
Are computer scientists the sutlers of modern biology?* 
Bioinformatics is indispensible for progress in molecular life sciences but does not get 
credit for its contributions. 
 
Peter Schuster† 
 
At present bioinformatics is indispensible for the life sciences. The data flood is 
enormous and cannot be inspected and analyzed anymore by human eye and brain. This 
fact alone initiates a new area of science and mathematics: The experimentalist records 
amounts of data, which escape all attempts of direct visualization and cannot be handled 
without extensive assistance by computers. Elaborate mathematical proofs are often so 
complex that they require at least partial help by computation. Burning questions arise in 
this context: “Can we trust computers?” or “Is large scale software running on our 
gigantic machines really free of bugs?” Different disciplines react differently to such 
issues: Mathematical purists are very reluctant to accept proofs by computer, theoretical 
physicists are most open minded and commonly rely on their gigantic computer 
programs, chemists in essence got acquainted with computational chemistry and are 
accepting theory with decreasing resistance, and finally biologists cannot do modern 
molecular life sciences without an impressive collection of computational tools. 
 
Proofing – already existing – theorems by computers goes back to the nineteen fifties and 
has been generally accepted as a useful tool in pure and applied mathematics [1]. Since 
proofs for unsolved problems were done by computer assistance – the first popular 
example has been the four color problem [2,3] – the society of mathematicians is divided 
on the issue of proof by computer [4]. The arguments of the proponents of computer 
proofs are straightforward: The conventional proofs for many conjectures are so complex 
that they fail to be discovered by the unaided brain, and automated proofing provides an 
alternative that is cheap and has shown to be successful in numerous cases of problems 
already solved by conventional methods. The arguments of the opponents are really not 
less convincing: A proof to be intellectuable to the human mind has to be casted into a 
number of – logical – statements that are comprehensible. If the number of statements is 
so large that the proof cannot be understood in reasonable time, then the proof has to be 
rejected. A problem arises with most computer proofs, because the number of statements 
to be executed in performing formal proofs is so large that human step-by step tracking 
might last thousands of years and more. The conflict has been ignited by the computer 
solution of Johannes Kepler’s conjecture on the solution of the ball stacking problem 
[4,5]: Thomas Hales succeeded to provide a computed proof for the conjecture, which 
required about 3 GByte memory space for code, input and output. The reviewers of the 
250-page manuscript submitted by Thomas Hales and Samuel Ferguson to the Annals of 
Mathematics saw themselves unable to decide whether or not this monstrous proof is 
correct. They ended up exhausted in the year 2003 by concluding that the proof is 
certainly 99% correct. Evidently this is not sufficient for a mathematical proof. Finally an 
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abridged version of the proof appeared in 2005 in this journal [6] and full details were 
given in an entire issue of Discrete and Computational Geometry [7]. Apart from the 
Sisyphus work like task to complete such a complex proof there is good reason for being 
skeptic about error-free hard- and software. To indicate the problem I give two quotations 
that I found in Thomas Hales article on formal proof [8]: “I have come to the conclusion 
that no microprocessor is ever perfect; they just come closer to perfection” [9] and “Don’t 
insist that every bug be fixed … When the programmer fixes a minor bug, he might 
create a more serious one” [10]. It is very hard to trim large computer codes to perfection, 
and a recent development, for example, makes even use of evolutionary methods to 
remove bugs from programs [11,12]: Improvements in the sense of removal of bugs are 
created by random variation and selection. In short, automated proofs will become more 
and more important in the future but computer scientists have to invest a lot more brain 
work in making computer codes more reliable but we should not forget that nothing that 
is sufficiently complex can be entirely error-free in a finite world. 
 
Physicists and chemists use huge computer codes for large scale computations ranging 
from data harvesting and interpretation in high-energy physics to the application of 
quantum mechanics to calculations of molecular structures and to large scale simulations 
of stochastic models. The requirement of absolutely error-free programs has never been 
such a central issue as in computational mathematics. The reason is easy to understand: 
The ultimate goal of computation in physics and chemistry is to produce data that are 
more accurate and more reliable than those collected by empirical observation. It is 
necessary therefore only to check software for consistency and to clean the major bugs 
off the computer code. Numerical mathematicians provided and provide better and better 
algorithms and computer scientists implement more and more efficient codes for 
computational science. An example should illustrate this fact quantitatively: It is now 
commonplace that speed of computation and digital storage capacities are growing 
exponentially and they do this uninterruptedly since the nineteen sixties with an 
approximate doubling time of eighteen month, a fact that is commonly addressed as 
Moore’s law [13]. It is not so well known, however, that the spectacular exponential 
growth in computer power has been overshadowed by the progress in numerical 
mathematics that led to an enormous increase in the efficiency of algorithms. Martin 
Grötschel from the Konrad Zuse-Zentrum in Berlin [14, p.71] reports one spectacular 
case: Using the computers and the linear programming algorithms of 1988, the solution 
of a benchmark production planning model by linear programming would have taken 82 
years central processing unit (CPU) time. In 2003 – fifteen years later – the same model 
could be solved in one minute and this means an improvement by a factor of about 43 
million. Out of this, a factor of roughly 1 000 resulted from the increase in processor 
speed whereas a factor of 43 000 was due to improvement in the algorithms. Many other 
examples of similar progress in the design of algorithms can be given and remarkably, 
progress continues at the same speed. 
 
Biology is in a special situation since neither traditional biology nor early molecular 
biology required support by computer science. Classical biology had hardly a single root 
in mathematics – Darwin’s centennial ‘Origin of Species’ [15] does not contain a single 
equation – and the only exception of a formal theoretical approach that has been 
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acknowledged by twentieth century biologists is population genetics founded by the 
mathematician Ronald Fisher and his contemporary colleagues J.B.S. Haldane and 
Sewall Wright. In the second half of the twentieth century novel experimental techniques 
changed the situation completely: New methods for DNA sequencing made possible the 
determination of whole genomes in relatively short time. Was the human inspection of 
the short genomes of viroids and viruses sometimes tedious but still possible so had even 
the smartest unaided brain to give up in view of millions and billions of nucleotides in a 
sequence. Fortunately, algorithms for sequence comparisons were already available when 
they were needed [16,17]. The presumably oldest method for sequence comparison was 
conceived by Saul Needleman and Christian Wunsch [16] and it was thought to be 
applied to comparisons of protein sequences for phylogenetic reconstructions of 
evolutionary trees because this was the problem of the day as DNA or RNA sequence 
determinations were very rare in nineteen seventy. The Smith-Waterman algorithm is a 
variant of Needleman-Wunsch in the sense that it aims at fitting a small sequence 
optimally to a much longer sequence – a problem commonly addressed as local 
alignment whereas Needleman-Wunsch aims at global alignment. Both algorithms are 
based on linear programming and this means that the result is optimal within the frame of 
the approach. Although these algorithms were perfect for the sequence comparison 
problem at the time of their implementations as computer programs, fast advancing 
efficiency of DNA sequencing demanded more elaborate and in particular faster tools. 
We mention two frequently used packages used in sequence comparisons: FASTA (fast-
all) [18] being the DNA adapted version of an earlier tool for protein sequence 
comparison [19] and BLAST (basic local alignment research tool) [20]. FASTA provided 
a standard format for sequence input that is still in use now and BLAST became the most 
widely used software package for sequence alignment and comparison. What makes 
BLAST so attractive is the high speed at which it operates. An old American saying is: 
“There is no free lunch”, and indeed the high speed of alignment and comparison is 
achieved because quality of performance is sacrificed. The original algorithms based on 
linear programming – Needleman-Wunsch and Smith-Waterman – are targeted towards 
finding optimal alignments whereas BLAST is a highly efficient heuristic, which 
eventually finds only a suboptimal solution in case the optimal one is too hard to find. 
Nevertheless, without algorithms like BLAST it would be impossible to handle the 
genomes of higher organisms. The simultaneous alignment of several sequences became 
an important issue in phylogeny and again software corresponding to the new demand 
has been developed in form of the CLUSTAL (cluster analysis) algorithm [21]. All these 
programs were further developed in the following years and several other more efficient 
algorithms for sequence alignments, comparisons, and other analytic tasks were added 
(For more information on sequence comparisons see, for example, the monograph ref. 
22). Present day genomics and phylogenetic analysis were unthinkable without the 
toolboxes developed in bioinformatics. 
 
Software development for the prediction and analysis of the structures of biomolecules is 
often characterized as structural bioinformatics. The progress in our understanding of 
protein and nucleic acid structures was spectacular and interpretation of function without 
referring to structure has become unthinkable in present day biology. The currently most 
promising approaches combine algorithms, which are based on theory, with empirical 
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data. We dispense here from all details which can be retrieved, for example, from a 
webpage [23] but mention the currently highly important task combining sequence 
analysis and structure prediction: the detection of conserved structural elements through 
sequence analysis. In case of simplified RNA structures – the so-called secondary 
structures – simultaneous sequence analysis and structure prediction can be combined 
allowing for the determination of consensus structures of two or more aligned sequences. 
The first solution of the problem has been provided by David Sankoff [24] but his 
algorithm was too slow for most applications. Later developments led to much faster 
algorithms, which are heading for slightly suboptimal practical solutions, for example 
RNAalifold [25,26] (for a toolbox of RNA secondary structure related programs see ref. 
27). The detection of a conserved structure is the best indication for the biological 
function of a stretch of DNA or RNA, which became a hot topic after the discovery that 
most of the human genomic DNA is not mere junk but transcribed into RNA whose 
function remains to be revealed [28,29,30]. Deciphering the “functional code” of 
genomes is presumably the most important topic of cutting-edge research in present day 
biology. 
 
Many other disciplines were also revolutionized by application of novel technologies – 
we can mention here only two examples: (i) high-throughput experiments and (ii) large 
scale modeling. Biological, medical, and pharmaceutical research was put on a new basis 
through the development of high-throughput methods. Simultaneous experiments on up 
to thousands of samples evidently require efficient software tools for planning, execution, 
and analysis. Systems biology aims at modeling entire cells with thousands of molecular 
players and in order to be successful, reaction parameters in similarly large numbers are 
required that can be obtained only from biochemical research work (see, for example, ref. 
31 and 32). Modeling entire cells and organisms on the molecular level – the ultimate 
goal of systems biology – is among the greatest challenges of the near future. 
 
Highly renowned molecular biologists, Sydney Brenner for example, see currently a 
room for a new theoretical biology [33]. In order to fulfill its task such a discipline has to 
find new approaches to handle the huge piles of data and to extract the relevant scientific 
knowledge sleeping among less informative stuff. Certainly, this will be impossible 
without a firm basis in mathematics and computer science. Bioinformatics provides the 
essential tools for modern biology in particular for storing, handling, retrieval, and 
analysis of the hitherto unseen amounts of results. As stated initially, software has to be 
highly reliable, since results can only be checked for consistency and details cannot be 
verified by human eye or brain as it was obligatory done in conventional science up to 
now. Still open at least for me is the question, what consistency means in unknown 
scientific territory. Physics can rely on the solid construction of theory as long as no 
paradigm shift is on the horizon – as it happened at the turn of the nineteenth to the 
twentieth century in the form of relativity theory and quantum mechanics. Present day 
biology is in weaker and from another point of view in a more favorable position, 
because it is lacking a strong and well established theoretical frame: It is less clear what 
is consistent with the dominant current view and what is contradictory but the resistance 
against the necessary shift in biological thought is much weaker, and we are currently in 
the middle of such a shift: The conventional Mendelian view of genetics that has been put 
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on a firm basis by population geneticists: Now it has to attribute room to alternative 
views that were discovered by molecular biologists: Regulation of gene activities in 
higher organisms, in particular imprinting and regulation by RNA, allow for phenomena 
that were commonly interpreted as epigenetic mechanisms. These mechanisms allow for 
the inheritance of acquired features in the sense of what is called Lamarckian evolution in 
the popular literature.‡ The occurrence of several epigenetic mechanisms of inheritance is 
well documented and understood in principle, and therefore the question is not whether 
Lamarckian evolution occurs, it is how much inheritance follows the Darwinian pathway 
of mutation and selection and how much is direct transmittance from parents to progeny. 
Genetics after all is working: children resemble their parents and grandparents, and 
breeders in nursery gardens and animal farms produce excellent results by applying 
conventional genetic rules. 
 
Finally we come back to the theme indicated in the title: Sutlers provided a great variety 
of goods for soldiers and entire armies during wartime, they were and are indispensible 
for military logistics not to the least because they can react instantaneously to the needs 
of the day, and are not dependent on the bureaucracy of an army. Sutlers are not 
estimated highly despite their importance for the function of military forces. The analogy 
to computer scientist is straightforward, in particular in biology: Bioinformatics is 
indispensible for progress but the credit for the achievements is given to other people. 
Craig Venter for good reasons became famous for his works in genomics but nobody 
knows the names of the computer scientists who made possible the evaluation and the 
synthesis of fragments to an entire genome, and other examples could be added. The only 
exceptions in chemistry – I am aware of – are in the exploration of molecular structures 
where the Nobel Prices 1998 and 2013 went to people doing computer work: Walter 
Kohn and John Pople, and Martin Karplus, Michael Lewitt and Arieh Warshel, 
respectively. In times where every experimentalist could interpret his results this was 
well justified but now when more and more responsibility goes to computer software it 
might be worth to rethink the relative importance of experimental and computational 
work. 
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