
Is There a Newton of the Blade of
Grass?

The Complex Relation Between Mathematics, Physics, and Biology

I
n 1790, Immanuel Kant makes the famous statement in his critique of judg-

ment: ‘‘there will never be a Newton of the blade of grass, because human sci-

ence will never be able to explain how a living being can originate from inani-

mate matter’’ [1].1 The German naturalist Ernst Haeckel, about 70 years later, cele-

brates Charles Darwin to be such a ‘‘Newton of the grass blade’’ [2] Haeckel’s

enthusiasm about Darwin was not shared among his contemporaries and is not

too widespread today, although the path-breaking role of Darwin’s scholarly work

is not the least doubted or questioned. The American philosopher, physicist, and

molecular biologist, Evelyn Fox Keller, says that considering Darwin as the Newton

of biology is simply wrong: [3] ‘‘Darwin himself has systematically avoided dwell-

ing upon the question how life has originated from inanimate materials. Natural

selection begins with a living cell.’’ Kant’s statement has a philosophical dimension

and clearly addresses the popular origin-of-life [4] problem that will not be pur-

sued further here. At the same time, Kant’s issue has a historical and a technical

scientific issue, which boils down to the problem of erecting modern biology on a

solid basement of physics and chemistry supported by mathematics or in other

words, bridging the gap between physics and chemistry on one side and biology

on the other. Precisely, it is the relation between mathematics, physics, and biol-

ogy that we shall try to illustrate in the light of historical developments and pres-

ent-day life sciences.

Why are the relations between physics and mathematics and biology and math-

ematics as different as they could be? The alliance between mathematics and

physics stands at the beginning of Western science and this ‘‘marriage’’ has proven

to be extremely stable and fruitful. Two well-known quotations of past statements

explain the situation perfectly: Galileo Galilei said (in abridged version): ‘‘The great

book of Nature is written in (clearly-understood) mathematics,’’ and Immanuel

Kant expressed his esteem for mathematics in science in the phrase: ‘‘I maintain
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only that in every special doctrine of

nature only so much science proper

can be found as there is mathematics

in it’’ [5].2 Mathematics provided and

provides the tools for handling physi-

cal phenomena in quantitative terms

and physics fertilized and fertilizes

mathematics by initializing new disci-

plines. An impressive example stands

at the beginning: the idea and the

implementation of calculus. A large

number of new and very fruitful devel-

opments in mathematics originated

from problems in physics that waited

to be formalized and formulated in

new mathematical subdisciplines. A

recent example of mutual fertilization

of mathematics and physics is dynami-

cal systems theory and, in particular,

deterministic chaos. Initially, it was the

question of stability of the solar system

that has fascinated Henri Poincaré and

lead to the discovery of irregular

motion. In 1960, Edward Lorenz pub-

lished his famous paper on determinis-

tic nonperiodic flow [6] that had its

roots in atmospheric science and led

to development of the theory of deter-

ministic chaos and strange attractors.

Many other examples could be given,

relativity theory and quantum

mechanics being the best known ones

from the first half of the 20th century.

Only two further cases of cross-fertil-

ization of mathematics and physics

shall be mentioned here: (i) the theory

of spin-glasses, renormalization, and

the concept of universality classes and

(ii) Brownian motion, the theory of dif-

fusion, and the development of the

mathematics of stochastic processes.

Facit: Present-day mathematics would

not be the same if there had not been

the intensive and fruitful interaction

with physics and vice versa.

Biology and its interaction with

mathematics are completely different

and the development of scientific

thinking in biology took another route

than in physics. In medieval times,

mathematical models were popular

also in the life sciences; Fibonacci’s rab-

bit multiplication case may serve as an

example [7]. Charles Darwin’s evolu-

tionary principle is a beautiful example

of a fruitful abstraction from observa-

tional details he himself and others

have recorded and reported. It reduces

successfully the enormously complex

phenomenon of evolution to three rele-

vant features—multiplication, variation,

and selection—but it is presented in the

‘‘Origin of Species’’ without a single

mathematical expression [8], although

a mathematical formulation of the

selection principle is straightforward

(see, e.g., reference [9]). Ernst Mayr’s

scholarly written book ‘‘The Growth of

Biological Thought’’ likewise does not

contain equations [10] and even D’Arcy

Thompson’s famous book ‘‘On Growth

and Form’’ [11], which is often consid-

ered as the beginning of a mathemati-

cal biology has rather very little mathe-

matics in it. Another interesting fact

illuminating the cleft between mathe-

matics and biology deals with the unifi-

cation of genetics and evolutionary

theory. The founding fathers of popula-

tion genetics, Fisher [12], J.B.S. Hal-

dane, and Sewall Write succeeded al-

ready in 1920 and 1930 to construct the

mathematical model that united Dar-

win’s selection and Gregor Mendel’s

genetics. It took more than 20 years

before the experimental biologists con-

ceived and finished the so-called syn-

thetic theory3 [13], that served precisely

the same purpose of unification. Noth-

ing could make the distinction between

physics and biology clearer: whenever a

new theory appears on the horizon of

physical thinking all renowned experi-

mental groups will hectically try to sup-

port or disproof the new concept.

Admittedly and as we shall outline later,

things appear to be much more com-

plex in biology than in physics, and

there is also good reason to be skeptic

about theoretical biology of the past.

Why is theory in physics so suc-

cessful? One reason certainly is the

fact that theoretical physics is rooted

in mathematics providing accurate

answers to questions and experimental

physics is amazingly successful in

making high precision measurements

meeting or contradicting the predic-

tions of theorists. Determinism has

dominated the early development of

physics until the second half of the

19th century and when irregular

motion on the atomistic level was

included into physical thinking, the

ensembles were always so large that

statistics proper played very little role

in observations on the macroscopic

level. Observed regularities in biology

are almost always of intrinsic statistical

nature – Gregor Mendel’s rules of in-

heritance may serve as an example—

and then single experiments are not

reproducible, as we are commonly

dealing with small ensembles or few

objects, which among themselves show

appreciable variation. Mathematical

description is tantamount to reduction:

An observed regularity can be cast into

a mathematical expression when only

one particular aspect is or very few

aspects are brought into focus and

only a small number of other features

considered to be important are intro-

duced as parameters. Successful con-

struction of mathematical models is

enormously facilitated by the existence

of a reference system of reduced com-

plexity that is accessible to experiment

or to observation. By such a reference

system, we mean a model that can be

applied to the real (complex) situation

by introducing appropriate additional

2Original text in German: ,, . . . Ich

behaupte nur, dass in jeder besonderen

Naturlehre nur so viel eigentliche Wis-

senschaft angetroffen werden könne, als

darin Mathematik anzutreffen ist.‘‘

3Commonly the contribution by the

botanist George Ledyard Stebbins on

Variation and Evolution in Plants13 is

considered as the completion of the syn-

thetic theory because it extended the

unification of genetics and evolutionary

theory to the plant kingdom.
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effects. Newton’s reference has been ce-

lestial mechanics and without belittling

his genius I claim that the development

of the theory of gravitation would have

been delayed or even made impossible

without the insight into the motions of

stars and planets. Motions caused by the

gravitational laws were observed free

from complications by friction, winds,

thermal columns, and other phenom-

ena, which obscure free fall in the

atmosphere of the Earth. To me, it seems

to be anything but a simple abstraction

to conclude from everyday observations

that all bodies fall vertically and with the

same acceleration (and velocity).

Biology is a fairly young discipline

compared with physics. The beginning

of physics is often dated by the works of

Archimedes, who lived in Ancient

Greece in the 3rd century BC. The word

biology has not existed before the 19th

century and is attributed to Jean Baptist

Lamarck, Gottfried Reinhold Treviranus,

und Lorenz Oken who coined this

notion 1802 for a science of life [14].

Apart from the enormously large num-

ber of molecular players, the complexity

of interactions, and high dimensionality

of biological networks, it is the lack of a

celestial biology, the difficulty to find a

proper reference system, which encap-

sulates the essential features without the

dispensable complications, what causes

the different attitude of experimentalists

toward theory and mathematics in biol-

ogy and in physics. Two different exam-

ples of mathematical theories, which

had to be built without the proper refer-

ence—because none was known then—

and which had a very different fate, shall

illustrate this point: (i) Mendelian genet-

ics and (ii) embryonic morphogenesis.

Gregor Mendel recognized correctly

the statistical nature of the inheritance of

characteristics and postulated that

genetic information is split into packages

(atoms of inheritance in the law of segre-

gation) and recombined at random from

a pool (law of independent assortment).

Hundred years later, molecular biology

of DNA reproduction and cell division

revealed that segregation and recombi-

nation occur during meiosis and devia-

tions from the ideal Mendelian ratios

can now be easily explained by incom-

plete segregation when the gene loci are

too close to guarantee the occurrence of

cross-over between them. Although Gre-

gor Mendel had no idea of a proper refer-

ence for his theory, which was only later

provided later by the molecular genetics

of sexual reproduction, he did the right

abstraction, guessed the proper refer-

ence, and drew essentially correct con-

clusions from his observations.

The second example is discussed

extensively in Keller’s monograph

‘‘Making Sense of Life’’ in the chapter

‘‘Untimely Birth of a Mathematical

Biology’’ (p. 79ff. in Ref. 14): Turing in

1952 published a fascinating and path-

breaking paper on the chemical basis

of morphogenesis in development [15]

and initiated a highly fruitful branch of

research on pattern formation in reac-

tion-diffusion systems. Pattern forma-

tion in chemical reactions became a

topic of primary interest in nonlinear

dynamics and an impressive number

of models and beautiful experiments

were conceived, carried out, and ana-

lyzed [16]. Turing’s model has been

applied to build reaction-diffusion

equations that were suited to describe

morphogenesis and an impressive vari-

ety of biological patterns [17–19]. The

biological applications to pattern for-

mation—Turing’s was originally aiming

at—have not been successful on the

long run, however. The computed

reaction diffusion patterns created by

the nonlinear dynamics of production

and diffusion of morphogens4 were

found to be in poor quantitative agree-

ment with observations and very sensi-

tive to boundary conditions, in particu-

lar to the geometry of the morphoge-

netic field, and thus did not appear to

be sufficiently stable for shaping organ-

isms [20]. The major problem, however,

arose from the proper molecular refer-

ence system: Molecular genetics experi-

ments performed on the Drosophila

embryo by Christiane Nüsslein-Volhard,

Eric Wieschaus, and Ed Lewis—who

received the Nobel Prize 1995 in physi-

ology for their path-breaking investiga-

tions—revealed that pattern formation

is not initiated in a homogenous me-

dium but in a spatially organized struc-

ture, where messenger RNA transcribed

from maternal genes is deposited and

localized by means of microtubules at

defined positions in the egg—bicoid at

the anterior pole being the most rele-

vant—and the patterns originate from

cascades of gene activation, where the

translated proteins activate or inhibit

other genes [21, 22]. Recent work has

shown that even simple gradients

appear to be not sufficient as they were

found to be supported by the action of

further genes [23]. Thus, the proper

(bio)chemical reference system for em-

bryonic morphogenesis is not reaction-

diffusion in homogeneous solution but

a morphogenetic network of epigenetic

(maternal) spatial organization and cas-

cades of gene activities providing both

(anterior–posterior) polarity and posi-

tional information for further gene

activities. In an excellently written

review, Maini et al. [24] describe

the current situation: ‘‘. . .Therefore,

although reaction-diffusion theory

provides a very elegant mechanism for

segmentation, nature appears to have

chosen a much less elegant way of

doing it.’’ Turing’s model does not

provide a proper reference system for

embryonic morphogenesis.

The present day situation in biology

is different from the past in many

respects. I choose three points that are

relevant for a revision of Kant’s state-

ment: (i) New experimental techniques

4A morphogen is a signaling molecule

that initiates development locally by

means of its concentration. Different

concentration levels produced, for

example, by a concentration gradient

initiate different patterns of gene activ-

ities, which in turn give rise to different

pathways of cell differentiation and

ultimately result in different cells and

organs of the mature organism.
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