
Networks in Biology

Handling Biological Complexity Requires Novel Inputs into Network Theory

T
he year 2009 was the tenth anniversary of the first publication on scale-free

networks [1] and the fiftieth anniversary of the invention of random graphs

[2]. Science magazine devoted a special section to review the present status of

network theory, complexity research and its application to different disciplines [3].

Understanding and modeling complex systems without consideration of network

topology and network evolution became out-of-date and practically impossible.

The Erdös-Rényi model initiated a real break-through in the sense that statistical

properties of graphs and networks became accessible without knowledge of the

connection details. Among many other applications random networks became a

useful reference in the biology of macromolecules for mapping polynucleotide

sequences into structures [4]. Real world social networks, in particular communi-

cation networks, were found to have substantial shorter mean distances between

agents than those predicted by the theory of random networks. Watts and Strogatz

[5] invented networks that were found to match the available empirical data.

These networks are called small-world networks as they have the small-world

property1 [6], and they can be understood as intermediates between a regular lat-

tice and a random graph. Watts and Strogatz characterize small-world networks by

a degree of randomness (p), which varies between p 5 0 for the regular and p 5 1

for the random network. Only 1 year later, Barabási and Albert conceived small-

world networks, which are created by the construction principle of preferential

attachment [1]: Starting with a fully connected network of three nodes, further

nodes are attached one by one with a larger probability for the incoming node to

connect to a node that has already more neighbors. The resulting networks are

scale-free—besides having the small-world property—and accordingly many of

their properties fulfill power laws.2 Comparison with real world data from a great
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1The small-world property is demonstrated best by communication between

humans: The degree of separation between two persons A and B is the number of

people in a shortest chain from A to B via people who know each other, e.g.,

A$C$D$B is a chain with a degree of separation of 2. The average degree of sepa-

ration of two persons on the Earth is between 6 and 7, a fact that is often called the

six degrees of separation phenomenon.
2Scale-free or self-similar objects exhibit (roughly) the same appearance at all scales

and quantitative properties fulfill power laws. Examples are scale-free networks,

where the distribution of the degree of nodes fulfills a power law. The degree of a

node is the number of nodes to which it is connected by an edge.
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variety of different sources ranging from

physics and biology to climate model-

ing, economics, communication net-

works, and other social interactions

revealed fairly good agreement with the

predictions that focused, in essence, on

power laws describing the distribution

of node degrees being the numbers of

connections of individual nodes. The

degree distribution was found to be sen-

sitive to the class of random networks.

On the transition from random and

small-world networks to scale-free net-

works, the degree distribution changes

from a Poisson distribution for Erdös-

Rényi random graphs to a power law for

Barabási-Albert scale-free networks.

Unanswered still is the question

what the problems are that wait to be

solved by a comprehensive theory of

networks in biology. The degree distri-

bution of nodes and other statistical

quantities may be interesting for a

physicist but they are commonly of lit-

tle relevance for biology. The real im-

portance of the degree distribution is

rather of diagnostic nature in the sense

that it allows for the decision whether

or not a given network is scale-free.

Another general problem is related to

self-similarity in biology: Biological

networks hardly cover more than two

orders of magnitude—corresponding,

for example, to one to one hundred

connections—and this is often not suf-

ficient to demonstrate self-similarity.3

Moreover, biologists are interested in

the biochemical nature of the hubs,

physiologists study the molecular

approach to cellular behavior because

they are aiming at explanations of holis-

tic properties like robustness and ho-

meostasis, and pharmacologists investi-

gate protein–protein interactions to find

specific targets for novel drugs. Knowl-

edge of network topology is an indis-

pensable requirement for modeling cel-

lular dynamics, but it is only a first step.

Network statistics provides relevant in-

formation, but for answering most of

the open questions, the specific details

are essential. In particular, the mecha-

nism establishing the connections

between the nodes—genetic regulation,

chemistry of metabolism or signaling

cascades—is crucial for the construc-

tion of biologically relevant models.

One month after the special section

on networks had appeared in Science

magazine, Molecular BioSystems pub-

lished a whole issue on Computational

and Systems Biology, which contained

among other articles an article dealing

with critical issues of the application of

idealized networks to problems in biol-

ogy [7]. The authors, Lima-Mendez and

van Helden, name five points of con-

ventional and uncritical belief, which

they call myths in the sense of ‘‘a tradi-

tional story, especially one concerning

the early history of people or explaining

some natural or social phenomenon’’

and which they show to be of very lim-

ited validity when tested on real data:

1. the degree distribution of biological

networks follows a power law,

2. biological networks are scale-free,

3. the metabolic network is a small-

world,

4. small-world networks are tolerant to

random deletions, but vulnerable to

targeted attacks, and

5. biological networks grow by prefer-

ential attachment.

Dispensing from details and making

a long story short, Lima-Mendez and

van Helden don’t find the arguments for

the occurrence of scale-free networks in

biology convincing. In particular, they

make the point that Erdös-Rényi ran-

dom networks and scale-free networks

differ much less when the mean degree

of connectivity (k) is small. The evolu-

tionary growth of biological networks

does not obey preferential attachment

and the metabolic network is not small-

world. Reported small-world property

of metabolism [8, 9], they claim, is an

artifact of the method used to deter-

mine connections between metabolites,

because it does not exclude reaction

steps that violate mass conservation

[10]. From biochemical experience, it is

indeed hard to believe that the average

distance for the interconversion of any

pair of biochemical compounds is only

three reactions with a very narrow dis-

tribution that contains almost all short-

est paths between one and four.

Are statistical properties of net-

works then completely irrelevant for

biology? The answer certainly is: No!

Depending on the generic properties, a

class of networks and its generation,

one of the random networks—Erdös-

Rényi, small-world, scale-free or

another—will save best as a reference

state for the whole class and deviation

from the reference can be explained by

the specific structure of the special

case. An impressive example for the

usefulness of a random network as ref-

erence was presented in case of RNA

sequence-structure relations [11]. The

preimage of an RNA (secondary) struc-

ture is a graph called neutral network

in sequence space. Considering neutral

networks as Erdös-Rényi random

graphs provides a suitable reference

state and allows, for example, for accu-

rate predictions of the connectedness of

the graph—a single fully connected com-

ponent or several separated components

without connections between them.

Understanding the details of the parti-

tioning into different components—one

giant component (Erdös-Rényi predic-

tion) or deviations from the reference in

the form of two, three, or four large com-

ponents—requires specific knowledge of

the RNA structure and can be readily

explained by it. Other examples can be

found with metabolic networks, where

the reaction graph is at the beginning and

flux balance analysis [12] as described

below is the next logical step.

Systems biology is heading for a

comprehensive description of the func-

tional dynamics of cells, organs, and

organisms. The ultimate goal is model-

ing biological systems by means of a

3Exceptions are, for example, branching

patterns of transport systems in higher

organisms, plants and animals, which

often cover several orders of magnitude.
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bottom-up approach from bio-mole-

cules and their interactions that allows

for reproduction, analysis, understand-

ing, and prediction of properties and

functions. Genetic, metabolic as well

as signaling networks are in the core of

understanding biological function and

hence of primary importance. Bio-

chemical kinetics developed in quanti-

tative terms since the beginning of the

twentieth century sets the stage for

network dynamics. In principle, it is

possible to write down all kinetic dif-

ferential equations of a cell and

assuming the deterministic approach

is sufficient4 the solution would pro-

vide the desired information on the bi-

ological unit. The actual problem is

the dimension of the dynamical sys-

tem, which is a direct result of the

enormously large number of molecular

players: Several thousand to thirty

thousand genes produce protein mole-

cules—regulators and metabolic

enzymes—and form a huge and com-

plex network of dynamic interaction.

In addition, there are other players like

RNA molecules also encoded by the

DNA of the organism and epigeneti-

cally controlled molecules, proteins or

RNA, which were encoded in the DNA

of some ancestor, and which compli-

cate the holistic picture. Many thou-

sands of differential equations require

at least as many parameters, but these

parameters are not known with suffi-

cient accuracy yet. The program of

systems biology thus looks completely

unrealistic at a first glance. Simplifica-

tions of the gigantic problem, however,

were successful. We mention here only

one, the most popular example, flux-

balance analysis [12, 13], which repre-

sents a mathematical and computa-

tional method for the analysis of me-

tabolism without explicit knowledge of

metabolite concentrations or details of

enzyme kinetics. The flux distribution

over a biological network is con-

strained by the stoichiometry of chem-

ical reactions and optimized by means

of some objective function, for exam-

ple, maximal growth of the cell or the

organism. The system is assumed to

be homeostatic or stationary. Flux bal-

ance analysis starts from the recon-

struction of the metabolic network of

an organism from empirical data. A

typical task for flux balance analysis is

the computation of the metabolic

fluxes, which maximizes the growth

rate of an organism for a set of known

nutrients. Examples of prokaryotes that

were fully analyzed by flux balance anal-

ysis are: Escherichia coli [14], Staphylo-

coccus aureus [15], and Salmonella

typhimurium [16]. An impressively large

number of projects are dealing with sys-

tems biology of eukaryotes including

man. Representative for others, we men-

tion only one impressive recent example

of a systems biology study of a whole

organ that is based on a preceding

extensive investigation of the corre-

sponding cell: the German liver project,

which is the follow-up of a previous pro-

gram studying the liver cell, the hepato-

cyte [17]. It is thought to serve as an

example that concerted systems biology

programs can be carried out, in princi-

ple, on all levels of biological complexity

spanning eight orders of magnitude in

diameter from the individual protein

molecule in the nanometer range to

the organ or organism in the meter

range. Further development of network

theory and biochemical dynamics, both

merged in systems biology are needed

in the process of understanding biology

in its overwhelming complexity.
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