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Why live larger mammals longer than smaller ones? Why is the energy consumption per 
body mass of a mouse six times higher than that of a human? These questions and many 
others dealing with biological allometry‡

 

 kept and keep biologists busy since the second 
half of nineteenth century and as it seems, the ultimate answers have not yet been given. 
Analyzing allometry is particularly attractive since the biomass of organisms varies over 
more than twenty orders of magnitude from approximately 1 pg = 10-12 g (mycoplasma, a 
very small bacterium) to 2  108 g (blue whale), and in case of mammals the lower limit 
by mass is provided by the Etruscan Shrew with about 1 g thus still leaving eight orders 
of magnitude variation in body mass. The wide range of animal sizes makes body mass 
related properties an ideal test ground for scaling relations, in particular for power laws, 
and this is the reason why body mass allometry is chosen here as a representative and 
data rich example for other power laws. The number of papers dealing with attempt to 
scale body mass dependent relations in log/log-plots is indeed enormous. 

The physiologist Max Rubner was presumably the first who addressed allometric scaling 
in his paper on body size and metabolism.1
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 He suggested a power law  
 

relating the whole-organism metabolic rate B to body mass M. From his data he found an 
exponent  = 2/3, which meets the intuition that the metabolic rate should be related to 
the surface-to-volume ratio in order to sustain temperature regulation: Heat loss is 
proportional to the body surface and lost heat has to be compensated by metabolic energy 
dissipation. About fifty years later the Swiss biologist Max Kleiber reported that the 
consumption of oxygen of a resting mammalian body fulfilled a power law with a 
different exponent of  = 3/4, which is often called Kleiber’s law.2 Ever since his 
publication more than seventy years ago a great number of scientists have tried either to 
question the relation or to provide an explanation for it. Jacob Blum provided a somewhat 
naïve solution to the problem: Biological organism are four dimensional and the 
(hyper)volume to hyper(surface) ratio is then 3/4.3 John Speakman argues in response 
that heat exchange occurs across the two-dimensional body surface no matter what the 
(highest) dimension of the creature is and mass is proportional to volume and therefore 
“… the relationship 3/4 has absolute no bearing on the relationship between energy 
expenditure, body mass and the surface law…” and thus  = 2/3 remains to be expected 
for four-dimensional organisms as well.4

                                                 
* The essay has been published in Complexity 16/3: xx-xx (2011). 

 We dispense here from all other historic details 
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‡ Allometry is the study of the relationship between size and shape. The original meaning of the term has 
been extended to all kinds of size and body mass related properties. 
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and mention only the more recent approaches beginning with the West-Brown-Enquist 
model published in 1997.5

 
 

The model by Geoffrey West, James Brown, and Brian Enquist (WBE model)5 is based 
on the assumption that metabolism is limited by transport of essential materials through a 
space-filling (near) optimal fractal network of branching tubes. In particular, the model is 
based on three principles: (i) The transport network supplies the entire organism, (ii) the 
final branches of the transport system, e.g. the capillaries of the blood circulation system, 
are size invariant, and (iii) the energy dissipation accompanying the distribution of 
resources is minimized. Because of the fractal nature of many biological transport 
systems – respiratory, cardiovascular, tracheal, xylem (for water) and phloem (for organic 
molecules) transport in plants – a formal fourth internal dimension in organisms is 
postulated. A fractal built from hierarchically structured one-dimensional objects may 
indeed have a Hausdorff-dimension of dH=2 like, for example, the Peano curve does.6 
Other examples are the Sierpiński curve, the Hilbert curve as well as probabilistic 
curves.§,7 The Hilbert curve is particularly interesting because the Hilbert acinus has 
some topological properties in common with the real acini.**,8 Consequently, biology of 
metabolic transport in organisms would not be three- but four-dimensional and this could 
explain intuitively the appearance of exponents in the power laws, which are multiples of 
1/4.9 In contrast to the Blum’s explanation the ‘fourth’-dimension of the WBE model is 
embedded in three-dimensional space in form of an area filling fractal. Many examples of 
scaling relations are known in which the scaling exponents are n/4 with n being some 
integer between -3 and 4.5,10
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 For some properties multiples of fractions of 1/4, 1/6, 1/8, 
and 1/12 are predicted and observed. The metabolic rate per gram body mass in mammals 
is easily shown to scale with -1/4: 

 

The cells in larger mammals metabolize more slowly and this fact is reflected by cardiac 
frequency and life span, which scale approximately with -1/4 and 1/4, respectively.5,11
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The final conclusion for the WBE scaling of the metabolic rate B boils down to the result:  

 , 

with A and L being exponents describing the contributions of the effective surface area, 
through which metabolic resources are exchanged, and the characteristic length, 
respectively. Optimization of the exponents with respect to minimal energy dissipation 
eventually yields A =1 and L = 0.9,12

                                                 
§ For a proof concerning the existence of probabilistic area filling curves of Hausdorff dimension dH = 2 

see, for example, Vincenz Beffara6. 

 A convincing argument for the validity of the 
interpretation based on fractal networks results from a comparison of size-scaling in non-
fractal and fractal objects: combustion engines and electric motors exhibit the ordinary 
geometric, i.e. third power scaling. The WBE model thus seemed to have solved the 
debate on allometry that had lasted already for longer than a century. 

** A pulmonary acinus is the ending of a tiny airway in the lung where the air sacs called alveoli are 
attached. 
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In the review of the book ‘Scaling in Biology’13 Karl Niklas raises the question whether 
WBE theory because of its unifying explication of size-dependent organic phenomena is 
potentially as important to biology as Newtonian mechanics is to physics.14

 

 Fair enough I 
would put Darwin’s principle of selection closer to Newton because it is in the core of 
biological thought but the following argument holds for both Darwin and WBE: 
Newton’s success was based on the existence of a celestial mechanics where all 
predictions of gravity could be studied without the perturbation by terrestrial side 
phenomena, friction and air resistance, spatial extension and plasticity of moving bodies 
for example. There is no celestial biology and therefore an ideal reference system that is 
accessible to observation and precise measurement is missing. Personally, I doubt that the 
laws of gravity would have been detected so fast without the simple celestial reference 
system together with the wealth of several thousand years of astronomic observations. 
Maybe they would not have been detected at all. 

Despite the enthusiastic comments to the WBE model by part of the scientific community 
several criticisms were raised too. Already in 2001 it was argued that available data as 
well as the theoretical background for  = 3/4 are unconvincing for rejecting the “null 
hypothesis” that  = 2/3.12 In particular, various deviations from the value 3/4 are 
observed but the theory cannot account for such deviations although they are remarkable 
– the maximal metabolic rate (MMR), for example, scales with exponents as large as 
0.92.11,15 A year later, in 2002 followed the suggestion to distinguish carefully between 
basal and maximal metabolic rates and to accept multiple causes for allometry that 
manifest themselves in a multi-exponential relationship:15
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where MR stands for the metabolic rate in some given state,  is the intercept of the 
metabolic rate / body mass plot, and i and i are weighting factor and scaling exponent 
of the i-th contribution to the metabolic rate. Almost all analyses of metabolic scaling 
involved data from different species. An extensive analysis of data from fish belonging to 
the same species16 revealed different -values for different species and thus provided 
strong arguments against a single, universal value of . Temperature dependence of 
metabolic rates has been taken into account but the scaling exponents for fish, 
amphibians, reptiles, and mammals remained significantly heterogeneous after 
normalization to a temperature of 38oC.17 Eventually, Douglas Galzier made an attempt 
to derive a unifying explanation for differences in metabolic rate scaling by broadening 
the focus of the analyses from considering average tendencies to understanding the 
variation between extreme boundary limits and from considering primarily internal 
factors like body design to explaining the influence of both, internal and external 
(ecological) factors.18 The inclusion of extreme situations, like sleep and in particular 
hibernation, suggests an interesting systematic extension of the ranges of scaling 
exponents at metabolic levels between the extremes of minimal and maximal metabolic 
rates where demand is much smaller than supply and demand is much larger than supply, 
respectively: The scaling exponent is supposed to be  = 1 in the two limits and smaller 
in between. Variation of  is thought to follow a “U”-shaped curve with a minimum 
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value at  = 2/3. The idea of Douglas Glazier called the metabolic level boundaries 
(MLB) hypothesis certainly is appealing but more data and further theoretical support are 
required for making it a serious alternative to WBE theory. 
 
Finally, we mention extensive studies based on the WBE model and its amendments, 
which correct for finite size effects – because the scaling exponent  = 3/4 is valid only 
in the limit of infinitely large body mass – and temperature differences.19,20
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 In addition, a 
quadratic rather than a linear fit is used yielding an equation of the form: 

 . 

The fit of data over the entire range is dramatically improved and the quadratic relation 
makes one more interesting prediction. Since power laws are necessarily linear they 
predict an asymptotic scaling exponent and there is no limit put on animal size by the 
metabolic rate. The quadratic model, however, suggests that the scaling exponent would 
increase without a bound. Then, metabolic scaling may define a maximal animal size, 
which might be at the mass where the local slope reaches the value  + 2 log M = 1. 
Above this value further increase in body size would not allow for saving on metabolism. 
Interestingly, this limit lies around 108 g (100 t) and this is close to the size of the blue 
whale, the largest animal known. 
 
The expressions for allometric scaling have increased in complexity from the first to the 
last equation shown here and purists might argue that the beauty of a simple power law 
has been lost eventually and what remains is little more than an interpolation formula 
based on some theory. This, however, is to be expected when one aims at fitting real data, 
which encapsulate the impacts of largely different influences on metabolism. It remains a 
task for the future to show whether or not more insight into metabolic mechanisms will 
provide hints for the choice of suitable conditions – internal and environmental – that will 
allow for a return to simpler relations. 
 
The author acknowledges valuable suggestions and careful reading of the manuscript by 
Professor Walter Fontana. 
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