
The dilemma of statisticsa 
Rigorous mathematical methods cannot compensate messy interpretations and lousy data. 
 
Peter Schusterb 
 
Statistics although being indispensible in present day science and society has a bad 
reputation in particular in public. This can hardly be expressed in a better way than in the 
famous well-known quotation:  

“There are three kinds of lies: Lies, damned lies, and statistics”.c 
It would be unfair not to make an attempt to restore the image of statistics and I try to do 
this in part by means of another citation. 

“While it is easy to lie with statistics, it is even easier to lie without them.” 
This quote is attributed to Frederick Mosteller.1 Both citations are built undoubtedly upon 
the association of statistics with telling lies and it is worth asking why statisticians have 
such a bad image. I feel there are two main reasons for it:  
(i) Statistics can never be better than the underlying data, and the sometimes articulated 
belief of laymen that lousy data can be compensated by the application of highly 
elaborate statistical tools is simply wrong. What can be done at best is filtering, and the 
analogy from speech or music is useful as an illustrative example: Proper audio tuning 
tools can reduce noise and cut out unimportant frequencies but they cannot make an 
information generating input. 
(ii) Terms used in the language of statisticians are frequently misunderstood by the 
public. One of the problematic notions is “significance”: To be “significant” is often 
understood as a confirmation of the interpretation of data but it is little more than a test of 
mathematical consistency. 
Even in the latter case the appropriate methodology is a matter of ongoing dispute. Here 
we shall not engage in the diverse problems of data quality and sufficient sample sizes. 
Instead the issue of attributing significance to hypotheses will be in the focus. 
 
This essay will be dealing with hypothesis testing in mathematical statistics. A paper by 
Jan Sprenger2 that appeared in December 2013 prompted me to write on this subject. The 
review article analyzes the problems of the two major schools in probability theory, the 
frequentists’ approach and the Bayesian method, when they are confronted with statistical 
tests of the significance of hypotheses. He writes in the summary of his analysis,  

“A close analysis of the paradoxd reveals that both the Bayesians and frequentists 
fail to satisfactorily resolve it.”, 

a The essay has been published in Complexity 19/6: x-xx (2014). 
b Peter Schuster, Editor-in-chief of Complexity is at the Institut für Theoretische Chemie der Universität 

Wien, Währingerstraße 17, 1090 Wien, Austria. E-mail: pks@tbi.univie.ac.at 
c Commonly and probably falsely this quotation has been attributed by Mark Twain to Benjamin Disraeli, 
Earl of Beaconsfield. For a detailed historical analysis of the origin of this citation see: 
http://www.york.ac.uk/depts/maths/histstat/lies.htm .  Retrieved April 29, 2014.   
d Jan Sprenger uses Lindley’s paradox3 as a test case for hypothesis testing. 
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and he proposes an alternative. Why should such a special case be relevant for the image 
of statistics in the public? The answer is straightforward: When the experts cannot agree 
on a clear-cut example, the non-experts have all freedom of interpretations and this is 
particularly problematic if political interest or high risks are involved.  
 
In 1957 Dennis Lindley3 used an example from Harold Jeffreys book4 in order to 
illustrate a general problem in significance tests that became known under the name 
Lindley’s paradox. The paradox points out a substantial flaw of the common significance 
tests at large sample sizes and moreover, the two approaches, frequentist and Bayesian, 
inevitably come to opposite conclusions. In a nut shell Lindley has shown that the 
requirements for the significance of hypotheses may depend on sample size and in 
particular, two contradictory results obtained by the two methods illustrate the paradox: 
A sharp null hypothesis H0, for example exactly equal numbers of males and females in 
populations (nm = nf) or a uniform distribution of zeros and ones in a binary sequence 
leading to the fraction 0 = ½, is tested against a diffuse alternative hypothesis H1, nm  
nf or   0, and the test is expected to lead to support or rejection of the null hypothesis. 
The two proven lemmas say that for any predefined level of significance,e 0    1, there 
exists a population size n such that: (i) in the frequentist language the sample mean m is 
significantly different from the prediction of H0 (p < ), and (ii) the Bayesian posterior 
probability P(H0|x) expressing the probability of H0 in the light of the data x,f for 
example the probability that  = 0, is at least as big as 1-. In other words there is a 
sample size above which the Bayesian result contradicts the frequentist result in the sense 
that the Bayesians confirm the null hypothesis and the frequentists reject it, and this 
happens inevitably, no matter what the null hypothesis was. The discrepancy becomes 
larger with increasing sample size n. 
 
Jan Sprenger illustrates Lindley’s paradox by means of an example that is taken from 
experiments dealing with spooky extrasensory capacities,5 which are already a 
conflicting issue as such: A test person claims that his extrasensory power could affect a 
sequence of zeros and ones created by a random number generator using a radioactive 
source, and consequently his presence would introduce a bias into the otherwise perfectly 
uniform distribution. In other words, we expect to find a one to one fraction of zeros and 
ones encapsulated in the null hypothesis H0 of  = 0 = ½, and any statistically significant 
deviation from the ratio   ½ is attributed to the alternative being the unspecified 
hypothesis H1 that would be interpreted as a result extrasensory influence. In the 
particular case a very large data set of n = 104 490 000 Bernoulli trials was created under 
the null hypothesis of a binomial distribution with 0 = (1- 0) = ½, and yielded x1 = x = 
52 263 471 ones and x0 = 52 226 529 = 1- x zeros in presence of the test person who 
claims to use his extrasensory influence to increase the number of ones. The question is 

e The level of significance () expresses the maximal difference between the calculated expectation value of 
the null hypothesis () and the mean of the measured (experimental) sample (m) that was recorded for 
testing the null hypothesis. It is commonly expressed as p-value, which measures the fraction of cases, 
which are more extreme or further away from the null hypothesis than the one under consideration. The 
result p> confirms the null hypothesis whereas the null hypothesis is rejected as a consequence of p<. 
f The expression P(A|B) is a conditional probability, the probability of event A provided B is fulfilled. 
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now whether or not the result deviates significantly from the uniform distribution 
assumed under the null hypothesis. First we adopt the frequentists’ approach and 
calculate the z-score, which is commonly used for samples with n > 30, 
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and then we calculate the p-value from the normal distribution and find for this z-value:  
p = 1 – (3.614) = 0.000151, where F

N
 is the cumulative standard normal probability 

distribution. The null hypothesis is conventionally rejected for p <  = 0.05, and in the 
common frequentist approach the data would be interpreted as evidence for the presence 
of extrasensory influence on the random number generator. I guess quite a few of my 
friends from physics are now inclined to stop reading this essay, but I promise this would 
be premature since we are not yet at the end. 
 
How would a Bayesian analyze the data?6 The basis of the Bayesian approach is Bayes’ 
theorem 
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where P(H) is the so-called prior probability of hypothesis H, x are the data, in our 
example x = x1, and P(H|x) is the posterior probability, the probability of H under the 
condition given by the data x. For two hypotheses, H0 and H1, we calculate the so-called 
Bayes-factor expressing the significance of hypothesis H0 versus hypothesis H1: 
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For the interpretation of Bayes factors Harold Jeffreys gave a scale (ref.4, p.432): 
B01<1 support for H1, 
1<B01<3 insignificant support for H0, 
3<B01<10 substantial support for H0, 

10<B01<30 strong support for H0, 
30<B01<100 very strong support for H0, and 
B01>100 decisive support for H0. 

The calculation in case of our example occurs as follows: A positive probability is 
assigned to the null hypothesis, P(H0) =  > 0, and a uniform prior distribution is 
attributed to the alternative hypothesis H1. A Bayes-factor of B01  12 is then calculated 
from the conditional probabilities, which expresses strong support for the null hypothesis 
that was no extrasensory force in action. The majority of scientists will take note of this 
result with satisfaction but “don’t celebrate just yet”, because as predicted by Lindley’s 
paradox you need only take a sufficiently large sample and the Bayes factor will favor the 
null hypothesis. 
  



 - 4 - 

 
 
Figure 1: Acceptance factor  as a function of sample size. The acceptance factor  
defined in equation (1) is plotted against the sample size n. It converges asymptotically 
with n-½ to value =0 meaning certain rejection of the null hypothesis H0. Parameter 
choice:  0=½ and z(x)=1.645 corresponding to =0.05. 
 
 

 
 
Figure 2: Bayes factor B01 as a function of sample size. The Bayes factor B01 defined 
in equation (2) is a measure for the preference of the null hypothesis H0 over the 
alternative H1. Here it is plotted against the sample size n. It increases asymptotically 
with n½ implying more and more preference for the null hypothesis H0. Parameter choice: 
 2=s2=¼ and z(x)=1.645. 
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In order to visualize Lindley’s paradox we use two functions, an acceptance factor 
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for the frequentist approach and an approximation for the Bayes factor2 
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where 2 is the variance of the prior of H1 and s2 the variance of the sample. In order to 
compare the two expressions we assume a constant z-score and take the value obtained 
for the acceptance limit of the frequentist approach: z() = z(0.05) = 1.645. All variances 
are chosen to be 2 = s2 = 0(1- 0) = ¼, and n is the variable under consideration. The 
corresponding curves are shown in figures 1 and 2. The high sample size limits are seen 
straightforwardly from the two equations: The acceptance factor  decreases as n1  
and approaches the asymptotic value  = 0 more and more closely the larger the sample 
size n is. Any kind of small fluctuation will eventually lead to a rejection of the null 
hypothesis. In the Bayesian approach the exponential term of the factor B01 approaches a 
constant, exp(-z(x)2/2), and in total the Bayesian factor grows with n . No matter how 
improbable the null hypothesis H0 actually was, there will be a population size n above 
which the data will favor it. Coming back to our initial claim this result is grist to the mill 
of the skeptic layman: In order to get a desired result you need only choose the right 
method! Although one has to admit that a sharp null hypothesis,  = 0, together with a 
huge sample size, n > 108, is not the kind of problem that is often encountered by a 
statistician – except perhaps, in the analysis of extrasensory perception – the situation is, 
nevertheless, highly unsatisfactory. 
 
Is there a way out of the dilemma? Jan Sprenger presents José Bernardo’s Bayesian 
reference criterion (BRC) as a possibility for recovery7. The remedy comes from shifting 
the focus from evaluating the ‘truth’ of H0 to considering its predictive value and its 
prediction-based utilities. Similar as in the frequentist mood,8 the reproduction of 
previously observed regularities is understood as the main motivation for significance 
tests in Bernardo’s model, which in essence is built upon the Bayesian concept combined 
with decision theory. In order to evaluate the predictive score q of a hypothesis H 
expressed in form of a parameter value  given some data y the function 
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is applied, where a is a scaling factor and b(y) is a function that does not depend on the 
parameter . For prediction only the first part is relevant because b(y) cannot be adjusted 
by varying . The basis for a decision is the utility function U that depends on the 
predictive score q and the cost C for selecting a particular hypothesis H. For a null 
hypothesis H0, which is assumed to be simpler, more informative, and less prone to 
overfitting, the costs should be smaller than for a specific hypothesis H1 and we set 
C1>C0. Bernardo defines the utilities of accepting H0 or H1 by 
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It is important to see two features that make the BRC method essentially different from 
the conventional Bayesian approach: (i) The utility of accepting H0 is evaluated against 
the true parameter  and not against the point null hypothesis 0, and this introduces an 
essential asymmetry between H1 and H0, and (ii) the alternative H1 is not represented by 
the probabilistic average in form of the posterior mean but by its best element that is, of 
course, unknown. 
 
The Bayesian reference criterion (BRC) can be cast in a brief lemma: Data x, which have 
been generated from the probability model P(x|) with   ,g are incompatible with the 
null hypothesis H0,  = 0, if and only if the expected intrinsic discrepancy 
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exceeds a threshold value d0.2,7 Simple choices of d0 are ln102.3 for mild, ln1004.6 for 
moderate, and ln10006.9 for strong evidence against the null hypothesis. It is possible to 
compare the threshold d0 with the frequentist choice of the threshold level, =0.05, which 
corresponds to d0ln11 or mild evidence against H0 and which can explain the often false 
rejections reported in the literature. With the BRC a firm connection is made between 
hypothesis testing and decision theory. The new approach at the same time extends 
Bayesian reasoning and puts the frequentist procedures on a firm ground. 
 
Finally, we apply José Bernardo’s method to Lindley’s paradox and, in particular, to the 
analysis of the extrasensory capacity case.5,7 His calculation of the expected intrinsic 
discrepancy yields d=ln1400=7.24 and the null hypothesis is strongly rejected as it was in 
the frequentist case. The results can be easily verified by visualizing the posterior 
distribution of the ratio , which is a normal distribution N with mean =0.50018 and 
standard deviation =0.000049. Accordingly, the null hypothesis is 3.614 standard 
deviations away from the mean as already expressed by the z-score. Does this also mean 
that spooky extrasensory influence is present in the experiment? Definitely not! Despite 
being significant such a small deviation from the unbiased value 0= ½ can have a great 
variety of other causes: Most likely the random number generator was not accurate 
enough for such large samples.2 In view of the (infinitely) sharp hull hypothesis, =0, 
the very large sample size amplifies all kinds of otherwise unnoticeable and sometimes 
spurious effects. 
 
In this essay we made an attempt to identify problems in statistics and statistical inference 
that might contribute to the bad reputation of statistics in the public. At first we showed 
with reference to Lindley’s paradox that there are fundamental differences between the 

g The entire sample space of possible alternative hypotheses is denoted by . 
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frequentist approach and the subjective Bayesian approach that cannot be reconciled by 
more careful analysis. This becomes particularly clear through the consideration of sharp 
null hypotheses, e.g.  =0, at very large sample sizes: The frequentists will always reject 
the null hypothesis whereas the Bayesians will always confirm it. The fact that fixed 
significance levels used in the frequentists’ analysis of samples with different sizes are 
problematic, was already well known at the time of Lindley’s publication. It is clearly 
reflected by a comment of Maurice Bartlett.9 One way out of the dilemma is José 
Bernardo’s objective Bayesian approach called Baesian reference criterion (BRC), which 
merges the Bayesian method and the frequentist goal of precise reproduction of data by 
introducing rigorous methods from decision theory. In the special case of the 
extrasensory experiment discussed here5 the BCR analysis provides essentially the same 
result as the frequentist significance analysis. 
 
Now a different issue comes into play: Rejection of the null hypothesis at large sample 
sizes does not imply that the conjectured alternative is true, because at extremely high 
resolution all kinds of effects become important that are spurious and play no role for 
smaller samples. An important take-home lesson is: Increasing sample sizes alone in no 
universal remedy for bad quality results unless a careful analysis of possible artifacts at 
the higher resolution is undertaken. Misinterpretations like evidence for extrasensory 
power in the quoted example will definitely reflect discredit on statistics. The literature 
on significance tests and frequent pitfalls in their application is enormous and there is no 
need at present to fall into the common traps of testing hypotheses. If the majority of 
researchers were more rigorous in using statistical tools and more careful in the 
interpretations, the reputation of statistics would definitely be improved. 
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