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Abstract. Theoretical biology without a comprehensive theory of evolution is in-
complete, since evolution is in the core of biological thought. Evolution is visualized
as a migration process in genotype or sequence space that is either an adaptive
walk driven by some fitness gradient or a random walk in absence of (sufficiently
large) fitness differences. The Darwinian concept of natural selection consisting in
the interplay of variation and selection is based on a dichotomy: All variations occur
on genotypes whereas selection is operating on phenotypes and relations between
genotypes and phenotypes as encapsulated in a mapping form genotype space into
phenotype space are central for an understanding of evolution. Fitness is conceived as
a function of the phenotype represented by a second map from phenotype space into
nonnegative real numbers. In the biology of organisms, genotype-phenotype maps
are enormously complex and relevant information on them is exceedingly scarce. The
situation is better in the case of viruses but so far only one example of a genotype-
phenotype map, the mapping of RNA sequences into RNA secondary structures,
has been investigated in sufficient detail. It provides direct information of RNA
selection in vitro and test-tube evolution, and it is a basis for testing in silico evo-
lution on a realistic fitness landscape. Most of the modeling efforts in theoretical
and mathematical biology of today are done by means of differential equations but
stochastic effects are of undeniably great importance for evolution. Population sizes
are much smaller than the numbers of genotypes constituting sequence space. Every
mutant, after all, has to begin with a single copy. Evolution can be modeled by a
chemical master equation, which (in principle) can be approximated by a stochas-
tic differential equation. In addition, simulation tools are available that compute
trajectories for master equations. The accessible population sizes in the range of
107 ≤ N ≤ 108 molecules are commonly too small for problems in chemistry but
sufficient for biology.

1.1 Mathematics and biology

The beginning of modern science in the sixteenth century has been initi-
ated by the extremely fruitful marriage between physics and mathematics.
Nobody has expressed the close relation between mathematics and physics
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clearer than Galileo Galilei in his famous statement [1]: Philosophy (science)
is written in this grand book, the universe, .... . It is written in the language
of mathematics, and its characters are triangles, circles and other geometric
features. ... . Indeed, physics and mathematics have cross-fertilized each other
from the beginnings of modern science until present day. Theoretical physics
and mathematical physics are highly respected disciplines and no physics jour-
nal will accept empirical observations without an attempt to bring it into a
context that allows for quantification and interpretation by theory. General
concepts and successful abstractions have a high reputation in physics and the
reductionists’ program1 is the accepted scientific approach towards complex
systems. This view is common in almost all subdisciplines of contemporary
physics and, in essence, is shared with chemistry and molecular biology.

Conventional biology, in this context, is very different: Great works of
biology like Charles Darwin’s Origin of Species [2] or in recent years Ernst
Mayr’s Growth of Biological Thought [3] do not contain a single mathemat-
ical expression, theoretical and mathematical biology had and still have a
bad reputation among macroscopic biologists, special cases are preferred over
generalizations, which are looked upon with scepticism, and holistic views
are commonly more appreciated than reductionists’ explanations no matter
whether they are in a position to provide insight into problems or not. A
famous and unique exception among others is Charles Darwin’s theory of nat-
ural selection by reproduction and variation in finite populations. Although
not cast into mathematical equations, the theory is based on a general concept
whose plausibility is erected upon a wealth of collected and carefully inter-
preted empirical observations. Darwin’s strategy has something in common
with the conventional mathematical approach based on observation, abstrac-
tion, conjecture, and proof: On different islands of the Galapagos archipelago
Darwin observed similar looking species in different habitats and concluded
correctly that these different species are closely related and owe their existence
to histories of adaptation to different environments on the individual islands.
The occurrence of adaptations has been attributed to natural selection as a
common mechanism through abstraction from specific cases. Darwin’s conjec-
ture combines three facts known at his times:

(i) Multiplication: All organisms multiply by cell division, parthenogenesis
or sexual reproduction, multiplication is accompanied by inheritance –

1 The reductionist program, also called methodological reductionism, aims at an
exploration of complex objects through breaking them up into modular, preferen-
tially molecular parts and studying the parts in isolation before reassembling the
object. Emergent properties are assumed to be describable in terms of the phe-
nomena from and the processes by which they emerge. The reductionist program
is different from ontological reductionism, which denies the idea of ontological
emergence by the claim that emergence is merely a result of the system’s descrip-
tion and does not exist on a fundamental level.
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’progeny resembles parents’, and under the condition of unlimited re-
sources multiplication results in exponential growth of population size.

(ii) Variation: All natural populations show variance in phenotypic proper-
ties either continuously varying features like body size or discontinuously
varying features like the number of limbs, the number of digits, color of
flowers, skin patterns or seeds shapes, and it is straightforward to relate
variation to inheritance.2

(iii) Selection: Exponential growth results in overpopulation of habitats,3

only a small fraction of offspring can survive and have progeny of their
own, and this stringent competition prevents less efficient variants from
reproduction.

Taking together the three items and introducing the notion of fitness for the
number of offspring, which reach the age of fertility, the conjecture could be
formulated in the following way:

Natural selection: In nonhomogeneous populations the frequencies
of variants with fitness values below the population average are de-
creasing, those with fitness values above average are increasing and
consequently the population average itself will increase until it reaches
the maximum value corresponding to a homogeneous population of the
best adapted or fittest variant.

Darwin’s Origin of Species is an overwhelming collection of observations from
nature, from animal breeders and from nursery gardens that provide strong
evidence for the correctness of Darwin’s conjecture. This enormous collection
in a way is the empirical substitute for a mathematical proof.

Although Gregor Mendel analyzed his experiments on inheritance in peas
by mathematical statistics and found thereby the explanatory regularities,
mathematics did not become popular in biology. In contrary, Mendel’s work
has been largely ignored by the biological community for more than thirty
years. Then, Mendel has been rediscovered and genetics became an impor-
tant discipline of biology. Population genetics has been founded by the three
scholars Ronald Fisher [8], J.B.S. Haldane [9] and Sewall Wright [10]. In the
nineteen thirties they succeeded to unite Mendelian genetics and Darwin’s
natural selection, and to cast evolution into a rigorous mathematical frame
but conventional geneticists and evolutionary biologists continued to fight un-
til the completion of the synthetic theory almost twenty years later [3].

2 Gregor Mendel was the first to investigate such relations experimentally [4–6] and
discovered the transmittance of properties in discrete packages from the parents
to offspring. His research objects were the pea (pisum) from where he derived his
rules of inheritance and the hawkweed (hieracium), which was rather confusing
for him, because it is apomictic, i.e. it reproduces asexually. Charles Darwin,
on the other hand, had a mechanism of inheritance in mind, which was entirely
wrong. It was based on the idea of blending of the parents’ properties,

3 According to his own records Charles Darwin has been influenced strongly by
Robert Malthus and his demographic theory of [7].
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Modeling in biology became an important tool for understanding com-
plex dynamical phenomena. Representative for many other approaches we
mention here only three: (i) Modeling of coevolution in a predator-prey sys-
tem was introduced by Alfred Lotka [11] and Vito Volterra [12] by means
of differential equations that were borrowed from chemical kinetics. In a way,
they were the pioneers of theoretical ecology, which has been developed by the
brothers Howard and Eugene Odum [13] and became a respectable field of ap-
plied mathematics later [14]. (ii) A model for pattern formation based on the
reaction-diffusion (partial differential) equation with a special chemical mech-
anism has been suggested and analyzed by Alan Turing [15]. Twenty years
later the Turing model was applied to biological morphogenesis [16, 17] and
provided explanations for patterns formed during development [18, 19]. (iii)
Based on experimental studies of nerve pulse propagation in the squid giant
axon Alan Hodgkin and Andrew Huxley formulated a mathematical model for
nerve excitation and pulse propagation [20] that became the standard model
for single nerve dynamics in neurobiology. They both were awarded the Nobel
Prize in Medicine in 1963. A second breakthrough in understanding neural
systems came from modeling networks of neurons. John Hopfield conceived
an exceedingly simple model of neurons in networks [21] that initiated a whole
new area of scientific computing: computation with neural networks , in partic-
ular modeling and optimization of complex systems. Despite these undeniable
and apparent successes, the scepticism of biologists with respect to theory
and mathematics, nevertheless, continued for almost the entire rest of the
twentieth century.

The advent of molecular biology in the nineteen fifties brought biology
closer to chemistry and physics, and changed the general understanding of
nature in a dramatic way [22]. Inheritance got a profound basis in molecu-
lar genetics and reconstruction of phylogenies became possible through com-
parison of biopolymer sequences from present day organisms. Structures of
biomolecules at atomic resolution were determined by refined techniques from
physical chemistry and they gave deep insights into biomolecular functions.
Spectroscopic techniques, in particular nuclear magnetic resonance, require a
solid background in mathematics and physics for conceiving and analyzing
conclusive experiments. A novel era of biology was initiated in the nineteen
seventieth when the highly efficient new methods for DNA sequencing de-
veloped by Walter Gilbert and Frederick Sanger became available [23, 24].
Sequencing whole genomes became technically within reach and financially
affordable. The first two complete bacterial genomes were published in 1995
[25] and the following years saw a true explosion of sequencing data. High-
throughput techniques using chip technology for genome wide analysis of
translation and transcription products known as proteomics and transcrip-
tomics followed and an amount of data was created that has never been seen
before. In this context it is worth to cite the Nobel laureate Sydney Bren-
ner [26] who made the following statement in 2002 to characterize the situation
in molecular biology:
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“I was taught in the pre-genomic era to be a hunter. I learnt how to
identify the wild beasts and how to go out, hunt them down and kill
them. We are now, however, being urged to be gatherer. To collect
everything lying about and and put it into storehouses. Someday, it is
assumed someone will come and sort through the storehouses, discard
the junk and keep the rare finds. The only difficulty is how to recognize
them.”

Who else but a theorist should be this “someone”? The current development
seems to indicate that “someday” is not too far away. The flood of data and
the urgent need for a comprehensive theory have driven back the aversion
for computer science and mathematics of the biologists. Modern genetics and
genome analysis without bioinformatics are unthinkable and understanding
network dynamics without mathematics and computer modeling is impossible.

The new discipline of systems biology has the ambitious goal to find holistic
descriptions for cells and organisms without giving up the roots in chemistry
and physics. Although still in its infancy and falling into one trap after an-
other, modeling in systems biology progresses slowly towards larger and more
detailed models for regulatory modules in cell biology. New techniques are de-
veloped and applied, examples are flux-balance analysis [27] and application
of inverse methods [28], whereby the primary challenge is up-scaling to larger
systems like whole organisms. Recent advances in experimental evolution al-
low for an extension of detailed models to questions of evolution, which is of
central importance of biology as Theodosius Dobzhansky has encapsulated in
his famous sentence: “Nothing in biology makes sense except in the light of
evolution” [29]. From a conceptional point of view, theoretical biology is in a
better position than theoretical physics where the attempts of unification of
the two fundamental theories, quantum mechanics and relativity theory, have
not been successful so far. Biology has one comprehensive theory, the the-
ory of evolution, and present day molecular biology is building the bridge to
chemistry and physics. Missing are a proper language and efficient techniques
to handle the enormous complexity and to build proper models.

1.2 Darwin’s theory in mathematical language

If Charles Darwin would have been a mathematician, how might he have
formulated his theory of natural selection? Application of mathematics to
problems in biology has a long history. The first example that is relevant for
evolution dates back to medieval times. In the famous Liber Abaci written in
the year 1202 by Leonardo Pisano also known as Fibonacci (filius Bonacci)
we find a counting example of the numbers of pairs of rabbits in subsequent
time spans. Every adult pair is assumed to give birth to another pair, new
born rabbits have to wait one time interval before they become fertile adults.
Starting from a single couple yields the following series:

(0) 1 1 2 3 5 8 13 21 34 55 89 . . . .
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Fig. 1.1. Fibonacci series, exponential functions, and limited resources.
The Fibonacci series (black; upper plot) is embedded between two exponential
functions in the range 0 < i ≤ 10: nupper(t) = exp

(

0.4453 · (t − 1)
)

(red) and
nlower(t) = exp

(

0.5009 · (t− 2)
)

(blue), wherein the time t is the continuous equiv-
alent to the discrete (generation) index i. The lower plot compares the exponential
function, y(t) = y0 exp(r t) for unlimited growth (red; y0 = 0.02, r = 0.1) with the
normalized solution of the Verhulst equation (x(t), black; x0 = 0.02, r = 0.1, and
C = 1 by definition)

Every number is the sum of its two precursors and the Fibonacci series is
defined by the recursion

Fi+1 = Fi + Fi−1 with F0 = 0 and F1 = 1 . (1.1)

It is straight forward to show that the Fibonacci series can be approximated
well by exponential functions as upper and lower limits (Fig. 1.1). The expo-
nential function, however, was not known before the middle of the eighteenth
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century, it was introduced in the fundamental work of the Swiss mathemati-
cian Leonhard Euler [30]. Robert Malthus – although living fifty years later
– still uses a geometric progression, 2, 4, 8, 16, . . . , for the unlimited growth
of populations [7]. The consequences of unlimited growth for demography are
disastrous and, as said, Malthus’ work was influential on Darwin’s thoughts.

A contemporary of Charles Darwin, the mathematician Pierre-François
Verhulst [31], formulated a model based on differential equations combining
exponential growth and limited resources (Fig. 1.1):

dN

dt
= Ṅ = r N

(

1 − N

C

)

(1.2)

with N(t) describing the number of individuals at time t, r being the Malthu-
sian parameter and C the carrying capacity of the ecosystem. Equ. (1.2) con-
sists of two terms: (i) the exponential growth term, rN , and (ii) the constraint
to finite population size expressed by the term −rN2/C. In other words, the
ecosystem can only support N = C individuals and limt→∞N(t) = C. The
solution of the differential equation (1.2) is of the form

N(t) =
N0 C

N0 + (C −N0) exp(−rt) . (1.3)

Herein N0 = N(0) is the initial number of individuals. It its straightforward
to normalize the variable to the carrying capacity, x(t) = N(t)/C yielding

x(t) =
x0

x0 + (1 − x0) exp(−rt) (1.3’)

with x0 = N0/C. It will turn out to be useful to cast the term representing the
constraint into the form N φ(t)/C = xφ(t). Then, we obtain for the Verhulst
equation

dx

dt
= ẋ = x

(

r − φ(t)
)

with φ(t) = x r (1.2’)

being the (mean) reproduction rate of the population.
Eventually, we generalize to the evolution of n species or variants4 in

the population Ξ = {X1, X2, . . . , Xn}. The numbers of individuals are now
denoted by [Xi] = Ni with

∑n
i=1Ni = N and the normalized variables

xi = Ni/N with
∑n

i=1 xi = 1. Each variant has its individual Malthus param-
eter of fitness value fi, and for the selection constraint leading to constant
population size we find now φ(t) =

∑n
i=1 xi fi, which is the mean reproduc-

tion rate of the entire population. The selection constraint φ(t) can be used
for modeling much more general situations than constant population size by

4 In this chapter we shall not consider sexual reproduction or other forms of re-
combination. In asexual reproduction a strict distinction between variants and
species is neither required nor possible. We shall briefly come back to the prob-
lem of bacterial or viral species in section 1.7.
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means of the mean reproduction rate. As we shall see in section 1.5, the proof
for the occurrence of selection can be extended to very general selection con-
straints φ(t) as long as the population size does not become zero, N > 0.

The kinetic differential equation in the multi-species case, denoted as se-
lection equation,

ẋj = xj

(

fj − xj

n
∑

i=1

xi fi

)

= xj

(

fj − xj φ(t)
)

, j = 1, 2, . . . , n , (1.4)

can be solved exactly by the integrating factors transform ([32], p.322ff.)

zj(t) = xj(t) · exp

(∫ t

0

φ(τ)dτ

)

. (1.5)

Insertion into (1.4) yields

żj = fjzj and zj(t) = zj(0) · exp(fjt) ,

xj(t) = xj(0) · exp(fjt) · exp

(

−
∫ t

0

φ(τ)dτ

)

with

exp

(∫ t

0

φ(τ)dτ

)

=

n
∑

i=1

xi(0) · exp(fit) ,

where we have used zj(0) = xj(0) and the condition
∑n

i=1 xi = 1. The solution
finally is of the form

xj(t) =
xj(0) · exp(fjt)

∑n
i=1 xi(0) · exp(fit)

; j = 1, 2, . . . , n . (1.6)

The interpretation is straightforward. The term with the largest fitness value,
fm = max{f1, f2, . . . , fn}, dominates the sum in the denominator after suffi-
ciently long time:5

n
∑

i=1

xi(0) · exp(fit) → xm(0) · exp(fmt) for large t and xm(t) → 1 .

Optimization in the sense of Charles Darwin’s principle of selection of the
fittest variant, Xm, takes place.

The occurrence of selection in equ.(1.4) can be verified also without know-
ing the solution (1.6). For this goal we consider the time dependence of the
constraint φ, which is given by

5 We assume here that the largest fitness value fm is non-degenerate, i.e. there is
no second species having the same (largest) fitness value. In section 1.5 we shall
drop this restriction.
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Fig. 1.2. Sequence space of binary sequences of chain length ℓ = 5. The
sequence space Q{0,1}

5 comprises 32 sequences. Every sequence is represented by
a point. The numbers in the yellow balls are the decimal equivalents of the bi-
nary sequences and can be interpreted as sequences of two nucleotides, “0”≡ “C”
and “1”≡ “G”. Examples are 0≡ 00000≡CCCCC, 14≡01110≡CGGGC or 29≡
11101≡GGGCG. All positions of a (binary) sequence space are equivalent in the
sense that each sequence has ℓ nearest neighbors, ℓ(ℓ − 1)/2 next nearest neigh-
bors, etc. Accordingly, sequences are properly grouped in mutant classes around the
reference sequence, here 0.

dφ

dt
=

n
∑

i=1

fiẋi =

n
∑

i=1

fi

(

fixi − xi

n
∑

j=1

fjxj

)

=

=
n
∑

i=1

f2
i xi −

n
∑

i=1

fixi

n
∑

j=1

fjxj =

= f2 −
(

f
)2

= var{f} ≥ 0 . (1.7)

Since a variance is always nonnegative, equ.(1.7) implies that φ(t) is a non-
decreasing function of time. The value var{f} = 0 implies a (local) maximum
of φ and hence, φ is optimized during selection. Zero variance is tantamount
to a homogeneous population containing only one variant. Since φ is at a
maximum, this is the fittest variant Xm.
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1.3 Evolution in genotype space

Evolution can be visualized as a process in an abstract genotype or sequence
space, Q. At constant chain lengths ℓ of polynucleotides the sequence space is
specified as QA

ℓ were A is the alphabet, for example A = {0, 1} or A = {G,C}
is the binary alphabet and A = {A,U,G,C} the natural nucleotide alphabet.
The gain of such a comprehensive view of genotypes is generality and the frame
for reduction to the essential features, the shortcomings, obviously, are lack of
detail. Building a model for evolution upon a space that fulfils all requirements
required for the molecular view of biology and which may, eventually, bridge
microscopic and macroscopic views, is precisely what we are aiming for here.
The genotypes are DNA or RNA sequences and the proper genotype space
is sequence space. The concept of a static sequence space [33, 34] has been
invented in the early nineteen seventieth in order to bring some ordering cri-
teria into the enormous diversity of possible biopolymer sequences. Sequence
space QA

ℓ as long we are only dealing with reproduction and mutation is a
metric space with the Hamming distance6 serving as the most useful metric
for all practical purposes. Every possible sequence is a point in the discrete
sequence space and in order to illustrate the space by a graph, sequences
are represented by nodes and all pairs of sequences with Hamming distance
one by edges (Fig. 1.2 shows a space of binary sequences as an example. Bi-
nary sequence spaces are hypercubes of dimension ℓ being the length of the
sequences).

Two properties of sequence spaces are important: (i) All nodes in a se-
quence space are equivalent in the sense that every sequence has the same
number of nearest neighbors with Hamming distance dH = 1, next nearest
neighbors with Hamming distance dH = 2, and so on, which are grouped prop-
erly in mutant classes. (ii) All nodes of a sequence space are at the boundary of
the space or, in other words, there is no interior. Both features are visualized
easily by means of hypercubes:7 All points are positioned at equal distances
from the origin of the (Cartesian) coordinate system. What makes sequence
spaces difficult to handle are neither internal structures nor construction prin-

6 The Hamming distance dH(Xi, Xj) [35] counts the number of positions at which
two aligned sequences Xi and Xj differ. It fulfils the four criteria for a metric in
sequence space: (i) dH(Xi, Xj) ≥ 0 (non-negativity), (ii) dH(Xi, Xji) = 0 if an
only if Xi = Xj (identity of indiscernibles), (iii) dH(Xi, Xj) = dH(Xi, Xj) (sym-
metry), and (iv) dH(Xi, Xj) ≤ dH(Xi, Xk)+dH(Xi, Xk) (triangle inequality). For
sequences of equal chain length ℓ end-to-end alignment is the most straightfor-
ward alignment, although it may miss close relatedness that is a consequence of
deletions and insertions, which are mutations that alter sequence length.

7 An ℓ-dimensional hypercube in the Cartesian space of dimension ℓ is the analogue
of a (three-dimensional) cube. The ℓ-dimensional hypercube is constructed by
drawing 2ℓ (hyper)planes of dimension (ℓ − 1) perpendicular to the coordinate
axes at the positions ±a. The corners of the hypercubes are the 2ℓ points where
ℓ planes cross.
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ciples but the hyper-astronomically large numbers of points: |QA
ℓ | = κℓ for

the sequences of length ℓ over an alphabet of size κ with κ = |A|.
The population Ξ = {X1, X2, . . . , Xn} is represented by a vector with the

numbers of species as elements N = (N1, N2, . . . , Nn), the population size is
the L1-norm:

N = ‖N‖1 =
n
∑

i=1

|Ni| =
n
∑

i=1

Ni ,

where absolute values are dispensable since particle numbers are real and non-
negative by definition. Normalization of the variables yields x = N/‖N‖ or
xi = Ni/N and

∑n
i=1 xi = 1, respectively. A population is thus represented

by an L1-normalized vector x and the population size N . An important prop-
erty of a population is its consensus sequence, X̄, consisting of a nucleotide
distribution at each position of the sequence. This consensus sequence can be
visualized as the center of the population in sequence space.

A sequence is conventionally understood as a string of ℓ symbols chosen
from some predefined alphabet with κ letters, which can be written as

Xj =
(

b
(j)
1 , b

(j)
2 , . . . , b

(j)
ℓ

)

with b
(j)
i ∈ A = {α1, . . . , ακ} .

The natural nucleotide alphabet contains four letters: A = {A,U,G,C}, but
RNA molecules with catalytic functions have been derived also from three- and
two-letter alphabets [36,37]. For the forthcoming considerations it is straight-
forward to adopt slightly different definitions: A sequence Xj results from the
multiplication of the alphabet vector α = (α1, . . . , ακ) with a κ× ℓ matrix Xj

having only 0 and 1 as entries:

Xj = α · Xj = α ·
(

β
(j)
1 ,β

(j)
2 , . . . ,β

(j)
ℓ

)

with

β
(j)
i ∈

{



























1
0
...
0



























,



























0
1
...
0



























, . . . ,



























0
0
...
1



























}

.
(1.8)

In other words, the individual nucleotides in the sequence Xj are replaced by

products of two vectors, b
(j)
i = α · β(j)

i .
With the definition (1.8) it is straightforward to compute the consensus

sequence of a population Ξk:

Ξk = α ·
n
∑

j=1

x
(k)
j Xj , (1.9)

and the distribution of nucleotides at position “i” is given by

b
(k)
i = α ·

n
∑

j=1

x
(k)
j β

(j)
i . (1.9’)
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It is important to note the difference between b
(j)
i and b

(k)
i : The former refers

to the nucleotide at position “i” in a given sequence whereas the latter de-
scribes the nucleotide distribution at position “i” in the population. In case
one nucleotide is dominating at every position the distribution can be col-
lapsed to a single sequence, the consensus sequence.

The internal structure of every sequence space QA
ℓ is induced by point

mutation and this is essential for inheritance because it creates a hierarchy in
the accessability of genotypes. Suppose we have a probability p to make one
error in the reproduction of a sequence then, provided mutation at different
positions is assumed to be independent, the probability to make two errors
is p2, to make three errors is p3, etc. Inheritance requires sufficient accuracy
of reproduction – otherwise children would not resemble their parents – and
this implies p has to be sufficiently small. Then, p2 is smaller and the power
series p dH decreases further with increasing distance from the reference se-
quence. This ordering of sequences according to a probability criterion that
is intimately related to the Hamming metric (see section 1.5). As a matter of
fact mutation is indeed a fairly rare event in evolution and populations are
commonly dominated by a well-defined single consensus sequence since single
nucleotide exchanges that occur at many different positions do not contribute
significantly to the average.

Evolutionary dynamics is understood as change of the population vectors
in time: N(t) or x(t). This change can be modeled by means of differential
equations (section 1.5) or stochastic processes (section 1.6). A practical prob-
lem concerns the representation of genotype space. Complete sequence space,
QA

ℓ has the advantage to cover all possible genotypes but its extension is
huge and, since the numbers of possible genotypes exceed all even the largest
populations by far we are confronted with the problem that most degrees of
freedom are empty and very likely will never be populated during the evo-
lutionary process described. Alternatively the description could be restricted
to those genotypes, which are actually present in the population and which
constitute the population support Φ(t) that is defined by

Φ(t)
.
= {Xj |Nj(t) ≥ 1} . (1.10)

The obvious advantage is a drastic reduction in the degrees of freedom to a
tractable size but one has to pay the price for the simplification: The pop-
ulation support is time dependent and changes whenever a new genotype is
produced by mutation or an existing one goes extinct [38]. Depending on pop-
ulation size population dynamics on the support can be described either by
differential equations or modeled as a stochastic process. Support dynamics,
on the other hand, is intrinsically stochastic since every mutant starts from a
single copy.

Finally, it is important to mention that recombination without mutation
can be modeled successfully as a process in an abstract recombination space
[39–41] and plays a major role in the theory of genetic algorithms [42, 43].
A great challenge for theorists is the development of a genotype space for
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both, mutation and recombination. Similarly, convenient sequence spaces for
genotypes with variable chain lengths are not at hand.

1.4 Modeling genotype-phenotype mappings

Unfolding genotypes to yield phenotypes is studied in developmental biology
and provides the key to understanding evolution and, in particular, the origin
of species. For a long time it has been common knowledge already that the
same genotype can develop into different phenotypes depending on differences
in the environmental conditions and epigenetic effects.8 Current molecular
biology provides explanations for several epigenetic observations and reveals
mechanisms for the inheritance of properties that are not encoded by the DNA
of the individual. Still, genetics is shaping the phenotypes – otherwise progeny
would not resemble parents – but epigenetics and environmental influences
provide additional effects that are indispensable for understanding and mod-
eling the relations between genotypes and phenotypes. Here we shall adopt
the conventional strategy of physicists and consider simple cases in which
the genotypes unfolds unambiguously into a unique phenotype. This condi-
tion is fulfilled, for example, in evolution in vitro when biopolymer sequences
form (the uniquely defined) minimum free energy structures as phenotypes.
Bacteria in constant environments provide other cases of simple genotype-
phenotype mappings (the long-term experiments of Richard Lenski [44–46]
may serve as examples; see section 1.6). Under this simplifying assumption
genotype-phenotype relations can be modeled as mappings from an abstract
genotype space into a space of phenotypes or shapes. A counter example in
a simple system is provided by biopolymers with metastable suboptimal con-
formations, which can serve a models where a single genotype – a sequence –
can give rise to several phenotypes being molecular structures [47].

Since only point mutations shall be considered here, the choice of an appro-
priate genotype space is straightforward. It is the sequence space QA

ℓ with the
Hamming distance dH as metric. The phenotype space or shape space Sℓ is the
space of all phenotypes formed by all genotypes of chain length ℓ. Although
the definition of a physically or biologically meaningful distance between phe-
notypes is not at all straightforward, some kind of metric can always be found.
Accordingly the genotype-phenotype mapping ψ can be characterized by

ψ :
{

Q(A)
ℓ ; dH(Xi, Xj)

} mfe
===⇒ {Sℓ; dS(Si, Sj)} or Sk = ψ(Xk) . (1.11)

The map ψ need not be invertible. In other words, several genotypes can
be mapped onto the same phenotype when we are dealing with a case of
neutrality.

8 Epigenetics was used as a term subsuming phenomena that could not be explained
by conventional genetics.
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Fig. 1.3. Secondary structures of ribonucleic acid molecules (RNAs). Con-
ventional RNA folding algorithms compute the minimum free energy (mfe) struc-
ture for a given sequence [48,49]. Hairpin formation is shown as an example on the
l.h.s. of the figure. In addition, the sequence can fold also into a large number of
suboptimal conformations (diagram in the middle of the figure), which are readily
computed by efficient computer programs [50,51]. In case a suboptimal structure is
separated from the mfe-structure by a sufficiently high activation barrier, the struc-
ture is metastable. The metastable structure in the example shown here is a double
hairpin (r.h.s. of the figure). The activation energy of more than 20 kcal/mole does
not allow for interconversion of the two structures at room temperature (For the
calculation of kinetic structures see, for example, [52,53]).

An example of a genotype-phenotype mapping that can be handled
straightforwardly by analytical tools is provided by in vitro evolution of RNA
molecules [54–56]. RNA molecules are transferred to a solution containing
activated monomers as well as a virus-specific RNA replicase. The material
consumed by the replication reaction is replenished by serial transfer of a
small sample into fresh solution. The replicating ensemble of RNA molecules
optimizes the mean RNA replication rate of the population in the sense of
Darwinian evolution (see equ. 1.6). The interpretation of RNA evolution in
vitro identifies the RNA sequence with the genotype. The RNA structure, the
phenotype, is responsible for binding to the enzyme and for the progress of
reproduction, since the structure of the template molecules has to opened in
order to allow for replication [57–59]. In case of RNA aptamer selection9 the
binding affinity is a function of molecular structure and sequence-structure
mapping is an excellent model for the relation between genotype and pheno-
type.

9 An aptamer is a molecule that binds to a predefined target molecule. Aptamers
are commonly produced by an evolutionary selection process [60].
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GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUCCCCA

GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUCCCCA

((((((((((((((.....))))))))))))))....

((((((....)))))).((((((....))))))....

5 -end‘

3 -end‘

5 -end‘

3 -end‘

Fig. 1.4. Symbolic notation of RNA secondary structures. RNA molecules
have two chemically different ends, the 5’- and the 3’-end. A general convention
determines that all strings corresponding to RNA molecules (sequences, symbolic
notation, etc) start from the 5’-end and have the 3’-end at the r.h.s. The symbolic
notation is equivalent to graphical representation of secondary structures. Base pairs
are denoted by parentheses where the opening parenthesis corresponds to the nu-
cleotide closer to the 5’-end and the closing parenthesis to the nucleotide closer to
the 3’-end of the sequence. In the figure we compare the symbolic notations with
the conventional graphic representations for two structures formed by the same se-
quence.

RNA sequences fold spontaneously into secondary structures consisting of
double helical stacks and single stranded stretches. Within a stack nucleotides
form base pairs that are elements of a pairing logic B, which consists of six al-
lowed base pairs in case of RNA structures: B = {AU,UA,GC,CG,GU,UG}.
Further structure formation, very often initiated by the addition of two-valent
cations mostly Mg2+, folds secondary structure into three-dimensional struc-
tures by means of sequence specific tertiary interactions of nucleotide bases
called motifs [61, 62]. Secondary structures have the advantage of computa-
tional and conceptional simplicity allowing for the application of combina-
torics to global analysis of sequence-structure mappings [47, 63]. A conven-
tional RNA secondary structure consists exclusively of base pairs and unpaired
nucleotides and can be represented in a formal three-letter alphabet with the
symbols ‘·’, ‘(’, ‘)’ for unpaired nucleotides, downstream bound and upstream
bound nucleotides, respectively (Fig.1.4). A straightforward way to annotate
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Sequence space Structure space

Neutral network

Sequence space Structure space

Stable (sub)optimal structures

Fig. 1.5. Mappings from sequence space onto shape space and back. In the
upper part of the figure we sketch a mapping from sequence space onto structure
or shape space.a One structure is uniquely assigned to every sequence. The draw-
ing shows the case of a mapping, which is many-to-one and non-invertible: Many
sequences fold into the same secondary structure and build a neutral network. The
lower part of the figure sketches the set of stable (sub)optimal structures that are
formed by a single sequence. The mfe structure is indicated by a larger circle.
a Both sequence space and shape space are high-dimensional. The two-dimensional
representation is used for the purpose of illustration only.

pairs in structures is given by the base pair count Si = [γ
(i)
1 , . . . , γ

(i)
ℓ ], which

we illustrate here by means of the lower (blue) structure in the figure as an
example:10

10 The base pair count is another equivalent representation of RNA secondary struc-
tures. In case of conventional secondary structures the symbolic notation is con-
verted into the base pair count by an exceedingly simple algorithm: Starting with
zero at the 5’-end and proceeding from left to right a positive integer counting the
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Si = [1,2,3,4,5,6,0,0,0,0,6,5,4,3,2,1,0,7,8,9,10,11,12,0,0,0,0,12,11,10,9,8,7,0,0,0,0]

Consecutive numbers are assigned to first nucleotides of base pairs corre-
sponding to an opening parenthesis in the sequence, in which they appear
in the structure, and the same number is assigned to the corresponding clos-
ing parenthesis lying downstream. Unpaired nucleotides are denoted by ‘0’.
In total the structure contains np base pairs and ns single nucleotides with
2np + ns = ℓ.

Molecular physics provides an excellent tool for modeling folding of molecules
into structures, the concept of conformation space: A free energy is assigned to
or calculated for each conformation of the molecule. Commonly, the variables
of conformation space are continuous, bond lengths, valence angles or torsion
angles may serve as examples. The free energy (hyper)surface or free energy
landscape of a molecule presents the free energy as a function of the conforma-
tional variables. The mfe structure corresponds to the global minimum of the
landscape, metastable states to local minima. In the case of RNA secondary
structures conformation space and shape space are identical, and they are dis-
crete spaces, since a nucleotide is either paired or unpaired. Whether a given
conformation, a given base pairing pattern, is a local minimum or not depends
also on the set of allowed moves in shape space S. The move set defines the
distance between structures, the metric dS(Si, Sj) in equation (1.11). An ap-
propriate move set for RNA secondary structures comprises three moves: (i)
base pair closure, (ii) base pair opening, and (iii) base pair shift [47, 52]. The
first two moves need no further explanation, the shift move combines base pair
opening and base pair formation with neighboring unpaired nucleotides. This
set of three moves corresponds to a metric dS(Si, Sj), which is the Hamming
distance between the symbolic notations of the two structures Si and Sj.

Conventional structure prediction is dealing with single structures derived
from single sequence inputs. Structure formation depends on external condi-
tions like temperature, pH-value, ionic strength or the nature of the counter-
ions and in order to obtain a unique solution these conditions have to be
specified. Commonly the search goes for the most stable structure, the mini-
mum free energy (mfe) structure, which corresponds to the global minimum
of the conformational free energy landscape of the RNA molecule. In fig.1.3
the mfe structure S0 = ψ(X) is a single long hairpin shown (in red) at the
l.h.s. of the picture. A sequence that forms a stable mfe structure S0 (free
energy of folding:11 ∆Gfold(S0) < 0) commonly forms almost always a set
of suboptimal conformations {S1, S2, . . . , Sm} with higher free energies of
formation, ∆Gfold(Si) > ∆Gfold(S0) for i 6= 0. In fig.1.3 (middle) the ten
lowest suboptimal structures are listed; together with S0 they represent the

number of open parenthesis is assigned to every position along the sequence. The
base pair count is not only more convenient for base pair assignments but also
more general. It is, for example, applicable to RNA structures with pseudoknots.

11 The free energy of folding is the difference in free energy between the structure
Si and the unfolded (open) chain O: ∆Gfold(Si) = G(Si) − G(O).
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eleven lowest states of the spectrum of structures associated with the se-
quence X . Low-lying suboptimal conformations may have influence on the
molecular properties in particular when conformational changes are involved.
The Boltzmann-weighted contributions of all suboptimal structures at tem-
perature T are readily calculated by means of the partition function of RNA
secondary structures [49, 64]. Instead of base pairs the analysis of the parti-
tion function yields base pairing probabilities that tell how likely it is to find
two specific nucleotides forming a base pair in the ensemble of structures at
thermal equilibrium.

Although folding RNA sequences into secondary structures is, presumably,
the simplest conceivable case of a genotype-phenotype map, it is at the same
time an example for the origin of complexity at the molecular level. The base
pairing interaction is essentially non-local since a nucleotide can pair with
another nucleotide from almost any position of the sequence.12 The strongest
stabilizing contributions to the free energy of structure formation come from
neighboring base pairs and are therfore local. The combination of local and
non-local effects is one of the most common sources of complex relations in
mappings.

The relation of an RNA sequences and its suboptimal structures is sketched
in fig.1.5 (lower part). A single sequence X gives rise to a whole set of struc-
tures spread all over shape space. In principle, all structures that are compati-
ble with the sequence appear in the spectrum of suboptimals but only a subset
is stable in the sense that the structure Si (i = 1, . . .) corresponds to a local
minimum of the conformational energy surface and the free energy of folding
is negative (∆Gfold(Si) < 0). Using the base pair count the set of all structures
that are compatible with the sequence Xh can be defined straightforwardly:

Si ∈ C(Xh) iff {γ(i)
j = γ

(i)
k =⇒ b

(h)
j b

(h)
k ∈ B ∀ γj 6= 0, j = 1, . . . , ℓ} (1.12)

In other words, a structure Si is compatible with a sequence Xh if, and only
if, two nucleotides that can form a base pair, appear in the sequence at all
pairs of positions, which are joined by a base pair in the structure. For an arbi-
trary sequence the number of compatible structures is extremely large but the
majority of them has either positive free energies of folding (∆Gfold(Si) > 0)
and/or represent saddle points rather than local minima of the conformational
energy surface. Fig.1.5 indicates the relation between an RNA sequence, its
mfe structure, and its stable suboptimal conformations.

Studies of mfe structures or suboptimal structures refer to a certain set of
conditions – for example, temperature T , pH, ionic strength – but time is miss-
ing since free energy differences (∆G) or partition functions are equilibrium
properties. The structures that are determined and investigated experimen-
tally, however, refer always to some time window – we are not dealing with

12 Pairing with nearest neighbors is excluded for geometrical reasons. In other words,
base pairs of two adjacent nucleotides have such a high positive free energy of
formation that they are never observed.
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equilibrium ensembles but with metastable states. The finite time structures
of RNA are obtained by kinetic folding (see, e.g., [52,53]). The RNA example
shown in fig.1.3 represents the case of a bistable molecule: The most stable
suboptimal structure S1, a double hairpin conformation (blue), is the most
stable representative of a whole family of double hairpin structures forming a
broad basin of the free energy landscape of the molecule. This basin is sepa-
rated from the basin of the single hairpin structure S0 by a high energy barrier
of about 20 kcal/mole and this implies that practically no interconversion of
the two structures will take place at room temperature. We are dealing with an
RNA molecule with one stable and one metastable conformation, a so called
RNA switch. RNA switches are frequent regulatory elements in procaryotic
regulation of translation [65].

1.5 Chemical kinetics of evolution

Provided population sizes N are sufficiently large, mutation rates are high
enough, and stochastic effects are reduced by statistical compensation, evolu-
tion can be described properly by means of differential equations. In essence,
we proceed as described in section 1.2 and find for replication and mutation
as an extension of the selection equation (1.4)

dxj

dt
=

n
∑

i=1

Qji fi xi − φ(t)xj , j = 1, . . . , n with φ(t) =

n
∑

i=1

fixi

or
dx

dt
=
(

Q · F − φ(t)
)

x =
(

W − φ(t)
)

x ,

(1.13)

where x is an n-dimensional column vector; Q and F are n× n matrices. The
matrix Q contains the mutation probabilities – Qji referring to the production
of Xj as an error copy of template Xi – and F is a diagonal matrix whose
elements are the replication rate parameters or fitness values fi.

Solutions of the mutation-selection equation (1.13) can be obtained in two
steps: (i) integrating factor transformation allows for an elimination of the
nonlinear term φ(t) and (ii) the remaining linear equation is solved in terms
of an eigenvalue problem [66–69].

xj(t) =

∑n
k=1 bjk

∑n
i=1 hki xi(0) exp(λk t)

∑n
l=1

∑n
k=1 blk

∑n
i=1 hki xi(0) exp(λk t)

, j = 1, . . . , n . (1.14)

The new quantities in this equation, bjk and hkj , are the elements of two
transformation matrices:

B = {bjk; j = 1, . . . , n; k = 1, . . . , n} and

B−1 = {hkj ; k = 1, . . . , n; j = 1, . . . , n}



20 Peter Schuster

The columns of B and the rows of B−1 represent the right hand and left hand
eigenvectors of the matrix W = Q · F with B−1 · WB = Λ being a diagonal
matrix containing the eigenvalues of W. The elements of the matrix W are
non-negative by definition since they are the product of a fitness value or
replication rate parameter fi and a mutation probability Qji, which both are
non-negative. If, in addition, W is a non-negative primitive matrix13 – imply-
ing that every sequence can be reached from every sequence by a finite chain
of consecutive mutations – the conditions for the validity of Perron-Frobenius
theorem [70] are fulfilled. Two (out of six) properties of the eigenvalues and
eigenvectors of W are important for replication-mutation dynamics:
(i) The largest eigenvalue λ1 is non-degenerate, λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn, and
(ii) the unique eigenvector belonging to λ1 denoted by ξ1 has only positive

elements, ξ
(1)
j > 0 ∀ j = 1, . . . , n.

After sufficiently long time the population converges to the largest eigen-
vector ξ1 which is, therefore, the stationary state of equ. (1.13). Since ξ1 rep-
resents the genetic reservoir of an asexually replicating species it was called
the quasispecies [68]. A quasispecies commonly consists of a fittest genotype,
the master sequence, and a mutant distribution surrounding the master se-
quence in sequence space. Although the solution of the mutation-selection is
straightforward, an experimental proof for the existence of a stationary mu-
tant distribution and its analysis are quite involved [71]. The work has been
conducted with relatively short RNA molecules (chain length: ℓ = 87). Geno-
typic heterogeneity in virus populations was detected already in the nineteen
seventies [72]. Later, the existence of quasispecies in nature has been demon-
strated for virus populations (For an overview and a collection of reviews
see [73, 74]). Since it is very hard if not impossible to prove that a natural
population is in a steady state, the notion virus quasispecies was coined for
virus populations observed in vitro and in vivo.

In order to explore quasispecies as a function of the mutation rate p a crude
or zeroth order approximation consisting of neglect of backward mutations has
been adopted [33]. The differential equation for the master sequence is then
of the form

dx
(0)
m

dt
= Qmmfm x(0)

m − x(0)
m φ(t) = x(0)

m

(

Qmmfm− f̄−m − x(0)
m (fm− f̄−m)

)

,

with f̄−m =
(
∑n

j=1,j 6=m fjxj

)

/(1 − xm). We apply the uniform error approx-
imation and assume that the mutation rate per nucleotide and replication
event, p, is independent of the nature of the nucleotide (A, U, G or C) and
the position along the sequence and find for the elements of the mutation
matrix Q

13 A square non-negative matrix W = {wij ; i, j = 1, . . . , n; wij ≥ 0} is called primi-

tive if there exists a positive integer m such that Wm is strictly positive: Wm > 0
which implies Wm = {w(m)

ij ; i, j = 1, . . . , n; w
(m)
ij > 0}.
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Fig. 1.6. The error threshold in RNA replication. The stationary fre-
quency of the master sequence Xm is shown as a function of the mutation rate
p. In the zeroth order approximation neglecting mutational backflow the function
x̄

(0)
m (p) is almost linear in the particular example shown here. In the insert the ze-

roth order approximation (black) is shown together with the exact function (red)
and an approximation applying the uniform distribution to the mutational cloud
(x̄j = (1 − x̄m)/(n − 1) ∀ j 6= m; blue), which is exact at the mutation rate p = 0.5
for binary sequences. The error rate p has two natural limitations: (i) the physical
accuracy limit of the replication process provides a lower bound for the mutation
rate and (ii) the error threshold defines a minimum accuracy of replication that
is required to sustain inheritance and sets an upper bound for the mutation rate.
Parameters used in the calculations: binary sequences, ℓ = 6, σ = 1.4131.

Qjj = (1 − p)ℓ and Qji = (1 − p)ℓ

(

p

1 − p

)dH(Xi,Xj)

, (1.15)

and obtain for the stationary concentration of the master sequence

x̄(0)
m =

Qmm − σ−1
m

1 − σ−1
m

=
1

σm − 1

(

σm (1 − p)ℓ − 1
)

,

where σm = fm/f̄−m > 1 is the superiority of the master sequence and f̄−m

is defined by

f̄−m =
1

1 − xm

n
∑

i=1,i6=m

xi fi .

In this zeroth order approximation the stationary concentration x̄
(0)
m (p) van-

ishes at the critical value
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Fig. 1.7. The error threshold on single peak fitness landscapes. The upper
part of the figure shows the quasispecies as a function of the mutation rate p. The
variables ȳk(p) (k = 0, 1, . . . , ℓ) represent the total concentrations of all sequences
with Hamming distance dH = k: ȳ0 = x̄m (black) is the concentration of the master
sequence, ȳ1 =

∑n

i=1,dH(Xi,Xm)=1 x̄i (red) is the concentration of the one-error class,

ȳ2 =
∑n

i=1,dH(Xi,Xm)=2 x̄i (yellow) that of the two-error class and, accordingly,

we have ȳk =
∑n

i=1,dH(Xi,Xm)=k
x̄i for the k-error class. The lower part shows an

enlargement. The position of the error threshold computed from the zeroth order
approximation (1.16) is shown as by a dotted line (grey). Choice of parameters:
κ = 2, ℓ = 100, fm = 10, f0 = 1 and hence σm = 10 and pcr = 0.02276.

p cr ≈ 1 − (σm)−1/ℓ . (1.16)

Needless to say, zero concentration of the master sequence is an artifact of the
approximation, because the exact concentration of the master sequence cannot
vanish by Perron-Frobenius theorem as long as the population size is nonzero.
In order to find out what really happens at the critical mutation rate p cr com-
puter solutions of the complete equation (1.13) were calculated for the single
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peak fitness landscape.14 These calculations [75] show a sharp transition from
the ordered quasispecies to the uniform distribution, x̄j = κ−ℓ ∀ j = 1, . . . , κℓ.
At the critical mutation rate p cr replication errors accumulate and (indepen-
dently of initial conditions) all sequences are present at the same frequency in
the long time limit as is reflected by the uniform distribution. The uniform dis-
tribution is the exact solution of the eigenvalue problem at equal probabilities
for all nucleotide incorporations (A→A, A→U, A→G, and A→C) occurring
at p̃ = κ−1. The interesting aspect of the error threshold phenomenon consists
in the fact that the quasispecies approaches the uniform distribution at a the
critical mutation rate p cr, which is far below the random mutation value p̃.
As a matter of fact the appearance of an error threshold and its shape depend
on details of the fitness landscape [76, pp.51-60]. Some landscapes show no
error threshold at all but a smooth transition to the uniform distribution [77].
More realistic fitness landscapes with a distribution of fitness values reveal a
much more complex situation: For constant superiority the value of p cr be-
comes smaller with increasing variance of fitness values. The error threshold
phenomenon can be split into three different observations that coincide on
the single peak landscape: (i) vanishing of the master sequence xm, (ii) phase
transition like behavior, and (iii) transition to the uniform distribution. On
suitable model landscapes the three observations do not coincide and thus can
be separated [78, 79].

How do populations behave at mutation rates above the error threshold?
In reality a uniform distribution of variants as requested for the stationary
state can’t be realized. In RNA selection experiments population sizes hardly
exceed 1015 molecules, the smallest aptamers have chain lengths of ℓ = 27
nucleotides [80] and this implies 427 ≈ 18 × 1015 different sequences. Even in
this most favorable case we are dealing with more sequences than molecules
in the population: a uniform distribution cannot exist. Although the origin of
the lack of selective power is completely different – high mutation rates wiping
out the differences in fitness values versus fitness differences being zero or too
small for selection, the most likely scenarios to occur are migrating populations
similar to evolution on a flat landscape [81]. Bernard Derrida and Luca Peliti
find that the populations break up into clones, which migrate into different
directions in sequence space. Migrating populations are unable to conserve a
genotype over generations, and unless a large degree of neutrality allows for
maintenance of a phenotype despite changing genotypes, evolution becomes
impossible because inheritance breaks down.

Because of high selection pressure resulting from the hosts’ defense sys-
tems virus population operate at mutations rates as high as possible in order

14 The single peak fitness landscape is a kind of mean field approximation: A fitness
value fm is assigned to the master sequence, whereas all other variants have the
same fitness f0. For this particular landscape the position x̄

(0)
m = 0 calculated

within the zeroth-order approximation almost coincides with the position of the
critical change in the population structure (Fig.1.7).
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to allow for fast evolution, and this is just below the error threshold [82]. In-
creasing the mutation rate should drive the virus population beyond thresh-
old where sufficiently accurate replication is no more possible. Therefore virus
populations are doomed to die out at mutation rates above threshold and
this suggested a novel antiviral strategy that has led to the development of
new drugs [83]. A more recent discussion of the error threshold phenomenon
tries to separate the error accumulation phenomenon from mutation caused
fitness effects leading to virus extinction called lethal mutagenesis [84,85]. As
a matter of fact lethal mutagenesis describes the error threshold phenomenon
for variable population size N as required for limN → 0, but an analysis
of population dynamics without and with stochastic effects at the onset of
migration of populations is still missing. In addition, more detailed kinetic
studies on replication in vitro near the error threshold are required before the
mechanism of virus extinction at high mutation rates will be understood.

Sequence-structure mappings of nucleic acid molecules (1.4) and proteins
provide ample evidence for neutrality in the sense that many genotypes give
rise to the same phenotype and identical or almost identical fitness values
that cannot be discriminated by natural selection. The possible occurrence of
neutral variants has been discussed already by Charles Darwin [2, chapter iv].
Based on the results of the first sequence data from molecular biology Motoo
Kimura formulated his neutral theory of evolution [86,87]. In absence of fitness
differences between variants random selection occurs because of stochastic en-
hancement through autocatalytic processes: More frequent variants are more
likely to be replicated than less frequent ones. Ultimately a single genotype
becomes fixated in the population. The average time of replacement for a
dominant genotype is the reciprocal mutation rate, ν−1 = (ℓp)−1, which, in-
terestingly, is independent of the population size. Are Kimura’s results valid
also for large population sizes and high mutation rates as they occur, for
example, with viruses? Mathematical analysis [88] together with recent com-
puter studies [78] yields the answer: Random selection in the sense of Kimura
occurs only for sufficiently distant (master) sequences. In full agreement with
the exact result in the limit p→ 0 we find that two fittest sequences of Ham-
ming distance dH = 1, two nearest neighbors in sequence space, are selected
as a strongly coupled pair with equal frequency of both members. Numeri-
cal results demonstrate that this strong coupling occurs not only for small
mutation rates but extends over the whole range of p-values from p = 0 to
the error threshold p = pcr. For clusters of more than two Hamming distance
one sequences the frequencies of the individual members of the cluster is de-
termined by the largest eigenvector of the adjacency matrix. Pairs of fittest
sequences with Hamming distance dH = 2, i.e. two next nearest neighbors
with two sequences in between, are also selected together but the ratio of
the two frequencies is different from one. Again coupling extends from zero
mutation rates to the error threshold. Strong coupling of fittest sequences
manifests itself in virology as systematic deviations from consensus sequences
of populations as indeed observed in nature. For two fittest sequences with
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dH ≥ 3 random selection chooses arbitrarily one of both and eliminates the
other one as predicted by the neutral theory.

The function φ(t) was introduced as the mean fitness of a population in
order to allow for straightforward normalization of the population variables.
A more general interpretation considers φ(t) as a flux out of the system. Then
the equation describing evolution of the column vector of particle numbers
N = (N1, . . . , Nn) is of the form [89]

dNj

dt
= Fj(N) − Nj

C(t)
φ(t) , i = 1, . . . , n ,

where Fj(N) is the function of unconstrained reproduction. An example is
provided by equation (1.13): Fj(N) =

∑n
i=1QjifiNi. Explicit insertion of

the total concentration C(t) =
∑n

i=1Ni(t) yields

φ(t) =

n
∑

i=1

Fi(N) − dC

dt
or C(t) = C0 +

∫ t

0

(

n
∑

i=1

Fi(N) − φ(τ)

)

dτ .

Either C(t) or φ(t) can be chosen freely, the second function is then determined
by the equation given above. For normalized variables we find

dxj

dt
=

1

C(t)

(

Fj(N) − xj

n
∑

i=1

Fj(N)

)

.

For a large number of examples and for the most cases important in evolution
the functions Fj(N) are homogeneous functions in N . For homogeneity of
degree γ we have Fj(N) = Fj(C · N) = CγFj(x) and find

dxj

dt
= Cγ−1

(

Fj(x) − xj

n
∑

i=1

Fj(x)

)

, j = 1, . . . , n . (1.17)

Two conclusions can be drawn from this equation: (i) For γ = 1, e.g. the
selection equation (1.4) or the replication-mutation equation (1.13), the de-
pendence on the total concentration C vanishes and the solution curves in
normalized variables xj(t) are the same in stationary (C = const) and non-
stationary systems as long as C(t) remains finite and does not vanish, and (ii)
if γ 6= 1 the long term behavior determined by ẋ = 0 is identical for station-
ary and non-stationary systems unless the population dies out C(t) → 0 or
explodes C(t) → ∞.



26 Peter Schuster

1.6 Evolution as a stochastic process

Stochastic phenomena are essential for evolution – each mutant after all starts
out from a single copy and a large number of studies have been conducted
on stochastic effects in population genetics [90]. Not too much work, however,
has been devoted so far to the development of a general stochastic theory
of molecular evolution. We mention two examples representative for others
[91, 92]. In the latter case the reaction network for replication and mutation
was analyzed as a multi-type branching process and it was proven that the
stochastic process converges to the deterministic equation (1.13) in the limit
of large populations. What is still missing is a comprehensive treatment, for
example by means of chemical master equations [93]. Then the deterministic
population variables xj(t) are replaced by stochastic variables Xj(t) and the
corresponding probabilities

P
(j)
k (t) = Prob{Xj = k} , k = 0, 1, . . . , N ; j = 1, . . . , n . (1.18)

The chemical master equation translates a mechanism into a set of differential
equation for the probabilities. The pendant of equation (1.13), for example,
is the master equation

dP
(j)
k

dt
=

(

n
∑

i=1

Qjifi

n
∑

s=1

s P (i)
s

)

P
(j)
k−1 − φ(t)P

(j)
k −

−
(

n
∑

i=1

Qjifi

n
∑

s=1

s P (i)
s

)

P
(j)
k + φ(t)P

(j)
k+1 .

(1.19)

The only quantity that has to be specified further in this equation is the
flux term φ(t). For the stochastic description it is not sufficient to have a
term that is just compensating the increase in population size due to replica-
tion, a detailed model of the process is required. Examples are (i) the Moran
process [94–96] with strictly constant population size and (ii) the flow reac-
tor (CSTR) with a population size fluctuating within the limits of a

√
N -

law [97, 98].15 The Moran process assumes that for every newborn molecule
one molecule is instantaneously eliminated. Strong coupling of otherwise com-
pletely independent processes has the advantage of mathematical simplicity
but it is lacking a physical background. The flowreactor, on the other hand, is
harder to treat in the mathematical analysis but it is based on solid physical
grounds and can be easily implemented experimentally. In computer simula-
tion both models require comparable efforts and for molecular systems pref-
erence is given therefore to the flowreactor.

15 All thermodynamically admissible processes obey a so-called
√

N law: For a mean
population size of N the actual population size fluctuates with a standard devi-
ation proportional to

√
N .
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Fig. 1.8. Survival in the flowreactor. Replication and mutation in the flowreac-
tor is implemented according to the mechanism (1.20). The stochastic process has
two absorbing states: (i) extinction, Xj = 0∀ j = 1, . . . , n, and (ii) a predefined
target state – here the structure of tRNAphe. A rather sharp transition in the long
time behavior of the population is shown in the lower plot: Populations of natural
sequences (AUGC) switch from almost certain extinction to almost certain survival
in the range 13 ≤ N ≤ 18 and for binary sequences (GC) the transition is even
sharper but requires slightly larger population sizes.
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For evolution of RNA molecules through replication and mutation in the
flowreactor, the following reaction mechanism has been implemented:

∗
a0 r

−−−−→ A ,

A + Xi

Qjifi

−−−−→ Xi + Xj ; i, j = 1, . . . , n ,

A
r

−−−−→ ∅ , and

Xj

r

−−−−→ ∅ ; j = 1, . . . , n .

(1.20)

Stock solution is flowing into the reactor with a flow rate r and it feeds the re-
actor with the material required for polynucleotide synthesis – schematically
denoted by A and consisting, for example, of activated nucleotides, ATP,
UTP, GTP and CTP as well as a replicating enzyme – into the system. The
concentration of A in the stock solution is denoted by a0. The molecules Xj

are produced by the second reaction either by correct copying or by muta-
tion. The third and the fourth reaction describe the outflux of material and
compensate the increase in volume caused by the influx of stock solution.
The reactor is assumed to be perfectly mixed at every instant (continuous
stirred-tank reactor = CSTR). For target search the stochastic process in the
reactor is constructed to have two absorbing states (Fig.1.8): (i) extinction –
all RNA molecules are diluted out of the reaction vessel, and (ii) survival – the
predefined target structure has been produced in the reactor. The population
size determines the outcome of the computer experiment: Below population
sizes of N = 13 the reaction in the CSTR goes almost certainly extinct but it
reaches the target with a probability close to one for N > 20. The probability
of extinction is very small for sufficiently large populations and for population
sizes, N ≥ 1000, as reported here, extinction has been never observed.

In order to simulate the interplay between mutation acting on the RNA
sequence and selection operating on RNA structures, the sequence-structure
map has to be turned into an integral part of the model [97, 98, 103]. The
simulation tool starts from a population of RNA molecules and simulates
chemical reactions corresponding to replication and mutation in a CSTR ac-
cording to (1.20) by using Gillespie’s algorithm [99–101]. Molecules replicate
in the reactor and produce both correct copies and mutants, the materials
to be consumed are supplied by the continuous influx of stock solution into
the reactor, and excess volume is removed by means of the outflux of reactor
solution. Two kinds of computer experiments were performed: Optimizations
of properties on a landscape derived from the sequence-structure map and
target searches in shape space where the target is some predefined structure.

Early simulations optimizing replication rates in populations of binary GC-
sequences yielded two general results:
(i) The progress in evolution is stepwise rather than continuous as short adap-
tive phases are interrupted by long quasistationary epochs [97, 98].
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Fig. 1.9. A trajectory of evolutionary optimization. The topmost plot presents the
mean distance to the target structure of a population of 1000 molecules. The plot
in the middle shows the width of the population in Hamming distance between se-
quences and the plot at the bottom is a measure of the velocity with which the center
of the population migrates through sequence space. Diffusion on neutral networks
causes spreading on the population in the sense of neutral evolution [102]). A re-
markable synchronization is observed: At the end of each quasistationary plateau a
new adaptive phase in the approach towards the target is initiated, which is accom-
panied by a drastic reduction in the population width and a jump in the population
center (The top of the peak at the end of the second long plateau is marked by
a black arrow). A mutation rate of p = 0.001 was chosen, the replication rate pa-
rameter is defined in equation (1.21), and initial and target structures are shown in
table 1.1.
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Table 1.1. Statistics of the optimization trajectories. The table shows the results of sam-
pled evolutionary trajectories leading from a random initial structure SI to the structure
of tRNAphe, ST as target. a Simulations were performed with an algorithm introduced by
Gillespie [99–101]. The time unit is here undefined. A mutation rate of p = 0.001 per site
and replication was used. The mean and standard deviation were calculated under the as-
sumption if a log-normal distribution that fits well the data of the simulations.

Population Number of Real time from Number of replications
Alphabet size runs start to target [107]

N nR Mean value σ Mean value σ

AUGC 1000 120 900 +1380 -542 1.2 +3.1 -0.9

2000 120 530 +880 -330 1.4 +3.6 -1.0

3000 1199 400 +670 -250 1.6 +4.4 -1.2

10000 120 190 +230 -100 2.3 +5.3 -1.6

30000 63 110 +97 -52 3.6 +6.7 -2.3

100000 18 62 +50 -28 – –

GC 1000 46 5160 +15700 -3890 – –

3000 278 1910 +5180 -1460 7.4 +35.8 -6.1

10000 40 560 +1620 -420 – –

a The structures SI and ST were used in the optimization:

SI : ((.(((((((((((((............(((....)))......)))))).))))))).))...(((......)))

ST : ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....
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most orthogonal – directions in sequence space and gave rise to contingency
in evolution thereby [98].

In target search problems the replication rate of a sequence Xk, repre-
senting its fitness fk, is chosen to be a function of the Hamming distance17

between the structure formed by the sequence, Sk = f(Xk) and the target
structure ST ,

fk(Sk, ST ) =
1

α + dH(Sk, ST )/ℓ
, (1.21)

which increases when Sk approaches the target (α is an empirically adjustable
parameter that was commonly chosen to be 0.1). A trajectory is completed
when the population reaches a sequence that folds into the target structure –
appearance of the target structure in the population is defined as an absorb-
ing state of the stochastic process. A typical trajectory is shown in fig.1.9. In
this simulation a homogenous population consisting on N molecules with the
same random sequence and structure is chosen as initial condition. The tar-
get structure is the well-known secondary structure of phenylalanyl-transfer
RNA (tRNAphe). The mean distance to target of the population decreases in
steps until the target is reached [103–105] and, again the approach to target
is stepwise rather than continuous: Short adaptive phases are interrupted by
long quasistationary epochs. In order to reconstruct optimization dynamics,
a time ordered series of structures was determined that leads from an initial
structure SI to the target structure ST . This series, called relay series, is a
uniquely defined and uninterrupted sequence of shapes. It is retrieved through
backtracking, that is in opposite direction from the final structure to the ini-
tial shape. The procedure starts by highlighting the final structure and traces
it back during its uninterrupted presence in the flow reactor until the time of
its first appearance. At this point we search for the parent shape from which
it descended by mutation. Now we record time and structure, highlight the
parent shape, and repeat the procedure. Recording further backwards yields
a series of shapes and times of first appearance which ultimately ends in the
initial population.18 Usage of the relay series and its theoretical background
allows for classification of transitions [103, 104, 106]. Inspection of the relay
series together with the sequence record on the quasistationary plateaus pro-
vides strong hints for the distinction of two scenarios:
(i) The structure is constant and we observe neutral evolution in the sense of
Kimura’s theory of neutral evolution [87]. In particular, the numbers of neu-
tral mutations accumulated are proportional to the number of replications in
the population, and the evolution of the population can be understood as a

17 The distance between two structures is defined here as the Hamming distance
between the two symbolic notations of the structures.

18 It is important to stress two facts about relay series: (i) The same shape may ap-
pear two or more times in a given relay series series. Then, it was extinct between
two consecutive appearances. (ii) A relay series is not a genealogy which is the
full recording of parent-offspring relations in a time-ordered series of genotypes.
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diffusion process on the corresponding neutral network [102].
(ii) The process during the quasistationary epoch involves several closely re-
lated structures with identical replication rates and the relay series reveals a
kind of random walk in the space of these neutral structures.
The diffusion of the population on the neutral network is illustrated by the
plot in the middle of fig.1.9 that shows the width of the population as a func-
tion of time [105]. The population width increases during the quasistationary
epoch and sharpens almost instantaneously after a sequence had been created
by mutation that allows for the start of a new adaptive phase in the optimiza-
tion process. The scenario at the end of the plateau corresponds to a bottle
neck of evolution. The lower part of the figure shows a plot of the migration
rate or drift of the population center and confirms this interpretation: Mi-
gration of the population center is almost always very slow unless the center
‘jumps’ from one point in sequence space to a possibly distant point where
the molecule initiating the new adaptive phase is located. A closer look at
the three curves in fig.1.9 reveals coincidence of three events: (i) collapse-like
narrowing of the population spread, (ii) jump-like migration of the population
center, and (iii) beginning of a new adaptive phase.

It is worth mentioning that the optimization behavior observed in a long-
term evolution experiment with Escherichia coli [46] can be readily inter-
preted in terms of random searches on a neutral network. Starting with twelve
colonies in 1988, Lenski and his coworkers observed after 31 500 generation or
twenty years a great adaptive innovation in one colony [45]: This colony de-
veloped a kind of membrane channel that allows for uptake of citrate, which is
used as buffer in the medium. The colony thus conquered a new resource that
led to a substantial increase in colonial growth. The mutation providing cit-
rate import into the cell is reproducible when earlier isolates of this particular
colony are used for a restart of the evolutionary process. Apparently this par-
ticular colony has traveled through sequence space to a position from where
the adaptive mutation allowing for citrate uptake is within reach. All other
eleven colonies did not give rise to mutations with a similar function. The
experiment is a nice demonstration of contingency in evolution: The conquest
of the citrate resource does not happen through a single highly improbable
mutation but by means of a mutation with standard probability from a par-
ticular region of sequence space where the population had traveled in one case
out of twelve – history matters, or repeating Theodosius Dobzhansky’s famous
quote: “Nothing makes sense in biology except in the light of evolution” [29].

Table 1.1 collects some numerical data sampled from evolutionary trajecto-
ries of simulations repeated under identical conditions. Individual trajectories
show enormous scatter in the time or the number of replications required to
reach the target. The mean values and the standard deviations were obtained
from statistics of trajectories under the assumption of log-normal distribu-
tions. Despite the scatter three features are unambiguously detectable:
(i) The search in GC sequence space takes about five time as long as the cor-
responding process in AUGC sequence space in agreement with the difference
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in neutral network structure.
(ii) The time to target decreases with increasing population size.
(iii) The number of replications required to reach target increases with pop-
ulation size.
Combination of the results (ii) and (iii) allows for a clear conclusion concerning
time and material requirements of the optimization process: Fast optimization
requires large populations whereas economic use of material suggests to work
with small population sizes just sufficient to avoid extinction.

A study of parameter dependence of RNA evolution was reported in a
recent simulation [107]. Increase in mutation rate leads to an error threshold
phenomenon that is closely related to one observed with quasispecies on a
single-peak landscape as described above [69, 75]. Evolutionary optimization
becomes more efficient19 with increasing error rate until the error threshold
is reached. Further increase in error rates leads to a breakdown of the opti-
mization process. As expected the distribution of replication rates or fitness
values fk in sequence space is highly relevant too: Steep decrease of fitness
with the distance to the master structure represented by the target, which
has the highest fitness value, leads to sharp threshold behavior as observed
on single-peak landscapes, whereas flat landscapes show a broad maximum of
optimization efficiency without an indication of threshold-like behavior.

1.7 Concluding remarks

Biology developed differently from physics because it refrained from using
mathematics as a tool to analyze and unfold theoretical concepts. Applica-
tion of mathematics enforces clear definitions and reduction of observations
to problems that can be managed. Over the years physics became the sci-
ence of abstractions and generalizations, biology the science of encyclopedias
of special cases with all their beauties and peculiarities. Among others there
is one exception of the rule: Charles Darwin presented a grand generaliza-
tion derived from a wealth of personal and reported observations together
with knowledge from economics concerning population dynamics. In the sec-
ond half of the twentieth century the appearance of molecular biology on
the stage changed the situation entirely. A bridge was built from physics and
chemistry to biology and mathematical models from biochemical kinetics or
population genetics became presentable in biology. Nevertheless, the vast ma-
jority of biologists still smiled at the works of theorists. Molecular genetics by
the end of the twentieth century created such a wealth of data that almost
everybody feels nowadays that progress cannot be made without a compre-
hensive theoretical foundation and a rich box of suitable computational tools.
Nothing like this is at hand but indications for attempts in the right direction

19 Efficiency of evolutionary optimization is measured by average and best fitness
values obtained in populations after a predefined number of generations.
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are already visible. Biology is going to enter the grand union of science that
started with physics and chemistry and is progressing fast. Molecular biology
started out with biomolecules in isolation and deals now with cells, organs,
and organisms. Hopefully, this spectacular success will end the so far fruitless
reductionism versus holism debate.

Insight into the mechanisms of evolution reduced to the conceivably
most simple systems was provided here. These systems deal with evolvable
molecules in cell-free assays and are accessible by rigorous mathematical anal-
ysis and physical experimentation. An extension to asexual species, in partic-
ular viruses and bacteria, is within reach. The molecular approach provides
a simple explanation why we have species for this organisms despite the fact
that there is neither restricted recombination nor reproductive isolation. The
sequence spaces are so large that populations, colonies or clones can migrate
for the age of the universe without coming close to another asexual species.
We can give an answer to the question of the origin of complexity: Complexity
in evolution results primarily from genotype-phenotype relations and from the
influences of the environment. Evolutionary dynamics may be complicated in
some cases but it is not complex at all. This has been reflected already by the
sequence-structure map of our toy example. Conformation spaces depending
on the internal folding kinetics as well as on environmental conditions and
compatible sets are metaphors for more complex features in evolution proper.

Stochasticity is still an unsolved problem in molecular evolution. The
mathematics of stochastic processes encounters difficulties in handling the
equations of evolution in detail. A comprehensive stochastic theory is still not
at hand and the simulations are lacking more systematic approaches since
computer simulations of chemical kinetics of evolution are in an early state
too. Another fundamental problem concerns the spatial dimensions: Almost
all treatments are assuming spatial homogeneity but we have evidence for the
solid particle like structure of the chemical factories of the cell. In the future,
any comprehensive theory of the cell will have to deal with these structurally
rich supramolecular structures too.
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