
Designing Living Matter.
Can We Do Better than Evolution?

Synthetic Biology is Sharpening its Profile

Thanks to substantial improvements in the theory of metabolic fluxes and the applica-

tion of 13C isotope markers in experimental flux studies, Pareto efficiency of bacterial

metabolism can now be determined and direct answers to the long standing questions of

optimization according to multiple criteria in nature can be given. Cells or organisms

operate close to Pareto optima but the performance with respect to every single criterion

is almost always improvable. Rational design and evolutionary methods are routinely

used for the production of biomolecules with optimized properties. Examples are pro-

teins for technical applications, for example in detergents, and optimally binding

nucleic acid molecules called aptamers. Among the various perspectives of synthetic biol-

ogy, the usage of DNA for information storage is particularly promising: In a pilot

experiment, an entire book including figures and a Java script, in total more than 5

megabit, were stored on a single DNA molecule. VC 2013 Wiley Periodicals, Inc.

Complexity 18: 21–31, 2013
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1. INTRODUCTION

L
ess than 1 year ago, the Jena Life Science Forum organized a meeting with

precisely the same title as this essay. After having created this title, we were

shocked first by our own hubris. Do we really believe that we can do better

than nature? Thinking more deeply, however, we realized that whether or not man

can outperform evolution depends entirely on the interpretation of better. It is

not difficult to beat nature in case one picks out a single criterion and improves

the performance related to it.

In this essay, we shall be dealing first with the question of optimality and mul-

tiple criteria in nature. Then, the essay will focus on the design of molecules with

predefined functions. Rational design will be confronted with evolutionary design

sometimes also characterized as ‘‘irrational design.’’ At the end, we shall try to

review the perspectives of synthetic biology.

PETER SCHUSTER

Editor-in-chief of Complexity is at the

Institut f€ur Theoretische Chemie der

Universit€at Wien, W€ahringerstraße 17,

Wien, 1090, Austria

(E-mail: pks@tbi.univie.ac.at)

C O M P L E X I T Y 21Q 2013 Wiley Periodicals, Inc., Vol. 18 No. 6
DOI 10.1002/cplx.21461
Published online 30 July 2013 in Wiley Online Library
(wileyonlinelibrary.com)



2. OPTIMALITY IN NATURE
Optimization for multiple criteria,

which—as usual—are not completely

independent, is anything but trivial

and requires the determination of a

so-called Pareto1 surface (for an essay

dealing with this problem, see the

recent column ‘‘Simply Complex’’[1]).

What about optimality in nature? Ever

since the Neolithic Period, man is

redesigning nature through manipula-

tion of organisms for his purposes. In

this process, the genetics of species

has been changed, first by trial and

error then specifically, in particular

since the second half of the 20th cen-

tury—otherwise there were neither

field crops nor vegetables nor fruits

and no domestic animals. The history

of mankind is tantamount to the his-

tory of modifying nature to the benefit

of human society. Until the 20th cen-

tury, the manipulation of living beings

was done without any knowledge of

the fundamental mechanisms, which

govern the change of the properties of

organisms and species. The spectacu-

lar development of molecular biology

and the explosion of biological knowl-

edge opened entirely novel avenues

toward targeted modifications of bio-

logical entities from molecules to

whole organisms. It turned out that it

is not difficult, in essence, to

‘‘improve’’ natural properties in the

sense of more, faster, larger, smaller,

more specific, more stable, and so

forth. Proteins were not only modified

in this sense, they were also adapted

to non-natural conditions such as

nonaqueous media and they were

redesigned to catalyze reactions that

do not occur in nature (see the section

on ‘‘rational design’’). Nature in con-

trast to the human designer is not able

to afford optimization of single fea-

tures—selection operates on entire

organisms in ecosystems and what

counts is fertile progeny and nothing

else. At the same time, evolution has

to build with already existing blocks

and de novo design as well as engi-

neering with new materials is impossi-

ble. Nature follows the principle of

‘‘evolutionary tinkering’’ or ‘‘brico-

lage’’[2,3], and constructs by combing

units that are around. The only prop-

erty on which success in evolution is

built is functionality. It is easy to find

suboptimal solutions of problems in

higher organisms, which came about

as the result of evolutionary tinkering

and historical contingency. We men-

tion two examples representative for

many others: (i) The blind spot in the

eye of vertebrates originates from the

fact the nerve fibers leave the light

sensitive cells of the retina on the

wrong side—the side at which the light

arrives. The fibers must pass the retina

in bundled form as optical nerve creat-

ing a light insensitive spot. In contrast,

the evolution got the design of the

cephalopod eye right—the nerve fibers

are bundled on the opposite side of

the incoming light and hence need not

pass the retina. (ii) The mammalian

pharynx where trachea and esophagus

are crossing is a misconstruction with

the danger of choking on food that

can be harmless but also fatal when

large pieces fall into the windpipe.

Obvious questions concern cellular

metabolism: Is metabolism optimal or

is it just functional? If it appears to be

optimal what were the criteria of opti-

mization? Biochemists were success-

fully exploring the metabolism of cells

since more than a century and are still

working on it. All important reaction

paths as well as their stoichiometry

and the catalyzing enzymes are known

and comprised in the famous meta-

bolic map of Boehringer-Mannheim[4]

but nevertheless, fundamental ques-

tions concerning the dominant com-

ponents of the metabolic flux as well

as the optimality criteria are still unan-

swered. Early works dealing with the

analysis of biochemical reaction net-

works in 1970 recognized already the

need of a joint approach by suitable

experiments and mathematical model-

ing [5–7]. About 25 years ago, a new

mathematical model has been con-

ceived with the aim to develop a sim-

plified analysis of the reaction fluxes

in metabolic networks that, in essence,

takes care only of the governing con-

straints, which have to be fulfilled by

all expressible phenotypes, and imple-

ments some objective function for

optimization, for example maximal

growth [8]. The new approach has

been called flux balance analysis

(FBA), and it became an indispensible

tool for genome-based models of

microbial metabolism [9–11]. FBA is a

computer-based approach that needs

to be combined with appropriate

experiments to allow for quantitative

predictions. The networks of metabolic

fluxes, which combine results from

genomics and proteomics with bio-

chemical knowledge, are essentially

unconstrained and make no restric-

tions concerning the accessibility of

flux combinations in a Cartesian space

(Figure 1). Various constraints define

the regions in solution space that are

accessible in reality. These constraints

come in several categories: (i) con-

straints arising from basic physical

chemistry, in particular chemical

kinetics and thermodynamics, (ii) spa-

tial and topological constraints, (iii)

environmental constraints depending

on the experimental conditions, and

(iv) internal regulatory restraints.

Taken all together, the different con-

straints define a space of allowed solu-

tions, which lie in a cone-like

subspace of the Cartesian space—a

five-sided pyramid in Figure 1—with

the apex in the origin of the coordi-

nate system were all fluxes vanish. The

1Pareto optimality is named after

the Italian economist Vilfredo Pareto

(1848–1923) and it characterizes a kind

of pseudo-optimality in the sense that

the performance with respect to one

criterion cannot be improved without

making the efficiency worth with

respect to another criterion.
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allowed subspace is commonly con-

fined from above by one of the conser-

vation relations—in the case reported

in the next paragraph the Pareto sur-

face provides this limitation. The indi-

vidual steps of FBA are described in

detail in the review by Palsson and

coworkers [11]. The combination of

flux balance and energy balance analy-

sis provides a basis for the definition

of cost-functions with multiple criteria

and allows for the calculation of Pareto

optimal curves and surfaces [12,13].

Despite full internal consistency of the

theory of metabolic fluxes, FBA, as

said above, can only make qualitative

predictions on the distribution of

fluxes in the networks and requires

experimental data for completion.

To illustrate the complexity of

microbial metabolism, we present a

few numbers from the bacterium Esch-

erichia coli [14]: The genome is 4.6 3

106 base pairs long and contains about

4500 genes, which are coding for some

5000 transcripts. Transcription, transla-

tion, and post translational modifica-

tions yield 6000–10,000 proteins.2

Molecular diversity of proteins is sup-

plemented by around 2000 metabo-

lites, mainly low-molecular-weight

compounds. The entire ensemble of a

bacterial cell is thus composed of

some 20,000 molecular species. Inevi-

tably, global analysis based on the

entire genome is possible only when

the number of dimensions is drasti-

cally reduced, and the model is limited

to core metabolism. Despite such dras-

tic reductions in complexity, it took

until last year before an experimentally

supported analysis of E. coli metabo-

lism was reported. A corresponding

paper by Sauer and coworkers at the

ETH Z€urich was published in Science

magazine [15]. The food source or the

starting product of the bacterial

metabolism is labeled with the stable

isotope 13C—glucose in position 1 in

the experiment described—and the

metabolic fluxes within the cells are

determined by a combination of mass

spectrometric analysis and computer-

based calculation of the distributions

of the label in the metabolites. The

kinetic basis of the investigation is a

stoichiometric model of the core

metabolism in E. coli, which consists

of 79 individual reaction steps and an

FIGURE 1

The metabolic flux space and its limitations through chemical stoichiometry and other constraints.
‘‘Flux-balance analysis’’ (FBA) considers the chemical reaction fluxes (/) in a metabolic reaction
network that has be reconstructed from genome wide biochemical data (upper part of the figure).
The global flux in the metabolic network leads from food source to biomass production through
cell growth and cell division. Every instantaneous state of the fluxes in the network corresponds to
a point in the space of fluxes but not every point in the Cartesian coordinate system of fluxes rep-
resents a realizable state, because the system has to meet several constraints. As sketched in the
lower part of the figure, the constraints cut out the space of allowed solution, which has the shape
of a coneÅa five-sided pyramid in the figure, from the Cartesian coordinate system, and the search
for acceptable solutions can be confined to the inner part of the cone. Such constraints are the
stoichiometry of individual reaction steps, thermodynamic constraints like balance of free energy,
and mass conservation (Source: Refs. [9] and [11]).

2The number of proteins accounts

for differences in protein folding and

size and covers covalent post transla-

tional modifications. Bacteria do not

splice transcripts regularly on ‘‘splico-

somes,’’ but some messenger-RNAs are

nevertheless processed by ‘‘self-splicing.’’

These mechanisms and others result in

numbers of protein molecules that

exceed the numbers of genes from

which they are expressed.
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E. coli specific gross balance equation

for biomass production. To identify

the relevant gross cost-functions

spanning a representative coordinate

system in this high-dimensional

space, the distributions of 13C-labels

were calculated for 54 cost-functions

and the deviations from the 44 in

vivo measured flux distributions were

determined. Five cost-functions were

found to be consistent with the in

vivo fluxes: (i) production of adeno-

sine tri-phosphate (ATP), (ii) biomass

production, (iii) acetate yield, (iv)

carbon dioxide (CO2) production, and

(v) minimal sum of absolute fluxes in

the sense of most efficient utilization

of resources. No single cost-function

was able to provide an adequate

description of the measured fluxes

and also no pair of cost-functions

doing this job was found. Out of all

triples, the combination (i), (ii), and

(v)—production of energy as ATP

yield, biomass production, and opti-

mal allocation of resources corre-

sponding to minimal sum of fluxes—

was found to be most suitable to

model the metabolism of the E. coli

cell and provided the best basis for

an analysis of optimality. The indica-

tion for suitability is seen in the

nearness to the Pareto surface of the

positions of all 44 fluxes.

Figure 2 shows the Pareto surface

of E. coli metabolism in a coordinate

system spanned by the three cost-

functions chosen (see next paragraph):

All aerobic cultures are situated at

positions close to the Pareto surface:

(i) cultures grown at excess glucose

are close together and marked

blue, (ii) carbon-limited—glucose-defi-

cient—cultures are lying in the green

zone, (iii) one nitrogen-limited culture

occupies the black dot. An anaerobic

culture is shown for comparison (white

dot).

FIGURE 2

The Pareto surface of the three dominant fluxes in Escherichia coli metabolism. The surface of the Pareto optimal fluxes that describe best the metabolism
of E. coli, the sum of all individual fluxes (/1), the production of biomass (/2), and the production of energy in form of the ATP yield (/3), was determined
by means of 13C-based flux analysis (red surface corresponding to minimal /1, maximal /2, and maximal /3).14,15 The points and areas near the red sur-
face were calculated from measured 13C distributions in metabolites of E. coli under different growth conditions(aerobe cultures: excess glucose 5 blue,
glucose deficiency 5 green, nitrogen deficiency 5 black, and, for comparison, anaerobe culture: white). All points lie systematically somewhat below the
Pareto surface (explanation see text). The Cartesian coordinate system differs from Figure 1 through normalization of the fluxes: ‘‘1’’ means best possible
fulfillment of the optimization criterion - minimum of the sum of fluxes, maximum biomass, and maximum ATP yield----and ‘‘0’’ characterizes the solution
at maximal distance from the optimum. The origin, accordingly, symbolizes the poorest possible solution (Source: Ref. 15; the figure is redrawn form Figure
1A in this publication); reproduced with permission of the American Association of the Advancement of Science.
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Three results of the work of Sauer

and coworkers [15] at the ETH Z€urich

and recent works of the same institute

[16] are of general importance: (i) the

points for metabolic fluxes in other

bacterial species—Bacillus subtilis

(several strains), Zymomonas mobilis,

Pseudomonas fluorescence, Rhodobacter

sphaeroides, Pseudomonas putida,

Agrobacterium tumefaciens, Sinorhi-

zobium maliloti, and Paracoccus versu-

tus—are situated very close to the

Pareto surface of E. coli, (ii) bacteria

have a biochemical repertoire to mea-

sure and regulate metabolic fluxes as

shown in case of the glycolytic flux in

E. coli [16], and (iii) precise inspection

of the positions of fluxes reveals that

all points lie significantly below the

Pareto surface. The calculations of

metabolic fluxes for different food

sources provide the explanation: com-

binations of fluxes (precisely) at the

Pareto surface for one particular food

source are relatively far away from the

Pareto optimal combinations for

another food source, and consequently

the adaptation from one optimal con-

dition to the other takes fairly long

time. At some distance away from the

Pareto surface points can be found,

where changing the fluxes from one

condition to the other requires a small

effort only and bacteria operating at

these suboptimal states can switch

quickly from one food source to the

other. Evolution does not only drive

the organisms toward efficiency of

metabolism at the present conditions,

it takes into account also the necessity

of flexible response to environmental

changes. The given explanation of vari-

ability of metabolism at the expense of

metabolic efficiency in variable envi-

ronments—properly characterized as

minimal cost for flux adjustment

[15]—provides a more plausible alter-

native explanation to the previously

favored interpretation as an adaptative

memory of microorganisms to histori-

cal sequences of changes in nutrition

[17].

3. RATIONAL DESIGN
Two alternative strategies for the

creation of molecules and organisms

with predefined properties and func-

tions are available: (i) rational design

that makes use of the entire knowledge

of structures and functions of biomo-

lecules and (ii) evolutionary design

applying the principles of biological

evolution to the selection of entities

with predetermined properties [18].

Both methods have their advantages

and deficiencies and we shall mention

here a few typical examples only,

because the literature on molecular

design is enormous.

Rational design is built on the para-

digm of conventional theoretical struc-

tural biology

Sequence ) structure ) function:

In essence, the paradigm says that the

structure of the biopolymer molecule

can be predicted provided the

sequence and the conditions of struc-

ture formation through folding are

known. In absence of special condi-

tions, the conventional assumptions

are constant temperature T, constant

pressure p, neutral pH 5 7, and an

ideal solution3—the search will aim at

the structure with minimal free energy,

DG0
T. The known structure of a mole-

cule, according to the paradigm of

structural biology, allows for inferences

about function. The two steps,

sequence ) structure and structure )
function, yield reliable predictions

from first principles only in exception-

ally simple cases. Input of empirical

data is essential for successful algo-

rithms. Rational design provides the

advantage of a direct or targeted

search strategy and is economic with

respect to search time and required

material. Its deficits are the still unsat-

isfactory methods for the prediction of

biopolymer structures and functions.

Evolutionary design has the advantage

to operate independently of the knowl-

edge of structure provided a technique

to select for the desired function is at

hand but it is expensive and requires

large quantities for experiments. Here,

we shall discuss first the rational

design of enzyme molecules, which is

known also under the name of ‘‘pro-

tein engineering’’ and add some infor-

mation on the state-of-the-art in

rational design of ribonucleic acids

(RNAs).

The prerequisite for rational protein

design was the development and the

implementation of techniques for

‘‘site-directed mutagenesis’’ that allows

for targeted replacement of every

amino acid by each of the other nine-

teen amino acids at every position of

the protein sequence [19]. In the

beginning, protein design was used

mainly for the analysis of sequence–

structure relations with the goals to

understand the principles of protein

folding and to predict reliably the

structures of minimal free energy [20].

In the late 1990, the combination of

computer calculations and large-scale

empirical data opened a new avenue

for the design of protein structures

[21–23]. This new approach eventually

became one of the most popular

methods for protein structure predic-

tion [24]. An important property of

designed proteins is thermodynamic

stability, in particular stability at

higher temperatures, because almost

all natural proteins are not sufficiently

stable for technical usage, for example

in detergents. Based on theoretical

computations and empirical data,

enzymes were made thermodynami-

cally more stable through targeted

mutations without changing the

3The application of standard condi-

tions, 1 k bar pressure, diluted solution,

and so forth, is expressed by the super-

script zero, ’0’. A special condition

would be, for example, in situ folding

of the biomolecule during synthesis.

Then not the entire sequence is folded

but only the already synthesized strand

in statu nascendi beginning from one

end.
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enzymatic activity [25]. An impressive

extreme example is the human protein

procarboxypeptidase, where the

designed molecule is more than

|DDG0
T|> 10 kcal mole21 more stable

than the natural protein [26]. Recent

developments allowed for the design

of protein catalysts for chemical reac-

tions that have no counterpart in

nature [27]. In general, basic design

yields only poor catalytic activities

compared to natural enzymes but the

modest activities can be improved

substantially with respect to thermal

stability, binding affinity, specificity,

and turnover rates by molecular

dynamics simulations and evolution-

ary methods (see next section).

As an example of technical usage

of natural and artificial—designed—

enzymes, we describe here the appli-

cation of proteins to make laundry

detergent more efficient [28,29]. The

idea to use enzymes in washing agents

is fairly old: the German pharmacist,

chemist, and businessman Otto R€ohm

isolated in 1913 a protease-containing

extract from animal pancreas, used it

in prewash, and made a successful

patent application. Because of impur-

ities and high-production costs, the

new detergent was no real success. It

took until 1959 before the first washing

powder containing a bacterial protease

has been launched in Switzerland. It

took 10 more years before the usage of

enzymes in detergents became stand-

ard. Today proteins, which are pro-

duced by genetic engineering in

essentially two bacterial species,

Bacillus licheniformis and Bacillus

amyloliquefacies, are indispensible for

the detergent industry. Enzymes used

in detergents amount to approxi-

mately two thirds of the total enzyme

production for technical use. A mod-

ern detergent for use in the washing

machine or the dishwasher contains

enzymes from up to four different

classes: (i) proteases for degradation

of protein impurities, (ii) amylases for

the degradation of starch, (iii) lipases

for the cleavage of fat, and (iv) cellu-

lases for surface degradation of cotton

fibers to soften cotton fabric after

washing. Protein design is used pri-

marily to make the enzymes more sta-

ble and to maintain their activities at

higher temperatures and alkaline

pH-values.

FIGURE 3

Structures of minimal free energy and suboptimal conformations of RNA molecules. A small RNA molecule with a chain length of n 5 33 nucleotides and
the sequence shown in the figure yields a hairpin structure with a stacking region of 14 base pairs as its structure of minimal free energy (mfe-structure
Y0, red; left-hand drawing). The mfe-structure is accompanied by a spectrum of suboptimal conformations (drawing in the middle). To be able to calculate
the kinetics of conformational transitions, we need to know also the activation energies (right-hand drawing), DEa, which are related to the rates parameter
through the Arrhenius equation: kr 5 A. exp(DEa/RT) with A being a proportionality factor. Structures together with their mean life times, s 5 kr

21, are
called kinetic structuresÅhere the double hairpin structure Y1 (blue; source: Ref. [30]).
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RNA molecules are particularly

well-suited for rational design, because

there is a well-defined simplified

notion of RNA structure, the so-called

secondary structure, which allows for

rigorous mathematical analysis [30].

The secondary structure is a graph

that is equivalent to a listing of base

pairs in the double-helical stretches or

‘‘stacks’’ of the RNA structure.4 Figure

3 shows three different concepts of

RNA structures:

1. Conventional structural biology

assigns one structure to every

sequence in the sense of the

‘‘sequence ) structure’’ paradigm

(Figure 3, left drawing: Y0 is a

hairpin with 14-base pairs). This

structure is the thermodynami-

cally most stable structure or the

conformation of minimal free

energy (mfe).6 Given the

sequence, the structure of the

molecule can be calculated by

means of algorithms making use

of linear programming [31–33].

These algorithms, however, are

not suitable for RNA design,

because for this goal the inverse

problem, sequence ( structure,

has to be solved. Algorithms

have also been developed for the

inverse problem, which predicts

the sequences folding into given

structures [30,34–36]. A major

results that is important for RNA

design is the nonuniqueness of

the inverse folding problem:

Many sequences form the same

mfe-structure [37].

2. RNA molecules like all polymers

form many conformations corre-

sponding to local minima of the

free energy. A whole spectrum of

metastable5 suboptimal struc-

tures belongs to a given

sequence as shown in the middle

drawing of Figure 3. These sub-

optimal conformations differ

with respect to their lifetime. In

case of the example in the figure,

there is a structure Y1 consisting

of two hairpins with six-base

pairs each, which has a free

energy that lies only about 1 kcal

mole21 above the global free

energy minimum of Y0. The met-

astable conformation Y1 corre-

sponds to a local minimum of

the free energy and provides a

thermodynamic alternative to the

most stable structure Y0. The free

energy of a conformation deter-

mines the statistical weight in

the partition function, which is

tantamount to its presence at the

thermodynamic equilibrium. It

tells nothing, however, about the

timescale on which the confor-

mational change takes place.

3. In addition to the existence of

suboptimal conformations and

their presence at equilibrium, the

rate parameters for the transition

between conformations are

required for a full characteriza-

tion of suboptimal states.

According to the Arrhenius equa-

tion (Figure 3, right drawing), the

rate of a conformational change

is determined by the height of

the barrier separating the valleys

of the two local minima. The

barrier height in Figure 3 is

about 20 kcal mole21 and the

two structures Y0 and Y1 live

long enough to be observed.

In the case of RNA molecules, it is

possible to develop algorithms that

allow for the design of bistable and

multistable molecules with predefined

barrier heights [38]. Making use of

methods in discrete mathematics, it is

possible to proof that for each pair of

arbitrarily chosen structures there

exists at least one sequence, which can

form the two structures [37]. The result

is called intersection theorem, an

extension of the proof to three struc-

tures is not possible and counterexam-

ples are readily constructed. Schultes

and Bartel were choosing two com-

pletely unrelated RNA molecules of the

same length of 88 nucleotides; one

is an artificially designed RNA

ligase,6 and the second one is a natural

RNA cleaving enzyme from hepatitis d-

virus. Sequences, which can fold into

both structures were designed and

indeed are able to perform both cata-

lytic functions [39]. RNA molecules,

which form two active conformations

with different functions, are well-

known in nature. The so-called ‘‘ribos-

witches’’ regulate the synthesis of

enzymes for metabolic reactions [40].

4. EVOLUTIONARY DESIGN
Darwin’s principle of natural selec-

tion is built on three prerequisites: (i)

multiplication through reproduction,

(ii) variation, and (iii) selection as a

consequence of limited resources.

None of the three processes is bound

to the existence of cellular life and

there is no reason why Darwinian evo-

lution should not be observable in

cell-free laboratory assays. Spiegelman

recognized this fact already in the

1960th and designed and implemented

the first successful experiments evolv-

ing molecules in the test tube[41–43]:

All three conditions were fulfilled by

the properties of the RNA molecules

4For the sake of simplicity, we shall

use the word ,structure ‘‘as a synonym

for secondary structure.’’ The notion of

‘‘conformation’’ is used when two or

more structures are assigned to a single

sequence (Figure 3; middle and right-

hand drawing).

5A conformation is characterized as

‘‘metastable,’’ if it corresponds to a min-

imum of the free energy that is higher

than the free energy of the mfe-

structure.

6A ligase is an enzyme that ligates

or concatenates two molecules, here

two RNAs.
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and the experimental setup: (i) the

RNA had been isolated from E. coli

cells that were infected by the bacte-

riophage Qb and is multiplied by an

RNA dependent RNA polymerase—Qb-

replicase isolated from infected E. coli

cells as well,7 (ii) variation is provided

by imperfect copying, and (iii) the

conditions for selection are deter-

mined by the setup of the experiment.

Frequently the ‘‘serial transfer’’ tech-

nique is applied: stock solution, which

contains the building blocks for RNA

synthesis and Qb-replicase, is inocu-

lated by a small sample of the RNA

that is suitable for replication.8 RNA

synthesis starts instantaneously and

after a certain time span a small sam-

ple is transferred to the next test tube,

which contains fresh stock solution

and replaces the consumed materials.

RNA replication sets in again and the

whole procedure is repeated about 100

times. Spiegelman observed that the

rate of RNA synthesis increases during

the serial transfers and he gave the

correct interpretation of the result:

faster replicating variants that origi-

nated from replication as copying

errors replaced the original, less effi-

cient replicating molecules until the

velocity of replication reached a value,

which can be increased no more under

the conditions of the experiment. In a

way such serial transfer experiments

with molecules under laboratory con-

ditions represent evolution in time

lapse mode as an entire series can be

carried out in a few days. The con-

sumption of material during RNA syn-

thesis within a single-test tube

changes the kinetics of RNA replica-

tion [44] and special automata have

constructed to be able to perform

serial transfer under precisely control-

lable conditions [45]. The fundament

of an understanding of the evolution

of molecules on the basis of chemical

reaction kinetics has been laid down

by Eigen in form of a kinetic theory of

molecular evolution [46,47].

The observation that molecules can

be evolved by Darwinian selection in

the test tube initiated the development

of a novel branch of biotechnology in

the sense of evolutionary design of

biomolecules with predetermined

properties and functions [48,49]. In

contrast to rational design, the evolu-

tionary approach does neither require

knowledge of molecular structures nor

is it necessary to know the relation

between structure and function. What

is necessary is only a test system for

the desired molecular property and a

technique that allows for selection of

molecules, which meet best the pre-

scribed conditions, from an ensemble

with other properties. The principles

of evolutionary ‘‘breeding’’ of mole-

cules9 are sketched in Figure 4. Ini-

tially, a population of molecules with

sufficient genetic diversity has to be

prepared. Several methods are cur-

rently available to meet this goal. One

can use, for example, a DNA synthe-

sizer to produce an ensemble of ran-

dom DNA sequences, transcribe it into

RNA, and eventually translate the RNA

into protein. The best suited variants

are picked by means of a suitable

selection method and used to create a

new population by means of amplifi-

cation and diversification, for example

through error-prone replication. The

new population is subjected to the

next selection-cycle and, in general,

some 20–30 cycles are sufficient to

produce optimal molecules. Evolution-

ary techniques were used for many

different purposes—we mention here

two examples: (i) the production of

‘‘aptamers’’ [50]—being optimally

binding RNA molecules, and (ii) tar-

geted evolution of proteins [51].

RNA molecules are especially well-

suited for the application of evolution-

ary methods, because they can be

directly replicated and mutated [49].

Here, we illustrate the technique by

sketching the Systematic Evolution of

Ligands by EXponential Enrichment

(SELEX) method (Fig. 5), which is

nowadays routinely applied for the

evolution of molecules that bind opti-

mally to predefined targets [52,53].

The basic protocol is readily described:

initially a ‘‘pool’’ of random RNA

sequences is created and transferred

into a suitable solvent. A column is

prepared for affinity chromatography,

on which the target molecules are

covalently bound to the stationary

phase of the column. Then, the solu-

tion containing the RNA molecules is

poured over the column and the mole-

cules that bind strongest to the sta-

tionary phase are retained. Using a

different solvent, these currently best

binders are eluted and subjected to

the next selection-cycle consisting of

amplification, diversification, and

selection. The solvent is changed from

cycle to cycle to make it more and

more difficult for the binders to be

retained and after a sufficient number

of cycles—commonly 20–30—RNA

molecules called aptamers binding

optimally to the target are obtained.

SELEX allows for the preparation of

aptamers that have binding constants

almost as high as the strongest binding

constants found in nature.

Targeted evolution of proteins was

and is pursuing two different goals: (i)

an improvement in the understanding

7Qb denotes a barteriophage, a virus

that infects bacteria, which lives in

bacteria of the species Escherichia coli.

Qb-replicase is an RNA replicating

enzyme that can be isolated from

infected bacteria.
8To be suitable for replication, the

RNA has to contain a binding site for

Qb-replicase.

9‘‘Breeding’’ is a good characteristic

for the techniques of evolutionary bio-

technology as the experimenter like an

animal breeder has to pick out mole-

cules, which meet the properties of the

predefined target as closely as possible,

from a diverse mixture.
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of thermodynamic stabilities and func-

tions of proteins, which in natural evo-

lution are commonly blurred by the

complex superposition of multiple opti-

mization criteria, and (ii) the produc-

tion of non-natural proteins, which

reveal physical and chemical properties

free of the historical contingencies of

biological evolution [54]. In addition, in

vitro evolution allows for isolation and

analysis of all intermediate states of an

evolutionary process and in this way

one gets otherwise not achievable

insights into the paths along which

populations of molecules are optimized

evolutionarily [55]. Finally, we mention

a recent publication, in which it has

been shown by in vitro evolution that a

ancient class of proteins—a primordial

‘‘fold’’—has the capability to change

structure through a few evolutionary

mutations and to adopt the function of

a specific RNA ligase [56].

5. SYNTHETIC BIOLOGY ‘‘QUO
VADIS’’?

The notion ‘‘synthetic biology’’

appears the first time in the year 1913

in a Letter to Nature with the heading

‘‘Synthetic biology and the mechanism

of life’’ [57] and refers to a book by

Leduc with the title ‘‘La biologie syn-

th�etique’’ [58] that had been published

in Paris in the year before. In this

monograph, the author, a French biol-

ogist, tries to reduce processes in liv-

ing organisms to the physics and

chemistry of diffusion in liquid solu-

tions. Synthetic biology as we know it

nowadays—still not yet a homogene-

ous field with a well-defined method-

ology—has been shaped during the

second half of the 20th century as it

was growing out of molecular biology

and molecular genetics. As important

milestones in the development of pres-

ent day synthetic biology, we mention:

i. Watson and Crick’s model of

DNA structure—Nobel prize for

physiology 1962,

ii. restriction nucleases for highly spe-

cific cleavage of DNA by Werner

Arber, Daniel Nathans, and Hamil-

ton Othanel Smith—Nobel prize for

physiology 1978—and their applica-

tion in molecular genetics through

recombinant cloning by Paul Berg

[59]—Nobel prize for chemistry

1980,

iii. the development of novel DNA

sequencing techniques that allow

for the sequencing off whole

genomes by Walter Gilbert [60] and

Frederick Sanger [61,62]—Nobel

prize for chemistry 1980,

iv. the synthesis of the gene regulation

network for an artificial oscillator in

vivo called ‘repressilator’ through

the incorporation of three repressor

genes into E. coli cells [63], and the

incorporation in vivo of a reversible

FIGURE 4

The strategy of evolutionary biotechnology. Molecular functions are optimized in selection-cycles. Ini-
tially, an ensemble of biomolecules - RNAs, DNA,s or proteins - is prepared, which has sufficiently
high-genetic diversity - for example, random sequences through synthesis that is not controlled by a
program in the form of a prescribed biopolymer sequence. Variants that carry the desired feature are
picked out from the ensemble by means of a suitable selection procedure. The selected sample is
subjected to the next selection-cycle, which consists of the steps (i) amplification, (ii) diversification,
and again (iii) selection. Amplification and diversification can be combined in a single step in case
biomolecules are copied by a process with a suitably high-mutation rate. Selection-cycles are
repeated until the desired result has been obtained or no more improvements are recorded (Source:
Refs. 48 and 49).
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artificial genetic switch in the same

bacterium [64], both in the year

2000, and

v. the chemical total synthesis of a

genome and its implementation

in a cell of the same bacterial

species [65] in the year 2010.

The last few years saw a new

although not far to seek application

for synthetic DNA: the usage for stor-

age of digital information [66]. Church

and his coworkers at Harvard Univer-

sity synthesized a DNA that contains

an entire book with 53,426 words, 11

FIGURE 5

The SELEX method in the production of RNA molecules binding optimally to target structures. SELEX provides a simple experimental example for the selec-
tion of RNA molecules that bind strongly to predefined target structures. Molecules with high binding affinities called ‘‘aptamers’’ are selected from a popu-
lation of RNA molecules with different binding constants. The separation process applied is called affinity chromatography: a target structure is bound
covalently to the stationary phase of a chromatographic column, a solution containing the molecules to be separated is poured over the column, and the
separation is achieved through retention of the strongly binding aptamers on the column (A). The bound molecules are eluted by means of another solvent
(B) and prepared for the next separation step on the column by means of amplification and diversification (C). In case of RNA molecules, step C is com-
monly achieved through reverse transcription RNA ) DNA by means of a reverse transcriptase, PCR amplification of the DNA, and transcription, DNA )
RNA. Often, reverse transcription and PCR amplification are sufficiently inaccurate for the creation of a sufficiently broad mutant spectrum. If necessary,
error rates can be artificially enhanced. To increase the affinity the solvent for the retention is varied from selection-cycle to selection-cycle in the sense
that stronger and stronger binding parameters are required to be retained. In general 20--30 selection-cycles are sufficient for the production of optimally
binding aptamers. The binding parameters often are as high as with naturally evolved binders (Source: Refs. 52 and 53).

30 C O M P L E X I T Y Q 2013 Wiley Periodicals, Inc.
DOI 10.1002/cplx



figures as jpeg-files, and one Java

script stored in 5.27 megabit of its

sequence. This storage facility holds

the current record with respect to den-

sity of information with almost 1016

bits per mm3, and beats thereby all

physical storage devices including

quantum holograms. DNA after all has

been designed by biological evolution

to be a storage device for information,

and making copies by PCR is efficient

and cheap compared to other memo-

ries with high density storage.

The key toward a novel DNA-based

information technology is DNA syn-

thesis in sufficiently high quantities at

low price. The ‘‘next generation tech-

nology’’ in DNA-synthesis seems to

meet this requirement, indeed [67] Sci-

entists and engineers at the company

Gen9 in Cambridge (MA) announced

that they are in a position to synthe-

size as much DNA as the rest of the

world. It remains to be seen whether

this promise can be fulfilled or not.

Recently—precisely on April 9,

2013—the American Chemical Society

published an expos�e with the title:

‘‘Engineering for the 21st Century:

Synthetic Biology’’ [68]. The closing

remarks of the essay will be taken

from this report: ‘‘For years, scientists

have hoped that biology would find

its engineering counterpart—a series

of principles that could be used as

reliably as chemical engineering is for

chemistry. Thanks to major advances

in synthetic biology, those hopes may

soon be realized.’’ The production of

DNA-constructs could well be such a

biological core technology, says the

author of the expos�e. It will find

numerous applications in diverse dis-

ciplines such as DNA-nanotechnology,

targeted ribosomal protein synthesis

with natural and artificial amino

acids, and genetic variation of entire

organisms. Similarly, as chemical core

technology integrates a rich repertoire

of surrounding processes into the

well-defined discipline of chemical

engineering, a new kind of biotech-

nology could serve as the common

denominator for the large number of

subareas in present day synthetic

biology that look to us like a

smorgasbord.
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