
A Silent Revolution in Mathematics

The Rise of Applications, Numerical Methods, and Computational Approaches

F
ifty years ago there has been still a clear cut separation between pure and

applied mathematics: pure mathematics had its home in the Olympus of aca-

demic sciences, whereas applied mathematics was left to the technical uni-

versities for teaching and research. Some time ago a colleague of mine from the

department of mechanics of the Technical University of Vienna said partly

amused partly offended: ‘‘Our people in the math department do pure1 mathe-

matics, is it then dirty mathematics what I am doing?’’ Mathematics has under-

gone a true silent revolution within the last few decades. The difference between

pure and applied mathematics—thought to be fundamental in the past—has

almost completely disappeared. Computer modeling in science is in widespread

use and almost every university houses a department for computational science

but this is only one usage of electronic computers in present day mathematics

although a very powerful one. As most people are familiar with the achievements

and problems of numerical modeling and computer simulations, we shall focus

here more on other issues that are not so much commonplace.

PROGRESS IN COMPUTATION—DUE TO IMPROVEMENT IN HARDWARE OR IN
ALGORITHMS?

Speed of computation and digital storage capacities are growing exponentially

since 1960 with an approximate doubling time of 18 month—a fact that is com-

monly addressed as Moore’s law [1]. It is not so well known, however, that the

spectacular exponential growth in computer power has been overshadowed by the

progress in numerical mathematics that led to an enormous increase in the effi-

ciency of algorithms. To give just one example that has been presented to the

President of the United States in the 2010 report by Martin Gr€otschel from the

Konrad Zuse-Zentrum, Berlin [2]: ‘‘The solution of a benchmark production-

planning model by linear programming would have taken 82 years CPU time in

1988, using the computers and the linear programming algorithms of the day. In

2003—fifteen years later—the same model could be solved in one minute and this

means an improvement by a factor of about 43 million. Out of this, a factor of

roughly 1000 resulted from the increase in processor speed whereas a factor of

43,000 was due to improvement in the algorithms.’’ Many other examples of simi-

lar progress in the design of algorithms could be given.
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Understanding, analyzing, and

designing high-performance numerical

methods, however, requires a firm back-

ground in mathematics. The availability

of cheap computing power has also

changed the attitude toward exact

results in terms of complicated func-

tions: It does not take so much more

computer time to compute a sophisti-

cated expression like a hypergeometric

function than to calculate an ordinary

sine or cosine for an arbitrary argument.

Symbolic computation has changed

everyday life of mathematicians as well

as scientists who apply mathematics:

operations on complex and sophisti-

cated expressions are enormously facili-

tated and in this way the present day

computational facilities have large

impact on analytical work as well.

NEW APPLICATIONS FROM OLD AND
NEW MATHEMATICS

Many examples of interesting new

applications could be given, we men-

tion only two illustrative and represen-

tative ones: (i) number theory in

cryptography applying established

mathematics to present day problems

and (ii) solution of inverse problems,

which required the development of

new mathematical techniques to be

able to deal with ill-posed problems.

A famous example of unexpected

applications of a branch of pure math-

ematics in everyday applications is the

use of number theory—a discipline

that is traced back to the Old Babylo-

nians by some historians—in modern

cryptography [3]. To allow for security

of messages during transmission from

sender to receiver enciphering and

deciphering keys are required. Sym-

metric encryption schemes, which

have been applied for thousands of

years, use a single secret key for both

encryption and decryption, and

accordingly sender and receiver must

share the key in advance. Security of

the transmission depends on how well

the key is kept private by both per-

sons. Asymmetric-key algorithms are

used in public-key cryptography and

they are based on pairs of keys for

each user: (i) a public encryption key

and (ii) a private decryption key that is

exclusively in the hand of its proprie-

tor. Both keys are required to be able

to read the transmitted message. The

two keys are related mathematically

but the parameters are chosen in such

a way that a calculation of the private

key from the known public key is pro-

hibitively expensive, and number

theory does the job to make such a

calculation practically impossible.

Around 1900 Jaques Hadamard

coined the notion of well-posed prob-

lems in mathematics that have to fulfill

three criteria: (i) a solution exists, (ii)

the solution is unique, and (iii) the

behavior of the solution hardly changes

on slight changes in the initial condi-

tions. If one of the three criteria is not

fulfilled, the problem is ill-posed. Com-

monly, solution curves or data points

are calculated from model equations

whereby initial and boundary condi-

tions as well as a set of given parame-

ters are supplied. Such a task is a

typical forward problem. In applied sci-

ence, the inverse problems are occur-

ring more frequently: data points are

recorded and the task is to compute

the parameters of the system, which

created the data [4]. In contrast to typi-

cal forward problems, inverse problems

are often ill-posed. A joint analytical

and computational approach, however,

has been successful and satisfactory

solutions can be obtained by means of

methods called regularization [5] that

prevent artifacts and divergence. Cur-

rently, inverse problems are an estab-

lished branch of mathematics and

several specialized journals are publish-

ing a great number of methodological

advances and applications.

PROOFS BY NUMERICAL
COMPUTATION

In 1852, the South-African mathe-

matician and botanist Francis Guthrie

formulated an innocent looking puzzle

of coloring planar maps, the famous

four color problem [6], which states:

‘‘The regions of any simple planar map

can be colored with only four colors,

in such a way that any two adjacent

regions have different colors.’’2 No

proof has been found for this simple

looking problem until Kenneth Appel

and Wolfgang Haken were able to

present one [7,8]. The problem with

the Appel and Haken approach, how-

ever, was that the publication of their

proof initiated a mathematical contro-

versy, because part of the proof used

computer calculations for excluding

critical and possibly contradictory

cases. The mathematics community

was split into two groups of research-

ers, one willing to accept a numerical

proof and others who were not. Some

progress was made when the number

of critical cases had been drastically

reduced by a revised version of the

Appel and Haken proof [9] and the

current proof that is accepted by the

majority of mathematicians was per-

formed with the so-called Coq system

that provides a tool for computer

assisted formal proofs [6,10].

The second example presented here

deals with the proof of a 400-years old

conjecture originally done by the

famous astronomer Johannes Kepler:

‘‘The densest arrangement of spheres

is one in which they are stacked in a

square pyramid.’’ Every grocer or mer-

chant on the market apparently knows

this solution when piling up oranges,

2Adjacent countries must have a com-

mon boundary that is larger than a

single point. An illustrative nongeneric

case that has to be excluded is Four

Corners in the US, where Colorado,

Utah, Arizona, and New Mexico meet

in a single spot. At Four Corners Utah

and Arizona have a common boundary

and so do New Mexico and Colorado,

but Utah and New Mexico as well as

Colorado and Arizona meet only in a

single point
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apples or melons, and every cannoneer

storing cannonballs makes uncon-

sciously use of the same principle for

closest stacking of identical balls in 3D

space according to face-centered-cubic

geometry. Many mathematicians tried

to provide a proof for the solution

being the densely packed pyramid and

it took 400 years before a proof derived

by Thomas Hales with extensive use of

computers was published [11]. The

publication has been preceded by sev-

eral years reviewing by about a dozen

experts in mathematics and they said

that they were 99% sure that the proof

is correct but they raised the issue of

being unable to check carefully every

line of the computer code when it had

been visited by the running program—

what would have been necessary for

absolute certainty [12]. As said in the

previous paragraph on the four-color

problem, computer codes have been

and are currently being developed,

which check computer assisted proofs

for consistency and possible errors. The

present-day situation is not untypical

for rapid or revolutionary change in sci-

ence: Procedures that are still rejected

now by the scientific community may

well be the standard in several years.

The difficulties of acceptance of

results derived from huge amounts of

data that have been never seen by

human eyes nor checked by expert

brains are not uncommon in science.

These amounts may be so huge that

only high-performance computer pro-

grams can handle, store, and retrieve

them, as it happens, for example, in

elementary particle physics or in bio-

informatics. Then, only computers

with special software can debug and

check the computer programs. Evolu-

tionary methods applied to software

error correction are a highly promising

new field [13,14].

NEW INSTITUTIONS IN
MATHEMATICS

The mathematical and the scientific

communities as well as the funding

agencies have already reacted to the

reorientation of goals in academic

research in mathematics. New institu-

tions encouraging and facilitating

direct cooperation between basic

research in mathematics and applied

science were founded. Initially,

physics, engineering science and tech-

nology oriented industry benefited

most from the interaction with mathe-

matics, later other disciplines like

chemistry, biology, and sociology fol-

lowed. Economics and physics have

been traditionally in close cooperation

with mathematics for long time

already. The National Science Founda-

tion is financing eight institutes for

application of mathematics, which are

spread all over the US, most countries

of the European Union created new

institutes, which are housing mathe-

maticians interacting with scientists,

and similar developments are occur-

ring in South-East Asia, for example, in

Singapore, in China and in India.

Mathematicians, in contrast to

most scientists, do neither require

large groups nor expensive equipment

for their research work. In case mathe-

maticians use computers, as a rule,

they do not need large supercom-

puters. What mathematicians need,

however, is exchange of ideas and the

personal dialogue between researchers.

The new institutes have one thing in

common and this is a well-organized

and intensive visitors program and

specialized meetings of experts in

order to facilitate joint research.

PURE AND APPLIED SCIENCE
Compared to most scientific disci-

plines, the merger between basic and

applied research came a little late in

mathematics. In physics and chemistry

of the 19th century, scientific innova-

tions found their way into industrial

exploitation already without substan-

tial delay and since then the time span

between discovery, patent application,

and translation into an industrial pro-

cess became shorter and shorter.

Chemistry is a good example: applied

chemistry never had a lower reputa-

tion than basic research, because the

motto was and is ‘‘pure chemistry is

poor chemistry’’—the money is made

in the chemical industry and not in

academia. The famous international

journal ‘‘Angewandte Chemie’’ with an

English translation was founded in

1887, it is publishing new results from

basic research as well as interesting

application. Any border between the

sister disciplines pure chemistry and

chemical engineering would be artifi-

cial and obsolete. An impressive repre-

sentative of this union between

academia and industry in a single per-

son is the Austrian chemist Carl Auer

von Welsbach: He discovered four new

elements of the periodic table, did

three major inventions, and has been

a successful entrepreneur.

Modeling and numerical simulation

were the first fields where computers

became an instrument of research. The

application of quantum mechanics to

problems of molecular structures and

molecular spectroscopy required and is

still requiring enormous computer

resources; the mathematics is relatively

simple, and the challenge is the size of

the problems to be treated. Modeling

in physics has a very long tradition and

is typically more demanding as far as

the necessary mathematical tools are

concerned. Biology is joining physics

and chemistry in the requirement for

large scale computing since relatively

short time only and it introduces new

issues: so far there is no theoretical

biology that provides a secure frame for

model building. The model in biology

does not declare itself out from a com-

monly accepted theoretical body like

quantum mechanics, and to conceive a

useful model needs empirical knowl-

edge, skill, and intuition.

The revolution in mathematics did

not come by itself. It has been initiated

and guided by the spectacular develop-

ment in computer technology. Problems

of direct relevance for applications in
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science and technology became accessi-

ble through the combination of mathe-

matical analysis and numerical

computation: Simplified mathematical

models could be adapted to the neces-

sarily complex realities and became

highly valuable tools for the experimen-

talists. Finally, it should be stressed that

the close cooperation of mathemati-

cians, scientists, and engineers provided

and provides the basis for all the fasci-

nating new developments.
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