . . , n and hence limt→∞ V (t) = 0.

Equation (7), on the other hand, is not an ordinary gradient system: It

fulfills the optimization criterion but the orbits are not orthogonal to the

constant level sets of V (x) = Φ(x) (see figure 3). In such a situation, it is

often possible to achieve the full gradient properties through a generalization

of the scalar product that is tantamount to a redefinition of the angle on

the underlying space, Rn or S
(1)
n , respectively. We shall describe here the

formalism by means of the selection equation (7) as an example.

The potential function is understood as a map, V (x) : R
n ⇒ R

1. The

derivative of the potential DV(x) is the unique linear map L : R
n ⇒ R

1 that

fulfils for all y ∈ R
n:

V (x+ y) = L(y) + o(y) = DV(x)(y) + o(y) ,

where for o(y) holds o(y)/‖y‖ → 0 as ‖y‖ → 0. To L corresponds a uniquely

defined vector l ∈ R
n such that 〈l,y〉 = L(y) where 〈∗, ∗〉 is the conventional

Euclidean inner product defined by 〈u,v〉 =
∑n

i=1 uivi for u,v ∈ R
n. This

special vector l is the gradient of the potential V , which can be defined

therefore by the following mapping of y into R
1:

〈gradV (x),y〉 = DV(x)(y) for y ∈ R
n . (13)

The conventional Euclidean inner product is associated with the Euclidean

metric, ‖x‖ = 〈x,x〉1/2.
It is verified straightforwardly that equation (7) does not fulfill the condi-

tion of a conventional gradient (13). The idea is now to replace the Euclidean

metric by another more general metric that allows to recover the properties
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of the gradient system. We introduce a generalized inner product corre-

sponding to a Riemann-type metric where the conventional product terms

are weighted by the coordinates of the position vector z:

[u,v]z =
n
∑

i=1

1

z i
uivi . (14)

Expression (14), [∗, ∗]z, defines an inner product in the interior of Rn
+, because

it is linear in u and v, and satisfies [u,u]z ≥ 0 with the equality fulfilled if

and only if ‖u‖ = 0. Based on this choice of the inner product we redefine

the gradient:

[

Grad[V (x)],y
]

x
= DV(x)(y) for x,y ∈ R

n
+ . (15)

The differential DV(x) is defined completely by V (x) and hence independent

of the choice of an inner product, the gradient, however, is not because it

depends on the definition (15). Shahshahani [6] has shown that the relation

dx/dt = Grad
[

Φ(x)
]

is fulfilled for Fisher’s selection equation (19; see sec-

tion 5) with Φ =
∑n

i=1

∑n
j=1 aijxixj . As an example for the procedure we

consider here the simple selection equation (7) with Φ =
∑n

i=1 fixi.

The differential equation (7) is conceived as a generalized gradient system

and we find:

dx

dt
=















x1(f1 −
∑n

j=1 fjxj)

x2(f2 −
∑n

j=1 fjxj)
...

xn(fn −
∑n

j=1 fjxj)















= Grad
[

V (x)
]

.

By application of equation (15) we obtain

DV(x)(ei) = fi −
n
∑

j=1

fjxj ,

which can be derived by conventional differentiation from

V (x) =
n
∑

i=1

xi

(

2fi − Φ
)

.

By straightforward computation we find the desired result:

V (x) =
n
∑

i=1

xi

(

2fi − Φ
)

= 2Φ− Φ = Φ .

With the new definition of the scalar product, encapsulated in the definition

of “Grad”, the orbits of equation (7) are perpendicular to the constant level

sets of Φ(x).
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4 Complementary replication

Often the molecular mechanism of replication proceeds through an inter-

mediate represented by a polynucleotide molecules with a complementary

sequence: (A) + I+ → I+ + I− and (A) + I− → I− + I+.In analogy to equa-

tion (7) and with f1 = f̃+ [A], f2 = f̃− [A], x1 = [I+], and x2 = [I−] we obtain

the following differential equation [9–11]:

ẋ1 = f2x2 − x1Φ and

ẋ2 = f1x1 − x2Φ with Φ = f1x1 + f2x2 . (16)

Applying the integrating factor transformation (10) yields the linear equation

ż1 = f2z2 and ż2 = f1z1 or ż = W · z ; z =

(

z1

z2

)

, W =

(

0 f2

f1 0

)

.

The eigenvalues and (right hand) eigenvectors of the matrix W are

λ1,2 = ±
√

f1f2 = ±f with f =
√

f1f2,

ℓ1 =

(√
f2√
f1

)

and ℓ2 =

(

−
√
f2√
f1

)

.
(17)

Straightforward calculation yields analytical expressions for the two variables

(see paragraph mutation) with the initial concentrations x1(0) and x2(0),

and γ1(0) =
√
f1x1(0) +

√
f2x2(0) and γ2(0) =

√
f1x1(0) −

√
f2x2(0) as

abbreviations:

x1(t) =

√
f2
(

γ1(0) e
ft + γ2(0) e

−ft
)

(
√
f1 +

√
f2)γ1(0) eft − (

√
f1 −

√
f2)γ2(0) e−ft

x2(t) =

√
f1
(

γ1(0) e
ft − γ2(0) e

−ft
)

(
√
f1 +

√
f2)γ1(0) eft − (

√
f1 −

√
f2)γ2(0) e−ft

.

(18)

After sufficiently long time the negative exponential has vanished and we

obtain the simple result

x1(t) →
√

f2/(
√

f1+
√

f2) , x2(t) →
√

f1/(
√

f1+
√

f2) as exp(−kt) → 0 .

After an initial period, the plus-minus pair, I±, grows like a single autocat-

alyst with a fitness value f =
√
f1f2 and a stationary ratio of the concentra-

tions of complementary stands x1/x2 ≈
√
f2/

√
f1.
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5 Recombination

Recombination of n alleles on a single locus is described by Ronald Fisher’s

[12] selection equation,

ẋi =

n
∑

j=1

aijxixj − xi

n
∑

j=1

n
∑

k=1

ajkxjxk = xi(

n
∑

j=1

aijxj − Φ)

with Φ =
n
∑

j=1

n
∑

k=1

ajkxjxk .

(19)

As in the simple selection case the two conditions aij > 0 ∀ i, j = 1, 2, . . . , n

and xi ≥ 0 ∀ i = 1, 2, . . . , n will guarantee Φ(t) ≥ 0. Summation of allele

frequencies,
∑n

i=1 xi(t) = c(t), yields again equation (8) for ċ and hence, for
∑n

i=1 xi(0) = 1 the population is confined again to the unit simplex.

The rate parameters aij form a quadratic matrix

A =













a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann













.

The dynamics of equation (19) for general matrices A may be very compli-

cated [13]. In case of Fisher’s selection equation, however, we are dealing

with a symmetric matrix for biological reasons,5 and then the differential

equation can be subjected to straightforward qualitative analysis.

The introduction of mean rate parameters ai =
∑n

j=1 aijxj facilitates the

forthcoming analysis. The time dependence of Φ is now given by

dΦ

dt
=

n
∑

i=1

n
∑

j=1

aij

(

dxi

dt
xj + xi

dxj

dt

)

= 2
n
∑

i=1

n
∑

j=1

aji xi
dxj

dt
=

= 2
n
∑

i=1

n
∑

j=1

aji xi

(

n
∑

k=1

ajkxjxk − xj

n
∑

k=1

n
∑

ℓ=1

akℓxkxℓ

)

=

= 2

n
∑

j=1

xj

n
∑

i=1

ajixi

n
∑

k=1

ajkxk − 2

n
∑

j=1

xj

n
∑

i=1

ajixi

n
∑

k=1

xk

n
∑

ℓ=1

akℓxℓ =

= 2
(

< a2 > − < a >2
)

= 2 var{a} ≥ 0 . (20)

5The assumption for Fisher’s equation is based on insensitivity of phenotypes
to the origin of the parental alleles on chromosomes. Phenotypes derived from
genotype ai aj are assumed to develop the same properties, no matter which allele,
ai or aj, on the chromosomal locus comes from the mother and which comes
from the father. New results on genetic diseases have shown, however, that this
assumption can be questioned.
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Again we see that the flux Φ(t) is a non-deceasing function of time, and

it approaches an optimal value on the simplex. This result is often called

Fisher’s fundamental theorem of evolution (see, e.g., [14]).

Qualitative analysis of equation (19) yields 2n − 1 stationary points,

which depending on the elements of matrix A may lie in the interior, on

the boundary or outside the unit simplex S
(1)
n . In particular, we find at

maximum one equilibrium point on the simplex and one on each subsimplex

of the boundary. For example, each corner, represented by the unit vector

ek = {x̄k = 1, xi = 0 ∀ i 6= k}, is a stable or unstable stationary point. In

case there is an equilibrium in the interior of S
(1)
n it may be stable or unstable

depending on the elements of A. In summary, this leads to a rich collection

of different dynamical scenarios which share the absence of oscillations or

chaotic dynamics. As said above, multiple stationary states do occur and

more than one may be stable. This implies that the optimum, which Φ(t) is

approaching, need not be uniquely defined. Instead Φ(t) may approach one

of the local optima and then the outcome of the selection process will depend

on initial conditions [14–17].

Three final remarks are important for a proper understanding of Fisher’s

fundamental theorem: (i) Selection in the one-locus system when it follows

equation (19) optimizes mean fitness of the population, (ii) the outcome of

the process need not be unique since the mean fitness Φ may have several local

optima on the unit simplex, and (iii) optimization behavior that is susceptible

to rigorous proof is restricted to the one locus model since systems with two

or more gene loci may show different behavior of Φ(t).

6 Mutation

The introduction of mutation into the selection equation (7) based on knowl-

edge from molecular biology is due to Manfred Eigen [9]. It leads to

ẋi =

n
∑

j=1

Qij fj xj − xi Φ ; i = 1, 2, . . . , n with Φ =

n
∑

j=1

fjxj = f . (21)

Mutations and error-free replication are understood as parallel reaction chan-

nels, the corresponding reaction probabilities are contained in the mutation

matrix

Q =













Q11 Q12 . . . Q1n

Q21 Q22 . . . Q2n

...
...

. . .
...

Qn1 Qn2 . . . Qnn













,
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where Qij expresses the frequency of a mutation Ij → Ii. Since the elements

of Q are defined as reaction probabilities and a replication event yields either

a correct copy or a mutant, the columns of Q sum up to one,
∑n

i=1Qij = 1,

and hence, Q is stochastic matrix. In case one makes the assumption of equal

probabilities for Ij → Ii and Ii → Ij , as it is made for example in the uniform

error rate model (see equation (29) and [10,18]), Q is symmetric and hence,

a bistochastic matrix.6 The mean fitness or flux Φ is described by the same

expression as in the selection-only case (7). This implies that the system

converges to the unit simplex, as it did without mutations. For initial values

of the variables chosen on the simplex,
∑n

i=1 xi(0) = 1, it remains there.

In the replication-mutation system the boundary of the unit simplex,

S
(1)
n , is not invariant. Although no orbit starting on the simplex will leave it,

which is a conditio sine qua non for chemical reactions requiring non-negative

concentrations, trajectories flow from outside the positive orthant into S
(1)
n .

In other words, the condition xi(0) = 0 does not lead to xi(t) = 0 ∀ t > 0.

The chemical interpretation is straightforward: If a variant Ii is not present

initially, it can, and depending on Q commonly will, be formed through a

mutation event.

6.1 Exact solution

Before discussing the role of the flux Φ in the selection-mutation system, we

shall derive exact solutions of equation (21) following a procedure suggested

in [19,20]. At first the variables xi(t) are transformed as in the selection-only

case (10):

zi(t) = xi(t) exp

(
∫ t

0

Φ(τ)dτ

)

.

From
∑n

x=1 xi(t) = 1 follows straightforwardly – again as in the selection-only

case – the equation

exp

(∫ t

0

Φ(τ)dτ

)

=

(

n
∑

i=1

zi(t)

)−1

.

What remains to be solved is a linear first order differential equation

żi =
n
∑

j=1

Qijfj zj ; i = 1, 2, . . . , n , (22)

which is readily done by means of standard linear algebra. We define a

matrix W = {Wij = Qij fj} = Q · F where F = {Fij = fi δij} is a diagonal

6Symmetry in the direction of mutations is commonly not fulfilled in nature.
It is introduced as a simplification, which facilitates the construction of computer
models for equation (21). Moreover, the assumption of a symmetric mutation
matrix Q is not essential for the analytic derivation of solutions.
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matrix, and obtain the differential equation in matrix form, ż = W · z.
Provided matrix W is diagonalizable, which will always be the case when

the mutation matrix Q is based on real chemical reaction mechanisms, the

variables z can be transformed linearly by means of an invertible n×n matrix

L = {ℓij; i, j = 1, . . . , n} with L−1 = {hij; i, j = 1, . . . , n} being its inverse,

z(t) = L · ζ(t) and ζ(t) = L−1 · z(t) ,

such that L−1 ·W · L = Λ is diagonal. The elements of Λ, λk, are the eigen-

values of the matrix W. The right-hand eigenvectors of W are given by the

columns of L, ℓj = (ℓi,j; i = 1, . . . , n), and the left-hand eigenvectors by the

rows of L−1, hk = (hk,i; i = 1, . . . , n), respectively. These eigenvectors can be

addressed as the normal modes of selection-mutation kinetics. For strictly

positive off-diagonal elements of W, implying the same for Q which says

nothing more than every mutation Ii → Ij is possible, although the prob-

ability might be extremely small, Perron-Frobenius theorem holds (see, for

example, [21] and next paragraph) and we are dealing with a non-degenerate

largest eigenvalue λ0,

λ0 > |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . ≥ |λn| , (23)

and a corresponding dominant eigenvector ℓ0 with strictly positive compo-

nents, ℓi0 > 0 ∀ i = 1, . . . , n.7 In terms of components the differential equation

in ζ has the solutions

ζk(t) = ζk(0) exp(λk t) . (24)

Transformation back into the variables z yields

zi(t) =

n−1
∑

k=0

ℓik ck(0) exp(λk t) , (25)

with the initial conditions encapsulated in the equation

ck(0) =
n
∑

i=1

hki zi(0) =
n
∑

i=1

hki xi(0) . (26)

From here we obtain eventually the solutions in the original variables xi in

analogy to equation (11)

xi(t) =

∑n−1
k=0 ℓik ck(0) exp(λk t)

∑n
j=1

∑n−1
k=0 ℓjk ck(0) exp(λk t)

=

=

∑n−1
k=0 ℓik

∑n
i=1 hki xi(0) exp(λk t)

∑n
j=1

∑n−1
k=0 ℓjk

∑n
i=1 hki xi(0) exp(λk t)

.

(27)

7We introduce here an asymmetry in numbering rows and columns in order
to point at the special properties of the largest eigenvalue λ0 and the dominant
eigenvector ℓ0.
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6.2 Perron-Frobenius theorem

Perron-Frobenius theorem comes in two versions [21], which we shall now

consider and apply to the selection-mutation problem. The stronger version

provides a proof for six properties of the largest eigenvector of non-negative

primitive matrices8 T:

(i) The largest eigenvalue is real and positive, λ0 > 0,

(ii) a strictly positive right eigenvector ℓ0 and a strictly positive left eigen-

vector h0 are associated with λ0,

(iii) λ0 > |λk| holds for all eigenvalues λk 6= λ0,

(iv) the eigenvectors associated with λ0 are unique up to constant factors,

(v) if 0 ≤ B ≤ T is fulfilled and β is an eigenvalue of B, then |β| ≤ λ0,

and, moreover, |β| = λ0 implies B = T,

(vi) λ0 is a simple root of the characteristic equation of T.

The weaker version of the theorem holds for irreducible matrices9 T. All

the above given assertions hold except (iii) has to be replaced by the weaker

statement

(iii) λ0 ≥ |λk| holds for all eigenvalues λk 6= λ0.

Irreducible cyclic matrices can be used straightforwardly as examples in order

to demonstrate the existence of conjugate complex eigenvalues (An example

is discussed below). Perron-Frobenius theorem, in its strict or weaker form,

holds not only for strictly positive matrices T > 0 but also for large classes

of mutation or value matrices (W ≡ T being a primitive or an irreducible

non-negative matrix) with off-diagonal zero entries corresponding to zero

mutation rates. The occurrence of a non-zero element t
(m)
ij in Tm implies

the existence of a mutation path Ij → Ik → . . . → Il → Ii with non-

zero mutation frequencies for every individual step. This condition is almost

always fulfilled in real systems.

8A square non-negative matrix T = {tij; i, j = 1, . . . , n; tij ≥ 0} is called prim-

itive if there exists a positive integer m such that Tm is strictly positive: Tm > 0

which implies Tm = {t(m)
ij ; i, j = 1, . . . , n; t

(m)
ij > 0}.

9A square non-negative matrix T = {tij ; i, j = 1, . . . , n; tij ≥ 0} is called ir-

reducible if for every pair (i, j) of its index set there exists a positive integer
mij ≡ m(i, j) such that t

mij

ij > 0. An irreducible matrix is called cyclic with pe-
riod d, if the period of (all) its indices satisfies d > 1, and it is said to be acyclic
if d = 1.
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Figure 4: The quasispecies on the unit simplex. Shown is the case of three

variables (x1, x2, x3) on S
(1)
3 . The dominant eigenvector, the quasispecies denoted

by ℓ0, is shown together with the two other eigenvectors, ℓ1 and ℓ2. The simplex
is partitioned into an optimization cone (white, red trajectories) where the mean
replication rate f̄(t) is optimized, two other zones where f̄(t) may also decrease
(grey), and the master cone, which is characterized by non-increasing f̄(t) and
which contains the master sequence (white, blue trajectories). Here, I3 is cho-
sen to be the master sequence. Solution curves are presented as parametric plots
x(t). In particular, the parameter values are: f1 = 1.9 [t−1], f2 = 2.0 [t−1], and
f3 = 2.1 [t−1], the Q-matrix was assumed to be bistochastic with the elements
Qii = 0.98 and Qij = 0.01 for i, j = {1, 2, 3}. Then the eigenvalues and eigenvec-
tors of W are:

k λk ℓ1k ℓ2k ℓ3k

0 2.065 0.093 0.165 0.742

1 1.958 0.170 1.078 -0.248

2 1.857 1.327 -0.224 -0.103

The mean replication rate f̄(t) is monotonously increasing along red trajecto-
ries, monotonously decreasing along the blue trajectory, and not necessarily
monotonous along green trajectories. Constants level sets of Φ are straight
lines (grey).

6.3 Complex eigenvalues

In order to address the existence of complex eigenvalues of the value matrix

W we start by considering the straightforward case of a symmetric mutation

matrix Q. Replication rate parameters, fi are subsumed in a diagonal matrix:

F = {fi δi,j; i, j = 1, . . . , n}, the value matrix is obtained as product W =
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Q · F, and, in general, W is not symmetric. A similarity transformation,

F
1

2 ·W · F−
1

2 = F
1

2 ·Q · F · F−
1

2 = F
1

2 ·Q · F 1

2 = W′ .

yields a symmetric matrix [22], since F
1

2 · Q · F 1

2 is symmetric if Q is. Sym-

metric matrices have real eigenvalues and as a similarity transformation does

not change the eigenvalues W has only real eigenvalues if Q is symmetric.

The simplest way to yield complex eigenvalues is introduction of cyclic

symmetry into the matrix Q in such a way that the symmetry with respect

to the main diagonal is destroyed. An example is the matrix

Q =



















Q11 Q12 Q13 . . . Q1n

Q1n Q11 Q12 . . . Q1,n−1

Q1,n−1 Q1n Q11 . . . Q1,n−2

...
...

...
. . .

...

Q12 Q13 Q14 . . . Q11



















,

with different entries Qij. For equal replication parameters the eigenvalues

contain complex n-th roots of one, γn
k = 1 or γk = exp(2πik/n), i = 1, . . . , n,

and for n ≥ 3 most eigenvalues come in complex conjugate pairs. As men-

tioned earlier symmetry in mutation frequencies is commonly not fulfilled in

nature. In case of point mutations the replacement of one particular base

by another one does usually not occur with the same frequency as the in-

verse replacement, G→A versus A→G for example. Needless to stress, cyclic

symmetry in mutation matrices is also highly improbable in real systems.

The validity of Perron-Frobenius theorem, however, is not effected by the

occurrence of complex conjugate pairs of eigenvectors. In addition, it is

unimportant for most purposes whether a replication-mutation system ap-

proaches the stationary state monotonously or through damped oscillations

(see next paragraph).

6.4 Mutation and optimization

In order to consider the optimization problem in the selection-mutation case,

we choose the eigenvectors of W as the basis of a new coordinate system

(figure 4):

x(t) =

n
∑

i=1

xk(t) ei =

n−1
∑

k=0

ξk(t) ℓk ,

where the vectors ei are the unit eigenvectors of the conventional Cartesian

coordinate system and ℓk the eigenvectors of W. The unit eigenvectors repre-

sent the corners of S
(1)
n and in complete analogy we denote the space defined
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by the vectors ℓk as S̃
(1)
n . Formally, the transformed differential equation

ξ̇k = ξk (λk − Φ) , k = 0, 1, . . . , n− 1 with Φ =

n−1
∑

k=0

λkξk = λ

is identical to equation (7) and hence the solutions are the same,

ξk(t) = ξk(0) exp

(

λk t −
∫ t

0

Φ(τ) dτ

)

, k = 0, 1, . . . , n− 1 ,

as well as the maximum principle on the simplex

dΦ

dt
=

n−1
∑

k=0

ξk (λk − Φ)2 = < λ2 > − < λ >2 ≥ 0 . (9a)

The difference between selection and selection-mutation comes from the fact

that the simplex S̃n does not coincide with the physically defined space Sn

(see figure 4 for a low-dimensional example). Indeed only the dominant eigen-

vector ℓ0 lies in the interior of S
(1)
n : It represent the stable stationary distri-

bution of genotypes or quasispecies [10] towards which the solutions of the

differential equation (21) converge. All other n− 1 eigenvectors, ℓ1, . . . , ℓn−1

lie outside S
(1)
n in the not physical range where one or more variables xi are

negative. The quasispecies ℓ0 is commonly dominated by a single genotype,

called the master sequence Im, having the largest stationary relative con-

centration: x̄m ≫ x̄i ∀ i 6= m, reflecting, for not too large mutation rates, the

same ranking as the elements of the matrix W: Wmm ≫ Wii ∀ i 6= m. As

sketched in figure 4 the quasispecies is then situated close to the unit vector

em in the interior of S
(1)
n .

For the discussion of the optimization behavior the simplex is partitioned

into three zones: (i) The zone of maximization of Φ(t), the (large) lower

white area in figure 4 where equation (9a) holds and which we shall denote

as optimization cone,10 (ii) the zone that includes the unit vector of the

master sequence, em, and the quasispecies, ℓ0, as corners, and that we shall

characterize as master cone,10 and (iii) the remaining part of the simplex

S
(1)
n (zones (iii) are colored grey in figure 4). It is straightforward to proof

that increase of Φ(t) and monotonous convergence towards the quasispecies is

restricted to the optimization cone [23]. From the properties of the selection

equation (7) we recall and conclude that the boundaries of the simplex S̃
(1)
n

are invariant sets. This implies that no orbit of the differential equation (21)

10The exact geometry of the optimization cone or the master cone is a polyhe-
dron that can be approximated by a pyramid rather than a cone. Nevertheless we
prefer the inexact notion cone because it is easier to memorize and to imagine in
high-dimensional space.
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can cross these boundaries. The boundaries of S
(1)
n , on the other hand, are

not invariant but they can be crossed exclusively in one direction: from

outside to inside.11 Therefore, a solution curve starting in the optimization

cone or in the master cone will stay inside the cone where it started and

eventually converge towards the quasispecies, ℓ0.

In zone (ii), the master cone, all variables ξk except ξ0 are negative and ξ0

is larger than one in order to fulfill the L(1)-norm condition
∑n−1

k=0 ξk = 1. In

order to analyze the behavior of Φ(t) we split the variables into two groups,

ξ0 the frequency of the quasispecies and the rest [23], {ξk; k = 1, . . . , n− 1}
with

∑n−1
k=1 ξk = 1− ξ0:

dΦ

dt
= λ0ξ

2
0 +

n−1
∑

k=1

λ2
kξk −

(

λ0ξ0 +
n−1
∑

k=1

λkξk

)2

.

Next we replace the distribution of λk values in the second group by a single

λ-value, λ̃ and find:

dΦ

dt
= λ2

0ξ0 + λ̃2(1− ξ0) −
(

λ0ξ0 + λ̃(1− ξ0)
)2

.

After a view simple algebraic operations we find eventually

dΦ

dt
= ξ0 (1− ξ0) (λ0 − λ̃)2 . (28)

For the master cone with ξ0 ≥ 1, this implies dΦ(t)/dt ≤ 0, the flux

is a non-increasing function of time. Since we are only interested in the

sign of dΦ/dt, the result is exact, because we could use the mean value

λ̃ = λ̄ = (
∑n−1

k=1 λkξk)/(1 − ξ0), the largest possible value λ1 or the smallest

possible value λn−1 without changing the conclusion. Clearly, the distribu-

tion of λk-values matters for quantitative results. It is worth mentioning

that equation (28) applies also to the quasispecies cone and gives the cor-

rect result that Φ(t) is non-decreasing. Decrease of mean fitness or flux Φ(t)

in the master cone is readily illustrated: Consider, for example, a homo-

geneous population of the master sequence as initial condition: xm(0) = 1

and Φ(0) = fm. The population becomes inhomogeneous because mutants

are formed. Since all mutants have lower replication constants by definition,

(fi < fm ∀ i 6= m), Φ becomes smaller. Finally, the distribution approaches

the quasispecies ℓ0 and limt→∞ Φ(t) = λ0 < fm.

11This is shown easily by analyzing the differential equation, but follows also
from the physical background: No acceptable process can lead to negative particle
numbers or concentrations. It can, however, start at zero concentrations and this
means the orbit begins at the boundary and goes into the interior of the physical

concentration space, here the simplex S
(1)
n .
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An extension of the analysis from the master cone to zone (iii), where

not all ξk values with k 6= 0 are negative, is not possible. It has been shown

by means of numerical examples that dΦ(t)/dt may show non-monotonous

behavior and can go through a maximum or a minimum at finite time [23].

6.5 Mutation rates and error threshold

In order to illustrate the influence of mutation rates on the selection process

we apply (i) binary sequences, (ii) the uniform error rate approximation,

Qij = p dij (1− p) ν−dij (29)

with dij being the Hamming distance between the two sequences Ii and Ij,

ν the chain length and p the mutation or error rate per site and replication,

and (iii) a simple model for the distribution of fitness values known as single

peak fitness landscape [24],

f1 = fm > f2 = f3 = . . . fn = f̄−m =

∑n
i=2 fi

1− xm

,

which represents a kind of mean field approximation. The mutants with the

master sequence I1 are ordered in mutant classes: The zero-error class con-

tains only the reference sequence (I1), the one-error class comprises all single

point mutations, the two-error class all double point mutations, etc. Since

the error rate p is independent of the particular sequence and all molecules

belonging to the same mutant class have identical fitness values fk, it is

possible to introduce new variables for entire mutant classes Γk:

yk =
∑

j , Ij∈Γk

xj , k = 0, 1, . . . , ν ,
ν
∑

k=0

yk = 1 . (30)

The mutation matrix Q has to be adjusted to transitions between classes

[24, 25]. For mutations from class Γl into Γk we calculate:

Qkl =

min(k,l)
∑

i=l+k−ν

(

k

i

)(

ν − k

l − i

)

p k+l−2i(1− p) ν−(k+l−2i) . (31)

The mutation matrix Q for error classes is not symmetric, Qkl 6= Qlk as

follows from equation (31).

A typical plot of relative concentrations against error rate is shown in

figure 5. At vanishing error rates, lim p → 0, the master sequence is selected,

limt→∞ y0(t) = ȳ0 = 1, and all other error classes vanish in the long time

limit. Increasing error rates are reflected by a decrease in the stationary

relative concentration of the master sequence and a corresponding increase
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Figure 5: Error thresholds in the quasispecies model. The figures show the
stationary distribution of relative concentrations of mutant classes as functions of
the error rate, ȳk(p), for sequences of chain length ν = 20. The population on a
single peak landscape (upper part, σ = 2) gives rise to a sharp transition between
the ordered regime, where relative concentrations are determined by fitness values
fk and mutation rates Qkl (31), and the domain of the uniform distribution where
all error classes are present proportional to the numbers of sequences in them,
|Γk| =

(ν
k

)

. The color code is chosen such that the error classes with the same
frequency, for example Γ0 and Γν , Γ1 and Γν−1, etc., have identical colors and
hence, curves with the same color merge above threshold. The population on a
hyperbolic fitness landscape (lower part, σ = 1.905) shows a smoother transition
that can be characterized as weak error threshold. Careful observation shows that
the coalescence of curves with different colors at p ≈ 0.05 is accidental since they
diverge again at higher error rates.
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Figure 6: Smooth transitions in the quasispecies model. The two figures
show stationary mutant distributions as functions of the error rate, ȳk(p), for
sequences of chain length ν = 20. The upper figure was calculated for a linear

landscape (σ = 1.333), the lower figure for a quadratic landscape (σ = 1.151) of
fitness values. The transitions are smooth in both cases.

in the concentration of all mutant classes. Except ȳ0(p) all concentrations

ȳk(p) with k < ν/2 go through a maximum and approach pairwise the curves

for ȳν−k at values of p that increase with p. At p = 0.5 the eigenvalue

problem can be solved exactly: The largest eigenvalue is strictly positive

λ0 > 0, it corresponds to an eigenvector ℓ0, which is the uniform distribution

in relative stationary concentrations x̄1 = x̄2 = . . . = x̄n = 1/n, and this

implies ȳk =
(

ν
k

)

for the class variables. The uniform distribution is a result
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of the fact that at p = 0.5 = 1 − p correct digit replication and errors are

equally probable (for binary sequences) and therefore we may characterize

this scenario as random replication. All other eigenvalues vanish at p = 0.5:

λ1 = λ2 = . . . = λn−1 = 0.

The mutant distribution ȳ(p) comes close to the uniform distribution

already around p ≈ 0.035 in figure 5, and stays constant for the rest of

the p-values (0.035 < p < 0.5). The narrow transition from the ordered

replication (0 < p < 0.035) to random replication (p > 0.035) is called the

error threshold. An approximation based on neglect of mutational back-flow

and using ln(1 − p) ≈ −p yields a simple expression for the position of the

threshold [9]:

pmax ≈ ln σ

ν
for small p . (32)

The equation defines a maximal error rate pmax above which no ordered –

nonuniform – stationary distributions of sequences exist (see also section 7).

In the current example (figure 5) we calculate pmax = 0.03466 in excellent

agreement with the value observed in computer simulations. RNA viruses

commonly have mutation rates close to the error threshold [26]. Error rates

can be increased by pharmaceutical drugs interfering with virus replication

and accordingly, a new antiviral strategy has been developed, which drives

virus replication into extinction either by passing the error threshold [27,28]

or by extinction. Recently, the mechanism of lethal mutagenesis in virus

infections has been extensively discussed [29, 30].

Several model landscapes describing fitness by a monotonously decreasing

function of the Hamming distance from the master sequence, f(d), are often

applied in population genetics, examples are:

hyperbolic : f(d) = f0 − (f0 − 1)(ν + 1) d

ν (d+ 1)
,

linear : f(d) = f0 − (f0 − 1) d

ν
, and

quadratic : f(d) = f0 − (f0 − 1) d2

ν2
.

Interestingly, all three model landscapes do not sustain sharp error thresholds

as observed with the single peak landscape. On the hyperbolic landscape the

transition is less sharp than on the single peak landscape and may be called

weak error threshold. The linear and the quadratic landscape show rather

gradual and smooth transition from the quasispecies towards the uniform

mutant distribution (Figure 6). Despite the popularity of smooth landscapes

in populations genetics, they are not supported by knowledge derived form

biopolymer structures and functions. In contrast, the available data provide
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Figure 7: Population entropy on different fitness landscapes. The plot
shows the population entropy as functions of the error rate, S(p), for sequences
of chain length ν = 20. The results for individual landscapes are color coded:
single peak landscape black, hyperbolic landscape red, linear landscape blue, and
quadratic landscape green. The corresponding values for the superiority of the
master sequence are: σ = 2 , 1.905 , 1.333 , and 1.151 , respectively.

strong evidence that the natural landscapes are rugged and properties do not

change gradually with Hamming distance.

In order to generalize the results derived from model landscapes to more

realistic situations, random variations of rate constants for individual se-

quences were superimposed upon the fitness values of a single peak landscape

– whereby the mean value f̄−m was kept constant [31, pp.29-60]. Then, the

curves for individual sequences within an error class differ from each other

and form a band that increases in width with the amplitude of the ran-

dom component. Interestingly, the error threshold phenomenon is retained

thereby and the critical value pmax is shifted to lower error rates. Another

very general approach to introduce variation into the value matrix without

accounting for the underlying chemical reaction mechanism was taken by

Walter Thirring and coworkers [32]. They also find a sharp transition be-

tween ordered and disordered domains.

6.6 Population entropies

Population entropies are suitable measures for the width of mutant distribu-

tions. For steady states they are readily computed from the largest eigen-
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vector of matrix W:

S(p) = −
2ν
∑

i=1

x̄i ln x̄i = −
ν
∑

k=0

ȳk

(

ln ȳk − ln

(

ν

k

))

, (33)

where the expression on the r.h.s. refers to mutant classes. The pure state at

p = 0 has zero entropy, S(0) = 0. For the uniform distribution the entropy

is maximal, and for binary sequences we have,

Smax = S(0.5) = ν ln 2 .

Between these two extremes, 0 ≤ p ≤ 0.5, the entropy is a monotonously

increasing function of the error rate, p. Figure 7 shows the entropy S(p) on

the four model landscapes applied in figures 5 and 6. The curves reflect the

threshold behavior encountered in the previous paragraphs (figures 5 and 5):

the entropy on the single peak landscape makes a sharp kink at the position

of the error threshold, the curve for the entropy on the hyperbolic landscape

has a similar bend at the threshold but the transition is smoother, whereas

the entropies for the two other landscapes are curved differently and approach

smoothly the maximum value, Smax = ν ln 2.

6.7 Lethal mutants

It is important to note that a quasispecies can exist also in cases where

the Perron-Frobenius theorem is not fulfilled. As an example we consider an

extreme case of lethal mutants: Only genotype I1 has a positive fitness value,

f1 > 0 and f2 = . . . = fn = 0, and hence only the entries Wk1 = Qk1f1 of

matrix W are nonzero:

W =













W11 0 . . . 0

W21 0 . . . 0
...

...
. . .

...

Wn1 0 . . . 0













and Wk = W k
11













1 0 . . . 0
W21

W11

0 . . . 0
...

...
. . .

...
Wn1

W11

0 . . . 0













.

Accordingly, W is not primitive in this example, but under suitable conditions

x̄ = (Q11, Q21, . . . , Qn1) is a stable stationary mutant distribution and for

Q11 > Qj1 ∀ j = 2, . . . , n – correct replication occurs more frequently than a

particular mutation – genotype I1 is the master sequence. On the basis of a

rather idiosyncratic mutation model consisting in a one-dimensional chain of

sequences the claim was raised that no quasispecies can be stable in presence

of lethal mutants and accordingly, no error thresholds could exist [33]. Recent

papers [30, 34], however, used a realistic high-dimensional mutation model

and presented analytical results as well as numerically computed examples

for error thresholds in the presence of lethal mutations.
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Figure 8: Lethal mutants and replication errors. The model for lethal
mutants corresponding to a single peak landscape with k1 = 1 and k2 = . . . = kn =
0 is studied in the flowreactor. The concentrations of the master sequence (black)
and the mutant classes (red, dark orange, light orange, etc.; full lines) are shown
as functions of the error rate p. For the purpose of comparison the parameters
were chosen with ν = 20, r = 1, a0 = 2, and η = 2. The plots are compared to the
curves for the master sequence (grey; broken curve) and the one error class (light
red; broken curve) in figure 5 (single peak landscape with f1 = 2, f2 = . . . = fn = 1,
ν = 20, and σ = 2.

In order to be able to handle the case of lethal mutants properly we

have to go back to absolute concentrations in a realistic physical setup, the

flowreactor applied in section 1 and shown in figure 1. We neglect degradation

and find for I1 being the only viable genotype:12

ȧ = −
(

n
∑

i=1

Qi1k1 c1

)

a + r (a0 − a)

ċi = Qi1k1 a c1 − r ci , i = 1, 2, . . . , n .

(34)

Computation of stationary states is straightforward and yields two solutions,

(i) the state of extinction with ā = a0 and c̄i = 0 ∀ i = 1, 2, . . . , n, and

(ii) a state of quasispecies selection consisting of I1 and its mutant cloud at

the concentrations ā = r/(Q11k1), c̄1 = Q11a0 − r/k1, and c̄i = c̄1(Qi1/Q11)

for i = 2, . . . , n.

As an example we compute a maximum error rate for constant flow,

12We use ki for the rate constants as in section 1, since a(t) is a variable here.
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r = r0, again applying the uniform error rate model (29):

Q11 = (1− p)ν and

Qi1 = pdi1 (1− p)ν−di1 ,

where di1 again is the Hamming distance between the two sequences Ii and

I1. Instead of the superiority σ of the master sequence – that diverges since

f̄−m = 0 because of f2 = . . . = fn = 0 – we use the dimensionless carrying

capacity η, which can be defined to be

η =
k1 a0
r0

for the flowreactor. The value of p, at which the stationary concentration of

the master sequence c̄1(p) and those of all other mutants vanishes, represents

the analogue of the error threshold (32), and for the sake of clearness it is

called the extinction threshold. Using ln(1− p) ≈ −p again we obtain:

pmax ≈ ln η

ν
for small p . (35)

The major difference between the error threshold (32) and the extinction

threshold (35) concerns the state of the population at values p > pmax: Repli-

cation with non-zero fitness of mutants leads to the uniform distribution,

whereas the population goes extinct in the lethal mutant case. Accordingly,

the transformation to relative concentrations fails and equation (7) is not

applicable. In figure 8 we show an example for the extinction threshold with

ν = 20 and η = 2. For this case the extinction threshold is calculated from

(35) to occur at pmax = 0.03466 compared to a value of 0.03406 observed in

computer simulations. In the figure we see also a comparison of the curves

for the master sequence and the one error class for the single peak landscape

and the lethality model. The agreement of the two curves for the master

sequences is not surprise since the models were adjusted to coincide in the

values c̄1(0) = 1 and pmax = ln 2/20. The curves for the one error classes

show some difference that is due to the lack of mutational backflow in case

of lethal variants.

7 Limitations of the approach

An implicit assumption of the mathematical analysis of Darwinian selection

presented here is the applicability of kinetic differential equations to describe

selection and mutation in populations. In principle the approach by ordinary

differential equations (ODEs) neglects finite size effects and hence is exact in

principle for an infinite population size only. Biological populations, however,
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may be small and low frequency mutants may be present often in a single copy

or very few copies only. The uniform distribution at error rates above the

threshold can never be achieved in reality because the numbers of possible

polynucleotide sequences – 4ν yielding, for example, 6 × 1045 sequences of

tRNA length – are huge compared to typical populations ranging from 106

to 1015 individuals in replication experiments with bacteria, viruses, or RNA

molecules. Typical situations in biology may thus differ drastically from

scenarios in chemistry where large populations are distributed upon a few

chemical species. Are the results derived from the differential equations then

representative for real systems? Two situations can be distinguished: (i)

Individual mutations are rare events and it is extremely unlikely that the

same mutation occurs twice or is precisely reversed after it has occurred, and

(ii) mutations are sufficiently frequent and occur in both directions within

the time of observation. The second scenario is typical for virus evolution

and in vitro evolution experiments with molecules. The first case seems to be

fulfilled with higher organisms. Bacteria may be in an intermediate situation.

In scenario (i), i.e. at low mutation rates, the exact repetition of a given

mutation is of very low probability. Back-mutations, precise inversions of

mutations, are also of probability zero for all practical purposes. So-called

compensatory mutations are known, but they are not back-mutations, they

are rather caused by second mutations that compensate the effect of the first

mutations. Then, a phenomenon called Muller’s ratchet [35] in population

genetics becomes effective in finite populations: Since lost mutants are not

replaced, all variants starting with the fittest one will disappear sooner or

later, and it is a only matter of time before a situation is reached where

all genotypes have been replaced by others no matter what there fitness

values were. For a comparison between the error threshold phenomenon and

Muller’s ratchet see [33].

The frequent mutation scenario (ii) allows for modeling and studying

the kinetic equations of reproduction and selection as stochastic processes

[25,36–38] – examples are multitype branching or birth-and-death processes

– as well as for computer simulations [39] (for an overview of stochastic mod-

eling see, e.g., [40]). In essence, the solutions of stochastic models are time

dependent probability distributions instead of solution curves. The mean or

expectation value of the distribution coincides with the deterministic (ODE)

solution, since all reactions in the kinetic model are (pseudo) first order. The

relative width of the distribution increases with growing mutation rate and

deceasing population size, and the error threshold phenomenon is reproduced

as a superposition of error propagation and finite size effects. The expression
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for the error threshold can be readily extended to finite populations [25]. For-

mation of stable quasispecies requires a replication fidelity that is the higher

the smaller the population size is.

At error rates above threshold the kinetic ODEs predict the uniform dis-

tribution of sequences as stationary solution of equation (21).13 Differences

in fitness values do not matter under these conditions and there is no pre-

ferred master sequence. Realistic populations are by far too small to form

uniform distributions of sequences and hence the deterministic model fails.

Below threshold the quasispecies can be visualized as a localization of the

population in some preferred region of sequence space with high fitness values

(or at least one particularly high fitness value) [18,41]. Above threshold the

population is no more localized and drifts randomly in sequence space.14 At

the same time, populations are also too small to occupy a coherent region in

sequence space and break up into smaller clones, which migrate in different

directions as described for the neutral evolution case [3, 44].

How relevant is the error threshold in realistic situations? According to

the results presented in section 6.5 the question boils down to an exploration

of natural fitness landscapes: Are biopolymer landscapes rugged or smooth?

All evidence obtained so far points towards a rather bizarre structures of these

landscapes. Single nucleotide exchanges may lead to large effects, small ef-

fects or no consequences at all as in the case of neutral mutations. Since

biomolecules are usually optimized with respect to their functions within an

organism, most mutations have deleterious effects or no effect. Biopolymer

landscapes have three characteristic features, which are hard to visualize: (i)

high dimensionality, (ii) ruggedness, and (iii) neutrality. In case equally fit

genotypes are nearest or next nearest neighbors in sequence space they form

joint quasispecies as described in [23]. When they are not closely related,

however, neutral evolution in the sense of Motoo Kimura is observed [45]. In

case of neutrality in genotype space a selection model can still be formulated

in phenotype space [46, 47]. The variables are concentrations of phenotypes

that are obtained through lumping together all concentrations of genotypes,

which form the same phenotype. Then, an analysis similar to the one pre-

sented here can be carried out. The genotypic error threshold is relaxed and

13As mentioned before the uniform distribution is the exact stationary solution
of equation (21) for equal probabilities of correct and incorrect incorporation of a
nucleotide, which is the case at an error rate p = 1− p = 0.5 for binary sequences.

14The mutation rate can be seen as an analogue to temperature in spin systems
and the error threshold corresponds to a phase transitions. The relation between
the selection-mutation equation and spin systems has been studied first by Ira
Leuthäusser [42,43].
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the system gives rise to a phenotypic error threshold below which the fittest

or master phenotype is conserved in the population. The ODE model is read-

ily supplemented by a theory of phenotype evolution based on new concept

of evolutionary nearness of phenotypes in sequence space [4, 48, 49], which

is confirmed by computer simulations of RNA structure optimization in a

flowreactor of the type shown in figure 1 [4,48,50]. The article [50] deals also

with random drift of populations on neutral subspaces of sequence space. A

series of snapshots shows the spreading of a population that breaks up into

individual clones in full agreement with earlier models [44, 51]. Computer

simulations were also successful in providing evidence for the occurrence of

error thresholds in stochastic replication-mutation systems [52].
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Notation

building blocks and degradation products A,B, . . . ,

numbers of particles of A,B, . . . , NA, NB, . . . ,

concentrations of A,B, . . . , [A] = a, [B] = b, . . . ,

replicating molecular species I1, I2, . . . ,

numbers of particles of I1, I2, . . . , N1, N2, . . . ,

concentrations of I1, I2, . . . , [I1] = c1, [I2] = c2, . . . ,

relative concentrations of I1, I2, . . . , [I1] = x1, [I2] = x2, . . . ,

partial sums of relative concentrations yk =
∑

i xi ,

flow rate into the CSTR r ,

influx concentration into the CSTR a0 ,

mean residence time of a volume element in the CSTR τr = r−1 ,

rate parameters di, ki, fi, . . . i = 1, 2, . . . ,

global regulation flux Φ(t) ,

chain length of polynucleotides ν ,

superiority of the master sequence Im σm = fm (1−xm)∑
i6=m fi

,

population entropy S =
∑

i xi lnxi .
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