
Lethal Mutagenesis, Error
Thresholds, and the Fight
Against Viruses

Rigorous Modeling is Facilitated by a Firm Physical Background

V
iroids and viruses can be viewed as ultimate parasites, which exploit the host

through entering cells and manipulating cellular metabolism for their own

reproduction. Proliferation of viruses is bound to successful replication of vi-

rus genomes, RNA or DNA, where successful implies viable virus progeny, that is,

capable of reproduction. Viroids are naked RNA molecules and therefore entirely

dependent on host biochemistry. The genomic RNA of simple bacteriophages1

mimics messenger RNAs of the host cell and it is recognized and translated by

host ribosomes. Simple virus genomes encode for a few proteins only, commonly

for (i) a virus specific RNA replicase or at least a subunit of a replicase, which

takes care that virus RNA and not cellular RNA is replicated preferentially, (ii) a

protein for coating the virus RNA, and (iii) a protein that initiates lyses of the cell.

As Charles Weissmann [1] pointed out already in the 1970s, in simple cases the

life cycles of phages in bacterial cells are encoded by the structure of the genomic

virus RNA and her unfolding–folding dynamics.

Forty years ago Manfred Eigen [2] published a kinetic theory of evolution at the

molecular level, that is, directly applicable to replication of viral RNA. Among other

things, one major characteristic of this theory is the handling of mutations: Correct

replication and mutations are treated as parallel chemical reactions and this has the

advantage that the approach applies equally well to the whole range of mutation

rates from very small to large. The kinetic mutation selection equations of the model

proposed by Eigen for N different variants Xj in the population are:

dxj
dt

¼
XN

i¼1
Qji � fi xi � xj /ðtÞ ; j ¼ 1 ; 2 ; . . . ; N /ðtÞ ¼

XN

i¼1
fi xi ;

XN

i¼1
xi ¼ 1
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The variables in the equation are the

normalized concentrations of the

variants2: [Xj] 5 xj. Two classes of

parameters appear in the equation: fit-

ness values fj,
3 and dimensionless muta-

tion frequencies Qji, which represent the

probabilities to obtain the variant Xj as

an error copy of the template Xi, the

mutation frequencies are elements of a

(stochastic) mutation matrix Q, as con-

servation of probabilities requiresPN
j¼1 Qji ¼ 1, and they depend on the

mutation rate per site and replication,

p, which is a property of the RNA repli-

cation machinery of the cell, the virus

or both. Implicit in the model equations

are several assumptions: (i) The mate-

rial required for replication is available

in excess and remains present at con-

stant concentration despite virus RNA

synthesis, (ii) the population size is nei-

ther infinite nor zero to allow for nor-

malization of variables,
PN

i¼1 xi ¼ 1,

and (iii) the system is well-mixed and

fluctuations in the population variables

don’t play a dominant role. Condition (i)

is always fulfilled at the beginning of the

virus infection of a cell, although there

may be a shortage of components for

the synthesis of viral RNA near the end

of the infection. Condition (ii) will be

discussed later. Condition (iii) is a gen-

eral assumption in chemical kinetics

and population dynamics, which is

indispensible unless detailed informa-

tion on spatial structures is available.

Selection and evolution take place in

virus populations, which commonly

contain a wide spectrum of variants

with different fitness values [3, 4].

For sufficiently accurate replication

and long enough time, populations

approach stationary states called

‘‘quasispecies,’’ which consists of a

fittest genotype—the master sequence

being present at highest concentra-

tion—and its mutants. For reproduction

with ultimate accuracy expressed by a

vanishing mutation rate, lim p ? 0, the

quasispecies contains exclusively the

master sequence, and with increasing

mutation rate the relative concentration

of the master decreases. Eigen introduced

an approximation that provided analyti-

cal expressions for the stationary mutant

distribution as a function of the mutation

rate. At some critical replication accuracy

pcr, the entire quasispecies vanishes in

this approximation. Accurate numerical

approximations of the exact solution

have shown that the concentrations do

not vanish but rather become very small

[5]: p > pcr ) x � 1/4n with n being the

genome length (An illustrative example is

shown in Figure 1; for a detailed presen-

tation of quasispecies theory see Eigen

et al. [6]). Commonly, genome lengths n

are a few hundred nucleotides for viroids

and a few thousand nucleotides for

viruses. Instead of a vanishing mutant

distribution a phase transition-like

change from a structured quasispecies to

a uniform distribution of all variants is

found by numerical computation [5], and

the transition was characterized as error

threshold: Because of error accumulation

through imperfect replication no genome

can be conserved over generations, in

genealogies there is a zero longtime cor-

relation between template and copy, and

inheritance breaks down. The state of the

populations beyond the error threshold

has been illustratively characterized as

random replication, since fitness plays no

role for reproduction. The population is

nonstationary for reasons to be discussed

in the next paragraph.

What means random replication for a

virus population? A uniform distribution

of genotypes, which—as said above—is

predicted by the kinetic model as the

longtime outcome of evolution at muta-

tions rates above the error threshold,

cannot exist in reality. Because of the

enormously large number of possible

sequences—amounting to 4n—concen-

trations would be smaller than a single

molecule per experimental volume by

many orders of magnitude. The popula-

tion inevitably becomes nonstationary

and migrates randomly through

sequence space.4 In addition, popula-

tions break up into clones, which drift

independently as has been verified by

numerical computation in case of

neutral evolution [7, 8]. Whether a

migrating virus population can exist

beyond the error threshold or not is

primarily a question of the fitness land-

scape: High degrees of neutrality and

small fractions of mutations leading to

nonviable variants or variants with zero

fitness are clearly supportive for survival.

In general, however, occurrence of

extinction of the virus population can be

expected, because viruses are under

strong selection by the host’s defense

system and hence the degree of neutral-

ity will be relatively small. Accordingly, it

is very likely or of probability one that

virus populations will become extinct af-

ter they passed the error threshold. As

the number of imperfectly copied posi-

tions increases (linearly) with sequence

length, longer genomes require higher

replication accuracy. Experimental

determination of spontaneous mutation

rates [9, 10] yielded an approximate

value of one error per reproduction and

genome for simple RNA viruses, which

implies that these species are reproduc-

ing close to the error threshold. This

result can be interpreted straightfor-

wardly: To escape the host’s defense sys-

tem the virus has to mutate as fast as

possible and progresses towards the

maximum tolerable mutation rate, which

is given by the error threshold. The idea

2Concentrations commonly used in

chemistry and condensed matter physics

are particle numbers per unit volume.

The standard unit is moles per liter.
3In biology the reproductive success is

commonly measured in fitness values

counting the (average) progeny of a

variant in the next generation. In the

molecular model the fitness values are

functions of replication rate constants,

binding constants, mutation rates and/

or other physical parameters.

4The sequence space is an abstract

space of all conceivable sequences. The

Hamming distance counting the num-

ber of positions in which two aligned

sequences differ is an appropriate met-

ric in sequence space.
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of an error threshold and the known fact

that mutation rates are tunable by means

of small molecular weight compounds

encouraged direct practical application

in pharmaceutical research: The design

of new drugs based on a mechanism of

driving virus populations across the

error thresholds was conceived as a

novel antiviral strategy [11, 12].

Virus populations may become

extinct without passing the error

threshold as was correctly pointed out

in the same year by James Bull et al.

[13, 14]. The cause of extinction in this

case is easily interpreted: Survival of

the population requires a certain frac-

tion of successful offspring that propa-

gate the disease through infecting

healthy cells. Bull et al. [14] derived a

simple equation for the condition of

extinction after mutation and selection

have reached a stationary state,

e�#R < 1;

wherein W is the rate of deleterious

mutations per genome5 and replication

and R is the average number of infec-

tious progeny from a single infected

cell. As the mutation rate W increases,

the number of infectious progeny goes

down until it falls below the extinction

threshold and then the virus popula-

tion dies out. The authors called this

phenomenon lethal mutagenesis,

which is an unfortunate choice of

notion as I shall outline later on.

A direct comparison of the condi-

tion of extinction with the error

threshold observed in the mutation

selection equation, however, is not

possible, since the latter in the form

reported by Bull et al. [14] contains

normalized variables hence cannot

describe the time dependence of the

population size. A calculation of C(t) is

nevertheless easily possible [15]:

dC

dt
¼

XN

i¼1
fi ci � UðtÞ ¼ �f ðtÞ � C � UðtÞ:

The variables ci are the con-

centrations of the individual variants,

5The total genomic mutation rate l 5

p � n in the model of Bull et al. [14]

accounts for neutral and deleterious

mutations – advantageous mutations

are excluded – and hence we have l 5

m 1 W with m being the rate of neutral

and W being the rate of deleterious

mutations per genome and replication.

FIGURE 1

The error threshold observed with solutions of the mutation selection equation. The stationary frequency of the master sequence Xm, which is the
sequence with the highest fitness value fm, is plotted against the mutation rate p: �xmðpÞ. Since no natural or artificial process can occur with ulti-
mate accuracy there is a zone between p 5 0 and the physical accuracy limit that cannot be accessed in reality. An increasing error rate leads to
more mutants in the population and accordingly the fraction of the master sequence decreases. At some critical mutation rate, p 5 pcr, a drastic
change in the distribution of mutants is observed. The ordered quasispecies changes into the uniform distribution within a very small range of p val-
ues in the manner of a phase transition. Approximating full population dynamics by a neglect of backwards mutations, i.e., mutations from mutants
back to the master sequence, the concentration of the master sequence vanishes at the error threshold. The insert shows a comparison of the
approximation neglecting backwards mutation (gray) and the exact solution (black; parameters: n 5 20, f0 5 2.2, fn 5 2.0). At mutation rates
beyond the error threshold the existence of a uniform stationary population is an artifact of the deterministic approach and instead migrating popu-
lations are observed.
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ci 5 xi � C, the function �f ðtÞ is the mean

fitness of the population and F(t) repre-
sents the constraint that is introduced

by the experimental or in nature by the

environmental conditions (For the con-

dition F5 / we obtain dC/dt5 0, which

is tantamount to constant population

size). Extinction is visualized straight-

forwardly by means of the differential

equation for C: Assuming constant F
that is realized, for example, in a flow

reactor and decreasing �f ðtÞ as more

mutants with low or zero fitness values

fi are produced, the right hand side of

the equation will become negative for

sufficiently high mutation rates p and

then the population will die out.

More recently Hector Tejero et al.

[16] studied the relation between lethal

mutagenesis, extinction and error

threshold by means of Eigen’s original

equations [2]. They distinguish three

classes of variants: (i) the master

sequence, Xm, (ii) viable and non-neu-

tral mutants, Xk, and (iii) lethal

mutants, Xl, with fl 5 0, and interpret

the constraint as a universal degrada-

tion rate parameter, F 5 D. Their most

important result is shown in Figure 2:

The plane spanned by the number of le-

thal positions on the sequence d6 and

the mutation rate p is separated into

three regions: (i) the domain of the qua-

sispecies, (ii) the domain of extinction,

and (iii) the domain of the uniform dis-

tribution of variants. For increasing

mutation rates two scenarios are possi-

ble. At low degree of lethality expressed

as by a low value of d the population

passes first an error threshold and

becomes extinct later, and at suffi-

ciently high d values, the quasispecies

goes extinct without previously passing

an error threshold.

Coming back to the previously

made comments on the nonexistence

of uniform distributions of virus popu-

lations we may conclude that the

increase of the mutation rate leads to

extinction of the virus population

either by increasing the fraction of

nonviable mutants or by accumulation

of errors without limits. Who should

care how the population goes extinct

when a potential drug is effective?

Nobody presumably, if the compound

is already at hand, but the researchers

in medicinal chemistry and pharma-

cology will be interested when they are

confronted with the need to design

new drugs. Knowing the target of the

compound and the mechanism of

action is essential for successful drug

development. In this aspect neither of

the two models is helpful at the cur-

rent state of the art, but the Eigen

model [2] is more easily extended to

including details of the molecular

mechanisms than the model of Bull

et al. [14] and therefore I would give

preference to it.

Finally, I would like to stress

that the usage of the term ‘‘lethal

mutagenesis’’ exclusively for the

extinction threshold is unfortunate,

because both mechanisms, accumula-

tion of lethal variants and accumula-

tion of copying errors, lead to

extinction of the virus population

when realistically considered. My

suggestion is therefore to use lethal

mutagenesis for both phenomena, to

distinguish the extinction threshold

from the error threshold, to keep the

race open, and to leave it for the

future, which of the two concepts pro-

vides more successful ideas for pro-

gress in the medical treatment of virus

infections.

6A lethal position on a genome is a nu-

cleotide that leads to a lethal variant

when mutated.

FIGURE 2

Lethal mutagenesis in virus populations. The figure is redrawn from Tejero et al.16 and
shows three distinct scenarios for stationary populations as functions of mutation p rates
and degrees of lethality d: (i) a domain within which ordered quasispecies are formed, (ii) a
domain of population extinction, and (iii) a domain where the uniform distribution prevails.
At low degree of lethality the stationary population passes first the error threshold and then
goes extinct at higher p values, whereas no error threshold exists at higher degree of
lethality. There, the population goes extinct without passing an error threshold.
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