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Preface

Statistics and stochastic processes are often neglected in the education of
chemists and biologists, although modern experimental techniques allow for
investigations of small sample sizes down to single molecules and many
measured data are sufficiently accurate for direct detection of fluctuations.
Progress in the development of new techniques and improvement in the res-
olution of conventional experiments have been enormous within the last fifty
years. Indeed, molecular spectroscopy provided hitherto unimaginable in-
sights into processes down to range of hundred attoseconds with atomic res-
olution, observations on single particles became routine and current theory
in physics, chemistry, and the life sciences cannot be successful without a
deeper understanding of randomness and its causes. Sampling of data and
reproduction of processes are doomed to produce artifacts in the interpreta-
tion unless the observer has a solid background in the mathematics of limited
reproducibility. As a matter of fact stochastic processes are much closer to
observations than deterministic descriptions in modern science and everyday
life. Exceptions are, of course, the motions of planets and moons as encap-
sulated in celestial mechanics, which stood at the beginnings of science and
modeling by means of differential equations. Fluctuations are so small that
they cannot be detected, even not by highest precision measurements: Sun-
rise, sunset, and solar eclipses are predictable with practically no scatter.
Processes in the life sciences are often entirely different. A famous and typi-
cal historical example are Mendel’s laws of inheritance: Regularities are de-
tectable only in sufficiently large samples of individual observations, and the
influence of stochasticity is ubiquitous. Processes in chemistry are between
the two extremes: The deterministic approach in conventional chemical re-
action kinetics has neither suffered a loss in applicability nor did the results
become less reliable in the light of modern experiments. What has increased
rather dramatically are the accessible resolutions in detectable amounts of
materials in both, space and time. Deeper insights into mechanisms provide
new access to information on molecular properties for theory and practice.

v



vi Preface

Biology is currently in a state of transition: The molecular connection
to chemistry revolutionized the sources of biological data and is setting the
stage for a new theoretical biology. Historically, biology was based almost
exclusively on observation, and theory in biology was engaged only in the
interpretations of observed regularities. The development of biochemistry at
the end of the nineteenth and the first half of twentieth century introduced
quantitative thinking in terms of chemical kinetics into some biological sub-
disciplines. Biochemistry attributed also a new dimension to experiments in
biology in the form of in vitro studies on isolated and purified biomolecules.
A second import of mathematics into biology came in the form of popula-
tion genetics, which was created in the nineteen twenties as a new theoretical
discipline uniting Darwin’s natural selection and Mendelian genetics. This
happened in the theoretical approach more than twenty years before evo-
lutionary biologists completed the so-called synthetic theory performing the
same goal. Beginning in the second half of the twentieth century molecular bi-
ology started to build a solid bridge from chemistry to biology and enormous
progress in experimental techniques created a previously unknown situation
in biology insofar as new procedures were required for data handling, analysis,
and interpretation since the volume of information is drastically exceeding the
capacities of human mind. Biological cells and whole organisms become now
accessible to complete description at the molecular level. The overwhelming
amount of information that is required for a deeper understanding of biolog-
ical objects is a consequence of two factors: (i) the complexity of biological
entities and (ii) the lack of a universal theoretical biology.

The current flood of results from molecular genetics and genomics to sys-
tems biology and synthetic biology requires – apart from elaborate computer
techniques – primarily suitable statistical methods and tools for verification
and evaluation of data. Analysis, interpretation, and understanding of ex-
perimental results, however, is impossible without proper modeling tools. In
the past these tools were primarily based on differential equations but it has
been realized within the last two decades that an extension of the available
repertoire by stochastic methods inevitable. Moreover, the enormous com-
plexity of the genetic and metabolic networks in the cell calls for radically
new methods of modeling that resemble the mesoscopic level of description
in solid state physics. In mesoscopic models the overwhelming and for many
purposes dispensable wealth of detailed molecular information is cast into a
partially probabilistic description in the spirit of dissipative particle dynam-
ics, and such a description cannot be successful without a solid mathemat-
ical background. The field of stochastic processes has not been bypassed by
the digital revolution. Numerical calculation and computer simulation play
a decisive role in present day stochastic modeling in physics, chemistry and
biology. Speed of computation and digital storage capacities are growing ex-
ponentially since the nineteen sixties with an approximate doubling time of
eighteen month, a fact that is commonly addressed as Moore’s law [338]. It
is not so well known, however, that the spectacular exponential growth in
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computer power has been overshadowed by the progress in numerical meth-
ods that led to an enormous increase in the efficiency of algorithms. To give
just one example, which was reported by Martin Grötschel from the Konrad
Zuse-Zentrum in Berlin [215, p. 71]: The solution of a benchmark production
planning model by linear programming would have taken – extrapolated – 82
years CPU time in 1988, using the computers and the linear programming
algorithms of the day. In 2003 – fifteen years later – the same model could
be solved in one minute and this means an improvement by a factor of about
43 million. Out of this, a factor of roughly 1 000 resulted from the increase in
processor speed whereas a factor of 43 000 was due to improvement in the al-
gorithms. Many other examples of similar progress in the design of algorithms
can be given. Understanding, analyzing, and designing of high-performance
numerical methods, however, requires a firm background in mathematics. The
availability of cheap computing power has also changed the attitude towards
exact results in terms of complicated functions: It does not take so much more
computer time to compute a sophisticated hypergeometric function than to
calculate an ordinary trigonometric function for an arbitrary argument, and
operations on confusingly complicated expressions are enormously facilitated
by symbolic computation. In this way the present day computational facilities
have also large impact on the analytical work.

In the past biologists had often mixed feelings for mathematics and reser-
vations against the use of too much theory. The new developments, however,
have changed the scene: The enormous amount of data that are collected
by the new techniques can neither be inspected by human eyes nor compre-
hended by human brains, sophisticated software is required for handling and
analysis, and modern biologists have to rely on it [394]. The biologist Sydney
Brenner, an early pioneer of molecular life sciences, points out [52]: “... But
of course we see the most clear-cut dichotomy between hunters and gatherers
in the practice of modern biological research. I was taught in the pregenomic
era to be a hunter. I learnt how to identify the wild beasts and how to go out,
hunt them down and kill them. We are now, however, being urged to be gath-
erers, to collect everything lying about and put it into storehouses. Someday,
it is assumed, someone will come and sort through the storehouses, discard
all the junk and keep the rare finds. The only difficulty is how to recognize
them.” The recent developments in molecular biology, genomics and organis-
mic biology, however, seem to initiate this change in biological thinking since
there is practically no chance to shape modern life sciences without math-
ematics, computer science and theory. Brenner advocates the development
of a comprehensive theory that would provide the proper frame for modern
biology [51]. He and others are calling for a theoretical biology new that al-
lows for handling the enormous biological complexity. Manfred Eigen stated
very clearly what we can expected from such a theory [91, p. xii]: “Theory
cannot remove complexity but it can show what kind of ‘regular’ behavior can
be expected and what experiments have to be done to get a grasp on the ir-
regularities.” Among the things, the new theoretical biology will have to find
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the appropriate way to combine randomness and deterministic behavior in
modeling and it is not very risky to predict that it will need a strong anchor
in mathematics in order to be successful.

In this monograph an attempt is made to collect the necessary mathe-
matical background material for understanding stochastic processes and its
applications in chemistry and biology. In the sense of Albert Einstein’s ver-
sion of Occam’s razor [56, pp. 384-385; p. 475], “... Everything should be made
as simple as possible, but not simpler. ...”, dispensable deep dwelling in higher
mathematics has been been avoided. In particular, an attempt was made to
keep the requirements in mathematics at the level of an undergraduate math-
ematics course for scientists, and we tried to make the monograph as much
self-contained as possible. Derivations of key equations are given wherever
this can be done with reasonable mathematical efforts. The derivations of
analytical solutions for selected examples are given in full length because the
reader who is interested to apply the theory of stochastic processes in practice
should be brought in the position to derive new solutions on his own. Some
sections that are not required if one is primarily interested in applications
are marked for skipping by readers who are willing to accept the basic results
without explanations. The book is partitioned into six chapters: The first
chapter provides an introduction into probability theory and follows in part
the concept of the introduction into probability theory by Kai Lai Chung [69],
chapter two deals with the link between abstract probabilities and measur-
able quantities through statistics, chapter three describes stochastic processes
and their analysis, and has been partly inspired by a monograph by Crispin
Gardiner [157], the following chapters four and five present selected appli-
cations of stochastic processes to solving problems in chemistry and biology
and the closing chapter contains a brief outlook on expected future devel-
opments. Throughout the book the focus is laid on stochastic methods and
the origin of in the various equation is not discussed with one exception:
chemical kinetics. For this example we present two sections on theory and
empirical determination of reaction rate parameters, because in this case it is
possible to show how Ariadne’s red thread guides from first principles in the-
oretical physics to the equations of stochastic chemical kinetics. We refrained
from preparing a separate section with exercises, instead case studies, which
may serve as good examples for calculations done by the reader himself, are
indicated in the book. Sources from literature were among others the text
books [69, 115, 157, 161, 174, 213, 301, 435, 463]. For a brief and concise
introduction we recommend [231]. Standard textbooks in mathematics used
for the courses were: [14, 46, 317, 382]. For dynamical systems theory the
monographs [183, 209, 404, 418] are recommended.

This book is derived from the manuscript of a course in stochastic chemical
kinetics for graduate students of chemistry and biology held in the years 1999,
2006, 2011, and 2013. Comments by the students of all four courses were
very helpful in the preparation of this text and are gratefully acknowledged.
Several colleagues gave important advice and critically read the manuscript,
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among them Edem Arslan, Christoph Flamm, Thomas Hoffmann-Ostenhof,
Christian Höner zu Siederissen, Ian Laurenzi, Eberhard Neumann, Paul E.
Phillipson, Karl Sigmund, and Peter F. Stadler. Many thanks to all of them.

Wien, Peter Schuster
October 2014
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Chapter 1

Probability

Who considers too much will achieve little.
Wer gar zu viel bedenkt, wird wenig leisten.

Friedrich Schiller, Wilhelm Tell, III.

Abstract . Thinking in terms of probability originated historically from an-
alyzing the chances of success in gambling and its mathematical foundations
were laid down together with the development of statistics in the seventeenth
century. Since the beginning of the twentieth century statistics is an indis-
pensable tool for bridging the gap between molecular motions and macro-
scopic observations. The classical notion of probability is based on counting
and dealing with finite numbers of observations, the extrapolation to limit-
ing values for hypothetical infinite numbers of observations is the basis of the
frequentists’ interpretation, and more recently a subjective approach derived
from the early works of Bayes became useful in modeling and analyzing com-
plex biological systems. The Bayesian interpretation of probability accounts
explicitly for incomplete and improvable knowledge of the experimenter. In
the twentieth century set theory became the ultimate basis of mathemat-
ics and in this sense it became also the fundament of current probability
theory that is based on Kolmogorov’s axiomatization in 1933. The modern
approach allows for handling and comparing countable, countable infinite
and the most important class of uncountable sets, which are underlying con-
tinuous variables. Borel fields being uncountable subsets of sample spaces
allow for defining probabilities for certain uncountable sets like, for example,
the real numbers. The notion of random variables is central to the analy-
sis of probabilities and applications to problem solving. Random variables
are characterized conventionally in form of their distributions in discrete and
countable or continuous and uncountable probability spaces.

Classical probability theory, in essence, can handle all cases that are mod-
eled by discrete quantities. It is based on counting and accordingly runs into
problems when it is applied to uncountable sets. Uncountable sets, however,
occur with continuous variables and are indispensable therefore for modeling
processes in space as well as for handling large particle numbers, which are
described in terms of concentrations in chemical kinetics. Current probabil-
ity theory is based on set theory and can handle variables on discrete – and

1



2 1 Probability

countable – as well as continuous – and uncountable – sets. After a general
introduction we present historical probability theory by means of examples,
different notions of probability are compared, and then we provide a short
account of probabilities, which are axiomatically derived from set theoreti-
cal operations. Separate sections are dealing with countable and uncountable
sample spaces. Random variables are characterized in terms of probability
distributions and their properties will be introduced and analyzed insofar as
they will be required in the applications to stochastic processes.
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1.1 Fluctuations and precision limits

An scientist reproduces an experiment. What is he expecting to observe? If
he were a physicist of the early nineteenth century he would expect the same
results within the precision limits of the apparatus he is using for the mea-
surement. Uncertainty in observations was considered to be merely a con-
sequence of technical imperfection. Celestial mechanics comes close to this
ideal and many of us, for example, could witness the enormous accuracy of
astronomical predictions in the precise dating of the eclipse of the sun in
Europe on August 11, 1999. Terrestrial reality, however, tells that there are
limits to reproducibility that have nothing to do with lack of experimental
perfection. Uncontrollable variations in initial and environmental conditions
on one hand and large intrinsic diversity of the individuals in a population
on the other hand are daily problems in biology. Limitations of correct pre-
dictions are commonplace in complex systems: We witness them every day
by watching the failures of various forecasts from the weather to the stock
market. Another not less important source of randomness comes from irregu-
lar thermal motions of atoms and molecules that are commonly characterized
as thermal fluctuations. The importance of fluctuations in the description of
ensembles depends on the population size: They are – apart from exceptions
– of moderate importance in chemical reaction kinetics but highly relevant
for the evolution of populations in biology.

Conventional chemical kinetics is handling ensembles of molecules with
large numbers of particles, N ≈ 1020 and more. Under the majority of com-
mon conditions, for example near or at chemical equilibria or stable stationary
states and in absence of autocatalytic self-enhancement, random fluctuations
in particle numbers are proportional to

√
N . Dealing with substance amounts

of about 10−4 moles – being tantamount to N = 1020 particles – natural fluc-
tuations involve typically

√
N = 1010 particles and thus are in the range of

±10−10N . Under these conditions the detection of fluctuations would require
a precision in the order of 1 : 1010, which is (almost always) impossible to
achieve.1 Accordingly, the chemist uses concentrations rather than particle
numbers, c = N/(NL · V ) wherein NL = 6.23 × 1023 and V are Avogadro’s
number2 and the volume in dm3, respectively. Conventional chemical kinet-
ics considers concentrations as continuous variables and applies deterministic

1 Most techniques of analytical chemistry meet serious difficulties when accuracies in
concentrations of 10−6 or higher are required.
2 The amount of a chemical compound A is commonly measured as the num-
ber of molecules, NA, in the reaction volume V or as concentrations cA being the
numbers of moles in one liter of solution, cA = NA/(NL V ) where NL is Avo-
gadro’s constant, which is closely related to Loschmidt’s number. The difference be-
tween the two quantities that is often ignored in the literature: Avogadro’s number,
NL = 6.02214179 × 1023 mol−1 refers to one mole substance whereas Loschmidt’s
constant n0 = 2.6867774× 1025 m−3 counts the number of particles in one liter gas
under normal conditions. The conversion factor between both constants is the molar
volume of an ideal gas that amounts to 22.414 dm3 ·mol−1.



4 1 Probability

methods, in essence differential equations, for modeling and analysis of reac-
tions. Thereby, it is implicitly assumed that particle numbers are sufficiently
large that the limit of infinite particle numbers neglecting fluctuations is cor-
rect. This scenario is commonly not fulfilled in biology where particle numbers
are much smaller than in chemistry and uncontrollable environmental effects
introduce additional uncertainties.

Nonlinearities in chemical kinetics may amplify fluctuations through au-
tocatalysis and then the random component becomes much more important
than the

√
N -law suggests. This is the case already with simple autocatalysis

discussed in section 5.1 and becomes a dominant effect, for example, with os-
cillating concentrations and deterministic chaos. Some processes in physics,
chemistry, and biology have no deterministic component at all, the most fa-
mous of it is Brownian motion, Brownian motion which can be understood
as a visualized form of diffusion. In biology other forms of entirely random
processes are encountered as well where fluctuations are the only or the major
driving force of change. An important example is random drift of population
in the space of genotypes in absence of fitness differences or fixation of mu-
tants in evolution where each new molecular species starts out from a single
variant.

In 1827 the British botanist Robert Brown detected and analyzed irregular
motions of particles in aqueous suspensions that turned out to be indepen-
dent of the nature of the suspended materials – pollen grains, fine particles
of glass or minerals served equally well [55]. Although Brown himself had
already demonstrated that the motion is not caused by some (mysterious)
biological effect, its origin remained kind of a riddle until Albert Einstein
[108], and independently Marian von Smoluchowski [453], published satisfac-
tory explanations in 1905 and 1906,3 which revealed two main points:

(i) The motion is caused by highly frequent collisions between the pollen
grain and the steadily moving molecules in the liquid in which it is
suspended, and

(ii) the motion of the molecules in the liquid is so complicated and irregular
that its effect on the pollen grain can only be described probabilistically
in terms of frequent, statistically independent impacts.

In order to model Brownian motion Einstein considered the number of par-
ticles per volume as a function of space and time, f(x, t) = N(x, t)/V ,4 and
derived the equation

3 The first mathematical model of Brownian motion has been conceived already in
1880 by Thorvald Thiele [274, 428]. Later in 1900 a process using random fluctuations
of the Brownian motion type was used by Louis Bachelier [24] in order to describe the
stock exchange market at the bourse in Paris. He gets the credit for having been the
first to write down and analyze a Langevin equation (section 3.4). For a recent and
detailed excellent monograph on Brownian motion and the mathematics of normal
diffusion we recommend [174].
4 For the sake of simplicity we consider only motion in one spatial direction, x.
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∂f

∂t
= D

∂2f

∂x2
with the solution f(x, t) =

%√
4πD

exp
(
−x2/(4Dt)

)
√
t

,

where % = N/V =
∫
f(x, t) dx is the total number of particles per unit volume

and D is a parameter called the diffusion coefficient . Einstein showed that
his equation for f(x, t) is identical with the differential equation of diffusion
already known as Fick’s second law [136], which had been derived fifty years
earlier by the German physiologist Adolf Fick. Einstein’s original treatment
is based on small discrete time steps ∆t = τ and thus contains a – well jus-
tifiable – approximation that can be avoided by application of the current
theory of stochastic processes (section 3.2.2.2). Nevertheless Einstein’s publi-
cation [108] represents the first analysis based on a probabilistic concept that
is by all means comparable to the current theories and Einstein’s paper is
correctly considered as the beginning of stochastic modeling. Later Einstein
wrote four more papers on diffusion with different derivations of the diffusion
equation [109]. It is worth mentioning that three years after the publication
of Einstein’s first paper Paul Langevin presented an alternative mathemati-
cal treatment of random motion [271] that we shall discuss at length in the
form of the Langevin equation in section 3.4. Since the days of Brown’s dis-
covery the interest in Brownian motion has never ceased and publications on
recent theoretical and experimental advances document this fact nicely, two
interesting recent examples are [284, 399].

Einstein computed from the solution of the diffusion equation that the
diffusion parameter D is linked to the mean square displacement in the x-
direction, which the particle undergoes during time t –

〈
∆x2

〉
or its square

root λx:

D =

〈
∆x2

〉
2t

and λx =
√
〈∆x2〉 =

√
2Dt .

Extension to three dimensional space is straightforward and results only in
a different numerical factor: D =

〈
∆x2

〉
/(6t). Both quantities, the diffusion

parameter D and the mean displacement λx are measurable and Einstein
concluded correctly that a comparison of both quantities should allow for an
experimental determination of Avogadro’s number [367].

Brownian motion was indeed the first completely random process that be-
came accessible to a description within the standards of classical physics.
Previously, thermal motion had been identified as the driving force causing
irregular collisions of molecules in gases by James Clerk Maxwell and Ludwig
Boltzmann but the physicists in the second half of the nineteenth century
were not interested in the details of molecular motion unless they were re-
quired in order to describe systems in the thermodynamic limit. In statistical
mechanics the measurable macroscopic functions were and are derived by
means of global averaging techniques. Thermal motion as an uncontrollable
source of random natural fluctuations has been supplemented in the first
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half of the twentieth century by quantum mechanical uncertainty as another
limitation of achievable precision.

The occurrence of complex dynamics in physics and chemistry has been
known since the beginning of the twentieth century through the pathbreak-
ing theoretical works of the French mathematician Henri Poincaré and the
experiments of the German chemist Wilhelm Ostwald who explored chemical
systems showing periodicities in space and time. Systematic studies of dynam-
ical complexity, however, required assistance by electronic computers and the
new field of research on complex dynamical systems was initiated not before
the nineteen sixties. The first pioneer of this discipline was Edward Lorenz
[294] who detected what is nowadays called deterministic chaos through nu-
merical integration of differential equations. New in the second half of the
twentieth century were not so much the ideas but the tools to study complex
dynamics. Quite unexpectedly, easy access to previously unknown computer
power and the development of highly efficient algorithms made numerical
computation to an indispensable source of scientific information that by now
became almost equivalent to theory and experiment. Computer simulations
have shown that a large class of dynamical systems modeled by nonlinear dif-
ferential equations exhibits irregular – that means nonperiodic – variations
for certain ranges of parameter values. Limited predictability of complex dy-
namics is highly important in practice: Although the differential equations
used to describe and analyze chaos are still deterministic, initial conditions
of a precision that can never be achieved in reality would be required for
correct longtime predictions. Sensitivity to small changes makes a stochastic
treatment indispensable, and solutions were found to be extremely sensitive
to small changes in initial and boundary conditions in these chaotic regimes.
Solution curves that are almost identical at the beginning, deviate expo-
nentially from each other and appear completely different after sufficiently
long time. Deterministic chaos gives rise to a third kind of uncertainty, be-
cause initial conditions cannot be controlled with higher precision than the
experimental setup allows. It is not accidental that Lorenz detected chaotic
dynamics first in the equations for atmospheric motions, which are indeed so
complex that forecast is confined to short and medium time spans. Here we
shall focus on the mathematical handling of processes that are irregular and
often simultaneously sensitive to small changes in initial and environmental
conditions, and we shall not be concerned with the physical origin of these
irregularities.
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1.2 The history of thinking in terms of probability

The concept of probability originated much earlier than its applications in
physics and resulted from the desire to analyze gambling by rigorous mathe-
matical methods. An early study that has largely remained unnoticed is due
to the sixteenth century Italian mathematician Gerolamo Cardano contained
already the basic ideas of probability. The beginning of classical probability
theory is commonly associated with the story of French mathematician Blaise
Pascal and the professional gambler, the Chevalier de Méré, which took place
in France 100 years after Cardano. This narrative is such a nice illustration of
a pitfall in applying probabilistic thinking that we repeat it here as our first
example of conventional probability theory despite the fact that it is found
in almost every textbook on statistics and probability.

In a letter of July 29, 1654, Blaise Pascal addressed a letter to the French
mathematician Pierre de Fermat, which reports the careful observation of
the professional gambler Chevalier de Méré who recognized that obtaining at
least one six with one die in 4 throws is successful in more than 50% whereas
obtaining at least two times the “six” with two dice in 24 throws has less than
50% chance to win. He considered this finding as a paradox, because he had
calculated näıvely and erroneously that the chances should be the same:

4 throws with one die yields 4× 1

6
=

2

3
,

24 throws with two dice yields 24× 1

36
=

2

3
.

Blaise Pascal became interested in the problem and calculated correctly the
probability as we do it now in classical probability theory by counting of
events:

probability = Prob =
number of favorable events

total number of events
. (1.1)

Probability according to equation (1.1) is always a positive quantity between
zero and one, 0 ≤ P ≤ 1. The sum of the probabilities that a given event
has either occurred or did not occur thus is always one. Sometimes, as in
Pascal’s example, it is easier to calculate the probability of the unfavorable
case, q, and to obtain the desired probability by computing p = 1− q. In the
one-die example the probability not to throw a six is 5/6, in the two-dice
case the probability not to obtain two six is 35/36. Provided the events are
independent their probabilities are multiplied5 and we finally obtain for 4
and 24 trials, respectively:

5 We shall come back to a precise definition of independent events later when we
introduce current probability theory in section 1.6.4.
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q(1) =

(
5

6

)4

and p (1) = 1−
(

5

6

)4

= 0.5177 ,

q(2) =

(
35

36

)24

and p (2) = 1−
(

35

36

)24

= 0.4914 .

It is remarkable that Chevalier de Méré could observe this rather small differ-
ence in the probability of success – indeed, he must have watched the game
very often!

The second example presented here is the birthday problem.6 It can be used
to demonstrate the common human weakness in estimating probabilities:

“Let your friends guess – without calculating – how many persons you
need in a group such that there is a fifty percent chance that at least
two of them celebrate their birthday on the same day. You will be
surprised by the oddness of some of the answers!”

With our knowledge on the gambling problem this probability is easy to
calculate. First we compute the negative event: all persons celebrate their
birthdays on different days in the year – 365 days, no leap-year – and find
for n people in the group,7

q =
365

365
· 364

365
· 363

365
· . . . · 365− (n− 1)

365
and p = 1− q .

The function p (n) is shown in figure 1.1. For the above mentioned 50% chance
we need only 27 persons, with 41 people we have already more than 90%

Fig. 1.1 The birth-
day problem. The curve
shows the probability pn
that two persons in a
group of n people cel-
ebrate birthday on the
same day of the year.

6 The birthday problem has been invented in 1939 by Richard von Mises [452] and
it has fascinated mathematicians ever since. It was discussed and extended in many
papers, for example [2, 74, 211, 351], and found its way into textbooks on probability
theory [133, pp. 31-33].
7 The expression is obtained by the argument that the first person can choose his
birthday freely. The second person must not choose the same day and so he has 364
possible choices. For the third remain 363 choices and the nth person, ultimately, has
365− (n− 1) possibilities.
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Fig. 1.2 Mendel’l laws of inheritance. The sketch illustrates Mendel’s laws of
inheritance: (i) the law of segregation and (ii) the law of independent assortment.
Every (diploid) organism carries two copies of each gene, which are separated during
the process of reproduction. Every offspring receives one randomly chosen copy of
the gene from each parent. Encircled are the genotypes formed from two alleles,
yellow or green, and above or below the genotypes are the phenotypes expressed as
the colors of seeds of the garden pea (pisum sativum). The upper part of the figure
shows the first generation (F1) of progeny of two homozygous parents – parents who
carry two identical alleles. All genotypes are heterozygous and carry one copy of each
allele. The yellow allele is dominant and hence the phenotype expresses yellow color.
Crossing two F1 individuals (lower part of the figure) leads to two homozygous and
two heterozygous offspring. Dominance causes the two heterozygous genotypes and
one homozygote to develop the dominant phenotype and accordingly the observable
ratio of the two phenotypes in the F2 generation is 3:1 on the average as observed by
Gregor Mendel in his statistics of fertilization experiments (see table 1.1).

chance that two celebrate birthday one the same day; 57 yield more than
99% and 70 persons exceed 99,9%. An implicit assumption in this calculation
has been that births are uniformly distributed over the year or, in other
words, the probability that somebody has the birthday on some day does not
depend on the particular day of the year. In mathematical statistics such an
assumption is called a null hypothesis (see [143] and section 2.6.2).
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Laws in classical physics are considered as deterministic in the sense that
a single measurement is expected to yield a precise result, deviations from
which are interpreted as lack in precision of the machinery used. Random
scatter when it is observed is thought to be caused by variation in not suf-
ficiently well controlled experimental conditions. Apart from deterministic
laws other regularities are observed in nature, which become evident only
when sample sizes are made sufficiently large through repetition of exper-
iments. It is appropriate to call such regularities statistical laws. Statistics
in biology of plant inheritance has been pioneered by the Augustinian monk
Gregor Mendel who discovered regularities in the progeny of the garden pea
in controlled fertilization experiments [324] (figure 1.2). As a third and final
example we consider some of Mendel’s data in order to illustrate a statistical
law. In table 1.1 the results of two typical experiments distinguishing roundish
or wrinkled seeds of yellow or green color are listed. The ratios observed with
single plants exhibit large scatter. In the mean values for ten plants shown in
the table some averaging has occurred but still the deviations from the ideal
values are recognizable. Mendel carefully investigated several hundred plants
and then the statistical law of inheritance demanding a ratio of 3:1 became

Table 1.1 Statistics of Gregor Mendel’s experiments with the garden pea
(pisum sativum). In total Mendel analyzed 7324 seeds from 253 hybrid plants in the
second trial year, 5474 were round or roundish and 1850 angular wrinkled yielding a
ratio 2.96:1. The color was recorded for 8023 seeds from 258 plants out of which 6022
were yellow and 2001 were green with a ratio of 3.01:1. The results of two typical
experiments with ten plants, which deviate stronger because of the smaller sample
size are shown in the table.

Form of seed Color of seeds

plants round wrinkled ratio yellow green ratio

1 45 12 3.75 25 11 2.27

2 27 8 3.38 32 7 4.57

3 24 7 3.43 14 5 2.80

4 19 10 1.90 70 27 2.59

5 32 11 2.91 24 13 1.85

6 26 6 4.33 20 6 3.33

7 88 24 3.67 32 13 2.46

8 22 10 2.20 44 9 4.89

9 28 6 4.67 50 14 3.57

10 25 7 3.57 44 18 2.44

total 336 101 3.33 355 123 2.89
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evident [324].8 Ronald Fisher in a somewhat polemic publication [142] reana-
lyzed Mendel’s experiments, questioned Mendel’s statistics, and accused him
of intentionally manipulating his data because the results are too close to the
ideal ratio. Fisher’s publication initiated a long lasting debate during which
many scientists spoke up in favor of Mendel [348, 349] but there were also
critical voices saying that most likely Mendel has unconsciously or consciously
eliminated extreme outliers [102]. In 2008 a recent book declared the end of
the Mendel-Fisher controversy [150]. In section 2.6.2 we shall discuss statis-
tical laws and Mendel’s experiments in the light of present day mathematical
statistics by applying the so-called χ2 test.

Probability theory in its classical form is more than three hundred years
old. Not accidentally the concept arose in thinking about gambling, which
was considered as a domain of chance in contrast to rigorous science. It took
indeed rather long time before the concept of probability entered scientific
thought in the nineteenth century. The main obstacle for the acceptance of
probabilities in physics was the strong belief in determinism that has not
been overcome before the advent of quantum theory. Probabilistic concepts
in physics of the nineteenth century were still based on deterministic thinking,
although the details of individual events were considered to be too numerous
to be accessible to calculation at the microscopic level. It is worth mentioning
that thinking in terms of probabilities entered biology earlier, already in
the second half of the nineteenth century through the reported works on
the genetics of inheritance by Gregor Mendel and the considerations about
pedigrees by Francis Galton (see section 5.2.2). The reason for this difference
appears to lie in the very nature of biology: Small sample sizes are typical,
most of the regularities are probabilistic and become observable only through
the application of probability theory. Ironically, Mendel’s investigations and
papers did not attract a broad scientific audience before their rediscovery
at the beginning of the twentieth century. The scientific community in the
second half of the nineteenth century was simply not yet prepared for the
acceptance of quantitative and moreover probabilistic concepts in biology.

Classical probability theory is dealing successfully with a number of con-
cepts like conditional probabilities, probability distributions, moments and
others, which shall be presented in the next section making use of set the-
oretic concepts that can provide much deeper insight into the structure of
probability theory than mere counting. In addition, the more elaborate no-
tion of probability derived from set theory is absolutely necessary for extrap-
olation to infinitely large and uncountable sample sizes. Uncountability is
the unavoidable attribute of sets derived from continuous variables, and by
means of the set theoretic approach real numbers, x ∈ Rn, become accessible
to probability measures. From now on we shall use only the set theoretic con-

8 According to modern genetics this ratio as well as other ratios between distinct
inherited phenotypes are idealized values that are found only for completely indepen-
dent genes [180], which lie either on different chromosomes or sufficiently far apart
on the same chromosome.
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cept, because it can be introduced straightforwardly for countable sets and
discrete variables and, in addition, it can be extended to probability measures
for continuous variables.
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1.3 Interpretations of probability

Before introducing the currently most popular and standard theory of prob-
ability we make a brief digression into the dominant philosophical interpre-
tations: (i) the classical interpretations that we adopted in section 1.2, (ii)
the frequency-based interpretation that will be in the background of the rest
of the book, and (iii) the Bayesian or subjective interpretation.

The classical interpretation of probability goes back to the concepts and
works of the Swiss mathematician Jakob Bernoulli and the French mathemati-
cian and physicist Pierre-Simon Laplace, who has been the first presenting a
clear definition of probability [272, pp. 6-7]:

“The theory of chance consists in reducing all the events of the same
kind to a certain number of cases equally possible, that is to say, to
such as we may be equally undecided about in regard their existence,
and in determining the number of cases favorable to the event whose
probability is sought. The ratio of this number to that of all the cases
possible is the measure of this probability, which is thus simply a frac-
tion whose numerator is the number of favorable cases and whose
denominator is the number of all cases possible.”

Clearly, this definition is tantamount to equation (1.1) and the explicitly
stated assumption of equal probabilities is now called principle of indiffer-
ence. This classical definition of probability has been questioned during the
nineteenth century among others by the two English logicians and philoso-
phers George Boole [47] and John Venn [446], who among others initiated a
paradigm shift from the classical view to the modern frequency interpreta-
tions of probabilities.

The modern interpretations of the concept of probabilities fall essentially
into two categories that can be characterized as physical probabilities and ev-
idential probabilities [186]. Physical probabilities are often called objective or
frequency-based probabilities and their proponents are addressed as frequen-
tists. Influential proponents of the frequency-based probability theory were,
besides the pioneer John Venn, the Polish American mathematician Jerzy
Neyman, the English statistician Egon Pearson, the English statistician and
theoretical biologist Ronald Fisher, the Austro-Hungarian American mathe-
matician and scientist Richard von Mises and the German American philoso-
pher of science Hans Reichenbach. The physical probabilities are derived from
some real process like radioactive decay, chemical reaction, turning a roulette
wheel, or rolling dice. In all such systems the notion of probability makes
sense only when it refers to some well defined experiment with a random
component. Frequentism comes in two versions: (i) finite frequentism and (ii)
hypothetical frequentism. Finite frequentism replaces the notion of ‘total num-
ber of events’ in equation (1.1) by ‘actually recorded number of events’ and
is thus congenial to philosophers with empiricist scruples. Philosophers have
a number of problems with finite frequentism, we mention for example the
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small sample problems: One can never speak about the probability of a single
experiment and there are cases of unrepeated and unrepeatable experiments.
A coin that is tossed exactly once yields a relative frequency of heads of zero
or one, no matter what its bias really is. Another famous example is the
spontaneous radioactive decay of an atom where the probabilities of decay-
ing follow a continuous exponential law but according to finite frequentism
it decays with probability one at its actual decay time. The evolution of the
universe or the origin of life can serve as cases of unrepeatable experiments,
but people like to speak about the probability that the development has been
such or such. Personally, I think it would do no harm to replace probability
by plausibility in such estimates concerned with unrepeatable single events.

Hypothetical frequentism complements the empiricism of finite frequen-
tism by the admission of infinite sequences of trials. Let N be the total
number of repetitions of an experiment and nA the number of trials when
the event A has been observed, then the relative frequency of recording the
event A is an approximation of the probability for the occurrence of A:

Prob (A) = P (A) ≈ nA
N

.

This equation is essentially the same as (1.1) but the claim of the hypothet-
ical frequentists’ interpretation is that there exists a true frequency or true
probability to which the relative frequency converged when we repeated the
experiment an infinite number of times9

P (A) = lim
N→∞

nA
N

=
|A|
|Ω|

with A ∈ Ω. (1.2)

The probability of an event A relative to a sample space Ω is then defined
as the limiting frequency of A in Ω. As N goes to infinity |Ω| becomes in-
finitely large and depending on whether |A| is finite or infinite P (A) is either
zero or may adopt a nonzero limiting frequency. It is based on two a priori
assumptions that have the character of axioms:

(i) Convergence: For any event A exists a limiting relative frequency, the
probability P (A) that fulfils 0 ≤ P (A) ≤ 1.

(ii) Randomness: The limiting relative frequency of each event in a collective
Ω is the same in any typical infinite subsequence of Ω.

A typical sequence is sufficiently random10 in order to avoid results biased
by predetermined order. As a negative example of an acceptable sequence
we consider ‘head, head, head, head, ...’ recorded by tossing a coin. If it was

9 The absolute value symbol, ‘|A|’, means here the size or cardinality of A being the
number of elements in set A (section 1.4).
10 Sequences are sufficiently random when they are obtained through recordings of
random events. Random sequences are approximated by the sequential outputs of
pseudorandom number generators. ‘Pseudorandom’ implies here that the approxi-
mately random sequence is created by some deterministic, i.e. nonrandom, algorithm.
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obtained with a fair coin – not with a coin with two heads – |A| is 1 and
P (A) = 1/|Ω| = 0, and we may say this particular events is of measure zero
and the sequence is not typical. The sequence ‘head, tail, head, tail, ...’ is not
typical as well despite the fact that it yields the same probabilities as a fair
coin. We should be aware that the extension to infinite series of experiments
leaves the realm of empiricism and caused thoroughbred philosophers to reject
the claim that the interpretation of probabilities by hypothetical frequentism
is more objective than others.

Nevertheless, frequentist probability theory is not in conflict with the
mathematical axiomatization of probability theory and it provides straight-
forward guidance in applications to real-world problems. The pragmatic view
that stands at the beginning of the dominant concept in current probability
theory has been phrased nicely by William Feller, the Croatian-American
mathematician and author of the classic introduction to probability theory
in two volumes [133, 134, Vol.I, pp. 4-5]:

“The success of the modern mathematical theory of probability is
bought at a price: the theory is limited to one particular aspect of
‘chance’. ... we are not concerned with modes of inductive reasoning
but with something that might be called physical or statistical proba-
bility.”

He also expresses clearly his attitude towards pedantic scruples of philosophic
purists:

“..., in analyzing the coin tossing game we are not concerned with the
accidental circumstances of an actual experiment, the object of our
theory is sequences or arrangements of symbols such as ‘head, head,
tail, head, ...’. There is no place in our system for speculations con-
cerning the probability that the sun will rise tomorrow. Before speak-
ing of it we should have to agree on an idealized model which would
presumably run along the lines ‘out of infinitely many worlds one is
selected at random ...’. Little imagination is required to construct such
a model, but it appears both uninteresting and meaningless.”

We shall adopt the frequentist interpretation throughout this monograph but
mention here briefly two more interpretations of probability in order to show
that it is not the only reasonable probability theory.

The propensity interpretation of probability was proposed by the American
philosopher Charles Peirce in 1910 [365] and reinvented by Karl Popper [371,
pp. 65-70] (see also [372]) more than forty years later [186, 330]. Propensity
is a tendency to do or to achieve something and in relation to probability,
propensity means that it makes sense to talk about the probabilities of sin-
gle events. As an example we mention the probability – propensity – of a
radioactive atom to decay within the next one thousand years, and thereby
we make a conclusion from the behavior of an ensemble to a single member
of the ensemble. For a fair coin we might say that it has a probability of 1

2
to score ‘head’ when tossed, and precisely expressed we should say that the
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Fig. 1.3 A sketch of the Bayesian method. Prior information of probabilities is
confronted with empirical data and converted into a new distribution of probabilities
by means of Bayes’ theorem according to the formula shown above [98, 415].

coin has the propensity to yield a sequence of outcomes, in which the limiting
frequency of scoring ‘heads’ is 1

2 . The single case propensity is accompanied
by, but distinguished from, the long-run propensity [175]:

“A long-run propensity theory is one in which propensities are asso-
ciated with repeatable conditions, and are regarded as propensities to
produce in a long series of repetitions of these conditions frequencies,
which are approximately equal to the probabilities.

Long-run in these theories is still distinct from infinitely long run in order to
avoid basic philosophical problems. As it looks, the use of propensities rather
than frequencies constitutes a language that is somewhat more careful and
hence more acceptable in philosophy than the frequentist interpretation.
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Finally, we sketch the most popular example of a theory based on evi-
dential probabilities: Bayesian statistics, named after the eighteenth century
English mathematician and Presbyterian minister Thomas Bayes. In contrast
to the frequentists’ view probabilities are subjective and exist only in the hu-
man mind. From a practitioner’s point of view one major advantage of the
Bayesian approach is the direct insight into the process of improving the
knowledge on the object of investigation. In order to understand Bayes’ the-
orem we need the notion of conditional probabilities (for a precise definition
see section 1.6.4): For a conditional probability the reference ensemble is not
the entire sample space Ω but some event, say B. Then, we have

P (A|B) =
P (A andB)

P (B)
=

P (AB)

P (B)
, (1.3)

where ‘A andB’ indicates the joint probability of both events A and B.11

The conditional probability P (A|B) is obtained as the probability of the
simultaneous occurrence of events A and B divided by the probability of the
occurrence of B alone. If the event B is the entire sample space, B ≡ Ω we
obtain:

P (A|Ω) =
P (A andΩ)

P (Ω)
=

P (AΩ)

P (Ω)
=

P (A)

1
= P (A) ,

the conditional probability is equal to the unconditioned probability. Condi-
tional probabilities can be inverted straightforwardly in the sense that we ask
about the probability of B under the condition that event A has occurred:

P (B|A) =
P (A andB)

P (A)
=

P (AB)

P (A)
since P (AB) = P (BA) , (1.3’)

which implies P (A|B) 6= P (B|A) unless P (A) = P (B). In other words the
conditional probability can be readily inverted, and as expected P (A|B) and
P (B|A) are on equal footing in probability theory. Calculation of P (AB) from
both equations, (1.3) and (1.3’), and setting the expressions equal yields

P (A|B)P (B) = P (AB) = P (B|A)P (A) =⇒ P (B|A) = P (A|B)
P (B)

P (A)
,

which properly interpreted represents Bayes’ theorem.
Bayes’theorem provides a straightforward interpretation of conditional

probabilities and their inversion in terms of models or hypothesis (H) and
data (E). The conditional probability P (E|H) corresponds to the conven-
tional procedure in science: Given a set of hypothesis cast into a model H
the task is to calculate the probabilities of the different outcomes E. In physics

11 From the next section 1.4 on we shall use the set theoretic symbol intersection,
‘∩’, instead of ‘and’; AB is an abbreviated notation for ‘A andB’.
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and chemistry, where we are dealing with well established theories and mod-
els, this is, in essence, the common situation. Biology, economics, social sci-
ences and other disciplines, however, are often confronted with situations
where no confirmed models exist and then we want to test and improve the
probability of a model. We need to invert the conditional probability since
we are interested in testing the model in the light of the data available or, in
other words, the conditional probability P (H|E) becomes important: What is
the probability that a hypothesis H is justified given a set of measured data
encapsulated in evidence E? The Bayesian approach casts equations (1.3)
and (1.3’) into Bayes’ theorem,

P (H|E) = P (E|H)
P (H)

P (E)
=

P (E|H)

P (E)
· P (H) , (1.4)

and provides a hint on how to proceed – at least in principle (figure 1.3).
An prior probability in form of a hypothesis P (H) is converted into evidence
according to the likelihood principle P (E|H). The basis of the prior under-
stood as all a priori knowledge comes form many sources: theory, previous
experiments, gut feeling, etc. New empirical information is incorporated in
the inverse probability computation from data to model, P (H|E), yielding
thereby the improved posterior probability . The advantage of the Bayesian
approach is that a change of opinion in the light of new data is ‘part of the
game’. In general, parameters are input quantities of frequentist statistics
and if unknown assumed to be available through consecutive repetition of ex-
periments, whereas they are understood as random variables in the Bayesian
approach. The direct application of the Bayesian theorem in practice involves
quite elaborate computations that were not possible in real world examples
before the advent of electronic computers. An example of the Bayesian ap-
proach and the calculations involved thereby is presented in section 2.6.4.

Bayesian statistics has become popular in disciplines where model building
is a major issue. Examples from biology are among others bioinformatics,
molecular genetics, modeling of ecosystems, and forensics. Bayesian statistics
is described in a large number of monographs, for example, in references
[77, 159, 234, 275].
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1.4 Sets and sample spaces

Conventional probability theory is based on several axioms that are rooted
in set theory, which will be introduced and illustrated in this section. The
development of set theory in the eighteen seventieth was initiated by Georg
Cantor and Richard Dedekind and provided the possibility to build among
many other things the concept of probability on a firm basis that allows for
an extension to certain families of uncountable samples as they occur, for
example, with continuous variables. Present day probability theory thus can
be understood as a convenient extension of the classical concept by means of
set and measure theory. We begin by repeating a few indispensable notions
and operations of set theory.

Sets are collections of objects with two restrictions: (i) Each object belongs
to one set and cannot be a member of two or more sets, and (ii) a member
of a set must not appear twice or more often. In other words, objects are
assigned to sets unambiguously. In the application to probability theory we
shall denote the elementary objects by the lower case Greek letter omega, ω –
if necessary with various sub- and superscripts – and call them sample points
or individual results. The collection of all objects ω under consideration, the
sample space, is denoted by the upper case Greek letter Ω with ω ∈ Ω.
Events, A, are subsets of sample points that fulfil some condition12

A =
{
ω, ωk ∈ Ω : f(ω) = c

}
(1.5)

with ω = (ω1, ω2, . . .) being the set of individual results which fulfil the
condition f(ω) = c.

Next we repeat the basic logical operations with sets. Any partial collection
of points ωk ∈ Ω is a subset of Ω. We shall be dealing with fixed Ω and, for
simplicity, often call these subsets of Ω just sets. There are two extreme cases,
the entire sample space Ω and the empty set , ∅. The number of points in a set
S is called its size or cardinality written as |S|, and thus |S| is a nonnegative
integer or infinity. In particular, the size of the empty set is |∅| = 0. The
unambiguous assignment of points to sets can be expressed by13

ω ∈ S exclusive or ω /∈ S .

Consider two sets A and B. If every point of A belongs to B, then A is
contained in B. A is a subset of B and B is a superset of A:

12 The meaning of condition will become clearer later on. For the moment it is
sufficient to understand a condition as a restriction cast in a function f(ω), which
implies that not all subsets of sample points belong to A. Such a condition, for
example, is a score ’6’ in rolling two dice, which comprises the five sample points:
A = {’1 + 5’,’2 + 4’,’3 + 3’,’4 + 2’,’5 + 1’}.
13 In order to be unambiguously clear we shall write or for and/or and exclusive or
for or in the strict sense.
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A ⊂ B and B ⊃ A .

Two sets are identical if the contain exactly the same points and then we
write A = B. In other words, A = B iff 14 A ⊂ B and B ⊂ A.

Some basic operations with sets are illustrated in figure 1.4. We briefly repeat
them here:

Complement . The complement of the set A is denoted by Ac and consists of
all points not belonging to A:15

Ac = {ω|ω /∈ A} . (1.6)

There are three evident relations which can be verified easily: (Ac)c = A,
Ω c = ∅, and ∅ c = Ω.

Union. The union of the two sets A and B, A∪B, is the set of points, which
belong to at least one of the two sets:

A ∪B = {ω|ω ∈ A or ω ∈ B} . (1.7)

Intersection. The intersection of the two sets A and B, A ∩ B, is the set of
points, which belong to both sets:16

A ∩B = AB = {ω|ω ∈ A and ω ∈ B} . (1.8)

Unions and intersections can be executed in sequence and are also defined
for more than two sets, or even for a countably infinite number of sets:⋃

n=1,...

An = A1 ∪A2 ∪ · · · = {ω|ω ∈ An for at least one value of n} ,

⋂
n=1,...

An = A1 ∩A2 ∩ · · · = {ω|ω ∈ An for all values of n} .

The proof of these relations is straightforward, because the commutative and
the associative laws are fulfilled by both operations, intersection and union:

A ∪B = B ∪A , A ∩B = B ∩A ;

(A ∪B) ∪ C = A ∪ (B ∪ C) , (A ∩B) ∩ C = A ∩ (B ∩ C) .

Difference. The set theoretic difference, A \ B, is the set of points, which
belong to A but not to B:

14 The word ’iff’ stands for if and only if.
15 Since we are considering only fixed sample sets Ω these points are uniquely defined.
16 For short A ∩B is often written simply as AB.
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Fig. 1.4 Some definitions and examples from set theory. Part a shows the
complement Ac of a set A in the sample space Ω. In part b we explain the two basic
operations union and intersection, A∪B and A∩B, respectively. Parts c and d show
the set-theoretic difference, A \ B and B \ A, and the symmetric difference, A4B.
In parts e and f we demonstrate that a vanishing intersection of three sets does not
imply pairwise disjoint sets. The illustrations are made by means of Venn diagrams
[181, 182, 444, 445].

A \B = A ∩Bc = {ω|ω ∈ A and ω /∈ B} . (1.9)

In case A ⊃ B we write A − B for A \ B and have A \ B = A − (A ∩ B) as
well as Ac = Ω −A.

Symmetric difference. The symmetric difference A∆B is the set of points
which belongs exactly to one of the two sets A and B. It is used in advanced
theory of sets and is symmetric as it fulfils the commutative law, A∆B =
B∆A:

A∆B = (A ∩Bc) ∪ (Ac ∩B) = (A \B) ∪ (B \A) . (1.10)

Disjoint sets. Disjoint sets A and B have no points in common and hence
their intersection, A ∩B, is empty. They fulfill the following relations:

A ∩B = ∅ , A ⊂ Bc and B ⊂ Ac . (1.11)
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Fig. 1.5 Sizes of sam-
ple sets and countabil-
ity. Finite (black), count-
ably infinite (blue), and
uncountable sets (red) are
distinguished. We show
examples of every class.
A set is countably infi-
nite when its elements
can be assigned uniquely
to the natural numbers
(N>0 = 1,2,3,. . .,n,. . .).

Several sets are disjoint only if they are pairwise disjoint. For three sets, A,
B and C, this requires A∩B = ∅, B ∩C = ∅, and C ∩A = ∅. When two
sets are disjoint the addition symbol is (sometimes) used for the union, A+B
for A ∪B. Clearly we have always the valid decomposition: Ω = A+Ac.

Sample spaces may contain finite or infinite numbers of sample points. As
shown in figure 1.5 it is important to distinguish further between different
classes of infinity:17 countable and uncountable numbers of points. The set of
rational numbers Q, for example, is a countably infinite since the numbers can
be labeled and assigned uniquely to the positive integers also called natural
numbers N>0 : 1 < 2 < 3 < · · · < n < · · · . The set of real numbers R, cannot
be ordered in such a way and hence it is uncountable (For the notations used
for number systems see the appendix ‘Notations’).

17 Georg Cantor attributed the cardinality ℵ0 to countably infinite sets and charac-
terized uncountable sets by the sizes ℵ1, ℵ2, etc.
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1.5 Probability measure on countable sample spaces

For countable sets it is straightforward and almost trivial to measure the size
of the set by counting the numbers of sample points they contain. The ratio

P (A) =
|A|
|Ω|

(1.12)

gives the probability for the occurrence of event A and the expression is
of course identical with equation (1.1) defining the classical probability. For
another event, for example B, holds P (B) = |B|/|Ω|. A calculation of the the
sum of the two probabilities, P (A)+P (B), requires some care, since figure 1.4
suggests that only an inequality holds (see previous section 1.4):

|A| + |B| ≥ |A ∪ B| .

The excess of |A|+ |B| over the size of the union |A∪B| is precisely the size
of the intersection |A ∩B| and thus we find

|A| + |B| = |A ∪ B| + |A ∩ B|

or by division through the size of sample space Ω we obtain

P (A) + P (B) = P (A ∪B) + P (A ∩B) or

P (A ∪B) = P (A) + P (B) − P (A ∩B) .
(1.13)

Only in case the intersection is empty, A ∩ B = ∅, the two sets are disjoint
and their probabilities are additive, |A ∪B| = |A|+ |B|, and hence

Fig. 1.6 The powerset.
The powerset Π(Ω) is a
set containing all subsets
of Ω including the empty
set ∅ (black) and Ω itself
(red). The figure sketches
the construction of the
powerset for a sample
space of three events A,
B, and C (single events in
blue, and double events
in green). The relation
between sets and sample
points is also illustrated
in a set level diagram (see
the black and red level in
figure 1.15)
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P (A+B) = P (A) + P (B) iff A ∩B = ∅ . (1.14)

It is important to memorize this condition for later use, because it represents
an implicitly made assumption for computing probabilities.

1.5.1 Probability measure

Now are now in the position to define a probability measure by means of
basic axioms of probability theory and we present the three axioms as they
were first formulated by Andrey Kolmogorov [259]:

A probability measure on the sample space Ω is a function of subsets of
Ω, P : S → P (S), which is defined by the three axioms:

(i) For every set A ⊂ Ω, the value of the probability measure is a
nonnegative number, P (A) ≥ 0 for all A,

(ii) the probability measure of the entire sample set – as a subset – is
equal to one, P (Ω) = 1, and

(iii) for any two disjoint subsets A and B, the value of the probability
measure for the union, A ∪ B = A + B, is equal to the sum of its
values for A and B,

P (A∪B) = P (A+B) = P (A) + P (B) provided P (A∩B) = ∅ .

Condition (iii) implies that for any countable – eventually infinite – collection
of disjoint or non-overlapping sets, Ai, i = 1, 2, 3, . . ., with Ai ∩ Aj = ∅ for
all i 6= j, a relation called σ-additivity

P

(⋃
i

Ai

)
=
∑
i

P (Ai) or P

( ∞∑
i=1

Ai

)
=

∞∑
i=1

P (Ai) (1.15)

is fulfilled.
In other words, the probabilities associated with disjoint sets are additive.

Clearly we have also P (Ac) = 1−P (A), P (A) = 1−P (Ac) ≤ 1, and P (∅) = 0.
For any two sets A ⊂ B we find P (A) ≤ P (B) and P (B−A) = P (B)−P (A),
and for any two arbitrary sets A and B we can write the union as a sum of
two disjoint sets

A ∪B = A + Ac ∩B and

P (A ∪B) = P (A) + P (Ac ∩B) .

Since B ⊂ Ac ∩B we obtain P (A ∪B) ≤ P (A) + P (B).
The set of all subsets of Ω is called the powerset Π(Ω) (figure 1.6). It

contains the empty set ∅, the entire sample space Ω and the subsets of
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Ω, and this includes the results of all set theoretic operations that were
listed in the previous section 1.4. We illustrate the relation between the
sample point ω, an event A, the sample space Ω and the powerset Π(Ω)
by means of an example, the repeated coin toss, which we shall analyze
as Bernoulli process in section 3.1.3. Flipping a coin has two outcomes: ’0’
for head and ’1’ tail and one particular coin toss experiment might give
the sequence (0,1,1,1,0, . . . ,1,0,0). Thus the sample points ω for flipping
the coin n-times are binary n-tuples or strings, ω = (ω1, ω2, . . . , ωn) with
ωi ∈ Σ = {0,1}.18 Then, the sample space Ω is the space of all binary strings
of length n commonly denoted by Σ n and it has the cardinality |Σn| = 2n.
The extension to the set of all strings of any finite length is straightforward,

Σ∗ =
⋃
i∈N

Σ i
= {ε} ∪ Σ 1 ∪ Σ 2 ∪ Σ 3 . . . , (1.16)

and this set is called Kleene star after the American mathematician Stephen
Kleene. Herein Σ 0 = {ε} with ε denoting the unique string over Σ 0 called
the empty string , Σ 1 = {0,1}, Σ 2 = {00,01,10,11}, etc. The importance
of Kleene star is the closure property under concatenation of the sets Σ i19

ΣmΣ n
= Σm+n

= {wv|w ∈ Σm
and v ∈ Σ n} with m,n > 0 . (1.17)

Concatenation of strings is the operation

w = (0001) , v = (101) =⇒ wv = (0001101) ,

which can be extended to concatenation of sets in the sense of equation 1.17:

Σ 1Σ 2 = {0,1}{00,01,10,11} =

= {000,001,010,011,100,101,110,111} = Σ 3

The set Kleene star Σ∗ is the smallest superset of Σ, which contains the
empty string ε and which is closed under the string concatenation operation.
Although all individual strings in Σ∗ have finite length, the set Σ∗ itself,
however, is countably infinite. We end this brief excursion into strings and
string operations by considering infinite numbers of repeats directly in the
sense of Σ n the space of strings of lengths n, ω = (ω1, ω2, . . .) = (ωi)i∈N
with ωi ∈ {0, 1} in the limit limn → ∞, as they are used in the theory
of computing. Then Ω = {0, 1}N is the sample space of all infinitely long

18 There is a trivial but important distinction between strings and sets: In a string the
position of an element matters, whereas in a set it does not. The following three sets
are identical: {1, 2, 3} = {3, 1, 2} = {1, 2, 2, 3}. In order to avoid ambiguities strings
are written in (normal) parentheses and sets in curly brackets.
19 Closure under a given operation is an important property of a set that we shall
need later on. The natural numbers N, for example, are closed under addition and
the integers Z are closed under addition and substraction.
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binary strings, whose countability as can be easily verified: Every binary
string represents the binary encoding Nk of a natural number including ’0’,
Nk ∈ N, and hence Ω is countable as the natural numbers are.

A subset of Ω will be called an event A when a probability measure derived
from axioms (i), (ii), and (iii) has been assigned. Often, one is not interested
in the full detail of a probabilistic result and events can be easily adapted
to lumping together sample points. An illustrative example from statistical
physics are the microstates in the partition function, which are lumped to-
gether according to some macroscopic properties. Here, we ask, for example,
for the probability A that n coin flips show tail at least s-times or, in other
words, yield a score k ≥ s:

A =
{
ω = (ω1, ω2, . . . , ωn) ∈ Ω :

∑n

i=1
ωi = k ≥ s

}
,

where the sample space is Ω = {0,1}n. The task is now to find a system
of events Ξ that allows for a consistent assignment of a probability P (A)
to all possible events A. For countable sample spaces Ω the powerset Π(Ω)
represents such a system Ξ: We characterize P (A) as a probability measure on(
Ω,Π(Ω)

)
, and the further handling of probabilities following the procedure

outlined below is straightforward. In case of uncountable sample spaces Ω
the powerset Π(Ω) will turn out to be too large and a more sophisticated
procedure is required (section 1.6.4).

1.5.2 Probability weights

So far we have constructed, compared, and analyzed sets but have not yet
introduced weights or numbers for application to real world situations. In
order to construct a probability measure that can be adapted to calculations
on countable sample space, Ω = {ω1, ω2, . . . , ωn, . . .}, we have to assign a
weight %n to every sample point ωn that fulfils the conditions

∀ n : %n ≥ 0 and
∑
n

%n = 1 . (1.18)

Then for P ({ωn}) = %n ∀ n the following two equations

P (A) =
∑
ω∈A

%(ω) for A ∈ Π(Ω) and

%(ω) = P ({ω}) for ω ∈ Ω
(1.19)

represent a bijective relation between the probability measure P on
(
Ω,Π(Ω)

)
and the sequences % =

(
%(ω)

)
ω∈Ω in [0,1] with

∑
ω∈Ω %(ω) = 1. Such a se-

quence is called a discrete probability density.
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The function %(ωn) = %n has to be prescribed by some null hypothesis,
estimated or determined empirically, because it is the result of factors ly-
ing outside mathematics or probability theory. The uniform distribution is
commonly adopted as null hypothesis in gambling as well as for many other
purposes: The discrete uniform distribution, UΩ , assumes that all elementary
results ω ∈ Ω appear with equal probability and hence %(ω) = 1/|Ω|.20 What
is meant here by ‘elementary’ will become clear in the discussion of applica-
tions. Throwing more than one die at a time, for example, can be reduced to
throwing one die more often.

In science, particularly in physics, chemistry or biology, the correct assign-
ment of probabilities has to meet the conditions of the experimental setup.
An simple example from scientific gambling will make this point clear: The
fact whether a die is fair and shows all its six faces with equal probability,
whether it is imperfect, or whether it has been manipulated and shows, for
example, the ’six’ more frequently then the other faces is a matter of physics
and not mathematics. Empirical information – for example, a calibration
curve of the faces is determined by doing and recording a few thousand die
rolling experiments – replaces the principle of indifference and assumptions
like the null hypothesis of a uniform distribution become obsolete.

Although the application of a probability measure in the discrete case is
rather straightforward, we illustrate by means of a simple example. With the
assumption of the uniform distribution UΩ we can measure the size of sets by
counting sample points as illustrated by considering the scores from throws
of dice. For one die the sample space is Ω = {1, 2, 3, 4, 5, 6} and for the fair
die we make the assumption

P ({k}) =
1

6
; k = 1, 2, 3, 4, 5, 6 .

that all six outcomes corresponding to the different faces of the die are equally
likely. Based on the assumption of UΩ we obtain the probabilities for the
outcome of two simultaneously rolled fair dice (figure 1.7). There are 62 = 36
possible outcomes with scores in the range k = 2, 3, . . . , 12 and the most likely
outcome is a count of k = 7 points because it has the highest multiplicity:
{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. The probability distribution is shown
here as a histogram, an illustration introduced into statistics by Karl Pearson
[362]. It has the shape of discretized tent function and is equivalent to the
probability mass function (pmf) shown in figure 1.11. A generalization to
rolling n dice simultaneously is presented in section 1.9.1 and figure 1.22.

20 The assignment of equal probabilities 1
n

to n mutually exclusive and collectively
exhaustive events, which are indistinguishable except for their tags, is known as prin-
ciple of insufficient reason or principle of indifference as it was called by the British
economist John Maynard Keynes [247, chap.IV, pp.44-70]. In Bayesian probability
theory the a priori assignment of equal probabilities is characterized as the simplest
non-informative prior (see section 1.3).
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Fig. 1.7 Histogram of the probabilities of throwing two dice. The probability
of obtaining two to twelve counts through throwing two perfect or fair dice are based
on the equal probability assumption for obtaining the individual faces of a single die.
The probability P (N) raises linearly from two to seven and then decreases linearly
between seven and twelve: P (N) is a discretized tent map with the additivity or
normalization condition

∑12
k=2 P (N = k) = 1. The histogram is equivalent to the

probability mass function (pmf) of a random variable Z: fZ(x) as shown in figure 1.11.

1.6 Discrete random variables and distributions

Conventional deterministic variables are not suitable for descriptions of pro-
cesses with limited reproducibility. In probability theory and statistics we
shall make use of random or stochastic variables, X ,Y,Z, . . . , which were
invented especially for dealing with random scatter and fluctuations. Even if
an experiment is repeated under precisely the same conditions the random
variable will commonly take on a different value. The probabilistic nature of
random variables is expressed by an equation, which is particularly useful for
the definition of probability distribution functions:21

Pk = P
(
Z = k

)
with k ∈ N . (1.20)

21 Whenever possible we shall use ‘k, l,m, n’ for discrete counts, k ∈ N, and ‘t, x, y, z’
for continuous variables, x ∈ R1 (see appendix ‘Notation’).
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Fig. 1.8 Construction for the calculation of expectation values from cu-
mulative distribution functions. The expectation value calculated from the cu-
mulative distribution function of a discrete variable is obtained as the difference of
two contributions:

∑∞
k=0

(
1− FZ(k)

)
(blue) and

∑0
k=−∞ FZ(k) (red).

A deterministic variable, z(t), is defined by a function that returns a unique
value for a given argument z(t) = zt.

22 In case of the random variable, Z(t),
the single value of the conventional variable has to be replaced by a series of
probabilities Pk(t). This series could be visualized, for example, by means of
an L1 normalized probability vector with the probabilities Pk as components:
P =

(
P0, P1, . . .

)
with ‖P‖1 =

∑
k Pk = 1.23

1.6.1 Distributions and expectation values

In probability theory the characterization of a random variable is made by
a probability distribution function rather than by a vector, because these
functions can be applied with minor modifications to the discrete and the
continuous case. Two probability functions are particularly important and
in general use (see section 1.6.3): the probability mass function (pmf; see
figure 1.11)

22 We use here t as independent variable of the function but do not necessarily imply
that t is always time.
23 The notation of vectors and matrices as used in this text is described in the
appendix ’Notation’.
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fZ(x) =

{
P (Z = k) = Pk ∀ x = k ∈ N ,

0 anywhere else .

or by the cumulative distribution function (cdf; see figure 1.12)

FZ(x) = P (Z ≤ k) = P (Z ≤ k) =
∑
i≤k

Pi .

The probability mass function fZ(x) is not a function in the usual sense,
because it has the value zero almost everywhere except at the points x =
k ∈ N and in this aspect it is closely related to the Dirac delta function
(section 1.6.3). Two properties of the cumulative distribution function follow
directly from the property of probabilities:

lim
k→−∞

FZ(k) = 0 and lim
k→+∞

FZ(k) = 1 .

The limit at low k-values is chosen in analogy to definitions used later
on: Taking −∞ instead of zero as lower limit makes no difference, because
fZ(−|k|) = P−|k| = 0 (k ∈ N) or negative particle numbers have zero proba-
bility. Simple examples of probability functions are shown in figures 1.11 and
1.12.

All measurable quantities, for example expectation values and variances,
can be computed equally well from either one of the probability functions

E(Z) =

+∞∑
k=−∞

k fZ(k) =

+∞∑
k=0

(
1− FZ(k)

)
−

0∑
k=−∞

FZ(k) , (1.21a)

var(Z) =

k=+∞∑
k=−∞

k2 fZ(k) − E(Z)2 =

= 2

+∞∑
k=0

k
(
1− FZ(k)

)
− E(Z)2 . (1.21b)

In both equations the expressions calculating directly from the cumulative
distribution function are valid only for exclusively nonnegative random vari-
ables, Z ∈ N. The extension to the full domain of discrete random variables,
Z ∈ Z is shown below and visualized in figure 1.8.

As an example for the usage of the cumulative distribution function we
present a proof for the computation of the expectation values for positive
random variables: E(Z) =

∑∞
k=0

(
1 − FZ(k)

)
.24 We show the validity of the

expression E(Z) =
∑∞
k=1 P (Z ≥ k) with k ∈ N expanding the ‘≥’ relation

and interchanging the order of summations,

24 The proof is taken from http://en.wikipedia.org/wiki/Expected_value,
retrieved March 16, 2014.
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∞∑
k=1

P (Z ≥ k) =

∞∑
k=1

∞∑
j=k

P (Z = j) =

∞∑
j=1

j∑
k=1

P (Z = j) =

=

∞∑
j=1

j∑
k=1

Pj =

∞∑
j=1

j Pj = E(Z) ,

and we introduce now the cumulative distribution function:

FZ(k) = P (Z ≤ k) = 1− P (Z > k) ,

FZ(k − 1) = P (Z ≤ k − 1) = 1− P (Z > k − 1) = 1− P (Z ≥ k) and

E(Z) =

∞∑
k=0

(
1 − FZ(k)

)
. ut

The generalization of the expectation value to the the negative range yields

E(Z) =

+∞∑
k=0

(
1− FZ(k)

)
−

0∑
k=−∞

FZ(k) . (1.21c)

The partitioning of E(Z) into a positive and a negative part is visualized in
figure 1.8, the derivation of the expression will be given for the continuous
case (section 1.9.1).

1.6.2 Random variables and continuity

Random variables on countable sample spaces require a probability triple
(Ω,Π(Ω), P ) for a precise definition: Ω contains the sample points or indi-
vidual results, the powerset Π(Ω) provides the events A as subsets, and P
finally represents a probability measure as it has been introduced in equa-
tion (1.19). Based on such a probability triple we can now define the random
variable as a numerically valued function Z of ω on the domain of the entire
sample space Ω,

ω ∈ Ω : ω → Z(ω) . (1.22)

Random variables, X (ω) and Y(ω), can be manipulated by conventional op-
erations to yield other random variables, such as

X (ω) + Y(ω) , X (ω)− Y(ω) , X (ω)Y(ω) , X (ω)/Y(ω) [Y(ω) 6= 0] ,

and, in particular, any linear combination of random variables such as
αX (ω) + βY(ω) is a random variable too. Similarly as a function of a func-
tion is still a function, and hence a function of a random variable is a random
variable,

ω ∈ Ω : ω → ϕ (X (ω),Y(ω)) = ϕ(X ,Y) .
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Fig. 1.9 Ordered partial sum of random variables. The sum of random vari-
ables, Sn(t) =

∑n
k=1 Zk(t), represents the cumulative outcome of a series of events

described by a class of random variables, Zk. The series can be extended to +∞ and
such cases will be encountered, for example, with probability distributions. The or-
dering criterion specified in this sketch is time t, and we are dealing with a stochastic
process, here a jump process. The time intervals need not be constant as shown here.
The ordering criterion could be equally well a spatial coordinate x, y or z.

Particularly important cases of derived quantities are the partial sums of
variables:25

Sn(ω) = Z1(ω) + . . . + Zn(ω) =

n∑
k=1

Zk(ω) . (1.23)

Such a partial sum Sn could be, for example, the cumulative outcome of n
successive throws of a die. The series, in principle, could be extended to in-
finity covering thereby the entire sample space, and then the conservation
relation of probabilities, Sn =

∑∞
k=1Zk = 1, has to be fulfilled. The terms in

the sum can be permuted arbitrarily since no ordering criterium has been in-
troduced so far. Most frequently and in particular in the context of stochastic
processes, events will be ordered according to their time t of occurrence (see
chapter 3). An ordered series of events where the current cumulative outcome
is given by the sum Sn(t) =

∑n
k=1Zk(t) is shown in figure 1.9: The plot of

the random variable, S(t), is a multi-step function over a continuous time
axis t.

25 The use of partial in this context expresses the fact that the sum need not cover
the entire sample space at least not for the moment. Series of rolling dice, for example,
could be continued in the future.
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Fig. 1.10 Continuity in probability theory and step processes. Three possible
choices of partial continuity or no continuity are shown for the step of the Heaviside
function Hγ(x): (i) γ = 0 with left-hand continuity (a), (ii) γ /∈ {0, 1} implying
no continuity (b), and (iii) γ = 1 with right-hand continuity (c). The step function
in (a) is left-hand semi-differentiable, the step function in (c) is right-hand semi-
differentiable, and the step function in (b) is neither right-hand nor left-hand semi-
differentiable. Choice (ii) with γ = 1/2 allows for making use of the inherent symmetry
of the Heaviside function. Choice (iii) is the standard assumption in Lebesgue-Stieltjes
integration, probability theory, and stochastic processes. It is also known as càdlàg-
property (section 3.1.3.3).

Continuity. Steps are inherent discontinuities, and without some further con-
vention we do not know how the value at the step is handled by various step
functions. In order to avoid ambiguities, which concern not only the value
of the function but also the problem of partial continuity or discontinuity,
a convention prior to usage is needed that makes expressions like (1.22) or
(1.23) precise. The Heaviside step or Θ function is defined by:

H(x) =


0 , if x < 0 ,

undefined , if x = 0 ,

1 , if x > 0 .

(1.24)

It has the discontinuity at the origin x = 0 and is undefined there. The
Heaviside step function can be interpreted as the integral of the Dirac delta
function

H(x) =

∫ x

−∞
δ(ξ) dξ ,

and this expression becomes ambiguous or meaningless for x = 0 as well. The
ambiguity can be removed by specifying the value at the origin

Hγ(x) =


0 , if x < 0 ,

γ ∈ [0, 1] if x = 0 ,

1 , if x > 0 .

(1.25)
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In particular, the three definitions shown in figure 1.10 for the value of the
function at the step are common.

For a general step function F (x) with the step at x0 – discrete cumulative
probability distributions FZ(x) may serve as examples – the three possible
definitions of the discontinuity at x0 are expressed in terms of the values
(immediately) below and immediately above the step, which we denote by
flow and fhigh, respectively:

(i) limε→0 F (x0 − ε) = flow and limε→δ>0 F (x0 + ε) = fhigh with ε > δ and δ
arbitrarily small. The value flow at x = x0 for the function F (x) implies left-
hand continuity, the function is semi-differentiable to the left, that is towards
decreasing values of x.

(ii) limε→δ>0 F (x0− ε) = flow and limε→δ>0 F (x0 + ε) = fhigh with ε > δ and
δ arbitrarily small, and the value of the step function at x = x0 is neither
flow nor fhigh. Accordingly, F (x) is not differentiable at x = x0. A special
definition is chosen in case the inherent inversion symmetry of a step functions
should be emphasized: F (x0) =

(
flow +fhigh

)
/2 (see the sign function below).

(iii) limε→δ>0 F (x0 − ε) = flow with ε > δ and δ arbitrarily small and
limε→0 F (x0 + ε) = fhigh. The value F (x0) = fhigh results in right-hand con-
tinuity and semi-differentiability to the right as expressed by càdlàg , which
is an acronym from French for ‘continue à droite, limites à gauche’. Right-
hand continuity is the standard assumption in the theory of stochastic pro-
cesses. The cumulative distribution functions FZ(x), for example, are semi-
differentiable to the right, that is towards increasing values of x.

A frequently used example of case (ii) is the sign function or signum function,
sgn(x) = 2 H 1

2
(x)− 1:

sgn(x)


−1 if x < 0 ,

0 if x = 0 ,

1 if x > 0 ,

(1.26)

which has inversion symmetry at the origin x0 = 0. The sign function is also
used in combination with the Heaviside Theta function in order to specify
real parts and absolute values in unified analytical expressions.26

The value ’1’ at x = x0 = 0 in H1(x) implies right-hand continuity. As said
this convention is adopted in probability theory, in particular the cumula-
tive distribution functions, FZ(x) are defined to be right-hand continuous
as are the integrator functions h(x) in Lebesgue-Stieltjes integration (sec-
tion 1.8 and leads to semi-differentiability to the right. Right-hand continuity

26 Program packages for computer assisted calculations commonly contain several
differently defined step functions. Mathematica, for example, uses a Heaviside Theta
function with the definition (1.24): H(0) is undefined but H(0) − H(0) = 0 and
H(0)/H(0) = 1, a unit step function with right-hand continuity, which is defined
as H1(x), and a sign function according to (1.26).



1.6 Discrete random variables 35

is the applied in conventional handling of stochastic processes. An example
are semimartigales (section 3.1.3) for which the càdlàg-property is basic.

The behavior of step functions is easily expressed in terms of indicator
functions, which we discuss here as another class of step functions. The
indicator function of the event A in Ξ is a mapping of Ξ into 0 and 1,
1A : Ξ → {0, 1} with the properties

1A(x) =

{
1 iff x ∈ A
0 iff x /∈ A

. (1.27a)

Accordingly, 1A(x) extracts the point of the subset A ∈ Ξ from a set Ξ that
might be the entire sample set Ξ ≡ Ω. For a probability space characterized
by the triple (Ω,Ξ,P) with Ξ ∈ Π(Ω) we define an indicator random variable
1A : Ω → {0, 1} with the properties 1A(ω) = 1 ifω ∈ A, otherwise 1A(ω) = 0,
and this yields the expectation value

E
(
1A(ω)

)
=

∫
Ξ

1A(x) dP(x) =

∫
A

dP(x) = P (A) , (1.27b)

as well as the variance and covariance

var
(
1A(ω)

)
= P (A)

(
1− P (A)

)
, and

cov
(
1A(ω, )1B(ω)

)
= P (A ∩B) − P (A)P (B).

(1.27c)

We shall use indicator functions in forthcoming sections for the calculation
of Lebesgue integrals (section 1.8.3) and for convenient solutions of principal
value integrals by partitioning of the domain of integration (section 3.2.5).

1.6.3 Discrete probability distributions

Discrete random variables are fully characterized by either of the two proba-
bility distributions, the probability mass function (pmf) and the cumulative
probability distribution (cdf). Both functions have been mentioned already
and were illustrated in figures 1.7 and 1.9, respectively, and they are equiv-
alent in the sense that essentially all observable properties can be calculated
from either one of them. Because of their general importance we summarize
the most important properties of discrete probability distributions.

Making use of our knowledge on probability space the probability mass
function (pmf) can be formulated as a mapping from sample space into the
real numbers, which returns the probability that a discrete random variable
Z(ω) attains exactly some value x = xk. Let Z(ω) be a discrete random
variable on the sample space Ω, Z : Ω → R, and then the probability mass
function is a mapping onto the unit interval, fZ : R→ [0, 1]:
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Fig. 1.11 Probability mass function of rolling fair dice. The figure shows
the probability mass function (pmf), fZ(xk), for rolling one die or two dice si-
multaneously. The scores xk are plotted on the abscissa axis. The pmf is zero ev-
erywhere on the x-axis except at a set of points, xk ∈ {1, 2, 3, 4, 5, 6} for one die
and xk ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} for two dice corresponding to the possi-
ble scores, fZ(xk) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6) for one die (blue) and fZ(xk) =
(1/36, 1/18, 1/12, 1/9, 5/36, 1/6, 5/36, 1/9, 1/12, 1/18, 1/36) (red) for two dice, respec-
tively. In the latter case the maximal probability value is obtained for the score x = 7
(see also equation (1.28’) and figure 1.7).

fZ(xk) = P
(
{ω ∈ Ω | Z(ω) = xk}

)
with

∞∑
k=1

fZ(xk) = 1 , (1.28)

where the probability could also be simpler expressed as P (Z = xk). Some-
times it is useful to be able to treat a discrete probability distribution
as if it were continuous. The function fZ(x) is then defined for all real
numbers, x ∈ R including those outside the sample set. Then we have:
fZ(x) = 0 ∀ x /∈ Z(Ω). A simple but straightforward representation of
the probability mass function makes use of the Dirac delta-function.27 The
nonzero score values are assumed to lie exactly at the positions xk with
k ∈ N>0 and pk = P (Z = xk):

fZ(x) =

∞∑
k=1

P (Z = xk) δ(x− xk) =

∞∑
k=1

pk δ(x− xk) . (1.28’)

27 The delta-function is no proper function but a generalized function or distribution.
It was introduced by Paul Dirac in quantum mechanics. For more details see, for
example, [393, pp.585-590] and [384, pp.38-42].
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In this form the probability density function is suitable for the calculation of
derived probabilities by integration (1.29’).

The cumulative distribution function (cdf) of a discrete probability distri-
bution is a step function and contains, in essence, the same information as
the probability mass function. It is again a mapping from sample space into
the real numbers on the unit interval, FZ : R→ [0, 1], and defined by

FZ(x) = P (Z ≤ x) with lim
x→−∞

FZ(x) = 0 and lim
x→+∞

FZ(x) = 1 . (1.29)

By definition the cumulative distribution functions are continuous and dif-
ferentiable on the right-hand side of the steps, they cannot be integrated by
conventional Riemann integration but they are Riemann-Stieltjes or Lebesgue
integrable (see section 1.8). Since the integral of the Dirac delta-function is
the Heaviside function we may also write

FZ(x) =

∫ x

−∞
fZ(s) ds =

∑
xk≤x

pk . (1.29’)

This integral expression is convenient because it holds for discrete and con-
tinuous probability distributions.

Special cases of importance in physics and chemistry are integer valued
positive random variables, Z ∈ N, corresponding to a countably infinite sam-
ple space which is the set of non-negative integers: Ω = N with

pk = P (Z = k) , k ∈ N and FZ(x) =
∑

0≤k≤x

pk . (1.30)

Such integer valued random variables will be used, for example, in mas-
ter equations for modeling particle numbers or other discrete quantities in
stochastic processes.

For the purpose of illustration we choose again throwing dice (figures 1.11
and 1.12). For rolling one die with s faces the pmf consists of s isolated peaks,
f1d(xk) = 1/s at xk = 1, 2, . . . , s and has the value fZ(x) = 0 everywhere
else (x 6= 1, 2, . . . , s). Rolling two dice leads to a pmf in the form of a tent
function shown in figure 1.11:

f2d(xk) =

{
1
s2 (k − 1) for k = 1, 2, . . . , s ,

1
s2 (2s+ 1− k) for k = s+ 1, s+ 2, . . . , 2s

.

Here k is the score and s the number of faces of the die, which is six in case
of the commonly used dice. The cumulative probability distribution function
(cdf) is an example of for an ordered sum of random variables. The scores
of rolling one die or two dice simultaneously are the events. The cumulative
probability distribution is simply given by the sum of scores (figure 1.12):



38 1 Probability

Fig. 1.12 The cumulative distribution function of rolling fair dice. The
cumulative probability distribution function (cdf) is a mapping from the sample
space Ω onto the unit interval [0, 1] of R. It corresponds to the ordered partial
sum with the ordering parameter being the score given by the stochastic vari-
able. The example shown deals with throwing fair dice: The distribution for one
die (blue) consists of six steps of equal height pk = 1/6 at the scores xk =
1, 2, . . . , 6. The second curve (red) is the probability of throwing two dice yield-
ing the scores xk = 2, 3, . . . , 12 where the weights for the individual scores are
pk = (1/36, 1/18, 1/12, 1/9, 5/36, 1/6, 5/36, 1/9, 1/12, 1/18, 1/36). The two limits of a
cdf are limx→−∞ FZ(x) = 0 and limx→+∞ FZ(x) = 1.

F2d(k) =

k∑
i=2

f2d(i) ; k = 2, 3, . . . , 2s .

A generalization to rolling n dice will be presented in chapter 2.6 in the
discussion of the central limit theorem.

Finally, we generalize to sets that define the domain of a random variable
on the closed interval [a, b].28 This is tantamount to restricting the sample
set to these sample points, which give rise to values of the random variable
on the interval:

{a ≤ Z ≤ b} = {ω| a ≤ Z(ω) ≤ b} ,

28 The notation we are applying here uses square brackets, ’[’·’]’, for closed inter-
vals, open square brackets, ’]’·’[’, for open intervals, ’]’·’]’ and ’[’·’[’ for left-hand or
right-hand half-open intervals, respectively. An alternative less common notation uses
parentheses instead of open square brackets, e.g., ’(’·’)’ instead of ’]’·’[’.
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and define their probabilities by P (a ≤ Z ≤ b). The set of sample points
for event A, of course, need not be a closed interval, it may be an open, a
half-open, an infinite intervals, or even a single point x. Then it is called a
singleton {x} with P (Z = x) = P (Z ∈ {x}).

For any countable, finite or countably infinite, sample spaces Ω the exact
range of Z is just the set of the real numbers wi:

WZ =
⋃
ω∈Ω

{Z(ω)} = {w1, w2, . . . , wn, . . .} with pk = P (Z = wk) , wk ∈WZ .

As with the probability mass function (1.28’) we have P (Z = x) = 0 if
x /∈WZ . Knowledge of all pk-values is tantamount to having full information
on all probabilities derivable for the random variable Z:

P (a ≤ Z ≤ b) =
∑

a≤wk≤b

pk or, in general, P (Z ∈ A) =
∑
wk∈A

pk . (1.31)

The cumulative distribution function (1.29) of Z is the special case for which
A is the infinite interval ]−∞, x]. It fulfils several properties on intervals,

FZ(a) − FZ(b) = P (Z ≤ b) − P (Z ≤ a) = P (a < Z ≤ b) ,

P (Z = x) = lim
ε→0

(
FZ(x+ ε) − FZ(x− ε)

)
, and

P (a < Z < b) = lim
ε→0

(
FZ(b− ε) − FZ(a+ ε)

)
,

which can be easily verified.

1.6.4 Conditional probabilities and independence

Probabilities of events A were defined so far in relation to the entire sample
space Ω, P (A) = |A|/|Ω| =

∑
ω∈A P (ω)

/ ∑
ω∈Ω P (ω). Now we want to

know the probability of an event A relative to a subset of sample space Ω,
and we denote this set by S. This means that we attempt to calculate the
proportional weight of the part of the subset A in S, which is expressed by
the intersection A ∩ S relative to the set S, and obtain∑

ω∈A∩S
P (ω)

/ ∑
ω∈S

P (ω) .

In other words, we switch from Ω to S as the new universe and the set to
be weighted are the sample points belonging to both, A and to S. It is often
helpful for imagination to call the event S a hypothesis, which reduces the
sample space from Ω to S for the definition of conditional probabilities.

The conditional probability measures the probability of A relative to S:
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Fig. 1.13 Conditional probabilities. Conditional probabilities measure the inter-
section of the sets for two events, A ∩ S relative to the set S: P (A|S) = |AS|/|S|.
In essence this is the same kind of weighting that defines the probabilities in sample
space: P (A) = |A|/|Ω| (Part a shows A ⊂ Ω and b shows A ∩ S ⊂ S). The two
extremes are: A ∩ S = S and P (A|S) = 1 (c) and A ∩ S = 0 and P (A|S) = 0 (d).

P (A|S) =
P (A ∩ S)

P (S)
=

P (AS)

P (S)
(1.32)

provided P (S) 6= 0. The conditional probability P (A|S) is undefined for
hypothesis of zero probability, S = ∅. Apparently, the conditional probability
vanishes when the intersection is empty: P (A|S) = 0 if A ∩ S = AS = ∅,29

and P (AS) = 0. In case S is a true subset of A, AS = S we have P (A|S) = 1
(figure 1.13).

The definition of the conditional probability implies that all general the-
orems on probabilities hold by the same token for conditional probabilities
and, for example, we derive from equation (1.13):

P (A ∪B|S) = P (A|S) + P (B|S) − P (AB|S) . (1.13’)

Additivity of conditional probability requires an empty intersection, AB = ∅.
Equation (1.32) is particularly useful when written in slightly different

form:
P (AS) = P (A|S) · P (S) , (1.32’)

29 From here on we shall use the short notation for the intersection, AS ≡ A ∩ S.
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which is known as the theorem of compound probabilities and which can be
easily generalized to more events. For three events we derive [133, chap.V]

P (ABC) = P (A|BC) · P (B|C) · P (C)

by applying (1.32’) twice – first by setting BC ≡ S and then by setting
BC ≡ AS. For n arbitrary events Ai; i = 1, . . . , n this leads to

P (A1A2 . . . An) = P (A1|A2A3 . . . An) · P (A2|A3 . . . An) . . . P (An−1|An) · P (An)

provided P (A2A3 . . . An) > 0. If the intersection of event sets A2 . . . An does
not vanish, all conditional probabilities are well defined since

P (An) ≥ P (An−1An) ≥ . . . ≥ P (A2A3 . . . An) > 0 .

Next we derive an equation that we shall need in chapter 3 for modeling of
stochastic processes. We assume that the sample space Ω is partitioned into
n disjoint sets, Ω =

∑
n Sn, then we have for any set A

A = AS1 ∪ AS2 ∪ . . . ∪ ASn

and from equation (1.32’) we get

P (A) =
∑
n

P (A|Sn) · P (Sn) . (1.33)

From this relation it is straightforward to derive the conditional probability

P (Sj |A) =
P (Sj)P (A|Sj)∑
n P (Sn)P (A|Sn)

provided P (A) > 0.

The conditional probability can also be interpreted that the information on
whether or not an event S has occurred changes the probability of A. In-
dependence of events can be easily formulated in terms of conditional prob-
abilities, since it implies that an influence of S on A does not exist and
hence P (A|S) = P (A) defines stochastic independence. Making use of equa-
tion (1.32’) we define

P (AS) = P (A) · P (S) , (1.34)

and realize an important symmetry of stochastic independence: A is inde-
pendent of S implies S is independent of A, and we may account for this
symmetry by defining independence by stating that A and S are independent
if equation (1.34) holds. We remark that the definition (1.34) is acceptable
also for P (S) = 0 a case in which P (A|S) is undefined [133, p. 125].
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Fig. 1.14 Testing for stochastic independence of three events. The study
case shown here is a example for independence of three events and corresponds to
example a in table 1.2. The numbers in the sketch fulfill equations (1.35a) and (1.35b).
The probability of the union of all three sets is given by the relation:
P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (AB)− P (BC)− P (AC) + P (ABC),

and by addition of the remainder one verifies P (Ω) = 1.

The case of more than two events needs some care and we take three events
A, B, C as an example. So far we were dealing with pairwise independence
and accordingly we have

P (AB) = P (A) · P (B) , P (BC) = P (B) · P (C) , P (CA) = P (C) · P (A) . (1.35a)

Pairwise independence, however, does not necessarily imply that

P (ABC) = P (A) · P (B) · P (C) (1.35b)

holds. In addition, examples were constructed where the last equation is ful-
filled but nevertheless the sets are not pairwise independent [160].

Independence or lack of independence of three sets can be easily visualized
by means of weighted Venn diagrams. In figure 1.14 we show a case where
independence of the three sets A, B, and C is easily tested. Although cases
of pairwise independence but lacking mutual independence of three events
are not common they can be found in general: Case f in figure 1.4 allows
for straightforward construction of examples with pairwise independence but
P (ABC) = 0. Eventually, we present also an opposite example, which is
attributed to Sergei Bernstein [133, p. 127]: The six permutations of the three
letters a, b and c together with the three triples (aaa), (bbb), (ccc) constitute
the sample space and a probability P = 1

9 is attributed to each sample point.
Now we define three events A1, A2 and A3 according to the appearance of
the letter a at the first, second or third place:

A1 = {aaa, abc, acb} , A2 = {aaa, bac, cab} , A3 = {aaa, bca, cba} .
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Table 1.2 Testing for stochastic independence of three events. We show
three examples: Case a fulfils equations (1.35a) and (1.35b), and represents a case
of mutual independence (figure 1.14), case b fulfils only equation (1.35a) and not
equation (1.35b), and is an example of pairwise independent but not mutually in-
dependent events, and case c is an especially constructed example for fulfilment of
equation (1.35b) by three sets that are pairwise independent. Deviations from equa-
tions (1.35a) and (1.35b) are shown in boldface numbers.

Probabilities P

Singles Pairs Tripel

A B C AB BC CA ABC

a 1
2

1
2

1
4

1
4

1
8

1
8

1
16

b 1
2

1
2

1
4

1
4

1
8

1
8

1
10

c 1
5

2
5

1
2

1
10

6
25

7
50

1
25

Every event has a probability P (A1) = P (A2) = P (A3) = 1
3 and the three

events are pairwise independent because

P (A1A2) = P (A2A3) = P (A3A1) =
1

9
,

but they are not mutually independent because P (A1A2A3) = 1
9 instead of

1
27 as required by equation (1.35b). In this case it is easy to detect the cause of
the mutual dependence: The occurrence of two events implies the occurrence
of the third and therefore we have P (A1A2) = P (A2A3) = P (A3A1) =
P (A1A2A3). Table 1.2 finally presents numerical examples for all three cases.

Generalization to n events is straightforward [133, p. 128]: The events
A1 , A2 , . . . , An are mutually independent if the multiplication rules apply
for all combinations 1 ≤ i < j < k < . . . ≤ n and hence we have 2n − n − 1
conditions,

P (AiAj) = P (Ai) · P (Aj)

P (AiAjAk) = P (Ai) · P (Aj) · P (Ak)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P (A1A2 . . . An) = P (A1) · P (A2) · . . . · P (An) ,

(1.36)
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which have to be satisfied.30

Two or more random variables,31 for example X and Y, can be subsumed in
a random vector ~V = (X ,Y), which is expressed by the joint probability

P (X = xi,Y = xj) = p (xi, yj) . (1.37)

The random vector ~V is fully determined by the joint probability mass func-
tion

f~V(x, y) = P (X = x,Y = y) = P (X = x ∨ Y = y) =

= P (Y = y | X = x) · P (X = x) =

= P (X = x | Y = y) · P (Y = y) .

(1.38)

This density constitutes the probabilistic basis of the random vector ~V . It is
straightforward to define a cumulative probability distribution in analogy to
the single variable case

F~V(x, y) = P (X ≤ x,Y ≤ y) . (1.39)

In principle either of the two probability functions contain the complete in-
formation on both variables but depending on the specific situation either
the pmf or the cdf may be more efficient.

Often no detailed information is required on one particular random vari-
able. Then, by summation over one variable of the vector ~V we obtain the
probabilities for the corresponding marginal distribution,

P (X = xi) =
∑
yj

p (xi, yj) = p (xi, ∗) and

P (Y = yj) =
∑
xi

p (xi, yj) = p (∗, yj) ,
(1.40)

of X and Y, respectively.
Independence of random variables will be a highly relevant problem in

the forthcoming chapters. Countably-valued random variables X1, . . . ,Xn are
defined to be independent if and only if for any combination x1, . . . , xn of real
numbers the joint probabilities can be factorized:

P (X1 = x1, . . . ,Xn = xn) = P (X1 = x1) · . . . · P (Xn = xn) . (1.41)

30 The number of conditions consists of
(
n
2

)
equations in the first line,

(
n
3

)
equations

in the second line, and so on, down to
(
n
n

)
= 1 in the last line. The summation yields∑n

i=2

(
n
i

)
= (1 + 1)n −

(
n
1

)
−
(
n
0

)
= 2n − n− 1.

31 For simplicity we restrict ourselves to the two variable case here. The extension to
any finite number of variables is straightforward.
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An extension of equation (1.41) replaces the single values xi by arbitrary sets
Si

P (X1 ∈ S1, . . . ,Xn ∈ Sn) = P (X1 ∈ S1) · . . . · P (Xn ∈ Sn) .

In order to proof this extension we sum over all points belonging to the sets
S1, . . . , Sn: ∑

x1∈S1

· · ·
∑
xn∈Sn

P (X1 = x1, . . . ,Xn = xn) =

=
∑
x1∈S1

· · ·
∑
xn∈Sn

P (X1 ∈ S1) · . . . · P (Xn ∈ Sn) =

=

( ∑
x1∈S1

P (X1 ∈ S1)

)
· . . . ·

( ∑
xn∈Sn

P (Xn ∈ Sn)

)
,

which is equal to the right hand side of the equation to be proven. ut
Since the factorization is fulfilled for arbitrary sets S1, . . . Sn it holds also

for all subsets of (X1 . . .Xn) and accordingly the events

{X1 ∈ S1}, . . . , {Xn ∈ Sn}

are also independent. It can also be verified that for arbitrary real-valued
functions ϕ1, . . . , ϕn on ]−∞,+∞[ the random variables ϕ1(X1), . . . , ϕn(Xn)
are independent too.

Independence can also be extended in straightforward manner to the joint
distribution function of the random vector ~V = (X1, . . . ,Xn)

F~V(x1, . . . , xn) = FX1(x1) · . . . · FXn(xn) ,

where the FXj ’s are the marginal distributions of the Xj ’s , 1 ≤ j ≤ n.
Thus, the marginal distributions determine the joint distribution in case of
independence of the random variables.
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1.7 Probability measure on uncountable sample spaces32

In the previous sections we were dealing with countable, finite or infinite,
sample spaces where classical probability theory would have worked as well
as the set theoretic approach. A new situation arises when the sample space Ω
is uncountable (see, e.g., figure 1.5) and this is very common, for example, for
continuous variables defined on non-zero, open or closed segments of the real
line, ]a, b[, ]a, b], [a, b[, or [a, b] for a < b, respectively. The most straightfor-
ward way to illustrate the definition of a measure on an uncountable sample
space is to assign length (m), area (m2), volume (m3), or generalized volume
(mn) to the uncountable set. In order to illustrate the problem we may ask
a very natural question: Does every arbitrary proper subset of the real line,
−∞ < x < +∞, have a length? It seems trivial to assign length 1 to the
interval [0, 1] and length b − a to the interval [a, b] with a ≤ b. Often the
mass of a homogeneous object is easier to imagine than the volume, and we
assign mass to sets in the sense of bars of uniform density. For example, we
attribute a bar of length 1 that has mass 1 to [0, 1], and accordingly, a bar of
mass b − a to [a, b], two bars corresponding to the set [0, 1] ∪ [3, 5] together
have mass 3, etc. The question now is: What is the mass of the set of the
rational numbers Q given the mass of the interval [0, 1] is one? Since the
rational numbers are dense in the real numbers,33 any nonnegative value for
the mass of the rational numbers may appear acceptable. The real numbers,
however, are uncountable and so are the irrational numbers, R\Q. Assigning
mass b − a to the interval [a, b] leaves no weight for the rational numbers
and indeed the rational numbers Q have measure zero like any other set of
countably many objects.

In this section we have to be more precise and call the measure we are intro-
ducing here a Lebesgue measure: The rational numbers have Lebesgue mea-
sure zero, λ(Q) = 0. In the forthcoming text we shall see that the Lebesgue
measure indeed assigns precisely the values given above to intervals on the
real axis: λ([0, 1]) = 1 or λ([a, b]) = b − a. The real line R allows for the
definition of a Borel measure, which assigns µ([a, b]) = b−a for every interval
[a, b] too. The Borel measure is defined on the σ-algebra (see section 1.7.2)34

of the Borel sets B(R) and this is the smallest σ-algebra that contains the
open intervals of R. In practice, however, the Borel measure is not the most
useful measure defined on the σ-algebra of Borel sets, because in contrast to

32 This section can be skipped by readers who are willing to except the fact that
all uncountable sample spaces needed in the forthcoming discussions are measurable
notwithstanding the existence of non-measurable sets.
33 A subset D of real numbers is said to be dense in R if every arbitrarily small
interval ]a, b[ with a < b contains at least one element of D. Accordingly, the set of
rational numbers Q as well as the set of irrational numbers R\Q are dense in R.
34 For the time being it is sufficient to know that a σ-algebra on a set Ξ is a collection
Σ of subsets A ∈ Ξ, which fulfill certain properties among them σ-additivity (see
section 1.5.1).
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the Borel measure the Lebesgue-measure on Borel sets is a complete measure.
The difference between Borel and Lebesgue measures concerns the handling
of null sets that are sets N of measure zero, µ(N) = 0, for which every mea-
surable subset A ⊂ N has measure µ(A) = 0. A complete measure refers to
a complete measure space in which every subset of every null set is measur-
able with measure zero. Indeed, the Lebesgue measure λ is an extension of the
Borel measure µ, every Borel-measurable set E is also a Lebesgue-measurable
set, and the two measures coincide on Borel sets E: λ(E) = µ(E).

In the case of a countable sample space the powerset Π(Ω) is the set of
all subsets of the sample space Ω and contains the results of all set theoretic
operations of section 1.4. Although is would seem straightforward to proceed
in the same way for uncountable sample spaces Ω, it turns out that the
powerset Π(Ω) is too large, because it contains uncountably many subsets.
For the development of a measure for uncountable sample spaces we recall
the three indispensable properties of probability measures µ : Ξ → [0,∞[
with Ξ being a measurable collection of events A:

(P) nonnegativity, µ(A) ≥ 0 ∀ A ∈ Ξ,
(N) normalization, P (Ω) = 1, and
(A) additivity, µ(A) + µ(B) = µ(A ∪B) provided P (A ∩B) = ∅.

In essence, the task is now to find measures for uncountable sets that are
derived from collections of subsets, whose cardinality is ℵ0 – infinite but
countable. Problems concerning measurability arise from the impossibility to
assign a probability to every subset of Ω. In other words, there might be sets
to which no measure – no length, no mass, etc. – can be assigned. To derive
the concept of measurable sets in full rigorousity is highly demanding and it
requires advanced mathematical techniques, in particular sufficient knowledge
of measure theory. For the probability concept we are using here, however, the
simplest bridge from countability to uncountability is sufficient and we need
only derive a measure for a certain family of sets called Borel sets, B ⊂ Ω.
For this goal the introduction of σ-additivity (1.15) and Lebesgue measure
λ(A) is sufficient, and as said, σ-additivity comes close to the assignment
of additive mass in the above given example. Still unanswered so far is the
question whether unmeasurable sets do exist at all.

1.7.1 Existence of non-measurable sets

A general proof of this conjecture is difficult but Giuseppe Vitali [449, 450]
provided a proof by means of contradiction : No mapping P : Π(Ω) → [0, 1]
exists, which fulfils all three indispensable properties for probabilities. In
particular he showed this for the infinitely repeated coin flip, Ω = {0, 1}N
[161, p. 9,10]:

(N) normalization: P (Ω) = 1 ,
(A) σ-additivity: for pairwise disjoint events A1, A2, . . . ⊂ Ω holds
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P

⋃
i≥1

Ai

 =
∑
i≥1

P (Ai) , and

(I) invariance: For all A ⊂ Ω and k ≥ 1 holds P (TkA) = P (A), where Tk
is an operator that inverts the outcome of the k-th toss.

In particular, the sample points of Ω are ω = (ω1, ω2, . . .) and the operator
is defined by

Tk : ω = (ω1, . . . , ωk−1, ωk, ωk+1 . . .)→ (ω1, . . . , ωk−1, 1− ωk, ωk+1 . . .),

and TkA = {Tk(ω) : ω ∈ A} is the image of A under the operation Tk, which
defines a mapping of Ω onto itself. The first two conditions, (N) and (A), are
the criteria for probability measures and the invariance condition (I) is specific
for coin flipping and encapsulates the properties derived from the uniform
distribution, UΩ , which for the single coin toss is P (ωk) = P (1− ωk) = 1

2 .

Proof. In order to proof the conjecture of incompatibility with all three
conditions we define an equivalence relation ’∼’ in Ω: ω ∼ ω′ iff ωk = ω′k for
all sufficiently long sequences with n ≥ k, and the elements of the equivalence
class are the sequences which have the same digit at position k. According
to the axiom of choice35 there exists a set A ⊂ Ω, which contains exactly
one element of each equivalence class. We define S = {S ⊂ N : |S| < ∞}
the set containing all finite subsets of N. Since S is the union of a countable
number of finite sets, {S ⊂ N : maxS = m} with m ∈ N, S is countable too.
For S = {k1, . . . , kn} ∈ S we define TS =

∏
ki∈S Tki = Tk1 ◦ . . . ◦ Tkn the

simultaneous flip of the digits in S. Then we have:

(i) Ω =
⋃
S∈S TSA since for every sequence ω ∈ Ω there exists an ω′ ∈ A

with ω ∼ ω′, and accordingly an S ∈ S such that ω = TS ω
′ ∈ TS A,

(ii) the sets (TSA)S∈S are pairwise disjoint: If TSA ∪ TS′A 6= ∅ were true
for S, S′ ∈ S then there existed an ω, ω′ ∈ A with TS ω = TS′ ω

′ and
accordingly ω ∼ TS ω = TS ω ∼ ω′. By definition of A we had ω = ω′

and hence S = S′.

Applying the properties (N), (A), and (I) of the probability P we find

1 = P (Ω) =
∑
S∈S

P (TSA) =
∑
S∈S

P (A) . (1.42)

Equation (1.42) cannot be fulfilled for infinitely large series of coin tosses,
since all values P (A) or P (TSA) are the same and infinite summation by
σ-additivity (A) is tantamount to an infinite sum of the same number, which
yields either 0 or ∞ but never 1 as required to fulfil (N). ut

35 Axiom of choice: Suppose that Aθ : θ ∈ Θ is a decomposition of Ω into nonempty
sets. The axiom of choice guarantees that there exists at least one set C, which
contains exactly one point from each Aθ: C ∩ Aθ is a singleton for each θ in Θ (see
[41, p. 572] and [95]).
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It is straightforward to show that the set of all binary strings with count-
ably infinite length, B = {0, 1}N, is bijective36 to the unit interval [0, 1]. A
more or less explicit bijection f : B ↔ [0, 1] can be obtained by defining an
auxiliary function

g(s)
.
=

∞∑
k=1

sk
2k

.

which interprets a binary string s = (s1, s2, . . .) ∈ B as an infinite binary
fraction

s1

2
+
s2

4
+ . . . .

The function g(s) maps B only almost bijectively onto [0, 1], because the all
dyadic rationals in ]0, 1[ have two preimages each, for example

g(1, 0, 0, 0, . . .) =
1

2
=

1

4
+

1

8
+

1

16
+ . . . = g(0, 1, 1, 1, . . .) .

In order to fix this problem we reorder the rationals:

(
qn
)
n≥1

=

(
1

2
,

1

4
,

3

4
,

1

8
,

3

8
,

5

8
,

7

8
,

1

16
, . . .

)
,

and find for the bijection

f(s)
.
=


q2n−1 if g(s) = qn , and sk = 1 for almost all k ,

q2n if g(s) = qn , and sk = 0 for almost all k ,

g(s) otherwise .

(1.43)

Hence Vitali’s theorem applies as well to the unit interval [0, 1], where we are
also dealing with an uncountable number of non-measurable sets. For other
more detailed proofs of Vitali’s theorem see, e.g., [41, p. 47].

The proof of Vitali’s theorem shows the existence of non-measurable sub-
sets within the real numbers called Vitali sets – precisely it provides evidence
for subsets of the real numbers that are not Lebesgue measurable (see next
subsection 1.7.2). The problem to be solved now is a rigorous reduction of
the powerset to an event system Ξ such that the subsets causing the lack of
countability are left aside (figure 1.15).

1.7.2 Borel σ-algebra and Lebesgue measure

In figure 1.15 we consider the three levels of sets in set theory that are relevant
for our construction of an event system Ξ. The objects on the lowest level

36 A bijection or bijective function implies a one-to-one correspondence between the
elements of two sets.
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Fig. 1.15 Conceptual levels of sets in probability theory. The lowest level is
the sample space Ω (black), it contains the sample points or individual results ω as
elements, and events A are subsets of Ω: ω ∈ Ω and A ⊂ Ω. The next higher level is
the powerset Π(Ω) (red). Events A are its elements and event systems Ξ constitute
its subsets: A ∈ Π(Ω) and Ξ ⊂ Π(Ω). The highest level finally is the power powerset
Π
(
Π(Ω)

)
that houses event systems Ξ as elements: Ξ ∈ Π

(
Π(Ω)

)
(blue) (Drawn

after [161, p. 11]).

are the sample points corresponding to individual results, ω ∈ Ω. The next
higher level is the powerset Π(Ω) housing the events A ∈ Π(Ω). The elements
of the powerset are subsets of the sample space, A ⊂ Ω. To illustrate the
role of event systems Ξ we need a still higher level, the powerset of the
powerset, Π

(
Π(Ω)

)
: Event systems Ξ are elements of the power powerset,

Ξ ∈ Π
(
Π(Ω)

)
and subsets of the powerset, Ξ ⊂ Π(Ω).37

The minimal requirements for an event system Ξ are summarized in the
following definition of a σ-algebra on Ω with Ω 6= ∅ and Ξ ⊂ Π(Ω):

Condition (1): Ω ∈ Ξ ,
Condition (2): A ∈ Ξ =⇒ Ac

.
= Ω\A ∈ Ξ , and

Condition (3): A1, A2, . . . ∈ Ξ =⇒
⋃
i≥1Ai ∈ Ξ .

Condition (2) requires the existence of a complement Ac for every subset
A ∈ Ξ, defines the logical negation as expressed by the difference between
the entire sample space and the event A, and condition (3), the necessity of
σ-additivity represents the logical or operation. The pair (Ω,Ξ) is called an
event space and represents a measurable space here. From the three proper-
ties (1) to (3) follow other properties: The intersection, for example, is the
complement of the union of the complements A∩B = (Ac∪Bc)c ∈ Ξ, and the
argument is easily extended to the intersection of countable many subsets of
Ξ that belongs to Ξ as well. Thus, a σ-algebra is closed under the operations
’c’, ’∪’ and ’∩’.38 Trivial examples of σ-algebras are {∅, Ω}, {∅, A,Ac, Ω} or

37 Recalling the situation in the case of countability we were choosing the entire
power set Π(Ω) as reference instead of a smaller event system Ξ.
38 A family of sets is called closed under an operation if the operation can be applied
a countable number of times without producing a set that lies outside the family.
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the family of all subsets. The Borel σ-algebra on Ω is the smallest σ-algebra,
which contains all open sets or equivalently, all closed sets.

A construction principle for σ-algebras starts out from some event system
G ⊂ Π(Ω) (forΩ 6= ∅) that is sufficiently small and otherwise arbitrary. Then,
there exists exactly one smallest σ-algebra Ξ = σ(G) in Ω with Ξ ⊃ G, and
we call Ξ the σ-algebra induced by G. In other words, G is the generator of
Ξ. Here are three important examples:

(i) the powerset with Ω being countable where G =
{
{ω} : ω ∈ Ω

}
is the

system of the subsets of Ω containing a single element, the σ-algebra
σ(G) = Π(Ω), each A ∈ Π(Ω) is countable, and A =

⋃
ω∈A{ω} ∈ σ(G)

(These are the countable sample spaces as discussed in section 1.5),
(ii) the Borel σ-algebra B containing all open or all closed sets in one

dimension (This is the uncountable sample space of real numbersΩ = R,
see below), and

(iii) the product σ-algebra for sample spaces Ω that are Cartesian products
of sets Ek, Ω =

∏
k∈I Ek where I is a complete set of indices with I 6= ∅

(These are the Cartesian product sample spaces of vectors with real
components in n dimensions, Ω = Rn).

All three cases are required for the understanding of probability measures:
(i) The powerset provides the frame for discrete sample spaces, (ii) the Borel
σ-algebra (see below) sets the stage for one-dimensional continuous sample
spaces, and (iii) the product Borel σ-algebra represents the natural extension
from one dimension to the n-dimensional Cartesian space (see below).

The Borel σ-algebra39 is constructed with the help of a generator repre-
senting the set of all compact intervals in one-dimensional Cartesian space,
Ω = R, which have rational endpoints,

G = {[a, b] : a < b; (a, b) ∈ Q} (1.44a)

where Q is the set of all rational numbers.40 The σ-algebra induced by this
generator is denoted as the Borel σ-algebra, B .

= σ(G) on R and each A ∈ B
is a Borel set.

The extension to n dimensions is straightforward and we shall consider
from now on the n-dimensional case with Ω ∈ R as the special case with
n = 1. Another special case is our conventional physical space with n = 3. The
generator G is now the set of all compact cuboids in n-dimensional Cartesian
space, Ω = Rn, which have rational corners:

G =

{
n∏
k=1

[ak, bk] : ak < bk; ak, bk ∈ Q

}
. (1.44b)

39 Borel σ-algebras are frequently called Borel fields.
40 The restriction to rational corners is the trick that makes the event system Ξ
tractable in comparison of the power set, which we have shown to be too large for
the definition of a Lebesgue measure.
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The σ-algebra induced by this generator is called a Borel σ-algebra in n
dimensions, B(n) .

= σ(G) on Rn and each A ∈ B(n) is a Borel set. Then, Bk is
a Borel σ-algebra on the subspace Ek with Xk : Ω → Ek being the projection
onto the k-th coordinate and the generator

G = {X−1
k Ak : k ∈ I, Ak ∈ Bk}

is the system of all sets in Ω, which are determined by an event on coordinate
k. B(n) =

⊗
k∈I Bk

.
= σ(G) is called the product σ-algebra of the sets Bk on

Ω. In the important case of equivalent Cartesian coordinates, Ek = E and
Bk = B for all k ∈ I, a short-hand notion is common. The Borel σ-algebra
on Rn is represented by the n-dimensional product σ-algebra of the Borel
σ-algebra B on R: Bn on Rn.41 .

A Borel σ-algebra is characterized by five properties, which are helpful for
visualizing its enormous size:

(i) Each open set ’]..[’ A ⊂ Rn is Borelian. Every ω ∈ A has a neigh-
borhood Q ∈ G with Q ⊂ A and therefore we have

A =
⋃

Q∈G, Q⊂A
Q

representing a union of countably many sets in Bn, which follows
from condition (3) of σ-algebras.

(ii) Each closed set ’[..]’ A ⊂ Rn is Borelian since Ac is open and Bore-
lian according to item (i).

(iii) The σ-algebra Bn cannot be described in a constructive way, be-
cause is consists of much more than the union of cuboids and their
complements. In order to create Bn the operation of adding com-
plements and countable unions has to be repeated as often as there
are countable ordinal numbers (and this leads to an uncountable
number of times [40, pp.24, 29]). For practical purposes it is suffi-
cient to memorize that Bn covers almost all sets in Rn – but not all
of them.

(iv) The Borel σ-algebra B on R is generated not only by the system of
compact sets (1.44) but also by the system of closed left-hand open
infinite intervals:

G̃ = {]−∞, c]; c ∈ R} . (1.44c)

By analogy B is also generated from all open left-unbounded, from
all closed, and from all open right-unbounded intervals.

(v) The event system BnΩ = {A ∩ Ω : A ∈ Bn} on Ω ⊂ Rn, Ω 6= ∅
represents a σ-algebra on ω, which is denoted as the Borel σ-algebra
on Ω.

41 For n = 1 one commonly writes B instead of B1, or Bn = B
⊗
n.
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Item (iv) follows from condition (2), which requires G̃ ⊂ B and – because
of minimality of σ(G̃) – σ(G̃) ⊂ B too. Alternatively, σ(G̃) contains all left-
open intervals since ]a, b] =]−∞, b] \ ]−∞, a] and also all compact or closed
intervals since [a, b] =

⋂
n≥1 ]a − 1

n , b] and accordingly also the σ-algebra B
generated from these intervals (1.44a). All intervals discussed in items (i) to
(iv) are Lebesgue measurable while other sets are not.

The Lebesgue measure is the conventional mean of assigning lengths, areas,
and volumes to subsets of three-dimensional Euclidean space and in formal
Cartesian spaces to objects with higher dimensional volumes. Sets to which
generalized volumes42 can be assigned are called Lebesgue measurable and
the measure or the volume of such a set A is denoted by λ(A). The Lebesgue
measure on Rn has the following properties:

(1) If A is a Lebesgue measurable set, then λ(A) ≥ 0.
(2) If A is a Cartesian product of intervals, I1 ⊗ I2 ⊗ . . . ⊗ In, then A is

Lebesgue measurable and λ(A) = |I1| · |I2| · . . . · |In|.
(3) If A is Lebesgue measurable, its complement Ac is so too.
(4) If A is a disjoint union of countably many disjoint Lebesgue measurable

sets, A =
⋃
k Ak, then A is Lebesgue measurable and λ(A) =

∑
k λ(Ak).

(5) If A and B are Lebesgue measurable and A ⊂ B, then λ(A) ≤ λ(B).
(6) Countable unions and countable intersections of Lebesgue measurable

sets are Lebesgue measurable.43

(7) If A is an open or closed subset or Borel set of Rn, then A is Lebesgue
measurable.

(8) The Lebesgue measure is strictly positive on non-empty open sets, and
so its support is the entire Rn.

(9) If A is a Lebesgue measurable set with λ(A) = 0, called a null set, then
every subset of A is also a null set, and every subset of A is measurable.

(10) If A is Lebesgue measurable and r is an element of Rn, then the transla-
tion of A by r that is defined by A+ r = {a + r|a ∈ A} is also Lebesgue
measurable and has the same measure as A.

(11) If A is Lebesgue measurable and δ > 0, then the dilation of A by δ
defined by δA = {δr|r ∈ A} is also Lebesgue measurable and has measure
δnλ(A).

(12) In generalization of items (10) and (11), if L is a linear transformation
and A is a measurable subset of Rn, then T (A) is also measurable and
has the measure λ = |det(T )|λ(A).

42 We generalize volume here to arbitrary dimension n: The generalized volume for
n = 1 is a length, for n = 2 an area, for n = 3 a (conventional) volume and for
arbitrary dimension n a cuboid in n-dimensional space.
43 This is not a consequence of items (3) and (4): A family of sets, which is closed
under complements and countable disjoint unions, need not be closed under countable
non-disjoint unions. Consider, for example, the set{

∅, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}
}

.
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All twelve items listed above can be succinctly summarized in one lemma:

The Lebesgue measurable sets form a σ-algebra on Rn containing all
products of intervals, and λ is the unique complete translation-invariant
measure on that σ-algebra with

λ
(
[0, 1]⊗ [0, 1]⊗ . . .⊗ [0, 1]

)
= 1.

We conclude this section on Borel σ-algebra and Lebesgue measure by men-
tioning a few characteristic and illustrative examples:

• Any closed interval [a, b] of real numbers is Lebesgue measurable, and its
Lebesgue measure is the length b − a. The open interval ]a, b[ has the
same measure, since the difference between the two sets consists of the
two endpoint a and b only and has measure zero.

• Any Cartesian product of intervals [a, b] and [c, d] is Lebesgue measurable
and its Lebesgue measure is (b− a) · (d− c) the area of the corresponding
rectangle.

• The Lebesgue measure of the set of rational numbers in an interval of the
line is zero, although this set is dense in the interval.

• The Cantor set44 is an example of an uncountable set that has Lebesgue
measure zero.

• Vitali sets are examples of sets that are not measurable with respect to
the Lebesgue measure.

In the forthcoming sections we make use of the fact that the continuous
sets on the real axes become countable and Lebesgue measurable if rational
numbers are chosen as beginnings and end points of intervals. Hence, we can
work with real numbers with almost no restriction for practical purposes.

44 The Cantor set is generated from the interval [0, 1] through consecutively taking
out the open middle third: [0, 1]→ [0, 1

3
]∪ [2

3
, 1]→ [0, 1

9
]∪ [2

9
, 1
3

]∪ [2
3
, 7
9

]∪ [8
9
, 1]→ . . ..

An explicit formula for the set is: C = [0, 1]\
⋃∞
m=1

⋃(3m−1−1)
k=0

]
3k+1
3m

, 3k+2
3m

[
.
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1.8 Limits and integrals

A few technicalities concerning the definition of limits and the methods of
integration will facilitate the discussion of continuous random variables and
their distributions. Limits of sequences are required for problems of conver-
gence and for approximating random variables. Taking limits of stochastic
variables often needs some care and problems might arise when there are am-
biguities in the meaning of limits, which are removed by precise definitions.
We introduced already functions like the probability mass function (pmf)
and the cumulative probability distribution function (cdf) of discrete ran-
dom variables, which contain peaks and steps that cannot be subjected to
conventional Riemannian integration.

1.8.1 Limits of series of random variables

A sequence of random variables, Xn, is defined on a probability space Ω and
it is assumed to have the limit

X = lim
n→∞

Xn . (1.45)

The probability space Ω, we assume now, has elements ω which have a prob-
ability density p (ω). Four different definitions of the limit are common in
probability theory [157, pp.40,41].

Almost certain limit : The series Xn converges almost certainly to X if for all
ω except a set of probability zero

X (ω) = lim
n→∞

Xn(ω) . (1.46)

is fulfilled and each realization of Xn converges to X .

Limit in the mean: The limit in the mean or the mean square limit of a series
requires that the mean square deviation of Xn(ω) from X (ω) vanishes in the
limit and the condition is

lim
n→∞

∫
Ω

dω p (ω)
(
Xn(ω)−X (ω)

)2

≡ lim
n→∞

〈
(Xn −X )2

〉
= 0 . (1.47)

The mean square limit is the standard limit in Hilbert space theory and it is
commonly used in quantum mechanics.

Stochastic limit : A limit in probability is called the stochastic limit X if it
fulfils the condition

lim
n→∞

P (|Xn − X| > ε) = 0 (1.48a)
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for any ε > 0. The approach to the stochastic limit is sometimes characterized
as convergence in probability

lim
n→∞

〈f(Xn)〉 P−→ 〈f(X )〉 , (1.48b)

where the symbol ‘
P−→’ stand for convergence in probability (see also sec-

tion 2.4.3).

Limit in distribution: Probability theory uses also a weaker form of conver-
gence than the previous three limits, the limit in distribution, which requires
that for any continuous and bounded function f(x) the relation

lim
n→∞

〈f(Xn)〉 d−→ 〈f(X )〉 (1.49)

holds, where the symbol ‘
d−→’ stand for convergence in distribution. An exam-

ple for convergence in distribution in form of the scoring probability of throw-
ing dice is shown in figure 1.22. This limit, for example, is particularly useful
for characteristic functions (section 2.2.3), φ(s) =

∫∞
−∞ exp (ı

.
ıxs)f(x) dx: If

two characteristic functions approach each other, the probability density of
Xn converges to that of X .

Finally we mention stringent conditions for the convergence of functions
that are important for probability distributions too. We distinguish pointwise
convergence and uniform convergence. A series of functions f0(x), f1(x), f2(x), . . .
is defined on some interval I ∈ R. The series converges pointwise to the func-
tion f(x) if the limit is fulfilled for every point x:

lim
n→∞

fn(x) = f(x) ∀ x ∈ I . (1.50)

It is readily verified that a series of functions can be written as a sum of
functions whose convergence is to be tested:

f(x) = lim
n→∞

fn(x) = lim
n→∞

n∑
i=1

gi(x) ,

gi(x) = ϕi−1(x) − ϕi(x) , and hence fn(x) = ϕ0(x) − ϕn(x) ,

(1.51)

because
∑n
i=1 gi(x) expressed in the functions ϕi is a telescopic sum. An

example of a series of curves with ϕn(x) = (1 + nx2)−1 and accordingly
fn(x) = nx2

/
(1+nx2) showing pointwise convergence is shown in figure 1.16.

It is easily verified that the limit takes on the form:

f(x) = lim
n→∞

nx2

1 + nx2
=

{
1 for x 6= 0

0 for x = 0
.
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Fig. 1.16 Pointwise convergence. The upper part shows the convergence of the
series of functions fn(x) = nx2/(1 + nx2) to the limit limn→∞ fn(x) = f(x) on the
real axis I = ]−∞,∞ [. The lower plot illustrates the convergence as a function of n
at the point x = 1. Color code of the upper plot: n=1, black; n=2, violet; n=4, blue;
n=8, chartreuse; n=16, yellow; n=32, orange; and n=128, red.

All functions fn(x) are continuous on the interval ] − ∞,∞ [ but the limit
f(x) is discontinuous at x = 0. An interesting historical detail is mentioned
here: In 1821 the famous mathematician Augustin Louis Cauchy gave the
wrong answer to the question whether or not infinite sums of continuous
functions are necessarily continuous and his obvious error had been corrected
only thirty years later. It is not hard to imagine that pointwise convergence
is compatible with discontinuities in the convergence limit (figure 1.16): At
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two neighboring points the convergent series may have very different limits.
There are many examples of series of functions, which have a discontinuous
infinite limit, two further cases that we shall need later on are fn(x) = xn

with I = [0, 1] ∈ R and fn(x) = cos(πx)2n on I = ]−∞,∞ [∈ R.
Uniform convergence is the stronger condition, which guarantees among

other things that the limit of a series of continuous functions is continuous.
It can be defined in terms of equation (1.51): The sum fn(x)

∑n
i=1 gi(x) with

limn→∞ fn(x) = f(x) and x ∈ I is uniformly convergent in the interval x ∈ I
for every given positive error bound ε if there exists a value ν ∈ N such that
for any ν ≥ n the relation |f(x) − fν(x)| < ε is fulfilled for all x ∈ I. In
compact form the convergence condition may be expressed by

lim
n→∞

sup{|fn(x) − f(x)|} = 0 ∀ x ∈ I . (1.52)

A simple but illustrative example is given by the power series on the unit
interval, f(x) = limn→∞ xn with x ∈ [0, 1] which converges pointwise to the
discontinuous function f(x) = 1 forx = 1 and 0 otherwise. A slight modifica-
tion to f(x) = limn→∞ xn/n leads to a uniformly converging series, because
f(x) = 0 is now valid for the entire domain [0, 1] (including the point x = 1).

1.8.2 Stieltjes integration

Some generalizations of the conventional Riemann integral, which are im-
portant in probability theory, are briefly introduced here. In figure 1.17 a
sketch is presented that compares Riemann’s and the Lebesgue’s approach to
integration. Stieltjes integration is a generalization of Riemann or Lebesgue
integration, which allows for the calculation of integrals over step functions as
they occur, for example, in the context of properties derived from cumulative
probability distributions. The Stieltjes integral is commonly written in the
form ∫ b

a

g(x) dh(x) . (1.53)

Herein g(x) is the integrand, h(x) is the integrator, and the conventional Rie-
mann integral is retained for h(x) = x. The integrator can be visualized best
as a weighting function for the integrand. In case g(x) and h(x) are contin-
uous and continuously differentiable the Stieltjes integral can be resolved by
partial integration:
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Fig. 1.17 Comparison of Riemann and Lebesgue integrals. In the conven-
tional Riemannian-Darboux integration† the integrand is embedded between an up-
per sum (light blue) and a lower sum (dark blue) of rectangles. The integral exists iff
the upper sum and the lower sum converge to the integrand in the limit ∆d→ 0. The
Lebesgue integral can be visualized as an approach to calculating the area enclosed
by the x-axis and the integrand through partitioning it into horizontal stripes (red)

and considering the limit ∆d → 0. The definite integral
∫ b
a
f(x) dx is confining the

integrand to a closed interval: [a, b] or a ≤ x ≤ b.

† The concept of representing the integral by the convergence of two sums is due to
the French mathematician Gaston Darboux. A function is Darboux integrable iff it
is Riemann integrable, and the values of the Riemann and the Darboux integral are
equal in case they exist.

∫ b

a

g(x) dh(x) =

∫ b

a

g(x)
dh(x)

dx
dx =

=
(
g(x)h(x)

) ∣∣∣b
x=a
−
∫ b

a

dg(x)

dx
h(x) dx =

= g(b)h(b)− g(a)h(a) −
∫ b

a

dg(x)

dx
h(x) dx .

The integrator h(x), however, need not be continuous, it may well be a step
function F (x), for example a cumulative probability distribution. For g(x)
being continuous and F (x) making jumps at the points x1, . . . , xn ∈ ]a, b [
with the heights ∆F1, . . . ,∆Fn ∈ R, and

∑n
i=1∆Fn ≤ 1, respectively, the
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Fig. 1.18 Stieltjes integration of step functions. The figures sketches a Stieltjes
integral of a step functions according to the definition of right-hand continuity applied
in probability theory (figure 1.10):

∫ b
a

dF (x) = F (b) − F (a) = ∆F
∣∣
x=b

. The figure

also visualizes the Lebesgue-Stieltjes measure λF
(
(a, b]

)
= F (b)− F (a) in (1.60).

Stieltjes integral is of the form∫ b

a

g(x) dF (x) =

n∑
i=1

g(xi)∆Fi , (1.54)

where the limitation of
∑
i∆Fi refers to the normalization of probabilities.

With g(x) = 1, b = x and in the limit lima→−∞ the integral becomes iden-
tical with the (discrete) cumulative probability distribution function (cdf).
In figure 1.18 we illustrate the influence of the definition of continuity in
probability theory (figure 1.10) on the Stieltjes integral.

Riemann-Stieltjes integration is used in probability theory for the com-
putation of functions of random variables, for example, for the computation
of moments of probability densities (section 2.1). If F (x) is the cumulative
probability distribution of a random variable X for the discrete case, the
expected value (see section 2.1) for any function g(X ) is obtained from

E
(
g(X )

)
=

∫ ∞
−∞

g(x) dF (x) =
∑
i

g(xi)∆Fi .

If the random variable X has a probability density f(x) = dF (x)/dx with
respect to the Lebesgue measure, continuous integration can be used

E
(
g(X )

)
=

∫ ∞
−∞

g(x) f(x) dx .

Important special cases are the moments: E(Xn) =
∫∞
−∞ xn dF (x).
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1.8.3 Lebesgue integration

Lebesgue integration differs from the conventional integration in two aspects:
The basis are set theory and measure theory and the integrand is partitioned
in horizontal segments whereas Riemannian integration makes use of vertical
slices. An important difference for nonnegative functions – like probability
functions – between the two integration methods can be visualized in three
dimensional space: The volume below a surface given by the function f(x, y)
is measured by summation of the volumes of cuboids with squares of edge
length ∆d, whereas the Lebesgue integral is summing the volumes of layers
with thickness ∆d between constant level sets. Every continuous bounded
function on a compact finite interval, f ∈ C[a, b], is Riemann integrable
and also Lebesgue integrable, and the Riemann and the Lebesgue integrals
coincide. The Lebesgue integral is a generalization of the Riemann integral in
the sense that certain functions may be Lebesgue integrable in cases where
the Riemann integral does not exist. The opposite situations might occur
with improper Riemann integrals:45 Partial sums with alternate signs may
converge for the improper Riemann integral whereas Lebesgue integration
leads to divergence as shown in case of the alternate harmonic series. The
Lebesgue integral can be generalized by the Stieltjes integration technique
very much in the same way as the Riemann integral does.

Lebesgue theory of integration assumes the existence of a probability space
defined by the triple (Ω,Ξ, µ), which represents the sample space Ω, a σ-
algebra Ξ of subsets A ∈ Ω, and a probability measure µ ≥ 0 satisfying
µ(Ω) = 1, respectively. The construction of the Lebesgue integral is similar
to the construction of the Riemann integral: The shrinking rectangles (or
cuboids in higher dimensions) of Riemannian integration is replaced by hori-
zontal stripes of shrinking height that can be represented by simple functions.
Lebesgue integrals on A over nonnegative functions,∫

Ω

f dµ with f : (Ω,Ξ, µ)→ (R≥0,B, λ) , (1.55)

are defined for measurable functions f , which fulfill

f−1
(
[a, b]

)
∈ Ω for all a < b . (1.56)

This condition is equivalent to the requirement that the pre-image of any
Borel subset [a, b] of R is an element of the event system B. The set of mea-

45 An improper integral is the limit of a definite integral in a series in which the
endpoint of the interval of integration approaches either a finite number b at which
the integrand diverges or ±∞:∫ b

a

f(x) dx = lim
ε→+0

∫ b−ε

a

f(x) dx or lim
b→∞

∫ b

a

f(x) dx and lim
a→−∞

∫ b

a

f(x) dx .



62 1 Probability

surable functions is closed under algebraic operation and also closed under
certain pointwise sequential limits like

supk∈N fk , lim infk∈N fk or lim supk∈N fk ,

which are measurable if the sequence of functions (fk)k∈N contains only mea-
surable functions.

The construction of an integral
∫
Ω
f dµ =

∫
Ω
f(x)µ(dx) is done in steps

and we apply first the indicator function (1.27):

1A(x) =

{
1 iff x ∈ A
0 otherwise

, (1.27a’)

to define the integral over A ∈ Bn by∫
A

f(x) dx
.
=

∫
1A(x) f(x) dx .

The indicator function 1A assigns a volume to Lebesgue measurable sets A
by setting f ≡ 1 ∫

1A dµ = µ(A) ,

which is the Lebesgue measure µ(A) = λ(A) for a mapping λ : B → R.
It is often useful to consider the expectation value and the variance of the
indicator function (1.27)

E
(
1A(ω)

)
=

A

Ω
= P (A) and var

(
1A(ω)

)
= P (A)

(
1− P (A)

)
.

We shall make use of this property of the indicator function in section 1.9.2.
Next we define simple functions, which are understood as finite linear

combinations of indicator functions g =
∑
j αj 1Aj and they are measurable

if the coefficients αj are real numbers and the sets Aj are measurable subsets
of Ω. For nonnegative coefficients αj the linearity property of the integral
leads to a measure for nonnegative simple functions:

∫ ∑
j

αj 1Aj

 dµ =
∑
j

αj

∫
1Aj dµ =

∑
j

αj µ(Aj) .

Often a simple function can be written in several ways as a linear combination
of indicator functions but the value of the integral will necessarily be the same.
Sometimes care is needed for the construction of a real-valued simple function
g =

∑
j αj1Aj in order to avoid undefined expressions of the kind ∞−∞.

Choosing αi = 0 implies that αi µ(Ai) = 0 because 0 · ∞ = 0 by convention
in measure theory.
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Fig. 1.19 Lebesgue integration of general functions. Lebesgue integration of
general functions, i.e. functions with positive and negative stretches, is performed
in steps: (i) The integral I =

∫ b
a
fdµ is split into two parts, I+ =

∫ b
a
f+ dµ (blue)

and I− =
∫ b
a
f− dµ (yellow) function, (ii) the positive part f+(x)

.
= max{0, f(x)} is

Lebesgue integrated like a nonnegative function yielding I+ =
∫ b
a
f+ dµ and the neg-

ative part f−(x)
.
= max{0,−f(x)} is first mirrored at the x-axis and then Lebesgue

integrated like a nonnegative function yielding I− =
∫ b
a
f− dµ, and (iii) the value of

the integral is obtained as I = I+ − I−.

An arbitrary nonnegative function g : (Ω,Ξ, µ) → (R≥0,B, λ) is measur-
able iff there exists a sequence of simple functions (gk)k∈N that converges
pointwise46 and growing monotonously to g: g = limk→∞ gk. The Lebesgue
integral of a nonnegative and measurable function g is defined by∫

Ω

g dµ = lim
k→∞

∫
Ω

gk dµ (1.57)

with gk being simple functions that converge pointwise and monotonously
towards g. The limit is independent of the particular choice of the functions
gk. Such a sequence of simple functions is easily visualized, for example, by the
bands below the function g(x) in figure 1.17: The band widths ∆d decrease
and converge to zero as the index increases, k →∞.

The extension to general functions with positive and negative value do-
mains is straightforward. As shown in figure 1.19 the function to be inte-
grated, f(x) : [a, b]→ R, is split into two regions that many consist of disjoint
domains:

46 Pointwise convergence of a sequence of functions {fn}, limn→∞ fn = f pointwise
is fulfilled iff limn→∞ fn(x) = f(x) for every x in the domain (see figure 1.16 and
section 1.8.1).
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f+(x)
.
= max{0, f(x)}

f−(x)
.
= max{0,−f(x)} ,

which are considered separately. The function is Lebesgue integrable on the
entire domain [a, b] iff both f+(x) and f−(x) are Lebesgue integrable and
then we have ∫ b

a

f(x) dx =

∫ b

a

f+(x) dx −
∫ b

a

f−(x) dx , (1.58)

and this yields precisely the same result as obtained for the Riemann integral.
Lebesgue integration readily yields the value for the integral of the absolute
value of the function∫ b

a

|f(x)|dx =

∫ b

a

f+(x) dx +

∫ b

a

f−(x) dx . (1.59)

Whenever the Riemann integral exists it is identical with the Lebesgue inte-
gral and for practical purposes the calculation by the conventional technique
of Riemannian integration is to be preferred since much more experience is
available.

For the purpose of illustration we consider cases where Riemann and
Lebesgue integration yield different results. For Ω = R and the Lebesgue
measure λ holds that functions, which are Riemann integrable on a com-
pact and finite interval [a, b], are Lebesgue integrable too and the values of
both integrals are the same, but the inverse is not true: Not every Lebesgue
integrable function is Riemann integrable. As an example we consider the
Dirichlet step function, D(x), which is the characteristic function of the ra-
tional numbers and assumes the value 1 for rational x and the value 0 for
irrational x:47

D(x) =

{
1 , if x ∈ Q ,

0 , otherwise ,
or D(x) = lim

k→∞

(
lim
n→∞

cos2n(k!π x)
)
.

D(x) has no Riemann but a Lebesgue integral. The proof is straightforward:

D(x) is lacking Riemann integrability for every arbitrarily small interval:
Each partitioning S of the integration domain [a, b] into intervals [xk−1, xk]
leads to parts that contain necessarily at least one rational and one irrational
number. Hence the lower Darboux sum,

Σlow(S) =

n∑
k=1

(xk − xk−1) · inf
xk−1<x<xk

D(x) = 0 ,

47 It is worth noticing that the highly irregular, nowhere continuous Dirichlet function
D(x) can be formulated as the (double) pointwise convergence limit of a trigonometric
function.
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vanishes because the infimum is always zero, and the upper Darboux sum,

Σhigh(S) =

n∑
k=1

(xk − xk−1) · sup
xk−1<x<xk

D(x) = b− a ,

is the length of the integration interval, b− a =
∑
k(xk − xk−1), because the

supremum is always one and the summation runs over all partial intervals.
Since Riemann integrability requires

supS Σlow(S) =

∫ b

a

f(x)dx = infS Σhigh(S)

D(x) cannot be Riemann integrated.
D(x), on the other hand, has a Lebesgue integral for every interval: D(x) is a
nonnegative simple function and therefore we can write the Lebesgue integral
over an interval S through sorting into irrational and rational numbers:∫

S

D dλ = 0 · λ(S ∩ R\Q) + 1 · λ(S ∩Q) ,

with λ being the Lebesgue measure. The evaluation of the integral is straight-
forward. The first term vanishes since multiplication by zero yields zero no
matter how large λ(S∩R\Q) is – we recall that 0·∞ is zero by the convention
of measure theory – and the second term is also zero as λ(S∩Q) is zero since
the set of rational numbers, Q, is countable. Hence we have

∫
S
D dλ = 0. ut

Another difference between Riemann and Lebesgue integration, however, can
occur when the integration is extended to infinity in the improper Riemann
integral. Then, the positive and negative contributions may cancel locally
in the Riemann summation, whereas divergence may occur in both f+(x)
and in f(x) since all positive parts and all negative parts are added first
in the Lebesgue integral. An example is the improper Riemann integral,∫∞

0
cosxdx, which has a limit inferior, lim infn→∞ xn = −1, and a limit

superior, lim supn→∞ xn = +1, whereas the corresponding Lebesgue integral
does not exist.

A typical example of a function that has an improper Riemann integral
but is not Lebesgue integrable is the step function with alternatingly positive
and negative stretches of size 1

n , (1,− 1
2 ,

1
3 ,−

1
4 , . . .) (see figure 1.20):

The function h(x) = (−1)k+1/k with (k− 1) ≤ x < k and k ∈ N on Riemann
integration yields a series of contributions of alternating sign that has a finite
infinite sum ∫ ∞

0

h(x) dx = 1− 1

2
+

1

3
− . . . = ln 2 ,

whereas Lebesgue integrability of h requires
∫
R≥0
|h|dλ < ∞ and this is not

fulfilled since both f+ and f− diverge as the harmonic series,
∑∞
k=1 k

−1, does.
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Fig. 1.20 The alternating harmonic series. The alternating harmonic step func-
tion, h(x) = nk = (−1)k+1/k with (k − 1) ≤ x < k and nk ∈ N, has an improper
Riemann integral since

∑∞
k=1 nk = ln 2. It is not Lebesgue integrable because the

series
∑∞
k=1 |nk| diverges.

The proof is straightforward if one uses Leonhard Euler’s result that the series
of reciprocal prime number diverges:

∑
p prime

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+ . . . = ∞ ,

∑
o odd

1

o
= 1 +

1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
+ . . . >

∑
p prime

1

p
,

1 +
∑
e even

1

e
= 1 +

1

2
+

1

4
+

1

6
+

1

8
+

1

10
+

1

12
+ . . . >

∑
o odd

1

o
.

Since ∞− 1 =∞ both partial sums
∑
o odd

1
o and

∑
e even

1
e and diverge. ut

The first case discussed here – no Riemann integral but Lebesgue integrability
– is the more important issue since it provides a proof that the set of rational
numbers, Q is of Lebesgue measure zero.

Finally, we introduce the Lebesgue-Stieltjes integral in a way that allows
for summarizing the most important results of this section. For each right-
hand continuous and monotonously increasing function F : R → R exists a
uniquely determined Lebesgue-Stieltjes measure λF that fulfils (figure 1.18)

λF
(
(a, b]

)
= F (b) − F (a) for all (a, b] ⊂ R . (1.60)

Such functions F : R → R – being righthand continuous and monotonously
increasing – are therefore called measure generating. The Lebesgue integral
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of a λF integrable function f is called Lebesgue-Stieltjes integral∫
A

f dλF with A ∈ B (1.61)

being Borel measurable. Let F be the identity function on R,48

F = id : R→ R, id(x) = x ,

then the corresponding Lebesgue-Stieltjes measure is the Lebesgue measure
itself: λF = λid = λ. For proper Riemann integrable functions f we have
stated that the Lebesgue integral is identical with the Riemann integral:∫

[a,b]

f dλ =

∫ b

a

f(x) dx .

The interval [a, b] = a ≤ x ≤ b is partitioned into a sequence

σn = (a = x
(n)
0 , x

(n)
1 , . . . , x(n)

r = b)

where the superscript ’(n)’ indicates a Riemann sum with |σn| → 0 and
the Riemann integral on the righthand side is replaced by the limit of the
Riemann summation:∫

[a,b]

f dλ = lim
n→∞

r∑
k=1

f(x
(n)
k−1)

(
x

(n)
k − x(n)

k−1

)
=

= lim
n→∞

r∑
k=1

f(x
(n)
k−1)

(
id(x

(n)
k )− id(x

(n)
k−1)

)
.

The Lebesgue measure λ has been introduced above as the special case F = id
and therefore the Stieltjes-Lebesgue integral is obtained by replacing λ by λF
and ’id’ by F∫

[a,b]

f dλF = lim
n→∞

r∑
k=1

f(x
(n)
k−1)

(
F (x

(n)
k )− F (x

(n)
k−1)

)
.

The details of the derivation are found in [64, 322].
In summary, we define a Stieltjes-Lebesgue integral by (F, f) : R → R,

where the two functions F and f are partitioned on the interval [a, b] by the
sequence σ = (a = x0, x1, . . . , xr = b):

48 The identity function id(x)
.
= x maps a domain, for example [a, b], point by point

onto itself.
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∑
σ

f dF
.
=

r∑
k=1

f(xk−1)
(
F (xk)− F (xk−1)

)
.

The function f is F-integrable on [a,b] if

b∫
a

f dF = lim
|σ|→0

∑
σ

f dF (1.62)

exists in R and then
∫ b
a
f dF is called the Stieltjes-Lebesgue integral or some-

times also F -integral of f . In the theory of stochastic processes the Stieltjes-
Lebesgue integral is required for the formulation of the Itō integral, which
is used in Itō calculus applied to the integration of stochastic differential
equations (SDEs; section 3.4) [226, 227].
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1.9 Continuous random variables and distributions

Random variables on uncountable sets are completely characterized by a prob-
ability triple (Ω,Ξ, P ). The triple is essentially the same as in the case of
discrete variables (section 1.6.3) except that the power set Π(Ω) has been
replaced by the event system Ξ ⊂ Π(Ω). We recall that the powerset Π(Ω)
is too large for defining probabilities since it contains uncountably many sub-
sets or events A (figure 1.15). The sets in Ξ are the Borel σ-algebras, they
are measurable, and they alone have probabilities. Accordingly, we are now
in the position to handle also probabilities on uncountable sets:

{ω|X (ω) ≤ x} ∈ Ξ and P (X ≤ x) =
|{X (ω) ≤ x}|

|Ω|
(1.63a)

{a < X ≤ b} = {X ≤ b} − {X ≤ a} ∈ Ξ with a < b (1.63b)

P (a < X ≤ b) =
|{a < X ≤ b}|

|Ω|
= FX (b) − FX (a) . (1.63c)

Equation (1.63a) contains the definition of a real-valued function X that
is called a random variable iff it fulfils P (X ≤ x) for any real number x,
equation (1.63b) is valid since Ξ is closed under difference, and finally equa-
tion (1.63c) provides the basis for defining and handling probabilities on
uncountable sets. The three equations (1.63) together constitute the basis of
the probability concept on uncountable sample spaces that will be applied
throughout this book.

1.9.1 Densities and distributions

Random variables on uncountable sets Ω are commonly characterized by
probability density functions (pdf). The probability density function – or den-
sity for short – is the continuous analogue to the probability mass function
(pmf). A density is a function f on R = ]−∞,+∞[ , u→ f(u), which satisfies
the two conditions:49

(i) ∀u : f(u) ≥ 0 , and

(ii)

∫ ∞
−∞

f(u) du = 1 .
(1.64)

49 From here on we shall omit the random variable as subscript and simply write
f(x) or F (x) unless a nontrivial specification is required.
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Now we can define a class of continuous random variables50 on general sample
spaces: X is a function on Ω : ω → X (ω) whose probabilities are prescribed
by means of a density function f(u). For any interval [a, b] the probability is
given by

P (a ≤ X ≤ b) =

∫ b

a

f(u) du . (1.65)

If A is the union of not necessarily disjoint intervals – some of which may be
even infinite – the probability can be derived in general from the density

P (X ∈ A) =

∫
A

f(u) du ,

in particular, A can be split in disjoint intervals, A =
⋃k
j=1[aj , bj ] and then

the integral can be rewritten as∫
A

f(u) du =

k∑
j=1

∫ bj

aj

f(u) du .

For the interval A = ]−∞, x] we define the cumulative probability distribution
function (cdf) F (x) of the continuous random variable X

F (x) = P (X ≤ x) =

∫ x

−∞
f(u) du .

An easy to verify and useful relation defines the complementary cumulative
distribution function (ccdf):

F̃ (x) = P (X < x) = 1 − F (x) . (1.66)

If f is continuous then it is the derivative of F as follows from the fundamental
theorem of calculus

F ′(x) =
dF (x)

dx
= f(x).

If the density f is not continuous everywhere, the relation is still true for
every x at which f is continuous.

If the random variable X has a density, then we find by setting a = b = x

P (X = x) =

∫ x

x

f(u) du = 0

reflecting the trivial geometric result that every line segment has zero area.
It seems somewhat paradoxical that X (ω) must be some number for every
ω whereas any given number has probability zero. The paradox is resolved

50 Random variables having a density are often called continuous in order to distin-
guish them from discrete random variables defined on countable sample spaces.
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by looking at countable and uncountable sets in more depth as we did in
sections 1.5 and 1.6.4.

As an illustrative example for continuous probability functions we present
here the normal distribution, which is of primary importance in probability
theory for several reasons: (i) It is mathematically simple and well behaved,
(ii) it is exceedingly smooth as it can be differentiated an infinite number
of times, and (iii) all distributions converge to the normal distribution in
the limit of large sample numbers as expressed by the central limit theorem
(subsection 2.4.2). The density of the normal distribution is a Gaussian func-
tion named after the German mathematician Carl Friedrich Gauß and is also
called symmetric bell curve.

N (x;µ, σ2) : f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, (1.67)

F (x) =
1

2

(
1 + erf

( x− µ√
2σ2

))
. (1.68)

Herein ’erf’ is the error function.51 This function and its complement, ’erfc’,
are defined by

erf(x) =
2√
π

∫ x

0

e−z
2

dz and erfc(x) =
2√
π

∫ ∞
x

e−z
2

dz

The two parameters of the normal distribution, µ and σ2, are the expec-
tation value and the variance of a normally distributed random variable,
respectively, and σ is called the mean deviation.

Although the central limit theorem will be discussed separately in sec-
tion 2.4.2, we present here an example for the convergence of a probability
distribution towards the normal distribution we are already familiar with: the
rolling dice problem extended to n dice. A collection of n dice is thrown si-
multaneously and the total score of all dice together is recorded (figure 1.22).
The probability of a total score of k points obtained through rolling n dice
with s faces can be calculated by means of combinatorics:

fs,n(k) =
1

sn

b k−ns c∑
i=0

(−1)i
(
n

i

)(
k − s i− 1

n− 1

)
(1.69)

The results for small values of n and ordinary dice (s = 6) are illustrated
in figure 1.22. The convergence to a continuous probability density is nicely

51 We remark that erf(x) and erfc(x) are not normalized in the same way as the
normal density: erf(x) + erfc(x) = 2√

π

∫∞
0

exp (−t2) dt = 1, but
∫∞
0
f(x)dx =

1
2

∫∞
−∞ f(x)dx = 1

2
.
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Fig. 1.21 Normal density and distribution. In the plots the normal distribution,

N (µ, σ), is shown in from of the probability density f(x) = exp
(
−(x− µ)2/(2σ2)

) /
(
√

2π σ) and the probability distribution F (x) =
(

1 + erf
(
(x−µ)/

√
2σ2

) /
2
)

where

’erf’ represents the error function. Choice of parameters: µ = 6 and σ = 0.5 (black),
0.65 (red), 1 (green), 2 (blue) and 4 (yellow).
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Fig. 1.22 Convergence of the probability mass function for rolling n dice
to the normal density. The series of probability mass functions for rolling n dice,
fnd(k), begins with a pulse function f1d(k) = 1/6 for i = 1, . . . , 6 (n = 1), next comes
a tent function (n = 2), and then follows a gradual approach towards the normal
distribution, (n = 3, 4, . . .). For n = 7 we show the fitted normal distribution (broken
black curve) coinciding almost perfectly with f7d(k). The series of densities provides
an example for convergence in distribution (section 1.8.1). Choice of parameters:
s = 6 and n = 1 (black), 2 (red), 3 (green), 4 (blue), 5 (yellow), 6 (magenta), and 7
(chartreuse).

illustrated. For n = 7 the deviation from a the Gaussian curve of the normal
distribution is hardly recognizable.

Sometimes it is useful to discretize a density function in order to yield
a set of elementary probabilities. The x-axis is divided up into m pieces
(figure 1.23), not necessarily equal and not necessarily small, and we denote
the piece of the integral on the interval ∆k = xk+1 − xk, i.e. between the
values u(xk) and u(xk+1) of the variable u, by

pk =

∫ xk+1

xk

f(u) du , 0 ≤ k ≤ m− 1 , (1.70)

where the pk-values fulfil.

∀ k : pk ≥ 0 and

m−1∑
k=0

pk = 1 .

If we choose x0 = −∞ and xm = +∞ we are dealing with a partition that is
not finite but countable, provided we label the intervals suitably, for example
. . . , p−2, p−1, p0, p1, p2, . . .. Now we consider a random variable Y such that
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Fig. 1.23 Discretization of a probability density. A segment [x0, xm] on
the u-axis is divided up into m not necessarily equal intervals and elementary
probabilities are obtained by integration. The curve shown here is the density of the
lognormal distribution lnN (ν, σ2):

f(u) = 1

u
√

2π σ2
e−(lnu−ν)2/(2σ2). The

red step function represents the discretized density. The hatched area is the proba-
bility p6 =

∫ x7

x6
f(u) du with the parameters ν = ln 2 and σ =

√
ln 2.

P (Y = xk) = pk , (1.70’)

where we may replace xk by any value of x in the subinterval [xk, xk+1].
The random variable Y can be interpreted as the discrete analogue of the
random variable X . Making the intervals ∆k smaller increases the accuracy
of the approximation through discretization and this procedure has a lot in
common with Riemann integration.

1.9.2 Expectation values and variances

Although we shall treat expectation values and other moments of probability
distributions in the next chapter 2, we make here a short digression in order
to present examples for various integration concepts. The calculation of ex-
pectation values and variances from continuous densities is straightforward
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E(X ) =

∫ ∞
−∞

xf(x) dx =

∫ ∞
0

(
1− F (x)

)
dx −

∫ 0

−∞
F (x) dx and (1.71a)

var(X ) =

∫ ∞
−∞

x2f(x) dx − E(X )2 . (1.71b)

The computation of the expectation value from the probability distribution
is the analogue to the discrete case (1.21a). We present the derivation of the
expression here as an exercise in handling probabilities and integrals [187].
Like in a Lebesgue integral we decompose X into positive and negative parts:
X = X+ − X− with X+ = max{X , 0}and X− = max{−X , 0}. Then, we
express both parts by means of indicator functions

X+ =

∫ ∞
0

1X>ϑ dϑ and X− =

∫ 0

−∞
1X≤ϑ dϑ .

By applying Fubini’s theorem named after the Italian mathematician Guido
Fubini [153] we reverse the order of taking the expectation value and inte-
gration, make use of (1.27b) and (1.66), and find

E(X ) = E(X+ −X−) = E(X+)− E(X−) =

= E

(∫ ∞
0

1X>ϑ dϑ

)
− E

(∫ 0

−∞
1X≤ϑ dϑ

)
=

=

∫ ∞
0

E (1X>ϑ) dϑ −
∫ 0

−∞
E (1X≤ϑ) dϑ =

=

∫ ∞
0

P (X > ϑ) dϑ −
∫ 0

−∞
P (X ≤ ϑ) dϑ =

=

∫ ∞
0

(
1− F (ϑ)

)
dϑ −

∫ 0

−∞
F (ϑ) dϑ . ut

The calculation of expectation values directly from the cumulative distribu-
tion function has the advantage to be applicable also in cases where densities
do not exist or where they are hard to handle.

1.9.3 Continuous variables and independence

In the joint distribution function of the random vector ~V = (X1, . . . ,Xn)
independence is tantamount to factorizability:

F (x1, . . . , xn) = F1(x1) · . . . · Fn(xn) ,
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where the Fj ’s are the marginal distributions of the random variables, the
Xj ’s (1 ≤ j ≤ n). As in the discrete case the marginal distributions are
sufficient to calculate joint distributions of independent random variables.

For the continuous case we can formulate the definition of independence
for sets S1, . . . , Sn forming a Borel family. In particular, when there is a joint
density function f(u1, . . . , un), we have

P (X1 ∈ S1, . . . ,Xn ∈ Sn) =

∫
S1

· · ·
∫
Sn

f(u1, . . . , un) du1 . . . dun =

=

∫
S1

· · ·
∫
Sn

f1(u1) . . . fn(un) du1 . . . dun =

=

(∫
S1

f1(u1) du1

)
· . . . ·

(∫
Sn

fn(un) dun

)
,

where f1, . . . , fn are the marginal densities, for example

f1(u1) =

∫
S2

· · ·
∫
Sn

f(u1, . . . , un) du2 . . . dun , (1.72)

and eventually we find for the density case:

f(u1, . . . , un) = f1(u1) . . . fn(un) . (1.73)

As we have seen here, stochastic independence is the basis for factorization
of joint probabilities, distributions, densities, and other functions. Indepen-
dence is a stronger criterium than uncorrelatedness 2.3.4 as we shall show in
section 2.3.4.

1.9.4 Probabilities of discrete and continuous variables

A comparison of the formalisms of probability theory on countable and un-
countable sample spaces closes this chapter. For this goal we repeat and
compare in table 1.3 the basic features of discrete and continuous proba-
bility distributions as they have been discussed in section 1.6.3 and 1.9.1,
respectively.

Discrete probability distribution are defined on countable sample spaces
and their random variables are discrete sets of events ω ∈ Ω, for example
sample points on an closed interval [a, b]:

{a ≤ X ≤ b} = {ω | a ≤ X ≤ b} .

If the sample space Ω is finite or countable infinite, the exact range of X is
a set of real numbers wi
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WX = {w1, w2, . . . , wn, . . .} with wk ∈ Ω ∀ k .

Introducing probabilities for individual events, pn = P
(
X = wn|wn ∈ WX

)
and P

(
X (x) = 0|x /∈WX

)
, yields

P (X ∈ A) =
∑
wn∈A

pn with A ∈ Ω

or, in particular,

P (a ≤ X ≤ b) =
∑

a≤wn≤b

pn . (1.31)

Two probability functions are in common use, the probability mass function
(pmf)

fX (x) = P (X = x)

{
pn if x = wn ∈WX ,

0 if x 6= WX ,

and the cumulative distribution function (cdf)

FX (x) = P (X ≤ x) =
∑
wn≤x

pn ,

with two properties following form the property of probabilities:

lim
x→−∞

FX (x) = 0 and lim
x→+∞

FX (x) = 1 .

Continuous probability distributions are defined on uncountable, Borel
measurable sample spaces and their random variables X have densities. A
probability density function (pdf) is a mapping

f : R =⇒ R≥0 ,

which satisfies the two conditions:

(i) f(u) ≥ 0 ∀ u ∈ R , and

(ii)

∫ ∞
−∞

f(u) du = 1 .
(1.74)

Random variables X are functions on Ω: ω =⇒ X (ω) whose probabilities are
derived from density functions f(u):

P (a ≤ X ≤ b) =

∫ b

a

f(u) du . (1.65)

As in the discrete case the probability functions come in two forms: (i) the
probability density function (pdf) defined above,
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dF (u) = f(u) du ,

and (ii) the cumulative distribution function (cdf)

F (x) = P (X ≤ x) =

∫ x

−∞
f(u) du with

dF (x)

dx
= f(x)

provided the function f(x) is continuous.
Conventional thinking in terms of probabilities has been extended in two

important ways in the last two sections: (i) Handling of uncountable sets al-
lowed for definition of and calculation with probabilities when comparison by
counting is not possible and (ii) Lebesgue-Stieltjes integration provided an
extension of calculus to the step functions encountered with discrete proba-
bilities.





Chapter 2

Distributions, moments, and statistics

Make things as simple as possible but not simpler.
Albert Einstein 1950.

Abstract . The moments of probability distributions represent the link be-
tween theory and observations since they are readily accessible to measure-
ment. Generating functions looking rather abstract became important as
highly versatile concepts and tools for solving specific problems. The prob-
ability distributions, which are most important in application are reviewed.
Then the central limit theorem being the basis of the law of large numbers
is presented and the chapter is closed by discussing real world samples that
cover a part sometimes only a small of sample space.

In this chapter we make an attempt to bring probability theory closer
to applications. Probability distributions and densities are used to calculate
measurable quantities like expectation values, variances, and higher moments.
The moments provide partial information on the probability distributions
since the full information would require a series expansion up to infinite
order.

2.1 Expectation values and higher moments

Random variables are accessible to analysis via their probability distributions.
Straightforward and full information is derived from ensembles defined on en-
tire sample space Ω. Complete coverage, of course, is an ideal reference that
can never be achieved in real situations. Samples obtained in experimental
observations are commonly much smaller than an exhaustive collection. We
begin here with a discussion of the theoretical reference and introduce mathe-
matical statistics afterwards. Distributions can be characterized by moments
that are powers of variables X r averaged over sample space. Most important
are the first two moments having a straightforward interpretation: The ex-
pectation value E(X ) is the average value of a distribution and the variance
var(X ) or σ2(X ) is a measure of the width of a distribution.

81
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2.1.1 First and second moments

The most natural and important ensemble property is the expectation value
or average written E(X ) or as preferred in physics 〈X 〉. We begin with a
countable sample space Ω:

E(X ) =
∑
ω∈Ω
X (ω)P (ω) =

∑
n

wn pn . (2.1)

In the most common special case of a random variable X on N we have
wn = n and find

E(X ) =

∞∑
n=0

n pn .

The expectation value (2.1) exists when the series converges in absolute val-
ues,

∑
ω∈Ω |X (ω)|P (ω) <∞. Whenever the random variable X is bounded,

which means that there exists a number m such that |X (ω)| ≤ m for all
ω ∈ Ω, then it is summable and in fact

E(|X |) =
∑
ω

|X (ω)|P (ω) ≤ m
∑
ω

P (ω) = m .

It is straightforward to show that the sum of two summable random variables,
X + Y, is summable, and the expectation value of the sum is the sum of the
expectation values:

E(X + Y) = E(X ) + E(Y) .

The relation can be extended to an arbitrary countable number of random
variables:

E

(
n∑
k=1

Xk

)
=

n∑
k=1

E(Xk) .

In addition, the expectation values fulfill the following relations E(a) = a,
E(aX ) = a · E(X ) which can be combined in

E

(
n∑
k=1

ak Xk

)
=

n∑
k=1

ak · E(Xk) . (2.2)

Accordingly, E(·) fulfils the conditions for a linear operator .
For a random variable X on an arbitrary sample space Ω the expectation

value may be written as an abstract integral on Ω or as an integral over R
provided the density f(u) exists:

E(X ) =

∫
Ω

X (ω) dω =

∫ +∞

−∞
u f(u) du . (2.3)
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It is worth to reconsider the discretization of a continuous density (figure 1.23)
in this context: The discrete expression for the expectation value is based
upon pn = P (Y = xn) as outlined in equations (1.70) and (1.70’),

E(Y) =
∑
n

xn pn ≈ E(X ) =

∫ +∞

−∞
uF (u) du ,

and approximates the exact value similarly as the Darboux sum does in case
of a Riemann integral.

For two or more variables, for example ~V = (X ,Y) described by a joint
density f(u, v), we have

E(X ) =

∫ +∞

−∞
u f(u, ∗) du and E(Y) =

∫ +∞

−∞
v f(∗, v) dv ,

where f(u, ∗) =
∫ +∞
−∞ f(u, v) dv and f(∗, v) =

∫ +∞
−∞ f(u, v) du are the marginal

densities.
The expectation value of the sum of the variables, X +Y, can be evaluated

by iterated integration:

E(X + Y) =

∫ +∞

−∞

∫ +∞

−∞
(u+ v) f(u, v) dudv =

=

∫ +∞

−∞
udu

(∫ +∞

−∞
f(u, v) dv

)
+

∫ +∞

−∞
v dv

(∫ +∞

−∞
f(u, v) du

)
=

=

∫ +∞

−∞
u f(u, ∗) du +

∫ +∞

−∞
v f(∗, v) dv =

= E(X ) + E(Y) ,

which establishes the expression previously derived in the discrete case.
The multiplication theorem of probability theory requires that the two

variables X and Y are independent and summable and this implies for the
discrete and the continuous case,1

E(X · Y) = E(X ) · E(Y) and (2.4a)

E(X · Y) =

∫ +∞

−∞

∫ +∞

−∞
u v f(u, v) dudv =

=

∫ +∞

−∞
u f(u, ∗) du

∫ +∞

−∞
v f(∗, v) dv =

= E(X ) · E(Y) , (2.4b)

1 A proof is found in [69, pp.164-166].
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respectively. The multiplication theorem is easily extended to any finite num-
ber of independent and summable random variables:

E(X1, . . . ,Xn) = E(X1) · . . . · E(Xn) . (2.4c)

Let us now consider the expectation values of special functions of random
variables, in particular their powers X r, which give rise to the raw moments
of the probability distribution, µ̂r. For a random variable X we distinguish
the r-th moments E(X r) and the so-called centered moments2 µr = E(X̃ r)
referring to the random variable

X̃ = X − E(X ) .

Clearly, the first raw moment is the expectation value and the first centered
moment vanishes, E(X̃ ) = µ1 = 0. Often the expectation value is denoted
by µ = µ̂1 = E(X ) = 〈X 〉, a notation that we shall use too for the sake of
convenience but it is important not to confuse µ and µ1.

In general, a moment is defined about some point a by means of the random
variable

X (a) = X − a .

For a = 0 we obtain the raw moments

µ̂r = αr = E(X r) (2.5)

whereas a = E(X ) yields the centered moments. The general expressions for
the raw r-th moments and centered moments as derived from the density
f(u) are

E(X r) = µ̂r(X ) =

∫ +∞

−∞
ur f(u) du and (2.6a)

E(X̃ r) = µr(X ) =

∫ +∞

−∞
(u− µ)r f(u) du . (2.6b)

The second centered moment is called the variance, var(X ) or σ2(X ), and its
positive square root is the standard deviation σ(X ). The variance is always a
non-negative quantity as can be easily shown:

2 Since the moments centered around the expectation value will be used more fre-
quently than the raw moments, we denote them by µ and the raw moments by µ̂.
The r-th moment of a distribution is also called the moment of order r.
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var(X ) = E(X̃ 2) = E

((
X − E(X )

)2
)

=

= E
(
X 2 − 2X E(X ) + E(X )2

)
=

= E(X 2) − 2 E(X ) E(X ) + E(X )2 =

= E(X 2) − E(X )2 .

(2.7)

If E(X 2) is finite, than E(|X |) is finite too and fulfils the inequality

E(|X |)2 ≤ E(X 2) ,

and since E(X ) ≤ E(|X |) the variance is necessarily a non-negative quantity,
var(X ) ≥ 0.

If X and Y are independent and have finite variances, then we obtain

var(X + Y) = var(X ) + var(Y) ,

as follows readily by simple calculation:

E
(
(X̃ + Ỹ)2

)
= E

(
X̃ 2 + 2 X̃ Ỹ + Ỹ2

)
=

= E
(
X̃ 2
)

+ 2 E(X̃ ) E(Ỹ) + E
(
Ỹ2
)

= E
(
X̃ 2
)

+ E
(
Ỹ2
)
,

where we use the fact of vanishing first centered moments: E(X̃ ) = E(Ỹ) = 0.
For two general – non necessarily independent – random variables X and

Y, the Cauchy-Schwarz inequality holds for the mixed expectation value:

E(XY)2 ≤ E(X 2) E(Y2) . (2.8)

If both random variables have finite variances, the covariance is defined by

cov(X ,Y) = var(X ,Y) = E
((
X − E(X )

)(
Y − E(Y)

))
=

= E
(
XY − X E(Y) − E(X )Y + E(X ) E(Y)

)
=

= E(XY) − E(X ) E(Y) .

(2.9)

The covariance cov(X ,Y) and the coefficient of correlation ρ(X ,Y),

cov(X ,Y) = E(XY) − E(X ) E(Y) and ρ(X ,Y) =
cov(X ,Y)

σ(X )σ(Y)
, (2.9’)

are a measure of correlation between the two variables. As a consequence of
the Cauchy-Schwarz inequality we have −1 ≤ ρ(X ,Y) ≤ 1. If covariance and
correlation coefficient are equal to zero, the two random variables X and Y
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are uncorrelated. Independence implies lack of correlation but in general is
the stronger property (section 2.3.4).

In addition to the expectation value two more quantities are used to char-
acterize the center of probability distributions (figure 2.1): (i) The median µ̄
is the value at which the number of points of a distribution at lower values of
matches exactly the number of points at higher values as expressed in terms
of two inequalities,

P (X ≤ µ̄) ≥ 1

2
and P (X ≥ µ̄) ≥ 1

2
or∫ µ̄

−∞
dF (x) ≥ 1

2
and

∫ +∞

µ̄

dF (x) ≥ 1

2
,

(2.10)

where Lebesgue-Stieltjes integration is applied or in case of an absolutely
continuous distribution the condition simplifies to

P (X ≤ µ̄) = P (X ≥ µ̄) =

∫ µ̄

−∞
f(x) dx =

1

2
, (2.10’)

and (ii) the mode µ̃ of a distribution is the most frequent value – the value that
is most likely obtained through sampling – and it coincides with the maximum
of the probability mass function for discrete distribution or the maximum of
the probability density in the continuous case. An illustrative example for
the discrete case is the probability mass function of the scores for throwing
two dice, where the mode is µ̃ = 7 (figure 1.11). A probability distribution
may have more than one mode. Bimodal distributions occur occasionally and
then the two modes provide much more information on the expected outcomes
than mean or median (subsection 2.5.8).

Median and mean are related by an inequality, which says that the differ-
ence between both is bounded by one standard deviation [302, 326]:

|µ− µ| = |E(X − µ| ≤ E(|X − µ|) ≤

≤ E(|X − µ|) ≤
√

E
(

(X − µ)2
)

= σ .
(2.11)

The absolute difference between mean and median can’t be larger than one
standard deviation of the distribution.

For many purposes a generalization of the median from two to n equally
sized data sets is useful. The quantiles are points taken at regular intervals
from the cumulative distribution function F (x) of a random variable X . Or-
dered data are divided into n essentially equal-sized subsets and accordingly,
(n − 1) points on the x-axis separate the subsets. Then, the k-th n-quantile
is defined by P (X < x) ≤ k

n = p (figure 2.2) or equivalently
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Fig. 2.1 Probability densities and moments. As an example of an asymmetric
distribution with highly different values for mode, median, and mean, the lognormal
density

f(x) = 1√
2π σ x

exp
(
−(lnx− ν)2/(2σ2)

)
is shown. Parameters values: σ =

√
ln 2, ν = ln 2 yielding µ̃ = exp (ν − σ2/2) = 1 for

the mode, µ̄ = exp (ν) = 2 for the median and µ = exp (ν+σ2/2) = 2
√

2 for the mean,
respectively. The sequence mode<median<mean is characteristic for distributions
with positive skewness whereas the opposite sequence mean<median<mode is found
in cases of negative skewness (see also figure 2.3).

F−1(p)
.
= inf{x ∈ R : F (x) ≥ p} and p =

∫ x

−∞
dF (u) . (2.12)

In case the random variable has a probability density the integral simplifies
to p =

∫ x
−∞ f(u) du. The median is simply the value of x for p = 1

2 . For

partitioning into four parts we haver the first or lower quartile at p = 1
4 , the

second quartile or median at p = 1
2 , and the third or upper quartile at p = 3

4 .
The lower quartile contains 25 % of the data, the median 50 %, and the upper
quartile eventually 75 % of the data.
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Fig. 2.2 Definition and determination of quantiles. A quantile q with pq = k/n
defines a value xq at which the (cumulative) probability distribution reaches the value
F (xq) = pq corresponding to P (X < x) ≤ p. The figure shows how the position
of the quantile pq = k/n is used to determine its value xq(p). In particular we
use here the normal distribution N (x) as function F (x) and the computation yields

F (xq) = 1
2

(
1 + erf

(xq−ν√
2σ2

))
= pq. Parameter choice: ν = 2, σ2 = 1

2
, and for the

quantile (n = 5, k = 2), yielding pq = 2/5 and xq = 1.8209.

2.1.2 Higher moments

Two other quantities related to higher moments are frequently used for a more
detailed characterization of probability distributions:3 (i) The skewness

γ1 =
µ3

µ
3/2
2

=
µ3

σ3
=

E
((
X − E(X )

)3)(
E
((
X − E(X )

)2))3/2
(2.13)

and (ii) kurtosis

β2 =
µ4

µ2
2

=
µ4

σ4
=

E
((
X − E(X )

)4)(
E
((
X − E(X )

)2))2 and

γ2 =
κ4

κ2
2

=
µ4

σ4
− 3 = β2 − 3 ,

(2.14)

3 In contrast to expectation value, variance and standard deviation, skewness and
kurtosis are not uniquely defined and it is necessary therefore to check carefully the
author’s definitions when reading text from literature.
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Fig. 2.3 Skewness and kurtosis. The upper part of the figures illustrates the sign
of skewness with asymmetric density functions. The examples are taken form the
binomial distribution Bk(n, p): γ1 = (1 − 2p)/

√
np (1− p) with p = 0.1 (red), 0.5

(black; symmetric), and 0.9 (blue) with the values γ1 = 0.596, 0, −0.596.
Densities with different kurtosis are compared in the lower part of the figure: The
Laplace distribution (chartreuse), the hyperbolic secant distribution (green), and
the logistic distribution (blue) are leptokurtic with excess kurtosis values 3, 2, and
1.2, respectively. The normal distribution is the reference curve with excess kur-
tosis 0 (black). The raised cosine distribution (red), the Wigner semicircle distri-
bution (orange), and the uniform distribution (yellow) are platykurtic with excess
kurtosis values of -0.593762, -1, and -1.2 respectively. All densities are calibrated
such that µ = 0 and σ2 = 1 (The picture is recalculated and redrawn from
http://en.wikipedia.org/wiki/Kurtosis, March 30,2011).
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which is either defined as the fourth standardized moment β2 or in terms of
cumulants κn given as excess kurtosis, γ2.

Skewness is a measure of the asymmetry of the probability density: curves
that are symmetric about the mean have zero skew, negative skew implies
a longer left tail of the distribution caused by more low values, and posi-
tive skew is characteristic for a distribution with a longer right tail. Positive
skew is quite common with empirical data (see, for example the log-normal
distribution in section 2.5.1).

Kurtosis characterizes the degree of peakedness of a distribution. High kur-
tosis implies a sharper peak and flat tails, low kurtosis in contrary charac-
terizes flat or round peaks and thin tails. Distributions are called leptokurtic
if they have a positive excess kurtosis and therefore are sharper peak and a
thicker tail than the normal distribution (section 2.3.3), which is taken as a
reference with zero kurtosis. Distributions are characterized as platykurtic if
they have a negative excess kurtosis, a broader peak and thinner tails. In fig-
ure 2.3 the following seven distributions, standardized to µ = 0 and σ2 = 1,
are compared there with respect to kurtosis:

(i) Laplace distribution: f(x) = 1
2b exp

(
− |x−µ|b

)
, b = 1√

2
,

(ii) hyperbolic secant distribution: f(x) = 1
2 sech

(
π
2 x
)

,

(iii) logistic distribution: f(x) = e−(x−µ)/s

s (1+e−(x−µ)/s)2
, s =

√
3/π ,

(iv) normal distribution: f(x) = 1√
2πσ2

e−(x−µ)2/(2σ2) ,

(v) raised cosine distribution: f(x) = 1
2s

(
1+cos(π(x−µ)/s)

)
, s = 1√

1
3−

2
π2

,

(vi) Wigner’s semicircle: f(x) = 2
πr2

√
r2 − x2, r = 2 , and

(vii) uniform distribution: f(x) = 1
b−a , b− a = 2

√
3 .

These seven functions span the whole range of maxima from a sharp peak
to a completely flat plateau with the normal distribution chosen as reference
function (figure 2.3). Distribution (i), (ii), and (iii) are leptokurtic whereas
(v), (vi), and (vii) are platykurtic.

One property of skewness and kurtosis being caused by definition is impor-
tant to note: The expectation value, the standard deviation, and the variance
are quantities with dimensions, whereas skewness and kurtosis are defined as
dimensionless numbers.

The cumulants κn are the coefficients of a series expansion of the logarithm
of the characteristic function (2.29), which in turn is the Fourier transform
of the probability density function, f(x), or the logarithm of the moment
generating function (2.27) as discussed in section 2.2:

h(s) = ln φ(s) =

∞∑
n=1

κn
(ı
.
ı s)n

n!
with

φ(s) =

∫ +∞

−∞
exp (ı

.
ı s x) f(x) dx .

(2.15)
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The first five cumulants κn (n = 1, . . . , 5) expressed in terms of the expecta-
tion value µ and the central moments µn (µ1 = 0) are

κ1 = µ

κ2 = µ2

κ3 = µ3

κ4 = µ4 − 3µ2
2

κ5 = µ5 − 10µ2µ3 .

(2.16)

We shall come back to the use of cumulants κn in sections 2.3 and 2.5 on the
occasion of a comparison of frequently used individual probability densities
and in section 2.6 when we apply k-statistics in order to compute empirical
moments from incomplete data sets.

2.1.3 Information entropy

Information theory has been developed during World War Two as theory
of the communication of secret messages. No wonder that the theory was
conceived and worked out at Bell Labs and the person who was the leading
figures in this area was an American cryptographer, electronic engineer and
computer scientist, Claude Elwood Shannon [405, 406]. One of the central

Fig. 2.4 The functional relation of information entropy. The plot shows the
function H = −x lnx in the range 0 ≤ x ≤ 1. For x = 0 the convention of probability
theory, − 0 ln 0 = 0 · ∞ = 0, is applied.
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issues of information theory is self-information or the content of information

I(ω) = lb

(
1

P (ω)

)
= − lbP (ω) (2.17)

that can be encoded, for example, in a sequence of given length. Commonly
one thinks about binary sequences and therefore the information is measured
in binary digits or bits.4 The rationale behind this expression is the definition
of a measure of information that is positive and additive for independent
events. From equation (1.34) follows:

P (AB) = P (A) · P (B) =⇒ I(A ∩B) = I(AB) = I(A) + I(B) ,

and this relation is fulfilled by the logarithm. Since P (ω) ≤ 1 by definition,
the negative logarithm is a positive quantity. Equation (2.17) yields zero
information for an event taking place with certainty, P (ω) = 1. The outcome
of the fair coin toss with P (ω) = 1

2 provides 1 bit information, and rolling

two ’six’ with two dice in one throw has a probability P (ω) = 1
36 and yields

5.17 bits (For a modern treatise of information theory and entropy see [179]).

Countable sample space. In order to measure the information content of a
probability distribution Claude Shannon introduced the information entropy,
which is simply the expectation value of the information content and which
is represented by a function that resembles the expression for the thermody-
namic entropy in statistical mechanics. We consider first the discrete case of
a probability mass function pk = P (X = xk) , k ∈ N>0, k ≤ n:

H(p) = −
n∑
k=1

pk log pk with pk ≥ 0 ,

n∑
k=1

pk = 1 . (2.18)

Thus, the entropy can be visualized as the expectation value of the negative
logarithm of the probabilities

H(p) = E(− log pk) = E

(
log
( 1

pk

))
,

where the term log(1/pk) can be viewed as the number of bits to be assigned
to to the point xk provided the binary logarithm is used (log ≡ lb).

The functional relationship, H = −x log x, on the interval 0 ≤ x ≤ 1
underlying the information entropy is a concave function (figure 2.4). It is
easily shown that the entropy of a discrete probability distribution is always

4 The logarithm is taken to the base 2 and it is commonly called binary logarithm or
logarithmus dualis: log2 ≡ lb ≡ ld. In informatics the conventional unit of information
is the byte: 1 byte (B) = 8 bits being tantamount to the coding capacity of an eight
digit binary sequence. Although there is little chance of confusion, one should be aware
that in the International System of Units ’B’ is the abbreviation for the acoustical
unit ’bel’, which is the unit for measuring the signal strength of sound.
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Fig. 2.5 Maximum information entropy. The discrete probability distribution
with maximal information entropy in the uniform distribution Up. The entropy of

the probability distribution p1 = 1− ϑ
n and pj = (1 − ϑ

n− 1)/n∀ j = 2, 3, . . . , n

with n = 10 is plotted against the parameter ϑ. All probabilities pk are defined and
the entropy H(ϑ) is real and non-negative on the interval −1 ≤ ϑ ≤ 9 and passes a
maximum at ϑ = 0.

non-negative. A verification of this conjecture can be given, for example,
by considering the two extreme cases: (i) there almost certainly only one
outcome, p1 = P (X = x1) = 1 and pj = P (X = xj) = 0 ∀ j ∈ N>0, j 6= 1,
and the information entropy H = 0 in this completely determined case, and
(ii) all events have the same probability, we are dealing with the uniform
distribution, pk = P (X = xk) = 1

n , or a case of the principle of indifference,
the entropy is positive, and takes on its maximum value, H(p) = log n. The
entropies of all other discrete distributions lie in between:

0 ≤ H(p) ≤ log n or H(p) ≤ log n , (2.19)

and the value of the entropy is a measure of the lack of information on the
distribution. Case (i) is deterministic and we have the full information on the
outcome a priori, whereas case (ii) provides maximal uncertainty because
all outcomes have the same probability. A rigorous proof that the uniform
distribution has maximum information entropy among all discrete distribu-
tions is found in the literature [71, 75]. We dispense from reproducing the
proof here but we illustrate by means of figure 2.5: The starting point is the
uniform distribution of n events with a probability of p = 1

n for each one,

and then we attribute a different probability to a single event: p1 = 1− ϑ
n
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Table 2.1 Probability distributions with maximum information entropy.
The table compares three probability distributions with maximum entropy: (i) the
discrete uniform distribution on the support Ω = {1 ≤ k ≤ n, k ∈ N}, (ii) the
exponential distribution on Ω = R≥0, and the normal distribution on Ω = R.

Distribution Space Ω Density Mean Var Entropy

uniform N>0
1
n
∀ k = 1, . . . , n n+1

2
n2−1
12

log n

exponential R≥0
1
µ
e−x/µ µ µ2 1 + log µ

normal R 1√
2πσ2

e−
(x−µ2)

2σ2 µ σ2
(

1 + log(2πσ2)
)
/2

and pj = (1 − ϑ
n− 1 )/n (j = 2, 3, . . . , n). The entropy of the distribution is

considered as a function of ϑ and indeed the maximum occurs at ϑ = 0.

Uncountable measurable sample space. The information entropy of a continu-
ous probability density p (x) with x ∈ R is calculated by means of integration

H(p) = −
∫ +∞

−∞
p (x) log p (x) dx with pk ≥ 0 ,

∫ +∞

−∞
p (x) dx = 1 ,

(2.18’)
and as in the discrete case we can write the entropy as an expectation value
of log(1/p):

H(p) = E
(
− log p (x)

)
= E

(
log
( 1

p (x)

))
.

We consider two specific examples that are distributions with maximum en-
tropy: the exponential distribution (section 2.5.4) on Ω = R≥0 with the den-
sity

fexp(x) =
1

µ
e−

x
µ ,

the mean µ, and the variance µ2, and the normal distribution (section 2.3.3)
on Ω = R with the density

fN (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

the mean µ, and the variance σ2

In the discrete case we made a seemingly unconstrained search for the
distribution of maximum entropy, although the discrete uniform distribution
contained the number of sample points n as input restriction and indeed, n
appears as parameter in the analytical expression for the entropy (table 2.1).
Now, in the continuous case the constraints become more evident since we
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shall use fixed mean (µ) or fixed mean (µ) and variance (σ2) as the basis of
comparison in the search for distributions with maximum entropy.

The entropy of the exponential density on the sample space Ω = R≥0 with
mean µ and variance µ2 is calculated to be

H(fexp) = −
∫ ∞

0

1

µ
e−x/µ

(
− log µ − x

µ

)
dx = 1 + log µ . (2.20)

In contrast to the discrete case the entropy of the exponential probability
density can become negative for small µ-values as can be easily visualized
by considering the shape of the density: Since limx→0 fexp(x) = 1/µ, an
appreciable fraction of the density function adopts values fexp(x) > 1 for
sufficiently small µ and then −p log p < 0 is negative. Among all continuous
probability distributions with mean µ > 0 on the support R≥0 = [0,∞[ the
exponential distribution has the maximum entropy. Proofs for this conjecture
are available in the literature [71, 75, 357].

For the normal density we obtain from equation (2.18’):

H(fN ) = −
∫ +∞

−∞

1
√

2πσ2
e−

(x−µ)2

2σ2

(
− log(

√
2πσ2)−

1

2

(x− µ
σ

)2)
dx

=
1

2

(
1 + log(2πσ2)

)
.

(2.21)

It is not unexpected that the information entropy of the normal distribution
is independent of the mean µ, which causes nothing but a shift of the whole
distribution along the x-axis: all Gaussian densities with the same variance
σ2 have the same entropy. Again we see that the entropy of the normal
probability density can become negative for sufficiently small values of σ2.
The normal distribution is distinguished among all continuous distributions
on Ω = R with given variance σ2, since it is the distribution with maximum
entropy. Several proofs for this theorem were developed, we refer again to the
literature [71, 75, 357]. The three distributions with maximum entropy are
compared in table 2.1.

Principle of maximum entropy. The information entropy can be interpreted
as the required amount of information we would need in order to fully de-
scribe the system. Equations (2.18) and (2.18’) are the basis of a search for
probability distribution with maximum entropy under certain constraints, for
example constant mean µ or constant variance σ2. The maximum entropy
principle has been introduced by the American physicist Edwin Thompson
Jaynes as a method of statistical inference [232, 233]: He suggests to use those
probability distributions, which satisfy the prescribed constraints and have
the largest entropy. The rationale for this choice is to use a probability dis-
tribution that reflects our knowledge and does not contain any unwarranted
information. The predictions made on the basis of a probability distribution
with maximum entropy should be least surprising. If we chose a distribution
with smaller entropy, this distribution would contain more information than
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justified by our a priori understanding of the problem. It is useful to illus-
trate a typical strategy [71]:“. . . , the principle of maximum entropy guides us
to the best probability distribution that reflects our current knowledge and it
tells us what to do if experimental data do not agree with predictions coming
from our chosen distribution: Understand why the phenomenon being studied
behaves in an unexpected way, find a previously unseen constraint, and maxi-
mize the entropy over the distributions that satisfy all constraints we are now
aware of, including the new one.” We realize a different way of thinking about
probability that becomes even more evident in Bayesian statistics, which is
sketched in sections 1.3 and 2.6.4.

The choice of the word entropy for the expected information content of a
distribution is not accidental. Ludwig Boltzmann’s statistical formula5

S = kB ln W with W =
N !

N1!N2! · · ·Nm!
, (2.22)

with W being the so-called thermodynamic probability and kB Boltzmann’s
constant: kB = 1.38065× 10−23 Joule·Kelvin−1 and N =

∑m
j=1Nj being the

total number of particles being distributed over m states with the frequencies
pk = Nk/N and

∑m
j=1 pj = 1. The number of particles N is commonly very

large and Stirling’s formula named after the Scottish mathematician James
Stirling applies: n! ≈ n lnn, and this leads to:

S = kB

(
N lnN −

m∑
i=1

Ni lnNi

)
= − kBN

(
− lnN +

m∑
i=1

Ni
N

lnNi

)
=

= − kBN

m∑
i=1

pi ln pi .

For a single particle we obtain an entropy

s =
S

N
= − kB

m∑
i=1

pi ln pi , (2.22’)

which is identical with Shannon’s formula (2.18) except the factor containing
the universal constant kB.

Eventually we point at some important differences between thermody-
namic entropy and information entropy that should be kept in mind when
discussing analogies between them. The thermodynamic principle of maxi-
mum entropy is a physical law known as the second law of thermodynamics:

5 A few remarks are important: Equation (2.22) is Max Planck’s expression for the
entropy in statistical mechanics, although it has been carved in Boltzmann’s tomb
stone, and W is called a probability despite the fact that it is not normalized, W ≥ 0.
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The entropy of an isolated system6 is nondecreasing in general and increasing
if processes are taking place, and hence approaches a maximum. The principle
of maximum entropy in statistics is a rule for appropriate design of distri-
bution functions and has the rank of a guideline and not that of a natural
law. Thermodynamic entropy is an extensive property and this means that
it increases with the size of the system. Information entropy, on the other
hand, is an intensive property and insensitive to size. An illustrative example
of this difference is due to the Russian biophysicist Mikhail Vladimirovich
Volkenshtein [451]: Considering the process of flipping a coin in reality and
calculating all contributions to the process shows that the information en-
tropy is a minute contribution to the thermodynamic entropy only. The total
thermodynamic entropy change as a result of the coin flipping process is
dominated by far by the metabolic contributions of the flipping individual,
as there are muscle contraction, joint rotations, and by the heat production
on the surface where the coin lands, etc. Imagine the thermodynamic en-
tropy production if you flip a coin two meters high – the gain in information
remains still one bit!

6 A isolated system exchanges neither matter nor energy with its environment (For
isolated, closed, and open systems see also section 4.3).
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2.2 Generating functions

In this section we introduce auxiliary functions, which allow for the deriva-
tion of compact representations of probability distributions and which pro-
vide convenient tools for handling functions of probabilities. The generating
functions commonly contain one or more auxiliary variables – here denoted
by s, which are lacking direct physical meaning but enable straightforward
calculation of properties of random variables at certain values of s. In par-
ticular we shall make use of probability generating functions g(s), moment
generating functions M(s) and characteristic functions φ(s). The character-
istic function φ(s) exists for all distributions but we shall encounter cases
where no probability or moment generating functions exist (see, for example,
the Cauchy-Lorentz distribution in subsection 2.5.6). In addition to the three
generating functions mentioned here other functions are in use as well. An
example is the cumulant generating function that is lacking a uniform def-
inition. It is either the logarithm of the moment generating function or the
logarithm of the characteristic function – we shall mention both.

2.2.1 Probability generating functions

Let X be a random variable taking only non-negative integer values with a
probability distribution given by

P (X = j) = aj ; j = 0, 1, 2, . . . . (2.23)

A auxiliary variable s is introduced and the probability generating function
is expressed by an infinite power series

g(s) = a0 + a1 s + a2 s
2 + . . . =

∞∑
j=0

aj s
j = E(sX ) . (2.24)

As we shall show later, the full information on the probability distribution is
encapsulated in the coefficients aj (j ∈ N ). Intuitively this is no surprise since
the coefficients aj are the individual probabilities of a probability mass func-
tion in (1.28’): aj = pj . The expression of the probability generation function
as an expectation value is useful in the comparison with other generating
functions.

In most cases s is a real valued variable, although it can be of advantage
to consider also complex s. Recalling

∑
j aj = 1 from (2.23) we verify easily

that the power series (2.24) converges for |s| ≤ 1:

|g(s)| ≤
∞∑
j=0

|aj | · |s|j ≤
∞∑
j=0

aj = 1 , for |s| ≤ 1 .
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For |s| < 1 we can differentiate7 the series term by term in order to calculate
the derivatives of the generating function g(s)

dg

ds
= g′(s) = a1 + 2 a2s + 3 a3s

2 + . . . =

∞∑
n=1

nans
n−1 ,

d2g

ds2 = g′′(s) = 2 a2 + 6 a3s + . . . =

∞∑
n=2

n(n− 1) ans
n−2 ,

and, in general, we have

djg

dsj
= g(j)(s) =

∞∑
n=j

n(n− 1) . . . (n− j + 1) ans
n−j =

=

∞∑
n=j

(n)j an s
n−j =

∞∑
n=j

(
n

j

)
j ! an s

n−j ,

where (x)n ≡ (x − n + 1)(n) stands for the falling Pochhammer symbol.8

Setting s = 0, all terms vanish except the constant term

djg

dsj

∣∣∣
s=0

= g(j)(0) = j ! aj or aj =
1

j !
g(j)(0) .

In this way all aj ’s may be obtained by consecutive differentiation from the
generating function and alternatively the generating function can be deter-
mined from the known probability distribution.

7 Since we need the derivatives very often in this section, we make advantage of short
notations: dg(s)/ds = g′(s), d2g(s)/ds2 = g′′(s), and djg(s)/dsj = g(j)(s) and for
simplicity also (dg/ds)|s=k = g′(k) and (d2g/ds2)|s=k = g′′(k) (k ∈ N).
8 The definition of the Pochhammer symbol is ambiguous [256, p. 414]. In combina-
torics the Pochhammer symbol (x)n is used for the falling factorial,

(x)n = x(x− 1)(x− 2) · · · (x− n+ 1) =
Γ (x+ 1)

Γ (x− n+ 1)
,

whereas the rising factorial is the written a

x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) =
Γ (x+ n)

Γ (x)
.

We also mention a useful identity between the partial factorials

(−x)(n) = (−1)n (x)n .

In the theory of special functions in physics and chemistry, in particular in the context
of the hypergeometric functions, however, (x)n is used for the rising factorial. Here, we
shall use both definitions depending on the context but we shall always say whether
we mean the rising or the falling factorial. Clearly, the expression in terms of the
Gamma function is unambiguous.
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Putting s = 1 in g′(s) and g′′(s) we can compute the first and second
moments of the distribution of X :

g′(1) =

∞∑
n=0

nan = E(X ) ,

g′′(1) =

∞∑
n=0

n2 an −
∞∑
n=0

nan = E(X 2) − E(X )

E(X ) = g′(1) , and

E(X 2) = g′(1) + g′′(1) and var(X ) = g′(1) + g′′(1)− g′(1)2 .

(2.25)

We summarize: The probability distribution of a non-negative integer values
random variable can be converted into a generating function without loosing
information. The generating function is uniquely determined by the distribu-
tion and vice versa.

2.2.2 Moment generating functions

Basis of the moment generating function is the series expansion of the expo-
nential function of the random variable X

eXs = 1 + X s +
X 2

2!
s2 +

X 3

3!
s3 . . . .

The moment generating function allows for direct computation of the mo-
ments of a probability distribution as defined in equation (2.23) since we
have:

MX (s) = E(eX s) = 1 + µ̂1 s+
µ̂2

2!
s2 +

µ̂3

3!
s3 . . . = 1 +

∞∑
n=1

µ̂n
sn

n!
. (2.26)

wherein µ̂i is the i-th raw moment. The moments are obtained by differentiat-
ing MX (s) with respect to s and then setting s = 0. From the n-th derivative
we obtain

E(Xn) = µ̂n = M
(n)
X =

dnMX
dsn

∣∣∣
s=0

.

A probability distribution thus has (at least) as many moments as many times
the moment generating function can be continuously differentiated (see also
characteristic function in subsection 2.2.3). If two distributions have the same
moment generating functions they are identical at all points:

MX (s) = MY(s) ⇐⇒ FX (x) = FY(x) .



2.2 Generating functions 101

This statement, however, does not imply that two distributions are iden-
tical when they have the same moments, because in some cases the mo-
ments exist but the moment generating function does not, since the limit

limn→∞
∑n
k=0

µ̂k s
k

k! diverges as, for example, in case of the logarithmic nor-
mal distribution.

The real cumulant generating function is the formal logarithm of the mo-
ment generating function that can be expanded in a power series

k(s) = ln
(

E
(
eXs
))

= −
∞∑
n=1

1

n

(
1− E

(
eXs
))n

=

= −
∞∑
n=1

1

n

(
−
∞∑
m=1

µ̂m
sm

m!

)n
=

= µ̂1s +
(
µ̂2 − µ̂2

1

)s2

2!
+
(
µ̂3 − 3µ̂2µ̂1 + 2µ̂3

1

)s3

3!
+ . . .

(2.27)

The cumulants κn are obtained from the cumulant generating function
through the n-th differentiation of k(s) and calculating the derivative at s = 0:

κ1 =
∂k(s)

∂s

∣∣∣
s=0

= µ̂1 = µ ,

κ2 =
∂2k(s)

∂s2

∣∣∣
s=0

= µ̂2 − µ2 = σ2 ,

κ3 =
∂3k(s)

∂s3

∣∣∣
s=0

= µ̂3 − 3µ̂2µ + 2µ3 = µ3 , (2.16’)

...

κn =
∂nk(s)

∂sn

∣∣∣
s=0

,

...

As shown in equation (2.16) the first three cumulants coincide with the cen-
tered moments µ1, µ2, and µ3. All higher cumulants are polynomials of two
or more centered moments.

In probability theory the Laplace transform

f̂(s) =

∫ ∞
0

e−sx fX (x) dx = L
(
fX (x)

)
(s) (2.28)

can be visualized as an expectation value that is closely related to the moment

generating function: L
(
fX (x)

)
(s) = E

(
e−sX

)
where fX (x) is the probability

density. The cumulative distribution function FX (x) can be recovered by
means of the inverse Laplace transform:
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FX (x) = L−1
s

(
E
(
e−sX

)
s

)
(x) = L−1

s

L
(
fX (x)

)
(s)

s

 (x) .

We shall not use the Laplace transform here as a pendant to the moment
generating function but we shall apply it in section 4.3.3.2 to the solution of
chemical master equations where the inversion of the Laplace transform is
discussed as well.

2.2.3 Characteristic functions

Like the moment generating function the characteristic function φ(s) of a
random variable X completely describes the cumulative probability distribu-
tion F (x). It is defined by

φ(s) =

∫ +∞

−∞
exp (ı

.
ı s x) dF (x) =

∫ +∞

−∞
exp (ı

.
ı s x) f(x) dx , (2.29)

where the integral over dF (x) is of Riemann-Stieltjes type. In case a probabil-
ity density f(x) exists for the random variable X the characteristic function
is (almost) the Fourier transform of the density:9

F
(
f(x)

)
= f̃(k) =

1√
2π

∫ +∞

−∞
f(x) eı

.
ı k x dx . (2.30)

From equation (2.29) follows the useful expression for the expansion in the
discrete case

φ(s) = E
(
eı

.
ısX ) =

∞∑
n=−∞

Pn e
ı
.
ıns , (2.29’)

that we shall use, for example, in solving the master equations for stochastic
processes (chapters 3 and 4).

The characteristic function exists for all random variables since it is an in-
tegral of a bounded continuous function over a space of finite measure. There
is a bijection between distribution functions and characteristic functions:

φX (s) = φY(s) ⇐⇒ FX (x) = FY(x) .

9 The difference between the Fourier transform f̃(k) and the characteristic function
φ(s) of a function f(x),

f̃(k) =
1√
2π

∫ +∞

−∞
f(x) exp (+ı

.
ı k x) dx and φ(s) =

∫ ∞
−∞

f(x) exp (ı
.
ı s x) dx ,

is only a matter of the factor (
√

2π)−1. The Fourier convention above is the one used
in modern physics, for other convention see, e.g., Mathematica and section 4.4.2.
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If a random variable X has moments up to k-th order, then the characteristic
function φ(x) is k times continuously differentiable on the entire real line and
vice versa if a characteristic function φ(x) has a k-th derivative at zero, then
the random variable X has all moments up to k if k is even and up to k − 1
if k is odd:

E(X k) = (−ı.ı)k dkφ(s)

dsk

∣∣∣∣
s=0

and
dkφ(s)

dsk

∣∣∣∣
s=0

= ı
.
ık E(X k) . (2.31)

An interesting example is presented by the Cauchy distribution (subsec-
tion 2.5.6) with φ(s) = exp (|s|): It is not differentiable at s = 0 and the
distribution has no moments including the expectation value.

The moment generating function is related to the probability generating
function g(s) (subsection 2.2.1) and the characteristic function φ(s) (subsec-
tion 2.2.3) by

g (es) = E
(
eXs
)

= MX (s) and φ(s) = Mı
.
ıX (s) = MX (ı

.
ıs) .

All three generating functions are closely related as seen from the comparison
of the expressions as expectation values

g(s) = E(sX ) , MX = E(esX ) , and φ(s) = E(eı
.
ısX ) ,

but it may happen that not all three are existing. As said, characteristic
functions exist for all probability distributions.
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2.3 Common probability distributions

Before entering a discussion of individual probability distributions we present
an overview over the important characteristics of the most frequently used
distributions in table 2.2. Poisson, binomial and normal distributions and
transformations in limits between them are discussed in this section. The
central limit theorem and the law of large numbers are presented in a separate
section following the normal distribution. We have also listed several less
common but nevertheless frequently used probability distributions, which are
of importance for special purposes. In the forthcoming chapters 3, 4, and 5
dealing with stochastic processes and applications we shall make use of them.

2.3.1 The Poisson distribution

The Poisson distribution, named after the French physicist and mathemati-
cian Siméon Denis Poisson, is a discrete probability distribution expressing
the probability of occurrence of independent events within a given interval. A
popular example is dealing with the arrivals of phone calls, e-mail, an other
independent events within a fixed time interval ∆t. The expected number of
occurring events per time interval, α, is the only parameter of the distribu-
tion πk(α), which returns the probability that k events are recorded during
∆t. In physics and chemistry the Poisson process is the stochastic basis of
first order reactions, for example radioactive decay or irreversible first order
chemical reactions, and the Poisson distribution is the probability distribution
underlying the time course of particle numbers, atoms or molecules, fulfilling

Fig. 2.6 The Poisson probability density. Two examples of Poisson distribu-
tions, πk(α) = αke−α/k!, with α = 1 (black) and α = 5 (red) are shown. The
distribution with the larger α has the mode shifted further to the right and a thicker
tail.
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dN(t) = −αN(t) dt. The events to be counted need not be on the time axis,
the interval can also be defined as a given distance, area, or volume.

Despite its major importance in physics and biology the Poisson distri-
bution with the probability mass function (pmf) πk(α), is a fairly simple
mathematical object. As said it contains a single parameter only, the real
valued positive number α:

P (X = k) = π k(α) =
e−α

k!
αk ; k ∈ N0 , (2.32)

where P = X is a random variable with Poissonian density. As an exercise
we leave to verify the following properties:10

∞∑
k=0

π k = 1 , µ =

∞∑
k=0

k π k = α and µ̂2 =

∞∑
k=0

k2 π k = α+ α2

Examples of Poisson distributions with two different parameter values, α = 1
and 5, are shown in figure 2.6. The cumulative distribution function (cdf) is
obtained by summation

P (X ≤ k) = exp (−α)

bkc∑
j=0

αj

j!
=

Γ (bk + 1c, α)

bkc!
, (2.33)

where Γ (x, y) is the incomplete Gamma function.
By means of a Taylor series expansion11 we can find the generating function

of the Poisson distribution,

g(s) = eα(s−1) . (2.34)

From the generating function we calculate easily

g′(s) = α eα(s−1) and g′′(s) = α2 eα(s−1) .

Expectation value and second moment follow straightforwardly from the ex-
ercise above or from equation(2.25):

10 In order to be able to solve the problems some basic infinite series should be
recalled: e =

∑∞
n=0

1
n!

, ex =
∑∞
n=0

xn

n!
for |x| <∞, e = limn→∞(1 + 1

n
)n, and

e−α = limn→∞(1− α
n

)n.
11 The Taylor series is named after the English mathematician Brook Taylor who
invented the calculus of finite differences in 1715. Earlier series expansions of the
MacLaurin series type in the 17th century are attributed to the Scottish mathemati-
cian James Gregory. The MacLaurin series is a Taylor expansion around the origin
and was named after Colin MacLaurin.
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Fig. 2.7 The binomial probability density. Two examples of binomial distribu-
tions, Bk(n, p) =

(
n
k

)
pk(1−p)n−k, with n = 10, p = 0.5 (black) and p = 0.1 (red) are

shown. The former distribution is symmetric with respect to the expectation value
E(Bk) = n/2, and accordingly has zero skewness. The latter case is asymmetric with
positive skewness (see figure 2.3).

E(X ) = g′(1) = α , (2.34a)

E(X 2) = g′(1) + g′′(1) = α + α2 , and (2.34b)

var(X ) = α . (2.34c)

Both, the expectation value and the variance are equal to the parameter
α and hence, the standard deviation amounts to σ(X ) =

√
α. Accordingly,

the Poisson distribution is the discrete prototype of a distribution fulfilling a√
N -law. This remarkable property of the Poisson distribution is not limited

to the second moment: The factorial moments, 〈X r〉f , fulfil the equation

〈X r〉f = E
(
X (X − 1) . . . (X − r + 1)

)
= αr , (2.34d)

which is easily verified by direct calculation.

2.3.2 The binomial distribution

The binomial distribution, B(n, p), expresses the cumulative result of n in-
dependent trials with two-valued outcomes, for example, yes-no decisions or
successive coin tosses as we have discussed already in sections 1.2 and 1.5:

Sn =

n∑
i=1

Xi , i ∈ N>0; n ∈ N>0 . (1.23’)
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In general, we assume that head is obtained with probability p and tail with
probability q = 1− p. The Xi’s are called Bernoulli random variables named
after the Swiss mathematician Jakob Bernoulli, and the sequence of events,
Sn, is named Bernoulli process after him (section 3.1.3.1). The corresponding
random variable is said to have a Bernoulli or binomial distribution::

P (Sn = k) = Bk(n, p) =

(
n

k

)
pk qn−k ,

q = 1− p and k ∈ N; k ≤ n .
(2.35)

Two examples are shown in figure 2.7. The distribution with p = 0.5 is
symmetric with respect to k = n/2.

The generating function for the single trial is g(s) = q+p s. Since we have
n independent trials the complete generating function is

g(s) = (q + p s)n =

n∑
k=0

(
n

k

)
qn−k pk sk . (2.36)

From the derivatives of the generating function,

g′(s) = n p (q + p s)n−1 and g′′(s) = n(n− 1) p2 (q + p s)n−2 ,

we compute readily expectation value and variance:

E(Sn) = g′(1) = n p , (2.36a)

E(S2
n) = g′(1) + g′′(1) = np + n2p2 − np2 = n p q + n2 p2 ,

(2.36b)

var(Sn) = n p q , and (2.36c)

σ(Sn) =
√
npq . (2.36d)

For p = 1/2, the case of the unbiased coin, we are dealing with the symmetric
binomial distribution with E(Sn) = n/2, var(Sn) = n/4, and σ(Sn) =

√
n/2.

We note that the expectation value is proportional to the number of trials,
n, and the standard deviation is proportional to its square root,

√
n.

Relation between binomial and Poisson distribution. The binomial distribu-
tion B(n, p) can be transformed into a Poisson distribution π(α) in the limit
n→∞. In order to show this we start from

Bk(n, p) =

(
n

k

)
pk (1− p)n−k ; k ∈ N, k ≤ n .

The symmetry parameter p is assumed to vary with n, p (n) = α/n for
n ∈ N> 0, and thus we have
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Bk

(
n,
α

n

)
=

(
n

k

) (α
n

)k (
1− α

n

)n−k
, (k ∈ N, k ≤ n) .

We let n go to infinity for fixed k and start with B0(n, p):

lim
n→∞

B0

(
n,
α

n

)
= lim

n→∞

(
1− α

n

)n
= e−α .

Now we compute the ratio of two consecutive terms, Bk+1/Bk:

Bk+1

(
n, αn

)
Bk
(
n, αn

) =
n− k
k + 1

·
(α
n

)
·
(

1− α

n

)−1

=
α

k + 1
·
[(

n− k
n

)
·
(

1− α

n

)−1
]
.

Both terms in the square brackets converge to one as n→∞, and hence we
find:

lim
n→∞

Bk+1

(
n, αn

)
Bk
(
n, αn

) =
α

k + 1
.

From the two results we compute all terms starting from the limit of B0,

lim
n→∞

B0 = exp (−α) and find

lim
n→∞

B1 = α exp (−α) ,

lim
n→∞

B2 = α2 exp (−α)/2! ,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
n→∞

Bk = αk exp (−α)/k! . ut

Accordingly we have verified Poisson’s limit law:

lim
n→∞

Bk

(
n,
α

n

)
= πk(α) , k ∈ N . (2.37)

It is worth keeping in mind that the limit was performed in a peculiar way
since the symmetry parameter p (n) = α/n was shrinking with increasing n
and as a matter of fact vanished in the limit of n→∞.

2.3.3 The normal distribution

The normal or Gaussian distribution is of central importance in probabil-
ity theory because many distributions converge to it in the limit of large
numbers since the central limit theorem (CLT) states that under mild condi-
tions the sum of a large number of random variables is approximately normal
distributed (section 2.4.2). The normal distribution is a stable distribution
(section 3.2.5) and this fact is not unrelated to the central limit theorem.
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The normal distribution has several advantageous technical features. It
is the only absolutely continuous distribution, which has only zero cumu-
lants except the first two corresponding to expectation value and variance,
which have the straightforward meaning of the position and the width of the
distribution. For given variance the normal distribution has the largest infor-
mational entropy of all distributions on Ω = R (section 2.1.3). As a matter of
fact, the mean µ does not enter the expression for the entropy of the normal
distribution (table 2.1),

H(σ) =
1

2

(
1 + log (2πσ2)

)
, (2.21’)

or in other words, shifting the normal distribution along the x-axis does not
change the entropy of the distribution.

The normal distribution is basic for the estimate of statistical errors and
thus we shall discuss it in some detail. Because of this fact, the normal distri-
bution is extremely popular in statistics and sometimes ’overapplied’. Many
empirical values are not symmetrically distributed but skewed to the right
but nevertheless they are often analyzed by means of normal distributions.
The log-normal distribution [286] or the Pareto distribution, for example,
might do better in such cases. Statistics based on normal distribution is not
robust in the presence of outliers where a description by more heavy-tailed
distributions like Student’s t-distribution is superior. Whether or not the tails
have more weight in the distribution can be easily checked by means of the
excess kurtosis: Student’s distribution has an excess kurtosis of

γ2 =


6

ν−4 for ν > 4 ,

∞ for 2 < ν ≤ 4 , and

undefined otherwise ,

which is always positive, whereas the excess kurtosis of the normal distribu-
tion is zero.

The density of the normal distribution12 is

fN (x) =
1√
2π σ

e−
(x−µ)2

2σ2 with

∫ +∞

−∞
f(x) dx = 1 , (2.38)

and the corresponding random variable X has the moments E(X ) = µ,
var(X ) = σ2, and σ(X ) = σ. For many purposes it is convenient to use
the normal density in centered and normalized form (σ2 = 1), which is called
the standard normal distribution or the Gaussian bell-shaped curve:12

12 The notations applied here for the normal distribution are: N (µ, σ) in general, and
FN (x;µ, σ) for the cumulative distribution or fN (x;µ, σ) for the density. Commonly,
the parameters, (µ, σ) are omitted when no misinterpretation is possible. For standard
stable distributions (section 2.5.7) a variance γ2 = σ2/2 is applied.
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fN (x; 0, 1) = ϕ(x) =
1√
2π

e−x
2/2 with

∫ +∞

−∞
ϕ(x) dx = 1 , (2.38’)

In this form we have E(X̃ ) = 0, var(X̃ ) = 1, and σ(X̃ ) = 1.
Integration of the density yields the distribution function

P (X ≤ x) = F (x) =
1√
2π

∫ x

−∞
e−

u2

2 du = FN (x) . (2.39)

The function FN (x) is not available in analytical form, but it can be easily
formulated in terms of a special function, the error function, erf(x). This
function as well as its complement, erfc(x), are defined by

erf(x) =
2√
π

∫ x

0

e−u
2

du and erfc(x) =
2√
π

∫ ∞
x

e−u
2

du ,

and are available in tables and in standard mathematical packages.13 Ex-
amples of the normal density fN (x) and the integrated distribution FN (x)
with different values of the standard deviation σ were shown in figure 1.21.
The normal distribution is also used in statistics to define confidence inter-
vals: 68.2 % of the data points lie within an interval µ± σ, 95.4 % within an
interval µ± 2σ, and eventually 99,7 % with an interval µ± 3σ.

A Poisson density with sufficiently large values of α resembles a normal
density (figure 2.8) and it can be shown indeed that the two curves become
more and more similar with increasing α:14

πk(α) =
αk

k!
e−α ≈ 1√

2π α
exp

(
− (k − α)2

2α

)
for α� 1 . (2.40)

We present a short proof based on the moment generating functions for the
approximation of the standardized Poisson distribution by a standard nor-
mal distribution. The Poisson variable Xα with P (Xα = k) = πk(α) is stan-
dardized to Yα = (Xα − α)/

√
α and we obtain for the moment generating

functions:

MXα(s) = E
(
eXαs

)
= exp

(
α(es−1)

)
=⇒ MYα(s) = E

(
exp
(Xα − α√

α
s
))

.

The next steps are taking the limit n → ∞, expansion of the exponential
function, and truncation after the first non-vanishing term [276]:

13 We remark that erf(x) and erfc(x) are not normalized in the same way as the
normal density is: erf(x) + erfc(x) = 2√

π

∫∞
0

exp (−u2)du = 1, but
∫∞
0
ϕ(u)du =

1
2

∫+∞
−∞ ϕ(u)du = 1

2
.

14 It is important to memorize that k is a discrete variable on the l.h.s. whereas it is
continuous on the r.h.s. of equation (2.40).
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Fig. 2.8 Comparison between Poisson and normal density. The figure com-
pares the Poisson density with parameter α (red) and a best fit normal distribution
with mean µ = α and standard deviation σ =

√
α (blue) according to equation (2.40).

Parameter choice: α = 10.

lim
α→∞

MYα(s) = lim
α→∞

E

(
exp
(Xα − α√

α
s
))

= lim
α→∞

e−
√
αs E

(
exp
(Xαs√

α

))
=

= lim
α→∞

e−
√
α s exp

(
α(es/

√
α − 1)

)
=

= lim
α→∞

exp
(
s2/2 + s3/(6

√
α) + . . .

)
= exp(s2/2) ut

In the limit of large α we obtain indeed the moment generating function of
the standardized normal distribution, N (0, 1). The result is an example of
the central limit theorem that will be presented and analyzed in section 2.4.2.
We shall require this approximation of the Poissonian distribution by a nor-
mal distribution in section 3.4.5 for the derivation of a chemical Langevin
equation.

The normal density function fN (x) has, among other remarkable proper-
ties, derivatives of all orders. Each derivative can be written as product of
fN (x) by a polynomial, of the order of the derivative, known as Hermite poly-
nomial. The function fN (x) decreases to zero very rapidly as |x| → ∞. The
existence of all derivatives makes the bell-shaped Gaussian curve x → f(x)
particularly smooth, and the moment generating function of the normal dis-
tribution is especially attractive (see subsection 2.2.2) since M(s) can be
obtained directly by integration:
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M(s) =

∫ +∞

−∞
ex s f(x) dx =

∫ +∞

−∞
exp

(
x s − x2

2

)
dx =

=

∫ +∞

−∞
e( s

2

2 −
(x−s)2

2 ) dx = es
2/2

∫ +∞

−∞
f(x− s) dx =

= es
2/2 .

(2.41)

All raw moments of the normal distribution are defined by the integrals

µ̂n =

∫ +∞

−∞
xn f(x) dx . (2.42)

They can be obtained, for example, by successive differentiation of M(s)
with respect to s (subsection 2.2.2). In order to obtain the moments more
efficiently we expand the first and the last expression in equation (2.41) in a
power series of s,∫ +∞

−∞

(
1 + x s +

(x s)2

2!
+ . . .+

(x s)n

n!
+ . . .

)
f(x) dx =

= 1 +
s2

2
+

1

2!

(
s2

2

)2

+ . . .+
1

n!

(
s22
)n

+ . . . ,

or express it in terms of the moments µ̂n,

∞∑
n=0

µ̂n
n!
sn =

∞∑
n=0

1

2n n!
s2n ,

from which we compute the moments of ϕ(x) by putting equal the coefficients
of the powers in s on both sides of the expansion, and find for n ≥ 1:15

µ̂2n−1 = 0 and µ̂2n =
(2n)!

2n n!
. (2.43)

All odd moments vanish because of symmetry. In case of the fourth moment,
kurtosis, a kind of standardization is common, which assigns zero excess kur-
tosis, γ2 = 0 to the normal distribution. In other words, excess kurtosis
monitors peak shape with respect to the normal distribution: Positive excess
kurtosis implies peaks that are sharper than the normal density, negative
excess kurtosis peaks that are broader than the normal density (figure 2.3).

15 The definite integrals are:

∫+∞
−∞ xn exp (−x2)dx =


√
π n = 0

0 n ≥ 1; odd
(n−1)!!

2n/2

√
π n ≥ 2; even

,

where (n− 1)!! = 1 · 3 · . . . · (n− 1) is the double factorial.
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As already said all cumulants (2.16) of the normal distribution except
κ1 = µ and κ2 = σ2 are zero, since the moment generating function of the
general normal distribution with mean µ and variance σ2 is of the form

MN (s) = exp
(
µs +

1

2
σ2 s2

)
. (2.44)

The expression for the standardized Gaussian distribution is the special case
with µ = 0 and σ2 = 1. Eventually, we list also the characteristic function of
the general normal distribution

φN (s) = exp
(
ı
.
ıµs − 1

2
σ2 s2

)
, (2.45)

which will be used, for example, in the derivation of the central limit theorem
(section 2.4.2).

2.3.4 Multivariate normal distributions

In applications to real world problems in science it is often necessary to
consider probability distributions in multiple dimensions. Then, a random
vector, ~X = (X1, . . . ,Xn) with the joint probability distribution

P (X1 = x1, . . . ,Xn = xn) = p (x1, . . . , xn) = p (x) .

replaces the random variable X . This multivariate normal probability density
can be written as

f(x) =
1√

(2π)n |Σ|
exp
(
−1

2
(x− µ)tΣ−1 (x− µ)

)
.

The vector µ consists of the (raw) first moments along the different coor-
dinates, µ(µ1, . . . , µn) and the variance-covariance matrix Σ contains the n
variances in the diagonal and the covariances are combined as off-diagonal
elements

Σ =


var(X1) cov(X1,X2) . . . cov(X1,Xn)

cov(X2,X1) var(X2) . . . cov(X2,Xn)
...

...
. . .

...
cov(Xn,X1) cov(Xn,X2) . . . var(Xn)

 =


σ11 σ12 . . . σ1n

σ12 σ22 . . . σ2n

...
...

. . .
...

σ1n σ2n . . . σnn


which is symmetric, cov(Xi,Xj) = cov(Xj ,Xi) = σij , by the definition of
covariances.

Mean and variance are given by µ̂ = µ and the variance-covariance matrix
Σ, the moment generating function expressed in the dummy vector variable
s = (s1, . . . , sn) is of the form
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M(s) = exp
(
µts
)
· exp

(
1

2
stΣs

)
,

and, finally, the characteristic function is given by

φ(s) = exp
(
ı
.
ıµts

)
· exp

(
−1

2
stΣs

)
Without showing the details we remark that this particulary simple char-
acteristic function implies that all moments higher than order two can be
expressed in terms of first and second moments, in particular expectation
values, variances, and covariances. To give an example that we shall require
later in subsection 3.4.2, the fourth order moments can be derived from

E(X 4
i ) = 3σ2

ii ,

E(X 3
i Xj) = 3σiiσij ,

E(X 2
i X 2

j ) = σiiσjj + 2σ2
ij ,

E(X 2
i XjXk) = σiiσjk + 2σijσik and

E(XiXjXkXl) = σijσkl + σliσjk + σikσjl ,

(2.46)

with i, j, k, l ∈ {1, 2, 3, 4}.
The entropy of the multivariate normal distribution is readily calculated

and appears as a straightforward extension of equation (2.21) to higher di-
mensions:

H(f) = −
∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
f(x) ln f(x) dx =

=
1

2

(
n+ ln

(
(2π)n|Σ|

))
,

(2.47)

where |Σ| is the determinant of the variance-covariance matrix.
The multivariate normal distribution presents and excellent example for

discussing the difference between uncorrelatedness and independence. Two
random variables are independent if

fXY(x, y) = fX (x) · fY(y) ∀ x, y ,

whereas uncorrelatedness of two random variables requires

σXY = cov(X ,Y) = 0 = E(XY) − E(X )E(Y) or

E(XY) = E(X )E(Y) ,

which is only factorizability of the joint expectation value. The covariance
between two independent random variables vanishes and hence:
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Fig. 2.9 Uncorrelated but not independent normal distributions. The figure
compares two different joint densities, which have identical marginal densities. The

contour plot on the l.h.s. (a) shows the joint distribution f(x1, x2) = 1
2π
e−

1
2
(x2

1
+x2

2
),

the contour lines are circles equidistant in f and plotted for f = 0.03, 0.09, . . . , 0.153.
The marginal distributions of this joint distribution are standard normal distributions
in x1 or x2. The density in b is derived from one random variable X1 with standard

normal density f(x1) = 1√
2π
e−

1
2
x2

1 and a second random variable that is modulated

by a perfect coin flip: X2 = X1 · W with W = ±1. The two variables X1 and X2 are
uncorrelated but not independent.

E(XY) =

∫ +∞

−∞

∫ +∞

−∞
xy fX ,Y(x, y) dxdy =

=

∫ +∞

−∞

∫ +∞

−∞
xy fX (x)fY(y) dxdy =

=

∫ +∞

−∞
x fX (x)dx

∫ +∞

−∞
y fY(y)dy = E(X )E(Y) . ut

We remark that the proof made nowhere use of the fact that the variables
are normally distributed and the statement independent variables are uncor-
related holds in full generality. The inverse, however, is not true as has been
shown by means of specific examples [323]: Uncorrelated random variables
X1 and X2, which both have the same (marginal) normal distribution, need
not be independent. The construction of such a contradicting example starts
from a two dimensional random vector ~X = (X1,X2)t, which obeys a bivari-
ate normal distribution with mean µ = (0, 0)t, variance σ2

1 = σ2
2 = 1 and

covariance cov(X1,X2) = 0
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f(x1, x2) =
1

2π
exp

(
−1

2
(x1, x2)

(
1 0
0 1

)(
x1

x2

))
=

=
1

2π
e−

1
2

(x2
1+x2

2) =
1√
2π

e−
1
2
x2
1 · 1√

2π
e−

1
2
x2
2 = f(x1) · f(x2) .

The two random variables are independent. Next we introduce a modification
in one of the two random variables: X1 remains unchanged and has the density
f(x1) = 1√

2π
exp (− 1

2
x2

1), whereas the second random variable is modulated

by an ideal coin flip, W with the density f(w) = 1
2

(
δ(w + 1) + δ(w − 1)

)
.

In other words, we have X2 = W · X1 = ±X1 with equal weights for both
signs, and accordingly the density function is f(x2) = 1

2f(x1) + 1
2f(−x1) =

f(x1), since the normal distribution with zero mean E(X1) = 0 is symmetric,
f(x1) = f(−x1). Equality of the two distribution functions with the same
normal distribution can also be derived directly:

P (X2 ≤ x) = E
(
P (X2 ≤ x|W)

)
=

= P (X1 ≤ x)P (W = 1) + P (−X1 ≤ x)P (W = −1) =

= FN (x)
1

2
+ FN (x)

1

2
= FN (x) = P (X1 ≤ x) .

The covariance of X1 and X2 is readily calculated,

cov(X1X2) = E(X1X2) − E(X1) · E(X2) = E(X1X2) − 0 =

= E
(

E(X1X2)|W
)

= E(X 2
1 )P (W = 1) + E(−X 2

1 )P (W = −1) =

= 1
1

2
+ (−1)

1

2
= 0 ,

and hence X1 and X2 are uncorrelated. The two random variables, however,
are not independent because

p (x1, x2) = P (X1 = x1,X2 = x2) =

=
1

2
P (X1 = x1,X2 = x1) +

1

2
P (X1 = x1,X2 = −x1)

)
=

=
1

2
p (x1) +

1

2
p (x1) = p (x1) ,

f(x1, x2) = f(x1) 6= f(x1) · f(x2) ,

since f(x1) = f(x2). Lack of independence follows also simply from |X1| =
|X2|. The example is illustrated in figure 2.9: The fact that marginal distri-
butions are identical does not imply that the joint distribution is also the
same! The statement about independence, however, can be made stronger
and then it turns out to be true: “If random variables have a multivariate
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normal distribution and are pairwise uncorrelated, then the random variables
are always independent.” [323].

The marginal distributions of a multivariate normal distribution are ob-
tained straightforwardly by simply dropping the marginalized variables. If
~X = (Xi,Xj ,Xk) is a multivariate, normally distributed variable with the
mean vector µ = (µi, µj , µk) and variance-covariance matrix Σ, then after

elimination of Xj the marginal joint distribution of the vector X̃ = (Xi,Xk)
is multivariate normal with the mean vector µ̃ = (µi, µk) and the variance-
covariance matrix

Σ̃ =

(
Σii Σik

Σki Σkk

)
=

(
var(Xi) cov(Xi,Xk)

cov(Xk,Xi) var(Xk)

)
.

It is worth noticing that non-normal bivariate distributions have been con-
structed, which have normal marginal distributions [263].

2.4 Regularities at large numbers

Having seen in previous sections 1.9.1 and 2.3.3 that probability distribution
may converge to the normal distribution in the limit of large numbers of trials,
one is inclined to conjecture a more general regularity behind these special
cases. The prototype of a system that can be extrapolated to large numbers
is the sequence of Bernoulli trials, the probabilistic outcome of which is given
by the binomial distribution and we shall show that indeed the binomial
distribution converges asymptotically to the normal distribution. The gener-
alization to a sequence of independent variables with distributions different
from binomial and an average according to equation (1.23’)

X =
1

n
Sn =

1

n
(X1,X2, . . . ,Xn) ,

no matter whether they are identically distributed or not, is the subject of
the central limit theorem (CLT). The sufficient condition is finite expectation
value and finite variance for all random variables Xj . The CLT concerns
the distribution of the random variable Sn in the limit n → ∞. Two other
regularities concern first and second moment of Sn: The law of large numbers
guarantees convergence of the sum Sn to the expectation value in strong and
weak forms

lim
n→∞

Sn = nµ ,

and the law of the iterated logarithm confines the fluctuations:
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Fig. 2.10 A fit of the normal distribution to the binomial distribution. The
curves represent normal densities (red), which were fit to the points of the binomial
distribution (black). The three examples. Parameter choice for the binomial distribu-
tion: (n = 4, p = 0.5), (n = 10, p = 0.5), and (n = 5, p = 0.1), for the upper, middle,
and lower plot, respectively.

lim sup
n→∞

(Sn − nµ) = +σ
√
n
√

2 ln(lnn) and

lim inf
n→∞

(Sn − nµ) = −σ
√
n
√

2 ln(lnn) .

For larger values of n the iterated logarithm, ln(lnn), is a very slowly in-
creasing function of n and hence the upper and lower bound to the stochastic
variable are not too different from

√
n (figure 2.12). The law of the iterated

logarithm is the rigorous final answer to the conjectures
√
n-law that we have

mentioned already several times.
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Fig. 2.11 Standardization of the binomial distribution. The figure shows a
symmetric binomial distribution B(20, 1

2
), which is centered around µ = 10 (red).

The transformation yields a binomial distribution centered around the origin with
unit variance: σ = σ2 = 1 (black). The pink curve is a normal density fN (x) =

exp
(
− (x−µ)2/(2σ2)

)
/
√

2πσ2 with the parameters µ = 10 and σ2 = np (1− p) = 5,
and the gray line is a standardized normal density ϕ(x) (µ = 0, σ2 = 1), respectively.

2.4.1 From binomial to normal distributions

The expression normal distribution actually originated from the fact that
many distributions can be transformed in a natural way for large numbers n
to yield the distribution FN (x). Here we derive this result for the binomial
distribution where it appears most natural. A binomial density,

Bk(n, p) =

(
n

k

)
pk (1− p)n−k , 0 ≤ k ≤ n ,

becomes a normal density through extrapolation to large values of n at con-
stant p.16 The transformation from the binomial distribution to the normal
distribution is properly done in two steps (see also [69, pp.210-217]): (i) stan-
dardization and (ii) taking the limit n→∞.

At first we make the binomial distribution comparable to the standard normal
density, ϕ(x) = e−x

2/2/
√

2π, by shifting the maximum towards x = 0 and
adjusting the width (figures 2.10 and 2.11). For 0 < p < 1 and q = 1− p the

16 This is different from an extrapolation performed in a previous section2.3.2 be-
cause the limit limn→∞Bk(n, α/n) = πk(α) leading to the Poisson distribution was
performed for vanishing p = α/n.
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discrete variable k is replaced by a new variable ξ : 17

ξ =
k − np
√
npq

; 0 ≤ k ≤ n .

Instead of the variables Xk and Sk in equation (1.23’) new random variables,
X ∗k and S∗n =

∑n
k=1 X ∗k are introduced, which account for centering around

x = 0 and adjustment to the width of a standard Gaussian, ϕ(x), by mak-
ing use of the expectation value, E(Sn) = np, and the standard deviation,
σ(Sn) =

√
npq, of the binomial distribution.

The theorem of de Moivre and Laplace states now that for k in a neighborhood
of k = np – |ξ| ≤ c with c being an arbitrary fixed positive constant – the
approximation(

n

k

)
pkqn−k ≈ 1√

2πnpq
e−ξ

2/2 ; p+ q = 1, p > 0, , q > 0 (2.48’)

becomes exact in the sense that the ratio of the lhs to the rhs converges to one
as n→∞ [133, section VII.3]. The convergence is uniform with respect to k
in the range specified above. In order to proof the convergence we transform
the lhs by making use of Stirling’s formula, n! ≈ nne−n

√
2πn as n→∞:

(n
k

)
pkqn−k =

n!

k!(n− k)!
pkqn−k ≈

√
n

2πk(n− k)

(( k
np

)−k(n− k
nq

)−(n−k)
)
.

Next we introduce the variable ξ and transform to the exponential function(
n

k

)
pkqn−k ≈ 1√

2πnpq

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k)
)

=

=
1√

2πnpq
e

ln

((
1+ξ
√

q
np

)−k(
1−ξ
√

p
nq

)−(n−k))
.

Then expansion of the logarithm yields

ln

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k)
)

=

= −k ln

(
1 + ξ

√
q

np

)
− (n− k) ln

(
1− ξ

√
p

nq

)
.

Next making use of the series expansion ln(1± γ) ≈ ±γ − γ2/2± γ3/3−... ,
truncation after the second term, and inserting k = np+ ξ

√
npq and n− k =

nq − ξ√npq we find

17 The new variable ξ depends on k and n, but for short we dispense from subscripts.
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ln

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k)
)

=

= − (np+ ξ
√
npq )

(
ξ

√
q

np
− ξ2 q

np
+ . . .

)
−

− (nq − ξ√npq )

(
−ξ
√

p

nq
− ξ2 p

nq
+ . . .

)
.

Evaluation of the expressions eventually yields

ln

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k)
)
≈ − ξ

2

2

and thereby we have proved the conjecture (2.48’). ut

A comparison of figures 2.10 and 2.11 shows that the convergence of the
binomial distribution to the normal distribution is particularly effective in the
symmetric case, p = q = 0.5. The difference is somewhat larger for p = 0.1.
A value of n = 20 is sufficient to make the difference hardly recognizable
with the unaided eye. Figure 2.11 shows the effect of standardization on the
binomial distribution.

In the context of the central limit theorem (section 2.4.2) it is appropriate
to formulate the theorem of de Moivre and Laplace in a slightly different way:
The distribution of the standardized random variable S∗n with a binomial dis-
tribution converges in the limit of large numbers n to the normal distribution
ϕ(x) on any finite constant interval ] a, b] with a < b:

lim
n→∞

P

((Sn − np√
npq

)
∈ ]a, b]

)
=

1√
2π

∫ b

a

e−x
2/2 dx . (2.48)

In the proof [69, p. 215-217] the definite integral
∫ b
a
ϕ(x) dx is partitioned into

n small segments like in Riemannian integration, where the segments still
reflect the discrete distribution. In the limit n → ∞ the partition becomes
finer and eventually converges to the continuous function described by the
integral. In the sense in section 1.8.1 we are dealing with convergence to a
limit in distribution.

2.4.2 Central limit theorem

In addition to the transformation of the binomial distribution into the normal
distribution analyzed in the previous section 2.4.1 we have already encoun-
tered two cases where other probability distributions approached the normal
distribution in the limit of large numbers n: (i) the distribution of scores for
rolling n dice simultaneously (section 1.9.1) and (ii) the Poisson distribution
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(section 2.3.3). Therefore it is obvious to conjecture a more general role of the
normal distribution in the limit of large numbers. The Russian mathemati-
cian Aleksandr Lyapunov pioneered the formulation and derivation of the
generalization known as central limit theorem (CLT) [298, 299]. Research on
CLT was continued since then and has been completed at least for practical
purposes through extensive studies during the twentieth century [5, 401].

The central limit theorem comes in various stronger and weaker forms. We
mention here three of them:

(i) The so-called classical central limit theorem is commonly associated
with the names of the Finnish mathematician Jarl Waldemar Lindeberg [289]
and the French mathematician Paul Pierre Lévy [280]. It is the most common
version used in practice. In essence, the Lindeberg-Lévy central limit theo-
rem is noting but the generalization of the de Moivre-Laplace theorem (2.48)
that was used in the previous section 2.4.1 to proof the transition from the
binomial to the normal distribution in the limit n→∞.

The generalization proceeds from Bernoulli variables to independent and
identically distributed (iid) random variables Xi. The distribution is arbitrary,
need not be specified and the only requirements are a finite expectation value
and a finite variance: E(Xi) = µ < ∞ and var(Xi) = σ2 < ∞. Again we
consider the sum of n random variables, Sn =

∑n
i=1 Xi, standardize to yield

X ∗i and S∗n, and instead of equation (2.48) we obtain

lim
n→∞

P

(
Sn − nµ√

nσ
∈ ]a, b]

)
=

1√
2π

∫ b

a

e−x
2/2 dx. (2.49)

For every segment a < b the arbitrary initial distribution converges to the
normal distribution in the limit n→∞. Although this is already a remarkable
extension of the validity in the limit of the normal distribution, the results
can be made more general.

(ii) Lyapunov’s earlier version of the central limit theorem [298, 299] re-
quires only independent and not necessarily identically distributed variables
Xi with finite expectation values, µi, and variances, σ2

i provided a criterium
called Lyapunov condition is fulfilled by the sum of variances s2

n =
∑n
i=1 σ

2
1 ,

lim
n→∞

1

s2+δ

n∑
i=1

E
(
|Xi − µi|2+δ

)
= 0 . (2.50)

Then the sum
∑n
i=1(Xi−µi)/sn converges in distribution in the limit n→∞

to the standard normal distribution:

1

sn

n∑
i=1

(Xi − µi)
d−→ N (0, 1) . (2.51)

Whether or not a given sequence of random variables fulfils the Lyapunov
condition is commonly verified in practice by setting δ = 1.
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(iii) Lindeberg showed in the year 1922 [290] that a weaker condition than
Lyapunov’s condition is sufficient to guarantee the convergence in distribution
to the standard normal distribution:

lim
n→∞

1

s2
n

n∑
i=1

E
(

(Xi − µi)2 · 1|Xi−µi|>εsn
)

= 0 , (2.52)

where 1|Xi−µi|>εsn is the indicator function (1.27a) identifying sample space

{|Xi − µi| > ε sn}
.
= {ω ∈ Ω : |Xi(ω)− µi| > ε sn} .

If a sequence of random variables satisfies Lyapunov’s condition it satisfies
also Lindeberg’s condition but the converse does not hold in general. Linde-
berg’s condition is sufficient but not necessary in general, and the condition
for necessity is

max
i=1,...,n

σ2
i

s2
n

→ 0 as n→∞ ,

or, in other words, the Lindeberg condition is fulfilled if and only if the central
limit theorem holds.

The three versions of the central limit theorem are related to each other:
Lindeberg’s condition (iii) is the most general form and hence both the clas-
sical CLT (i) and the Lyapunov CLT (ii) can be derived as special cases from
(iii). It is worth noticing, however, that (i) does not follow necessarily from
(ii), because (i) requires a finite second moment whereas the condition for (ii)
is a finite moment of order (2 + δ).

In summary the central limit theorem for a sequence of independent ran-
dom variables Sn =

∑n
i=1 Xi with finite means, E(Xi) = µi < ∞, and vari-

ances, var(Xi) = σ2
i < ∞, states that the sum Sn converges in distribution

to a standardized normal random variable N (0, 1) without any further re-
striction on the densities of the variables. The literature on the central limit
theorem is enormous and several proofs with many variants have been de-
rived (see, for example, [68] or [69, pp. 222-224]). We dispense here from a
repetition of this elegant proof that makes use of the characteristic function,
and present only the key equation for the convergence where the number n
approaches infinity with s being fixed:

lim
n→∞

E
(
eı

.
ısS∗n

)
= lim

n→∞

(
1 − s2

2n

(
1 + ε

( s√
n

)))n
= e−s

2/2 , (2.53)

with ε being any small positive constant.
For practical applications used in the statistics of large samples the cen-

tral limit theorem as encapsulated in equation (2.53) is turned into a rough
approximation

P (σ
√
nx1 < Sn − nµ < σ

√
nx2) ≈ FN (x2) − FN (x1) . (2.54)
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The spread around the mean µ is obtained by setting x = x1 = −x2

P (|Sn − nµ| < σ
√
nx) ≈ 2FN (x) − 1 . (2.54’)

In pre-computer time equation (2.54) has been used extensively with the aid
of tabulations of the functions FN (x) and F−1

N (x), which are still found in
most textbooks of statistics .

2.4.3 Law of large numbers

The law of large numbers states that in the limit of infinitely large samples
the sum of random variable converges to the expectation value:

1

n
Sn =

1

n
(X1 + X2 + . . .+ Xn) → µ for n→∞ .

In its strong form the law can be expressed as

P

(
lim
n→∞

1

n
Sn = µ

)
= 1 . (2.55a)

In other words, the sample average converges almost certainly to the expec-
tation value.

The weaker form of the law of large numbers is written as

P

(
lim
n→∞

∣∣∣∣ 1nSn − µ
∣∣∣∣ > ε

)
= 0 , (2.55b)

and implies convergence in probability: Sn/n
P−→ µ. The weak law states

that for any sufficiently large sample there exists a zone µ ± ε around the
expectation value – no matter how small it is – such that the average of
the observed quantity will come so close to the expectation value that it lies
within the zone.

It is illustrative to visualize the difference between the strong and the weak
law also from a dynamical perspective: The weak law says that the average
Sn/n will be near µ provided n is sufficiently large. The sample, however, may
rarely but infinitely often leave the zone and fulfil |Sn/n − µ| > ε, and the
frequency with which this happens is of measure zero. The strong law asserts
that such excursions will almost certainly never happen and the inequality
|Sn/n− µ| < ε holds for all n that are large enough.

The law of large numbers can be derived as a straightforward consequence
of the central limit theorem (2.49) [69, pp.227-233]. For any fixed but arbi-
trary constant ε > 0 we have
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lim
n→∞

P

(∣∣∣∣Snn − µ

∣∣∣∣ < ε

)
= 1 . (2.56)

The constant ε is fixed and therefore we can define a positive constant ` that
fulfils ` < ε

√
n/σ and for which{∣∣∣∣Sn − nµ√

nσ

∣∣∣∣ < `

}
=⇒

{∣∣∣∣Sn − nµ

n

∣∣∣∣ < ε

}
,

and hence,

P

(∣∣∣∣Sn − nµ√
nσ

∣∣∣∣ < `

)
≤ P

(∣∣∣∣Sn − nµ

n

∣∣∣∣ < ε

)
,

provided n is sufficiently large. Now we go back to equation (2.49), and choose
a symmetric interval a = −` and b = +` for the integral. Then the lhs of the

inequality converges to
∫ +l

−l exp (−x2/2)dx/
√

2π in the limit n→∞. For any
δ > 0 we can choose ` so large that the value of the integral exceeds 1 − δ
and we get for sufficiently large values of n

P

(∣∣∣∣Snn − µ

∣∣∣∣ < ε

)
= 1 − δ . (2.57)

This result proves that the law of large numbers (2.56) is a corollary of (2.49).
ut

Related to and a consequence of equation (2.56) is Chebyshev’s inequality
for random variables X that have a finite second moment, which is named
after the Russian mathematician Pafnuty Lvovich Chebyshev :

P (|X | ≥ c) ≤ E(X 2)

c2
(2.58)

and which is true for any constant c > 0. We dispense here from a proof that
is found in [69, pp. 228-233]. By means of Chebyshev’s inequality the law
of large numbers (2.56) can extended to a sequence of independent random
variables Xj with different expectation values and variances, E(Xj) = µ(j)

and var(Xj) = σ 2
j , with the restriction that there exists a constant Σ2 <∞

such that σ 2
j ≤ Σ2 is fulfilled for all Xj . Then we have for each c > 0:

lim
n→∞

P

(∣∣∣∣X1 + . . .+ Xn
n

− µ(1) + . . .+ µ(n)

n

∣∣∣∣ < c

)
= 1 . (2.59)

The main message of the law of large numbers is that for a sufficiently large
numbers of independent events the statistical errors in the sum will vanish
and the mean converges to the exact expectation value. Hence, the law of
large numbers provides the basis for the assumption of convergence in math-
ematical statistics (section 2.6).
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2.4.4 Law of the iterated logarithm

The law of the iterated logarithm consists of two asymptotic regularities de-
rived for sums of random variables, which are related to the central limit
theorem and the law of large numbers, and in a way complete the predictions
of both. The name of the law points at the appearance of the function ’log log’
in the forthcoming expressions – it does not refer to the notion of the iter-
ated logarithm in computer science18 – and the derivation is attributed to the
two Russian scholars of mathematics Aleksandr Khinchin [248] and Andrey
Kolmogorov [257]. The proof in the degree of generality used here has been
provided later [130, 198]. The law of the iterated logarithm provides upper
and lower bounds for the values of sums of random variables and in this ways
confines the size of fluctuations.

For a sum of n independent and identically distributed (iid) random vari-
ables with expectation value E(Xi) = µ and finite variance var(X ) = σ2 <∞,

Sn = X1 + X1 + . . . + Xn ,

the following two limits are fulfilled with probability one:

lim sup
n→∞

Sn − nµ√
2n ln(ln n)

= + |σ| and (2.60a)

lim inf
n→∞

Sn − nµ√
2n ln(ln n)

= − |σ| . (2.60b)

The two theorems (2.60) are equivalent and this follows directly from the
symmetry of the standardized normal distribution, N (0, 1). We dispense here
from the presentation of a proof for the law of the iterated logarithm that
can be found, for example, in a monograph by Henry McKean [314] or in a
publication by William Feller [130]. For the purpose of illustration we compare
with the already mentioned heuristic

√
n-law (see section 1.1), which is based

on the properties of the symmetric standardized binomial distribution B(n, p)
with p = 1

2 . Accordingly we have 2σ/n = 1/
√
n and consequently most values

of Sn − nµ lie in the interval −|σ| ≤ Sn ≤ +|σ|. The corresponding result
from the law of the iterated logarithm is

18 In computer science the iterated logarithm of n is commonly written log∗ n and
represents the number of times the logarithmic function must be iteratively applied
before the result is is less than or equal to one:

log∗
.
=

{
0 if n ≤ 1 ,

1 + log∗(logn) if n > 1 .

The iterated logarithm is well defined for base ’e’, for base ’2’ and in general for any
base greater than e1/e = 1.444667... .
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Fig. 2.12 Illustration of the law of the iterated logarithm. The picture shows
the sum of the scorers of a sequence of Bernoulli trials with the outcome Xi = ±1
and Sn =

∑n
i=1 Xi: The standardized sum, S(n)/n − µ = s(n) − µ = s(n) since

µ = 0, is shown as a function of n. In order to make the plot illustrative we adopt
the scaling of the axes proposed by Dean Foster [148] that yields a straight line
for the function σ(n) = 1/

√
n: On the x-axis we plot x(n) = 2 − 1/n0.06, and

this results in the following pairs of values (x, n) = (1, 1), (1.129, 10), (1.241, 100),
(1.339, 1000), (1.564, 106), (1.810, 1012), and (2,∞). The y-axis is split into two halves
corresponding to positive and negative values of s(n). In the positive half we plot
s(n)0.12 and in the negative half −|s(n)|0.12 in order to yield symmetry between the
positive and the negative zone. The two blue curves provide an envelope µ ± σ =
µ ±

√
1/n, and the two black curves present the results of the law of the iterated

logarithm, µ±
√

(2 ln(lnn))/n. Note that the function ln(lnn) adopts negative values
for 1 < x < 1.05824 (1 < n < 2.71828).

−
√

2 ln (ln n)

n
≤ Sn ≤ +

√
2 ln (ln n)

n

with probability one. One particular case of iterated Bernoulli trials – tosses
of a fair coin – is shown in figure 2.12, where the envelope of the sum Sn of
the cumulative score of n trials, ±

√
2 ln(lnn)/n is compared with the results

of the square root n law, µ± σ = ±
√

1/n. We remark that quite frequently
the sum takes on values close to the envelopes. The special importance of
the results of the law of the iterated logarithm for the Wiener process will be
discussed later (section 3.2.2.2).

In essence, we may summarize the results of this section in three state-
ments, which are part of large sample theory : For independent and iden-
tically distributed (iid) random variables Xi with Sn =

∑n
i=1 Xi with

E(Xi) = E(X ) = µ and finite variance var(Xi) = σ < ∞ we have the three
large sample results:

(i) the law of large numbers: Sn → nE(X ) = nµ ,
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(ii) the law of the iterated logarithm:

lim sup (Sn−nµ)√
2n ln(lnn)

→ +|σ|

lim inf (Sn−nµ)√
2n ln(lnn)

→ −|σ|
, and

(iii) the central limit theorem: 1√
n

(
Sn − nE(X )

)
→ N (0, 1) .

The theorem (i) defines the limit of the sample average, theorem (ii) de-
termines the size of fluctuations and theorem (iii), eventually, refers to the
limiting distribution function, which turns out to be the normal distribution.
All three theorems can be extended in their range of validity to independent
random variables with arbitrary distributions provided mean and variance
are finite.
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Fig. 2.13 The log-normal distribution. The log-normal distribution, lnN (µ, σ),
is defined on the positive real axis, x ∈]0,∞[ and has the probability density (pdf)

flnN (x) = exp
(
−(lnx− µ)2/(2σ2)

) /
(x
√

2πσ2)

and the cumulative distribution function (cdf)

FlnN (x) =

(
1 + erf

(
(lnx− µ)/

√
2σ2

)) /
2 .

The two parameters are confined by the relations µ ∈ R and σ2 > 0. Parameter
choice and color code: µ = 0, σ =0.2 (black), 0.4 (red), 0.6 (green), 0.8 (blue), and
1.0 (yellow).
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2.5 Further probability distributions

In the previous section 2.3 we presented the three most relevant probability
distributions: (i) the Poisson distribution because it describes the distribu-
tion of occurrence of independent events, (ii) the binomial distribution dealing
with independent trials with two outcomes, and (iii) the normal distribution
being the limiting distribution of large numbers of individual events irrespec-
tively of the statistics of single events. In this section we shall discuss seven
more or less arbitrarily selected distributions, which play an important role in
science and/or in statistics. The presentation here is inevitably rather brief
and for reading of a detailed treatise we refer to [235, 236]. Other proba-
bility distributions will be mentioned together with the problems to which
they are applied, for example the Erlang distribution in the discussion of the
Poisson process (section 3.2.2.4) and the Maxwell-Boltzmann distribution in
the derivation of the chemical rate parameter from molecular collisions (sec-
tion 4.1.4).

2.5.1 The log-normal distribution

The log-normal distribution in a continuous probability distribution of a ran-
dom variable Y with a normally distributed logarithm. In other words, if
X = lnY is normally distributed then Y = exp (X ) has a log-normal dis-
tribution. Accordingly Y can take on only positive real values. Historically,
this distribution had several other names the most popular of them being
Galton’s distribution named after the pioneer of statistics in England, Fran-
cis Galton or McAlister’s distribution after the statistician Donald McAlister
[235, chap. 14, pp. 207-258].

The log-normal distribution meets the need for modeling empirical data
that show frequently observed deviation from the conventional normal dis-
tribution: (i) meaningful data are non-negative, (ii) positive skew implying
that there are more values above then below the maximum of the probabil-
ity density function (pdf), and (iii) more obvious meaning of the geometric
rather than the arithmetic mean [154, 312]. Despite its obvious usefulness and
applicability to problems in science, economics, and sociology the log-normal
distribution is not popular among non-statisticians [286].

The log-normal distribution contains two parameters, lnN (µ, σ2) with µ ∈
R and σ2 ∈ R>0, and is defined on the domain x ∈]0,∞[. The density function
(pdf) and the cumulative distribution (cdf) are given by (figure 2.13):

pdf : f lnN (x) =
1

x
√

2πσ2
exp
(
− (lnx− µ)2

2σ2

)
cdf : F lnN (x) =

1

2

(
1 + erf

( lnx− µ√
2σ2

))
.

(2.61)
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By definition the logarithm of the variable X is normally distributed, and
this implies

X = eµ+σZ ,

where N stand for a standard normal variable. The moments of the log-
normal distribution are readily calculated19

mean : eµ+σ2/2 ,

median : eµ ,

mode : eµ−σ
2

,

variance : (eσ
2

− 1) e2µ+σ2

, (2.62)

skewness : (eσ
2

+ 2)
√
eσ2 − 1 , and

kurtosis : e4σ2

+ 2e3σ2

+ 3e2σ2

− 6 .

The skewness γ1 is always positive and so is the (excess) kurtosis since σ2 = 0
yields γ2 = 0, and σ2 > 0 implies γ2 > 0.

The entropy of the log-normal distribution is

H(f lnN ) =
1

2

(
1 + ln(2πσ2) + 2µ

)
. (2.63)

Like the normal distribution has the maximum entropy of all distribution
defined on the real axis, x ∈ R, the log-normal distribution is the maximum
entropy probability distribution for a random variable X for which mean and
variance of lnX is fixed.

Finally, we mention that the log-normal distribution can be well approxi-
mated by a distribution [422]

F (x; µσ) =

((eµ
x

)π/(σ√3)

+ 1

)−1

that has integrals that can be expressed in terms of elementary functions.

2.5.2 The χ2-distribution

The χ2-distribution also written as chi-squared distribution is one of the most
frequently used distribution in inferential statistics for hypothesis testing and
construction of confidence intervals. In particular, the χ2 distributions is ap-
plied in the common χ2-test for the quality of the fit of an empirically deter-

19 Here and in the following listings for other distributions“kurtosis” stands for excess
kurtosis γ2 = β2 − 3 = µ4

/
σ4.
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Fig. 2.14 The χ2 distribution. The chi-squared distribution, χ2
k , k ∈ N, is defined

on the positive real axis, x ∈ [0,∞[, with the parameter k called the number of the
degrees of freedom, has the probability density (pdf)

fχ2
k
(x) = x

k
2
−1e−

x
2

/ (
2
k
2 Γ
(
k
2

))
and the cumulative distribution function (cdf)

Fχ2
k
(x) = γ

(
k
2
, x
2

) /
Γ
(
k
2

)
.

Parameter choice and color code: k =1 (black), 1.5 (red), 2 (yellow), 2.5 (green), 3
(blue), 4 (magenta) and 6 (cyan). Although k, the number of degrees of freedom, is
commonly restricted to integer values, we show here also the curves for two interme-
diate values (k=1.5, 2.5).
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mined distribution to a theoretical one (section 2.6.2). Many other statistical
tests are based on the χ2-distribution as well.

The chi-squared distribution, χ2
k,20 is the distribution of a random variable

Q, which is given by the sum of the squares of k independent, standard normal
variables with distribution N (0, 1)

Q =

k∑
i=1

X 2
i , (2.64)

where the only parameter of the distribution, k, is called the number of the
degrees of freedom being tantamount to the number of independent variables
Xi. Q is defined on the positive real axis (including zero), x ∈ [0,∞[ and has
the following density function and cumulative distribution (figure 2.14):

pdf : fχ2
k
(x) =

x
k
2
−1 e−

x
2

2
k
2

, x ∈ R≥0 and

cdf : Fχ2
k
(x) =

γ
(
k
2 ,
x
2

)
Γ
(
k
2

) = P

(
k

2
,
x

2

)
.

(2.65)

where γ(k, z) is the lower incomplete Gamma function and P (k, z) is the
regularized Gamma function. The special case with k = 2 has the particularly
simple form: Fχ2

2
(x) = 1− e− x2 .

The conventional χ2-distribution is sometimes denoted as central χ2-
distribution in order to distinguish it from the noncentral χ2-distribution,
which is derived from k independent and normally distributed variables with
means µi and variances σ2

i . The random variable

Q =

k∑
i=1

(
Xi
σi

)2

is distributed according to the noncentral χ2-distribution χ2
k(λ) with two

parameters, k and λ, where λ =
∑k
i=1(µi/σi)

2 is the noncentrality parameter.

The moments of the central χ2
k-distribution are readily calculated

20 The chi-squared distribution is sometimes written χ2(k) we prefer the subscript
since the number of degrees of freedom, the parameter k, specifies the distribution.
Often the random variables Xi fulfil a conservation relation and then the number of
independent variables is reduced to k − 1, and we have χ2

k−1 (section 2.6.2).
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Fig. 2.15 Student’s t-distribution. Student’s distribution is defined on the real
axis, x ∈] −∞,+∞[, with the parameter r ∈ N>0 called the number of degrees of
freedom, has the probability density (pdf)

fstud(x) =
Γ
(
r+1
2

)
√
πrΓ

(
r
2

) (1 + x2
r

) r+1
2

and the cumulative distribution function (cdf)

Fstud(x) = 1
2

+ xΓ
(
r + 1

2

)
· 2F1

(
1
2
, r+1

2
, 3
2
,− x2

r

)
√
πrΓ( r2 )

.

The first curve (magenta, r = 1) represents the density of the Cauchy-Lorentz dis-
tribution (figure 2.18). Parameter choice and color code: r =1 (magenta), 2 (blue), 3
(green), 4 (yellow), 5 (red) and +∞ (black). The black curve representing the limit
r →∞ of Student’s distribution is the standard normal distribution.
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mean : k ,

median : ≈ k
(

1− 2

9k

)3

,

mode : max{k − 2 , 0} ,

variance : 2k , (2.66)

skewness :
√

8/k , and

kurtosis : 12/k .

The skewness γ1 is always positive and so is the excess kurtosis γ2. The
raw moments µ̂n = E(Qn) and the cumulants of the χ2

k-distribution have
particularly simple expressions:

E(Qn) = µ̂n = k(k + 2)(k + 4) · · · (k + 2n− 2) = 2n
Γ
(
n+ k

2

)
Γ
(
k
2

) and (2.67)

κn = 2n−1 (n− 1)! k . (2.68)

The entropy of the χ2
k-distribution is readily calculated by integration:

H(fχ2) =
k

2
+ ln

(
2Γ
(k

2

))
+
(

1− k

2

)
· ψ
(
k

2

)
, (2.69)

where ψ(x) = d
dx lnΓ (x) is the digamma function.

The χ2
k-distribution has a simple characteristic function

φχ2(s) = (1 − 2ı
.
ı s)−k/2 . (2.70)

The moment generating function is defined only for s < 1
2 :

Mχ2(s) = (1 − 2 s)−k/2 for s <
1

2
. (2.71)

Because of its central importance for tests of significance numerical tables
of the χ2-distribution are found in almost every textbook of mathematical
statistics.

2.5.3 Student’s t-distribution

Student’s t-distribution has a remarkable history. It has been discovered by
the famous English statistician William Sealy Gosset who published his works
under the pen name Student [360]. Gosset was working at the brewery of
Arthur Guinness in Dublin, Ireland, where it was forbidden to publish any
paper regardless of the contained information, because Guinness was afraid
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that trade secrets and other confidential information could be disclosed. Al-
most all of Gosset’s paper including the one describing the t-distribution
were published under the pseudonym “Student” [421]. Gosset’s work has been
known to and was supported by Karl Pearson but it was Ronald Fisher who
appreciated the importance of Gosset’s work on small samples and made it
popular [139].

Student’s t-distribution is a family of continuous, normal probability dis-
tributions that applies to situations where the sample size is small, the vari-
ance is unknown and one wants to derive a reliable estimate of the mean.
Student’s distribution plays a role in a number of commonly used tests in
analyzing statistical data an example being Student’s test accessing the sig-
nificance of differences between two sample means – for example to find out
whether or not a difference in mean body height between basketball players
and soccer players is significant – or the construction of confidence intervals
for the difference between population means. In a way Student’s t-distribution
is required for higher order statistics in the sense of a statistics of statistics,
for example, to estimate, how likely it is to find the true mean within a given
range around the finite sample mean (section 2.6). In other words, n sam-
ples are taken from a population with a normal distribution having fixed but
unknown mean and variance, the sample mean and the sample variance are
computed from these n points and the t-distribution is the distribution of
the location of the true mean relative to the sample mean, calibrated by the
sample standard deviation.

To make the meaning of Student’s t-distribution precise we assumes n
independent random variables Xi, i = 1, . . . , n drawn from the same popula-
tion which is normally distributed with mean value E(Xi) = µ and variance
var(Xi) = σ2. Then the sample mean and the unbiased sample variance are
the random variables

Xn =
1

n

n∑
i=1

Xi and S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2 .

As follows from Cochran’s theorem [70] the random variable V = (n−1)S2
n/σ

2

follows a χ2-distribution with r = n − 1 degrees of freedom. The deviation
of the sample mean from the population mean is properly expressed by the
variable

Z = (Xn − µ)

√
n

σ
, (2.72)

which is the basis for the calculation of z-scores.21 The variable Z is normally
distributed with mean zero and variance one as follows from the fact that the
sample mean Xn obeys a normal distribution with mean µ and variance
σ2/n. In addition, the two random variables Z and V are independent, and

21 In mathematical statistics (section 2.6) the quality of measured data is often
characterized by scores. The z-score of a sample corresponds to the random variable Z
(2.72) and it is measured in standard deviations from the population mean as unites.



138 2 Statistics

the pivotal quantity22

T .
=

Z√
V/(n− 1)

= (Xn − µ)

√
n

Sn
(2.73)

follows a Student’s t-distribution, which depends on the degrees of freedom
r = n− 1 but neither on µ nor on σ.

Student’s distribution is a one parameter distribution with r being the
number of sample points or the so-called degree of freedom. It is symmetric
and bell-shaped like the normal distribution but the tails are heavier in the
sense that more values fall further away from the mean. Student’s distribution
is defined on the real axis, x ∈ ]− ∞,+∞[ and has the following density
function and cumulative distribution (figure 2.15):

pdf : fstud(x) =
Γ
(
r + 1

2

)
√
πr Γ

( r
2

) (1 +
x2

r

)−r + 1
2

, x ∈ R and

cdf : Fstud(x) =
1

2
+ x Γ

(
r + 1

2

)
·

2F1

(
1
2 ,
r + 1

2 , 3
2 ,−

x2
r

)
√
πr Γ

( r
2

) .

(2.74)

where 2F1 is the hypergeometric function. The t-distribution has simple ex-
pressions for several special cases:

(i) r = 1, Cauchy-distribution: f(x) = 1
π(1+x2) , F (x) = 1

2 + 1
π arctan(x) ,

(ii) r = 2: f(x) = 1

(2+x2)
3
2
, F (x) = 1

2

(
1 + x√

2+x2

)
,

(iii) r = 3: f(x) = 6
√

3
π(3+x2)2 , F (x) = 1

2 +
√

3x
π(3+x2) + 1

π arctan
(
x√
3

)
,

(iv) r =∞, normal distribution: f(x) = ϕ(x) = 1√
2π
e−

x2

2 , F (x) = FN (x) .

Formally the t-distribution represents an interpolation between the Cauchy-
Lorentz distribution (section 2.5.6) and the normal distribution both stan-
dardized to mean zero and variance one. In this sense it has a lower maximum
and heavier tails than the normal distribution and a higher maximum and
less heavy tails than the Cauchy-Lorentz distribution.

The moments of Student’s distribution are readily calculated

22 A pivotal quantity or a pivot is a function of measurable and unmeasurable param-
eters whose probability distribution does not depend on the unknown parameters.
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mean : 0, for r > 1, otherwise undefined ,

median : 0 ,

mode : 0 ,

variance :


∞ for 1 < r ≤ 2 ,
r

r − 2 for r > 2 ,

undefined otherwise ,

(2.75)

skewness : 0, for r > 3, otherwise undefined , and

kurtosis :


∞ for 2 < r ≤ 4 ,

6
r − 4 for r > 4 ,

undefined otherwise .

The variance of the Student’s distribution – provided it is defined – is larger
than σ2 = 1, the variance of the standard normal distribution. In the limit of
infinite degrees of freedom Student’s distribution converges to the standard
normal distribution and so does the variance: σ2 = limr→∞

r
r − 2 = 1. Stu-

dent’s distribution is symmetric and hance the skewness γ1 is either zero or
undefined, and the (excess) kurtosis γ2 is undefined or positive and converges
to zero in the limit r →∞.

The raw moments µ̂n = E(T n) of the t-distribution have fairly simple
expressions:

E(T k) =


0 k odd , 0 < k < r ,

1
√
π Γ
(
r
2

) r k2 Γ (k+1
2

)
Γ
(
r−k

2

)
k even , 0 < k < r ,

undefined k odd , 0 < r ≤ k ,
∞ k even , 0 < r ≤ k .

(2.76)

The entropy of Student’s t-distribution is readily calculated by integration:

H(fstud) =
k + 1

2

(
ψ
(1 + r

2

)
− ψ

(r
2

))
+ ln

(√
r B
(r

2
,

1

2

))
, (2.77)

where ψ(x) = d
dx lnΓ (x) and B(x, y) =

∫ 1

0
tx−1(1−t)y−1 dt are the digamma

function and the beta function, respectively.

Student’s-distribution has the characteristic function

φstud(s) =
Kr/2(

√
r |s|) · (

√
r |s|)r/2

2
r
2
−1 · Γ

( r
2

) for r > 0 . (2.78)

where Kα(x) is a modified Bessel function.
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Fig. 2.16 The exponential distribution. The exponential distribution is defined
on the real axis including zero, x ∈ [0,+∞[, with the parameter λ ∈ R>0 called the
rate parameter, and has the probability density (pdf)

fexp(x) = λ exp (−λx)
and the cumulative distribution function (cdf)

Fexp(x) = 1− exp (−λx) .
Parameter choice and color code: λ =0.5 (black), 2 (red), 3 (green), and 4 (blue).
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2.5.4 The exponential and the geometric distribution

The exponential distribution is a family of continuous probability distribu-
tions, which describe the distribution of the time intervals between events in
a Poisson process (section 3.2.2.4), which is a process where the number of
events in any time interval has a Poisson distribution.23 The Poisson process
is a process where events occur steadily, independently of each other and at a
constant average rate λ ∈ R>0, which is the only parameter of the exponential
distribution and the Poisson process as well.

The exponential distribution has widespread applications in science and
sociology. It describes the time to decay of radioactive atoms, the time to
reaction events in irreversible first order processes in chemistry and biology,
the waiting times in queues of independently acting customers, the time to
failure of components with constant failure rates and other instances.

The exponential distribution is defined on the positive real axis, x ∈ [0,∞[,
with a positive rate parameter λ ∈ ] 0,∞[. The density function and cumu-
lative distribution are of the form (figure 2.16):

pdf : fexp(x) = λ exp (−λx), x ∈ R>0 and

cdf : Fexp(x) = 1 − exp (−λx), x ∈ R>0 .
(2.79)

The moments of exponential distribution are readily calculated

mean : λ−1 = µ ,

median : λ−1 ln 2 ,

mode : 0 ,

variance : λ−2 , (2.80)

skewness : 2 , and

kurtosis : 6 .

A commonly used alternative parametrization uses a survival parameter β =
λ−1 = µ instead of the rate parameter, and survival is often measured in
terms of half-life, which is the expectation value of the time when one half
of the events have taken place – for example 50 % of the atoms have decayed
– and represents just another name for the median: µ = β ln 2 = ln 2/λ. The
exponential distribution provides an easy to verify test case for the median-
mean inequality:

23 It is important to distinguish the exponential distribution and the class of expo-
nential families of distributions, which comprises many other distributions like the
normal distribution, the Poisson distribution, the binomial distribution and many
others [116].
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|E(X )− µ| =
1 − ln 2

λ
<

1

λ
= σ .

The raw moments of the exponential distribution are given simply by

E(Xn) = µ̂n =
n!

λn
. (2.81)

Among all probability distribution with the support [ 0,∞[ and mean µ the
exponential distribution with λ = 1/µ has the largest entropy (section 2.1.3):

H(fexp) = 1 − log λ = 1 + logµ . (2.20’)

The moment generation function of the exponential distribution is

Mexp(s) =
(

1 − s

λ

)−1

, (2.82)

and the characteristic function is

φexp(s) =

(
1 − ı

.
ı s

λ

)−1

. (2.83)

Finally, we mention a property of the exponential distribution that makes
it unique among all continuous probability distributions: It is memory-
less. Memorylessness can be encapsulated in an example called ”hitchhiker’s
dilemma”: Waiting for hours on a lonely road does not increase the probabil-
ity of arrival of the next car. Cast into probabilities this means for a random
variable T :24

P (T > s+ t |T > s) = P (T > t) ∀ s, t ≥ 0 . (2.84)

In other words, the probability of arrival does not change no matter how
many events have happened.

The discrete analogue to the exponential distribution is the geometric dis-
tribution. Considered is a sequence of independent Bernoulli trials with p
being the probability of success and the only parameter of the distribution:
0 < p ≤ 1. The random variable X ∈ N is the number of trials before the
first success.

The probability mass function and the cumulative distribution function of
the geometric distribution are:

pmf : fgeom
k;p = p · (1− p)k, k ∈ N and

cdf : F geom
k;p = 1 − (1− p)k+1), k ∈ N .

(2.85)

24 We remark that memoryless is not tantamount to independence. Independence
would require P (T > s+ t |T > s) = P (T > s+ t).
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Fig. 2.17 The logistic distribution. The logistic distribution is defined on the
real axis, x ∈ ]− ∞,+∞[, with two parameters, the location µ ∈ R and the scale
b ∈ R>0, has the probability density (pdf)

flogist(x) = e−(x−µ)b

b (1+e−(x−µ)/b)2

and the cumulative distribution function (cdf)
Flogist(x) = 1

1+e−[x−µ)/b .

Parameter choice and color code: µ = 2, b =1 (black), 2 (red), 3 (yellow), 4 (green),
5 (blue) and 6 (magenta).
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The moments of geometric distribution are readily calculated

mean :
1− p
p

,

median : λ−1 ln 2 ,

mode : 0 ,

variance :
1− p
p2

, (2.86)

skewness :
2− p√
1− p

, and

kurtosis : 6 +
p2

1− p
.

Like the exponential distribution the geometric distribution is lacking mem-
ory in the sense of equation (2.84). The information entropy has the form

H(fgeom
k;p ) = − 1

p

(
(1− p) log(1− p) + p log p

)
. (2.87)

Finally, we present the moment generating function and the characteristic
function of the geometric distribution:

Mgeom(s) =
p

1− (1− p) exp (s)
and (2.88)

φgeom(s) =
p

1− (1− p) exp (ı
.
ı s)

, (2.89)

respectively.

2.5.5 The logistic distribution

The logistic distribution is commonly used as a model for growth with limited
resources. It is applied in economics, for example, to model the market pene-
tration of a new product, in biology for population growth in an ecosystem, in
agriculture for the expansion of agricultural production or to weight gain in
animal fattening. It is a continuous probability distribution with two param-
eters, the position of the mean µ and the scale b. The cumulative distribution
function of the logistic distribution is the logistic function.

The logistic distribution is defined on the real axis, x ∈ ]− ∞,∞[, with
two parameters, the position of the mean µ ∈ R and the scale b ∈ R>0. The
density function and cumulative distribution are of the form (figure 2.17):
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pdf : flogist(x) =
e−(x−µ)b

b (1 + e−(x−µ)/b)2
, x ∈ R , and

cdf : Flogist(x) =
1

1 + e−(x−µ)/b
, x ∈ R .

(2.90)

The moments of logistic distribution are readily calculated

mean : µ ,

median : µ ,

mode : µ ,

variance :
π2 b2

3
, (2.91)

skewness : 0 , and

kurtosis :
6

5
.

A frequently used alternative parametrization uses the variance as parameter,
σ = πb/

√
3 or b =

√
3σ/π. The density and the cumulative distribution can

be expressed also in terms of hyperbolic functions

flogist(x) =
1

4b
sech2

(
x− µ

2b

)
and Flogist(x) =

1

2
+

1

2
tanh

(
x− µ

2b

)
.

The logistic distribution resembles the normal distribution and like Student’s
distribution the logistic distribution has heavier tails and a lower maximum
than the normal distribution. The entropy takes on the simple form

H(flogist) = log b + 2 . (2.92)

The moment generating of the logistic distribution is

Mlogist(s) = exp (µs)B(1− bs, 1 + bs) , (2.93)

for |bs| < 1 and B(x, y) being the Beta function. The characteristic function
is

φlogist(s) =
πbs exp (ı

.
ı µs)

sinh(πbs)
. (2.94)

2.5.6 The Cauchy-Lorentz distribution

The Cauchy-Lorentz distribution C(γ, ϑ) is a continuous distribution with two
parameters, the position ϑ and the scale γ. It is named after the French math-
ematician Augustin Louis Cauchy and the Dutch physicist Hendrik Antoon
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Fig. 2.18 Cauchy-Lorentz density and distribution. In the two plots the
Cauchy-Lorentz distribution, C(ϑ, γ), is shown in from of the probability density

fC(x) = γ
/ (

π
(
(x− ϑ)2 + γ2

))
and the probability distribution

FC(x) = 1
2 + arctan

(
(x− ϑ)/γ

) /
π .

Choice of parameters: ϑ = 6 and γ = 0.5 (black), 0.65 (red), 1 (green), 2 (blue) and
4 (yellow).
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Fig. 2.19 Comparison of Cauchy-Lorentz and normal density. The plots com-
pare the Cauchy-Lorentz density, C(ϑ, γ) (full lines), and the normal density N (µ, σ2)
(broken lines). In the flanking regions the normal density decays to zero much faster
than the Cauchy-Lorentz density, and this is the cause of the abnormal behavior of
the latter. Choice of parameters: ϑ = µ = 6 and γ = σ2 = 0.5 (black), 1 (red).

Lorentz and is important in mathematics and in particular in physics where
it occurs as the solution to the differential equation for forced resonance. In
spectroscopy the Lorentz curve is used for the description of spectral lines that
are homogeneously broadened. The Cauchy distribution is a typical heavy-
tailed distribution in the sense that larger values of the random variable are
more likely to occur in the right tail than in the exponential distribution.
Heavy-tailed distributions may also have heavy left tails, or both tails may
be heavy as in the Cauchy distribution. As we shall see in section 3.2.5 the
Cauchy distribution is a stable distribution and can be partitioned into a sum
of Cauchy distributions.

The Cauchy probability density function and the cumulative probability
distribution are of the form (figure 2.18)

pdf : fC(x) =
1

π γ
· 1

1 +
(
x−ϑ
γ

)2 =

=
1

π
· γ

(x− ϑ)2 + γ2
x ∈ R and

cdf : FC(x) =
1

2
+

1

π
arctan

(
x− ϑ
γ

)
.

(2.95)
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The two parameters define the position of the peak, ϑ, and the width of the
distribution, γ (figure 2.18). The peak height or amplitude is 1/(πγ). The
function FC(x) can be inverted

F−1
C (p) = ϑ + γ tan

(
π
(
p− 1

2

))
(2.95’)

and we obtain for the quartiles and the median the values: (ϑ− γ, ϑ, ϑ+ γ).
As with the normal distribution we define a standard Cauchy distribution
C(ϑ, γ) with ϑ = 0 and γ = 1, which is identical with Student’s t-distribution
with one degree of freedom, r = 1 (section 2.5.3).

Another remarkable property of the Cauchy distribution concerns the ratio
Z between two independent normally distributed random variables X and Y
that fulfils a standard Cauchy distribution:

Z =
X
Y
, FX = N (0, 1) , FY = N (0, 1) =⇒ FZ = C(0, 1) ,

The distribution of the quotient of two random variables is often called the
ratio distribution and therefore one can say the Cauchy distribution is the
normal ratio distribution.

Compared to the normal distribution the Cauchy distribution has heavier
tails and accordingly a lower maximum (figure 2.19. In this case we cannot
use the (excess) kurtosis as an indicator because all moments of the Cauchy
distribution are undefined, but we can compute and compare the heights of
the standard densities: fC(x = ϑ) = 1

π ·
1
γ and fN (x = µ) = 1√

2π
· 1
σ , which

yields fC(ϑ) = 1
π and fN (µ) = 1√

2π
for γ = σ = 1 with 1

π < 1√
2π

. utThe

Cauchy distribution has, nevertheless, a defined median and mode, which
both coincide with the position of the maximum of the density function,
x = ϑ.

The entropy of the Cauchy density is: H(fC(ϑ,γ)) = log γ+ log 4. It cannot
be compared with the entropy of the normal distribution in the sense of the
maximum entropy principle (section 2.1.3), because this principle refers to
distributions with variance σ2 whereas the variance of the Cauchy distribution
is undefined.

The Cauchy distribution has no moment generating function but a char-
acteristic function:

φC(s) = exp (ı
.
ı ϑ s − γ |s|) . (2.96)

A consequence of the lack of defined moments is that the central limit theo-
rem cannot be applied to a sequence of Cauchy variables. It is can be shown
by means of the characteristic function that the mean of a sequence of inde-
pendent and identically distributed random variables with standard Cauchy
distribution, S =

∑n
i=1 Xi/n has the sam standard Cauchy distribution and

is not normally distributed as the central limit theorem predicts.
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Fig. 2.20 Lévy density and distribution. In the two plots the Lévy distribution,
L(ϑ, γ), is shown in from of the probability density

fL(x) =
√

γ
2π

exp
(
− γ

2(x−ϑ)

) /
(x− ϑ)3/2

and the probability distribution

FL(x) = erfc
(√

γ
2(x−ϑ)

)
.

Choice of parameters: ϑ = 0 and c = 0.5 (black), 1 (red), 2 (green), 4 (blue) and 8
(yellow).
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Fig. 2.21 A bimodal probability density. The figure illustrates a bimodal dis-
tribution modeled as a superposition of two normal distributions (2.99) with α = 1/2
and different values for mean and variance (ν1 = 2, σ2

1 = 1/2) and (ν2 = 6, σ2
2 = 1):

f(x) = (
√

2e−(x−2)2 + e−(x−6)2/2)
/

(2
√

2π). The upper part shows the proba-
bility density corresponding to the two modes µ̃1 = ν1 = 2 and µ̃2 = ν2 = 6.
Median µ̄ = 3.65685 and mean µ = 4 are situated near the density minimum between
the two maxima. The lower part presents the cumulative probability distribution,

F (x) = 1
4

(
2 + erf

(
x − 2

)
+ erf

(
x−6√

2

))
, as well as the construction of the median.

The variances in this example are: µ̂2 = 20.75 and µ2 = 4.75.
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2.5.7 The Lévy distribution

The Lévy distribution L(γ, ϑ) is a continuous one-sided probability distribu-
tion, which is defined for values of the variable x that are larger or equal a
shift parameter ϑ: x ∈ [ϑ,∞[. It is a special case of the inverse gamma dis-
tribution and belongs together with the normal and the Cauchy distribution
the class of analytically accessible stable distributions.

The Lévy probability density function and the cumulative probability dis-
tribution are of the form (figure 2.20)

pdf : fL(x) =

√
γ

2π
· 1

(x− ϑ)3/2
exp

(
− γ

2(x− ϑ)

)
, x ∈ [ϑ,∞[,

cdf : FL(x) = erfc

(√
γ

2(x− ϑ)

)
.

(2.97)

The two parameters ϑ ∈ R and γ ∈ R>0 are the location of fL(x) = 0
and the scale parameter. Mean and variance of the Lévy distribution are
infinite, skewness and kurtosis undetermined. For ϑ = 0 the mode of the
distribution appears at µ̃ = γ/3 and the median takes on the value µ̄ =
γ/
(
2(erfc−1(1/2))2

)
.

The entropy of the Lévy distribution is

H
(
fL(x)

)
=

1 + 3 γ + ln(16πγ2)

2
with γ being Euler’s constant,

and the characteristic function

φL(s) = exp (ı
.
ı ϑ s −

√
−2ı

.
ı γ s) , (2.98)

is the only defined generating function. We shall encounter the Lévy distri-
bution when Lévy processes are discussed in section 3.2.5.
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2.5.8 Bimodal distributions

As the name of the bimodal distribution indicates that the density function
f(x) has two maxima. It arises commonly as a mixture of two unimodal
distribution in the sense that the bimodally distributed random variable X
is defined as

P (X ) =

{
P (X = Y1) = α and

P (X = Y2) = (1− α) .

Bimodal distributions commonly arise from statistics of populations that are
split into two subpopulations with sufficiently different properties. The sizes
of weaver ants give rise to a bimodal distributions because of the existence of
two classes of workers [457]. In case the differences are too small as in case of
the combined distribution of body heights for men and women monomodality
is observed [390].

As an illustrative model we choose the superposition of two normal dis-
tributions with different means and variances (figure 2.21). The probability
density for α = 1/2 is then of the form:

f(x) =
1

2
√

2π

(
e
−(x−ν1)2

2σ21

/√
σ2

1 + e
−(x−ν2)2

2σ22

/√
σ2

2

)
. (2.99)

The cumulative distribution function is readily obtained by integration. As in
the case of the normal distribution the result is not analytical but formulated
in terms of the error function, which is available only numerically through
integration:

F (x) =
1

4

(
2 + erf

(
x− ν1√

2σ2
1

)
+ erf

(
x− ν2√

2σ2
2

))
. (2.100)

In the numerical example shown in figure 2.21 the distribution function shows
two distinct steps corresponding to the maxima of the density f(x).

As an exercise first an second moments of the bimodal distribution can be
readily computed analytically. The results are:

µ̂1 = µ =
1

2
(ν1 + ν2) , µ1 = 0 and

µ̂2 =
1

2
(ν2

1 + ν2
2) +

1

2
(σ2

1 + σ2
2) , µ2 =

1

4
(ν1 − ν2)2 +

1

2
(σ2

1 + σ2
2) .

The centered second moment illustrates the contributions to the variance
of the bimodal density. It is composed of the sum of the variances of the
subpopulations and the square of the difference between the two means, (ν1−
ν2)2.
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2.6 Mathematical statistics

Mathematical statistics provides the bridge between probability theory and
the analysis of real data, which inevitably represent incomplete since finite
samples. Nevertheless, it turned out very appropriate to use infinite samples
as a reference (section 1.3). Large sample theory and in particular the law of
large numbers (section 2.4.2) deal with the asymptotic behavior of series of
samples with increasing size. Although mathematical statistics is a discipline
in its own right and would require a separate monograph for a comprehensive
presentation, a brief account one three basic concepts, which are of general
importance for every scientist will be included here.25

First we shall be concerned with approximations to moments derived from
finite samples. In practice, we can collect data for all points of the sample
space Ω only in very few exceptional cases. Otherwise exhaustive measure-
ments are impossible and we have to rely on limited samples as they are ob-
tained in physics through experiments or in sociology through opinion polls.
As an example for the evaluation of the justification of assumptions we intro-
duce Pearson’s chi-squared test and finally we illustrate statistical inference
by means of an example applying Bayes’ theorem.

2.6.1 Sample moments

As we did before for complete sample spaces, we evaluate functions Z from
incomplete random samples (X1, . . . ,Xn) and obtain as output random vari-
ables Z = Z(X1, . . . ,Xn). Similarly we compute sample expectation values,
also called sample means, sample variances, sample standard deviations and
other quantities as estimators from limited sets of data, x = (x1, x2, . . . , xn).
They are calculated in the same way as if the sample set would cover the
entire sample space. In particular we compute the sample mean

m = = µ̃ =
1

n

n∑
i=1

xi (2.101)

and the moments around the sample mean. For the sample variance we obtain

25 For the reader who is interested in more details on mathematical statistics we
recommend the classical textbook by the Polish mathematician Marek Fisz [145] and
the comprehensive treatise by Stuart and Ord [419, 420], which is a new edition of
Kendall’s classic on statistics. A text that is useful as an not too elaborate introduction
is found in [212], the monograph [73] is particularly addressed to experimentalists
practicing statistics, and a great variety of other and equally well suitable texts are,
of course, available in the rich literature on mathematical statistics.



154 2 Statistics

m2 = =
1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

, (2.102)

and for the third and fourth moments after some calculations

m3 =
1

n

n∑
i=1

x3
i −

3

n2

(
n∑
i=1

xi

) n∑
j=1

x2
j

 +
2

n3

(
n∑
i=1

xi

)3

(2.103a)

m4 =
1

n

n∑
i=1

x4
i −

4

n2

(
n∑
i=1

xi

) n∑
j=1

x3
j

 +

+
6

n3

(
n∑
i=1

xi

)2
 n∑
j=1

x2
j

 − 3

n4

(
n∑
i=1

xi

)4

. (2.103b)

These näıve estimators, mi (i = 2, 3, 4, . . .), contain a bias because the exact
expectation value µ around which the moments are centered is not known
and has to be approximated by the sample mean m. For the variance we
illustrate the systematic deviation by calculating a correction factor known
as Bessel’s correction. This correction, however, is more properly attributed
to Carl Friedrich Gauss [244, part 2, p.161]. In order to obtain an expectation
value for the sample moments we repeat drawing of samples with n elements
and denote their expectation values by < mi >.26 In particular we have

m2 =
1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

=

=
1

n

n∑
i=1

x2
i −

1

n2

 n∑
i=1

x2
i +

n∑
i,j=1, i 6=j

xi xj

 =

=
n− 1

n2

n∑
i=1

x2
i −

1

n2

n∑
i,j=1, i 6=j

xi xj .

The expectation value is now of the form

26 It is important to note that < mi > is the expectation value of an average over a
finite sample, whereas the genuine expectation value refers to the entire sample space.
In particular, we find

< m >=
〈

1
n
∑n
i=1 xi

〉
= µ = α1 ,

where µ is the first (raw) moment. For the higher moments the situation is more
complicated and requires some care (see text).
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< m2 > =
n− 1

n

〈
1

n

n∑
i=1

x2
i

〉
− 1

n2

〈
n∑

i,j=1, i 6=j

xi xj

〉
,

and by using < xixj >=< xi >< xj >=< xi >
2 we find

< m2 > =
n− 1

n

〈
1

n

n∑
i=1

x2
i

〉
− n(n− 1)

n2

〈
n∑
i=1

xi

〉2

=

=
n− 1

n
α2 −

n(n− 1)

n2
µ2 =

n− 1

n
(α2 − µ2) ,

where α2 = µ̂2 is the second raw moment or second moment about zero.
Using the identity α2 = µ2 + µ2 we find for the unbiased sample variance

< m2 > =
n− 1

n
µ2 and ṽar(x) =

1

n− 1

n∑
i=1

(xi −m)2 . (2.104)

Further useful measures of correlation between pairs of random variables can
be derived straightforwardly: (i) the unbiased sample covariance

MXY =
1

n− 1

n∑
i=1

(xi − m) (yi − m) , (2.105)

and (ii) the sample correlation coefficient

RXY =

∑n
i=1 (xi − m) (yi − m)√

(
∑n
i=1 (xi − m)2) (

∑n
i=1 (yi − m)2)

. (2.106)

For practical purposes Bessel’s correction is often unimportant when the data
sets are sufficiently large but the recognition of the principle is important in
particular for statistical properties more involved than variances. Sometimes
a problem is encountered in cases where the second moment of a distribution,
µ2, does not exist, which means it diverges. Then, computing variances from
incomplete data sets is also unstable and one may choose the mean absolute
deviation,

D(X ) =
1

n

n∑
i=1

|Xi −m| , (2.107)

as a measure for the width of the distribution [374, pp.455-459], because it is
commonly more robust than variance or standard deviation.

Ronald Fisher conceived k-statistics in order to derive estimators for the
moments of finite samples [140]. The cumulants of a probability distribution
are derived as expectation values, < ki >= κi, of finite set cumulants calcu-
lated in the same way as the complete sample set analogues [245, pp.99-100].
The first four terms of k-statistics for n sample points are
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k1 = m ,

k2 =
n

n− 1
m2 ,

k3 =
n2

(n− 1)(n− 2)
m3 and

k4 =
n2
(

(n+ 1)m4 − 3 (n− 1)m 2
2

)
(n− 1)(n− 2)(n− 3)

,

(2.108)

which can be derived by inversion of the well known relationships

< m > = µ ,

< m2 > =
n− 1

n
µ2 ,

< m3 > =
(n− 1)(n− 2)

n2
µ3 ,

< m 2
2 > =

(n− 1)
(

(n− 1)µ4 + (n2 − 2n+ 3)µ 2
2

)
n3

, and

< m4 > =
(n− 1)

(
(n2 − 3n+ 3)µ4 + 3 (2n− 3)µ 2

2

)
n3

.

(2.109)

The usefulness of these relations becomes evident in various applications.
The statistician computes moments and other functions from his empirical

data sets, which is almost always non-exhaustive, for example {x1, . . . , xn}
or {(x1, y1), . . . , (xn, yn)} by means of the equations (2.101) and (2.104) to
(2.106). The underlying assumption, of course, is that the values of the em-
pirical functions converge to the corresponding exact moments as the random
sample increases and the theoretical basis for this assumption is provided by
the law of large numbers.

Fig. 2.22 Definition of cells for the application of the χ2-square test. The
space of possible outcomes of recordings is partitioned into n cells, which correspond
to features of classification. As an example one could group animals into males and
females or scores according to the numbers on the top face of a rolled die. The
characteristics of classification are visualized by different colors.
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2.6.2 Pearson’s chi-squared test

The main issue of mathematical statistics, however, is not so much to compute
approximations to the moments but – as it has always been and still – the
development of independent tests that allow for the derivation of information
on the appropriateness of models and the quality of data. Predictions on the
reliability of the computed values are made by means of a great variety of
tools. We dispense from details, which are extensively treated in the literature
[146, 419, 420]. Karl Pearson conceived a test in 1900 [364], which became
popular under the name chi-squared test. This test has also been used by
Ronald Fisher when he analyzed Gregor Mendel’s data on genetics of the
garden pea Pisum sativum and we shall use the data given in table 1.1 to
illustrate the application of the chi-squared test.

The formula of Pearson’s test is made plausible by means of a simple
example [213, pp. 407-414]: A random variable Y1 is binomially distributed
according to Bk(n, p1) with expectation value E(Y1) = n p1 and variance
σ2

1 = n p1(1−p1) (section 2.3.2) and then, following the central limit theorem
the random variable

Z =
Y1 − np1√
np1(1− p1)

Fig. 2.23 The p-value in significance test of null hypothesis. The figure il-
lustrates the definition of the p-value. The three curves represent the χ2

k probability
densities with the parameters k = 1 (black), 2 (red), and 3 (yellow). The three specific
xk(α)-values are shown for the critical p-value with α = 0.05 are shown: for k = 1 we
find x1(0.05) = 3.84146, for k = 2 we obtain x2(0.05) = 5.99146, and for k = 3 even-
tually x3(0.05). The hatched areas show the range of values of the random variable
Q that are more extreme than the predefined critical p-value, which is defined as the
cumulative probability within the indicated areas that were defined by α = 0.05. If
the p-value for an observed data set fulfils p < α, the null hypothesis is rejected.
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Fig. 2.24 Calculation of the p-value in significance test of null hypothesis.
The figure shows the p-values from equation (2.115) as a function of the calculated
values of X2

k for the k-values 1 (black), 2 (red), 3 (yellow), 4 (green), and 5 (blue).
The highlighted area at the bottom of the figure shows the range where the null
hypothesis is rejected.

has a standardized binomial distribution, which approximates N (0, 1) for
sufficiently large n (section 2.4.1). A second random variable is Y2 = n− Y1

with expectation value E(Y2) = n p2 and variance σ2
2 = σ2

1 = n p2(1− p2) =
n p1(1 − p1), since p2 = (1 − p1). The sum Z2 = Y2

1 + Y2
2 is approximately

χ2 distributed:

Z2 =
(Y1 − np1)2

np1(1− p1)
=

(Y1 − np1)2

np1
+

(Y2 − np2)2

np2
since

(Y1 − np1)2 =
(
n − Y1 − n(1− p1)

)2

= (Y2 − np2)2 .

We can now rewrite the expression by introducing the expectation values

Q1 =

2∑
i=1

(
Yi − E(Yi)

)2

E(Yi)
,

and indicating the number of independent random variables as a subscript.
Provided all products n pi are sufficiently large – a conservative estimate
would be npi ≥ 5∀ i – the quantity Q1 has an approximate chi-squared
distribution with one degree of freedom: χ2

1.
The generalization to an experiment with k mutually exclusive and exhaus-

tive outcomes A1, A2, . . . , Ak of the variables X1,X2, . . . ,Xk, is straightfor-
ward. All variables Xi are assumed to have finite mean µi and finite variance
σ2
i such that central limit theorem applies and the distribution for large n
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converges to the normal distribution N (0, 1). We define the probability to
obtain the result Ai by P (Ai) = pi, by conservation of probabilities we have∑k
i=1 pi = 1, and thus one variable is lacking independence and we choose it

to be Xk:

Xk = n −
k−1∑
i=1

Xi . (2.110)

The joint distribution of k − 1 variables X1,X2, . . . ,Xk−1 has then the joint
probability mass function (pmf)

f(x1, x2, . . . , xk−1) = P (X1 = x1,X2 = x2, . . . ,Xk−1 = xk−1) .

Next we consider n independent trials yielding x1 times A1, x2 times A2, . . . ,
and xk times Ak, where a particular outcome has the probability

P (X1 = x1,X1 = x1, . . . ,Xk−1 = xk−1) = px1
1 · p

x2
2 · . . . · p

xk
k with

the frequency factor or statistical weight

g(x1, x2, . . . , xk) =

(
n

x1, x2, . . . , xk

)
=

n!

x1!, x2!, . . . , xk!
,

and eventually we find for the pmf

f(x1, x2, . . . , xk−1) = g(x1, x2, . . . , xk) · P (X1 = x1,X2 = x2, . . . ,Xk−1 = xk−1) =

=
n!

x1!, x2!, . . . , xk!
px1
1 · p

x2
2 · . . . · p

xk
k , (2.111)

with the two restrictions xk = n−
∑k−1
i=1 xi and pk = 1−

∑k−1
i=1 pi. Pearson’s

construction follows the lines we have shown for the binomial with k = 2 and
yields under consideration of equation 2.110:

Qk−1(n) = X2
k−1(n) =

k∑
i=1

(
Xi − E(Xi)

)2

E(Xi)
. (2.112)

The sum of squares Qk−1(n) in (2.112) is called Pearson’s cumulative test
statistic. It has an approximate chi-squared distribution with k-1 degrees of
freedom, χ2

k−1,27 and again if n is sufficiently large to fulfil n · p1≥ 5 ∀ i the
distributions are close enough for most practical purposes.

In order to be able to test hypotheses we divide our sample space into k
cells and record observations falling into individual cells. In essence, these
cells Ci are tantamount to the outcomes Ai but we can define them to be
completely general, for example collecting all instances that falls in a certain

27 We indicate the expected converge in the sense of the central limit theorem by
choosing the symbol X2

k−1 for the finite n expression with limn→∞X2
k−1(n) = χ2

k−1.
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range. At the end of the registration period the number of observations is n
and partitioning into the instances that were recorded in the cell Ci is νi with∑k
i=1 νi = n. Equation (2.112) is now applied to test a (null) hypothesis H0

against empirically registered values for the different outcomes,

H0 : E
(0)
i (Xi) = εi0 , i = 1, . . . , k . (2.113)

In other words, the null hypothesis predicts the distribution of score values
falling into the cells Ci to be εi0 (i = 1, . . . , k) and this in the sense of

average values E
(0)
i . If the null hypothesis were, for example, the uniform

distribution we had εi0 = n/k ∀ i = 1, . . . , k. The cumulative test statistic
X2(n) converges to the χ2 distribution in the limit n → ∞ – just as the
average value of a stochastic variable, 〈Z〉 =

∑n
i=1 zi/n converges to the

expectation value limn→∞ 〈Z〉 = E(Z). This implies that X2(n) is never
exactly equal to χ2 and the approximation that will always become better
when the sample size is increased. Empirical knowledge of statisticians defines
a lower limit for the number of entries in the cells to be considered, which
lies between 5 and 10.

If the null hypotheses H0 were true, νi and εi0 should be approximately
equal. Thus we expect the deviation expressed by

X2
d =

k∑
i=1

(νi − εi0)2

εi0
≈ χ2

d (2.114)

should be small if H0 is acceptable. If the deviation is too large, we shall
reject H0 : X2

d ≥ χ2
d(α), where α is the predefined level of significance for the

test. Two basic quantities are still undefined (i) the degree of freedom d and
(ii) the significance level α.

First the number of degrees of freedom d of the theoretical distribution
to which the data are fitted has to be determined. The number of cells, k,
represents the maximal number of degrees of freedom, which is reduced by one
because of the conservation relation,

∑
i νi = n, discussed above: d = k − 1.

The dimension d is reduced further when parameters are needed in fitting
the distribution of the null hypothesis. If the number of such parameters is s
we get d = k− 1− s. Choosing the parameter free uniform distribution U as
null hypothesis we find, of course, d = k − 1.

The significance of the null hypothesis for a given set of data is commonly
tested by means of the so-called p-value: For p < α the null hypothesis is
rejected. Precisely, the p-value is the probability of obtaining a test statistic,
which is at least as extreme as the actually observed one under the assumption
that the null hypothesis is true. We call a probability P (A) more extreme than
P (B) if A is less likely to occur than B under the null hypothesis. As shown
in figure 2.23 this probability is obtained as the integral below the probability
density function from the calculated X2

d -value to +∞. For the χ2
d distribution

we have
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p =

∫ +∞

X2
d

χ2
d(x) dx = 1 −

∫ X2
d

0

χ2
d(x) dx = 1 − F (X2; d) , (2.115)

which involves the cumulative distribution function of the χ2-distribution,
Fχ2(x; d), defined in equation (2.65). Commonly, the null hypothesis is re-
jected when p is smaller than the significance level: p < α with 0.02 ≤ α ≤
0.05. If the condition p < α is fulfilled one says the null hypothesis is rejected
by statistical significance. In other words, the null hypothesis is statistically
significant or statistically confirmed in the range α ≤ p ≤ 1.

A simple example is used for the purpose of illustration: Two random
samples of n animals were drawn from a population, ν1 were males and ν2

were females with ν1 + ν2 = n. The first sample ν1 = 170, ν2 = 152,

n = 322, ν1 = 170, ν2 = 152 : X2
1 =

(170− 161)2 + (152− 161)2

322
= 0.503 ,

p = 1− Fχ2(0.503; 1) = 0.478 ,

clearly supports the null hypothesis that that males and females are equally
frequent since p > α ≈ 0.05. The second sample ν1 = 207, ν2 = 260,

n = 467, ν1 = 207, ν2 = 260 : X2
1 =

(207− 233.5)2 + (260− 233.5)2

233.5
= 6.015 ,

p = 1− Fχ2(6.015; 1) = 0.0142 ,

leads to a p-value, which is below the critical limit of significance and the
rejection of the null hypothesis, the numbers of males and females are equal,
is statistically significant or there is very likely another reason than random
fluctuation responsible for the difference.

As a second example we test Gregor Mendel’s experimental data on the
garden pea, Pisum sativum, given in table 1.1. Here the null hypothesis to
be tested is the ratio between different phenotypic features developed by the
genotypes. We consider two features: (i) the shape, roundish and wrinkled,
and (ii) the color of seeds, yellow and green, which are determined by two
independent loci and two alleles each, A and a or B and b, respectively. The
two alleles form four diploid genotypes, AA, Aa, and aA, aa, or, BB, Bb,
and bB, bb, respectively. Since the alleles a and b are recessive only the
the genotypes aa or bb develop the second phenotype, wrinkled and green,
respectively, and based on the null hypothesis of a uniform distribution of
genotypes we expect a 3:1 ratio of phenotypes. In table 2.3 we apply Pearson’s
chi-square hypothesis to the null hypothesis of 3:1 ratios for the phenotypes
roundish and wrinkled or yellow and green. As examples we have chosen the
total sample of Mendel’s experiments as well as three plants (‘1’, ‘5’, and ‘8’)
in table 1.1) being typical (‘1’) or showing extreme ratios (’5’ having the best
and the worst value for shape and color, respectively, and ‘8’ showing the
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Table 2.3 Pearson χ2-test of Gregor Mendel’s experiments with the gar-
den pea (Pisum sativum). The total results as well as the data for three selected
plants are analyzed by means of Karl Pearson’s chi-square statistics. Two character-
istic features of the seeds are reported: the shape, roundish or angular wrinkled, and
the color, yellow or green. The phenotypes of the two dominant alleles are: A = round
and B = yellow and the recessive phenotypes are a = wrinkled and b = green. The data
are taken from table 1.1.

Property Sample space Number of seeds χ2-statistics

A/B a/b X2
1 p

shape (A,a) total 5 474 1 850 0.2629 0.6081

color (B,b) total 6 022 2 001 0.0150 0.9025

shape (A,a) plant 1 45 12 0.4737 0.4913

color (B,b) plant 1 25 11 0.5926 0.4414

shape (A,a) plant 5 32 11 0.00775 0.9298

color (B,b) plant 5 24 13 2.0405 0.1532

shape (A,a) plant 8 22 10 0.6667 0.4142

color (B,b) plant 8 44 9 1.8176 0.1776

largest ratio, 4.89). All p-values in this table are well above the critical limit
and without further discussion required confirm the 3:1 ratio.28

The test of independence is relevant for situations when an observer reg-
isters two outcomes and the null hypothesis is that these outcomes are sta-
tistically independent. Each observation is allocated to one cell of a two-
dimensional array of cells called a contingency table (see next section 2.6.3).
In the general case there are m rows and n columns in a table. Then, the
theoretical frequency for a cell under the null hypothesis of independence is

εij =

∑n
k=1 νik

∑m
k=1 νkj

N
, (2.116)

where N is the (grand) total sample size or the sum of all cells in the table.
The value of the X2 test-statistic is

X2 =

m∑
i=1

n∑
j=1

(νij − εij)2

εij
. (2.117)

Fitting the model of independence reduces the number of degrees of freedom
by π = m+n−1. Originally the number of degrees of freedom is equal to the

28 We should remember that the claim in a nutshell of Ronald Fisher and others had
been that Mendel’s data are too good to be true.
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number of cells, m ·n, and after reduction by π we have d = (m− 1) · (n− 1)
degrees of freedom for comparison with the χ2 distribution. The p-value is
again obtained by insertion into the cumulative distribution function (cdf),
p = 1 − Fχ2(X2; d), and a value of p less than a predefined critical value,
commonly p < α = 0.05, is considered as justification for rejection of the
null hypothesis or in other words the row variable does not appear to be
independent of the column variable.

2.6.3 Fisher’s exact test

As a second example out of many statistical significance test developed in
mathematical statistics we mention here Fisher’s exact test for the analysis
of contingency tables. In contrast to the χ2-test Fisher’s test is valid for all
sample sizes and not only for sufficiently large samples. We begin by defining
a contingency table, which is a m× n matrix M where all possible outcomes
of one variable x enter different columns in a row defined by a given outcome
for y, and alternatively the distribution of outcomes of the second variable
y for a specified outcome of x is contained in a column. The most common
case – and the one that is most easily analyzed – is 2× 2, two variables with
two values each. The the contingency table has the form

x1 x2 total

y1 a b a+ b

y2 c d c+ d

total a+ c b+ d N

where every variable, x and y, has two outcomes and N = a+ b+ c+d is the
grand total. Fisher’s contribution was to prove that the probability to obtain
the set of values (x1, x2, y1, y2) is given by the hypergeometric distribution

probability mass function fµ,ν(k) =

(
µ
k

)(
N−µ
ν−k

)(
N
ν

) ,

cumulative density function Fµ,ν(k) =

k∑
i=0

(
µ
k

)(
N−µ
ν−k

)(
N
ν

) ,

(2.118)

where N ∈ N = {1, 2, . . .}, µ ∈ {0, 1, . . . , N}, ν ∈ {1, 2, . . . , N}, and the
support k ∈ {max(0, ν+µ−N), . . . ,min(µ, ν)}. Translating the contingency
table into the notation of probability functions we have: a ≡ k, b ≡ µ − k,
c ≡ ν − k, and d ≡ N + k − (µ+ ν) and hence Fisher’s result for the p-value
of the general 2× 2 contingency table is
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p =

(
a+b
a

)(
c+d
c

)(
N
a+c

) =
(a+ b)! (c+ d)! (a+ c)! (b+ d)!

a! b! c! d!N !
, (2.119)

where the expression on the rhs shows beautifully the equivalence between
rows and columns.

We present the right- or left-handedness of human males or females as
an example for the illustration of Fisher’s test: A sample consisting of 52
males and 48 females yields 9 left-handed males and 4 left-handed females. Is
the difference statistically significant and allows for the conclusion that left-
handedness is more common among males than females? The contingency
table in this case reads

xm xf total

yr 43 44 87

yl 9 4 13

total 52 48 100

The calculation yields p ≈ 0.10, which is above the critical value 0.02 ≤ α ≤
0.05, and p > α confirms the null hypothesis of men and women being equally
likely to be left-handed. Therefore, the assumption that males are more likely
to be left-handed can be rejected for this data sample.

2.6.4 Bayesian inference

In this section we present a simple but analytically tractable example as
an illustration for the application of Bayesian statistics [98], which has been
adapted from the original work of Reverend Thomas Bayes in the posthumous
publication in 1763 [375]. More detailed applications of the Bayesian approach
can be found in a number of excellent monographs, for example in [159].

The example is called table game and is played by two persons, Alice (A)
and Bob (B) as well as a third person (C) acting as game master and being
neutral. A (pseudo)random number generator is used to draw pseudorandom
numbers from a uniform distribution in the range 0 ≤ R < 1. The pseudo-
random number generator is operated by the game master and cannot be
seen by the two players. In essence, A and B are completely passive, they
have no information on the game except knowledge on the basic setup of
the game and they know the scores, which are a(t) for A and b(t) for B.
The person who reaches a predefined score value, z, first has won. This sim-
ple game starts through drawing a pseudorandom number, R = r0, by the
game master. Consecutive drawings yielding numbers ri assign points to A iff
0 ≤ ri < r0 is fulfilled and to B iff r0 ≤ ri < 1 holds. The game is continued
until one person, A or B, reaches the score z.
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Fig. 2.25 The Bayesian method of inference. The figure sketches the Bayesian
method by means of normal density functions. The sample data are given in form of

the likelihood function (P (Y|X ) = N (2, 1
2), red) and additional external information

on the parameters enters the analysis as prior distribution (P (X ) = N (0, 1/
√

2),
green). The resulting posterior distribution P (X|Y) = P (Y|X ) · P (X )/P (Y) (black)
is here again a normal distribution with mean µ̄ = (µ1σ2

2 + µ2σ2
1)/(σ2

1 + σ2
2) and

variance σ̄2 = (σ2
1σ

2
2)/(σ2

1 + σ2
2). It is straightforward to show that the mean µ̄ lies

between µ1 and µ2 and variance has become smaller σ̄ ≤ min(σ1, σ2) (see text).

The problem is to compute fair odds of winning for A and B when the
game is terminated premature, and r0 is unknown. Let us assume that the
scores at the time of termination were: a(t) = a and b(t) = b with a < z
and b < z, and to make the calculations easy we assume that A is only one
point away from winning, a = z − 1 and b < z − 1. If r0 were known the
answer would be trivial. In the conventional approach we would make an
assumption about the parameter r0. In the lack of knowledge we could make
the null hypothesis r0 = r̂0 = 1

2 , and find simply

P0(B) = P (B is winning) = (1− r̂0)z−b =
(

1

2

)z−b
,

P0(A) = P (A is winning) = 1 − (1− r̂0)z−b = 1 −
(

1

2

)z−b
,

because the only way for B to win is to make z − b scores in a row. Thus
fair odds for A to win would be (2z−b − 1) : 1. An alternative approach is to
make the maximum likelihood estimate on the unknown parameter r0 = r̃0 =
a/(a+ b) and again we calculate the probabilities and find by the same token
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Pml(B) = P (B is winning) = (1− r̃0)z−b =

(
b

a+ b

)z−b
,

Pml(A) = P (A is winning) = 1 − (1− r̃0)z−b = 1 −
(

b

a+ b

)z−b
,

and for the odds in favor of A:
(a+ b

b

)z−b − 1.
The Bayesian solution considers r0 = p as a unknown but variable param-

eter about which no estimate is made. Instead the uncertainty is modeled
rigorously by integrating over all possible values: 0 ≤ p ≤ 1. The expected
probability for B to win is then

E
(
P (B)

)
=

∫ 1

0

(1− p)z−b P (p |a, b) dp ,

where (1 − p)z−b is the probability for winning of B and P (p |a, b) is the
probability of a certain value of p provided the data a and b were obtained
at the termination of the game. The probability P (p |a, b) formally written
as P (model|data) is the inversion of the common problem P (data|model) –
given a certain model what is the probability to find a certain set of data –
and a so-called inverse probability problem. The solution of the problem is
provided by Bayes’ theorem, which is an almost trivial truism for two random
variables X and Y:

P (X|Y) =
P (Y|X ) · P (X )

P (Y)
=

P (Y|X ) · P (X )∑
Z P (Y|Z) · P (Z)

, (1.4’)

where the sum over the random variable Z covers entire sample space. Equa-
tion (1.4’) yields in our example

P (p |a, b) =
P (a, b |p) · P (p)∫ 1

0
P (a, b |%) · P (%) d%

.

The interpretation of the equation is straightforward: The probability of a
particular choice of p given the data (a, b) called the posterior probability
(figure 1.3) is proportional to the probability to obtain the observed data
if p were true – the likelihood of p – multiplied by the prior probability of
this particular value of p relative to all other values of p. The integral in
the denominator takes care of the normalization of the probability – the
summation is replaced by an integral, because p is a continuous variable, and
0 ≤ p ≤ 1 is the entire domain of p.

The likelihood term is calculated readily from the binomial distribution

P (a, b |p ) =

(
a+ b

b

)
pa (1− p)b ,
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but the probability prior requires more care. By definition P (p) is the proba-
bility of p before the data have been recorded. How can we estimate p before
we have seen any data? We are thus referred to the situation how r0 is de-
termined, and we know it has been picked from the uniform distribution and
hence, P (p) is a constant that appears in the numerator and in the denomi-
nator and thus cancels in the equation for Bayes’ theorem (1.4’). After some
algebraic computation we eventually obtain for winning of B:

E
(
P (B)

)
=

∫ 1

0
p a (1− p)z dp∫ 1

0
p a (1− p)b dp

.

Integration is straightforward, because the integrals are known as Euler in-
tegrals of the first kind, which have the Beta-function as solution

B(x, y) =

∫ 1

0

zx−1 (1− z)y−1 dz =
(x− 1)! (y − 1)!

(x+ y − 1)!
=

Γ (x)Γ (y)

Γ (x+ y)
. (2.120)

Finally, we obtain the following expression for the chance of winning of B

E
(
P (B)

)
=

z! (a+ b+ 1)!

b! (a+ z + 1)!
,

and the Bayesian estimation for fair odds yields(
b! (a+ z + 1)!

z! (a+ b+ 1)!
− 1

)
: 1 .

A specific numerical example is given in [98]: a = 5, b = 3, and z = 6.
The null hypothesis of equal probabilities of winning for A and B, r̂0 = 0.5
yields an advantage of 7:1 for A, the maximum likelihood approach with
r̃0 = a/(a + b) = 5/8 yields ≈18:1, and the Bayesian estimate yields 10:1.
The large differences should not be surprising since the sample size is very
small. The correct answer of the table game with the values for a, b, and z
is indeed 10 as can be easily verified by numerical computation with a small
computer program.

Finally, we show how the Bayesian approach operates on probability distri-
butions (a simple but straightforward description is found in [415]). Accord-
ing to equation (1.4’) the posterior probability P (X|Y) is obtained through
multiplication of the prior probability P (X) by the data likelihood function
P (Y|X ) and normalization. We illustrate the relation between the probability
function by means of two normal distributions and their product (figure 2.25).
For the prior probability and the data function we assume
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P (X ) = f1(x) =
1√

2πσ2
1

e−(x−µ1)2/(2σ2
1) and

P (X|Y) = f2(x) =
1√

2πσ2
2

e−(x−µ2)2/(2σ2
2) ,

and obtain for the product with the normalization factorN = N (µ1, µ2, σ1, σ2)

P (Y|X ) = N f1(x) f2(x) = N g e−(x−µ̄)2/(2σ̄2) with

µ̄ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

, σ̄2 =
σ2

1 σ
2
2

σ2
1 + σ2

2

, g =
1

2π σ1 σ2
e
− 1

2
(µ2−µ1)2

σ21+σ22 , and

N g =

√
σ2

1 + σ2
2√

2π σ1 σ2

=
1√

2π σ̄2
,

as required for normalization of the Gaussian curve.
Two properties of the posterior probability are easily tested by means of

our example: (i) the averaged mean, µ̄, lies always between µ1 and µ2 and
(ii) the product distribution is sharper than the two factor distributions

σ2
1 σ

2
2

σ2
1 + σ2

2

≤ min{σ2
1 , σ

2
2} ,

with the equals sign requiring either σ1 = 0 or σ2 = 0. The improvement of
the Bayesian analysis thus reduces the difference in the mean values between
expectation and model, and the distribution becomes narrower in the sense
of reducing uncertainty.

Whereas the Bayesian approach does not seem to provide a lot more in-
formation in situations where the models are confirmed by many other inde-
pendent applications like, for example, in the majority of problems in physics
and chemistry, the highly complex situations in modern biology, economics,
or social sciences require highly simplified and flexible models and there is an
ample field for application of Bayesian statistics.



Chapter 3

Stochastic processes

With four parameters I can fit an elephant and with
five I can make him wiggle his trunk.
Enrico Fermi citing John von Neumann, 1953 [97].

Abstract Stochastic processes are defined and grouped into different classes,
their basic properties are listed and compared. The Chapman-Kolmogorov
equation is introduced, transformed into a differential version, and used for
the classification of the major types of processes: (i) drift and (ii) diffusion
with continuous sample paths, and (iii) jump processes being essentially dis-
continuous. In pure form these prototypes are described by Liouville equa-
tions, stochastic diffusion equations, and master equations, respectively. The
most popular and most frequently used continuous equation is the Fokker-
Planck (FP) equation that describes the evolution of a probability density
by drift and diffusion. The pendant to FP equations on the discontinuous
side are master equations, which are dealing with jump processes only and
represent the appropriate tool for modeling processes described by discrete
variables. For technical reasons they are often difficult to handle unless pop-
ulation sizes are relatively small. Stochastic differential equations (SDEs)
model processes at the level of random variables by solving ordinary differ-
ential equations upon which a diffusion process, called a Wiener process, is
superimposed. Ensembles of individual trajectories of SDEs are equivalent to
time dependent probability densities described by Fokker-Planck equations.

Stochastic processes introduce time into probability theory and represent
the most prominent possibility to combine dynamical phenomena and ran-
domness resulting from incomplete information. In physics and chemistry the
dominant source of randomness is thermal motion but in biology the over-
whelming complexity of systems is commonly prohibitive for a complete de-
scription and then, lack of information results also from simplifications inher-
ent in the model. In essence, there are two ways of dealing with stochasticity
in processes: (i) calculation or recording of stochastic variables as functions
of time and (ii) modeling of the temporal evolution of entire probability den-
sities. In case (i) one particular computation or experiment yields a single
sample path or a trajectory, and full information on the process is obtained

169
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Fig. 3.1 Description of stochastic processes. The sketch presents a family tree
of stochastic models [434]. Almost all stochastic models used in science are based
on the Markov property of processes, which – in a nutshell – states that full infor-
mation on the system at present is sufficient for predicting or modeling the future
(section 3.1.3.3). Models fall into two major classes depending on the objects they are
dealing with: (i) random variables X (t) or (ii) probability densities P

(
X (t) = x

)
. In

the center of stochastic modeling stands the Chapman-Kolmogorov equation (CKE)
that introduces the Markov property into time series of probability densities. In dif-
ferential form CKE contains three model dependent functions, the vector A(x, t) and
the matrices B(x, t), and W(x, t), which determine the nature of the stochastic pro-
cess. Different combinations of these functions yield the most important equations for
stochastic modeling: the Fokker-Planck equation with W = 0 (A 6= 0 and B 6= 0), the
stochastic diffusion equation with B 6= 0 (A = 0 and W = 0), and the master equation
with W 6= 0 (A = 0 and B = 0). For stochastic processes without jumps the solutions
of the stochastic differential equation are trajectories, which when properly sampled
describe the evolution of a probability density P

(
X (t) = x

)
that is equivalent to the

solution of a Fokker-Planck equation (red arrow). Common approximations by means
of size expansions are shown in blue. The green arrow indicates where conventional
numerical simulations come into play.
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by sampling of trajectories from repetitions under identical conditions.1 Sam-
pling of trajectories leads to bundles of curves, which can be evaluated in
the spirit of mathematical statistics (section 2.6) to yield time dependent
moments of the probability densities. For an illustrative example comparing
superposition of trajectories and migration of the probability density we refer
to the Ornstein-Uhlenbeck process shown in figures 3.9 and 3.10.

The expectation value of a random variable as a function of time, E
(
X (t)

)
,

often coincides with the deterministic solution of the corresponding differen-
tial equation. For single point initial conditions the solution curves of ordinary
or partial differential equations (ODEs or PDEs) consists of single trajecto-
ries as determined by the theorems of existence and uniqueness of solutions.
Solutions of stochastic processes as said above correspond to bundles of tra-
jectories, which differ in the sequence of random events and which as a rule
surround the deterministic solution. Commonly, sharp initial condition are
chosen and then the bundle of trajectories starts in a single point and diverges
into the future as well as into the past depending on whether the process is
studied in the forward or in the backward direction (see figure 3.22). The
stochastic equations in forward and backward directions are different and the
typical symmetry of differential equations with respect to time reversal is no
more existent because of the diffusion term [7, 110, 408]. In the forward di-
rection the time dependent variance, var

(
X (t)

)
allows for a useful distinction

of two types of stochastic processes: (i) The variance increases with time and
grows without limits, a behavior that is typical for unlimited spatial diffusion
and some biologically important processes involving populations in abstract
spaces, and (ii) the variance approaches a finite long time limit, which corre-
sponds to the thermodynamic equilibrium or to a stationary state and where
the standard deviation fulfils an approximate

√
N -law.

Figure 3.1 presents an overview of the most frequently used general model
equations for stochastic processes,2 which are introduced in this chapter, and
it shows how they are interrelated [434, 435]. Two classes of equations are
of central importance: (i) the differential form of the Chapman-Kolmogorov
equation (dCKE; section 3.2) describing the evolution of probability densi-
ties and (ii) the stochastic differential equation (SDE; section 3.4) modeling
stochastic trajectories. The Fokker-Planck equation and the master equation
are derived from the differential Chapman-Kolmogorov equation through re-
striction to continuous processes or jump processes, respectively. The chemi-
cal master equation is a master equation adapted for modeling chemical reac-
tion networks where the jumps are changes in the integer particle numbers of
chemical species (section 4.2.1). In this chapter we shall present a brief intro-
duction into stochastic processes and into the general formalisms for modeling

1 Identical conditions means that all parameters are the same except the random
fluctuations. In computer simulations this is achieved by keeping everything the same
except the seeds for the pseudorandom number generator.
2 By general we mean here methods that are widely applicable and not tailored
specifically for deriving solutions for one case or a few cases only.
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them. The chapter is essentially based on three textbooks [76, 157, 441] and
it uses in essence the notation introduced by Crispin Gardiner [156]. A few
examples of stochastic processes of general importance will be discussed here
for the purpose of illustration of the formalisms. In particular we shall focus
on random walks and diffusion. Other applications are presented in the forth-
coming two chapters 4 and 5. Analysis of stochastic processes by mathemat-
ics is complemented by numerical simulations [173], which became more and
more important over the years essentially for two reasons: (i) the accessibil-
ity of cheap and extensive computing power, and (ii) the need for stochastic
treatments of complex kinetics in chemistry and biology that escapes ana-
lytical handling. Numerical simulation methods will also be presented and
discussed here in chapter 4 (section 4.6).
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3.1 Modeling stochastic processes

The use of conventional differential equations for modeling dynamical sys-
tems implies determinism in the sense that full information about the system
at a single time, t0 for example, allows for exact computation of future and
past. In reality we encounter substantial limitations concerning prediction
and reconstruction, especially in case of deterministic chaos because initial
and boundary conditions are available only with finite accuracy, and even
the smallest errors are amplified to any size after sufficiently long time. The
theory of stochastic processes provides the tools for taking into account all
possible sources of uncontrollable irregularities, and defines in a natural way
the limits for predictions of the future as well as reconstruction of the past.
Different stochastic processes can be classified with respect to memory ef-
fects making precise how the past acts on the future. Almost all stochastic
models in science fall into the very wide class of Markov processes, which
are named after the Russian mathematician Andrey Markov,3 and which are
characterized the lack of memory in the sense that the future can be mod-
eled and predicted probabilistically form knowledge of the presence and no
information on historical events is required.

Fig. 3.2 Time order in modeling stochastic processes. Physical or real time
is progressing from left to right and the most recent event is given by the rightmost
recording. Conventional numbering of instances in physics starts at some time t0 and
ends at time tn (upper time axis). In the theory of stochastic processes an opposite
ordering of times is often preferred and then t1 is the latest event of the series (lower
time axis). Modeling stochastic processes, for example by a Chapman-Kolmogorov
equation, distinguishes two modes of description: (i) the forward equation predicting
the future from past and present and (ii) the backward equation that extrapolates
back in time from present to past. Accordingly, we have a second time scale used in
the computation, which progresses in the same direction as real time for the forward
evaluation (blue) and in opposite direction for the backward evaluation (red).

3 The Russian mathematician Andrey Markov (1856-1922) is one of the founders
of Russian probability theory and pioneered the concept of memory free processes,
which are named after him. He expressed more precisely the assumptions that were
made by Albert Einstein [108] and Marian von Smoluchowski [453] in their derivation
of the diffusion process.
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3.1.1 Trajectories and processes

The probabilistic evolution of a system in time is described as a general
stochastic process. We assume the existence of a time dependent random
variable X (t) or random vector ~X (t) =

(
Xk(t); k = 1, . . . ,M ; k ∈ N>0

)
.4 As

in the previous chapters we shall distinguish the simpler discrete case,

Pn(t) = P
(
X (t) = xn

)
with n ∈ N , (3.1)

from the continuous or probability density case,

dF (x, t) = f(x, t) dx = P
(
x ≤ X (t) ≤ x+ dx

)
with x ∈ R . (3.2)

It is easier to visualize the discrete case first and postpone the generalization
to densities, which as such is straightforward. A particular series of events
– be it the result of a calculation or an experiment – constitutes a sample
path or a trajectory in phase space.5 The trajectory consists of a list of the
recorded values of the random variable X at certain times arranged in the
form of doubles (xi, ti)

T =
(

(x1, t1), (x2, t2), (x3, t3), · · · , (xk, tk), (xk+1, tk+1), · · ·
)
. (3.3)

Although it is not essential for the application of probability theory, but for
the sake of clearness we shall always assume that the recorded values are time
ordered, here with the earliest or oldest values on the rightmost position and
the most recent values at the latest entry on the left-hand side. Assuming
that the recorded series has started at some time tn in the past with xn we
have

t1 ≥ t2 ≥ t3 ≥ · · · ≥ tk ≥ tk+1 ≥ · · · .

Accordingly a trajectory is a sequence of time ordered doubles (x, t).
It is worth noticing that the conventional way of counting time in physics

progresses in opposite direction from some initial time t = t0 to t1, t2, t3 and
so on until tn, the most recent instant is reached (figure 3.2):

4 For the moment we need not specify whether X (t) is a simple random variable or

a random vector ~X (t) =
(
Xk(t); k = 1, . . . ,M

)
and therefore we drop the index ‘k’

determining the individual component. Later on, for example in chemical kinetics,
when the distinction of different (chemical) species becomes necessary, we shall make
clear in which sense X (t) is used, random variable or random vector.
5 Here we shall use the notion of phase space in a loose way for an abstract space that
is sufficient for the characterization of the system and for the description of its tem-
poral development. For example in a reaction involving n chemical species the phase
space will be a Cartesian space spanned by n axes for n concentrations. In classical
mechanics the phase space is precisely defined as a – commonly Cartesian – space
spanned by the 3n spatial coordinates and the 3n coordinates of the linear momenta
of an n particle system, and the same definition is used in statistical mechanics.
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T =
(

(xn, tn), (xn−1, tn−1), · · · , (xk, tk), (xk−1, tk−1), · · · , (x0, t0)
)
, (3.3’)

where we adopt the same notation as in equation (3.3) with changed ordering

tn ≥ tn−1 ≥ · · · ≥ tk ≥ tk−1 ≥ · · · ≥ t0 .

In order to avoid confusion we shall always state explicitly when we are not
using the convention shown in equation (3.3).6

Single trajectories are superimposed to yield bundles of trajectories in the
sense of a summation of random variables as in equation (1.23):7

X (1)(t0) X (1)(t1) . . . X (1)(tn)
X (2)(t0) X (2)(t1) . . . X (2)(tn)

...
...

. . .
...

X (N)(t0) X (N)(t1) . . . X (N)(tn)

S(t0) S(t1) . . . S(tn)

,

and we obtain the summation random variable S(t). The calculation of sample
moments is straightforward and from equations (2.101) and (2.104) we get:

m(t) = µ̃(t) =
1

N
S(t) =

1

N

N∑
i=1

x(i)(t) ,

m2(t) = ṽar(t) =
1

N − 1

N∑
i=1

(
x(i)(t)−m(t)

)2
=

=
1

N − 1

(
N∑
i=1

x(i)(t)2 − N m(t)2

)
.

(3.4)

An illustration by means of a numerical example is shown in figure 3.3.
In chapters 1 and 2 we have used the vague notion of scores and not

yet specified, which quantities the random variables (A,B, . . . ,W) ∈ Ω
actually describe and what their realizations in some measurable space,
(a, b, . . . , w) ∈ R, precisely are. So far almost all events and samples were
expressed as dimensionless numbers. Considering processes introduces time
and time has a dimension and accordingly we need to specify a unit in which
the recorded data are measured – second, minute or hour, for example. Pro-
cesses may take place in three-dimensional physical space where units for

6 The different numberings for the elements of trajectories should not be confused with
forward and backward processes (figure 3.2) to be discussed later on in section 3.3.
7 In order to leave the subscript free for the indication of discrete times or different
chemical species we use the somewhat clumsy superscript notation, X (i) or x(i) (i =
1, . . . , N), to indicate individual trajectories, and we use the physical numbering of
times, t0 → tn.
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Table 3.1 Notation used in modeling stochastic processes. Four different
approaches to model stochastic processes by probability densities are compared: (i)
discrete values of the random variable X and discrete time, (ii) discrete values and
continuous time, (iii) continuous values and discrete time, and eventually (iv) contin-
uous values and continuous time.

Time

Values discrete continuous

discrete Pn,k = P (Xk = xn) ; k, n ∈ N Pn(t) =
(
X (t) = xn

)
; n ∈ N, t ∈ R

pk(x) dx = P (x ≤ Xk ≤ x+ dx) = p (x, t) dx = P (x ≤ Xk ≤ x+ dx) =

continuous = fk(x) dx = dFk(x) = f(x, t) dx = dF (x, t)

k ∈ N , x ∈ R x, t ∈ R

length, area and volume are required. In applications we shall be concerned
with variables of other physical dimensions, for example mass, viscosity, sur-
face tension, electric charge, magnetic moments, electromagnetic radiation,
etc. Wherever a quantity is introduced we shall mention its dimension and
the common units used in measurements.

Stochastic processes in chemistry and biology are commonly modeling
the time development of ensembles or populations. In spatially homogeneous
chemical reaction systems the variables are discrete particle numbers or con-
tinuous concentrations, A(t) or a(t), and as a common notation we shall use
[A(t)] and omit ‘(t)’ whenever there is no misunderstanding possible. Spatial
heterogeneity, for example, is accounted for by explicit consideration of dif-
fusion and this leads to a reaction-diffusion systems, where the solutions can
be visualized as migrations of evolving probability densities in time and three
dimensional space. Then, the variables are functions in 3d space and time,
A(r, t) or a(r, t), with r = (x, y, z) ∈ R3 being a vector in space. In biology the
variables are often numbers of individuals in populations and then they de-
pend on time or as in chemistry on time and on three-dimensional space when
migration processes are considered. Sometimes it is of advantage to consider
stochastic processes in formal spaces like the genotype or sequence space,
which is a discrete space where the points represent individual genotypes and
the distance of two genotypes commonly called Hamming-distance counts the
minimal number of mutations required to bridge the interval between them.
Neutral evolution, for example, can then be visualized as a diffusion process
(section 5.3.2) and Darwinian selection as a hill climbing process in genotype
space [469].
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3.1.2 Probabilistic notation for processes

A stochastic process is determined by a set of joint probability densities
the existence and analytical form of which is presupposed.8 The probability
density encapsulates the physical nature of the process and contains all pa-
rameters and data reflecting internal dynamics and external conditions and
in this way determines completely the system under consideration:

p (x1, t1;x2, t2;x3, t3; · · · ;xn, tn; · · · ) . (3.5)

By complete determination we mean that no additional information is re-
quired to describe the progress of the system as a time ordered series (3.3)
and we shall call such a process a separable stochastic process. Although more
general processes are conceivable, they play little role in current physics,
chemistry, and biology and therefore we shall not consider them here.

Calculation of probabilities from (3.5) by means of marginal densities
(1.40) and (1.72) is straightforward. For the discrete case the result is ob-
vious:

P (X = x1) = p (x1, ∗) =
∑
xk 6=x1

p (x1, t1;x2, t2;x3, t3; · · · ;xn, tn; · · · ) .

The probability to record the value x1 for the random variable X at time
t1 is obtained through summation over all previous values x2, x3, . . . . In the
continuous case the summations are simply replaced by integrals,

P (X1 = x1 ∈ [a, b]) =

∫ b

a

dx1

∫∫∫ ∞
−∞

dx2dx3 · · · dxn · · ·

p (x1, t1;x2, t2;x3, t3; · · · ;xn, tn; · · · ) .

Time ordering admits a formulation of the predictions of future values from
the known past in terms of conditional probabilities:

p (x1, t1; x2, t2; · · · |xk, tk; xk+1, tk+1, · · · ) =
p (x1, t1; x2, t2; · · · ; xk, tk; xk+1, tk+1, · · · )

p (xk, tk; xk+1, tk+1, · · · )
,

with t1 ≥ t2 ≥ · · · ≥ tk ≥ tk+1 ≥ · · · . In other words, we may compute

{(x1, t1), (x2, t2), · · · } from known {(xk, tk), (xk+1, tk+1), · · · } .

With respect to the temporal progress of the process we shall distinguish
discrete and continuous time: A trajectory in discrete time is just a time
ordered sequence of random variables, X1,X2, . . . ,Xn where time is implicitly
included in the index of the variable in the sense that X1 is recorded at

8 The joint density p is defined as in equations (1.37) and section 1.9.3 but with a
slightly different notation. In stochastic processes we are always dealing with doubles
(x, t), which we separate by a semicolon: · · · ;xk, tk;xk+1, tk+1; · · · .
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time t1, X2 at time t2, and so on. The discrete probability distribution is
characterized by two indices, n for the integer values the random variable
can adopt and k for time: Pn,k = P (Xk = xn) with n, k ∈ N>0 (table 3.1).
The introduction of continuous time is straightforward, since we need only
replace k ∈ N>0 by t ∈ R. The random variable is still discrete and the
probability mass function becomes a function of time, Pn,k ⇒ Pn(t). The
transition to a continuous sample space for the random variable is done in
precisely the same way as in the case of probability mass functions described
in section 1.9. For the discrete time case we change the notation accordingly,
Pn,k ⇒ pk(x)dx = fk(x)dx = dFk(x), and for continuous time we have
Pn,k ⇒ p (x, t)dx = f(x, t)dx = dF (x, t)dx.

Before we derive a general concept that allows for flexible modeling of
stochastic processes, which are applicable to chemical kinetics and biological
modeling, we introduce a few common classes of stochastic processes with
certain characteristic properties that are meaningful in the context of appli-
cations. In addition we shall distinguish different behavior with respect to
past, present and future encapsulated in memory effects.

3.1.3 Memory in stochastic processes

Three simple stochastic processes with characteristic memory effects will be
discussed here: (i) the fully factorizable process with probability densities
that are independent of other events with the special case of the Bernoulli
process where the probability densities are also independent of time, (ii) the
martingale where the (sharp) initial value of the stochastic variable is equal to
the conditional mean value of the variable in the future, and (iii) the Markov
process, where the future is completely determined by the presence and which
is the most common formalism for modeling dynamics stochasticity in science.

3.1.3.1 Independence and Bernoulli processes

The simplest class of stochastic processes is characterized by complete inde-
pendence of events that allows for factorization of the density,

p (x1, t1;x2, t2;x3, t3; · · · ) =
∏
i

p (xi, ti) . (3.6)

Equation (3.6) implies that the current value X (t) is completely independent
of its values in the past. A special case is the sequence of Bernoulli trials (see
in previous chapters, in particular in sections 1.5 and subsection 2.3.2) where
the probability densities are also independent of time: p (xi, ti) = p (xi), and
then we have

p (x1, t1;x2, t2;x3, t3; · · · ) =
∏
i

p (xi) . (3.6’)
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Further simplification occurs, of course, when all trials are based on the same
probability distribution – for example, if the same coin is tossed in Bernoulli
trials or the same dice are thrown – and then the product can be replaced by
the power p (x)n.

3.1.3.2 Martingales

The notion of martingale has been introduced by the French mathemati-
cian Paul Pierre Lévy and the development of the theory of martingales is
due to the American mathematician Joseph Leo Doob [304]. Appropriately,
we distinguish discrete time and continuous time processes. A discrete-time
martingale is a sequence of random variables, X1,X2, . . . , which satisfy the
conditions9

E(Xn+1|Xn, . . . ,X1) = Xn and E(|Xn|) <∞ . (3.7)

Given all past values X1, . . . ,Xn the conditional expectation value for the
next observation E(Xn+1) is equal to the last recorded value Xn.

A continuous time martingale refers to a random variable X (t) with the
expectation value E

(
X (t)

)
. We define first the conditional expectation value

of the random variable for X (t0) = x0 and E(|X (t)|) <∞:

E
(
X (t)|(x0, t0)

) .
=

∫
dx p (x, t|x0, t0) .

In a martingale the conditional mean is simply given by

E
(
X (t)|(x0, t0)

)
= x0 . (3.8)

The mean value at time t is identical to the initial value of the process. The
martingale property is rather strong and we shall use it for several specific
situations.

As an example of a martingale we show the unlimited symmetric random
walk in one dimension (figure 3.3): Equally sized steps of length l to the
right and to the left are taken with equal probability. In the discrete time
random walk the waiting time between two steps is θ and appropriately we
measure time in multiples of the waiting time: t−t0 = k ·θ, and the position in
multiples of the step length l. The corresponding probability to be at location
x− x0 = n · l at time θ is simply expressed in doubles of variables (n, k)

P (n, k + 1 |n0, k0) =
1

2

(
P (n+ 1, k |n0, k0) + P (n− 1, k |n0, k0)

)
,

Pn,k+1 =
1

2

(
Pn+1,k + Pn−1,k

)
with Pn,k0 = δn,n0

,

(3.9)

9 For convenience we change here the numbering of times and apply the notation of
equation (3.3’)
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Fig. 3.3 The discrete time one-dimensional random walk. The random walk
in one dimension on an infinite line, x ∈ R, is shown as an example of a martingale.
The upper part shows five trajectories, X (t), which were calculated with different
seeds for the random number generator. The expectation value E

(
X (t)

)
= x0 = 0

is constant (black line), the variance grows linearly with time var
(
X (t)

)
= k = t/θ,

and the standard deviation is σ
(
X (t)

)
=
√
k. The two red lines correspond the one

standard deviation band E(t) ± σ(t), and the gray area represent the confidence
interval of 68,2 %. Choice of parameters: θ−1 = 1 [t.u.] (= 2ϑ); l = 1 [l.u.]; random
number generator: Mersenne Twister, seeds: 491 (yellow), 919 (blue), 023 (green), 877
(red), 127 (violet). The lower part of the figure shows the convergence of sample mean
and sample standard deviation according to equation (3.4) with increasing number N
of sampled trajectories: N = 10 (yellow), 100 (orange), 1000 (purple), and 106 (red
and black). The last curve is almost indistinguishable from the limit N → ∞ (ice
blue line upon the red and the black curve). Parameters are the same as in the upper
part, Mersenne Twister, seeds: 637
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where the short-hand notation expresses the initial conditions in a separate
equation. Our choice of variables allows for simplified initial conditions with-
out loosing generality: n0 = 0 and k0 = 0. Equation (3.9) can be readily
solved by means of the characteristic function

φ(s, k) = E
(
eı

.
ıns
)

=

∞∑
n=−∞

P (n, k | 0, 0, ) eı
.
ıns =

∞∑
n=−∞

Pn,k e
ı
.
ıns . (2.29’)

Implementation of equation (3.9) yields

φ(s, k + 1) =
1

2
φ(s, k)

(
eı

.
ıs + e−ı

.
ıs
)

= cosh(ı
.
ıs) with φ(s, 0) = 1 ,

and the solution is calculated to be

φ(s, k) = coshk(ı
.
ıs) =

=
1

2k

(
eı

.
ıks +

(
k

1

)
eı

.
ı(k−2)s +

(
k

2

)
eı

.
ı(k−4)s + . . .+ e−ı

.
ıks

)
.

(3.10a)

Equating the coefficients for the individual eı
.
ıns terms in expressions (3.10a)

and (2.29’) determines the probabilities

Pn,k =

{
1
2k

(
k
ν

)
if |n| ≤ k, ν = k−n

2 ∈ N,
0 otherwise .

(3.10b)

The distribution is a binomial distribution with k+ 1 terms, a width 2k and
every second term being equal to zero. It is spreading with time according to
t = k · θ.

Calculation of first and second moments is straightforward and can be
achieved best by using the derivatives of the characteristic function as shown
in equation (2.31):

∂φ(s, k)

∂s
= ı

.
ı n coshn−1(ı

.
ıs) · sinh(ı

.
ıs) and

∂2φ(s, k)

∂s2
= −n

(
coshn(ı

.
ıs) + (n− 1) coshn−2(ı

.
ıs) · sinh2(ı

.
ıs)
)

Insertion of s = 0 yields (∂φ/∂s)|s=0 = 0 and (∂2φ/∂s2)|s=0 = −n and by
equation (2.31) we obtain with n(0) = n0 and k(0) = k0 for the moments

E
(
X (t)

)
= x0 = n0 · l and var

(
X (t)

)
= t− t0 = (k − k0) θ . (3.11)

The unlimited, symmetric and discrete random walk in one dimension is a
martingale and the standard deviation σ

(
X (t)

)
increases with

√
t as pre-

dicted in the path-breaking works of Albert Einstein [108] and Marian von



182 3 Stochastic processes

Smoluchowski [453]. This implies that trajectories in general will diverge and
approach ±∞.

We remark that the standardized sum of the outcomes of Bernoulli trials,
s(n) = S(n)/n − µ with Sn =

∑n
i=1 Xi and Xi = ±1, which had been

used to illustrate the law of the iterated logarithm (figure 2.12), represents
a martingale as well but here the trajectories are confined by the domain
s(n) = ±1 and the long-term limit is zero. A time scale in this case results
from the assignment of a time interval between two successive trials.

The somewhat relaxed notion of a semimartingale is of importance because
it covers the majority of processes that are accessible to modeling by stochas-
tic differential equations. A semimartingale is composed of a local martingale
and an adapted càdlàg-process10 with bounded variation

X (t) = M(t) + A(t)

A local martingale is a stochastic process that satisfies locally the martingale
property (3.8) but its expectation value 〈M(t)〉 may be distorted at long
times by large values of low probability. Hence, every martingale is a local
martingale and every bounded local martingale is a martingale. In particu-
lar, every driftless diffusion process is a local martingale but need not be a
martingale.

An adapted process A(t) is nonanticipating in the sense that it cannot see
into the future. An informal interpretation [464, section II.25] would say: A
stochastic process X (t) is adapted if and only if for every realization and for
every time t, X (t) is known at time t and not before. The notion ’nonan-
ticipating’ is irrelevant for deterministic processes but matters for processes
containing fluctuating elements, because the independence of random or ir-
regular increments makes it impossible to look into the future. The concept
of adapted processes is essential for the definition and evaluation of the Itō
stochastic integral, which is based on the assumption that the integrand is
an adapted process (section 3.4.2).

Two generalizations of martingales are in common use: (i) A discrete time
submartingale is a sequence X1,X2,X3, . . ., of random variables that satisfy

E(Xn+1|X1, . . . ,Xn) ≥ Xn , (3.12)

and for the continuous time analogue we have the condition

E
(
X (t)|{X (θ) : θ ≤ s}

)
≥ X (s) ∀ s ≤ t . (3.13)

(ii) The relations for supermartingales are in complete analogy to the sub-
martingales, only the ’≥’ relations have to be replaced by ’≤’:

10 The property càdlàg is an acronym from French for “continue à droite, limites
à gauche”. It is a common property of step functions in probability theory (sec-
tion 1.6.2).
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E(Xn+1|X1, . . . ,Xn) ≤ Xn , (3.14)

E
(
X (t)|{X (θ) : θ ≤ s}

)
≤ X (s) ∀ s ≤ t . (3.15)

A straightforward consequence of the property of martingales is: If a sequence
or a function of random variables is a simultaneously submartingale and a
supermartingale it is a martingale.

3.1.3.3 Markov processes

Markov processes are processes that share the Markov property, which in
a nutshell assumes that knowledge of the present alone is all we need to
predict the future of such a process, or in other words information on the
past will not improve the prediction the future. Although processes that fulfil
the Markov property are only a minority among stochastic processes[440] in
general, they are of particular importance because most models in science
assume the Markov property, and this assumption facilitates the analysis
enormously.

The Markov process is named after the Russian mathematician Andrey
Markov11 and can formulated straightforwardly in terms of conditional prob-
abilities:

p (x1, t1;x2, t2; · · · |xk, tk;xk+1, tk+1, · · · ) = p (x1, t1;x2, t2; · · · |xk, tk) .
(3.16)

As said the Markov condition expresses independence of the history of the
process prior to time tk. For example, we have

p (x1, t1;x2, t2;x3, t3) = p (x1, t1|x2, t2) p (x2, t2|x3, t3) .

As we have seen in section 1.6.4 any arbitrary joint probability can be simply
expressed as products of conditional probabilities:

p (x1, t1;x2, t2;x3, t3; · · · ;xn, tn) =

= p (x1, t1|x2, t2) p (x2, t2|x3, t3) · · · p (xn−1, tn−1|xn, tn) p (xn, tn) (3.16’)

under the assumption of time ordering t1 ≥ t2 ≥ t3 ≥ . . . ≥ tn−1 ≥ tn.
Because these products of conditional probabilities of two events one speaks
also of a Markov chain.

The Bernoulli process (section 3.1.3.1) can be seen now as a special Markov
process, in which the next state is not only independent of the past states
but also of the current state.

11 The Russian mathematician Andrey Markov (1856-1922) is one of the founders
of Russian probability theory and pioneered the concept of memory free processes,
which is named after him. He expressed more precisely the assumptions that were
made by Albert Einstein [108] and Marian von Smoluchowski [453] in their derivation
of the diffusion process.
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3.1.3.4 Stationarity

Stationarity for a deterministic process implies that all observable time de-
pendencies become zero at stationary states. In the case of multistep processes
the definition leaves two possibilities open: (i) At thermodynamic equilibrium
the fluxes of all individual steps vanish as it is expressed in the principle of
detailed balance [430], or (ii) only the total flux that is the the sum of all fluxes
becomes zero. Stationarity of stochastic processes in general, and of Markov
processes in particular, is more subtle since random fluctuations do not van-
ish at equilibrium. Several definitions of stationarity are possible, three of
them are relevant for our purposes here.

Strong stationarity. A stochastic process is called strictly or strongly station-
ary if X (t) and X (t+∆t) obey the same statistics for every ∆t. Accordingly,
joint probability densities are invariant to translation in time:

p (x1, t1;x2, t2; . . . ;xn, tn) = p (x1, t1 +∆t;x2, t2 +∆t; . . . ;xn, tn +∆t) . (3.17)

In other words, the probabilities are only functions of time differences, ∆t =
tk − tj , and this leads to time independent stationary one-time probabilities

p (x, t) =⇒ p̄ (x) , (3.18)

and two-times joint or conditional probabilities of the form

p (x1, t1;x2, t2) =⇒ p̄ (x1, t1 − t2;x2, 0) and

p (x1, t1|x2, t2) =⇒ p̄ (x1, t1 − t2|x2, 0) .
(3.19)

Since all joint probabilities of a Markov process can be written as products
of two-time conditional probabilities and a one-time probability (3.16’), the
necessary and sufficient condition for stationarity is cast into the require-
ment to be able to write all one- and two-time probabilities as shown in
equations (3.18) and (3.19). A Markov process that becomes stationary in
the limit t→∞ or t0 → −∞ is called a homogeneous Markov process.

Weak stationarity. The notion of weak stationarity or covariance stationarity
is used in signal processing and relaxes the stationarity condition (3.17) for
a process X (t) to

E
(
X (t)

)
= µX (t) = µX (t+∆t) ∀ ∆t ∈ R and

cov
(
X (t1),X (t2)

)
= E

((
X (t1)− µX (t1)

)(
X (t2)− µX (t2)

))
=

= E
(
X (t1)X (t2)

)
− µX (t1)µX (t2) =

= CX (t1, t2) = CX (t1 − t2, 0) = CX (∆t) .

(3.20)
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Fig. 3.4 Notation of time dependent variables. In the following sections we
shall require several time dependent variables and adopt the following notations: In
case of the Chapman-Kolmogorov equation we require three variables at different
times denoted by x1, x2, and x3. The variable x2 is associated with intermediate
time t2 (green) and disappears through integration. In the forward equation (x3, t3)
are fixed initial conditions and (x1, t1) is moving (A). For backward integration the
opposite relation is assumed: (x1, t1) being fixed and (x3, t3) moving (B). In both cases
real time progresses from the left to the right, computational time increases in the
same direction as real time in the forward evaluation (blue) but in opposite direction
for backward evaluation (red). The lower part of the figure shows notations used for
forward and backward differential Chapman-Kolmogorov equations: In the forward
equation (C) x(t) is the variable, the initial conditions are denoted by (x0, t0) and
(z, t) is an intermediate double. In the backward equation the time order is reversed
(D): y(τ) is the variable and (y0, τ0) are the final conditions. In both cases we could
use z + dz instead x or y, respectively, but the equations would be less clear then.

Instead of the entire probability function only the mean of the process, µX ,
must be constant and the autocovariance function12 of the stochastic process
X (t) denoted by CX (t1, t2) does not depend on t1 and t2 but only on the
difference ∆t = t1 − t2.

Second order stationarity. The notion of second order stationarity of a pro-
cess with finite mean and finite autocovariance expresses the fact that the
conditions of strict stationarity are applied only to pairs of random variables

12 The notion autocovariance reflects the fact the process is correlated with itself at
another time and cross-covariance implies the correlation of two different processes
(for the relation between autocorrelation and autocovariance see section 3.1.4).
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from the time series and then the first and second order density functions
fulfil:

fX (x1; t1) = fX (x1; t1 +∆t) ∀ (t1, ∆t) and

fX (x1, x2; t1, t2) = fX (x1, x2; t1 +∆t, t2 +∆t) ∀ (t1, t2, ∆t) .
(3.21)

The definition can be extended to higher orders and then strict stationarity
is tantamount to stationarity in all orders. A second order stationary process
fulfils the criteria for weak stability but a process can be stationary in the
wide sense without fulfilling the criteria of second order stationarity.

3.1.3.5 Continuity in stochastic processes

Continuity in deterministic processes requires absence of any kind of jumps
but does not require differentiability expressed as continuity in the first
derivative. We recall the conventional definition of continuity at x = x0:

∀ ε > 0 ∃ δ > 0 such that ∀x : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε .

In other words there is the requirement that |f(x) − f(x0)| can become ar-
bitrarily small for all |x− x0| no matter how close x is to x0 – no jumps are
allowed. The condition of continuity in Markov processes is defined analo-
gously but requires a more detailed discussion. For this goal we consider a
process that progresses from location z at time t to location x = z + ∆z at
time t+∆t denoted as (z, t)→ (z+∆z, t+∆t) = (x, t+∆t).13 The process is
continuous if and only if in the limit ∆t→ 0 the probability of z to be finitely
different from x goes to zero faster than ∆t as expressed by the equation

lim
∆t→0

1

∆t

∫
|∆z|=|x−z|>ε

dx p (x, t+∆t|z, t) = 0 , (3.22)

and this convergence is uniform in z, t, and ∆t. In other words, the difference
in probability as a function of |z − x | approaches zero sufficiently fast and
therefore no jumps occur in the random variable X (t).

For the analysis of continuity in Markov processes we choose two illus-
trative examples [157, pp. 65-68], which have the trajectories sketched in
figure 3.5: (i) the Brownian motion [55] or Wiener process, which is the con-
tinuous version of the random walk in one dimension shown in figure 3.314

and which leads to a normally distributed conditional probability,

p (x, t+∆t|z, t) =
1√

4πD∆t
exp

(
− (x− z)2

4D∆t

)
, (3.23)

13 The notation used for time dependent variables is listed in figure 3.4. For conve-
nience and readability we write x for z +∆z.
14 Later on we shall discuss the limit of the random walk for vanishing step size in
more detail and call it a Wiener process (section3.2.2.2).
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and (ii) the so-called Cauchy process following the Cauchy-Lorentz distribu-
tion,

p (x, t+∆t|z, t) =
1

π

∆t

(x− z)2 +∆t2
. (3.24)

The distribution in case of the Wiener process follows directly from the bi-
nomial distribution of the random walk (3.10b) in the limit of vanishing step
size. For the analysis of continuity we exchange the limit and the integral,
introduce ϑ = (∆t)−1, perform the limit ϑ→∞, and find

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx
1√

4πD

1√
∆t

exp

(
− (x− z)2

4D∆t

)
=

=

∫
|x−z|>ε

dx lim
∆t→0

1

∆t

1√
4πD

1√
∆t

exp

(
− (x− z)2

4D∆t

)
=

=

∫
|x−z|>ε

dx lim
ϑ→∞

1√
4πD

ϑ3/2

exp
(

(x−z)2
4D ϑ

) , where

lim
ϑ→∞

ϑ3/2

1 + (x−z)2
4D · ϑ + 1

2!

(
(x−z)2

4D

)2

· ϑ2 + 1
3!

(
(x−z)2

4D

)3

· ϑ3 + . . .
= 0 .

Since the power expansion of the exponential in the denominator increases
faster than every finite power of ϑ, the ratio vanishes in the limit ϑ→∞, the
value of the integral is zero, and the Wiener process is continuous everywhere.
Although it is continuous, the trajectory of the Wiener Process is extremely
irregular since it is nowhere differentiable (figure 3.5).

In the second example, the Cauchy process, we exchange limit and integral
as in case of the Wiener process, and perform the limit ∆t→ 0:

lim
∆t→0

1

∆t

∫
|x−z|>ε

dx
∆t

π

1

(x− z)2 +∆t2
=

=

∫
|x−z|>ε

dx lim
∆t→0

1

∆t

∆t

π

1

(x− z)2 +∆t2
=

=

∫
|x−z|>ε

dx lim
∆t→0

1

π

1

(x− z)2 +∆t2
=

∫
|x−z|>ε

1

π(x− z)2
dx 6= 0 .

The value of the last integral, I =
∫∞
|x−z|>ε dx/(x − z)

2 = 1/
(
π(x − z)

)
, is

of the order I ≈ 1/ε and accordingly finite. Consequently, the curve for the
Cauchy-process is not only irregular but also discontinuous (figure 3.5).

Both processes, as required for consistency, fulfill the relation

lim
∆t→0

p (x, t+∆t| z, t) = δ(x− z) , (3.25)
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Fig. 3.5 Continuity in Markov processes. Continuity is illustrated by means
of two stochastic processes of the random variable X (t), the Wiener process W(t)
(3.23; black) and the Cauchy process C(t) (3.24; gray). The Wiener process describes
Brownian motion and is continuous but almost nowhere differentiable. The even more
irregular Cauchy process is wildly discontinuous.

where δ(·) is the so-called delta-function (see section 1.6.3). We are now
in the position to give a concise mathematical definition for continuity in
Markov processes [157, p. 46], which will be used to derive a comprehensive
and convenient equation for stochastic processes. For general validity we use
vector notation for the locations:

A Markov process has – with probability one – sample paths that are
continuous functions of time t, if for any ε > 0 the limit

lim
∆t→0

1

∆t

∫
|x−z|<ε

dx p (x, t+∆t| z, t) = 0 . (3.26)

is approached uniformly in z, t, and ∆t.

In essence, equation (3.26) expresses the fact that probabilistically the differ-
ence between x and z converges to zero faster than ∆t does.
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3.1.4 Autocorrelation functions and spectra

Analysis of experimentally recorded or computer created trajectories is often
largely facilitated by the usage of additional tools complementing moments
and probability distributions since they can, in principle, be derived from
single recordings. These tools are autocorrelation functions and spectra of
random variables, which provide direct insight into the dynamics of the pro-
cess, since they are dealing with relations between points collected at different
times from the same sample path. The autocorrelation is readily accessible
experimentally (see e.g. the application of the autocorrelation function to flu-
orescence correlation spectroscopy see section 4.4.2) and represents a basic
tool in time series analysis (see, for example, [458]).

Convolution, cross-correlation and autocorrelation. These three integral rela-
tions between functions f(t) and g(t) are important in statistics, in particular
in signal processing. The convolution is defined as

(f ∗ g)(x)
def
=

∫ ∞
−∞

dy f(y) g(x− y) =

∫ ∞
−∞

dy f(x− y) g(y) , (3.27)

where x and y are understood as vectors in n-dimensional space, (x,y) ∈
Rn. Among other important properties the convolution theorem is of great
practical importance because it allows for straightforward computation of the
convolution as the product of two integrals after Fourier transform:

F(f ∗ g) = F(f) · F(g) and f ∗ g = F−1
(
F(f) · F(g)

)
, (3.28)

where the Fourier transform and its inverse are defined by15

f̃(ξ) = F(f) =

∫ ∞
−∞

f(x) exp (−2πı
.
ı x · ξ) dx ,

f(x) = F−1(f̃) =

∫ ∞
−∞

f̃(ξ) exp (2πı
.
ı x · ξ) dξ .

The convolution theorem can also be inverted and yields

F(f · g) = F(f) ∗ F(g) .

The cross correlation is related to the convolution and commonly defined as

(f ? g)(x)
def
=

∫ ∞
−∞

dy f∗(y) g(x + y) , (3.29)

and in analogy to the convolution theorem the relation

15 We remark that this definition of the Fourier transform differs from the conven-
tional one in modern physics (see section 2.2.3).
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F(f ? g) =
(
F(f)

)∗ · F(g)

holds for the Fourier transform of the cross-correlation. The autocorrelation,

(f ? f)(x)
def
=

∫ ∞
−∞

dy f∗(y) f(x + y) , (3.30)

is a special case of cross-correlation, the cross-correlation of a function f with
itself.

Autocorrelation and spectrum. The autocorrelation function of a stochastic
process is defined by (2.9’) as the coefficient of correlation ρ(X ,Y) of the
random variable at some time, X = X (t1), with the variable at another time,
Y = X (t2):

R(t1, t2) = ρ
(
X (t1),X (t2)

)
=

=
E
((
X (t1)− µX (t1)

)(
X (t2)− µX (t2)

))
σX (t1)σX (t2)

, R ∈ [−1, 1] .

(3.31)

Thus the autocorrelation function is obtained from the autocovariance func-
tion (3.20) through division by the product of the standard deviations:

R(t1, t2) =
cov
(
X (t1)X (t2)

)
σX (t1)σX (t2)

.

Accordingly, the autocorrelation of the random variable X (t) is a measure
of the influence the value of X recorded time t1 has on the measurement of
the same variable at time t2. Under the assumption that we are dealing with
a weak or second order stationary process the mean and the variance are
independent of time and then the autocorrelation function depends only on
the time difference ∆t = t2 − t1:

R(∆t) =
E
((
X (t)− µX

)(
X (t+∆t)− µX

))
σ2
X

, R ∈ [−1, 1] . (3.31’)

In spectroscopy the autocorrelation obtained for a spectroscopic signal F(t)
measured as a function of time. Then we are dealing with

G(∆t) = 〈F(t)F(t+∆t)〉 = E
(
F(t)F(t+∆t)

)
=

= lim
t→∞

1

t

∫ t

0

dθ x(θ)x(θ +∆t) .

(3.32)

Thus, the autocorrelation function is the time average of the product of two
values recorded at different times with a given interval ∆t.
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Another relevant quantity is the spectrum or the spectral density of the
quantity x(t). In order to derive the spectrum, we construct a new variable

y(ω) by means of the transformation y(ω) =
∫ t

0
dθ eı

.
ıωθ x(θ). The spectrum

is then obtained from y by performing the limit t→∞:

S(ω) = lim
t→∞

1

2πt
|y(ω)|2 = lim

t→∞

1

2πt

∣∣∣∣∫ t

0

dθ eı
.
ıωθ x(θ)

∣∣∣∣2 . (3.33)

The autocorrelation function and the spectrum are closely related. By some
calculations one finds

S(ω) = lim
t→∞

(
1

π

∫ t

0

cos(ωτ) dτ
1

t

∫ t−τ

0

x(θ)x(θ + τ) dθ

)
.

Under certain assumptions, which ensure the validity of the interchanges of
order, we may take the limit t→∞ and find

S(ω) =
1

π

∫ ∞
0

cos(ωτ)G(τ) dτ .

This result relates the Fourier transform of the autocorrelation function to
the spectrum and can be cast in an even prettier form by using

G(−τ) = lim
t→∞

1

t

∫ t−τ

−τ
dθ x(θ)x(θ + τ) = G(τ)

to yield the Wiener-Khinchin theorem named after the American physicist
Norbert Wiener and the Russian mathematician Aleksandr Khinchin

S(ω) =
1

2π

∫ +∞

−∞
e−ı

.
ıωτ G(τ) dτ and G(τ) =

∫ +∞

−∞
eı

.
ıωτS(ω) dω . (3.34)

Spectrum and autocorrelation function are related to each other by the
Fourier transformation and its inversion.

Equation (3.34) allows for a straightforward proof that the Wiener pro-

cess ~W(t) = W (t) gives rise to white noise (subsection 3.2.2.2). Let w be
a zero-mean random vector with the identity matrix as (auto)covariance or
autocorrelation matrix:

E(w) = µ = 0 and cov(W,W) = E(ww′) = var I ,

then the Wiener process W (t) fulfils the relations,

µW (t) = E
(
W(t)

)
= 0 and

GW (τ) = E
(
W(t)W(t+ τ)

)
= δ(τ) ,
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defining it as a zero-mean process with infinite power at zero time shift. For
the spectral density of the Wiener process we obtain:

SW (ω) =
1

2π

∫ +∞

−∞
e−ı

.
ıωτ δ(τ) dτ =

1

2π
. (3.35)

The spectral density of the Wiener process is a constant and hence all frequen-
cies in the noise are represented with equal weight. Mixing all frequencies in
electromagnetic radiation with equal weight yields white light and this prop-
erty of visible light gave the name for white noise. In colored noise the noise
frequencies do not meet the condition of the uniform distribution. Pink or
flicker noise, for example, has a spectrum close to S(ω) ∝ ω−1 and red or
Brownian noise fulfils S(ω) ∝ ω−2.

The time average of a signal as expressed by an autocorrelation function
is complemented by the ensemble average, 〈·〉, or the expectation value of the
corresponding random variable, E(·), which implies an (infinite) number of
repeats of the same measurement. If the assumption of ergodic behavior is
true, the time average is equal to the ensemble average. Thus we find for a
fluctuating quantity X (t) in the ergodic limit

E
(
X (t),X (t+ τ)

)
= 〈x(t)x(t+ τ)〉 = G(τ) .

It is straightforward to consider dual quantities which are related by Fourier
transformation and get:

x(t) =
1

2π

∫
dω c(ω) eı

.
ıωt and c(ω) =

∫
dt x(t) e−ı

.
ıωt .

We use this relation to derive several important results. Measurements refer
to real quantities x(t) and this implies: c(ω) = c∗(−ω). From the condition
of stationarity follows 〈x(t)x(t′)〉 = f(t− t′) and hence it depends on τ only
and does not depend on t, and we derive

〈c(ω)c∗(ω′)〉 =
1

(2π)2

∫∫
dtdt′ e−ı

.
ıωt+iωt′ 〈x(t)x(t′)〉 =

=
δ(ω − ω′)

2π

∫
dτ eı

.
ıωτ G(τ) = δ(ω − ω′)S(ω) .

The last expression relates not only the mean square
〈
|c(ω)|2

〉
with the spec-

trum of the random variable, it shows also that stationarity alone implies
that c(ω) and c∗(ω′) are uncorrelated.
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3.2 The Chapman-Kolmogorov equation

At the basis of general modeling of stochastic processes stands a straightfor-
ward consideration concerning the propagation of probability distributions
in time, the question how to calculate the probability to come from the ran-
dom variable N3 = n3 at time t = t3 to N1 = n1 at time t = t1. It seems
natural to assume an intermediate state described by the random variable
N2 = n2 at t = t2 with the implicit order in time: t1 ≥ t2 ≥ t3 (figure 3.4).
The value of the variable N2, however, need not be unique or in other words,
there may be several paths or trajectories leading from (n3, t3) to (n1, t1).
Since we are interested in the propagation of a distribution and not in a
single trajectory the probability distribution at intermediate times is impor-
tant. Therefore the individual values of the random variables are replaced
by probabilities, N = n =⇒ P (N = n, t) = P (n, t),16 and an equation is
obtained that encapsulates the full diversity of different sources of random-
ness with the exception of quantum uncertainty. The only restriction in the
generally used form of this equation is the Markov property of the stochas-
tic process. This general equation is named Chapman-Kolmogorov equation
after the British geophysicist and mathematician Sydney Chapman and the
Russian mathematician Andrey Kolmogorov and in the rest of this section
we shall be concerned with it in its various forms.

3.2.1 Forward Chapman-Kolmogorov equation

A forward equation predicts the future of a system from given information
of the present state, and this is the most common strategy in modeling dy-
namical phenomena. It allows for direct comparison with experimental data,
which in observations are, of course, also recorded in the forward direction.
There are however problems like the computation of first passage times or
the reconstruction of phylogenetic trees that call for an opposite strategy,
which aims at a reconstruction of the past from present day information.
In such cases so-called backward equations facilitate the analysis (see, e.g.,
section 3.3).

3.2.1.1 Discrete and continuous Chapman-Kolmogorov equations

The relation between the three random variables A, B, and C can be illus-
trated by application of set theoretical considerations. Let A, B and C be
the corresponding events and Bk (k = 1, . . . , n) a partition of B into n mu-
tually exclusive subevents. Then, if all events of one kind are included in the
summation the corresponding variable B is eliminated:

16 Here, we need not yet specify whether the sample space is discrete, Pn(t), or
continuous, P (x, t), but we shall do so in section 3.2.1.1.
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k

P (A ∩Bk ∩ C) = P (A ∩ C) .

The relation can be easily verified by means of Venn diagrams. Translating
this results into the language of stochastic process we assume first to be
dealing with a discrete state space and accordingly the random variables
N ∈ N are defined on the integers. Then we can simply make use of state
space covering and find for the marginal probability

P (n1, t1) =
∑
n2

P (n1, t1;n2, t2) =
∑
n2

P (n1, t1|n2, t2)P (n2, t2) .

Next we introduce a third event (n3, t3) (figure 3.4) and describe the process
by the equations for conditional probabilities

P (n1, t1|n3, t3) =
∑
n2

P (n1, t1;n2, t2|n3, t3) =

=
∑
n2

P (n1, t1|n2, t2;n3, t3)P (n2, t2|n3, t3) .

Both equations are of general validity for all stochastic processes, and the se-
ries could be extended further to four, five events and so on. Finally, adopting
the Markov assumtion and introducing the time order t1 ≥ t2 ≥ t3 provides
the basis for dropping the dependence on (n2, t2) in the doubly conditioned
probability and leads to

P (n1, t1|n3, t3) =
∑
n2

P (n1, t1|n2, t2)P (n2, t2|n3, t3) . (3.36)

This is the Chapman-Kolmogorov equation in its simplest general form. Equa-
tion (3.36) can be interpreted as a matrix multiplication, C = A · B with
cij =

∑m
k=1 aikbkj , where the eliminated dimension of the matrices, m, re-

flects on the size of the event space of the eliminated variable n2, it could be
even countably infinite.

The extension from the discrete case to probability densities is straight-
forward. By the same token we find for the continuous case

p (x1, t1) =

∫
dx2 p (x1, t1;x2, t2) =

∫
dx2 p (x1, t1|x2, t2) p (x2, t2) ,

and the extension to three events leads to

p (x1, t1|x3, t3) =

∫
dx2 p (x1, t1;x2, t2|x3, t3) =

=

∫
dx2 p (x1, t1|x2, t2;x3, t3) p (x2, t2|x3, t3) .
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Fig. 3.6 Time order in the differential Chapman-Kolmogorov equation
(dCKE) . The one-dimensional sketch shows the notation used in the derivation of
the forward dCKE. The variable z is integrated over the entire sample space Ω in
order to sum up all trajectories leading from (x0, t0) via (z, t) to (x, t+∆t).

For t1 ≥ t2 ≥ t3 and making again use of the Markov property we obtain the
continuous version of the Chapman-Kolmogorov equation:

p (x1, t1|x3, t3) =

∫
dx2p (x1, t1|x2, t2) p (x2, t2|x3, t3) . (3.37)

Equation (3.37) is of very general nature. The only relevant approximation
is the assumption of a Markov process, which is empirically well justified
in most applications in physics, chemistry and biology. General validity is
commonly accompanied by a variety of different solutions and the Chapman-
Kolmogorov equation is no exception in this aspect. The generality of (3.37)
in the description of a stochastic process becomes evident when the evolution
in time is continued t1 ≥ t2 ≥ t3 ≥ t4 ≥ t5 . . . , and complete summations
over all intermediate states are performed

p (x1, t1|xn, tn) =

∫
dx2 · · ·

∫
dxn−1p (x1, t1|x2, t2) . . . p (xn−1, tn−1|xn, tn) .

Sometimes it is useful – and we shall adopt also this notation here – to
indicate an initial state by the doublet (x0, t0) and apply physical notation
of time.

3.2.1.2 Differential Chapman-Kolmogorov forward equation

Since we aim at a description of processes the Chapman-Kolmogorov equa-
tions in discrete and continuous form as expressed in equations (3.36) and
(3.37), respectively, provide a general definition of Markov processes but they
are not really useful to describe the temporal evolution. Much better suited
for describing stochastic processes as well as analyzing nature and properties
of solutions or performing actual calculations are equations in differential
form. In a way the differential formulation of basic stochastic processes can
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be compared to the invention of calculus by Gottfried Wilhelm Leibniz and
Isaac Newton, which provides the ultimate basis for all modeling by means of
differential equations. Analytical solution or numerical integration of such a
differential Chapman-Kolmogorov equation (dCKE) is then expected to pro-
vide the desired description of processes. A differential form of the Chapman-
Kolmogorov equation has been derived by Crispin Gardiner [157, pp. 48-51].17

We shall follow here, in essence, a simpler approach given more recently by
Mukhtar Ullah and Olaf Wolkenhauer [434, 435].

The Chapman-Kolmogorov equation is considered for an interval t→ t+∆t
defined for a sample space Ω and the initial conditions (x0, t0):

p (x, t+∆t|x0, t0) =

∫
Ω

dz p (z, t+∆t|x0, t0) p (z, t|x0, t0) , (3.37 ’)

whereby the consistency equation (3.25) is fulfilled. As illustrated in fig-
ure 3.6 the probability of the transition from (x0, t0) to (x, t + ∆t) is ob-
tained by integration over all probabilities to occur via an intermediate,
(x0, t0) → (z, t) → (x, t + ∆t). In order to simplify derivation and nota-
tion we shall assume fixed sharp initial conditions (x0, t0) or in other words,
the unconditioned probability of the state (x, t) is the same as the probability
of the transition from (x0, t0)→ (x, t):

p (x, t) = p (x, t|x0, t0) with p (x, t0) = δ(x− x0). (3.38)

We introduce the time derivative by tacitly assuming that the probability
p (x, t) is differentiable with respect to time:

∂

∂t
p (x, t) = lim

∆t→0

1

∆t

(
p (x, t+∆t) − p (x, t)

)
(3.39)

Introducing the CKE in form (3.37’) and multiplying p (x, t) formally by one
in the form of the normalization condition of probabilities,18

1 =

∫
Ω

dz p (z, t+∆t|x, t) ,

we can rewrite equation (3.39) as

∂

∂t
p (x, t) = lim

∆t→0

1

∆t

∫
Ω

dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
.

(3.40)

17 The derivation is contained already in the first edition of Gardiner’s Handbook
of stochastic methods [156] and it has been Crispin Gardiner who coined the name
differential Chapman-Kolmogorov equation.
18 It is important to note a useful trick in the derivation: By the substitution the
time order is reversed in the integral.
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For the purpose of integration the sample space Ω is divided up into to parts
with respect to an arbitrarily small parameter ε > 0: Ω = I1 + I2. Using the
notion of continuity (section 3.1.3.5) the region I1 defined by ‖x − z‖ < ε
represents a continuous process.19 In the second part of the sample space Ω,
I2 with ‖x−z‖ ≥ ε, the norm cannot become arbitrarily small corresponding
to a jump process. For the derivative taken on entire sample space Ω we get:

∂

∂t
p (x, t) = I1 + I2 , with

I1 = lim
∆t→0

1

∆t

∫
‖x−z‖<ε

dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
, and

I2 = lim
∆t→0

1

∆t

∫
‖x−z‖≥ε

dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
.

(3.41)

In the first region I1 with ‖x− z‖ < ε we introduce r = x− z

I1 = lim
∆t→0

1

∆t

∫
‖r‖<ε

dr
(
p (x, t+∆t|x− r, t) p (x− r, t)−

− p (x− r, t+∆t|x, t) p (x, t)
)
, and define

f(x, r)
.
= p (x + r, t+∆t|x, t) p (x, t) yielding

I1 = lim
∆t→0

1

∆t

∫
‖r‖<ε

dr
(
f(x− r, r)− f(x,−r)

)
= lim

∆t→0

1

∆t

∫
‖r‖<ε

drF (x, r).

Next the integrand is expanded in a Taylor series in −r about r = 0:

F (x, r) = −f(x,−r) + f(x, r) +
∑
i

(−ri)
∂f(x, r)

∂xi
+

1

2

∑
i,j

∂2f(x, r)

∂xi∂xj
+ . . .

In this Taylor expansion the constant term is zero and all terms higher than
second order vanish in the limit ∆t→ 0 [157, 434]. Provided the differentia-
bility conditions are fulfilled we obtain in the limit ε→ 0:

I1 = −
∑
i

∂

∂xi

(
Ai(x, t) p (x, t)

)
+

1

2

∑
i

∑
j

∂2

∂xi∂xj

(
Bij(x.t) p (x, t)

)
. (3.42)

which defines a Fokker-Planck equation. We remark that in the limit ε → 0
the continuous part of the process becomes equivalent to an equation for the
differential increments of the random vector ~X (t) describing a single trajec-

19 The notation ‖·‖ refers to a suitable vector norm, here the L1 norm, ‖y‖ =
∑
k |yk|.

In the one-dimensional case we would just use the absolute value |y|.
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tory:

~X (t+ dt) = ~X (t) + A
(
~X(t), t

)
dt +

(
B
(
~X (t), t

)
dt
) 1

2

. (3.43)

In the terminology used in physics A is the drift vector and B is the diffusion
matrix of the stochastic process. In other words, for ε → 0 and continuity
of the process the expectation value of the increment vector expressed by
~X (t + dt) − ~X (t) approaches A

(
~X(t), t

)
dt and its covariance converges to

B
(
~X(t), t

)
dt. Equation (3.43) is a stochastic differential equation or Langevin

equation (see section 3.4.1).
The second part of the integration over sample space Ω involves the proba-
bility rate for jumps:

I2 = lim
∆t→0

1

∆t

∫
‖x−z‖≥ε

dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
.

The condition for a jump process is ‖x− z‖ ≥ ε (section 3.1.3.5) and accord-
ingly we have

lim
∆t→0

1

∆t

(
p (x, t+∆t| z, t) p (z, t)

)
= W (x| z, t) p (z, t) , (3.44)

where W (x| z, t) is the transition rate for the jump z→ x. By the same token
we define a transition rate for the jump in the reverse direction x → z. As
ε→ 0 the integration is extended over the whole same space Ω and eventually
we obtain

lim
ε→0

I2 =

∫
Ω

dz
(
W (x| z, t) p (z, t) − W (z| z, t) p (x, t)

)
, (3.45)

which completes the somewhat simplified derivation of the differential Chapman-
Kolmogorov equation.

The evolution of the system is now expressed in terms of functions A(x, t),
which correspond to the functional relations in conventional differential equa-
tions, a diffusion matrix B(x, t), and transition matrix for discontinuous
jumps W(x|z, t):
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∂p (x, t)

∂t
= −

∑
i

∂

∂xi

(
Ai(x, t) p (x, t)

)
+ (3.46a)

+
1

2

∑
i,j

∂2

∂xi∂xj

(
Bij(x, t) p (x, t)

)
+ (3.46b)

+

∫
dz
(

W(x |z, t) p (z, t)−W(z |x, t) p (x, t)
)
. (3.46c)

Equation (3.46) is called a forward equation in the sense of figure 3.22.
Surface terms at the boundary of the domain of x have been neglected in the
derivation [157, p. 50]. This assumption is not critical for most cases consid-
ered here. It is always correct for infinite domains because the probabilities
vanish in the limit limx→±∞ p (x, t) = 0.

From a mathematical purist’s point of view it is not clear from the deriva-
tion that solutions of the differential Chapman-Kolmogorov equation (3.46)
exist, are unique and are solutions to the Chapman-Kolmogorov equation
(3.37) as well. It is true, however, that the set of conditional probabilities
obeying equation (3.46) does generate a Markov process in the sense that
the joint probabilities produced satisfy all probability axioms. It has been
shown, however, that a non-negative solution to the differential Chapman-
Kolmogorov equations exists and satisfies the Chapman-Kolmogorov equa-
tion under certain conditions (see [165, Vol.II]):

(1) A(x, t) = {Ai(x, t); i = 1, . . .} and B(x, t) = {Bij(x, t); i, j = 1, . . .} are
vectors and positive semidefinite matrices20 of functions, respectively,

(2) W(x|z, t) and W(z|x, t) are non-negative quantities,
(3) the initial condition has to satisfy p (x, t0|x0, t0) = δ(x0 − x), and
(4) appropriate boundary conditions have to be fulfilled.

The boundary conditions are very hard to specify for the full equation but
can be discussed precisely for special cases, for example in the case of the
Fokker-Planck equation [383].

The nature of the different stochastic processes associated with the three
terms in equation (3.46), A(x, t), B(x, t), W(x | z, t) and W(z |x, t), is visu-
alized by setting some parameters equal to zero and analyzing the remaining
equation. We shall discuss here four cases that are modeled by different equa-
tions (for relations between them see figure 3.1).

(i) B = 0, W = 0, deterministic drift process: Liouville equation,
(ii) A = 0, W = 0, drift free diffusion or Wiener process: diffusion equation,
(iii) W = 0, drift and diffusion process: Fokker-Planck equation, and
(iv) A = 0, B = 0, pure jump process: master equation.

20 A positive definite matrix has exclusively positive eigenvalues, λk > 0 whereas a
positive semidefinite matrix has non-negative eigenvalues, λk ≥ 0.
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The first term in differential Chapman-Kolmogorov equation, equation
(3.46a) is the probabilistic version of a differential equation describing deter-
ministic motion, which is known as Liouville equation named after the French
mathematician Joseph Liouville. It is a fundamental equation of statistical
mechanics and will be discussed in some detail subsection 3.2.2.1. With re-
spect to the theory of stochastic processes (3.46a) it encapsulates the drift of
a probability distribution.

The second term in equation (3.46) describes spreading of probability den-
sities by diffusion and is called a stochastic diffusion equation. In pure form it
is represented by the Wiener process, which got the name from the American
mathematician Norbert Wiener and which can be understood as the continu-
ous time and continuous space limit of the one-dimensional random walk (see
figure 3.3). The Wiener process is fundamental for understanding stochastic-
ity in continuous space and time and will be discussed in subsection 3.2.2.2.

Combining equations (3.46a) and (3.46b) yields the Fokker-Planck equa-
tion, which we repeat here because of its general importance:

∂p (x, t)

∂t
= −

∑
i

∂

∂xi

(
Ai(x, t) p (x, t)

)
+

1

2

∑
i,j

∂2

∂xi∂xj

(
Bij(x, t) p (x, t)

)
. (3.47)

The equation is named after two physicists, the Dutchman Adriaan Daniël
Fokker and the German Max Planck. Fokker-Planck equations are frequently
used in physics to model and analyze processes with fluctuations [383].

If only the third term of the differential Chapman-Kolmogorov equation,
(3.46c), has nonzero elements, the variables x and z change only in steps and
the corresponding differential equation is called a master equation. Master
equations are the most important tools for describing processes in discrete
spaces, X (t) ∈ N. We shall discuss specific examples in sections 3.2.2.4 and
3.2.4 and treat them in a whole section (section 3.2.3). In particular, mas-
ter equations are indispensable for modeling chemical reactions or biological
processes with small particle numbers. Specific applications in chemistry and
biology will be presented in two separate chapters 4 and 5.

It is important to stress that the mathematical expressions of the three
contributions to the general stochastic process represent a pure formalism
that can be applied equally well to problems in physics, chemistry, biology,
sociology, economics or other disciplines. Specific empirical knowledge enters
the model in form of the parameters: the drift vector A, the diffusion matrix
B, and the jump transition matrix W. By means of examples we shall show
how physical laws are encapsulated in regularities among the parameters.

3.2.2 Examples of stochastic processes

In this section we present examples of stochastic processes with characteristic
properties that will be useful as references in the forthcoming applications:
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(i) the Liouville process, (ii) the Wiener process, (iii) the Ornstein-Uhlenbeck
process, (iv) the Poisson process, and (v) the random walk in one dimension.

3.2.2.1 Liouville process

The Liouville equation21 is the straightforward link between deterministic
motion and stochastic processes. As indicated in figure 3.1 all elements of
the jump transition matrix W and the diffusion matrix B are zero and what
remains is a differential equation falling into the class of Liouville equations
from classical mechanics. A Liouville equation is used commonly for the de-
scription of the deterministic motion of particles in phase space.22 Following
[157, p. 54] we show that deterministic trajectories are identical to solutions
of the differential Chapman-Kolmogorov equation with D = 0 and W = 0 and
then relate the result to Liouville’s theorem in classical mechanics [292, 293].

First we consider deterministic motion as described by the differential
equation

dξ(t)

dt
= A

(
ξ(t), t

)
with ξ(t0) = ξ0 and

ξ(t) = ξ0 +

∫ t

t0

dξA
(
ξ(t), t

)
,

(3.48)

that can be understood as a kind of degenerate Markov process in which the
probability distribution degenerates to a Dirac delta-function p (x, t) = δ

(
x−

ξ(t)
)
.23 We may relax the initial conditions ξ(t0) = ξ0 or p (x, t0) = δ(x−ξ0)

to p (x, t0) = p (x0) and then the result is a distribution migrating through
space with unchanged shape (figure 3.7) instead of a delta function travelling
on a single trajectory

(
see equation (3.53’) below

)
.

By setting B = 0 and W = 0 in the dCKE we obtain for the Liouville
process

∂p (x, t)

∂t
= −

∑
i

∂

∂xi

(
Ai(x, t) p (x, t)

)
, (3.49)

The goal is now to show equivalence to the differential equation (3.48) in
form of the common solution

p (x, t) = δ
(
x− ξ(t)

)
. (3.50)

The proof is done by direct substitution

21 The notion Liouville equation has been created by Josiah Willard Gibbs [162].
22 Phase space is an abstract space, which is particularly useful for the visual-
ization of particle motion. The six independent coordinates of particle Sk are the
position coordinates qk = (qk1, qk2, qk3) and the (linear) momentum coordinates
pk = (pk1, pk2, pk3). In Cartesian coordinates they read: qk = (xk, yk, zk) and
pk = mk · vk with v = (vx, vy, vz) being the velocity vector.
23 For simplicity we write p (x, t) instead of the conditional probability p (x, t|x0, t0)
as long as the initial condition (x0, t0) refer to the sharp density p (x, t0) = δ(x−x0).



202 3 Stochastic processes

Fig. 3.7 Probability density of a Liouville process. The figure shows the mi-
gration of a normal distribution p (x) =

√
k/(πs2) exp

(
−k(x − µ)2/s2

)
along a tra-

jectory corresponding to the expectation value of an Ornstein-Uhlenbeck process:
ξ(t) = µ+ (ξ0 − µ) exp (−kt) (section 3.2.2.3). The expression for the density is

p (x, t) =
√

k
πs2
· e−k

(
x−µ−(ξ0−µ) exp (−kt)

)
/s2 ,

and the long-time limit of the distribution, p (x̄), is a normal distribution with mean
E(x̄) = µ and variance var(x̄) = σ2 = s2/2k. Choice of parameters: ξ0 = 3 [l.u.],
k = 1 [t.u.]−1, µ = 1 [l.u.], s = 1/4 [t.u.]−1/2.

−
∑
i

∂

∂xi

(
Ai(x, t) δ

(
x− ξ(t)

))
= −

∑
i

∂

∂xi

(
Ai
(
ξ(t), t

)
δ
(
x− ξ(t)

))
=

= −
∑
i

(
Ai
(
ξ(t), t

) ∂

∂xi
δ
(
x− ξ(t)

))
,

since ξ does not depend on x and

∂p (x, t)

∂t
=

∂

∂t
δ
(
x− ξ(t)

)
= −

∑
i

(dξi(t)

dt
· ∂

∂xi
δ
(
x− ξ(t)

))
.

Making use of equation (3.48) in component form

dξi(t)

dt
= Ai

(
ξ(t), t

)
we see that the sums in the expressions on the last two lines are equal. ut

The following part on Liouville’s equation illustrates how empirical sci-
ence – here Newtonian mechanics – enters a formal stochastic equation. In



3.2 Chapman-Kolmogorov equation 203

Hamiltonian mechanics [190, 191] dynamical systems may be represented by
a density function or classical density matrix % (q,p) in phase space. The
density function allows for the calculation of system properties. Commonly it
is normalized such that the expected total number of particles is the integral
over phase space:

N =

∫
· · ·
∫
% (q,p) (dq)n(dp)n .

The evolution of the system is described by a time dependent density that is
commonly denoted as %

(
q(t),p (t), t

)
with the initial conditions %

(
q0,p0, t0

)
.

For a single particle Sk the generalized spatial coordinated qki are related to
conjugate momenta pki by Newton’s equations of motion

dpki
dt

= fki(q) and
dqki
dt

=
1

mk
pki; i = 1, 2, 3 ; k = 1, . . . , n , (3.51)

where fki is the component of the force acting on particle Sk in the direction
of qki and mk the particle mass, respectively. Liouville’s theorem based on
Hamiltonian mechanics of an n particle system makes a statement on the
evolution of the density %

d% (q,p, t)

dt
=

∂%

∂t
+

n∑
k=1

3∑
i=1

(
∂%

∂qki

dqki
dt

+
∂%

∂pki

dpki
dt

)
= 0 : (3.52)

The density function does not change with time, it is a constant of the motion
and therefore constant along the trajectory in phase space.

Now, we can show that equation (3.52) can be transformed into a Liouville
equation (3.49). We insert the individual time derivatives and find

∂% (q,p, t)

∂t
= −

n∑
k=1

3∑
i=1

(
1

mi
pki

∂

∂qki
% (q,p, t) + fki

∂

∂pki
% (q,p, t)

)
. (3.53)

Equation (3.53) has already the form of a differential Chapman-Kolmogorov
equation (3.49) with B = 0 and W = 0 as follows from

% (q,p, t) ≡ p (x, t) ,

x ≡ (q11, . . . , qn3, p11, . . . , pn3) and

A ≡
(

1

m1
p11, . . . ,

1

mn
pn3, f11, . . . , fn3

)
.

where the 6n components of x representing 3n coordinates for the positions
and 3n coordinates for the linear momenta of n particles. Finally, we indicate
the relations of the probability density p (x, t) to equations (3.48) and (3.49):
The density function is the expectation value of the probability distribution,
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x(t) =
(
q(t),p (t)

)
= E

(
%
(
q(t),p (t), t

))
, (3.54)

and it fulfils the Liouville ODE as well as the Chapman-Kolmogorov equation:

∂p (x, t)

∂t
≡ ∂% (q,p, t)

∂t
=

= −
3n∑
i=1

(
1

mi
pi

∂

∂qi
% (q,p, t) + fi

∂

∂pi
% (q,p, t)

)
=

= −
6n∑
i=1

∂

∂xi

(
Ai(x, t) p (x, t) and (3.53’)

dx(t)

dt
= A

(
x(t), t

)
. (3.51’)

In other words, the Liouville equation states the conservation of the density
matrix % (q,p, t) in phase space as shown for a normal density in figure (3.7).

3.2.2.2 Wiener process

The Wiener process named after the American mathematician and logician
Norbert Wiener is fundamental in many aspects. It is often used as a syn-
onym for Brownian motion or white noise and describes among other things
the diffusion due to random fluctuations caused by thermal motion. The fluc-
tuation driven random variable is denoted byW(t) and it is characterized by
the cumulative probability distribution,

P (W(t) ≤ w) =

∫ w

−∞
p (u, t) du ,

where p (u, t) still has to be determined. From the point of view of stochastic
processes the probability density of the Wiener process is the solution of the
differential Chapman-Kolmogorov equation in one variable with a diffusion
term B = D = 1, zero drift, A = 0, and no jumps, W = 0:

∂p (w, t)

∂t
=

1

2

∂2

∂w2
p (w, t) with p (w, t0) = δ(w − w0) . (3.55)

Again a sharp initial condition (w0, t0) is assumed and we write for short
p (w, t) = p (w, t|w0, t0).

The closely related equation

∂ c (x, t)

∂t
= D

∂2

∂x2
c(x, t) with c(x, t0) = c0(x) , (3.56)
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is called diffusion equation, because c(x, t) describes the spreading of con-
centrations in homogeneous media driven by thermal molecular motion (for
a detailed mathematical description of diffusion see, for example, [79, 174]).
The parameter D is called the diffusion coefficient and here it is assumed to be
a constant that means independent of space and time. The one-dimensional
version of (3.56) is identical with the equation (3.55) with D = 1/2.24 The
three-dimensional version of equation (3.55) occurs in physics and chemistry
in connection with particle numbers or concentrations as functions of 3d-
space and time, c(r, t), which fulfill

∂ c (r, t)

∂t
= D∇2c (r, t) with r = (x, y, z) , ∇2 =

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, (3.57)

and the initial condition c (r, t0) = c0(r). The diffusion equation has been
derived first by Adolf Fick in 1855 [367]. Replacing the concentration by the
temperature distribution in an one-dimensional object c(x, t) ⇔ u(x, t) and
the diffusion constant by the thermal diffusivity, D ⇔ α, the diffusion equa-
tion (3.56) becomes the heat equation, which describes the time dependence
of the distribution of heat over a given region time.

Solutions of equation (3.55) can be calculated readily by means of the
characteristic function:

φ(s, t) =

∫ +∞

−∞
dw p (w, t) eı

.
ıs w and

∂φ(s, t)

∂t
=

∫ +∞

−∞
dw

∂p (w, t)

∂t
eı

.
ıs w =

1

2

∫ +∞

−∞
dw

∂2p (w, t)

∂w2
eı

.
ıs w .

First we derive a differential equation for the characteristic function by ap-
plying integration by parts twice.25 The first and second partial integration
steps yield

24 We distinguish the two formally identical equations (3.55) and (3.56), because
the interpretation is different: The first equation (3.55) describes the evolution of a
probability distribution with the conservation relation

∫
dw p (w, t) = 1, whereas the

second equation (3.56) deals with a concentration profile, which fulfils
∫

dx c (x, t) =
ctot corresponding to mass conservation. In case of the heat equation the conserved
quantity is total heat.
25 Integration by parts is a standard integration method in calculus. It is encapsulated
in the formula ∫ b

a

u(x) v′(x) dx = u(x) v(x)

∣∣∣∣b
a

−
∫ b

a

u′(x) v(x) dx .

Characteristic functions are especially well suited for partial integration, because
exponential functions, v(x) = exp (ı

.
ısx), can be easily integrated and probability

densities u(x) = p (x, t) as well as their first derivatives u(x) = ∂p (x, t)/∂x vanish in
the limits x→ ±∞.
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−∞
dw

∂p (w, t)

∂w
eı

.
ısw = p (w, t) eı

.
ısw

∣∣∣∣∞
−∞
−
∫ +∞

−∞
dw p (w, t)

∂eı
.
ısw

∂w
= ı

.
ıs φ(s, t)

and

∫ +∞

−∞
dw

∂2p (w, t)

∂w2
eı

.
ısw = − s2 φ(s, t) .

The function p (w, t) is a probability density and accordingly has to vanish in
the limits w → ±∞. The same is true for the first derivatives, ∂p (w, t)/∂w.
Differentiation of φ(s, t) in equation (2.29) with respect to t and applying
equation (3.55) we obtain

∂φ(s, t)

∂t
= −1

2
s2 φ(s, t) (3.58)

Next we compute the characteristic function by integration and find:

φ(s, t) = φ(s, t0) · exp
(
−1

2
s2 (t− t0)

)
. (3.59)

Insertion of the initial condition φ(s, t0) = exp (ı
.
ıs w0) completes the charac-

teristic function

φ(s, t) = exp
(
ı
.
ıs w0 −

1

2
s2 (t− t0)

)
(3.60)

and eventually we find the probability density through inverse Fourier trans-
formation

p (w, t) =
1√

2π (t− t0)
exp

(
−

(w − w0)2

2 (t− t0)

)
with p (w, t0) = δ(w − w0) . (3.61)

The density function of the Wiener process is a normal distribution with
expectation value and variance,

E
(
W(t)

)
= w0 and var

(
W(t)

)
= E

((
W(t)−w0

)2)
= t− t0 , (3.62)

respectively. The standard deviation, σ(t) =
√
t− t0, is proportional to the

square root of the time elapsed since the start of the process, t − t0, and
fulfils the famous

√
t -law. Starting the Wiener process at time t0 = 0 at the

origin w0 = 0 yields E
(
W(t)

)
= 0 and σ

(
W(t)

)2
= t. An initially sharp

distribution spreads in time as illustrated in figure 3.8, and this is precisely
what is experimentally observed in diffusion. The infinite time limit of (3.61)
is a uniform distribution U(w) = 0 on the whole real axis and hence p (w, t)
vanishes in the limit t→∞,.

Although the expectation value E
(
W(t)

)
= w0 is well defined and inde-

pendent of time in the sense of a martingale, the mean square E
(
W(t)2

)
becomes infinite as t → ∞. This implies that the individual trajectories,
W(t), are extremely variable and diverge after short time (see, for example,
the five trajectories of the forward equation in figure 3.3). We shall encounter



3.2 Chapman-Kolmogorov equation 207

Fig. 3.8 Probability density of the Wiener process. In the figure we show
the conditional probability density of the Wiener process, which is identical with the
normal distribution (figure 1.21),

p (w, t) = p (w, t|w0, t0) = exp
(
−(w − w0)2/

(
2(t− t0)

))
/
√

2π(t− t0).

The initially sharp distribution, p (w, t0|w0, t0) = δ(w − w0) spreads with increasing
time until it becomes completely flat in the limit t → ∞. The values used are w0 =
5 [l.u.], t0 = 0, and t =0 (black), 0.01 (red), 0.5 (yellow), 1.0 (blue), and 2.0 [t.u.]
(green). The lower picture shows a 3d plot of the density function.
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such a situation with finite mean but diverging variance also in biology in
the case of multiplication as a pure birth and death process (chapter 5). The
expectation value although well defined looses its meaning in practice when
the standard deviation becomes larger than the mean.

Continuity of sample paths of the Wiener process has been discussed al-
ready in subsection 3.2. Here we present proofs for two more features of
the Wiener process: (i) individual trajectories, although being continuous,
are nowhere differentiable and (ii) the increments of the Wiener Process are
independent of each other. The nondifferentiability of the trajectories of the
Wiener process has a consequence for the physical interpretation as Brownian
motion: The moving particle has no defined velocity. Independence of incre-
ments is indispensable for the integration of stochastic differential equations
(section 3.4).

In order to show nondifferentiability we consider the convergence behavior
of the difference quotient

lim
h→0

∣∣∣∣W(t+ h)−W(t)

h

∣∣∣∣ ,
where the random variable W has the conditional probability (3.61). Lud-
wig Arnold [16, p.48] illustrates the nondifferentiability in a heuristic way:
The difference quotient

(
W(t+h)−W(t)

)
/h follows the normal distribution

N (0, 1/|h|), which diverges as h ↓ 0 – the limit of a normal distribution with
exploding variance is undefined – and hence for every bounded measurable
set S we have

P
((
W(t+ h)−W(t)

)
/h ∈ S

)
→ 0 as h ↓ 0 .

Accordingly, the difference quotient cannot converge with nonzero probability
to a random variable with finite value. The convergence can behavior be made
more precise by using the law of the iterated logarithm (2.60): For almost
every sample function and arbitrary ε in the interval 0 < ε < 1 as h ↓ 0

W(t+ h)−W(t)

h
≥ (1− ε)

√
2 ln(ln

(
1/h)

)
h

infinitely often

and simultaneously

W(t+ h)−W(t)

h
≤ (−1 + ε)

√
2 ln(ln

(
1/h)

)
h

infinitely often .

Since expressions on the r.h.s. approach ±∞ as h ↓ 0, the difference quotient(
W(t+h)−W(t)

)
/h has for every fixed t. with probability one, the extended

real line [−∞,+∞] as its limit set of cluster points.
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Because of the general importance of the Wiener process it is essential to
present a proof for the statistical independence of nonoverlapping increments
of W(t) [157, pp. 67,68]. We are dealing with a Markov process and hence we
can write the joint probability as a product of conditional probabilities (3.16’),
where tn − tn−1, . . . , t1 − t0 are subintervals of the time span tn ≥ t ≥ t0

p (wn, tn;wn−1, tn−1; . . . ;w0, t0) =

n−1∏
i=0

p (wi+1, ti+1|wi, ti) p (w0, t0) .

Next we introduce new variables that are consistent with this partition:(
∆wi ≡ W(ti) − W(ti−1), ∆ti ≡ ti − ti−1

)
∀ i = 1, . . . , n. Since W(t) is a

also Gaussian process (see section 3.2.2.3) the probability density of any par-
tition is normally distributed and we express the conditional probabilities in
terms of (3.61):

p (∆wn, ∆tn;∆wn−1, ∆tn−1; . . . ;w0, t0) =

n∏
i=i

exp
(
−∆w2

i

2∆ti

)
√

2π∆ti
p (w0, t0) .

The joint probability distribution is factorized into distributions from indi-
vidual intervals and provided the intervals don’t overlap the increments ∆wi
are stochastically independent random variables in the sense of section 1.6.4,
and accordingly, they are independent of the initial condition W(t0). The
independence relation is readily cast in precise form

W(t) − W(s) is independent of {W(τ)}τ≤s for any 0 ≤ s ≤ t , (3.63)

which will be used in the forthcoming sections on stochastic differential equa-
tions (section 3.4).

Applying equation (3.62) to the probability distribution within a partition
we find for an the interval ∆tk = tk − tk−1 :

E
(
W(tk)−W(tk−1)

)
= E(∆wk) = wk−1 and var(∆wk) = tk − tk−1 ,

It is now straightforward to calculate the autocorrelation function, which is
defined by

〈W(t)W(s)|(w0, t0)〉 = E
(
W(t)W(s)|(w0, t0)

)
=

=

∫∫
dwtdws wtws p (wt, t;ws, s|w0, t0) .

(3.64)

Substraction and addition of W(s)2 inside the expectation value yields

E
(
W(t)W(s)|(w0, t0)

)
= E

((
W(t)−W(s)

)
W(s)

)
+ E

(
W(s)2

)
,
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where the first term vanishes because of independence of the increments and
the second term follows from (3.62):

E
(
W(t)W(s)|(w0, t0)

)
= min{t− t0, s− t0} + w2

0 , (3.65)

and simplifies to E
(
W(t)W(s)

)
= min{t, s} for w0 = 0 and t0 = 0. This

expectation value reproduces also the diagonal element, the variance var,
since for s = t we find E

(
W(t)2

)
= t. In addition, several other useful relations

can be derived from the autocorrelation relation. We summarize:

E
(
W(t)−W(s)

)
= 0 , E

(
W(t)2

)
= t , E

(
W(t)W(s)

)
= min{t, s} ,

E
((
W(t)−W(s)

)2)
= E

(
W(t)2

)
− 2E

(
W(t)W(s)

)
+ E

(
W(t)2

)
=

= t − 2 min{t, s} + s = |t− s| ,

and remark that these results are not independent of the càdlàg convention
for stochastic processes.

The Wiener process has the property of self-similarity: Assume thatW1(t)
is a Wiener process. Then, for every γ > 0,

W2(t) = W1(γt) =
√
γW1(t)

is also a Wiener process. Accordingly, we can change the scale at will and the
process remains a Wiener process. The power of the scaling factor is called
the Hurst factor H (see sections 3.2.4 and 3.2.5), and accordingly the Wiener
process has H = 1/2.

Solution of the diffusion equation by means of Fourier transform. The Fourier
transform is as a convenient tool for deriving solutions of the diffusion equa-
tion, because transformation of derivatives results in algebraic equations in
Fourier space and consecutive inverse transformation yields the desired an-
swer.26 In addition, the Fourier transform provides otherwise hard to obtain
insights into problems.

The Fourier transform of a general derivative yields through integration
by parts:

F
(

dp (x)

dx

)
=

1√
2π

∫ ∞
−∞

dx p (x) e−ı
.
ı kx =

=
1√
2π

p (x) e−ı
.
ı kx

∣∣∣∞
−∞

+
1√
2π

∫ ∞
−∞

dx ı
.
ı k p (x) e−ı

.
ı kx =

= ı
.
ı k p̃ (k) .

26 Integral transformations, in particular the Fourier and the Laplace transform, are
standard techniques for solving ODEs and PDEs. For details we refer to mathematics
handbooks for scientist, for example [123, pp. 89-96] and [382, pp. 449-451, 681-686].
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The first term of integration by parts vanishes because limx→±∞ p (x) = 0,
otherwise the probability could not be normalized. Application of the Fourier
transform to higher derivatives requires multiple application of integration by
parts an yields:

F
(

dnp (x)

dxn

)
= (ı

.
ı k)n p̃ (k) . (3.66)

Since t is handled like a constant in the Fourier transformation and in the
differentiation by x and the two linear operators F and d/ dt can be in-
terchanged without changing the result we find for the Fourier transformed
diffusion equation:

dp̃ (k, t)

dt
= −Dk2 p̃ (k, t) . (3.67)

The original PDE has become an ODE, which can be readily solved now and
which yields

p̃ (k, t) = p̃ (k, 0)

√
Dt

π
e−Dk2 t . (3.68)

This equation corresponds to a relaxation process with a relaxation time
τR = Dk2 where k is the wave number with dimension [l−1 = cm−1].27 The
solution of the diffusion diffusion equation is then obtained by inverse Fourier
transformation

p (x, t) =
1√

4πD t
e−x

2/(4Dt) . (3.69)

The solution, of course, is identical with the solution of the Wiener process
in equation (3.61).

Multivariate Wiener Process. The Wiener process is readily extended to
higher dimension. For the multivariate Wiener process, defined as

~W(t) =
(
W1(t), . . . ,Wn(t)

)
(3.70)

satisfying the Fokker-Planck equation

∂p (w, t|w0, t0)

∂t
=

1

2

∑
i

∂2

∂w2
i

p (w, t|w0, t0) . (3.71)

The solution is a multivariate normal density

p (w, t|w0, t0) =
1√

2π (t− t0)
exp

(
− (w −w0)2

2 (t− t0)

)
. (3.72)

with mean E
(
~W(t)

)
= w0 and variance-covariance matrix

27 For a system in 3d space the wave vector in reciprocal space is denoted by k and
its length |k| = k is called the wave number.
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Σ
)
ij

= E
((
Wi(t)− w0i

)(
Wj(t)− w0j

))
= (t− t0) δij ,

where all off-diagonal elements – the proper covariances – are zero. Hence,
Wiener processes along different Cartesian coordinates are independent.

Before we consider the Gauss process as a generalization of the Wiener
process it seems useful to summarize the most prominent features:

The Wiener process W =
(
W(t), t ≥ 0

)
is characterized by ten proper-

ties and definitions:

(1) initial condition W(t0) =W(0) ≡ 0 ,
(2) trajectories are continuous functions of t ∈ [0,∞[ ,
(3) expectation value E

(
W(t)

)
≡ 0 ,

(4) correlation function E
(
W(t)W(s)

)
= min{t, s} ,

(5) Gaussian property implies that for any (t1, . . . , tn) the random
vector

(
W(t1), . . . ,W(tn)

)
is a Gaussian process , ,

(6) moments E
(
W(t)2

)
= t, E

(
W(t)−W(s)

)
= 0, and

E
((
W(t)−W(s)

)2)
= |t− s| ,

(7) increments of the Wiener process on non-overlapping intervals are
independent, for (s1, t1) ∩ (s2, t2) = ∅ the random variables
W(t2)−W(s2) and W(t1)−W(s1) are independent ,

(8) nondifferentiability of trajectories W(t) ,
(9) self-similarity of the Wiener process W2(t) = W1(γt) =

√
γW1(t) ,

and
(10) martingale property, for Ws

0 =W(u)∀ 0 ≤ u ≤ s} we have

E
(
W(t)|Ws

0

)
=W(s) and E

((
W(t)−W(s)

)2 ∣∣Ws
0

)
= t− s .

Out of these ten properties three will be most important for the goals we
will pursue here: (i) continuity of sample paths, (ii) nondifferentiability of
sample paths, and (iii) independence of increments.

Gaussian and AR(n)28 processes. A generalization of Wiener processes is the
Gaussian process X (t) with t ∈ T where T may be a finite index set T =
{t1, . . . , tn} or the entire space of real numbers T = Rd for continuous time.
The integer d is the dimension of a problem, for example the number of inputs.
The condition of a Gaussian process is that any finite linear combination of
samples has a joint normal distribution: (Xt, t ∈ T ) is Gaussian if and only
if for every finite index set t = (t1, . . . , tn) there exist real numbers µk and
σ2
kl with σ2

kk > 0 such that

28 An autoregressive process of order n is denoted by AR(n). The order n implies
that n values of the stochastic variables at previous times are required to calculate the
current value. An extension of the autoregressive model is the autoregressive moving
average (ARMA) model.
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E

(
exp
(
ı
.
ı

n∑
i=1

tiXti
))

= exp
(
−1

2

n∑
i=1

n∑
j=1

σ2
ij titj + ı

.
ı

n∑
i=1

µiti

)
, (3.73)

where µk (i = 1, . . . , n) are the mean value of the random variables Xi and
σ2
ij = cov(Xi,Xj) with i, j = 1, . . . , n are the elements of the covariance

matrix Σ. The Wiener process is a nonstationary special case of a Gaussian
process since the variance grows with

√
t. The Ornstein-Uhlenbeck process

to be discussed in the next section 3.2.2.3 is an example for a stationary
Gaussian process. After an initial transient period it settles down to a process
with time-independent mean, µ̄ and variance µ̄2. In a nutshell, a Gaussian
process can be characterized as a normal distribution migrating in state space
and changing shape thereby.

According to Wold’s decomposition named after Herman Wold [467] any
stochastic process with stationary covariance can be expressed by a time series
that is decomposed into an independent deterministic part and independent
stochastic components

Yt = ηt +

∞∑
j=0

bjZt−j , (3.74)

where ηt is a deterministic process, for example the solution of a difference
equation, Zt−j are independent and identically distributed (iid) random vari-
ables, and bj are coefficients fulfilling b0 = 1 and

∑∞
j=0 b

2
j < ∞. This repre-

sentation is called the moving average model. A stationary Gaussian process,
Xt with t ∈ T = N can be written in the form of equation (3.74) with the
condition that the variables Z are iid normal variables with mean µ̄ = 0 and
variance µ̄2 = σ̄2, Zt−j = Wt−j . Since the independent deterministic part
can be easily removed nondeterministic or Gaussian linear processes

Xt =

∞∑
j=0

bjWt−j with b0 = 1 (3.75)

are frequently used in time series analysis. An alternative representation of
times series called autoregression considers the stochastic process by making
use of past values of the variable itself [189, 458]

Xt = ϕ1Xt−1 + ϕ2Xt−2 + . . . ϕnXt−n + Wt . (3.76)

The process (3.76) is characterized as autoregressive of order n or as AR(n)
process. Every AR(n) process has a linear representation of the kind shown
in (3.75) where the coefficients bj are obtained as functions of the ϕk-values
[53]. In other words, for every Gaussian linear process there exists an AR(n)
process such that the two autocovariance function can be made practically
equal for all time differences tj − tj−1. For the first n time lags the match
can be made perfect. An extension to continuous time is possible and special
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Fig. 3.9 The Ornstein-Uhlenbeck process. Individual trajectories of the process

are simulated by Xi+1 = Xi e−k ϑ + µ̄(1−e−k ϑ) + σ
√

1−e−2k ϑ

2k
(R0,1−0.5), where

R0,1 is a random number drawn by a random number generator from the uniform
distribution on the interval [0, 1]. The figures shows several trajectories differing only
in the choice of seeds for Mersenne Twister as random number generator. The lines
represent the expectation value E

(
X (t)

)
(black) and the functions E

(
X (t)

)
±σ
(
X (t)

)
(red). The area highlighted in gray is the confidence interval E±σ. Choice of param-
eters: X (0) = 3, µ̄ = 1, k = 1, σ = 0.25, ϑ = 0.002 or total time tf = 10. Seeds: 491
(yellow), 919 (blue), 023 (green), 877 (red), and 733 (violet). For the simulation of
the Ornstein-Uhlenbeck model see [170, 436].

features of continuous time autoregressive models (CAR) are described, for
example, in [54]. Finally we mention that AR(n) processes provide an ex-
cellent possibility to demonstrate the Markov property: An AR(1) process,
Xt = ϕXt−1 +Wt is Markovian in first order since the knowledge of Xt−1 is
sufficient to compute Xt and all further development in the future.

3.2.2.3 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is named after two Dutch physicists Leonard
Ornstein and George Uhlenbeck [433] and represents presumably the sim-
plest stochastic process that approaches a stationary state with a defined
variance.29 The Ornstein-Uhlenbeck process found wide-spread applications,
for example in economics for modeling irregular behavior of financial markets
[443]. In physics it is among other applications a model for the velocity of a
Brownian particle under the influence of friction. In essence, the Ornstein-

29 The variance of the Wiener process diverges in the limit, limt→∞ var
(
W(t)

)
=∞.

The same is true for the Poisson process and the random walk, which are discussed
in the next two sections.
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Fig. 3.10 The probability density of the Ornstein-Uhlenbeck process. Start-
ing from the initial condition p (x, t0) = δ(x−x0) (black) the probability density (3.78)
broadens and migrates until it reaches the stationary distribution (yellow). Choice of
parameters: x0 = 3, µ̄ = 1, k = 1, and σ = 0.25. Times: t = 0 (black), 0.12 (or-
ange), 0.33 (violet), 0.67 (green), 1.5 (blue), and 8 (yellow). The lower plot presents
an illustration in 3D.
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Uhlenbeck process describes exponential relaxation to a stationary state or to
an equilibrium superimposed by a Wiener process. Figure 3.9 presents several
trajectories of the Ornstein-Uhlenbeck process, which show nicely the drift
and the diffusion component of the individual runs.

Fokker-Planck equation and solution of the Ornstein-Uhlenbeck process. The
one-dimensional Fokker-Planck equation of the Ornstein-Uhlenbeck process
for the probability density p (x, t) of the random variable X (t) with the initial
condition p (x, t0) = δ(x− x0) is of the form

∂p (x, t)

∂t
= k

∂

∂x

(
(x− µ̄) p (x, t)

)
+
σ2

2

∂2p (x, t)

∂x2
, (3.77)

with k is the rate parameter of the exponential decay, µ̄ the expecta-
tion value of the random variable in the long-time or stationary limit,
µ̄ = limt→∞ E

(
X (t)

)
, and µ̄2 = limt→∞ var

(
X (t)

)
= σ2/(2k) being the sta-

tionary variance. For the initial condition p (x, 0) = δ(x−x0) the probability
density can be obtained by standard techniques

p (x, t) =

√
k

πσ2 (1− e−2k t)
exp

(
−
k

σ2

(x− µ̄− (x0 − µ)e−kt)2

1− e−2kt

)
. (3.78)

This expression can be easily checked by performing the two limits t → 0
and t→∞. The first limit has to yield the initial conditions and it is indeed
recalling a common definition of the Dirac delta-function.

δα(x) = lim
α→0

1

α
√
π
e−x

2/α2

, (3.79)

Inserting α2 = σ2(1− e−2kt)/k leads to

lim
t→0

p (x, t) = δ(x− x0) .

The long time limit of the probability density is calculated straightforwardly:

lim
t→∞

p (x, t) = p̄ (x) =

√
k

πσ2
e−k (x−µ̄)2/σ2

, (3.80)

which is a normal density with expectation value µ̄ and variance σ2/(2k). ut
The evolution of probability density p (x, t) from the δ-function at t = 0 to
the stationary density limt→∞ p (x, t) is shown in figure 3.10. The Ornstein-
Uhlenbeck process is a stationary Gaussian process and has a representation
as a first-order autoregressive

(
AR(1)

)
process and this implies that it ful-

fils the Markov condition. It is illustrative to compare the three 3dplots in
figures 3.7, 3.8, and 3.10: The probability density of the Liouville process
migrates according to the drift term, µ(t), but does not change shape that is
the variance remains constant, the Wiener density stays in state space, µ = 0,
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but changes shape as the variance increases µ2
2 = σ(t)2 = t − t0, and finally

the density of the Ornstein-Uhlenbeck process drifts and changes shape.
The Ornstein-Uhlenbeck process can be modeled efficiently also by a

stochastic differential equation (SDE, see section 3.4.5):

dx(t) = k
(
µ̄− x(t)

)
dt + σ dW (t) . (3.81)

The individual trajectories shown in figure 3.9 [170, 436] were simulated by
means of the following equation

Xi+1 = Xi e−k ϑ + µ̄(1− e−k ϑ) + σ

√
1− e−2k ϑ

2k
(R0,1 − 0.5) ,

where ϑ = ∆t/nst is the number of steps per time interval ∆t. The probability
density can be derived, for example, from a sufficiently large ensemble of
simulated trajectories. Expectation value and variance of the random variable
X (t) can be calculated directly from the solution of the SDE (3.81) as shown
in section 3.4.5.

Stationary solutions of Fokker-Planck equations. Often one is mainly inter-
ested in the long-time solution of a stochastic process and then the stationary
solution of a Fokker-Planck equation, provided it exists, may be calculated
directly. At stationarity time independence of the two functions A(x, t) and
B(x, t) is assumed. We shall be dealing here with the one-dimensional case
and consider the Ornstein-Uhlenbeck process as an example. We start by
setting the time derivative of the probability density equal zero:

∂p (x, t)

∂t
= 0 = − ∂

∂x
A(x) p (x, t) +

1

2

∂2

∂x2
B(x) p (x, t) yielding

A(x) p̄ (x) =
1

2

d

dx

(
B(x) p̄ (x)

)
.

A convenient to integrate expression is obtained by means of a little trick
[383, p. 98]:

A(x) p̄ (x) =
A(x)

B(x)

(
B(x) p̄ (x)

)
=

1

2

∂2

∂x2

(
B(x) p̄ (x, t)

)
,

d ln
(
B(x) p̄ (x)

)
dx

=
2A(x)

B(x)
, and B(x) p̄ (x) = exp

(
2

∫ x

0

A(ξ)

B(ξ)
dξ

)
· γ ,

where the factor γ arises from integration constants. Finally, we obtain

p̄ (x) =
N

B(x)
exp

(
2

∫ x

0

A(ξ)

B(ξ)
dξ

)
(3.82)
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with the integration constant absorbed into the normalization factorN , which
takes care that the probability conservation relation

∫∞
−∞ p̄ (x) = 1 is fulfilled.

As a rule the calculation of N is straightforward with specific examples.
As an illustrative case we calculate the stationary probability density for

the Ornstein-Uhlenbeck process. For A(x) = −k(x − µ̄) and B(x) = σ2 we
find

p̄ (x) =
N

σ2
e−k(x−µ̄)2/σ2

and N = 1

/(∫ ∞
−∞

e−k(x−µ̄)2/σ2

dx
/
σ2

)
,

yields the final result that reproduces the previous result obtained from the
time dependent density by taking the limit t→∞

p̄ (x) =

√
k

πσ2
e−k (x−µ̄)2/σ2

. (3.80’)

We emphasize once more that this result was obtained without making use
of the time dependent probability density p (x, t) and the approach allows for
the calculation of stationary solution also in cases where p (x, t) has not been
derived.

3.2.2.4 Poisson process

The three processes discussed so far in this section were all dealing with con-
tinuous variables and their probability densities. We continue by presenting
two examples of processes dealing with discrete variables and pure jump pro-
cesses according to equation (3.46c), which are modeled by master equations:
the Poisson process and the discrete, one-dimensional random walk. We are
stressing once more, that master equations and related techniques are tai-
lored for analyzing and modelling stochasticity at low particle numbers, and
are therefore of particular importance in biology and chemistry.

The master equation (3.46c) is rewritten for the discrete case by replacing
the integral by a summation30

∂p (x, t)

∂t
=

∫
dz
(

W(x |z, t) p (z, t)−W(z |x, t) p (x, t)
)
⇒

dPn(t)

dt
=

∞∑
m=0

(
W(n |m, t)Pm(t)−W(m |n, t)Pn(t)

)
, (3.83)

30 Riemann-Stieltjes integration converts the integral into a sum and since we are
dealing with discrete events exclusively we use an index on the probability, Pn(t),
rather than writing the density with an additional variable, P (n, t).
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where we are assuming n ∈ N, continuous time, t ∈ R≥0, and sharp initial
conditions (n0, t0) or Pn(t0) = δn,n0

.31 The matrix W (m |n, t) is called the
transition matrix that contains the probabilities attributed to jumps of vari-
ables, and from both equations follows that the diagonal elements, W (n |n, t),
cancel. The domain of the random variable is implicitly included in the range
of integration or summation, respectively.

The Poisson process is commonly applied to model certain classes of in-
dependent cumulative random events. These may be, for example, electrons
arriving at an anode, customers entering a shop, telephone calls arriving at
a switch board or e-mails being registered on an account. Aside from inde-
pendence, the requirement is an unstructured time profile of events or, in
other words, the probability of occurrence of events is constant and does not
depend on time. The cumulative number of these events is denoted by the
random variable N (t) ∈ N. In other words N (t) is counting the number of
arrivals and hence can only increase. The probability of arrival is assumed to
be γ per unit time, or γ ∆t is the expected number of events recorded in a
time interval of length ∆t.

The Poisson process can also be seen as a one-sided random walk in the
sense that the walker takes a step, for example to the right, with a probability
γ within a unit time interval. Then, the elements of the transition matrix
become

W (m|n, t) =

{
γ if m = n+ 1 ,

0 otherwise
, (3.84)

where the probability that two or more arrivals occur within the differential
time interval dt is of measure zero. In other words simultaneous arrivals of
two or more events have zero probability. According to (3.46c’) the master
equation has the form

dPn(t)

dt
= γ

(
Pn−1(t) − Pn(t)

)
(3.85)

with the initial condition Pn(t0) = δn,n0
. In other words, the number of

arrivals recorded before t = t0 is n0. The interpretation of (3.85) is straight-
forward: the increase in the probability to have n recorded events between
time t and t + dt is proportional to the difference in probabilities between
n− 1 and n recorded events, because the elementary single arrival processes,
(n−1→ n) and (n→ n+1), increase or decrease the probability of n events,
respectively.

31 By δij we denote the Kronecker delta named after the German mathematician
Leopold Kronecker, which means

δij

{
1 if i = j

0 if i 6= j
.

It represents the discrete analogue of the Dirac delta-function.
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Fig. 3.11 Probability density of the Poisson process. The figures show the
spreading of an initially sharp Poisson density, Pn(t) = (γt)ne−γt/n!, with time:
Pn(t) = p (n, t|n0, t0) with the initial condition p (n, t0|n0, t0) = δ(n−n0). In the limit
t→∞ becomes the density completely flat. The values used are γ = 2 [t.u.]−1, n0 =
0, t0 = 0, and t =0 (black), 1 (sea green), 2 (mint green), 3 (green), 4 (chartreuse),
5 (yellow), 6 (orange), 8 (red), 10 (magenta), 12 (blue purple), 14 (electric blue), 16
(sky blue), 18 (turquoise), and 20 [t.u.] (martian green). The lower picture shows a
discrete 3d plot of the density function.
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The method of probability generating functions (section 2.2.1) is now ap-
plied for deriving solutions of the master equation (3.85). The probability
generating function for the Poisson process is

g(s, t) =

∞∑
n=0

Pn(t) sn , |s| ≤ 1 with g(s, t0) = sn0 . (2.24’))

The time derivative of the generation function is obtained by insertion of
equation (3.85)

∂g(s, t)

∂t
=

∞∑
n=0

∂Pn(t)

∂t
sn = γ

∞∑
n=0

(
Pn−1(t)− Pn(t)

)
sn ,

the first sums is readily evaluated

∞∑
n=0

∂Pn−1(t)

∂t
sn = s

∞∑
n=0

∂Pn−1(t)

∂t
sn−1 = s g(s, t)

and the second sum is identical to the definition of the generating function.
This yields the equation for the generating function

∂g(s, t)

∂t
= γ (s− 1) g(s, t) . (3.86)

Since the equation does not contain a derivative with respect to the dummy
variable s we are dealing with a simple ODE and the solution by conventional
calculus is straightforward:∫ ln g(s,t)

ln g(s,t0)

d ln g(s, t) =

∫ t

t0

γ(s− 1) dt ,

which yields

g(s, t) = sn0 eγ(s−1)(t−t0) or g(s, t) = eγ(s−1)t for (n0 = 0, t0 = 0) (3.87)

with g(s, 0) = sn0 . The assumption (n0 = 0, t0 = 0) is meaningful, because
it implies that counting arrivals starts at time t = 0, and the expressions
become especially simple: g(0, t) = exp (−γt) and g(s, 0) = 1. The individ-
ual probabilities Pn(t) are obtained through expansion of the exponential
function and equating the coefficients for the powers of s:

exp
(
γ(s− 1)t

)
= exp

(
γ st
)
e−γt and

exp
(
γ st
)

= 1 + s
γt

1!
+ s2 (γt)2

2!
+ s3 (γt)3

3!
+ . . . ,

and eventually we are obtaining the solution
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Pn(t) = e−γt
(γt)n

n!
= e−λ

λn

n!
, (3.88)

which is the well-known Poisson distribution (2.32) with the expectation value
E
(
N (t)

)
= γt = λ and variance var(N (t)

)
= γt = λ. Since the standard de-

viation is σ
(
N (t)

)
=
√
γt and accordingly the Poisson process fulfils perfectly

the
√
N relation for fluctuations.

It is easily verified that expectation value and variance can be directly
obtained from the generating function through differentiation (2.25):

E
(
N (t)

)
=

∂g(s, t)

∂s

∣∣∣
s=1

= γ t ,

var
(
N (t)

)
=

∂g(s, t)

∂s

∣∣∣
s=1

+
∂2g(s, t)

∂s2

∣∣∣
s=1
−
(
∂g(s, t)

∂s

∣∣∣
s=1

)2

= γ t ,

(3.89)

We remark that equation (3.85) can be solved also by using the characteristic
function (section 2.2.3), which will be applied for the purpose of illustration
in solving the master equation of the one-dimensional random walk (sec-
tion 3.2.4).

The Poisson process can be viewed from a slightly different perspective
by considering the arrival times32 of the individual independent events as
random variables T1, T2, · · · , where the random counting variable takes on
the values N (t) ≥ 1 for t ≥ T1 and, in general N (t) ≥ k for t ≥ Tk. All
arrival times Tk with k ∈ N>0 are positive if we assume that the process
started at time t = 0. The number of arrivals before some fixed time, ϑ, is
smaller than k if and only if the waiting time until the k-th arrival is larger
than ϑ. Accordingly the two events Tk < ϑ and n(ϑ) < k are equivalent and
their probabilities are the same

P (Tk > ϑ) = P
(
n(ϑ) < k

)
.

Now we consider the time before the first arrival, which is trivially the time
until the first event happens

P (T1 > ϑ) = P
(
n(ϑ) < 1

)
= P

(
n(ϑ) = 0

)
= e−ϑ/τw

(ϑ/τw)0

0!
= e−t/τw ,

where we used equation(3.88) for calculating the distribution of first-arrival
times. It is straightforward to show that the same relation holds for all inter-
arrival times ∆Tk = Tk−Tk−1, which after normalization follow an exponen-
tial density %(t, τw) = e−t/τw/τw with τw > 0 and

∫∞
0
%(t, τw) dt = 1, and

thus for each index k we have

P (∆Tk ≤ t) = 1− e−t/τw and thus P (∆Tk > t) = e−t/τw , t ≥ 0 .

32 In the literature the synonym waiting time or for arrival time is common.
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Now we can identified the parameter of the Poisson distribution as the recip-
rocal mean waiting time for an event, τ−1

w , with

τw =

∫ ∞
0

dt t %(t, τw) =

∫ ∞
0

dt
t

τw
e−ϑ/τw .

We shall use the exponential density in the calculation of expected times
for the occurrence of chemical reactions modeled as first arrival times T1.
Independence of the individual events implies the validity of

P (∆T1 > t1, . . . ,∆Tn > tn) = P (∆T1 > t1) · . . . · P (∆Tn > tn) =

= e−(t1+...+tn)/τw ,

which determines the joint probability distribution of the inter-arrival times
∆Tk’s. The expectation value of the incremental arrival times, or times be-
tween consecutive arrivals, is simply given by E(∆Tk) = τw. Clearly, the
larger τw is, the longer will be the mean inter-arrival time, and thus 1/τw can
be addressed as the intensity of flow. Compared with the previous derivation
we have 1/τw ≡ γ.

For T0 = 0 and n ≥ 1 we can readily calculate the cumulative random
variable, the arrival time of the the nth arrival

Tn = ∆T1 + . . . ∆Tn =

n∑
k=1

∆Tk .

The event I = (Tn ≤ t) implies that the nth arrival has occurred before time
t. The connection between the arrival times and the cumulative number of
arrivals, N (t), is easily performed and illustrates the usefulness of the dual
point of view:

P (I) = P (Tn ≤ t) = P (N (t) ≥ n) .

More precisely, N (t) is determined by the whole sequence ∆Tk (k ≥ 1), and
depends on the elements ω of the sample space through the individual inter-
arrival times ∆Tk. In fact, we can compute the number of arrivals exactly as
the joint probability to have recorded n − 1 arrivals at time t and to record
one arrival in the interval (t, t+∆t] [435, pp. 70-72]

P (t ≤ Tn ≤ t+∆t) = P
(
N (t) = n− 1

)
· P
(
∆N (∆t) = 1

)
.

Since the two time intervals [0, t] and (t, t + ∆t] do not overlap, the two
events are independent and the joint probability can be factorized. For the
first factor we use the probability of a Poissonian distribution and the second
factor follows simply from the definition of the parameter γ:

P (t ≤ Tn ≤ t+∆t) =
e−γt (γt)n−1

(n− 1)!
· γ∆t .
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In the limit ∆t → dt we obtain the probability density of the nth arrival
time

fTn(t) =
γntn−1

(n− 1)!
e−γt , (3.90)

which is known as Erlang distribution named after the Danish mathematician
Agner Karup Erlang. It is straightforward now to compute the expectation
value of the nth waiting time:

E(Tn) =

∫ ∞
0

t
γntn−1

(n− 1)!
e−γt dt =

n

γ
, (3.91)

which is another linear relation: The nth waiting time is proportional to n
with the proportionality factor being the reciprocal rate parameter 1/γ.

The Poisson process is characterized by three properties: (i) the obser-
vations occur one at a time, (ii) the numbers of observations in disjoint
time intervals are independent random variables, and (iii) the distribution
of N (t+∆t)−N (t) is independent of t. Then there exists a constant λ > 0
such that for ∆t = t−τ > 0 the difference N (t)−N (τ) is Poisson distributed
with the parameter λ∆t

P
(
N (t+∆t) = k

)
=

(
λ∆t

)k
k!

e−λ∆t ,

for λ = 1 the process N (t) is a unit or rate one Poisson process, and the
expectation value is E

(
Y(t)

)
= ∆t. In other words the mean number of

events per unit time, ∆t = 1 is one. It Y(t) is a unit Poisson process and
Yλ(t) ≡ Y(λt), then Yλ is a Poisson process with parameter λ. A Poisson
process is an example of a counting process N (t) with t ≥ 0 that fulfils three
properties: (i) N (t) ≥ 0, (ii) N (t) ∈ N, and (iii) if τ ≤ t then N (τ) ≤ N (t).
The number of events occurring during the time interval (τ, t] with τ < t is
N (t)−N (τ).

3.2.3 Master equations

Master equations are applied for modeling stochastic processes on discrete
sample spaces, N (t) ∈ N, and we have been dealing already with one partic-
ularly example, the occurrence of independent in form of the Poisson process
section 3.2.2.4. Because of their general importance in particular in chemical
kinetics and population dynamics in biology we shall present here a more de-
tailed discussion of the properties and different versions of master equations.
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3.2.3.1 General master equations

The master equations we are considering here describe continuous time pro-
cesses, t ∈ R. Then, the starting point is the dCKE for pure jump processes
(3.46c) with the integral converted into a sum by Riemann-Stieltjes integra-
tion (section 3.2.2.4)

dPn(t)

dt
=

∞∑
m=0

(
W (n |m, t)Pm(t)−W (m |n, t)Pn(t)

)
; n,m ∈ N , (3.83)

where we have implicitly assumed sharp initial conditions: Pn(t0) = δn,n0
.

The transition probabilities W (n |m, t) form a – possibly infinite – transition
matrix. In all realistic cases, however, we shall be dealing with a finite state
space: m,n ∈ {0, 1, . . . , N} – this is tantamount to saying we are always
dealing with a finite numbers of molecules in chemistry or to stating that
population sizes in biology are finite. Since the off-diagonal elements of the
transition matrix represent probabilities they are nonnegative by definition:
W

.
= {Wnm; n,m ∈ N≥0} (figure 3.12). The diagonal elements W (n |n, t)

cancel in the master equation and hence can be defined at will without chang-
ing the dynamics of the process. Two definitions are in common use:
(i) normalization of matrix elements∑

m

Wmn = 1 and Wnn = 1 −
∑
m 6=n

Wmn , (3.92a)

and accordingly W is a stochastic matrix. This definition is applied, for ex-
ample, in the mutation selection problem [105], or
(ii) annihilation of diagonal elements∑

m

Wmn = 0 and Wnn = −
∑

m,m 6=n

Wmn , (3.92b)

which is used, for example, in the compact from of the master equation (3.83’)
and in several applications among them phylogeny.

Transition probabilities in the general master equation (3.83) are assumed
to be time dependent. Most frequently we shall, however, assume that they
do not depend on time and use Wnm = W (n|m). A Markov process in gen-
eral and a master equation in particular are called time homogeneous if the
transition matrix W does not depend on time.

Formal solution of the master equation. Insertion of the annihilation condition
(3.92b) into equation (3.83) leads to a compact form of the master equation

dPn(t)

dt
=
∑
m

WnmPm(t) . (3.83’)

Introducing vector notation, P(t)
t

=
(
P1(t), . . . , Pn(t), . . .

)
, we obtain
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Fig. 3.12 The transition matrix of the master equation. The figure is intended
to clarify meaning and handling of the elements of transition matrices in master
equations. The matrix on the l.h.s. shows the individual transitions that are described
by the corresponding elements of the transitions matrix W = {Wij ; i, j = 0, 1, . . . , n}.
The elements in a given row (highlighted light red) contain all transitions going
into one particular state ‘m’, and they are responsible for the differential change in
probabilities: dPm(t)/dt =

∑
kWmkPk(t). The elements in a column (highlighted

yellow) quantify all probability flows going out from state ‘m’ and their sums are
involved in conservation of probabilities. The diagonal elements (red) cancel in master
equations (3.83), hence they don’t change probabilities, and need not be specified
explicitly. For writing master equations in compact form (3.83’) diagonal elements
are defined by the annihilation convention,

∑
kWkm = 0. The summation of the

elements in a column is also used in the definition of jump moments.

dP(t)

dt
= W ×P(t) . (3.83”)

With the initial condition Pn(0) = δn,n0
stated above and a time independent

transition matrix W we can solve equation (3.83”) in formal terms for each
n0 by applying linear algebra and obtain

P (n, t|n0, 0) =
(

exp (W t)
)
n,n0

,

where the element (n, n0) of the matrix exp (Wt) is the probability to have
n particles at time t, N (t) = n, when there were n0 particles at time t0 = 0.
The computation of a matrix exponential is a quite elaborate task. If the
matrix is diagonalizable, Λ = T−1 ·W · T with

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 ,
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the exponential can be obtained by eW = TeΛT−1. Apart from special cases
the diagonalization of a matrix can be done analytically only in rather few
low-dimensional cases and in general, one is restricted to numerical methods.

Jump moments. It is often convenient to express changes in particle numbers
in terms of the so-called jump moments [343, 411, 439]

αp (n) =

∞∑
m=0

(m− n)pW (m|n) ; p = 1, 2, . . . . (3.93)

The usefulness of the first two jump moments with p = 1, 2 is readily demon-
strated: We multiply equation (3.83) by n and obtain through summation:

d〈n〉
dt

=

∞∑
n=0

n

∞∑
m=0

(
W (n|m)Pm(t) − W (m|n)Pn(t)

)
=

=

∞∑
m=0

∞∑
n=0

mW (m|n)Pn(t) −
∞∑
n=0

∞∑
m=0

n (W (m|n)Pn(t) =

=

∞∑
m=0

∞∑
n=0

(m− n) (W (m|n)Pn(t) = 〈α1(n)〉 .

Since the variance var(n) =
〈(
n − 〈n〉

)2〉
involves

〈
n2
〉
, we need the time

derivative of the second raw moment, µ̂2 =
〈
n2
〉
, and obtain it through

multiplication of equation (3.93) with p = 2 by n2 and summation

d
〈
n2
〉

dt
=

∞∑
m=0

∞∑
n=0

(m2 − n2) (W (m|n)Pn(t) =

= 〈a2(n)〉 + 2 〈na1(n)〉 .

Addition of the term d(〈n〉2)/ dt = 2 〈n〉 d 〈n〉/ dt yields the expression for
the evolution of the variance and for the first two moments we finally obtain:

d〈n〉
dt

= 〈α1(n)〉 and (3.94a)

d var(n)

dt
= 〈α2(n)〉 + 2

(
〈na1(n)〉 − 〈n〉 〈a1(n)〉

)
. (3.94b)

Expression (3.94a) does not represent a closed equation for 〈n〉 since its so-
lution involves higher moments of n. If α 1(n) is a linear function, however,
the two summations, Σm for the jump moment and Σn for the expectation
value, are interchangeable and after interchanging we obtain the simple ODE

d〈n〉
dt

= α1

(
〈n〉
)
, (3.94a’)



228 3 Stochastic processes

which can be integrated directly to yield the expectation value 〈n(t)〉 (see
next section 3.2.3.2). Otherwise – in nonlinear systems – the expectation
value does not coincide with the deterministic solution (see, for example,
section 4.3), or in other words initial values of moments higher than the first
one are required for computing the time course of the expectation value.

Nicholas van Kampen [439] provides also a straightforward approximation
derived from an expansion series of α 1(n) in

(
n− 〈n〉

)
with a break off after

the second derivative

d〈n〉
dt

= α 1

(
〈n〉
)

+
1

2
var(n)

d2

dn2
α 1

(
〈n〉
)
. (3.94a”)

A similar and consistent approximation for the time dependence of the vari-
ance reads

d var(n)

dt
= α 2

(
〈n〉
)

+ 2 var(n)
d

dn
α 1

(
〈n〉
)
. (3.94b”)

The two expressions together provide a closed equation for the calculation
of expectation value and variance, and they visualize directly the necessity
knowing initial fluctuations for the computation of the time course of expec-
tation values.

In the derivation of the dCKE and the master equation we made the
realistic assumption that the limit of infinitesimal time steps, lim∆t → 0,
excludes the simultaneous occurrence of two or more jumps. The general
master equation (3.83), however, allows for jumps of all sizes ∆n = n −m
and in most cases this introduces an unnecessary complication. In the next
section we shall make use of a straightforward simplification in form of death-
and-birth processes that restricts the size of jumps, reduces the numbers
of terms in the master equation, and makes the expressions for the jump
moments much easier to handle.

3.2.3.2 Birth-and-death master equations

The concept of birth-and-death processes has been created in biology (sec-
tion 5.2.1) and is based on the assumption that constant and finite numbers of
individuals are produced, ‘born’, or disappear, ‘die’, in single events. Accord-
ingly the jump size is a matter of the application be it in physics, chemistry
or biology, and the information on it has to come from empirical observa-
tions. To give examples, in chemical kinetics the jump size is determined by
the stoichiometry of the process, and in population biology the jump size for
birth is the litter size33 and it is commonly one for natural death.

Here we shall consider jump size as a feature for mathematical charac-
terization of stochastic processes. Jump size is a matter of handling single

33 The litter size is defined as the mean number of offspring produced by an animal
in s single birth.
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Fig. 3.13 Sketch of the transition probabilities in master equations. In
the general master equation steps of any size are admitted (upper drawing) whereas
in birth-and-death processes all jumps have the same size. The simplest and most
common case is dealing with the condition that the particles are born and die one
at a time (lower drawing), which is consistent with the derivation of the differential
Chapman-Kolmogorov equation (section 3.2.1).

events, and we shall adopt the same procedure that we used in the derivation
of the dCKE: We choose a sufficiently small time interval ∆t for recording
events such that the simultaneous occurrence of two events has a probability
of measure zero. The resulting models are commonly called single step birth-
and-death processes and the small time step ∆t is addressed as blind interval,
because the time resolution does not go beyond ∆t. The difference in choosing
steps between general and birth-and-death master equations is illustrated in
figure 3.13 (see also section 4.6). In this chapter we shall restrict analysis and
discussion to processes with a single variable and postpone the discussion of
multivariate cases to chemical reaction networks handled in chapter 4.

Within the single step birth-and-death model the transition probabilities
are reduced to neighboring states and we assume time independence
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W (n|m) = Wnm = w+
m δn,m+1 + w−m δn,m−1 , or

Wnm =


w+
m if m = n− 1 ,

w−m if m = n+ 1 ,

0 otherwise ,

(3.95)

as we are dealing with only two allowed processes out of and into each state
‘n’ with the transition probabilities34

w+
n for n → n+ 1 and (3.96a)

w−n for n → n− 1 respectively. (3.96b)

The notations step-up and step-down transitions for these two classes of
events are self-explanatory. As a consequence of this simplification the tran-
sition matrix W becomes tridiagonal.

We have been dealing with birth-and-death processes already: In sec-
tion 3.2.2.4 we discussed the Poisson process which can be understood as a
birth-and-death process with zero death rate, or a birth process on n ∈ N≥0.
The one-dimensional random walk (section 3.2.4) is a birth-and-death pro-
cess with equal birth and death probabilities when the spatial coordinate is
changed to a population variable and negative particle numbers are avoided.
Modeling of chemical reactions by birth-and-death processes turns out to be
a very useful approach for reaction mechanisms, which can be described by
one step changes in a single variable.

The stochastic process can now be described by a birth-and-death master
equation

dPn(t)

dt
= w+

n−1 Pn−1(t) + w−n+1 Pn+1(t) − (w+
n + w−n )Pn(t) . (3.97)

There is no general technique that allows to find the time-dependent solu-
tions of equation (3.97). Special cases, however, are important in chemistry
and biology and therefore we shall present several examples later on. In sec-
tion 5.2.1 we shall give also a detailed overview of the exactly solvable single
step birth-and-death processes [176]. Nevertheless, it is possible to analyze
the stationary case in full generality.

Provided a stationary solution of equation (3.97), limt→∞ Pn(t) = P̄n,
exists, we can compute it in straightforward manner. We define a probability
current ϕ(n) for the n-th step in the series:

Particle number 0 
 1 
 . . . 
 n− 1 
 n 
 n+ 1 . . .
Reaction step 1 2 . . . n− 1 n n+ 1 . . . ,

which is of the form

34 Exceptions are the lowest and the highest state, n = nmin and n = nmax, which
represent barriers for the process.
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ϕn = w−n P̄n − w+
n−1 P̄n−1 . (3.98)

Now, the conditions for the stationary solution are given by

dPn(t)

dt
= 0 = ϕn+1 − ϕn , (3.99)

Restriction to positive particle numbers, n ∈ N≥0, implies w−0 = 0 and
Pn(t) = 0 for n < 0, which in turn leads to ϕ0 = 0.

Now we add the vanishing flow terms according to equation (3.99) and
obtain from the telescopic sum:

0 =

n−1∑
j=0

ϕj+1 − ϕj = ϕn − ϕ0 .

Thus we find ϕn = 0 for arbitrary n which leads to

P̄n =
w+
n−1

w−n
P̄n−1 and finally P̄n = P̄0

n∏
j=1

w+
j−1

w−j
. (3.100)

The vanishing flow condition ϕn = 0 for every reaction step at equilibrium is
known in chemical kinetics as the principle of detailed balance, which has been
formulated first by the American mathematical physicist Richard Tolman
[430] (see also, for example, [157, pp.142-158]).

Calculating moments directly from master equations.35 The simplification of
the general master equation (3.83) by the restriction to single steps (3.97)
provides a basis for the derivation of fairly simple expressions for the time
derivatives of first and second moments. All calculations are facilitated by
trivial but important equalities36

+∞∑
n=−∞

(n− 1)w±n−1 Pn−1(t) =

+∞∑
n=−∞

nw±n Pn(t) =

+∞∑
n=−∞

(n+ 1)w±n+1 Pn+1(t) ,

and we shall make use of these shifts in summation indices later in the search
for solutions of master equations by means of probability generating func-
tions. Through multiplication of dPn/ dt with n, summation over n and using

35 An excellent tutorial on this subject written by Bahram Houchmandzadeh
is found in http://www.houchmandzadeh.net/cours/Master_Eq/master.pdf.
Retrieved May 02, 2014.
36 In general these equations hold also for summations from 0 to +∞ if the cor-
responding physically meaningless probabilities are set equal zero by definition:
Pn(t) = 0 ∀n ∈ Z<0.
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∞∑
n=−∞

(n+ 1)w±n Pn(t) =

∞∑
n=−∞

nw±n Pn(t) +

∞∑
n=−∞

w±n Pn(t)

we obtain for the expectation value:

d〈n〉
dt

=

∞∑
n=−∞

n
dPn(t)

dt
=
〈
w+
n

〉
−
〈
w−n
〉

=
〈
w+
n − w−n

〉
. (3.101a)

The second raw moment, µ̂2 =
〈
n2
〉
, and the variance are derived by the

analogous procedure – multiplication with n2, summation, and substitution:

d
〈
n2
〉

dt
=

∞∑
n=−∞

n2 dPn(t)

dt
= 2

〈
n(w−nw

−
n )
〉

+
〈
w+
nw
−
n

〉
,

d var(n)

dt
=

d
(〈
n2
〉
− 〈n〉2

)
dt

=
d
〈
n2
〉

dt
−

d
(
〈n〉2

)
dt

=

= 2
〈(
n− 〈n〉

)
(w−nw

−
n )
〉

+
〈
w+
nw
−
n

〉
, (3.101b)

Jump moments. Jump moments are substantially simplified by the assump-
tion of single birth-and-death events:

αp (n) =

∞∑
n=0

(m− n)p Wmn = (−1)p w−n + w+
n ,

which by neglecting fluctuations yields a rate equation for deterministic n̂

dn̂

dt
= w+

n̂ − w−n̂ with w±n̂ = w±〈n〉 =

∞∑
n=0

w±n Pn(t) , (3.102a)

as well as the two coupled simplified equations for the first two moments from
equations (3.94a”) and (3.94b”):

d〈n〉
dt

= w+
〈n〉 − w−〈n〉 +

1

2
var(n)

d2

dn2

(
w+
〈n〉 − w−〈n〉

)
and (3.102b)

d var(n)

dt
= w+

〈n〉 + w−〈n〉 + 2 var(n)
d

dn

(
w+
〈n〉 − w−〈n〉

)
. (3.102c)

It is now straightforward to show by example how linear jump moments
simplify the expressions. For a linear birth-an-death process we find for step-
up, step-down transitions, and jump moments

w+
n = λn , w+

n = λn , and αp (n) =
(
λ + (−1)p µ

)
n .
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Twofold differentiation of the jump moments yields zero, the differential equa-
tions (3.102a) and (3.102b) are identical, and the solution is of the form

〈n(t)〉 = n̂(t) = n̂(0) e(λ−µ)t .

The expectation value of the stochastic variable 〈n〉 coincides with the de-
terministic variable n̂. We stress again that this coincidence requires linear
step-up and step-down transition probabilities (see also section 4.2.1). More
details on the linear birth-and-death process are found in section 5.2.1.
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3.2.4 Continuous time random walks

The term random walk goes back to Karl Pearson [363] and is generally used
for stochastic processes describing a walk in physical space with random in-
crements. We have used to concept of a random walk in one dimension several
times already in order to illustrate specific properties of stochastic processes
(see, for example, section 3.1.1 and 3.1.3.2). Here we focus on the random
walk itself and its infinitesimal step size limit, the Wiener process, which
serves in physics at the same time as the basis of diffusion processes and as
the model for white noise. For the sake of simplicity and access by analytical
methods we shall be dealing here predominantly with the 1d random walk,
although 2d and 3d walks are of similar or even greater importance in physics
and chemistry.

In one and two dimensions the random walk is recurrent and this implies
that each sufficiently long trajectory will visit every point in phase space, and
it does this infinitely often if the trajectory is of infinite length. In particular,
every trajectory will return to its origin. In three and higher dimensions this
is not the case and the process is called transient therefore. A 3dtrajectory
revisits the origin in 34 % of the cases only, and this value decreases further
in higher dimensions. Somewhat humoristically one can say a drunken sailor
finds his way back home for sure, but a drunken pilot only in roughly one out
of three trials. Random walks in one two and three dimensions are compared
in figure fig:random-walks.

Random walk in one dimension. The 1d random walk is a classical problem
of probability theory and science: A walker moves along a line and takes steps
to the left or to the right with equal probability and length l, and regularly
after a constant waiting time τ . The location of the walker is thus n · l with n
being an integer, n ∈ Z. In this form based on discrete space n and discrete
time intervals τ we have used the random walk for illustrating the proper-
ties of a martingale in section 3.1.3.2. On the other hand we have studied
already the continuous time and continuous space case as well in form of the
Wiener process in section 3.2.2.2. Here we shall study now the continuous
time random walk (CTRW) by keeping the step size discrete but assuming
time to be continuous. In particular, a probability that the walker takes a
step is defined, and the random walk is modeled by a master equation. In the
forthcoming section 3.2.4 we shall consider random walks with probability
distributions for the moves in space and time, step sizes and waiting times,
respectively.

For the master equation we require transition probabilities per unit time,
which are simply defined to be a constant, ϑ, for single steps and zero other-
wise:

W (m|n, t) =


ϑ if m = n+ 1 ,

ϑ if m = n− 1 ,

0 otherwise

. (3.103)
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Fig. 3.14 Probability distribution of the random walk. The figure presents
the conditional probabilities Pn(t) of a random walker to be in location n ∈ Z at time
t for the initial condition to be at n = 0 at time t = t0 = 0. The upper part shows
the dependence on t for given values of n: n = 0 (black), n = 1 (red), n = 2 (yellow),
and n = 3 (green). The lower plot shows the probability distribution as a function of
n at a given time tk. Parameter choice: ϑ = 0.5; tk = 0 (black), 0.2 (red), 0.5 (green),
1 (blue), 2 (yellow), 5 (magenta), and 10 (cyan).

The master equation falls into the birth-and-death class and describes the
evolution of the probability that the walker is at location n · l at time t,

dPn(t)

dt
= ϑ

(
Pn+1(t) + Pn−1(t) − 2Pn(t)

)
, (3.104)

provided he started at location n0 · l at time t0: Pn(t0) = δn,n0
.
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The master equation (3.104) can be solved by means of the time dependent
characteristic function

(
see equations (2.29) and (2.29’)

)
:

φ(s, t) = E(eı
.
ıs n(t)) =

∞∑
n=−∞

Pn(t) exp (ı
.
ıs n) . (3.105)

Combining (3.104) and (3.105) yields

∂φ(s, t)

∂t
= ϑ

(
eı

.
ıs + e−ı

.
ıs − 2

)
φ(s, t) = 2ϑ

(
cosh(ı

.
ı s)− 1

)
φ(s, t) .

Accordingly, the solution for the initial condition n0 = 0 at t0 = 0 is

φ(s, t) = φ(s, 0) exp
(

2ϑ t
(
cosh(ı

.
ı s)− 1

))
=

= exp
(

2ϑ t
(
cosh(ı

.
ı s)− 1

))
= e−2ϑt exp

(
2ϑ t

(
cosh(ı

.
ı s)− 1

))
.

(3.106)

Comparison of the coefficients for individual powers of s through insertion of

cosh(ı
.
ıs)− 1 =

(ı
.
ıs)2

2!
+

(ı
.
ıs)4

4!
+

(ı
.
ıs)6

6!
+ . . . = −s

2

2!
+
s4

4!
− s6

6!
+ . . .

yields the individual probabilities:

Pn(t) = In(2ϑt) e−2ϑt , n ∈ Z . (3.107)

where the pre-exponential term is written in terms of modified Bessel func-
tions Ik(θ) with θ = 2ϑt (for details see [14, p. 208 ff.]), which are defined
by

Ik(θ) =

∞∑
j=0

(θ/2)2j+k

j!(j + k)!
=

∞∑
j=0

(θ/2)2j+k

j!Γ (j + k + 1)
=

=

∞∑
j=0

(ϑt)2j+k

j!(j + k)!
=

∞∑
j=0

(ϑt)2j+k

j!Γ (j + k + 1)
.

(3.108)

The probability that the walker is found at his initial location, n0 l, for ex-
ample, is given by

P0(t) = I0(2ϑ t) e−2ϑ t =
(
1 + (ϑ t)2 +

(ϑ t)4

4
+

(ϑ t)6

36
+ . . .

)
e−2ϑ t

Illustrative numerical examples are shown in figure 3.14. It is straightforward
to calculate first and second moments from the characteristic function φ(s, t)
by means of equation (2.31) and the result is:

E
(
N (t)

)
= n0 and var

(
N (t)

)
= 2ϑ (t− t0) . (3.109)
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Fig. 3.15 Transition from random walk to diffusion. The figure presents the
conditional probabilities P (n, t|0, 0) during convergence from a discrete space random
walk to diffusion. The black curve is the normal distribution (2.38) resulting from the
solution of the stochastic diffusion equation (3.55’) with D = 2 liml→0(l2ϑ) = 2.
The yellow curve is the random walk approximation with l = 1 and ϑ = 1, the red
curve was calculated with l = 2 and ϑ = 0.25. Smaller step width of the random
walk, l ≤ 0.5, led to curves that are indistinguishable from the normal distribution.
In order to obtain comparable curves, the probability distributions were scaled by a
factor σ = l−1. Choice of other parameters: t = 5.

The expectation value is constant and coincides with the starting point of
the random walk and the variance increases linearly with time.

The density function Pn(t) allows for straightforward calculation of prac-
tically all interesting quantities. For example, we might like to know the
probability that the walker reaches a given point at distance n · l from the
origin within a predefined time span, which is simply obtained by Pn(t) with
Pn(t0) = δn,0 (figure 3.14). The probability distribution is symmetric because
of the symmetric initial condition Pn(t0) = δn,0 and hence Pn(t) = P−n(t).
For long times the probability density P (n, t) becomes flatter and flatter and
eventually converges to the uniform distribution over the spatial domain. In
case n ∈ Z all probabilities vanish: limt→∞ Pn(t) = 0 for all n.

From random walks to diffusion. In order to derive the stochastic diffusion
equation (3.55) we start from a discrete time random walk of a single particle
on an infinite one-dimensional lattice where the lattice sites are denoted by
i ∈ Z. Because of its general importance we present two derivations, (i)
from the discrete time and space random walk model presented and solved
in section 3.1.3.2, and (ii) from the continuous time discrete space random
walk (CTRW) discussed in the previous paragraph.



238 3 Stochastic processes

The particle is assumed to be at position i at time t and within a discrete
time interval ∆t it is obliged to jump to one of the neighboring sites, i+ 1 or
i−1. This time elapsed between two jumps is called the waiting time. Spatial
isotropy demands that the probabilities to jump to the right or to the left
are the same and equal to one half. The probability to be at site ’i’ at time
t+∆t is therefore given by37

Pi(t+∆t) =
1

2
Pi−1(t) +

1

2
Pi+1(t) . (3.9’)

Next we make a Taylor expression in time and truncate after the linear term
in ∆t assuming t is a continuous variable:

Pi(t+∆t) = Pi(t)∆t
dPi(t)

dt
+ O

(
(∆t)2

)
.

Now we convert the site number into a continuous spatial variable, i ⇒ x
and Pi(t) ⇒ p (x, t) and find

Pi±1 = p (x, t) ± ∆x
∂p (x, t)

∂x
+

(∆x)2

2

∂2p (x, t)

∂x2
+ O

(
(∆x)3

)
.

Here we truncate after the quadratic term in ∆x because the terms with
the first derivatives cancels, and obtain by insertion into equation (3.9’) and
omitting residuals

∆t
∂p (x, t)

∂t
=

(∆x)2

2

∂2p (x, t)

∂x2
.

The next and final task is carrying out the limits to infinitesimal differences
in time and space:

lim
∆t→0,∆x→0

(∆x)2

2∆t
= D , (3.110)

where D is called the diffusion coefficient. According to (3.110) the dimension
of D is [length2/ time = cm2 × sec−1]. Eventually we obtain the stochastic
version of the diffusion equation

∂p (x, t)

∂t
= D

∂2p (x, t)

∂x2
, (3.55’)

which is fundamental in physics and chemistry for the description of passive
transport by thermal motion (see also equation (3.56) in section 3.2.2.2).

It is also straightforward to consider the continuous time random walk in
the limit of continuous space. This is achieved by setting the distance traveled
to x = n · l and performing the limit l → 0. For that purpose we start from

37 It is worth to point out a subtle difference between equations (3.104) and (3.9):
The term containing −2Pi(t) is missing in the latter, because moving is obligatory in
the discrete time model. The walker is not allowed to take a rest.
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the characteristic function of the distribution in x,

φ(s, t) = E
(
eı

.
ısx(t)

)
= Φ(ls, t) = exp

(
2ϑ t

(
cosh(ı

.
ı ls)− 1

))
,

where ϑ is again the transition probability to neighboring positions per unit
time, and make use of the series expansion of the function cosh,

cosh y =
∑∞

k=0

y2k

(2k)!
= 1 +

y2

2!
+
y4

4!
+
y6

6!
+ . . . ,

and take the limit of infinitesimally small steps, lim l→ 0,

lim l→0 exp
(

2ϑ t
(
cosh(ı

.
ı ls)− 1

)
t
)

= lim l→0 exp
(
ϑ t (−l2s2 + . . .)

)
=

= lim l→0 exp (−s2 l2 ϑ t) = exp (−s2D t) ,

where we used the definition D = lim l→0(l2ϑ) for the diffusion coefficient D
(figure 3.15).38 Since this is the characteristic function of the normal distri-
bution, we obtain for the probability density precisely equation (2.38):

p (x, t) =
1√

4πDt
exp
(
−x2/(4Dt)

)
(2.38)

for the sharp initial condition limt→0 p (x, t) = p (x, 0) = δ(x). We could also
have proceeded directly from equation (3.104) and expanded the right-hand
side as a function of x up to second order in l, which yields again the stochastic
diffusion equation

∂p (x, t)

∂t
= D

∂2p (x, t)

∂x2
, (3.56)

where D stands for lim l→0(l2ϑ) as before.

Random walks with variable increments. In order to prepare for a discussion
of anomalous diffusion that will be presented in the next section 3.2.5 we
generalize the 1d continuous time random walk (CTRW) and analyze it from
a different perspective [49, 328]. The random variable X (t) is defined as the
sum of previous step increments ξk,

Xn(t) =

n∑
k=1

ξk with tn =

n∑
k=1

τk ,

and the time tn is the sum of all earlier waiting times τk. This discrete random
walk differs from the the previously analyzed case (section 3.1.3.2) by the
assumption that both the jump increments or jump lengths, ξK ∈ R, and the

38 The most straightforward way to perform the limit is to introduce a scaling
assumption using a variable σ such that l = l0σ and ϑ = ϑ0/σ2. Then we have
l2ϑ = l20ϑ0 = D and taking the limit σ → 0 is trivial.
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Fig. 3.16 A random walk with variable step sizes. Both, the jump lengths, ξk,
and the waiting times, τk, are assumed to be variable. The jumps occur at times t1,
t2, . . . , and both jump length and waiting times are drawn form the distributions
f(ξ) and w(τ), respectively.

time intervals between two jumps denoted as waiting times, τk ∈ R≥0, are
variable (figure 3.16). Since jump lengths and waiting times are real quantities
the random variable is a continuous as well: X (t) ∈ R. The probability at
time tk that the next jump occurs at time tk +∆t = tk + τk+1 and that this
jump will be of length ∆x = ξk+1 is given by the joint density function

P (∆x = ξk+1 ∧∆t = τk+1 | X (tk) = xk) = ϕ (ξ, τ) with

ψ(τ) =

∫ +∞

−∞
dξ ϕ(ξ, t) and f(ξ) =

∫ ∞
0

dτ ϕ (ξ, τ)
(3.111)

being the two marginal distributions. Since ϕ (ξ, τ) does not depend on time t
the process is homogeneous. If we assume that waiting times and jump lengths
are independent random variables, the joint density can be factorized:

ϕ (ξ, τ) = f(ξ) · ψ(τ) . (3.112)

In case they were coupled we would have to deal with ϕ (ξ, τ) = ϕ (ξ|τ)ψ(τ) =
ϕ (τ |ξ)f(ξ). Coupling between space and time could arise, for example, from
the fact that it is impossible to jump a certain distance within a time span
shorter than some minimum time required, but here we assume independence.
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In case of Brownian motion or normal diffusion the marginal densities in
space and time are Gaussian and exponential distributions modeling normal
distributed jump lengths and Poissonian waiting times:

f(ξ) =
1√

4πσ2
exp

(
− ξ2

4σ2

)
and ψ(τ) =

1

τw
exp

(
− τ

τw

)
. (3.113)

It is worth recalling that equation (3.113) is sufficient to predict the nature
of the probability distributions of Xn and tn: Since the spatial increments are
iid Gaussian random variables the sum is normal distributed by the central
limit theorem (CLT), and since the temporal increments follow an exponential
distribution, the probability distribution of the sum is Poissonian. The task
is now to express the probability that the random walk is in position x at
time t, p (x, t) = P (X (t) = x|X (0) = x0), by means of the functions f(ξ) and
ψ(τ). For this goal we calculate first the probability of the walk to arrive at
position x at time t under the condition of having been at position z at time
ϑ:

η(x, t) = p (x, t|z, ϑ) =

∫ x

−∞
dz

∫ ∞
0

dϑ f(x− z)ψ(t− ϑ) η(z, ϑ) + δ(x)δ(t) ,

with ψ(t) = 0 ∀ t ≤ ϑ. The last term takes into account that the random walk
started at the origin, x = 0, at time t = 0, p (x, 0) = δ(x), and defines the
initial condition η(0, 0) = 1.

Next we consider the condition that the step (z, ϑ) → (x, t) was the last
step in the walk until t, and introduce the probability that no step occurred
in the time interval [0, t]:

Θ(t) = 1 −
∫ t

0

dϑψ(ϑ) .

Now we can write down the probability density we are searching for

p (x, t) =

∫ t

0

dϑ Θ(t− ϑ) η(x, ϑ) .

It is important to realize now that the expression for η(x, t) is a convolution of
f(x) and ψ(t) and η(x, t) with respect to space and time, x and t, respectively,
and p (x, t) eventually is a convolution of Θ and η with respect to t only.

Making use of the convolution theorem (3.28) that turns convolutions into
products we can readily write down the expressions for the probability dis-
tributions in Fourier-Laplace space,
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ˆ̃p (x, t) = Θ̂(u) · ˆ̃η(k, u) with

ˆ̃η(k, u) = ψ̂(u)f̃(k) + 1 =⇒ ˆ̃η(k, u) =
1

1− f̃(k) ψ̂(u)
and

L
(

dΘ(t)

dt

)
= L (δ(t)− ψ(t)) =⇒ u Θ̂(u) = 1− f̃(k) ,

Θ̂(u) =
1− f̃(k)

u
,

and obtain the well-known Montroll-Weiss equation [337] named after the
American mathematicians Elliot Montroll and George Weiss

ˆ̃p (k, u) =
1 − ψ̂(u)

u

1

1 − f̃(k) ψ̂(u)
, (3.114)

which provides the desired relation between the increment densities and the
probability distribution of the position of the walk as a function of time.
What remains to do is to calculate the Fourier (2.30) and Laplace (2.28)
transformed increment functions, which are expanded for small values of k
and u. The Laplace transform of ψ(τ) and the Fourier transform of f(ξ) have
the asymptotic form

ψ̂(u) =

∫ ∞
0

dτ ψ(τ) e−uτ =
1

1 + τw u
= 1 − τw u + O(u2) and (3.115a)

√
2π f̃(k) =

+∞∫
−∞

dξ f(ξ) eı
.
ı kξ = e−k

2 λ = 1 − λ k2 + O(k4) , (3.115b)

with λ = σ2/2 and the diffusion coefficient D = λ/τw = σ2/2τw. The expo-
nents of the leading terms in the expansions (3.115b), α = 2, and (3.115a),
θ = 1 determine the nature of the diffusion process and are called universality
exponents. Insertion into the Montroll-Weiss equation yields

ˆ̃p (k, u) =
1√
2π

τw
τw u + λ k2

=
1√
2π

1

u + Dk2
(3.115c)

As expected consecutive inverse transformations yield the density distribution
p (x, t) of the Wiener process (3.61):

F−1

(
1√
2π

1

u + Dk2

)
=

1√
4Du

e−
√

u
D |x| and

L−1

(
1√

4Du
e−
√

u
D |x|

)
=

1√
4πDt

e−
x2

4Dt ,
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with D being the diffusion coefficient and x0 = 0, t0 = 0 as initial conditions.
It is a good exercise to show that inverting the order of the transformations
yields the same result:

L−1

(
1√
2π

1

u + Dk2

)
=

1√
2π

e−Dk2t and

F−1

(
1√
2π

e−Dk2t

)
=

1√
4πDt

e−
x2

4Dt .

If one were only interested in the solution for normal distribution, the deriva-
tion of the solution presented here would be a true case of overkill. We shall,
however, extend the analysis to anomalous diffusion with generalized expo-
nents 0 < α ≤ 2 and 0 < θ ≤ 1, which are non-integer quantities and thus
lead into the realm of fractals (section 3.2.5).

Before we give an interpretation of the two expansions we visualize the
meaning of the two transformed variables u and k: The exponents, u · τ and
ξ · k are dimensionless quantities and hence the dimensions of u and k are
reciprocal time, [t−1], and reciprocal length, [l−1] respectively. The values
u = 0 and k = 0 of the transformed variables refer to infinite time and
infinite space and accordingly, expansions around these points are valid for
long times and large distances. Commonly, the problem specific properties
are dominant at short times and small distances and universal behaviour is
expected to be found on the opposite ends of the time scale and space as
expressed by vanishing u and k. Both transformed probability distributions
in equations (3.115a) and (3.115b) are given in expressions that allow for
direct readout of the so-called universality exponents, which are α = 2 for
the spatial density f̃(k) and θ = 1 for the temporal density ψ̂(u). Random
walks can be classified by the variance of jump lengths, var(ξ), and by the
expectation value of waiting times, E(τ):

(i) the variance of the jump length
〈
ξ2
〉

= 2σ2 =
∫ +∞
−∞ dξ ξ2 f(ξ).39 and

(ii) the characteristic or mean waiting time 〈τ〉 = τw =
∫∞

0
dτ τ w(τ),

which are both finite quantities that do not diverge in the integration limits
ξ → ∞ and τ → ∞ in contrast to Lévy processes with 0 < α < 2 and
0 < θ < 1, which will be discussed in section 3.2.5. As a matter of fact any
pair of probability density functions with finite τw and σ2 leads to the same
asymptotic result and this is a beautiful manifestation of the central limit
theorem (section 2.4.2): In the inner part of the transformed densities all
representatives of the universality class of CTRWs with finite mean waiting
times and positional variances fulfil equations (3.115a) and (3.115b) and the
individuality of the densities comes into play only within the higher order
terms O(τ2) and O(k4).

39 As in the previous examples we assume that the random walk is symmetric and
started at the origin. Then the expectation value of the location of the particle stays
at the origin and we have 〈ξ〉 = 0, 〈ξ〉2 = 0, and hence var(ξ) = 〈ξ2〉.
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Finally, we mention a feature that will be brought up again and generalized
in the next section 3.2.5: the Wiener process is self-similar. A stochastic
process is self-similar with Hurst index H, named after the British hydrologist
Harold Edwin Hurst, if the two processes

(Y(a t), t ≥ 0) and (aHY(t), t ≥ 0)

with the same initial condition Y(0) = 0 have the same finite-dimensional
distribution for all a ≥ 0. Expressed in popular language if you look on a
self-similar process with a magnifying glass it looks the same as without the
magnifier no matter how large the magnification factor is. The expectation
value of a generalized Brownian processes B(t) at two different times, t1 and
t2, and with Hurst index 0 ≤ H ≤ 1 is

E
(
BH(t1)BH(t2)

)
=

1

2

(
|t2|2H + |t2|2H − |t2 − t1|2H

)
.

For H = 1/2 we are dealing with conventional Brownian motion or Wiener
processes where the expectation value E

(
BH(t1)BH(t2)

)
is zero and incre-

ments at different times are uncorrelated as we showed in section 3.2.2.2.

3.2.5 Lévy processes

Lévy processes can be understood as comprehensive generalizations of ran-
dom walks to continuous time and in this sense they represent the simplest
class of stochastic processes whose trajectories consist of continuous mo-
tion interrupted by discontinuous jumps of random size occurring at ran-
dom times. Lévy processes were defined in precise mathematical terms and
analyzed in detail by the famous French mathematician Paul Lévy. They
constitute a core theme of financial mathematics [11, 111, 392] and they
are indispensable constituents of every course in theoretical economy. Many
stochastic processes from other fields and also from science fall into this class:
From the examples of stochastic processes we have already encountered here,
Brownian motion (section 3.2.2.2), the Poisson process (section 3.2.2.4), the
random walk (section 3.2.4), and the Cauchy process (section 3.1.3.5) are
Lévy processes. Among other applications Lévy processes are used in the
mathematical theory of anomalous diffusion [49, 328] and other forms of frac-
tional kinetics, and in Lévy flights based on probability densities with heavy
tails, which were applied, for example, in behavioral biology to modeling
foraging strategies of animals.

We are also interested here in Lévy processes, because they allow for a
general analytic treatment combining all three classes of processes appearing
in the differential Chapman-Kolmogorov equation (dCKE): drift, diffusion
and jump. This is possible because of the simplifying assumption that all
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random variables X (t) are independent and identically distributed (iid) and
all increments Z = ∆X (t) depend only on ∆t and not on t explicitly. The
time dependence is then restricted to the probability densities p (x, t), and the
functions A(x, t) and B(x, t) as well as the transition probabilities W (x|z, t)
are strictly time independent.

A Lévy process X = (X (t), t ≥ 0) is a stochastic process that satisfies
the following four properties:

(i) the random variable X (t) has independent increments as expressed
by the property that the variables Zk = X (tk) − X (tk−1) with
k = 1, 2, . . . are statistically independent,

(ii) the increments Zk of the random variable X (t) are stationary in
the sense that the probability distributions of the increments Zk
depend only on the length of the time interval ∆t = tk − tk−1 but
do not depend explicitly on time t, and increments on equal time
intervals are identically distributed,

(iii) the process starts at the origin, X0 = 0, with probability one, and
(iv) the trajectory of the random variable X (t) is at least piecewise

stochastically continuous in the sense that it fulfils the relation

limt1→t2 P (|X (t2)−X (t1)| > a) = 0

for all a > 0 and for all t2 − t1 ≥ 0.

The conditions (i), (ii), and (iii) simplify the general dCKE substantially.
Conditions (ii) in particular allows the substitution of functions by parame-
ters:

A(x, t) is replaced by a , B(x, t) is replaced by
1

2
σ2 ,

and W (x|z, t) is replaced by w(x− z) ,
(3.116)

where w(x − z) is a transition function replacing the transition matrix. For
the initial condition p (x, t0) = δ(x0) the dCKE has the form40

∂p (x, t)

∂t
= − a

∂p (x, t)

∂x
+

1

2
σ2 ∂

2p (x, t)

∂x2
+

+

∫
dz
(
w(x− z) p (z, t)− w(z − x) p (x, t)

)
.

(3.117)

Lévy processes are thus fully characterized by the Lévy-Khinchin triplet
(a, σ2, w) which is named after Paul Lévy and the Russian mathematician

40 For Lévy processes in general it will be necessary to replace the integral by
a principal value integral because they may lead to a singularity at the origin,
limz→x w(x− z) =∞, which is prohibitive for conventional integration.
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Aleksandr Khinchin. As follows from condition (ii) a Lévy process is a homo-
geneous Markov process.

The replacement of the functions A(x, t) and B(x, t) by the constants a
and 1

2σ
2, and the elimination of time from the jump probability W (z|x, t) has

remarkable analogy to linearity in deterministic dynamical systems. Indeed,
the Liouville equation corresponding to the dCKE (3.117) gives rise to a
linear time dependence

∂p (x, t)

∂t
= −a ∂p (x, t)

∂x
=⇒ dx

dt
= a and x(t) = x(0) + at = at ,

the diffusion part is a Wiener process with a linearly growing variance

∂p (x, t)

∂t
=

1

2
σ2 ∂

2p (x, t)

∂x2
=⇒ var

(
X (t)

)
= σ2 var

(
W(t)

)
= σ2 t ,

and the jumps have time independent transition probabilities where the anal-
ogy to a linear process is a little bit far-fetched.

Characteristic functions of Lévy processes. Equation (3.117) for a the Lévy
process starting at t0 = 0 from p (x, 0) = δ(x0) is solved now by means of the
characteristic function as is defined in section 2.2.3

∂

∂t
φ(s, t) =

∂

∂t

∫ +∞

−∞
dx eı

.
ı sx p (x, t) =

∫ +∞

−∞
dx eı

.
ı sx ∂p (x, t)

∂t
.

Insertion into equation (3.117) and application of integration by parts to the
first two terms (see section 3.2.2.2) yields the differential equation

∂φ(s, t)

∂t
=
(
ı
.
ı a s − 1

2
σ2s2 + III

)
φ(s, t) .

The third term in the parentheses, III, is calculated with a little trick: We
substitute z − x ⇒ u, apply dz = du and find for the second summand∫

dz w(z − x)

∫
dx eı

.
ısxp (x, t) =

∫
duw(u)

∫
dx eı

.
ısxp (x, t) =

∫
duw(u)φ(s, t) ,

whereas the first summand is calculated by means of a shift in the variable:∫
dx

∫
dz w(x− z) eı

.
ısxp (z, t) =

∫
d(−u)w(−u)

∫
dz eı

.
ıs(z−u)p (z, t) =

=

∫
d(−u)w(−u) eı

.
ıs(−u)

∫
dz eı

.
ısz (z, t) =

∫
duw(u) eisu φ(s, t) .

Collecting all terms yields the differential equation for the characteristic func-
tion:
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∂φ(s, t)

∂t
=
(
ı
.
ıas − 1

2
σ2s2 +

∫
duw(u)(eı

.
ısu − 1)

)
φ(s, t) , (3.118)

which can be readily solved. A principal value integral is introduced in order
to make sure that the solution is not jeopardized by a possible singularity of
w(u) [157, pp. 248-252] leads to

φ(s, t) =

∫ +∞

−∞
dx eı

.
ısx p (x, t) =

= exp

((
ı
.
ı a s − 1

2
σ2s2 + —

∫ +∞

−∞
du (eı

.
ısu − 1)w(u)

)
t

)
.

(3.119)

The density of the Lévy process can be obtained, for example, by inverse
Fourier transform. Often the factor in the exponent of the exponential func-
tion is denoted as the characteristic exponent

ψ(s) =
lnφ(s, t)

t
= ı

.
ı a s − 1

2
σ2s2 + —

∫ +∞

−∞
du (eı

.
ısu − 1)w(u) . (3.119’)

In practice it is often appropriate to circumvent the sophistication caused by
a possible singularity in the integral of equation (3.119) at u = 0 as it is done,
for example, in the Lévy-Khinchin formula

—

∫ +∞

−∞
duw(u)

(
eı

.
ısu − 1

)
≡

≡ lim
ε→0

(∫ −δ(ε)
−∞

duw(u)
(
eı

.
ısu − 1

)
+

∫ +∞

ε

duw(u)
(
eı

.
ısu − 1

))
=

= ı
.
ıs aL +

∫ +∞

−∞
du (eı

.
ısu − 1− ı.ısu 1|u|<1)w(u) with

ı
.
ıs aL = lim

ε→0

(∫ +δ(ε)

−1

du ı
.
ısu w(u) +

∫ +1

ε

du ı
.
ısu w(u)

)
+ κ .

(3.120)

Herein δ(ε) is a function controlling the asymmetric interval used in the cal-
culation of the limit in the evaluation of the principal value integral is of the
form δ(ε) = Cε + κ that fulfils δ(ε) → 0 if ε → 0, where C is a factor to be
derived from the transition function w(u) and κ is the integration constant.

With this modifications the characteristic exponent of a general Lévy pro-
cess becomes

ψ(s) = ı
.
ı(a+aL)s − 1

2
σ2s2 + —

∫ +∞

−∞
du (eı

.
ısu−1−ı.ısu1|u|<1)w(u) , (3.119”)
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where the evaluation of the principle value integral by residue calculus is
shifted into the calculation of the parameter aL .

In the following paragraphs we present a few examples of Lévy processes.

Poisson processes. The conventional Poisson process and two modifications
of it are discussed as examples of simple Lévy processes. As said before the
Poisson process is a Lévy process with the parameters a = σ = 0 and the
transition function w(u) = γ δ(u− 1). The solution is a Poisson distribution
with the parameter λ = γt:

Pn(t) = e−γt
(γt)n

n!
. (3.88)

The parameter γ is denoted as the intensity of the process, and it represents
the inverse of the mean time between two jumps.

The compensated Poisson process is an other example of a Lévy process.
The stochastic growth of the Poisson process is compensated by a linear
deterministic term, and the two parameters and the transition function are:
a = −γ, σ = 0, and w(u) = γ δ(u−1). The process is described by the random
variable X (t) = Z(t) − γt with the expectation value where E

(
X (t)

)
= 0,

where Z(t) is a Poisson process. Accordingly the compensated Poisson process
is a martingale (section 3.1.3.2).

An important generalization of the conventional Poisson process is the
compound Poisson process, which is a Poisson process with variable step sizes
expressed as random variables Xk drawn from a probability density w(u)/γ:

f(u) du = P
(
u < Xk < u+ du

)
=

w(u)

γ
du . (3.121)

The transition function is assumed to be normalizable

γ =

∫ ∞
−∞

w(u) du < ∞ ,

where γ is again the intensity of the process. The number of events in a
compound Poisson process that happened until time t is described by the

random variable Z(t) =
∑n(t)
k=1 Xk. The Poisson process and the compounds

Poisson process are the one-sided analogues of the constant and variable step
size random walks (figure 3.16).

Wiener processs. The Wiener process follows trivially from equation 3.117
by choosing a = 0, σ = 1, and setting zero probability for jumps, which leads
to the characteristic function

φ(s, t) = e−
1
2
s2t .

This is the characteristic function for the Wiener process (3.60) with w0 =
0 and t0 = 0. Interestingly, we shall see that the Wiener process can be
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Fig. 3.17 Transition functions of Pareto processes. The transition functions
w(u) = |u|−(α+1) of the Pareto processes with α = 0 (yellow), α = 1 (red) and
α = 2 (black) are plotted against the variable u. The curve for α = 2 is the reference
corresponding to normal diffusion. All curves with 2 > α ≥ 0 have heavier tails and
this implies a larger probability for longer jumps.

obtained also from (3.117) with a = σ = 0 and a special transition function
w(u) ∝ |u|−(α+1) with α = 2 (see next paragraph).

Pareto processes. Pareto or Paretian processes are special pure jump Lévy
processes with a = σ = 0 and a transition function of the type

w(u) =

{
ϑ− · |u|−(α+1) for −∞ < u < 0

ϑ+ · u−(α+1) for 0 < u <∞
, (3.122)

with 0 < α < 2. In figure 3.17 we show the transition functions for Pareto
processes with the singularity at u = 0 as in (3.122). We are now in a position
to choose an appropriate function for the evaluation of the principal value
integral by means of the Lévy-Khinchin formula as expressed in (3.120):

δ(ε) =
(
ϑ+ε

1−α + κ)/ϑ−
)1/(α−1)

. Apparently, the case α = 1 cannot be
handled in this way but there is the possibility of a direct integration without
using the Lévy-Khinchin formula.

For Pareto processes the principal value integral can be calculated directly
by means of Cauchy’s integration through analytic continuation in the com-
plex plane, z = u+ ı

.
ıv = |z|eı

.
ıϑ, and residue calculus [14, chs. 6 and 7]:
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γ

f(z)dz = 2πı
.
ıRes

(
f(z), z0

)
= 2πı

.
ı a−1 ,

= 2πı
.
ı lim
z→z0

(
(z − z0)f(z)

)
= , and (3.123a)

= 2πı
.
ı

1

(m− 1)!
lim
z→z0

dm−1

dzm−1

(
(z − z0)mf(z)

)
, (3.123b)

where γ is a closed contour encircling the (isolated) pole at z = z0 in a region
where f(z) is analytical, Res

(
f(z), z0

)
is the residue of f(z) at this pole, and

a−1 is the coefficient of (z − z0)−1 in a Laurent series41

f(z) =

∞∑
n=−∞

an (z − z0)n with an =
1

2πı
.
ı

∮
γ

f(z)

(z − z0)n
. (3.123c)

If f(z) has a pole of order m at z = z0 all coefficients an for n < −m < 0
with n ∈ Z are zero and a−m 6= 0 defines the first non-vanishing term of the
series.

According to (3.122) the transition function w(u) has a pole of order α+1
at u = u0 = 0 and since α need not be an integer the analysis of Pareto
processes opens the door into the world of fractals. It is worth noticing that
the Γ -function as well as the factorials adopt an infinite number of factors
for non-integer arguments, α! = α · (α− 1) · (α− 2) · (α− 3) . . . . Evaluation
of the characteristic exponent yields for κ = 0:

ψ(s) = |s|α Γ (−α)

(
(ϑ+ + ϑ−) cos

απ

2
− ı

.
ı
s

|s|
(ϑ+ − ϑ−) sin

απ

2

)
=

= − |s|α χ
(

1− ı.ıβ s

|s|
ω(s, α)

)
with

ω(s, α) =

{
tan απ

2 , if α 6= 1 , 0 < α < 2 ,

− 2
π ln |s| , if α = 1 ,

β =
ϑ+ − ϑ−
ϑ+ + ϑ−

and χ = γα = −(ϑ+ + ϑ−)Γ (−α) cos(απ/2) ,

and for the characteristic function of Pareto processes we finally obtain:

φ(s, t) = exp
(
− |s|α γα

(
1 − ı

.
ıβ

s

|s|
ω(s, α)

)
t
)
. (3.124)

The parameter β determines the symmetry of the transition function and the
process: β = 0 implies invariance with respect to inversion at the the origin,
u → −u or s → −s, respectively, and β 6= 0 expresses the skewness of the
characteristic function and the density. Distributions with β = ±1 are called

41 The Laurent series is an extension of the Taylor series to negative powers of (z−z0)
named in honor of the French mathematician Pierre Alphonse Laurent.
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extremal and for α < 1, β ± 1 they are one-sided (see for example the Lévy
distribution in section 2.5.7 and figure 3.18).

Previously we encountered already the two symmetric processes – β = 0,
ϑ+ = ϑ− = ϑ, and γα = χ = −2ϑΓ (−α) cos(απ/2) – with α = 1 and α = 2
for which analytical probability densities are available: (i) the Cauchy process
(α = 1 and γ = ϑπ)42

φ(s, t) = exp(−π |s|ϑt) and p (x, t) =
1

π

ϑt

(ϑt)2 + x2
,

and (ii) the Wiener Process (α = 2 and γ = ϑ)43

φ(s, t) = exp(−s2ϑt) and p (x, t) =
1√

4π ϑt
exp
(
x2/(4ϑt)

)
,

where the probability densities were normalized after the Fourier transform.
As seen already from equation (3.124) the role of the parameter γ or also θ
in the symmetric case is only a scaling of the times axis: t→ τ = θt.

Interpretation of sigularities in the transition functions. Lévy processes and
Pareto processes in particular are defined also for cases where the transition
functions have singularities at the origin u = u0 = 0. In other words, we are
considering examples with limu→0 w(u) = ∞. How can we visualize such a
situation? Apparently the condition modeled by the singularity implies the
occurrence of shorter and shorter jumps at higher and higher rates until we are
dealing in the limit u→ 0 with an infinite number of steps of infinitesimal size.
Actually taking this limit is not unfamiliar to us, because in the transition
from random walk to diffusion precisely the same problem arose and was
solved straightforwardly. We mention again that diffusion appears twice in
Lévy processes: (i) in the diffusion term of equation (3.117) and (ii) at the
singularity of the transition function w(u). As shown in figure 3.17 a higher
order, m = α+1, of the pole at u = 0 is accompanied by a broader singularity
and a less heavy tail. The parameter α is confined to the range 0 < α < 2
and we can expect more diffusion-like behavior the closer α approaches the
value α = 2, which is the limit of normal diffusion . Smaller values of α result
in higher probabilities for longer jumps (see Lévy flights).

Although the characteristic function can be written down for any Lévy
process, the probability density need not be expressible in terms of analytic
functions. Three examples of Lévy processes where full analytical access is
possible are shown in (figure 3.18): (i) the normal distribution (section 2.3.3)

42 Hereby we are using the easy to check relations limα→1 Γ (−α) = ±∞ but
limα→1 Γ (−α) cos(πα/2) = −π/2.
43 Although the value α = 2 leads to divergence in the regular derivation, applying
α = 2, β = 0, and χ = ϑ = D yields the probability density of the normal diffusion
process.
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with α = 2, β = 0 and γ = 1/2,44 the Cauchy distribution (section 2.5.6) with
α = 1 and β = 0,44 and the Lévy distribution (section 2.5.7) with α = 1/2
and β = 1. For work in practice this is hardly a restriction since numerical
computation allows for handling all cases and most mathematics packages
contain fast routines for Lévy and Pareto distributions.

Infinite divisibility and stability. The property of infinite divisibility is defined
for classes of probability densities p (x) and requires that a random variable S
with this density, p (x), can be partitioned into any arbitrary number n with
n ∈ N>0 of independent and identically distributed (iid) random variables
such that all individual variables Xk, the sum Sn = X1 + X2 + . . . + Xn,
and all possible partial sums have the same probability density p (x). Lévy
processes are homogeneous Markov processes and they are infinitely divisible.
In general, however, the probability distributions of the individual parts Xk
will be different and different from the density p (x).

We define: a random variable, X , has a stable distribution if any linear
combination of two independent copies of this variable, X1 and X2, fulfils the
same distribution up to a shift in location (µ) and a change in the change in
the scale parameter being the standard deviation,

aX1 + bX2
d
= cX + d , (3.125)

wherein a and b are positive constants, c is some positive number dependent
on a, b and the summation properties of X , d ∈ R, and the symbol ’d’ above
the equals sign means equality in distribution. A Lévy process, (Xt, t ≥ 0)
is called stable if every random variable Xt has a stable distribution [347].
Stability or stability in the broad sense is to be distinguished from strict
stability or stability in the narrow sense in which case the equality 3.125
holds with d = 0 for all choices of a and b. A random variable is called
symmetric stable if it is stable and symmetrically distributed around zero as

expressed by β = 0 or X d
= −X .

Stability and strict stability of the normal distribution N (µ, σ) can be
easily demonstrated by means of CLT:

Sn =

n∑
i=1

Xi with E(Xi) = µ , var(Xi) = σ2 ∀ i = 1, . . . , n

E(Sn) = nµ and var(Sn) = (nσ)2 ∀ i = 1, . . . , n .

(3.126)

From the two equations (3.125) and (3.126) follow the conditions for the
constants a, b, c, and d:

44 The requirement for the derivation of the formula of the characteristic function
of Pareto processes was 0 < α < 2, which does not include the case α = 2 and
indeed the expression for γ diverges for α → 2: Γ (−2) cosπ = ±∞. For α = 1 we
find Γ (−1) =∞, Γ (−1) sin(π/2) =∞ but limα→1 Γ (−α) cos(απ/2) = −π/2, which
allows for the derivation of the characteristic function of the Cauchy process.
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Fig. 3.18 A comparison of stable Pareto probability densities. In the upper
part of the figure four different stable distributions with characteristic exponents
α = 1/2 (yellow), 1 (red), 3/2 (green), and 2 (black) are compared. For α < 1
symmetric distributions (β = 0) are not stable and therefore we show the two extremal
distributions with β = ±1 for the Lévy distribution (α = 1/2). The lower part presents
a log-linear plot of the densities against the position x. Within a small interval around
x = 2.9 the curves for the individual probability densities cross and illustrate the
increase in the probabilities for longer jumps.
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µ(aX ) = aµ(X ) , µ(bX ) = b µ(X ) , µ(cX + d) = c µ(X ) + d ⇒

⇒ d = (a+ b− c)µ

var(aX ) = (aσ)2 , var(bX ) = (bσ)2 , var(cX + d) = (cσ)2 ⇒

⇒ c2 = a2 + b2 .

The two conditions d = (a + b − c)µ and c =
√
a2 + b2 with d 6= 0 are

readily fulfilled for pairs of arbitrary real constants a, b ∈ R and accord-
ingly, the normal distribution N (µ, σ) is stable. Strict stability, on the other
hand, requires d = 0 and this can be fulfilled only by zero-centered normal
distributions N (0, σ).

A location parameter µ together with the previously defined three param-
eters α, β and γ fully characterize a stable distribution pα,β,γ,µ(x):

(i) characteristic exponent : α ∈ ] 0, 2 ] ,
(ii) skewness parameter : β ∈ [−1, 1 ] ,
(iii) scale parameter : γ ≥ 0 , χ = γα , and
(iv) location parameter : µ ∈ R .

The parameters α and β determine the shape of the distribution and are
called shape parameters therefore. The scale parameter γ is obviously the
same as the standard deviation σ up to some factor, and the conventional
mean µ serves as location parameter. The parameters of the three stable
distributions with analytical densities are:

1. the normal distribution N (µ, σ2) with α = 2, β = 0, γ = σ√
2
, µ ,

2. the Cauchy distribution C(δ, γ) with α = 1, β = 0, γ, µ and
3. the Lévy distribution L(δ, γ) with α = 1

2 , β = 1, γ, µ .

As we did in case of the normal distribution we define standard stable distri-
butions having only two parameters by setting γ = 1 and µ = 0:

pα,β(x) = pα,β,1,0(x) = pα,β,1,0

(
ξ − µ
γ

)
= γ pα,β,γ,µ(ξ) .

As said the characteristic exponent α is also called index of stability since it
determines the order of the singularity at u = 0 and – at the same time – the
long-distance scaling of the probability density [35, 66, 370]:

pα,β(x) ≈ C(α)

|x|α+1
for x→ ±∞ .

This scaling law is determined by the scaling parameter α, which turns out
to be the spatial universality exponent (α = 2 in case of the conventional
diffusion in section 3.2.4).

Universality and self-similarity. Self-similarity and shapes of objects fitting
fractal or non-integer dimensions are the major topics of Benôıt Mandelbrot’s
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seminal book [303]. Self-similarity of stochastic processes has been mentioned
already in section 3.2.4 in the context of continuous time random walks. In
a nutshell looking at a self-similar object with a magnifying glass shows the
same pattern no matter how large the magnification factor is. Needless to
mention that real objects can be self-similar only over a few orders of mag-
nitude, because resolutions cannot be increased without limits. The notion
of universality was developed in statistical physics, in particular in the the-
ory of phase transitions, where large collectives of atoms or molecules ex-
hibit characteristic properties near critical points that are independent of the
specific material parameters. Commonly power laws with critical exponents,
f(s) = f(s0) · |s− scrit|α, are observed and when they are valid over several
orders of magnitude the patterns become independent of the sizes of objects.
Diffusion of molecules and condensation through aggregation are indeed ex-
amples of universal phenomena with the critical exponents α = 2 in length
and θ = 1 in time. As said already the universality concerns the fact that
all random walks with finite variance and finite waiting times fall into this
universality class. With the experience gained from stable distributions and
Lévy processes we can generalize the phenomena and compare the proper-
ties of processes with other universality exponents, 0 < α ≤ 2 in space and
0 < θ ≤ 1 in time. Higher exponents, α > 2, are incompatible with normal-
izable probability densities. In particular convergence of the principal value
integral cannot be achieved by a proper choice of δ(ε) and ε [157, pp. 251-252].

The continuous time random walk (figure 3.16) is revisited here under the
assumption of Lévy distributed jump lengths and waiting times. The calcula-
tion of the probability density p (x, t) is in full analogy to that in section 3.2.4
and starts from the joint probability distribution ϕ(ξ, τ) = f(ξ)ψ(τ) where
independence according to (3.111) is assumed. The spatial increments are
now derived from a stable Lévy distribution fα,0,γ,0(ξ), which is symmetric
(β = 0) and specified by the characteristic exponent, α, the scale parameter
γ, and the location at the origin (µ = 0). Since fα,0,γ,0(ξ) need not be ex-
pressible in analytic form, we define it in terms of its characteristic function,
which we write here in form of the limit of long distances or short k-values:45

f̃α,γ(|k|) = E
(
exp (ı.ı|k|Xα,γ)

)
=

∫ ∞
−∞

dξ eı
.
ı|k|ξfXα,γ (ξ) =

= exp (−γα|k|α) = 1 − γα|k|α + O(|k|2α) .

(3.127)

The condition of obtaining an acceptable probability density – being nonneg-
ative everywhere and normalizable – by inverse Fourier transform defines the
range of possible values for the universality exponent: 0 < α ≤ 2. We illus-
trate by means of examples and the obvious first example is the continuous

45 The absolute value of the wave number |k| is sometimes used in all expressions,
which is necessary when complex k-values are admitted or in the multidimensional
case where k is the wave vector. Here we use real k-values in one dimension and we
need |k| only to express a cusp at k = 0.



256 3 Stochastic processes

time random walk with α = 2 and normally distributed jump length:

f(ξ) =
e−ξ

2/4D

√
4πD

and f̃(k) = exp (−γ2k2) = 1 − γ2k2 + O(k2) .

As a second illustrative example we mention the Cauchy distribution with
the universality exponent α = 1:

f(ξ) =
γ

π(γ2 + ξ2)
and f̃(k) = exp (−γ |k|) = 1 − γ |k| + O(|k|2) .

Since − k2 decays of faster than −|k|, the Cauchy distribution – as shown
already before – has heavier tails and sustains longer jumps.

The property of infinite divisibility can be used for a straightforward calcu-
lation of the mean length of a CTRW, l = X0Xn = xn =

∑
i ξi, as expressed

by means of the the width of the density fα,γ( ξn ). Stability of the Lévy distri-
bution requires that a linear combination of independent copies of the variable
has the same distribution as the copy itself and this yields for the sum:

fn,α,γ

(∑
i

ξi

)
= fα,γ(ξ1) ◦ fα,γ(ξ2) ◦ . . . ◦ fα,γ(ξn) ,

where ’◦’ stands for convolution. Application of the convolution theorem
yields

f̃n(|k|) =

n∏
i=1

f̃α,γ(|ki|) = exp
(
−γ n 1

α |k|α
)

Backtransformation into physical space yields a generalization of the central
limit theorem:

fn,α,γ

(∑
i

xi

)
= fn,α,γ

(
x
/
n

1
α

)
. (3.128)

The length of the random walk is related to the width of the distribution,
equation (3.128) yields the scaling of mean walk lengths: l = 〈x(n)〉 ∝ n 1

α . In
normal diffusion α = 2 and the length grows with

√
n, for Lévy stable distri-

butions with α < 2 the walks become longer because of heavier tails compared
to the normal distribution. The corresponding trajectories are called Lévy
flights and will be discussed at the final paragraph of this section. In polymer
theory the length of the walk corresponds to the end-to-end distance of the
polymer chain for which analytic probability densities are available [414]. For
polymers with Gaussian distributions, which follow from CLT for sufficiently
long chains, the mean of the end-to-end distance fulfils a square root n law:
l ∝
√
n.

The density of the waiting times is modified according the empirical ev-
idence. There are well-documented processes with waiting times deviating
from the expected exponential distribution in the sense that longer waiting
times have higher probabilities or, in other words, the tails of the probability
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densities decay slower than exponential. These deviations may have different
origins, they are called subdiffusion and novel mathematical methods were
developed in order to be able to deal with them properly [177, 328, 389].
In particular, adequate modeling of subdiffusion requires fractional calculus
and since we shall not need this elegant but quite involved technique in this
monograph, we dispense here from dwelling further on this discipline.

In order to take long rests or long-tails of the distribution of waiting times
τw into account an asymptotic behavior of the form

ψ(τ) ≈ Aθ ·
(τw
t

)1+θ

with 0 < θ ≤ 1 (3.129)

is assumed [328], which yields after Laplace transformation

ψ̂(u) ≈ 1

1 + (τwu)θ
= 1 − (τwu)θ + O(u1+θ) (3.130)

The transformed joint distribution function can be obtained from the Montroll-
Weiss equation (3.114):

ˆ̃p (|k|, u) =
1 − ψ̂(u)

u

1

1 − ψ̂(u) f̃(|k|)
≈ τw u

θ−1

τwuθ + λ|k|α
. (3.131)

As we have seen in section 3.2.4 the expression on the r.h.s. of (3.131) with
α = 2, θ = 1 can be subjected straightforwardly to inverse Laplace and
Fourier transform, and this yields the density of normal diffusion p (x, t) =

L−1F−1
(
ˆ̃p (|k|, u)

)
= e−x

2/4Dt/
√

4πDt (3.61).
For general Pareto processes the inverse Laplace and inverse Fourier trans-

form on the expression of the r.h.s. of equation (3.131) is much more involved
and cannot be completed in closed form. We can only indicate how one might
proceed in the fractal case. For the inverse Laplace transform we get

p (x, t) ≈
∫ ∞

0

du

∫ +∞

−∞
dk e−ı

.
ı|k|x+ut τw u

θ−1

τwuθ + λ|k|α
=

=

∫ +∞

−∞
dk e−ı

.
ı|k|xEθ(−|k|α tθ) ,

(3.132)

where we made use of the Mittag-Leffler function Eθ(−|k|α tθ), which is
named after Magnus Gösta Mittag-Leffter, occurs in inverse Laplace trans-
forms of functions of the Laplace transform parameter pα(a+ bpβ) [311], and
has the form of an infinite series [331]:

Eα(z) =

∞∑
k=0

zk

Γ (1 + αk)
, α ∈ C,<(α) > 0, z ∈ C ,
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Fig. 3.19 Normal and anomalous diffusion. The figure sketches continuous time
random walks (CTRW) as of the universality exponents of space, 0 < α ≤ 2, and
time, 0 < θ ≤ 1. Lévy flights, normal diffusion, and fractional Brownian motion are
limiting cases with the asymptotic behavior (0 < α < 2, θ = 1), (α = 2, θ = 1), and
(α = 2, 0 < θ < 1), respectively, of the general class of ambivalent processes.

which leads to quite involved expressions except in some simple cases, for
example E1(z) = exp (z) or E0(z) = 1/(1 − z) [200]. The evaluation of the
inverse Fourier transform (3.132) is even more complicated but we shall need
to consider only the form of the leading terms: The function of the form
p̃ (tθ|k|α)in the integrand becomes a function p (x

α

tθ
) after the inverse Fourier

transform. If we express distance as a function of time we obtain eventually:
xα

tθ
= c→ x(t) ∝ t θα . The expression covers normal diffusion with α = 2 and

θ = 1 leading to the relation x(t) ∝
√
t and fractional diffusion with α = 2

and θ < 1 resulting in x(t) ∝ tθ/2.
In figure 3.19 we summarize the results of this section. All continuous

time random walks are characterized by two universality exponents, 0 <
α ≤ 2 and 0 < θ ≤ 1, for scaling behavior in space and time. Normal
diffusion is the limiting case with α = 2 and θ = 1. The probability densities
of time steps or waiting times and jump length, the Poisson distribution
and the normal distribution, respectively, have both finite expectation values
and variances. Lévy stable distributions with α < 2 have heavy tails and
the variance of the jump length diverges. Heavy tails makes larger jump
increments more probable and the processes are characterized by longer walk
lengths, x(n) ∝ n1/α. Alternatively the variance of the step size is kept finite
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Fig. 3.20 Continued on next page.
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Fig. 3.20 Brownian motion and Lévy flights in two dimensions. The figure
compares three trajectories of processes in the (x, y)-plane. Each trajectory consists of
100 000 incremental steps, which combines a direction that is randomly chosen from a
uniform distribution: ϑ ∈ UΩ , Ω = [0, 2π] with a step length l. For the simulation of
the random walk the step length was chosen to be l = 1[l.u.] and for the Lévy flights
the length was taken as a second set of random variables l = `, which were drawn from
a density function f`(u) = u−(α+1) (3.122), and the components of the trajectory in
the x- and y-direction are xk+1 = xk+ l · cosϑ and yk+1 = yk+ l · sinϑ, respectively.
The random variable ` is calculated from a uniformly distributed random variable v
on [0, 1] via the inverse cumulative distribution [89]:

` = F−1(v) = um (1− v)−1/(α+1).
For a uniform density on [0, 1] there is no difference in distribution between the ran-
dom variables (1− v) and v and hence we used the simpler expression ` ∝ v−1/(α+1)

(The computation of pseudorandom numbers following a predefined distribution will
be mentioned again in 4.6.3). The factor um is introduced as a lower bound for u
in order to allow for normalization of the probability density, it can be interpreted
as a scaling factor as well. Here we used um = 1[l.u.]. The examples shown were
calculated with α = 2 and α = 0.5 and apostrophized by Lévy walk and Lévy flight,
respectively. Apparently, there is no appreciable difference observable between the
random walk and the Lévy walk. Random number generator: Mersenne Twister with
the seeds ’013’ for random walk, ’016’ for Lévy walk, and ’327’ for Lévy flight.
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Fig. 3.21 Mean square displacement in normal and anomalous diffusion.
The mean square displacement in normal diffusion is 〈r2〉 = 〈(x− x0)2〉 = 2Dt, and
the generalization to anomalous diffusion allows for a classification of the processes
according to the time exponent of the mean square displacement, 〈r2〉 ∝ tθ: θ < 1
characterizes subdiffusion and θ > 1 superdiffusion.

in anomalous diffusion but the jumps are delayed and the waiting times
diverge. The inner part of the square is filled by so-called ambivalent processes
were the distributions of waiting times have diverging expectation values and
no finite variances of the jump sizes (for details see [49, 328]).

Lévy processes derived from transition functions (3.122) with 0 < α < 2
correspond to densities with heavy tails and diverging variances. They were
called Lévy flights by Benôıt Mandelbrot [303]. Lévy flights with α = 2 –
called Rayleigh flights by Mandelbrot – turned out to be almost indistinguish-
able from conventional random walks with constant step size and accordingly
both processes are suitable models for Brownian motion (figure 3.20). Since
the Pareto transition function coincides with the normal, the Cauchy, and
the Lévy distribution only in the asymptotic tails (x → ∞) this similar-
ity is a nice demonstration of the relevance of asymptotic behavior. In the
limit t → ∞, as already mentioned, 1d and 2d random walks lead to com-
plete coverage of the line and the plane, respectively. Compared to the tails
of the normal distribution the tails of all other Pareto transition functions,
α < 2, are heavier, and this implies higher probabilities for longer steps. In
the special classes of Lévy flights with α = 1 and α = 0.5, for example, the
step lengths may be randomly drawn from Cauchy or Lévy distributions, or
derived from the power laws (3.122). The higher probabilities of long steps
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changes completely the appearance of the trajectories: In the 2d plots densely
visited zones are interrupted by occasional wide jumps that initiate a new
local diffusion-like process in another part of the plane. In figure 3.20 we
compare trajectories of 100 000 individual steps calculated by a random-walk
routine with those computed with Levy flights with α = 2 and α = 0.5.
The 2d pattern calculated for the Lévy flight with α = 2 is very similar to
the random walk pattern46 whereas the Lévy flight with α = 0.5 shows the
expected small, more or less densely covered patches are separated by long
jumps. It is illustrative to consider the physical dimensions of the area vis-
ited by the 2d-processes: The random walk and the Lev́y walk cover areas
of approximately 300 × 300 [l.u.2] and 400 × 400 [l.u.2], but the Lévy flight
(α = 0.5) takes place in a much larger domain, 4000× 4000 [l.u.2].

The trajectories shown in figure 3.20 suggest to use the mean walk length
for the classification of processes. From equation (3.128) followed a mean
walk lengths 〈x(n)〉 ∝ n1/α with n being the number of steps of the walk.
Using the mean square displacement for the characterization of walk lengths
we find for normal diffusion stating at the origin x(0) = x0 = 0:〈

r(t)2
〉

normal diffusion
=
〈(

x(t)− x0

)2〉
= 2D t ∝ tθ with θ = 1 .

Anomalous diffusion is classified with respect to the asymptotic time depen-
dence (figure 3.21): Subdiffusion is characterized by θ < 1 and as mentioned
above it is dealing with diffusion processes that are slowed down or delayed
by structured environments. Superdiffusion with θ > 1 is faster than normal
diffusion and this is caused, for example, by a higher probability of longer
jumps in a random walk.

The trajectory of the Lévy flight in figure 3.20 suggest an optimized search
strategy: A certain area is searched thoroughly and after some while, for
example when the territory has been harvested exhaustively, and then the
search is continued in a rather distant zone. Prey foraging strategies of marine
predators, for example those of sharks, were found to come close to Lévy
flights. An optimal strategy consists in the combination of local searches by
Brownian motion like movements and long jumps into distant regions where
the next local search can start. The whole trajectory of such a combined
search resembles the path of a Lévy flight [223, 448]. Finally, we repeat what
we have mentioned initially: Lévy processes became an important issue in
economics, in particular in finance [392].

46 Because of this similarity we called the α = 2 Pareto process as Lev́y walk.
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3.3 Backward equations

Time inversion in a conventional differential equation changes the direction in
which trajectories are passed through and this has only minor consequences
for the phase portrait of the dynamical system: ω-limits become α-limits and
vice versa, stable equilibrium points and limit cycles become unstable and
so on, but the trajectories – without the arrow of time – remain unchanged.
Apart from the arrow of time integrating forward yields precisely the same
results as integrating backward from the endpoint of the forward trajectory.
The same is true, of course, for a Liouville equation but it does not hold for a
Wiener process or a Langevin equation: As sketched in figure 3.22 (lower part)
time reversal results in trajectories that diverge in the backward direction. In
other words, the commonly chosen reference conditions are such that a for-
ward process has the sharp initial conditions at the beginning of the ordinary
time scale – t0 for t progressing into the future – whereas a backward process
has sharp final conditions at the end – τ0 for a virtual computational time τ
progressing backwards into the past. Accordingly, the Chapman-Kolmogorov
equation can be interpreted in two different ways giving rise to forward and
backward equations that are equivalent to each other and the basic difference
between both concerns the set of variables that is held fixed. In case on the
forward equation we hold (x0, t0) fixed, and consequently solutions exist for
t ≥ t0, so that p (x, t0|x0, t0) = δ(x−x0) is an initial condition for the forward
equation. The backward equation on the other hand has solutions for t ≤ t0
corresponding τ ≥ τ0 and hence, it describes the evolution in τ . Accordingly,
p (y, τ0|y0, τ0) = δ(y − y0) is an appropriate final condition (rather than an
initial condition).47

Näıvely we could expect to find full symmetry between forward and back-
ward computation, there is, however, one fundamental difference between
calculations progressing in opposite directions, which will become evident
when we consider backward equations in detail: In addition to the two differ-
ent computational time scales for forward and backward equations – t and τ ,
respectively, in figure 3.22 – we have the real or physical time of the process,
which has the same direction as t, unless we use some scaling factor it is
even identical to t and we shall only distinguish the two time scales if nec-
essary. The computational time τ , however, runs opposite to physical time,
and the basic difference breaking the symmetry between forward and the
backward equation thus concerns the arrow of time. The difference can also
be expressed by saying the forward equations make prediction of the future
and the backward equations reconstruct the past. In the eyes of mathemati-
cians the backward equation is (somewhat) better defined than its forward
analogue (see [131] and [134, pp. 321 ff.]).

47 In order to avoid confusion we shall reserve the variable y(τ) and y(0) = y0 for
backward computation.
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Fig. 3.22 Illustration of forward and backward equations. The forward dif-
ferential Chapman-Kolmogorov equation is used in calculations of the future develop-
ment of ensembles or populations. The trajectories (blue) start from an initial condi-
tion (x0, t0) commonly corresponding to the sharp distribution p (x, t0) = δ(x−x0),
and the probability density unfolds with time, t ≥ t0. The backward equation is
commonly applied to the calculation of first passage times or the solution of exit
problems. In order to minimize the risk of confusion we choose in backward equations
the notation y and τ for the variable and the time, respectively, and we have the
apparent correspondence (y(τ), τ)⇔ (x(t), t). In backward equations the latest time
the corresponding value of the variable at this time, (y0, τ0), are held constantτ0
and a sharp initial condition – better called final condition in this case – is applied
p (y, t0|y, t) = δ(y − y0) and the time dependence of the probability density corre-
sponds to samples unfolding into the past, τ ≥ τ0 (trajectories in red). In the lower
part of the figure and alternative interpretation is given: The forward and the back-
ward process start at the same time into different time directions, computation of
the forward process makes predictions of the future whereas the backward process is
calculated for the reconstruction of the past.
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3.3.1 Backward Chapman-Kolmogorov equation

The Chapman-Kolmogorov equations (3.36 and 3.37) are interpreted in two
different ways giving rise to the two formulations known as forward and back-
ward equation. In the forward equation the double (x3, t3) is considered to be
fixed and (x1, t1) expresses the variable in the sense of x1(t), where the time
t1 is progressing in the direction of positive real time (see figure 3.4). The
backward equation, in contrary, is exploring the past of a given situation:
Here, the double (x1, t1) is fixed and (x3, t3) is propagating backwards in
time. The fact that real time proceeds in the forward direction has the conse-
quence of somewhat different forms of forward and backward equations. Both
Chapman-Kolmogorov differential expressions, the forward and the backward
equation, are useful in their own rights. The forward equation gives directly
the values of measurable quantities as functions of the observed or real time.
Accordingly, it is preferentially used in describing actual processes and mod-
eling experimental systems, and it is suited for predictions of probabilities
in the future. The backward equation finds applications in the computation
of the evolution towards given events, for example first passage times or exit
problems, which are dealing with the search for the probability that a particle
leaves a region at a certain time.

Since the difference in the derivation of forward and backward equations is
essential for the interpretation of the results, we make a brief digression into
the derivation of the backward equation, which is similar to but not identical
with the procedure for the forward equation. The starting point again is the
conditional probability of a Markov process from a recording (y, τ) in the past
to the final condition (y0, τ0) at present: p (y0, τ0|y, τ0) = δ(y0 − y). As the
term backward indicates we shall, however, assume that the computational
time τ progresses from τ0 into the past (figure 3.22) and the difference to
the forward equation comes form the fact that computational and real time
progress in opposite direction.

In order to avoid confusion we use real time in the derivation, proceed
essentially in the same way as in section 3.2.1.2 and begin by writing down
the infinitesimal limit of the difference equation:

∂p (y0, t0|y, t)
∂t

=

= lim
∆t→0

1

∆t

(
p (y0, t0|y, t+∆t) − p (y0, t0|y, t)

)
=

= lim
∆t→0

1

∆t

∫
Ω

dz p (z, t+∆t|y, t)
(
p (y0, t0|y, t+∆t) − p (y0, t0|z, t+∆t)

)
where we have applied the same two operations as used for the derivation of
equation (3.40): (i) resolution of unity,

1 =

∫
Ω

dz p (z, t+∆t|y, t) ,
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and (ii) insertion of the Chapman-Kolmogorov equation in the second term
with z being the intermediate variable,

p (y0, t0|y, t) =

∫
Ω

dz p (y0, t0|z, t+∆t) p (z, t+∆t|y, t) .

Further steps parallel those in the derivation of the forward case: (i) separa-
tion of the domain of integration into two parts with the integrals I1 and I2
with ‖z − y‖ < ε and ‖z − y‖ ≥ ε, respectively, (ii) expansion of I1 into a
Taylor series, (iii) neglect of higher order residual terms, (iv) introduction of
transition probabilities for jumps in the limit of vanishing ∆t,

lim
∆t→0

1

∆t
p (z, t+∆t|y, t) = W (z|y, t) . (3.133)

(v) consideration of boundary effects if there are any, and eventually we obtain
[157, pp. 55,56]:

∂p (y0, t0|y, t)
∂t

= −
∑
i

Ai(y, t)
∂p (y0, t0|y, t)

∂yi
+ (3.134a)

+
1

2

∑
i,j

Bij(y, τ)
∂2p (y0, t0|y, t)

∂yi∂yj
+ (3.134b)

+

∫
dz W (z|y, t)

(
p (y0, t0|y, t) − p (y0, t0| z, t)

)
. (3.134c)

Equation (3.134) is called the backward differential Chapman-Kolmogorov
equation, which complements the previously derived forward equation (3.46).
The appropriate condition replacing equations (3.25) and (3.38) is

p (y0, t|y, t) = δ(y0 − y) for all t ,

which expresses a sharp final conditions for t = t0: p (y, t0) = δ(y0 − y)
(figures 3.4 and 3.22). Apart from the change in sign of the drift term caused
by ∆t = −∆τ , we realize changes in the structure of the PDE that make the
equation in essence easier to handle than the forward equation. In particular,
we find for the three terms:

The Liouville equation (section 3.2.2.1) is a partial differential equation
whose physically relevant solutions coincide with the solution of an ordinary
differential equation, and therefore the trajectories are invariant under time
reversal – only the direction of the process is reversed: going backwards in
time changes the signs of all components of A and the particle travels in
opposite direction along the same trajectory that is determined by the initial
or final condition (x0, t0) or (y0, τ0).
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Fig. 3.23 Jumps in the single event master equations. The sketch on the left
hand side shows the four single steps in the forward birth-and-death master equations,
which are determined by the four transition probabilities w+

n , w+
n−1, w−n+1, and w−n .

Transitions leading to a gain in probability Pn are indicated in blue, those reducing
Pn are shown in red. On the right hand side we show the situation in the backward
master equation: Only two transition probabilities, w+

n and w−n enter the equations,
and the probabilities determining the amount of gain or loss in Pn are given at the
final jump destinations rather than the beginnings.

The diffusion process described by equation (3.134b) spreads in opposite
direction as a consequence of the inverse arrow of time. The mathematics
of time reversal in diffusion has been studied extensively in the nineteen
eighties [7, 110, 201, 408] and rigorous mathematical proofs were derived,
which confirmed that inversion of time leads to indeed to a diffusion process
in the direction of inverse time in the sense of the backward processes sketched
in figure 3.22: Starting from a sharp final condition the trajectories diverge
in the direction of τ = −t.

The third term (3.134c) describes the jump processes and will be handled
in the following section 3.3.2 on backward master equations..

3.3.2 Backward master equations

The backward master equation follows directly from the backward dCKE by
setting A = 0 and B = 0 and this is tantamount to considering only the third
term (3.134c). Since the difference in forward and backward equations is es-
sential for the interpretation of the results, we consider the backward master
equation in some detail. The starting point is the conditional probability of
a Markov step process recorded from (y, τ) in the past to the final condition
(y0, τ0) at present time τ0: p (y0, τ0|y, τ0) = δ(y0−y). As the term backward
indicates we shall, however, assume that the computational time τ progresses
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from τ0 into the past. Some care is needed in applications to problem solu-
tion, because the direction of the time axis has influence on appearance and
interpretation of transition probabilities. In computational time τ the jumps
go in opposite direction (figure 3.23).

Equation (3.134c) in real time t yields on Riemann-Stieltjes integration:

∂p (y0, t0| y, t)
∂t

=

∫
Ω

dz W (z| y, t)
(
p (y0, t0| y, t) − p (y0, t0| z, t)

)
=

=

∞∑
z=0

W (z| y, t)
(
p (y0, t0| y, t) − p (y0, t0| z, t)

)
.

Now we introduce the notation for discrete particle numbers, y ⇔ n ∈ N,
z ⇔ m ∈ N, and y0 ⇔ n0 ∈ N:

dPn(n0, t0|n, t)
dt

=

∞∑
m=0

W (m|n, t)
(
P (n0, t0|n, t) − P (n0, t0|m, t)

)
. (3.135)

As previously we assume now time independent transition rates and restrict
transitions to single births and deaths:

W (m|n, t) = Wmn = w+
n δn+1,n + w−n δn−1,n , or

Wmn =


w+
n if m = n+ 1 ,

w−n if m = n− 1 ,

0 otherwise ,

(3.95’)

Then, the backward single step master equation is of the form

∂P (n0, t0|n, t)
∂t

= w+
n

(
P (n0, t0|n, t) − P (n0, t0|n+ 1, t)

)
+

+ w−n

(
P (n0, t0|n, t) − P (n0, t0|n− 1, t)

)
=

= −w+
n P (n0, t0|n+ 1, t) − w−n P (n0, t0|n− 1, t) +

+ (w+
n + w−n )P (n0, t0|n, t) .

(3.136)

As in the case of the forward equation (3.97) the notation can be simplified
by elimination of the common final state (n0, t0) and by making use of the
discreteness of n:

dPn(t)

dt
= w+

n

(
Pn(t)− Pn+1(t)

)
+ w−n

(
Pn(t)− Pn−1(t)

)
(3.136’)

dPn(t)

dt
= w+

n−1 Pn−1(t) + w−n+1 Pn+1(t) − (w+
n + w−n )Pn(t) . (3.97)
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Fig. 3.24 Probability density of the backward Poisson process. The plot
shows the probability density of the backward Poisson process, Pn(τ) (3.138), for
different numbers of events n = 0 (black), 20 (blue), 40 (chartreuse), 60 (yellow), 80
(orange), and 100 (red). Further parameters: n0 = 100 and γ = 1.

For the purpose of comparison we present the forward equation just below.
The differences are visualized straightforwardly (figure 3.23). In the forward
equation we need four transition probabilities, w+

n−1, w−n , w+
n , and w−n+1 to

describe the time derivative of the probability Pn(t), and the interpretation of
the terms for forward jumps is straightforward: The transition rates w±k (k =
n−1, n, n+1) are multiplied by the probabilities to be in the state before the
jump at the instant of hopping. The calculation with the backward equation
is simpler but the interpretation of the individual terms is more involved since
the different directions of real time and computational time in the backward
process change the situation: Only two transition probabilities appear in the
backward equation and the probability terms are differences between the
densities of two neighboring states, n and n+1 or n and n−1, respectively. The
backward master equation is now applied to two different problems: (i) the
backward Poisson process where we compute the first passage time of reaching
the absorbing barrier of zero events, and (ii) a more general calculation of
first passage times by means of the backward master equation.

3.3.3 Backward Poisson process

The relation between the solutions of the backward and forward master equa-
tions is illustrated for the Poisson process, which is sufficiently simple to be
handled completely in closed form. The backward master equation of the
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Poisson process is – as expected – closely related to the forward equation,
since the transition probabilities are constant, w+

k = w−k = γ ∀ k:

dPn(t)

dt
= γ

(
Pn(t) − Pn+1(t)

)
with Pn(t0) = δ(n0 − n) . (3.137)

Indeed, the forward equation is obtained in this simple case just by replac-
ing Pn(t) by Pn−1(t) and Pn+1(t) by Pn(t). The backward Poisson process
describes how n0 events recorded at time t0 could result from independent
arrivals when the probability distribution of events follows an exponential
density.

The solution of the master equation (3.137) is straightforward. Neverthe-
less, we repeat the technique based on probability generating function g(s, t),
because a few illustrative tricks are required. The expansion of g(s, t) is not
limited to positive n values [176, pp. 8-12]

g(s, t) =
∞∑

n=−∞
Pn(t) sn ,

where the range of acceptable n values, nl ≤ n ≤ nh, n ∈ Z is introduced by
setting Pn(t) = 0 ∀n /∈ [nl, nh]. Insertion of equation (3.137), making use of
the relation

∞∑
n=−∞

Pn+1(t) sn =
1

s

∞∑
n=−∞

Pn+1(t) sn+1 =
1

s

∞∑
n=−∞

Pn(t) sn ,

and replacing t0− t by the computational time τ yields the differential equa-
tion for the generating function that is a simple ODE because the expression
does not contain derivatives with respect to the dummy variable s:

dg(s, τ)

dt
= γ

(
1

s
− 1

)
g(s, τ) and g(s, t) = sn0 eγτ/s e−γτ .

Taylor expansion of the second factor in g(s, τ) powers of n0−n and equating
coefficients yields the solution

Pn(τ) =
(γ τ)n0−n

(n0 − n)!
e−γτ . (3.138)

In figure 3.24 we show the evolution of the probability density in the domain
0 ≤ τ ≤ t0 corresponding to t0 ≥ t ≥ 0. The computation of the moments
of the random variable N (t) by means of equation 2.25 is a straightforward
exercise in calculus and yields:

E
(
N (t)

)
= n0 − γ t and var

(
N (t)

)
= γ t . (3.139)
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Fig. 3.25 The extinction time of the backward Poisson process. The upper
part of the figure shows five trajectories of the backward Poisson process starting
from n0 = 1000 with γ = 1 and the seeds 013, 091, 491, 512, and 877, respectively.
The lower part presents a histogram of the extinction times T0 obtained from 10 000
individual trajectories. The histogram is compared to the probability density of T0
which follows an Erlang distribution. Parameter values: n0 = 1000 and γ = 1.

The linear time dependence is beautifully reflected by the trajectories shown
in figure 3.25.

Next we make an attempt to calculate the time to reach n = 0 in a
backward Poisson process. We shall call this kind of a first passage time the
extinction time, T0 of the process in analogy to the notion of extinction times
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in biology. The state with n = 0 represents an absorbing barrier: Once the
process has reached this state it ends here, because the jumps in the backward
Poisson are defined to fulfil ∆n = −1. For the first passage times we adopt
the notation of section 3.2.2.4 and find for the random variable

T0 =

n0∑
k=1

∆tk , (3.140)

wherein ∆tk is the time span where exactly n = k events were on the record.
The probability of T0 lying between t and t+∆t is given by the simultaneous
occurrence of two events [435, pp. 71,72]: (i) One event is on the record,
P (N (t) = 1), which implies that n0− 1 events have already taken place, and
(ii) one further jump occurs, P (∆N (t) = −1)

P (t ≤ T0 ≤ t+∆t) = P
(
N (t) = 1

)
· P

(
∆N (t) = −1

)
=

=
e−γt(γ t)n0−1

(n0 − 1)!
· γ ∆t =

=
γn0tn0−1

(n0 − 1)!
e−γ t∆t .

Now we perform the limit ∆t → dt and find that the extinction time is
distributed as

fT0 =
γn0tn0−1

(n0 − 1)!
e−γ t , (3.141)

which is known as Erlang distribution. It is straightforward to compute the
expectation value and the variance of the extinction time

E(T0) =

∫ ∞
0

t fT0 dt =
n0

γ
and var(T0) =

n0

γ2
. (3.142)

A comparison of numerically simulated extinction times and the analytical
Erlang distribution is shown in figure 3.25. The numerical data meet the
analytical expression as well as it could be. At the same time we see that
the backwards process provides a natural access to the distribution of initial
values, which lead to the final state (n0, t0).

3.3.4 Boundaries and mean first passage times

A first passage time is a random variable T that measures the instant when a
particle passes a predefined location or state the first time and its expectation
value E(T ) is called mean first passage time. We need to stress first, because
in a class of processes we are discussing here the variables may take on certain
values finitely or in infinite time processes even infinitely often. A proper dis-
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tinction can be made by considering boundaries for master equations, which
fall into two classes: (i) absorbing boundaries and (ii) reflecting boundaries.
When a particle or a process reaches an absorbing boundary it disappears
or ends, respectively, whereas from a reflecting boundary it automatically
returns to the domain of allowed values. Accordingly, an absorbing boundary
can be reached only once whereas reflecting boundaries can be reached can
be hit an infinite number of times. First passage times are not restricted to
boundaries. Consider, for example, a random walk. As we pointed out every
point on a straight line or a 2d-plane is visited an infinite number of times
by any trajectory of infinite length.

Boundaries in birth-and-death master equations. The implementation of
boundary conditions into single-step birth-and-death master equations is
straightforward. The process is, for example, assumed to be restricted to
the interval a ≤ n ≤ b, n ∈ Z, and we only need to choose the appropri-
ate transition probabilities that forbid the exit from the interval in case of a
reflecting boundary or the return to the interval for an absorbing boundary
(figure 3.26). Confining the process to [a, b] we need two boundaries,48 a lower
boundary at n = a and an upper one at n = b. Because of symmetry it is
sufficient to consider only the lower boundary.

The boundary at n = a is absorbing when the particle after it left the do-
main [a, b] cannot return to it in forthcoming jumps, which is easily achieved
by setting w+

a−1 = 0. A reflecting boundary results from the assumption

w−a = 0: the particle cannot leave the domain. By symmetry we have w−b+1 = 0

and w+
b = 0 for the absorbing and the reflecting upper boundary.

In the forward single-step birth and death master equation the flux across
the boundaries is only relevant for the equations of the states at the bound-
aries, n = a and n = b. According to equation (3.97) with the initial condition
Pn(t0) = δn,n0 the differential change in the probability density at the lower
boundary is

dPa(t)

dt
= w−a+1 Pa+1(t) − w+

a Pa(t) + w+
a−1 Pa−1(t) − w−a Pa(t) .

The two rightmost terms are effected by the boundary condition. In the case
of reflection at the boundary the condition is that nothing flows out of the
domain and this is fulfilled by w−a = 0 (figure 3.26), if the reflecting boundary
is combined with no influx either w+

a−1 or Pa−1(t) (or both) must be zero.
In general the assumption Pa−1(t) = 0 is reasonable because it is not very
meaningful to assume a finite probability density outside the domain [a, b].
Nevertheless, an influx can be modeled readily under the assumption of a
virtual state n = a− 1. An alternative assumption is the equivalent to noflux
or Neumann boundary conditions in partial differential equations: The flux

48 Boundaries are also called barriers in the literature and both notions are used as
synonyms. We shall use here exclusively the word ’boundary’. The expression barrier
will be reserved for obstacles of motion inside the domain of the random variable.
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Fig. 3.26 Boundaries in single-step birth-and-death master equations. The
figure on the l.h.s. sketches an interval, a ≤ n ≤ b (indicated by yellow background),
with a reflecting boundary at n = a and an absorbing boundary at n = b whereas
the interval on the r.h.s. has the absorbing boundary at n = a and the reflecting
boundary at n = b. The step-up transition probabilities w+

n are shown in blue, the
step-down transition probabilities w−n in red, a reflecting boundary has a zero out-

going probability, w−a or w+
b , and the incoming probabilities, w+

a−1 or w−b+1, are
zero at an absorbing boundary. The incoming transition probabilities at the reflec-
tion boundaries are shown in light colors and play no role in the stochastic process
because the probabilities of the corresponding virtual states are zero by definition:
Pa−1(t) = Pb+1(t) = 0.

at the boundary has to vanish and this implies

w+
a−1 Pa−1(t) = w−a Pa(t) . (3.143)

Absorption at the lower boundary also allows for an alternative to setting
w+
a−1 = 0: Introducing a virtual state n = a− 1 and demanding Pa−1(t) = 0

yields the same effect. It is straightforward to show that the assumption of a
virtual state n = b + 1 and the two conditions, w+

b Pb(t) = w−b+1Pb+1(t) = 0
and Pb+1 = 0, do the same job for a reflecting or an absorbing upper barrier,
respectively.

Alternative conditions can be found also for the backward master equation
(3.136) on the interval [a, b]. At the lower boundary n = a we find:

dP (n0, t0|a, t)
dt

= w+
a P (n0, t0|a+ 1, t) − w+

a P (n0, t0|a, t) +

+w−a P (n0, t0|a− 1, t) − w−a P (n0, t0|a, t)

for n0 ∈ [a, b]. Again only the last two terms – the second line – are affected
by the boundary conditions, and setting

P (n0, t0|a− 1, t) = P (n0, t0|a, t) (3.144)
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is equivalent to putting w−a (t) = 0 in order to introduce a reflecting lower
boundary through equating the second line to zero. The introduction of an
absorbing lower boundary is a bit more tricky, since the transition rate w+

a−1

does not appear in the backward master equation. Clearly, the condition
P (n0, t0|n, t) = 0 with n0 ∈ [a, b] and n < a will have the same effect as
w+
a−1 = 0. In single-step birth-and-death processes only the term with the

largest value of n will be relevant for the process confined to the domain
[a, b] and hence P (n0, t0|a− 1, t) = 0 is sufficient. At the upper boundary the
corresponding two equations having the same effect as w+

b = 0 and w−b+1 = 0
are: P (n0, t0|b+1, t) = P (n0, t0|b, t) and P (n0, t0|b+1, t) = 0 for the reflecting
and the absorbing boundary, respectively.

In this context it should be mentioned that in case of the chemical master
equation equation we shall encounter natural boundaries where reaction ki-
netics itself takes care of reflecting or absorbing boundaries. If we are dealing
with a reversible chemical reaction approaching a thermodynamic equilib-
rium in a system with a total number of N molecules the states nK = 0
and nK = N are reflecting for each molecular species K, whereas in an ir-
reversible reaction the state nK = 0 is absorbing when the reactant K is at
shortfall. Similarly, in absence of migration the state of extinction nS = 0 is
an absorbing boundary for species S.

First passage time in birth-and-death master equations. The calculation of
a mean first passage time is illustrated by means of a simple example: The
escape of a particle from a domain [a, b] with a reflecting boundary at n = a
and an absorbing boundary at n = b [301, pp. 90-92]. We make use of the
backward master equation (3.136) and according to last paragraph we adopt
the following conditions for the boundaries

P (n0, t0|a− 1, t) = P (n0, t0|a, t) and P (n0, t0|b+ 1, t) = 0 .

The probability that the particle is still in the interval [a, b] is calculated by
summation over all states in the accessible domain:

In(t) =

b∑
m=a

P (m, t|n, 0) , m ∈ Z . (3.145)

Insertion of the individual terms from the backward master equation (3.136)
yields for the time derivative:

− dIn(t)

dt
=

b∑
m=a

dP (m, t|n, 0)

dt
=

= w+
n

(
In(t) − In+1(t)

)
+ w−n

(
In(t) − In−1(t)

) (3.146)
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with the conditions Ia−1(t) = Ia(t) for the reflecting boundary at n = a and
Ib+1(t) = 0 for the absorbing boundary at n = b. The minus sign expresses
the decrease in probability to be still within the interval [a, b] in real time and
is a consequence of the two time scales in backward processes, dt = −dt.

The probability of leaving the interval [a, b] – the probability of absorption
– within an infinitesimal interval of time [t, t+ dt] is calculated to be

In(t) − In(t+∆t) = − ∂In
∂t

dt ,

and we can now obtain the mean first passage time for the escape from state
n, 〈Tn〉 by integration

〈Tn〉 = −
∫ ∞

0

t
∂In
∂t

dt =

∫ ∞
0

In dt , (3.147)

where the last expression results from integration by parts. Integration of
equation (3.146) yields ∫ ∞

0

− ∂In(t)

∂t
dt = 1

for the l.h.s. since absorption of the particle or escape from the domain is
certain. Integration of the r.h.s. yields mean passage times, and finally we
obtain

1 = w+
n

(
〈Tn〉 − 〈Tn+1〉

)
+ w−n

(
〈Tn〉 − 〈Tn−1〉

)
(3.148)

the equation for the calculation of 〈Tn〉. The boundary conditions are:
〈Ta−1〉 = 〈Ta〉 and 〈Tb+1〉 = 0.

The solution of equation (3.148) for 〈Tn〉 is facilitated by the introduction
of new variables Sn and auxiliary functions ϕn:

Sn =
〈Tn+1〉 − 〈Tn〉

ϕn
, n ∈ [a, b] and

ϕn =

n∏
m=a+1

w−m
w+
m
, n ∈ [a+ 1, b] with ϕa = 1 ,

and in the new variables equation (3.148) takes on the form

−1 = w+
n φn

(
Sn − Sn−1

)
,

which allows for deriving a solution for the new variables

Sk = −
k∑

m=a

1

w+
m ϕm

.
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Fig. 3.27 Mean first passage times of a single-step birth-and-death pro-
cess. Mean first passage times are computed from equation(3.150). In order to be
able to compare the results for different sizes of the interval [a, b] the interval is are
normalized: a = 0 and b = 1, or ν = (n − a)/(b − a). Computed mean first passage
times are scaled by a factor (N2κ)−1 with N = b − a + 1. The values for N chosen
in the computations and the color code are: 4 (blue), 6 (violet), 10 (red), 20 (yellow),
50 (green), and 1000 (black).

From ϕkSk = 〈Tk+1〉 − 〈Tk〉 we obtain by means of the telescopic sum from
k = n to k = b

b∑
k=n

〈Tk+1〉 − 〈Tk〉 = 〈Tn+1〉 − 〈Tn〉 + 〈Tn+2〉 − 〈Tn+1〉 + . . . + 〈Tb+1〉 − 〈Tb〉 =

= −〈Tn〉 ,

because of the boundary condition 〈Tb+1〉 = 0, and we obtain the desired
result

〈Tn〉 =

b∑
k=n

ϕk

k∑
m=a

1

w+
m ϕm

=
b∑

k=n

1

w+
k P̄k

k∑
m=a

P̄m , (3.149)

where we have used the stationary probabilities P̄ (3.100) instead of the
functions ϕ to calculate the mean passage times.

For the purpose of illustration we choose a example that yields simple
analytical expressions for the mean first passage times. The simplification is
made with the transition probabilities:

w+
k = w−k = κ ∀ k = 1, . . . , N and w+

0 = κ , w−0 = 0 , w−b+1 = 0 .
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The number of states n in the interval [a, b] with a, b, n ∈ Z is N = b− a+ 1.
Since P̄n = P̄0 follow from (3.100) we obtain by means of the normaliza-
tion condition

∑
n P̄n = 1 the same probability P̄n = 1/N ∀n. Insertion in

equation(3.149) yields the expression

〈Tn〉 =
1

2κ
(b+ n− 2a+ 2)(b− n+ 1) , (3.150)

which has the leading term−n2 in n. Numerical results are given in figure 3.27
and indeed the curves approach a negative quadratic function for large N .

Mean first passage times find widespread applications in chemistry and bi-
ology. Important study cases are the escape from potential traps, for example
classical motion in the double well potential, fixation of alleles in population,
and extinction times. We shall discuss examples in chapters 4 and 5.
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3.4 Stochastic differential equations

The Chapman-Kolmogorov equation had been conceived in order to be able
to model the propagation of probabilities in sample space. An alternative
modeling approach (figure 3.1) starts out from a deterministic description by
means of a difference or differential equation and superimposes a fluctuat-
ing random element. The idea of introducing stochasticity into deterministic
modeling of processes goes back to the beginning of the twentieth century:
In 1900 the French mathematician Louis Bachelier conceived and analyzed
in his thesis the stochastic difference equation

X (tn+1) = X (tn) + µ∆t + σ
√
∆t Wn+1

in order to model the fluctuating prices in the Paris stock exchange. Herein
µ(Xt, t) is a function related to the foreseeable development, σ(Xt, t) describes
the amplitude of the random fluctuations and the Wn’s are independent nor-
mal variables with mean zero and variance one in the sense of Brownian incre-
ments [24]. Remarkable is the fact that Bachelier’s thesis preceded Einstein’s
and von Smoluchowski’s famous works by five and six years, respectively.

The concept of stochastic differential equations is commonly attributed to
the French mathematician Paul Langevin who proposed an equation named
after him that allows for the introduction of random fluctuations into conven-
tional differential equations [271]. The idea was to find a sufficiently simple
approach to model Brownian motion successfully. In its original form the
Langevin equation was written as

m
d2r

dt2 = − γ dr

dt
+ ξ(t) or

dp (t)

dt
= − γ

m
p (t) + ξ(t) . (3.151)

It describes the motion of a Brownian particle of mass m where r(t) and
dr/ dt = v(t) are location and velocity of the particle, respectively. The term
on the l.h.s. is the Newtonian gain in linear momentum p due to the force,
dp/ dt, the first term on the r.h.s. is the loss of momentum due to friction, and
the second term, ξ(t), represents the irregularly fluctuating Brownian random
force. The Langevin equation can be written in terms of the momentum p
and then it takes on the more familiar form. The parameter γ = 6π η r is
the friction coefficient according to Stokes law with η being the viscosity
coefficient of the medium and r the size of the particle. The analogy of (3.151)
to Newton’s equation of motion is evident: The deterministic force, f(x) =
−(∂V/∂x) with V (x) being the potential energy, is replaced by ξ(t).

In figure 3.1 stochastic differential equations were shown as an alterna-
tive to the Chapman-Kolmogorov equation in modeling Markov processes.
As said, the basic difference between the Chapman-Kolmogorov and the
Langevin approach is the object whose time dependence is investigated: The
Langevin equation 3.151 considers a single instant of a particle moving in
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physical 3d-space that is exposed to thermal motion, and the integration
yields a single stochastic trajectory. The Chapman-Kolmogorov equation of
continuous motion leads to a Fokker-Planck equation (3.47), which describes
the migration of a probability density in the same 3d-space where the tra-
jectory is defined. Equivalence of both approaches expresses the fact that a
sample of trajectories of a Langevin equation converges in distribution to the
time dependent probability density of the corresponding Fokker-Planck equa-
tion in the limit of infinitely large samples. The equivalence of the Langevin
and the Chapman-Kolmogorov approach is discussed in more detail in sec-
tion 3.4.4. In case an analytical solution to a stochastic differential equation
is available, the solution can be used to calculate moments of the probabil-
ity distribution of X (t) and their time-dependence (section 3.4.5), especially
mean and variance, which in practice are often sufficient for the description
of a process.

In the literature one can find an enormous variety of detailed treatises of
stochastic differential equations. We mention here the monograph [16] and
two books that are available on the internet: [320, 352]. The forthcoming
short sketch of stochastic differential equations follows in essence the line of
thought chosen by Crispin Gardiner [157, pp.77-96].

3.4.1 Mathematics of stochastic differential equations

Generalization of equation (3.151) from Brownian motion to an arbitrary
stochastic process yields

dx

dt
= a(x, t) + b(x, t) ξ(t) , (3.152)

where x is the variable under consideration and ξ(t) is an irregularly fluctu-
ating term often called noise. If the fluctuating term is independent of x, one
speaks of additive noise. The two functions a(x, t) and b(x, t) are defined by
the process to be investigated and the letters are chosen in order to point at
an analogy to Fokker-Planck equations (3.47).

The theory of stochastic processes requires statistical independence for
ξ(t1) and ξ(t2) if and only if t1 6= t2. Furthermore we assume 〈ξ(t)〉 = 0
without loosing generality since any drift term can be absorbed in a(x, t),
and encapsulate all requirements in an irregularity condition

〈ξ(t1) ξ(t2)〉 = δ(t1 − t2) . (3.153)

The Dirac δ-function diverges as |t1 − t2| → 0 this has the consequence that

〈ξ(t) ξ(t)〉 and the variance var
(
ξ(t)

)
= 〈ξ(t) ξ(t)〉 − 〈ξ(t)〉2 are infinite for

t1 = t2 = t.
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In order to be able to search for solutions of the differential equation (3.152)
we require the existence of the integral

ω(t) =

∫ t

0

ξ(t) dt .

If ω(t) is a continuous function of time it has the Markov property, which
can be proven by partitioning the integral

ω(t2) = ω(t1) +

∫ t2

t1

ξ(τ2) dτ2 =

∫ t1

0

ξ(τ1) dτ1 +

∫ t2

t1

ξ(τ2) dτ2 =

= lim
ε→0

(∫ t1−ε

0

ξ(τ1) dτ1

)
+

∫ t2

t1

ξ(τ2) dτ2

and hence for every ε > 0 the ξ(τ1) in the first integral is independent of
the ξ(τ2) in the second integral. By continuity ω(t1) and ω(t2) − ω(t1) are
statistically independent in the limit ε → 0, and further ω(t2) − ω(t1) is
independent of all ω(ϑ) with ϑ < t1. In other words, ω(t2) is completely
determined in probabilistic terms by the value ω(t1) and no information on
past values is required: ω(t) is Markovian. ut

From the experience gained with the derivation of the differential Chapman-
Kolmogorov equation (3.46) and the postulated continuity of ω(t), we conjec-
ture the existence a Fokker-Planck equation that describes ω(t). Computation
of the drift and diffusion term is indeed straightforward [157, pp. 78,79] and
yields A(t) = 0 and B(t) = 1:

∂p (ω, t)

∂t
=

1

2

∂2

∂ω2
p (ω, t) with p (ω, t0) = δ(ω − ω0) . (3.55)

Accordingly the Fokker-Planck equation describing the noise term in the
Langevin equation is that of the Wiener process and we identify∫ t

0

ξ(τ) dτ = ω(t) = w(t) .

This innocent looking equation confronts us with a dilemma: As we know from
the discussion of the Wiener process the solution of equation (3.55) w(t) is
continuous but nowhere differentiable and this has the consequence that nei-
ther dw(t)/ dt nor ξ(t) nor the Langevin equation (3.151) nor the stochastic
differential equation (3.152) exist in strict mathematical terms. Accessible to
consistent interpretation in this rigorous sense is only the integral equation

x(t) − x(0) =

∫ t

0

a
(
x(τ), τ

)
dτ +

∫ t

0

b
(
x(τ), τ

)
ξ(τ) dτ . (3.154)

The relation to the Wiener process becomes more visible by writing
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dw(t) ≡ w(t+ dt) − w(t) = ξ(t) dt ,

and insertion into (3.154) yields the correct formulation:

x(t) − x(0) =

∫ t

0

a
(
x(τ), τ

)
dτ +

∫ t

0

b
(
x(τ), τ

)
dw(τ) . (3.155)

The first integral is a conventional Riemann integral or a Riemann-Stieltjes in-
tegral if the function a

(
x(τ), τ

)
contain steps, the second integral is a stochas-

tic Stieltjes integral the evaluation of which will be discussed in the next sec-
tion 3.4.2. In differential form we obtain for the formulation of the stochastic
differential equation, which is compatible with standard mathematics:

dx = a
(
x(t), t

)
dt + b

(
x(t), t

)
dw(t) . (3.156)

The nature of the fluctuations is implicitly given by the differential Wiener
process dw(t): The probability density is Gaussian corresponding to white
noise. White noise is an idealization and provided more information on the
physical background of the fluctuations is available dw(t) can be readily re-
placed by a more realistic noise term.

3.4.2 Stochastic integrals

A stochastic integral requires additional definitions compared to ordinary
Riemann integration. We shall explain this rather unexpected fact and sketch
some practical recipes for integration (for more details see [376]).

Definition of the stochastic integral. Let G(t) be an arbitrary function of time
and w(t) the Wiener process, then the stochastic integral I(t, t0) is defined
as a Riemann-Stieltjes integral (1.53) of the form

I(t, t0) =

∫ t

t0

G(τ) dw(τ) . (3.157)

The integral is partitioned into n subintervals, which are separated by the
points ti: t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ t (figure 3.28). Intermediate points
τi, which will be used for the evaluation of the function G(τi), are defined
within each of the subintervals ti−1 ≤ τi ≤ ti and – as it will be shown below
– the value of the integral depends on the position chosen for τi within the
subintervals.

The stochastic integral
∫ t

0
G(τ) dw(τ) is defined as the limit of the partial

sums

Sn =

n∑
i=1

G(τi)
(
w(ti)− w(ti−1)

)
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Fig. 3.28 Stochastic integral. The time interval [t0, t] is partitioned into n seg-
ments and an intermediate point τi is defined in each segment: ti−1 ≤ τi ≤ ti.

and it is not difficult to recognize that the integral is different for different
choices of the intermediate point τi. As an important example we consider
the case G(t) = w(t):

〈Sn〉 =

〈
n∑
i=1

w(τi)
(
w(ti)− w(ti−1)

)〉
=

=

n∑
i=1

〈w(τi)w(ti)〉 −
n∑
i=1

〈w(τi)w(ti−1)〉 =

=

n∑
i=1

(
min(τi, ti) − min(τi, ti−1)

)
=

n∑
i=1

(τi − ti−1) .

As indicated in figure 3.28 we choose identical intermediate positions τ for
all subintervals ’i’

τi = α ti + (1− α) ti−1 with 0 ≤ α ≤ 1 (3.158)

and obtain for the telescopic sum49

〈Sn〉 =

n∑
i=1

(ti − ti−1)α = (t− t0)α .

49 In a telescopic sum all terms except the first and the last summand cancel.
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Accordingly, the mean value of the integral may adopt any value between
zero and (t− t0) depending on the choice of the position of the intermediate
points as expressed by the parameter α. Out of possible choices two are
popular leading to the Itō and the Stratonovich stochastic integral.

Itō stochastic integral. The most frequently used and most convenient defini-
tion of the stochastic integral is due to the Japanese mathematician Kiyoshi
Itō [226, 227]. Semimartingales (section 3.1.3.2), in particular local martin-
gales, are the most common stochastic processes that allow for straightfor-
ward application of Itō’s formulation of stochastic calculus.

The choice α = 0 or τi = ti−1 defines the Itō stochastic integral of a
function G(t):∫ t

t0

G(τ) dw(τ) = lim
n→∞

n∑
i=1

G(ti−1)
(
w(ti) − w(ti−1)

)
, (3.159)

where the limit is a mean square limit (1.47). As an example we compute the

previously discussed integral
∫ t
t0
w(τ) dw(τ) and find for the sum Sn:

Sn =

n∑
i=1

w(ti−1)
(
w(ti) − w(ti−1)

)
≡

n∑
i=1

w(ti−1)∆w(ti) =

=
1

2

n∑
i=1

((
w(ti−1) +∆w(ti)

)2 − w(ti−1)2 − ∆w(ti)
2
)

=

=
1

2

(
w(t)2 − w(t0)2

)
− 1

2

n∑
i=1

∆w(t2i ) ,

where the second line results from: 2
∑
ab =

∑
(a+ b)2 −

∑
a2 −

∑
b2. It is

now necessary to calculate the mean square limit of the second term in the
last line of the equation. For a finite sum we have the expectation values〈

n∑
i=1

∆w(ti)
2

〉
=
∑
i

〈(
w(ti)−w(ti−1)

)2〉
=
∑
i

(ti− ti−1) = t − t0 , (3.160)

where the second equality results from the Gaussian nature of the probability
density (3.61):50

〈(
w(ti)− w(tj)

)2〉
=
〈
w(ti)

2
〉
−
〈
w(tj)

2
〉

= var
(
w(ti)

)
− var

(
w(tj)

)
= ti − tj .

Next we calculate the expectation of the mean square deviation in (3.160):

50 For the derivation of this relation we used the fact that the stochastic variables
of the Wiener process at different times are uncorrelated, 〈w(ti)w(tj)〉 = 0 and the
variance is var

(
w(ti)

)
= 〈w(ti)2〉 − 〈w(ti)〉2 = 〈w(ti)2〉 − µ2.
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i=1

(
w(ti)− w(ti−1)

)2 − (t− t0)
)2〉

=

=

〈∑
i

(
w(ti)− w(ti−1)

)4
+ 2

∑
i<j

(
w(ti)− w(ti−1)

)2(
w(tj)− w(tj−1)

)2−
− 2(t− t0)

∑
i

(
w(ti)− w(ti−1)

)2
+ (t− t0)2

〉
.

We start the evaluation of the individual terms in the second line: According
to (2.46) the fourth moment of a Gaussian variable can be expressed in terms
of the variance〈(

w(ti)− w(ti−1)
)4〉

= 3
〈(
w(ti)− w(ti−1)

)2〉2
= 3 (ti − ti−1)2

Making use again of the independence of Gaussian variables we find〈(
w(ti)− w(ti−1)

)2(
w(tj)− w(tj−1)

)2〉
= (ti − ti−1)(tj − tj−1) .

Insertion into the expectation value eventually yields:〈( n∑
i=1

(
w(ti)− w(ti−1)

)2 − (t− t0)
)2〉

=

= 2
∑
i

(ti − ti−1)2 +

(∑
i

(ti − ti−1)− (t− t0)

)(∑
j

(tj − tj−1)− (t− t0)

)
=

= 2
∑
i

(ti − ti−1)2 → 0 as n→∞ ,

and, limn→∞
∑
i

(
w(ti)− w(ti−1)

)2
= t− t0 in the mean square limit. ut

The Itō stochastic integral of the Wiener process finally yields:∫ t

t0

w(τ) dw(τ) =
1

2

(
w(t)2 − w(t0)2 − (t− t0)

)
. (3.161)

Apparently the Itō integral differs from the conventional Riemann-Stieltjes
integral where the term t − t0 is absent. An illustrative explanation for this
unusual behavior of the limit of the sum Sn is the fact that the quantity
|w(t + ∆t) − w(t)| is almost always of the order

√
t and hence – unlike in

ordinary integration – the terms of second order in ∆w(t) do not vanish on
taking the limit.

We remark that the expectation value of the integral (3.161) vanishes,〈∫ t

t0

w(τ) dw(τ)

〉
=

1

2

(〈
w(t)2

〉
−
〈
w(t0)2

〉
− (t− t0)

)
= 0 , (3.162)

since the intermediate terms 〈w(ti−1)∆w(ti)〉 vanish because ∆w(ti) and
w(ti−1) are statistically independent.

Nonanticipating functions. A stochastic process X (t) – as already mentioned
in section 3.1.3.2 – is adapted or nonanticipating if and only if for every
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trajectory and for every time t, X (t) is known at time t and not before.51

In other words, a nonanticipating or adapted process does not look into the
future, or a function G(t) is nonanticipating or adapted to the process dw(t) if
the value of G(t) at time t depends only on the random increments dw(τ) for
t ≤ τ . Here we shall require this property in order to be able to solve certain
classes of Itō stochastic integrals, which can be expressed as functions or
functionals52 of the Wiener process w(t) by means of a stochastic differential
or integral equation of the form

x(t) − x(t0) =

∫ t

t0

a
(
x(τ), τ

)
dτ +

∫ t

t0

b
(
x(τ), τ

)
dw(τ) . (3.155)

A function G(t) is nonanticipating with respect to t if G(t) is probabilistically
independent of

(
w(s)−w(t)

)
for all s and t with s > t. In other words, G(t)

is independent of the behavior of the Wiener process in the future s > t.
This is a natural and physically reasonable requirement for a solution of
equation (3.155’) because it boils down to the condition that x(t) involves
w(τ) only for τ ≤ t. Examples of important nonanticipating functions are

(i) w(t) ,

(ii)
∫ t
t0
F
(
w(τ)

)
dτ ,

(iii)
∫ t
t0
F
(
w(τ)

)
dw(τ) ,

(iv)
∫ t
t0
G(τ) dτ , when G(t) itself is nonanticipating, and

(v)
∫ t
t0
G(τ) dw(τ), when G(t) itself is nonanticipating.

The items (iii) and (v) depend on the fact that in Itō’s version the stochastic
integral is defined as the limit of a sequence in which G(τ) and w(τ) are
involved exclusively for τ < t.

Three reasons for the specific discussion of nonanticipating functions are
important:
1. Results can be derived that are only valid for nonanticipating functions.
2. Nonanticipating functions occur naturally in situations, in which causality
can be expected in the sense that the future cannot affect the presence.
3. The definition of stochastic differential equations requires nonanticipating
functions.
In conventional calculus we never encounter situations in which the future
acts back on the presence or even on the past.

Several relations are useful and required in Itō calculus:

51 Every deterministic process is nonanticipating: In order to calculate the value
G(t+ dt) of a function t→ G(t) no value G(τ) with τ > t is required.
52 A function assigns a value to the argument of the function, x0 → f(x0) whereas a
functional relates a function to the value of a function, f → f(x0).
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dw(t)2 = dt , (3.163a)

dw(t)2+n = 0 for n > 0 , (3.163b)

dw(t) dt = 0 , (3.163c)

∫ t

t0

w(τ)n dw(τ) =
1

n+ 1

(
w(t)n+1 − w(t0)n+1

)
−
n

2

∫ t

t0

w(τ)n−1 dτ ,

(3.163d)

df
(
w(t), t

)
=

(
∂f

∂t
+

1

2

∂2f

∂w2

)
dt +

∂f

∂w
dw(t) , (3.163e)〈∫ t

t0

G(τ) dw(τ)

〉
= 0 , and (3.163f)

〈∫ t

t0

G(τ) dw(τ)

∫ t

t0

H(τ) dw(τ)

〉
=

∫ t

t0

〈G(τ)H(τ)〉 dτ . (3.163g)

The expressions are easier to memorize when we assign a dimension
[t1/2] to w(t) and discard all terms of order t1+n with n > 0.

Stratonovich stochastic integral. The value of a stochastic integral depends
on the particular choice of the intermediate points, τi. The Russian physi-
cist and engineer Ruslan Leontevich Stratonovich [417] and the American
mathematician Donald LeRoy Fisk [144] developed simultaneously an alter-
native approach to Itō’s stochastic integration, which is called Stratonovich
integration:53

S

∫ t

t0

G(τ) dw(τ)

The intermediate points τi are chosen such that the unconventional term in
the integral of w(t), (t − t0) vanishes. For the purpose of illustration the
integrand is chosen here again to be G(t) = w(t), but now it is evaluated
precisely in the middle of the interval, namely at time τi = (ti − ti−1)/2.
Then, the mean square limit converges to the expression for the Stratonovich
integral over w(t)

S

∫ t

t0

w(τ) dw(τ) = lim
n→∞

n∑
i=1

w(ti) + w(ti−1)

2

(
w(ti)− w(ti−1)

)
=

=
1

2

(
w(t)2 − w(t0)2

)
.

(3.164)

53 In order to distinguish the two versions of stochastic integrals we use the symbol
∫ t
t0

for the Itō integral and s
∫ t
t0

for the Stratonovich integral [231, p. 86]. The distinction

from ordinary integrals is automatically provided by the differential dw.
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In contrast to the Itō integrals Stratonovich integration obeys the rules of
conventional calculus but it is not nonanticipating, because the value of the
function w

(
(ti−1 + ti)/2

)
is already required at time ti−1.

We compare here the derivation of both integral, Stratonovich and Itō [231,
pp. 85-89], because additional insights are gained into the nature of stochastic
processes. The starting point is the general Itō difference equation

∆x = F (x, t)∆t + G(x, t)∆w , (3.165)

where F (x, t) and G(x, t) are functions defining drift and diffusion of the
process under consideration, ∆t and ∆w are the time interval and the random
increment, respectively. Next we choose equal time intervals as in figure 3.28
and have tk = k∆t + t0 with xk = x(tk) and ∆xk−1 = xk − xk−1 and
∆wk−1 = wk − wk−1 where the starting point of the integration is: t0 = 0,
x(0) = x0, ∆x0 = x1 − x0 and ∆w0 = w1 − w0 being the first random
increment. Equation (3.165) takes on the precise form

∆xk−1 = F (xk−1, tk−1)∆t + G(xk−1, tk−1)∆w(tk−1) , k = 1, . . . , n ,

Now we choose the starting point t0 = 0 and x(0) = x0, and find the general
solution of the difference equation at t = tn:

x(tn) = xn = x0 +

n−1∑
k=0

F (xk, tk)∆t +

n−1∑
k=0

G(xk, tk)∆w(tk) . (3.166)

Equation (3.166) represents the explicit formula for the Cauchy-Euler inte-
gration (figure 3.29) and is commonly used in numerical SDE integration.

We use it here as basis for the explicit comparison of the Itō integral∫ t

0

G(x, t) dw ≡ lim
n→∞

n−1∑
k=0

G(xk, tk)∆w(tk) , (3.159’)

and the Stratonovich integral

S

∫ t

0

G
(
x, t) dw ≡ lim

n→∞

n−1∑
k=0

G
(xk+1 + xk

2
, tk

)
∆w(tk) , (3.167)

and calculate the relationship between them. First we expand the function
G(x, t) in the Stratonovich analogue of the noise term in equation (3.166)

G
(xk+1 + xk

2
, tk

)
∆w(tk) = G

(
xk +

∆xk
2

, tk

)
∆w(tk) ,

in a power series around the point (xn, tn), and simplify the notation by
defining Fn ≡ F (xn, tn) and Gn ≡ G(xn, tn) for the expansion,
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G
(
xk +

∆xk
2

, tk

)
= Gn +

∂Gn
∂x

∆xn
2

+
1

2

∂2Gn
∂x2

(∆xn
2

)2

+ . . . .

Next we insert ∆xn = Fn∆t+Gn∆w(tn), recall that ∆w(t)2 = ∆t, and find
by omitting the higher order terms, because they will not contribute since all
differences with higher powers, (∆t)γ with γ > 1 and

(
∆w(t)

)α
with α > 2

(3.163), vanish in the continuum limits ∆t→ dt and ∆w → dw(t)

G
(
xk +

∆xk
2

, tk

)
= Gn +

(
Fn
2

∂Gn
∂x

+
G2
n

4

∂2Gn
∂x2

)
∆t+

Gn
2

∂Gn
∂x

∆w(tn) .

Next we insert this result into the discrete sum for the Stratonovich inte-
gral (3.167), omit the term with ∆t∆w since ∆t∆w → dt dw(t) = 0, and
find

n−1∑
k=0

G
(
xk +

∆xk
2

, tk

)
∆w(tk) =

n−1∑
k=0

Gk∆w(tk) +

n−1∑
k=0

Gk
2

∂Gk
∂x

∆t .

Taking the continuum limit we obtain the desired relation between Itō and
Stratonovich integrals

S

∫ t

0

G(x, t) dw(t) =

∫ t

0

G(x, t) dw(t) +
1

2

∫ t

0

∂G(x, t)

∂x
G(x, t) dt . (3.168)

The Stratonovich integral is equal to the Itō integral plus an additional con-
tribution that can be assimilated into the drift term.

In summary we derived two integration methods for the stochastic dif-
ferential equation

dx = F (x, t) dt + G(x, t) dw(t) : (3.169)

(i) the Itō method yielding

x(t) = x(0) +

∫ t

0

F (x, t) dt +

∫ t

0

G(x, t) dw(t) and

(ii) the Stratonovich method resulting in a different solution, which we
denote by z(t) for the purpose of distinction

z(t) = z(0) +

∫ t

0

F (z, t) dt + S

∫ t

0

G(z, t) dw(t) =

= z(0) +

∫ t

0

(
F (z, t) +

G(z, t)

2

∂G(z, t)

∂z

)
dt +

∫ t

0

G(z, t) dw(t) .
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On the other hand we would obtain the same solution z(t) if we applied
the Itō calculus to the stochastic differential equation

dz =

(
F (z, t) +

G(z, t)

2

∂G(z, t)

∂z

)
dt + G(z, t) dw(t) . (3.170)

Since the Stratonovich calculus is much more involved than the Itō calcu-
lus, we can readily see a strategy for obtaining Stratonovich solutions: Use
equation (3.170) and derive the solution by means of Itō calculus. It is worth
mentioning that a stand-alone Stratonovich integral has no relationship to a
stand-alone Itō integral or, in other words, there is no connection between
the two classes of integrals for an arbitrary function G(t). Only when the
stochastic differential equation is known to which the two integrals refer, a
formula can be derived – as we did here – that relates the Itō integral to the
Stratonovich integral.

At the end of this section we are left with the dilemma that the Itō inte-
gral is mathematically and technically most satisfactory but the more natural
choice would be the Stratonovich integral that enables the usage of conven-
tional calculus. In addition, the noise term in the Stratonovich interpretation
can be real noise with finite correlation time whereas the idealized white noise
required as reference in Itō’s formalism gives rise to divergence of variances
and correlations. The Stratonovich and not the Itō calculus, for example, is
adequate for dealing with multiplicative noise in physical systems.

3.4.3 Integration of stochastic differential equations

A stochastic variable x(t) is consistent with an Itō stochastic differential
equation (SDE)

dx(t) = a
(
x(t), t

)
dt + b

(
x(t), t

)
dw(t) (3.156)

if for all t and t0 the integral equation (3.155) is fulfilled. Time is ordered,

t0 < t1 < t2 < · · · < tn = t ,

and the time axis may be assumed to be split into – equal or unequal –
increments, ∆ti = ti+1 − ti. We visualize a particular solution curve of the
SDE for the initial condition x(t0) = x0 in the spirit of a discretized version

xi+1 = xi + a(xi, ti)∆ti + b(xi, ti)∆w(ti) , (3.155’)

wherein xi = x(ti), ∆ti = ti+1−ti, and ∆w(ti) = w(ti+1)−w(ti). Figure 3.29
illustrates the partitioning of the stochastic process into a deterministic drift
component, which is the discretized solution curve of the ODE obtained by
setting b

(
x(t), t

)
= 0 in equation (3.155’), and a stochastic diffusion compo-
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Fig. 3.29 Stochastic integration. The figure sketches the Cauchy-Euler proce-
dure for the construction of an approximate solution of the stochastic differential
equation (3.152’). The stochastic process consists of two different components: (i) the
drift term, which is the solution of the ODE in absence of diffusion (red; b(xi, ti) = 0)
and (ii) the diffusion term representing a Wiener process w(t) (blue; a(xi, ti) = 0).
The superposition of the two terms gives the stochastic process (black). The two
lower plots show the two components in separation. The increments of the Wiener
process ∆w(ti) are uncorrelated and independent. An approximation to a particular
solution of the stochastic process is constructed by letting the mesh size approach
zero, lim∆t→ 0.

nent, which is a Wiener process w(t) that is obtained by setting a
(
x(t), t

)
= 0

in the SDE. The increment of the Wiener process, ∆w(ti), is independent of
xi provided (i) x0 is independent of all w(t)−w(t0) for t > t0 and (ii) a(x, t) is
a nonanticipating function of t for any fixed x. Condition (i) is tantamount to
the requirement that any random initial condition must be nonanticipating.

In the construction of approximate solutions x(t) in discretized form the
value xi = x(ti) is always independent of ∆w(tj) for j ≥ i as we verify easily
by inspection of (3.155’) or considering figure 3.29:

xi = xi−1 + a(xi−1, ti−1)∆ti−1 + b(xi−1, ti−1)∆w(ti−1) .

A particular solution to equation (3.156) is derived through performing the
limit of vanishing mesh size: lim∆t→ 0, which implies limn→∞. Unique-
ness of solutions refers to individual trajectories in the sense that a particular
solution is uniquely obtained for a given sample functionWk(t) of the Wiener
Process w(t). The existence of a solution, however, is defined for the whole
ensemble of sample functions: A solution of equation (3.156) exists if a partic-
ular solution exists with probability one for any choice of a sample function
of the Wiener processWk(t)∀ k ∈ N>0. Existence and uniqueness of a nonan-
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ticipating solution x(t) of an Itō stochastic differential equations within the
time interval [t0, t] can be proven for two conditions [16, pp.100-115]:

(i) Lipschitz condition: there exists a Lipschitz constant L > 0 such that

|a(x, τ)− a(y, t)| + |b(x, t)− b(y, t)| ≤ L |x− y|

for all x and y and t ∈ [t0, t], and

(ii) linear growth condition: a κ exists such that for all t ∈ [t0, t]

|a(x, t)|2 + |b(x, t)|2 ≤ κ2 (1 + |x|2) .

The Lipschitz condition named after the German mathematician Rudolf Lip-
schitz ensures existence and uniqueness of the solution and is almost always
fulfilled for stochastic differential equations in practice, because in essence it
is a smoothness condition. The linear growth condition guarantees bounded-
ness of the solution (For details see, for example, [352, pp. 68-71]. The growth
condition may be violated in abstract model equations, for example, when
a solution explodes and progresses to infinity at finite time. A very simplex
example is given by

dx

dt
= x2 with x(0) = 1 =⇒ x(t) =

1

1− t
for 0 ≤ t < 1 ,

which is unbounded at t = 1 and has no global solution defined for all values
of t (see section 5.1.3) or in other words, the value of x becomes infinite at
some finite time. We shall encounter such situations in chapter 5. As a matter
of fact this is a typical model behavior since no population or spatial variable
can approach infinity at finite times in a finite world.

Several other properties known to apply to solutions of ordinary differential
equations can be shown without major modifications to apply to SDE’s too:
Continuity in the dependence on parameters and boundary conditions as well
as the Markov property (for proofs we refer to [16]).

3.4.4 Some properties of stochastic calculus

Changing variables is a technical issue but important for applications and
boring when one makes errors. Since Itō calculus is different from ordinary
calculus, we expect differences also in the rules of substituting variables. In
order to see the general effect of substitutions in Itō’s stochastic differen-
tial equations we consider an arbitrary function, x(t) ⇒ f

(
x(t)

)
, and calcu-

late dx(t) ⇒ df
(
x(t)

)
. The major difference compared to ordinary calculus

comes from the necessity to extend all expansions up to second order because
dw(t)2 = dt and hence ∆w(t)2 does not approach zero faster than ∆t in
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the limit ∆t → dt. We start with the simpler case of a single variable and
afterwards introduce the multidimensional situation.

Change of variables. Starting out from the SDE dx = a(x, t) dt + b(x, t)dw(t)
and making use of our previous results on nonanticipating functions we ex-
pand df

(
x(t)

)
up to second order but retain only the term in dw(t), because

by the Itō rules we have dt2 = 0 and dw(t) dt = 0 (and write x instead x(t)):

df(x) = f
(
x+ dx) − f

(
x
)

=

=
∂f(x)

∂x
dx +

1

2

∂2f(x)

∂x2
dx2 + · · · =

=
∂f(x)

∂x

(
a(x, t) dt + b(x, t) dw(t)

)
+

1

2

∂2f(x)

∂x2
b(x, t)2 dw(t)2 ,

(3.171)

where all terms higher than second order have been neglected. According
to Itō calculus (3.163) we introduce dw(t)2 = dt into the last line of this
equation and obtain Itō’s formula:

df
(
x(t)

)
=
(
a
(
x(t), t

) ∂f(x(t)
)

∂x
+

1

2
b
(
x(t), t

)2 ∂2f
(
x(t)

∂x2

)
dt+

+ b
(
x(t), t

) ∂(x(t)
)

∂x
dw(t) .

(3.172)

It is worth noticing that Itō’s formula and ordinary calculus lead to different

results unless f(x) is linear in x(t) and accordingly ∂2f(x)
∂x2 vanishes.

As an exercise we suggest to calculate the substitution by the function
f(x) = x2. The result is

d(x2) =
(
2x a(x, t) + b(x, t)2

)
dt + 2 b(x, t) dw(t) ,

which is, for example, useful to calculate the time derivative of the variance:
d var

(
x(t)

)
/ dt = d

〈
x2
〉
/dt + 2 〈x〉 d 〈x〉/ dt.

The application of Itō’s formalism to many dimensions, in general, becomes
very complicated. The most straightforward simplification is the extension of
Itō calculus to the multivariate case by making use of the rule that dw(t) is
an infinitesimal of order t1/2. Then we can show that the following relations
hold for an n-dimensional Wiener process w(t) =

(
w1(t), w2(t), . . . , wn(t)

)
:

dwi(t) dwj(t) = δij dt , (3.173a)

dwi(t)
2+N = 0 , (N > 0) , (3.173b)

dwi(t) dt = 0 , (3.173c)

dt1+N = 0 , (N > 0) . (3.173d)

The first relation is a consequence of the independence of increments of
Wiener processes along different coordinate axes, dwi(t) and dwj(t). Making
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use of the drift vector A(x, t) and the diffusion matrix B(x, t) the multidi-
mensional stochastic differential equation

dx = A(x, t) dt + B(x, t) dw(t) . (3.174)

Following Itō’s procedure we obtain for an arbitrary well-behaved function
f
(
x(t)

)
the result

df(x) =

(∑
i

Ai(x, t)
∂

∂xi
f(x) +

+
1

2

∑
i,j

(
B(x, t) · B′(x, t)

)
ij

∂2

∂xi∂xj
f(x)

)
dt+

+
∑
i,j

Bij
∂

∂xi
f(x) dwj(t) .

(3.175)

Again we observe the additional term introduced through the definition of
the Itō integral.

Fokker-Planck equations and SDEs. The expectation value of an arbitrary
function f

(
x(t)

)
can be calculated by means of Itō’s formula. We begin with

a single variable:〈
df
(
x(t)

)〉
dt

=

〈
df
(
x(t)

)
dt

〉
=

d

dt

〈
f
(
x(t)

)〉
=

=

〈
a
(
x(t), t

)∂f(x(t)
)

∂x
+

1

2
b
(
x(t), t

)∂2f
(
x(t)

)
∂x2

〉
.

The stochastic variable X (t) has the conditional probability density p (x, t|x0, t0)
and hence we can compute the expectation value by integration – again we
simplify notation f(x) ≡ f

(
x(t)

)
and p (x, t) ≡ p (x, t|x0, t0):

d

dt
〈f(x)〉 =

∫
dx f(x)

∂

∂t
p (x, t) =

=

∫
dx

(
a(x, t)

∂f(x)

∂x
+

1

2
b(x, t)2 ∂

2f(x)

∂x2

)
p (x, t)

The further derivation follows the procedure that is used in the of the differ-
ential Chapman-Kolmogorov equation [157, 48-51] – in particular integration
by parts and neglect of surface terms – and we obtain

∫
dx f(x)

∂

∂t
p (x, t) =

∫
dx f(x)

(
−
∂

∂x

(
A(x, t) p (x, t)

)
+

1

2

∂2

∂x2

(
B(x, t)2 p (x, t)

))
.
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Since the choice of a function f(x) has been arbitrary we can drop it now
and finally obtain a Fokker-Planck equation

∂p (x, t|x0, t0)

∂t
= − ∂

∂x

(
A(x, t) p (x, t|x0, t0)

)
+

+
1

2

∂2

∂x2

(
B(x, t)2 p (x, t|x0, t0)

)
.

(3.176)

The probability density p (x, t) thus obeys an equation that is completely
equivalent to the equation for a diffusion process characterized by a drift co-
efficient a(x, t) ≡ A(x, t) and a diffusion coefficient b(x, t) ≡ B(x, t) as derived
from the Chapman-Kolmogorov equation. Hence, Itō’s stochastic differential
equation provides indeed a local approximation to a drift and diffusion pro-
cess in probability space. The extension to the multidimensional case based
on Itō’s formula is straightforward, and we obtain for the conditional proba-
bility density p (x, t|x0, t0) ≡ p the following Fokker-Planck equation:

∂p

∂t
= −

∑
i

∂

∂xi

(
Ai(x, t) p

)
+

1

2

∑
i,j

∂

∂xi

∂

∂xj

((
B(x, t) · B′(x, t)

)
i,j

p

)
. (3.177)

Here, we derive one additional property, which is relevant in practice. The
stochastic differential equation,

dx = A(x, t) dt + B(x, t) dw(t) , (3.174’)

is mapped into a Fokker-Planck equation that depends only on the matrix
product B ·B′ and accordingly, the same Fokker-Planck equation arises from
all matrices B that give rise to the same product B · B′. Thus, the Fokker-
Planck equation is invariant to a replacement B⇒ B ·S when S is an orthog-
onal matrix: S · S′ = I. If S fulfils the orthogonality relation it may depend
on x(t), but for the stochastic handling it has to be nonanticipating.

Eventually we proof the redundancy directly from the SDE and define a
transformed Wiener process

dv(t) = S(t) dw(t) .

The random vector v(t) is a normalized linear combination of Gaussian vari-
ables dwi(t) and S(t) in nonanticipating, and accordingly, dv(t) is itself Gaus-
sian with the same correlation matrix. Averages dwi(t) to various powers and
taken at different times factorize and the same is true for the dvi(t). Accord-
ingly, the infinitesimal elements dv(t) are increments of a Wiener process:
The orthogonal transformation mixes trajectories without, however, chang-
ing the stochastic nature of the process, and equation (3.174) can be rewritten
and yields
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dx = A(x, t) dt + B(x, t) S′(t) · S(t) dw(t) =

= A(x, t) dt + B(x, t) S′(t) · dv(t) =

= A(x, t) dt + B(x, t) S′(t) · dw(t) ,

since v(t) is as good a Wiener process as w(t) is, and both SDEs give rise to
the same Fokker-Planck equation. ut

3.4.5 Examples of stochastic differential equations

In order to show how stochastic differential equations can be handled in prac-
tice we show how to calculate first the expectation value and the variance of
stochastic differential equations and then consider two cases: (i) the Ornstein-
Uhlenbeck process that has been discussed as an example of a process that
can be handled easily with a Fokker-Planck equation in section 3.2.2.3, and
(ii) the general linear stochastic differential equations.

The Ornstein-Uhlenbeck process. The general SDE for the Ornstein-Uhlenbeck
process has been given in (3.81). Without loosing generality but simplifying
the solution we shift the long-time expectation value to the origin, µ = 0:

dx = −k x dt + σ dw(t) . (3.81’)

The solution of the deterministic equation is simply and exponential decay
or relaxation to the long-time value limt→∞ x(t) = 0,

dx = −k x dt and x(t) = x(0) e−kt ,

and we make a substitution that compensates for the exponential decay

x(t) = y(t) e−kt and y(t) = x(t) ekt with y(0) = x(0) .

Now we expand dy up to second order

dy = dx ekt+xd(ekt)+(dx)2+dx d(ekt)+
(
d(ekt)

)2
with d

(
ekt
)

= kekt dt .

All second order terms vanish because the expansion contains no term with
dw(t)2 and we find by integration,

dy = σ ekt dw(t) and y(t) = y(0) + σ

∫ t

0

ekτ dw(τ) ,

and resubstitution yields the solution

x(t) = x(0) e−kt + σ

∫ t

0

e−k(t−τ) dw(τ) . (3.178)
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The calculation of expectation value and variance is straightforward:

〈x(t)〉 =

〈
x(0) e−kt + σ

∫ t

0

e−k(t−τ) dw(τ)

〉
= 〈x(0)〉 e−kt , (3.179a)

and with 〈
x(t)2

〉
=

〈(
x(0) e−kt + σ

∫ t

0

e−k(t−τ) dw(τ)
)2
〉

=

=
〈
x(0)2

〉
e−2kt +

σ2

2k

(
1− e−2kt

)
we obtain

var
(
x(t)

)
=

(
var
(
x(0)

)
− σ2

2k

)
e−2kt +

σ2

2k
, (3.179b)

and with sharp initial conditions, p (x, 0) = δ(x− x0), we find

var
(
x(t)

)
=

(
1

2k

(
1− e−2kt

))
. (3.179c)

Finally we mention that the analysis of the Ornstein-Uhlenbeck process can
be readily extended to many dimensions and time dependent parameters,
k(t) and σ(t) [157].

The linear stochastic differential equation. As last example we consider again
the linear SDE but allow time dependent parameters

dx = α(t)xdt + β(t)xdw(t) = x
(
α(t) dt + β(t) dw(t)

)
.

Now we make the substitution y = ln x, expand up to second order

dy =
dx

x
− dx2

x2
= α(t) dt + β(t) dw(t) − 1

2
β(t)2 dt

and find the solution by integration and resubstitution

x(t) = x(0) exp

(∫ t

0

(
α(τ)− 1

2
β(τ)2

)
dτ +

∫ t

0

β(τ) dw(τ)

)
. (3.180)

We make use of the relation 〈ez〉 = exp
(

1
2

〈
z2
〉)

, which is fulfilled by all
Gaussian variables,54 and find for the n-th raw moment [157, p. 109]:

54 In order to proof the conjecture one makes use of the fact that all cumulants κn
with n > 2 vanish (see section 2.3.3). The reader encouraged to complete the proof.
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〈x(t)n〉 = 〈x(0)n〉
〈

exp

(
n

∫ t

0

(
α(τ)−

1

2
β(τ)2

)
dτ + n

∫ t

0

β(τ) dw(τ)

)〉
= 〈x(0)n〉 exp

(
n

∫ t

0

α(τ) dτ +
1

2
n(n− 1)

∫ t

0

β(τ)2 dτ

)
.

(3.181)

All moments can be calculated from this expression and for the low moments
we find:

〈x(t)〉 = 〈x(0)〉 exp

(∫ t

0

α(τ) dτ

)
(3.182a)

var
(
x(t)

)
= var

(
x(0)

)
exp

(
2

∫ t

0

α(τ) dτ

)
+

+
〈
x(0)2

〉
exp

(∫ t

0

β(τ)2 dτ

)
. (3.182b)

Analytical solutions have been derived also for the inhomogeneous case,
a(x, t) = α0 + α1x and b(x, t) = β0 + β1x and the raw moments are readily
calculated [157, p. 109].

Langevin equation in chemical kinetics. Although the chemical Langevin
equation will be discussed extensively in section 4.2.3 we mention here a
few fundamental properties already here. The conventional Langevin equa-
tion models a process in the presence of some random external force, which is
expressed by the noise term b

(
x(t), t

)
dw(t). In order to keep the analysis sim-

ple we consider here only the case of a single reaction channel, and postpone
reaction networks to chapter 4. In chemical kinetics such external forces may
exist but the chemists are primarily interested in the internal fluctuations of
particle numbers that ultimately result from the Poissonian nature of reaction
events. Single reaction events are assumed to occur independently and the
time interval between to reaction events is thought to follow an exponential
distribution, and this implies that the total number of events denoted by m
obeys a Poissonian distribution. In particular, if P(a, τ) is the integer random
variable denoting the number of reaction events that took place in the inter-
val t ∈ [0, τ [ the probability density, and Pm(a, t) = P

(
P(a, τ) = m

)
with

a(τ) being a function for the probability – or propensity – of the chemical
reaction to take place. Then we have:55

Pm(aτ) =
(aτ)m

m!
e−aτ with E

(
P(aτ)

)
= aτ and var

(
P(aτ)

)
= aτ .

By the central limit theorem, or by using moment generating functions (sec-
tion 2.3.3), or by direct computation making use of Stirling’s formula we
find,

55 A Poissonian distribution depends only on a single parameter: (a, τ) ≡ (aτ).
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Fig. 3.30 Chemical Langevin equation. The chemical Langevin equation [171]
is understood as an approximation to the master equation for modeling chemical re-
actions (section 4.2.1). The approximation is built upon two contradicting conditions
concerning the time leap interval: (1) τ has to be sufficiently long in order to fulfil
the relation aτ � 1, and (2) τ has to be so short that the function a

(
n(t)

)
does

not change appreciably within the interval [t, t + τ ]. The upper part of the sketch
shows a situation where the usage of the chemical Langevin equation is justified in
the range τmin < τ < τmax whereas the Langevin equation is nowhere suitable under
the conditions shown in the lower diagram.

π(aτ)
.
=

(aτ)k

k!
e−aτ ≈ 1√

2π aτ
e−

(k−at)2
2aτ

.
= N (aτ, aτ) for aτ � 1 , (2.40’)

that the Poisson distribution can be approximated by a normal dustribution
for large values of a · τ . This condition can be met either by large particle
numbers or by long time intervals τ , or both (figure 3.30).

The number of molecules of species A at time t in the reaction volume V is
modeled by the random variable NA(t) = n(t). Two relations from chemical
kinetics are basic to stochastic modeling of the process [171]: (i) the chemical
rate function or propensity function a(n) for the reaction channel

a
(
n(t)

)
dt ≡ probability, given n(t), one reaction

will occur within [t, t+ dt[
(3.183a)
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and (ii) the stoichiometric coefficient s, which determines the change in NA(t)
by a single reaction event

NA(t) = n =⇒ NA(t+ dt) = n+ s with s ∈ Z . (3.183b)

It is worth noticing that in contrast to an ordinary Poisson process where
we had ∆m = +1 in a chemical reaction s might also be a negative integer,
since molecules may be formed and may disappear, and need not be s = ±1
because, for example, molecules can be formed two or more at a time and
they may also disappear two or more at a time (see section 4.1). The function
a(n) is the product of two factors:

a(n) = γ · h(n) . (3.183c)

The reaction rate parameter γ depends on external conditions like tempera-
ture, pressure, etc., does not depend on the number of particles or collision
events, and in general is independent of time.56 The particle number depen-
dent factor h(n) counts the number of events that can give rise to a reaction
events, it may be simply h(n) = n for spontaneous reactions involving one
molecules or, for example, n(n − 1)/2 if a collision of two molecules is re-
quired. Now we take recordings of the particle number in regular time inter-
vals ∆t = τ . The number of reactions occurring in the time interval [t, t+ τ ]
is another random variable denoted by K(n, τ). For the time dependence of
the number of molecules A we formulate the Markov process

NA(t+ τ) = n(t+ τ) = n(t) + sKi(n, τ) , (3.183d)

which is equally hard to solve as the corresponding master equation. A
straightforward approximation leading to a chemical Langevin equation, how-
ever, can be achieved provided two conditions are fulfilled:
Condition (1) requires that the time leap interval τ is sufficiently small that
the chemical rate functions does not change appreciably

a
(
NA(θ)

)
≈ a

(
n(t)

)
, ∀ θ ∈ [t, t+ τ ] (3.184a)

Commonly the changes of particle numbers hardly exceeds |s| = 2 the con-
dition is readily met by sufficiently large molecular populations as they are
occurring in conventional chemical kinetics. Constancy of the rate functions
at the same time guarantees independence for practical purposes of all reac-
tion events within the interval [t, t+ τ ].
Condition (2) is required for the approximation of the Poissonian probability
by a Gaussian distribution in the sense of equation (2.40’):

E
(
P
(
a(n(t), τ)

))
= a

(
n(t)

)
τ � 1 . (3.184b)

56 Under certain rather rare circumstances modeling reactions with time dependent
reaction rate parameters may be advantageous.
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Apparently, the two conditions contradict each other and the existence of a
range of validity for both conditions is not automatically given. In figure 3.30
we sketch two possible situation: The existence of a range of suitable value of
τ fulfilling the two conditions where an approximation of the master equation
by a Langevin-type equation is possible and a situation, where such a range
does not exist.

Given the two conditions are fulfilled we can rewrite equation (3.183d) and
find

NA(t+ τ) = n(t) + sN
(
a
(
n(t)

)
τ, a
(
n(t)

)
τ
)
.

Next we make use of the linear combination theorem of normal random vari-
ables, N (µ, σ2) = µ + σN (0, 1) = µ + σϕ where ϕ(x) = exp(−x2/2)/

√
2π,

and obtain

NA(t+ τ) = n(t) + s a
(
n(t)

)
τ + s

√
a
(
n(t)

)
τ N (0, 1) .

The next step consists of an approximation in the same spirit of the condition
(1) and (2): A time interval τ that fulfils the two conditions may be considered
as macroscopic infinitesimal and therefore we treat τ as if it were a true
infinitesimal dt, by replacing the discrete variable n by the continuous x,
and by inserting dw = ϕ(t)

√
dt we find:

dx(t) = s a
(
x(t)

)
dt + s

(
a
(
x(t)

))1/2

dw(t) . (3.185)

The chemical Langevin equation does not contain an external noise term but
internal fluctuations resulting from the Poissonian nature of the chemical re-

actions events: b(x(t), t) = s
√
a
(
x(t)

)
, and the corresponding Fokker-Planck

equation takes on the form

∂P (x, t)

∂t
= − ∂

∂x

(
s a
(
x(t)

)
P (x, t)

)
+

∂2

∂x2

(
s2 a

(
x(t)

)
P (x, t)

)
(3.186)

with the initial conditions (x0, t0).
We repeat what has been said before in this paragraph: The occurrence of

chemical reaction events is modeled by a Poisson process but the consequences
of the event itself follow the specific laws of chemical reactions. The conversion
of a master equation into a Langevin equation is bound to the fulfillment of
two contradictory conditions and under certain circumstances no acceptable
Langevin approximation may be found. In this paragraph we have outlined
only the basic features of modeling chemical reactions by means of Langevin
equations. The formalism will be extended to reactions of several molecules
and reaction networks in section 4.2.3 where we shall present applications as
well.
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Low moments of stochastic differential equations. In many cases it is sufficient
to know the expectation value and the variance of the stochastic variable of a
process as a function of time. These low moments57 can be calculated without
solving the stochastic equations explicitly. We consider the general SDE

dx = a(x, t) dt + b(x, t) dw(t)

and compute the mean value by taking the average and recall that the second
term on the r.h.s. vanishes because 〈dw(t)〉 = 0:

d 〈x〉 = 〈dx〉 = 〈a(x, t)〉 dt or
d〈x〉
dt

= 〈a(x, t)〉 . (3.187)

Thus, the calculation of the expectation value boils down to solving an ODE.
For a derivation of an expression for the second moment and the variance we
have to calculate the differential of the square of the variable. By means of
equation (3.172) we find:

d(x2) =
(
2x a(x, t) + b(x, t)2

)
dt + 2 b(x, t) dw(t) ,

and forming the average yields〈
d(x2)

〉
= d

〈
x2
〉

=
〈
2x a(x, t) + b(x, t)2

〉
dt ,

where we made use of the relation 〈dw(t)〉 = 0. Provided we knew the expec-
tation values, a differential equation for the variance would be given by

d var(x)

dt
=

d
〈
x2
〉

dt
− d〈x〉2

dt
=

d
〈
x2
〉

dt
− 2 〈x〉 d〈x〉

dt
.

The continuation of the calculations requires knowledge of the functions
a(x, t) and b(x, t).

As an example we consider the simple linear SDE with a(x, t) = αx and
b(x, t) = β x,

dx = αx dt + β x dw(t) = x
(
α dt + β dw(t)

)
,

and find for the expectation value

〈x(t)〉 = 〈x(0)〉 eαt = x0 e
αt for p (x, 0) = δ(x− x0) (3.188a)

and for the variance

57 Low moments are expectation value and variance.
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var
(
x(t)

)
=
〈
x(t)2

〉
− 〈x(t)〉2 =

=
〈
x(0)2

〉
e(2α+β2)t − 〈x(0)〉2 e2αt =

= x2
0

(
e(2α+β2)t − e2αt

)
for p (x, 0) = δ(x− x0) .

(3.188b)

The expressions are easily generalized to time dependent coefficients α(t) and
β(t) as we shall see in the paragraph on linear SDEs.

In this last part we have shown that analytical expressions derived from
stochastic differential equations can be used successfully to compute the most
important quantities of stochastic processes and in this sense are also equiv-
alent to Fokker-Planck equations in practice.





Chapter 4

Applications in chemistry

There is nothing so practical as a good theory.
Kurt Lewin, 1952.

Abstract. In chemistry the master equation is the best suited and most com-
monly used tool to model stochasticity in reaction kinetics. We review the
common elementary reactions in mass action kinetics and discuss Michaelis-
Menten kinetics as an example of combining several elementary steps into
an over-all reaction. Multistep reactions or reaction networks are considered
and a formal mathematical theory that provides tools for the derivation of
general properties of networks is presented. Then we digress into theory and
empirical determination of rate parameters. The chemical master equation
is introduced as the most popular tool for modeling stochasticity in chemi-
cal reactions, and the single reaction step approach is extended to reaction
networks. Then, a selection of one-step reactions is presented for which the
master equation can be solved exactly. The exact solutions are also used to
illustrate the relation between the mathematical approach and the recorded
data. A separate chapter is dealing with correlation functions, fluctuation
spectroscopy, single molecule data and their stochastic modeling. Determin-
istic and stochastic parts of solutions can be separated by means of size
expansions. Most reaction mechanisms are not accessible to the analytical
approach and therefore we present a numerical approach that is exact within
the concept of the chemical master equation is presented and applied to some
selected examples of chemical reactions.

Conventional chemical reaction kinetics commonly does not require a
stochastic approach because the numbers of particles are very large. There are
exceptions when the particle numbers of certain species become very small
during reactions – oscillations of species may serve as examples. Such cases
will be mentioned and discussed in this and in the next chapter but even
more important is the requirement of a stochastic approach for direct mea-
surements of fluctuations, which became possible because of the progress in
spectroscopy leading to spectacular increases in sensitivities. Single molecule
techniques are another not completely unrelated and also rapidly developing
field where a stochastic approach is indispensable. On the other hand, if one

305



306 4 Chemical applications

wants to resolve reaction dynamics at the molecular level the situation is
different, because conventional statistical mechanics is blurring the details of
interest. Molecules are involved in large numbers of collisions, which consid-
ered individually in the vapor phase could be calculated at least in principle
by means of advanced quantum mechanics, although we have to admit that
a detailed computational approach to reactive collisions in solution where
molecules are densely packed would be helpless.

Stochastic chemical kinetics is based on the assumption that knowledge
on the transformation of molecules in chemical reactions is not accessible in
full atomistic detail or if it would, the information would be overwhelming
and obscuring the essential features. Thus, it is assumed that chemical reac-
tions have a probabilistic element and can be modeled properly by means of
stochastic processes. The random processes are caused by thermal noise as
well as by random encounters of molecules in collisions. Fluctuations, there-
fore, play an important role and they are responsible for the limitations in
the reproduction of experiments. This concept is not substantially different
from the ideas underlying equilibrium statistical mechanics although statis-
tics applied to thermodynamic equilibrium is on saver grounds than statistical
mechanics applied to chemical reaction kinetics. On the other hand, the cur-
rent theory of chemical reaction rates is around for more than fifty years and
so far it has not yet been replaced by some better founded and applicable
theory [270].

Particle numbers change necessarily in jumps requiring a discrete stochas-
tic description, for example, by means of a master equation. Other descrip-
tions are branching processes and other special cases of stochastic processes,
which we will shall discuss in the next chapter 5, because they are more fre-
quently addressed in biology. Commonly different approaches do not exclude
each other as, for example, birth-and-death processes are frequently solved
by application of precisely the same techniques as used for. Chemical mas-
ter equations (section 4.2.1) and birth-and-death master equations, which
were discussed in section 3.2.3.2, are closely related. Modeling chemical re-
actions by continuous variables as discussed in the paragraph on chemical
Langevin equations (3.185) serves, in essence, two purposes: (i) It provides a
natural transition from the stochastic to the deterministic treatment through
increasing particle numbers n(t) that reduces the contribution of the Wiener

process, s
√
a
(
n(t)

)
dw, until it becomes zero in the limit n(t)→∞, and (ii)

it is indispensable for population size expansions, which provide the basis for
a separation of the deterministic part of the solution from a diffusion term.

Conventional chemical reaction kinetics can be formally understood as
the Liouville approach (section 3.2.2.1) to stochastic chemical kinetics and
is dealing, in essence, with two classes of problems: (i) forward problems,1

1 We remark that forward and inverse in the context of handling differential equations
have nothing to do the direction of computational time in forward and backward
Chapman-Kolmogorov equations.
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which deal with the determination of time dependent concentrations as solu-
tions of kinetic model equations, where the kinetic parameters are assumed
to be known (for an introduction in to traditional chemical kinetics see [269],
a modern textbook is [220]), and (ii) inverse problems, which aim at the
determination of parameters from measured data, where the kinetic model
is commonly assumed to be known [425]. The first problem boils down to
deriving the solution curves or performing qualitatively analysis of a kinetic
ODE, or a PDE in case the spatial distribution is nonhomogeneous. The in-
verse task is often addressed as parameter identification problem. Qualitative
analysis of differential equations aims at the reconstruction of bifurcation pat-
terns of dynamical systems and we encounter here an inverse problem too:
The determination of the regions in parameter space from where parameter
combinations give rise to a certain dynamic behavior [113].

The chapter starts with an introduction into conventional chemical ki-
netics (section 4.1) consisting of short reviews of elementary step kinetics
(section 4.1.1), Michaelis-Menten kinetics, which is discussed as an example
of a reaction mechanism merging two or more single elementary steps into
over-all reactions (section 4.1.2), and a formal theory of reaction networks
conceived for the qualitative analysis of multidimensional kinetic differential
equations (section 4.1.3). Then, we shall answer questions concerning the ori-
gin and the empirical determination of the rate parameters (sections 4.1.4
and 4.1.5). Stochasticity in chemical reactions is introduced in terms of the
chemical master equation, we shall discuss how reaction networks can be an-
alyzed stochastically, and come back to chemical Langevin equations through
handling multidimensional cases (section 4.2). Then, a collection of examples
of exactly solvable chemical master equations is presented: (i) the equilibra-
tion of particle numbers or concentrations in the flow reactor, (ii) irreversible
and reversible monomolecular reactions, and (iii) bimolecular reactions that
can be still solved exactly but where the solutions become so complicated
that practical work with them has to rely on numerical computation (sec-
tion 4.3). A separate chapter is dealing with correlation functions, fluctuation
spectroscopy, single molecule techniques and their implications as challenges
for stochastic modeling (section 4.4). The next section deals with the tran-
sition from microscopic to macroscopic systems by means of power series
expansions in an extensive physical parameter Ω, for example the size of the
system or the total number of particles. Size expansion is particularly use-
ful if the particle numbers are sufficiently large (section 4.5). Most reaction
mechanisms involve many reactions steps and commonly exact analytical so-
lutions are neither available for the conventional deterministic approach nor
for stochastic methods. The last sections deal with a numerical approach to
stochastic chemical kinetics in which probability distribution or low moments
are obtained by sampling a sufficiently large number of numerically calculated
individual trajectories (section 4.6).
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4.1 A glance on chemical reaction kinetics

Chemical reactions will be modeled as Markov processes and analyzed in
form of the corresponding master equations. In a few cases Langevin or
Fokker-Planck equations will be applied too. Commonly, a chemical reac-
tion mechanism is a network of several reaction steps. A reaction step will
be called elementary if no further resolution is possible at the level of atoms
or molecules.2 Appropriate criteria for the classification of elementary steps
are the molecularity of reactions3 and the complexity of the reaction dynam-
ics. The molecularity is discussed in the next section 4.1.1. With respect to
reaction dynamics we shall consider reactions and reaction networks with (i)
linear behavior, (ii) nonlinear behavior with simple dynamics in the sense of
a monotonous approach to thermodynamic equilibrium or towards a unique
stationary state, and (iii) complex behavior as exhibited by dynamical sys-
tems showing multiple stable stationary states, oscillations or deterministic
chaos.

The stochastic approach to chemical reaction kinetics has some tradition,
which began in the late fifties from two different initiatives: (i) approxima-
tion of the complex vibrational relaxation in small molecules [32, 335, 409]
and its application to chemical reactions, and (ii) modeling of chemical re-
actions as stochastic processes [27, 28, 29]. The latter approach can be
viewed in the sense of initially mentioned limited information on reaction
details and has been taken up and developed further by several groups
[85, 84, 225, 249, 273, 315, 318]. The major part of the early works has
been summarized in an early review [316], which is recommended here for
further reading. Anthony Bartholomay’s studies are also highly relevant for
biological models of evolution, because he modeled reproduction as a linear
birth-and-death process. Exact solutions to master equations or Langevin
and Fokker-Planck equations can be derived only for particularly simple spe-
cial cases. Often approximations are used or the analysis is been restricted to
expectation values and variances of the variables. Later on computer assisted
approximation techniques and numerical simulation methods were developed,
which allow for handling stochastic phenomena in chemical kinetics in a more
general manner [157, 173, 439].

2 In modern spectroscopy further resolution into different molecular or atomic states
can be achieved and then the different states have be treated as individual entities in
reaction kinetics (see equation (4.46)). A simple example of such a higher resolution
is applied in modeling monomolecular reactions (section 4.1.4).
3 The molecularity of a reaction is the number of molecules that are involved in
the reaction, for example two in a reactive collision between molecules or one in a
conformational change. An elementary step is a reaction at the molecular level that
cannot be resolved further in mass action kinetics (section 4.1.1). We shall distinguish
elementary steps and elementary processes: the latter are more general and need not
be referring to the level of molecules.
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4.1.1 Elementary steps of chemical reactions

Chemical reactions at the level of mass action kinetics are defined by mech-
anisms, which can be decomposed into elementary steps. Elementary steps
describe the transformation of reactant molecules into products and are writ-
ten as stoichiometric equations.4 Common elementary steps involving zero,
one or two reactant molecules are:

? −−−−→ A (4.1a)

A −−−−→ � (4.1b)

A −−−−→ B (4.1c)

A −−−−→ 2 B (4.1d)

A −−−−→ B + C (4.1e)

A + B −−−−→ C (4.1f)

A + B −−−−→ 2 A (4.1g)

A + B −−−−→ C + B (4.1h)

A + B −−−−→ C + D (4.1i)

2 A −−−−→ B (4.1j)

2 A −−−−→ 2 B (4.1k)

2 A −−−−→ B + C (4.1l)

The molecularity of a reaction is defined by the number of – different or
identical – molecules on the reactant side of the stoichiometric equation and
we distinguish zero-, mono-, bi -, or termolecular, reactions and so on.

The list shown above contains one zero-molecular reaction, (4.1a), four
monomolecular reactions, (4.1b) - (4.1e), and seven bimolecular reactions,
(4.1f) - (4.1l). Nonreactive events, which occur in open systems, for exam-
ple in flow reactors, are the creation of molecules through inflow (4.1a)5 or
the annihilation of molecules through outflow (4.1b). They were included in
the list because we shall need them to conceive examples of open systems.
Elementary steps with molecularities of three and higher are not included in
the list, because simultaneous encounters of three and more molecules are
extremely improbable and apart from exceptions elementary steps involving

4 Stoichiometry deals with the relative quantities of reactants and products in chemi-
cal reactions. Reaction stoichiometry, in particular, determines the molar ratios of the
reactants, which are converted into products, and the products that are formed. For
example, in the reaction 2H2 + O2 → 2H2O the stoichiometric ratios of H2 : O2 : H2O
are 2 : 1 : 2 (see also the stoichiometric matrix defined in section 4.1.3).
5 The simplest kind of inflow as indicated here by the star is an arrival process with
independent events and follows a Poissonian probability law.
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three or more molecules are not considered in conventional chemical kinetics
therefore.6

All elementary steps in the list with two exceptions being the equa-
tions (4.1g) and (4.1h) are characterized by the fact that molecular species
represent either reactants or products. In other words, no molecules show
up at both sides of the arrow. These two exceptions are: (i) catalysis (4.1h)
and (ii) autocatalysis (4.1g). Both processes have specific features that make
them unique among other chemical reactions. Catalysis implies the presence
of a catalyzer, B in reaction (4.1h), which is consumed and produced in
same amounts during the reaction. The presence of more catalyst increases
the rate of the reaction. Catalysis by protein enzymes is the basis of bio-
chemical kinetics and it is commonly described by multistep reactions, the
Michaelis-Menten mechanisms discussed in section 4.1.2 being the most pop-
ular example. The elementary step shown in equation (4.1g) is an example
of an autocatalytic elementary process. The unique feature of autocatalysis
is self-enhancement of chemical species, X → 2X, leading to amplification of
fluctuations and exponential growth of particle numbers in case of (4.1g).
In practice, autocatalytic reactions involve almost always many elementary
steps and obey complex reaction mechanisms (see, e.g., the review [387]).
The formal kinetics of reproduction meets the conditions of autocatalysis,
and in this case again a complex multistep process is subsumed in a one-step
over-all reaction, here of type (4.1g). Because of its fundamental importance
of in biology we shall discuss autocatalysis in section 5.1 within the chapter
dealing with applications in biology.

In order to model and analyze basic features of autocatalysis or chemi-
cal self-enhancement, single step autocatalytic reactions rather than auto-
catalytic multistep reaction networks are used in case studies. Despite its
termolecular nature, one particular termolecular autocatalytic process,

A + 2 X −−−−→ 3 X , (4.1m)

became very popular [346], although it unlikely to occur in pure form in real
systems. The elementary step (4.1m) is the essential step in the so-called
Brusselator model, it can be straightforwardly addresses by rigorous mathe-
matical analysis, and it gives rise to complex dynamical phenomena in space
and time, which are otherwise rarely observed in chemical reaction systems.
Among other features such special phenomena are: (i) multiple stationary
states, (ii) chemical hysteresis, (iii) oscillations in concentrations, (iv) deter-
ministic chaos, and (v) spontaneous formation of spatial structures. The last
example is known as Turing instability [432] and is frequently used as a model
for pattern formation or morphogenesis in biology [321]. An excellent review
on nonlinear phenomena in chemistry is found in the literature [387].

6 Such exceptions are reactions involving surfaces as third partner, which are impor-
tant in gas phase kinetics and, for example, biochemical reactions involving macro-
molecules.
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Stoichiometry and chemical equilibria. Although chemists were intuitively
familiar with mass action throughout the nineteenth century, the precise for-
mulation of a law of mass action (MA) is due to two Norwegians, the math-
ematician and chemist Cato Maximilian Guldberg and the chemist Peter
Waage [454]. For reaction (4.1f), for example, mass action rate law yields

d[A]

dt
=

d[B]

dt
= − d[C]

dt
= k [A] · [B] = v(MA)([A], [B]) .

The rate of the reaction v(MA) is proportional to a rate parameter k and to
the amounts [A] and [B] at which the two reactants A and B are present
in the reaction system.7 Depending on the nature of the reaction system
the chemists prefer to use different units: (i) particle numbers NA and NB
counting the numbers of molecules and being dimensionless, (ii) molar con-
centrations cA = NA/(NL V ) [c0] and cB = NB/(NL V ) [c0] (section 1.1) where
c0 = 1 [mol·l−1] is used for the unit concentration, and (iii) dimensionless mo-
lar ratios xA = NA/(NA + NB) and xB = NB/(NA + NB) with xA + xB = 1,
when only A and B are present in the reaction system.

Precisely, the law of mass action states that the rate of any given chemical
reaction is proportional to the product of the concentrations or activities
of the reactants.8 In particular, the numbers of identical molecules that are
consumed in a reaction step – called the stoichiometric coefficients νA and
νB – appear as exponents of concentrations, v(MA) is the reaction rate, and
k is a rate parameter:

νA A + νB B
k

−−−−→ products =⇒

=⇒ reaction rate = v(MA) = − 1

νA

da

dt
= − 1

νB

db

dt
= k a νA b νB .

(4.2)

In a reversible reaction,9 which represents an acceptable chemical reaction in
both directions and which can be understood as a special combination of two
elementary steps compensating each other, the reverse reaction is accounted

7 We shall use the notation with square brackets, [A] and [B], when we want to leave
it open, which units are to be used.
8 Several idealized regularities hold only in the limit of vanishing concentrations,
lim c → 0. The idealized laws are retained through replacing concentrations by ac-
tivities, aA = [A] = fAcA. Unless stated otherwise we shall approximate activities by
concentrations here and for the sake of simplicity use lower case letters to indicate
the species: fA ≈ 1 and [A] = a [mol·l−1] and fB ≈ 1 and [B] = b [mol·l−1].
9 The notions reversible and irreversible for chemical reactions are used differently
from the notions in thermodynamics: In chemical kinetics a reaction is irreversible if
the occurrence of the reaction in opposite direction is not observable on realistic time
scales and hence can be neglected. Strict chemical irreversibility causes an instability
in thermodynamics. All chemical reactions that proceed with nonzero velocity are
irreversible in the sense of thermodynamics as reversibility requires infinitely slow
progress of processes and chemical reactions are no exception.
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for by a negative sign and we obtain for the case of disjunct reactants and
products:

νA A + νB B
k

−−−−→←−−−−
l

νC C + νD D =⇒

=⇒ v(MA) = − 1

νA

da

dt
= − 1

νB

db

dt
=

1

νC

dc

dt
=

1

νD

dd

dt
=

= v→ − v← = k a νA b νB − l c νC d νD .

(4.3)

The condition of zero net reaction rate yields an expression for the equilibrium
parameter, commonly called the equilibrium constant, as already pointed out
in the formulation of mass action at equilibrium by Guldberg and Waage:

K =
k

l
=

c̄ νC d̄ νD

ā νA b̄ νB
, (4.4)

where the bar denotes equilibrium concentrations. Later derivations of mass
action are using the chemical potentials of reactants and products and were
first introduced by Josiah Willard Gibbs around nineteen hundred [162, 163].

In order to generalize the expressions we introduce M chemical species
in a single reaction step10 and allow species to appear on both sides of the
reaction arrows:

ν1X1 + ν2X2 + . . .+ νMXM
k

−−−−→←−−−−
l

ν ′1 X1 + ν ′2 X2 + . . .+ ν ′M XM . (4.5)

In the following we shall use column vector notation for the concentrations,
x = (x1, . . . , xM )t and for the stoichiometric coefficients, ν = (ν1, . . . , νM )t.
Then the rate functions take on the form

v→(x) = k xν11 · x
ν2
2 · . . . · x

νM
M = k xν and

v←(x) = l x
ν ′1
1 · x

ν ′2
2 · . . . · x

ν ′M
M = l xν

′
(4.6)

where we use multi-index notation x ν = (xν11 x
ν2
2 · · ·x

νM
M ), and where un-

primed and primed coefficients coefficients, ν and ν ′, refer to the reactant
and product side, respectively. At equilibrium we have we have v̄ = v̄→ = v̄←,
or kx̄ ν = lx̄ ν

′
. The stoichiometric coefficients are reformulated by account-

ing for the net production of a compound in a reversible reaction: sj = ν′j−νj ,
which yields the differential equation

10 Later on we shall be dealing with multistep reaction networks of irreversible and
reversible reactions and apply a notation that allows for straightforward identification
of reaction steps by choosing kj and lj as reaction parameters for reaction Rj . The
stoichiometric coefficients of the reactants in the reaction Rj will be denoted by
νAj , νBj , . . ., for the reaction products we shall use ν′Aj , ν

′
Bj , . . . and the elements of

the stoichiometric matrix are S = {sij = ν′ij − νij} (see section 4.1.3).
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1

sj

dxj
dt

= v→(x) − v←(x) , ∀ j = 1, . . . ,M .

This equation is equally valid for a reversible reactions as well as for both
irreversible reactions related to it, which result by setting either l = 0 or
k = 0, respectively.

For the analysis of near equilibrium kinetics it is useful to define new
variables that vanish at equilibrium,

χ = (χ1, . . . , χM )t = x− x̄ = (x1 − x̄1, . . . , xM − x̄M )t ,

and one common variable ξ = χi/(ν
′
i − νi) = χi/si ∀ i = 1, . . . ,M).11 Ther-

modynamics of irreversible processes requires that every process sufficiently
close to the equilibrium state approaches stationarity by a simple exponential
relaxation process.12 After linearization around equilibrium we obtain

dξ

dt
= − 1

τR
ξ and ξ(t) = ξ(0) exp

(
− t/τR

)
, (4.7)

where τR is the so-called relaxation time of the chemical reaction [356, 471]

τ−1
R =

M∑
i=1

(ν ′i − νi)
νi v̄→ − ν ′i v̄←

x̄i
=

M∑
i=1

(ν ′i − νi)2 v̄

x̄i
. (4.8)

For the elementary steps in equation (4.1) the relaxation times are simple
expressions, for example A 
 B → τ−1

R = k + l, 2A 
 B → τ−1
R = 4kā+ l,

A + B 
 C → τ−1
R = k(ā+ b̄) + l or 2A + B 
 3A → τ−1

R = (k(ā+ b̄) + lā)ā.
Relaxation in the multi-dimensional case will be discussed in section 4.1.3.

Equation (4.7) is the results of the linearization of a generally nonlinear
expression. The nonlinear kinetic equation of a single step reaction can be
cast into a straightforward integral equation

x(t) = x(0) +

(∫ t

0

v
(
x(τ)

)
dτ

)(
ν ′ − ν

)
= x(0) +

(∫ t

0

v
(
x(τ)

)
dτ

)
s , (4.9)

The extension of the deterministic model to networks of arbitrary numbers
of reactions is presented in section 4.1.3.

11 The International Union of Pure and Applied Chemistry (IUPAC) has recom-
mended to use the term rate of reaction exclusively for the differential quotient
dξ/ dt = |1/(v ′i − vi)|(d[Xi]/ dt), where ξ is the degree of advancement or the extent
of reaction with the initial conditions as reference state: ξ = ([Xi] − [Xi]0)/si. Here
we define the variable ξ differently with the thermodynamic equilibrium as reference
state. The variable ξ is independent of stoichiometric coefficients in both definitions.
12 Linear laws near an equilibrium point are generally valid and not restricted to
chemistry. Hook’s law named after the English natural philosopher Robert Hook may
serve as an example from mechanics.
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Fig. 4.1 The role of stoichiometry in kinetic equations. Reaction dynamics
is determined by stoichiometry in an indirect way too. The two reactions shown in
the figure correspond to the elementary step reactions (4.1i) and (4.1g), and follow
formally the same rate law: v = k [A] · [B] and v = k [A] · [X]. The two reactions differ
in the stoichiometry on the product side, this leads to different conservation relations
and further to different ODEs: da/dt = −k a (n0 − a) and da/dt = −k a (ϑ0 + a),
respectively, where n0 and ϑ0 are two different constants (For details see sections 4.1.3
and 4.3.3.3). Parameter choice: k = 1.0, [A]t=0 = 10, [B]t=0 = [X]t=0 = 15. Color
code: red, bimolecular conversion, and yellow, autocatalytic reaction.

It is important to point out that the product side exerts influence on the
reaction dynamics also in an irreversible reaction if one or more reactants ap-
pear among the products. The best and simplest examples are autocatalytic
reactions. For the purpose of illustration we compare the autocatalytic ele-
mentary reaction (4.1g) with the bimolecular conversion (4.1i). The kinetic
differential equations and their solution are:

da

dt
= k a x = k a (n0 − a) and a(t) =

n0 a0

a0 + (n0 − a0) exp (n0 k t)

da

dt
= k a b = k a (ϑ0 + a) and a(t) =

ϑ0 a0

(ϑ0 + a0) exp (n0 k t) − a0
,

where a0, x0 and b0 are the initial value of the variables a, x and b at time
t = 0, n0 = a0 + x0 and ϑ0 = b0 − a0, respectively.13 In figure 4.1 we
compare the two reactions with identical initial values of A, a(0), and the

13 Since neither A nor B appear on the product side it would make no difference to
compare with (4.1f) or with A + B→ 2C, which is the inversion of (4.1l).
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same tangents, da/dt|t=0 = −k a0 x0 or da/dt|t=0 = −k a0 b0, respectively.
We observe the build-up of a difference in rate that grows in time, which is due
to self-enhancement of the autocatalyst: An increase in the concentration [X]
leads to an increase in the reaction rate, a steady acceleration of the reaction,
and faster consumption of A.

Another generalization in the notation of the differential reaction rate will
turn out useful later on in handling chemical reactions as stochastic processes

dx = (v dt) s =
(
k h(x) dt

)
s , (4.10)

where k is the reaction parameter and the function h(x) subsumes the con-
centration dependence of the differential change in the concentration vector
x. For the mathematical approach it is important that the reaction rate v is
independent of dt and it is a scalar quantity expressing the fact that in a
single reaction step there is one common reaction variable for all M molecular
species. The function h(x) contains the contribution of the concentrations of
reactants and in mass action kinetics simply takes on the form h(x) = xν .

Strictly speaking, the resolution to the level of elementary steps implies
the application of mass action kinetics, and this means that no further resolu-
tion is assumed to be achievable for molecules. As said, the advances in spec-
troscopy made it possible to distinguish between different states of molecules,
in particular between ground states and various excited states in quantum
molecular physics or between minimum free energy structures and subopti-
mal conformations in biopolymers, and then the ultimate resolution has to
be pushed further down to individual states in order to be able to describe
chemical reactions adequately.

Elementary step resolution and mass action kinetics often lead to complex
reaction networks with a great number of variables, which are hard to analyze
and which yield results that are difficult to interpret. It is sometimes useful
to reduce the number of variables and to introduce some simpler higher level
kinetics. The difference between mass action and higher level kinetics and
is illustrated by means of an old and well studied example, the Michaelis-
Menten reaction kinetics of enzyme catalyzed reactions in biochemistry.
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4.1.2 Michaelis-Menten kinetics

Chemical kinetics became relevant for biology already at the end of the nine-
teenth century when biochemical processes gained a quantitative perspective.
Biochemical kinetics became a discipline in its own right, and has been re-
vived recently in the form of systems biology, which is raising the ambitious
goal of modeling all processes in cells and whole organisms at the molecular
level. In particular, enzyme catalyzed reaction were in the focus since the
very beginning and indeed biochemical kinetics as we understand it today
has been initiated by the path-breaking work of Leonor Michaelis and Maud
Menten [329]: General enzyme catalysis is modeled by three elementary steps,
which at first are assumed to be reversible:

S + E 
 S · E 
 E · P 
 E + P , (4.11)

(i) binding of the substrate S to the enzyme E, (ii) conversion of substrate
into product, both being bound to the enzyme, and (iii) the release of the
product P through dissociation of the enzyme-product complex. Then, the
full mechanism of simple enzyme catalyzed reaction consists of six elementary
steps (figure 4.2):

S + E
k1

−−−−→ S · E , (4.12a)

S · E
l1

−−−−→ S + E , (4.12b)

S · E
k2

−−−−→ E · P , (4.12c)

E · P
l2

−−−−→ S · E , (4.12d)

E · P
k3

−−−−→ P + E , (4.12e)

P + E
l3

−−−−→ E · P . (4.12f)

For an efficient enzyme reaction it is essential that the steps (4.12d) and
(4.12f) are negligibly slow. In particular, the latter reaction (4.12f) can lead
to a substantial reduction of the production of the product P at high con-
centrations, a phenomenon known as product inhibition in biochemistry. It is
necessary for high catalytic efficiency that reaction (4.12b) is slow too.

Here we present a brief analysis of the Michaelis-Menten mechanism by
conventional chemical kinetics, and in sections 4.2.2 on stochastic reaction
networks and 4.4 on single molecule techniques we shall come back to stochas-
tic Michaelis-Menten kinetics with single enzyme molecules [295, 378].

Simple Michaelis-Menten kinetics. In the conventional Michaelis-Menten
mechanism the reaction scheme (4.12) is simplified: Only the binding re-
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action, step (i), is assumed to be reversible, whereas (ii) is thought to be an
irreversible chemical reaction under the conditions of efficient enzyme catal-
ysis. Step (iii) follows the irreversible reaction step (ii) and hence need not
be considered explicitly:

S + E
k1

−−−−→←−−−−
l1

S · E
k2

−−−−→ E + P , (4.13)

Simple Michaelis-Menten enzyme kinetics deals with four molecular species
only, S, E, S ·E, and P being substrate, enzyme, substrate-enzyme complex,
and product, respectively. The enzyme-product complex, E·P is not consid-
ered explicitly, and the concentration of the product is interpreted as total
concentration: p ≈ p0 = [P]+[E ·P]. Again we denote concentrations by small
letters, [S] = s, [E] = e, [P] = p, and for the complex we use [S ·E] = cS = c.
Total concentrations will be denoted by: e0 = e + c, s0 = s + c and p0 as
said above. In Michaelis-Menten kinetics (v(MM)) the stoichiometric equations
kinetic and the equation take on the form:

S + E 
 S · E → E + P =⇒ reaction rate = v(MM) =
d[P]

dt
=

vmax · s
KM + s

.

The parameters vmax and KM denote the maximal reaction rate and the
Michaelis-Menten constant, respectively. The Michaelis-Menten constant is
the free substrate concentration s at the half maximal reaction rate, vmax/2.
For more than half a century after the pioneering works of Michaelis and
Menten, the Michaelis-Menten constant KM has been the most important
quantitative parameter of enzymes, and it has been used, for example, to
determine the purity of enzyme preparations.

In order to derive the Michaelis-Menten equation we start from the mecha-
nism given above. The differential equation for the enzyme substrate complex
is of the form

dc

dt
= k1 e s − (l1 + k2) c

and we obtain for the steady state:14

dc

dt
= 0 =⇒ (l1 + k2) ĉ = k1 ê ŝ

Now we define the Michaelis-Menten constant and introduce e0 = e + c as
the total enzyme concentration in order to eliminate the free enzyme concen-
tration variable e:

14 To indicate a true equilibrium state we would use the symbol ·̄, e.g., c̄. Since the as-
sumption for the derivation of the Michaelis-Menten equation will be that the enzyme
catalyzed reaction is sufficiently slow in order to keep the system in an approximate
equilibrium state we are using ĉ, ŝ, etc., instead.
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Fig. 4.2 The extended Michaelis-Menten mechanism. Two extended versions
of the simplest Michaelis-Menten mechanism are consistent with empirical data of the
majority of enzyme catalyzed reactions: (i) The mechanism on the l.h.s. (A) includes
explicitly the enzyme-product complex EP and its dissociation into free enzyme E and
product P (see equation (4.12) and, for example, [378]), and (ii) another extension of
the simple Michaelis-Menten mechanism (4.13) includes an additional conformational
state of the enzyme after release of the product from the complex, E0 (B). This
mechanism is used, for example, in single molecule enzyme kinetics (see [262] and
section 4.4.1). The highlighted path (red) illustrates the conversion of substrate S
into product P.

l1 + k2

k1
= KM =

(e0 − ĉ) ŝ
ĉ

=⇒ ĉ =
e0 · ŝ

KM + ŝ
.

The rate of product formation is obtained through multiplication by the rate
constant of the irreversible reaction

v(MM) =
dp

dt
= k2

e0 · s
KM + s

=
vmax · s
KM + s

with vmax = k2 e0 , (4.14)

and the result is the equation reported above. ut
Often it is quite demanding to measure the free substrate concentration s and
in the initial phase of the reaction or for s0 � e0, [S] can be approximated
by the total substrate concentration s ≈ s0. An exact calculation is possible
if the rate of reaction is zero and substrate binding is at equilibrium, k2 � l1:

s̄ =
1

2

(
(s0 − e0 −H) + (s0 − e0 +H)

√
1 +

4 e0H

(s0 − e0 +H)2

)
, (4.15)

with H = l1/k1 being the dissociation constant of the enzyme-substrate com-
plex, S · E. Equation (4.15) has a very simple solution under two conditions:
(i) substrate S in large excess over enzyme E, e0 � s0 (and e0 � H), and
(ii) fast dissociation of the complex l1 � k1 or limH →∞

s̄ ≈ s0 − e0 ≈ s0 .
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Fig. 4.3 The Michaelis-Menten mechanism for enzyme catalyzed reaction.
The upper plot shows a numerical integration of the reaction scheme (4.13) leading to
the ODE (4.17) with the parameters k1 = 1, l1 = k2 = 0.1 and the initial concentra-
tions e0 = 0.01 and s0 = 1. In the plot the concentrations e(t) and c(t) are multiplied
by a factor 100. Color code: s(t) red, p(t) black, e(t) yellow, and c(t) blue. In the
lower part of the figure the reaction rate v = dp/dt = k2(s0 − s− p) = k2(e0 − e) is
determined form a plot of v against s: v reaches a plateau value after an initial nonlin-
ear increase, and this plateau value may be estimated from the maximum v|dv/ds=0.
The maximal rate is approximated by vmax = k2(e0 − e) ≈ k2e0 because practically
all enzyme E is converted into complex S ·E at high substrate concentration, s� e0.
Choice of parameters: k1 = 1, l1 = k2 = 0.1, e0 = 0.01, and hence KM = 0.2. The
black curve v(s) is compared with the plot of v against s0 (red).
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Without the equilibrium approximation Michaelis-Menten enzyme kinetics is
described by two ODEs. The total concentrations of substrate and enzyme
are according to stoichiometry

s(0) = s0 = s + c + p , e(0) = e0 = e + c , and c = e0 − e , (4.16)

where we have assumed that initially there was not product in the reaction
mixture, p (0) = p0 = 0:

dp

dt
= k2 (s0 − s − p) and

ds

dt
= − k1 s · (e0 − s0 + s + p) + l1 (s0 − s − p) .

(4.17)

Results from computer integration of equation (4.17) are shown in figure 4.3.
A fast binding reaction leading to a quasi-equilibrium is followed by relatively
slow conversion of substrate into product that is characterized by an approx-
imately constant concentration of the enzyme-substrate complex S · E that
is tantamount to a constant rate of product synthesis. The Michaelis-Menten
constant is obtained straightforwardly from the substrate concentration s at
half-maximal reaction rate vmax/2. It is also worth noticing how small the
differences between s and s0 are in this particular case.

The most important results of the Michaelis-Menten analysis of enzyme
catalyzed reactions are: (i) A small value of the Michaelis-Menten constant
KM means that the enzyme reaches its maximal turnover already at small
substrate concentrations, (ii) a large value of KM implies the opposite – the
maximal reaction rate is achieved only at high substrate concentrations, and
(iii) the Michaelis-Menten constant KM is proportional to the sum l1+k2 and
therefore large KM does not necessarily imply a high catalytic rate parameter
k2 = kcat, it can also indicate weak binding of the substrate. Michaelis-
Menten kinetics saw a recent revival when single-molecules studies of enzyme
catalysis became possible (see section 4.4).

Extended Michaelis-Menten kinetics. Beginning in the nineteen sixties new
spectroscopic and kinetic techniques were developed that allowed for resolu-
tion of reaction kinetics into individual reaction steps. The simple Michaelis-
Menten mechanism (4.13) deals with only two states of the enzyme, free E
and substrate bound S ·E, and gives rise to a single chemical relaxation mode
(see section 4.4). Such simple kinetics is observed with few enzyme catalyzed
reactions only whereas most enzymes exhibit more complex kinetics with two
or more relaxation modes [295, 378] or even oscillations [101]. Based on this
empirical evidence two extended versions of the original Michaelis-Menten
mechanism are in use (figure 4.2, A and B). We shall apply here the natural
extension by the explicit consideration of the enzyme-product complex shown
in (4.12) and find for the five kinetic equations using [S ·E] = c and [E ·P] = d
for the protein substrate complexes:
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de

dt
= −(k′1s+ l′3p) e + l1 c + k3 d , (4.18a)

dc

dt
= −(k2 + l1) c + k′1s e + l2 d , (4.18b)

dd

dt
= −(k3 + l2) d + k2 c + l′3p e , (4.18c)

ds

dt
= −k′1 s e + l1 c , and (4.18d)

dp

dt
= −l′3 p e + k3 d , (4.18e)

where we choose primed symbols for the second order rate constants in order
to facilitate the forthcoming change in notations: k1 = k′1s and l3 = l′3p.
The concentrations in the mechanism (4.18) converge to a thermodynamic
equilibrium (see section 4.2.2)

p̄

s̄
=

[P]

[S]
=

k′1 k2 k3

l1 l2 l′3
= K1K2K3 . (4.19)

The individual equilibrium concentrations of the extended Michaelis-Menten
mechanism are readily computed, and for the initial condition zero product,
p (0) = 0, the conservation relations are:

s(0) = s0 = s + c + d + p , and e(0) = e0 = e + c + d . (4.20)

With α = 1 +K, β = K1(1 +K2), K1 = k′1/l1, K2 = k2/l2, K3 = k3/l
′
3, and

K = K1K2K3, we obtain:

s̄ =
β(s0 − e0)− α +

√
4αβs0 +

(
β(s0 − e0)− α

)2

2αβ
,

ē =
e0

1 + β s̄
,

p̄ = K1K2K3 s̄ ,

c̄ = K1 s̄ ē , and

d̄ = K−1
3 p̄ ē .

(4.21)

These expression for the equilibrium concentrations make them prohibitive
for analytical work but they can be readily calculated numerically. The re-
sults, however, are mainly of academic interest since in the two cases of gen-
eral importance the equilibrium conditions are never fulfilled in experiments:
(i) If product formation is the goal, efficient synthesis under conditions far
away from equilibrium are required, and (ii) in single molecule studies (see
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section 4.4) the turnover of enzyme conformations occurs under conditions to
which equilibrium thermodynamics cannot be applied. Numerical integration
of equation (4.18) will be represented and discussed in section 4.6.4.

For many experimental investigations, in particular for single molecule ex-
periments, the assumption of constant concentrations of substrate and prod-
uct, [S] = s0 = const and [P] = p0 = const, is realistic. Then the nonlinear
ODE (4.18) is changed into a three dimensional linear ODE equation with
k1 = k′1 s0 and l3 = l′3 p0 :

d

dt

ec
d

 =

−(k1 + l3) l1 k3

k1 −(k2 + l1) l2
l3 k2 −(k3 + l2)

 ·
ec
d

 . (4.22)

Now the analysis is straightforward [378], and the computation of the eigen-
values yields:15

λ1,2 = −1

2

(
(k1 + k2 + k3 + l1 + l2 + l3) ±

√
∆
)

with

∆ = (k1 − k2 − k3 + l1 − l2 + l3)2 − 4 (k2 − l3)(k3 − l1) and

λ3 = 0 .

(4.23)

The zero eigenvalue indicates a conservation relation that is given by the total
enzyme concentration: e0 = e + c + d. The commonly chosen experimental
conditions apply no product, [P] = 0 ⇒ l3 = 0, or at least the initial
condition p (0) = 0, and excess substrate, [S] = s ≈ s0 = [S]0 where is
the total concentration [S]0 is the sum of the concentrations of all complexes
containing substrate or product: s(0) = [S]0 +[P]0 = [S]+[S ·E]+[E ·P]+[P].
The two nonzero eigenvalues are complex in the range [378]

h2 +
(√

k2−
√
k3− h1

)2

< k1 = k′1[S] < h2 +
(√

k2 +
√
k3− h1

)2

,

and damped oscillations were indeed observed in single enzyme molecule
experiments [101]. Damping of the oscillations is heavy because the ratio
=(λ)/<(λ) is small for this three state (E,S · E,E · P) system.

15 We remark that for a linear, n-dimensional ODE, (d/dt)xt = A ·xt, the matrix A
is identical to the Jacobian matrix J = {Jij = ∂fi/∂xj ; i, j = 1, . . . , n} for a general
ODE, (d/dt)xt = f(x)t, and its eigenvalues λk; k = 1, . . . , n determine the (here
global) stability of the system.
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Fig. 4.4 The steady state approximation for multistep reactions. A test of
the validity of the steady state approximation for the chain of irreversible first order
reactions: A → B → C (4.25). The concentration of the reaction product C is plotted
as a function of time. The steady state solution (black) becomes a better and better
approximation of the exact curves the larger the value of k2 is. Parameter choice:
a0 = 10 c 0; k1 = 1 [t.u.]−1; k2 = 0.4 (blue), 0.6 (green), 1.0001 (yellow), 2 (red), and
10 (brown) [t.u.]−1.

Generalized rate functions. It is often useful to define a common rate func-
tion for different kinetics, which allows for insertion of specific association
functions:

vj(x) = kj

M∏
i=1

θi(xi) with (4.24)

θi(xi) = x
νi(j)
i for mass action kinetics , and

θi(xi) =
v

(ij)
max xi

K
(ij)
M + xi

for Michaelis-Menten kinetics ,

where a combination of different kinetic function is possible.
There are many other forms of simplified kinetics in the sense that the

number of independent variables is reduced at the expense of more com-
plicated expressions. An example – closely related to the Michaelis-Menten
approach – is the steady state approximation. We consider a two step reaction

A
k1

−−−−→ B
k2

−−−−→ C , (4.25a)
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which is described by three kinetic differential equations. Only two are inde-
pendent since we have the conservation relation a+ b+ c = const:

da

dt
= −k1 a ,

db

dt
= k1 a − k2 b , and

dc

dt
= −k2 b (4.25b)

The solution curves for the initial conditions a(0) = a0 and b(0) = c(0) = 0
and k1 6= k2 are

a(t) = a0 e
−k1t , b(t) = a0

k1

k2 − k1

(
e−k1t − e−k2t

)
, and

c(t) = a0

(
1 +

k1e
−k2t − k2e

−k1t

k2 − k1

)
.

(4.25c)

The steady state approximation is based on the assumption that the con-
centration of the intermediate does not change: db/dt = 0, which leads to

b̂(t) = k1 a(t)/ k2, and hence

c(t) ≈ a0

(
1− e−k1t

)
. (4.25d)

Figure 4.4 illustrates the validity of the steady state approximation as a
function of the ratio k2/k1: the larger this ratio is the better is the agreement
between approximation and exact solution. It is also worth considering the
opposite situation, k1 � k2 than the limit yields

c(t) ≈ a0

(
1− e−k2t

)
and b(t) ≈ a0 e

−k2t . (4.25e)

What we see here in this simple example is a manifestation of the rule of the
rate determining step. The overall kinetics of a chain of reactions is deter-
mined by the slowest step called the rate determining step: This is step 1 for
k2 � k1 and step 2 for k1 � k2.
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4.1.3 Reaction network theory

So far we have considered chemical reactions either as single step processes
or we discussed techniques that approximated multistep mechanisms by an
overall single step.16 Almost all interesting chemical systems, however, con-
sist of networks of reactions that are characterized by a variety of interact-
ing molecular species, and this leads to dynamical systems with more than
one, often many variables, for which analytical solutions are available very
rarely only.17 In the second half of the twentieth century, when chemists and
physicists began to consider kinetic differential equations as dynamical sys-
tems and started to apply qualitative analysis, new questions in addition to
forward and inverse problems became relevant. These new questions are con-
cerned with general properties of reaction networks, for example, to prove (i)
whether or not a network can sustain multiple steady states in the positive
orthant of concentration space, (ii) whether or not undamped oscillations re-
sulting from a stable limit cycle are possible or (iii) whether of not a specific
reaction network can display deterministic chaos. Some of these questions
can be answered by the deterministic theory of chemical reaction networks
described here, which is also the fundament for the stochastic approach. A
complementary but also general technique that can be applied for finding
answers to these questions consists in the inversion of qualitative analysis
[113, 297, 296]: Inverse bifurcation analysis aims at an exploration of the do-
mains in parameter space that give rise to certain forms of complex dynamics.

A formal deterministic theory of chemical reaction networks has been de-
veloped already in the nineteen seventieth by Fritz Horn, Roy Jackson, and
Martin Feinberg [125, 218] in order to complement conventional chemical ki-
netics by providing tools that allow for the derivation of general results for
entire classes of reaction networks. The theoretical approach became really
popular only recently when chemical reaction kinetics has been applied to sys-
tems biology and it was realized that stochastic modeling of extended chem-
ical reaction networks is required for any deeper understanding of regulation
and control of cellular dynamics and cellular metabolism [72, 184]. Before
we consider modeling of stochastic chemical reaction networks (SCRNs) in
section 4.2.2 we present a brief introduction to the Feinberg-Horn-Jackson-
theory, which allows for straightforward answers to otherwise difficult to pre-
dict properties of chemical reaction networks, for example, the nonexistence
of multiple steady states or the absence of oscillating concentrations. The
theory is not aiming at deducing the properties of networks for given sets
of rate parameters but it derives tools for studying features of families of
networks irrespectively of the particular choice of parameters.

16 Two trivial exceptions were the inflow and outflow of a compound A in the flow
reactor and the reversible reaction A
B. In both cases, however, we were dealing
with a single stochastic variable counting the numbers of molecules A.
17 A exception was the two step irreversible reaction A→ B→ C (4.25a).
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Fig. 4.5 Stoichiometric subspace and compatibility class. The figure on the
r.h.s. sketches the stoichiometric subspace, S = spanj{sj}, of the irreversible reaction

A+B→ C. The concentration space X = {a, b, c} ∈ R3 is three dimensional, two inde-
pendent conservation relations, a(t) = a0+c0−c(t) and b(t) = b0+c0−c(t), introduce
linear dependencies and hence the stoichiometric subspace is one-dimensional. The
stoichiometric compatibility class is formed by adding a constant vector c ∈ RM , for
example the initial conditions x0 = (a0, b0, c0) to the stoichiometric subspace: x0+S.
The two initial conditions applied here are: (i) x0 = (a0, b0=a0, 0) shown on the l.h.s.,
and (ii) x0 = (a0, b0 < a0, 0) on the r.h.s..

Formal stoichiometry. For the forthcoming discussions it is necessary to
formalize the concept of stoichiometry in order to make it accessible to op-
erations based on linear algebra. For this goal we assume a set of M chem-
ical species Ξ = {X1,X2, . . . ,XM}, which are interconverted by K chemi-
cal reactions, R1,R2 . . . ,RK . It is useful to define a row vector of species:
X = (X1,X2, . . . ,XM ). Each individual chemical reaction Rj

M∑
i=1

νij Xi →
M∑
i=1

ν′ij Xi (4.26)

is characterized by two column vectors containing the stoichiometric coef-

ficients νj =
(
ν1j , ν2j , . . . , νMj

)t
and ν′j =

(
ν′1j , ν

′
2j , . . . , ν

′
Mj

)t
of reactants

and products, respectively.Now we can write the stoichiometric equation of
reaction Rj (4.26) in compact form

Rj : X · νj → X · ν′j and X · (ν′j − νj) = X · sj . (4.26’)
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A linear combination of species as defined by the stoichiometry of a chemical
reaction is characterized as reaction complex (section 4.1.3):18 Cj = X ·νj or
Cj′ = X ·ν′j being the reactant complex and the product complex of reaction
Rj , respectively. The stoichiometric coefficients of all N complexes appearing
in a chemical reaction network together form the M×N matrix of complexes

C =
(
X · ν1 X · ν2 . . . X · νN

)
.

As indicated already in equation (4.26’) we combine the stoichiometric vec-
tors belonging to the reactants and the products of the same reaction whereby
we count reactant coefficients as being negative in order to provide a measure
of the change introduced by the reaction. The stoichiometry of the entire re-
action network is properly encapsulated in the M×K stoichiometric matrix :

S = (s1, s2, . . . , sK) = {sij ; i = 1, . . . ,M ; j = 1, . . . ,K} (4.27)

The stoichiometric matrix allows for a compact written form of the kinetic
differential equations and their solutions

dx(t)

dt
= S · v and x(t)− x0 =

K∑
j=1

(∫ t

0

vj
(
x(τ)

)
dτ

)
sj , (4.28)

where v =
(
v1

(
x(t)

)
, v2

(
x(t)

)
, . . . , vK

(
x(t)

))t

is the vector of reaction rates,

here mass action rates v(MA) according to equation (4.3), the variables are
concentrations described by a vector x(t) =

(
x1(t), x2(t), . . . , xM (t)

)
∈ RM

with xi(t) = [Xi(t)] being the concentration of compound Xi at time t, and
x0 =

(
x1(0), x2(0), . . . , xM (0)

)
are the initial concentrations. Equation (4.28)

is the straightforward extension of (4.9) to an arbitrary number of reactions.

A number of restrictions apply to chemical kinetics: (i) concentrations are
positive real numbers, xj(t) ∈ R>0 ∀ j = 1, . . . ,M ,19 (ii) the solutions have
to fulfil the stoichiometric relations for all reactions Rj ( j = 1, . . . ,K) and
this is encapsulated in the restriction to stoichiometric compatibility classes.
We define the stoichiometric subspace of a reaction system by

S = span{sj | j = 1, . . . ,K} ⊂ RM and R
.
= dim(S) . (4.29)

18 The notion of reaction complex needs affirmation, since it is different from an asso-
ciation complex like the enzyme-substrate complex in the Michaelis-Menten reaction:
A reaction complex is a combination of molecules in the correct stoichiometric ratio
as it appears at the reactant side or at the product side of a stoichiometric equation.
19 In chemistry concentrations of molecular species are commonly required to be
positive quantities, whereas extinction corresponding to concentration zero is often
an important issue in biology. Then, positive has to be replaced only by nonnegative,
R>0 → R≥0.
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The stoichiometric compatibility class contains the stoichiometric subspace
shifted by some constant vector, c+S, and we restrict the variables to positive
values of the concentrations is of the form

D = (c + span{sj | j = 1, . . . ,K}) ∩ RM>0 = (c + S) ∩ RM>0 . (4.30)

Figure 4.5 shows a simple example of a one-dimensional compatibility class
embedded in a three-dimensional concentration space. Since the linear span is
built from all reaction vectors sj , linear dependencies will occur in most cases.
The number of independent vectors in spanj(sj), the dimension or the rank
R of the stoichiometric subspace, is the number of independent concentration
variables or the number of degrees of freedom in the kinetic reaction system.
The rank R of the stoichiometric matrix represents the number of degrees
of freedom of the kinetic system and is either determined analytically or
computed by routine software. For small systems, like the examples presented
here, it is useful and illustrative to reduce the degrees of freedom by means of
easy to find conservation relations, but for larger system with several hundred
variables and more, a stable numerical procedure is commonly to be preferred.

Chemical reaction networks. The notion of a chemical reaction network
stands in the center of the reaction network theory. Each network consists of
three commonly finite sets of objects

(i) a set of M molecular species, Ξ = {X1,X2, . . . ,XM}, which interact
through a finite number of chemical reactions,

(ii) a set of N complexes, C = {C1,C2, . . . ,CN}, which are linear combina-

tions of species, Cj =
∑M
i=1 νijXi with νij ∈ N>0, and

(iii) a set of K molecular reactions, R = {R1,R2, . . . ,RK}, with R ⊂ C×C
in the sense of individual elements being directed combinations of two
complexes, (CR,CP) ∈ R is written as CR → CP where R and P stand
for reactants or products, respectively.

Restrictions are imposed on the sets S and C: Each element of S has to
be found in at least one reaction complex or, in other words, there are no
superfluous species. Condition (iii) is supplemented by two exclusions: No
complex may react into itself, CR 6= CP, and isolated complexes are not
allowed, in the sense that every element of C must be the reactant or the
product complex of some reaction. It is worth reminding that a reversible
reaction (see e.g. section 4.3.2.2) is represented by two reactions: CR → CP

and CP → CR.
The mentioned restriction can be cast in a somewhat different form that

is presented here in order to clarify the definitions. Complexes and species
are related through

(a) C ⊂ RS where RS stands for a vector space spanned by unit vectors repre-
senting individual species. Commonly, the coefficients in the linear com-
binations of species called complexes are natural numbers, sij ∈ N> 0,
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Fig. 4.6 Complex balancing. Balancing of complexes is achieved when the inflow
into every complex Ci (blue) is precisely compensated by the outflow from it (red).
Complex balancing is a relaxation of the constraint of detailed balance that requires
that all individual reaction steps are at equilibrium.

(b)
⋃

supp, Cj∈C
Cj = S the union of the species in all complexes is the species

set and no species can exist in S, which does not appear in at least one
complex.20

Species Xi and reactions Rj are directly related by the stoichiometric matrix
S = {sij}. The columns of S refer to reactions and the rows to species. We
shall make use of S also in section 4.6 for the implementation of a simulation
tool for chemical master equations.

The fourth components of a reaction system is the kinetics of the reac-
tions, K. Mass action kinetics (v(MA)) has been discussed in section 4.1.1 and
Michaelis-Menten kinetics (v(MM)) as an example of higher-level kinetics in
section 4.1.2. In the majority of the examples discussed here mass action we
be applied. We repeat the basic equation (4.2) for reaction Rj :

s1j X1 +s2jX2 + . . . =⇒ vj = kj [X1]s1j · [X2]s2j · · · = kj x
s1j
1 ·x

s2j
2 · · · . (4.31)

In mass action kinetics v(MA) we need one reaction parameter, kj , for every
elementary step and hence the number of rate parameters is equal to K,
the number of reactions.21 Eventually, a reaction system consists of the four
components {S, C,R,K} and the evolution in time of the reaction system can

20 The notion ’supp’ stands for the support of a vector, which is the subset of unit
vectors for which the vector has nonzero coefficients.
21 In order to make the notation clearer for reversible reactions, we use two symbols
and the same index for both reactions: kj and lj for the forward and the reverse
reaction, respectively.
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be encapsulated in an ODE or in a master equation in case of a stochastic
description.

Stationary states. Two kinds of stationarity are important to distinguish:
(i) equilibria with detailed balance and (ii) complex-balanced equilibria. De-
tailed balance follows from statistical thermodynamics and implies that the
flow for every individual reaction step Rj vanishes at equilibrium [430]:
vj = 0 = kj x̄

s1j
1 · x̄s2j2 · · · ∀ j = 1, . . . ,K. It is realized the limit of chemi-

cal kinetics at thermodynamic equilibrium (3.100). The weaker condition of
complex balancing [124, 217, 344] requires that for all complexes the net flow
into a complex Ci is compensates by the net outflow (figure 4.6):22

Ci :
d[Ci]

dt
= 0 or

N∑
j,j 6=i

kji ĉ
νj
i = ĉ νii

N∑
j,j 6=i

kij ∀ Ci ∈ C . (4.32)

In order to facilitate the distinction equilibrium concentrations are charac-
terized by a ’bar’ and stationary concentrations obtained from complex bal-
ancing by a’hat’.

Reaction graphs. Some general properties of reaction networks can be pre-
dicted directly from the reaction graph (figure 4.7), which is a directed graph
containing the complexes, Ck ∈ C , (k = 1, . . . , N), as nodes and three sym-
bols indicating forward (→), backward (←) and reversible reaction (
) as
edges. A reaction graph may have several components called linkage classes.
Different linkage classes have no common node and no edge connecting them.
Two properties are important for reaction graphs: (i) Every complex appears
only once as a node of the graph and (ii) different linkage classes to not share
complexes.

The network in figure 4.7 has two linkage classes since the two clusters
don’t share a single complex. The information on the number of complexes
and the number of linkage classes is contained in the reaction graph. The
same is true for the classification of a network as reversible, weak reversible or
not reversible. A (strongly) reversible network contains exclusively reversible
reactions in the strict thermodynamic sense. Weak reversibility relaxes the
condition of (strong) reversibility : A network is weakly reversible when for
every pair of complexes there exist a directed arc leading from one complex to
the other. The network in figure 4.7 fulfils the condition of weak reversibility,
it would be (strongly) reversible if it would be complemented by the arrows
C3 → C5 and C5 → C4. For the determination of linkage classes only the exis-
tence or absence of arrows between complexes matters. Clearly, the direction
of arrows is is required too for the classification of reversibility.

A reaction graph differs from a reaction mechanism in three aspects: The
reaction complexes are not defined in terms of chemical compounds and there-

22 For the definition and illustration of complex balancing it is convenient to apply
a different notation of the rate parameter: For the reaction Ci → Cj we use kji.
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Fig. 4.7 The graph corresponding to the chemical reaction network (4.35a).
Each node of the graph (l.h.s.) corresponds to a reaction complex, three different
symbols characterize the directed edges: →, ←, and 
 for forward, backward, and
reversible reaction, respectively. This graph consists of L = 2 linkage classes. On the
r.h.s. we show the Feinberg mechanism, which is an implementation of the reaction
graph on the l.h.s. The mechanism differs from the graph by additional information:
(i) the molecular realization of the reaction complexes and the rate parameters.

fore the reaction graph does not consider stoichiometry, it does not specify
the algebraic relations of reaction rates in the form of mass action, Michaelis-
Menten or other kinetic functions, and it does not contain weighting factors of
edges in the sense of rate parameters. The reaction graph represents nothing
more than the topology of a reaction network and general properties derived
from the graph are valid for a large number of concrete cases irrespective of
stoichiometries, kinetic functions, and rate constants.

Examples of reactions and networks. We illustrate chemical reaction network
theory by means of a few examples.

The irreversible association reaction: A + B→ C. 23 The first example is the
irreversible association reaction (4.1f):

A + B
k

−−−−→ C . (4.33a)

For the three sets of the chemical reaction network we have

S = {A,B,C} , (4.33c)

C = {C1 = A + B,C2 = C} , and (4.33d)

R = {R1 = C1 → C2} . (4.33e)

The stoichiometric matrix S is of dimension 3× 1:

23 In narrative chemical kinetics distinctions are made for notions concerning the
association-dissociation reaction A + B 
 C that are synonyms in formal kinetics:
The word addition is used when A and B are of similar size and binding is preferred
for molecules of very different size, for example, a substrate is bound to an enzyme.
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S =

 −1

−1

+1

 . (4.33f)

In deterministic mass action kinetics, v(MA), the variables are the concen-
trations of the molecular species, [A] = a(t), [B] = b(t), and [C] = c(t). In
order to solve the kinetic differential equation we require a rate parameters
k and three initial conditions a(0) = a0, b(0) = b0, and c(0) = c0. The
three variables are stoichiometrically related by two conservation relations
derived from equation (4.33a), which can be used to eliminate two variables,
b(t) and c(t) for example, yielding the remaining single degree of freedom as
da
dt = db

dt = −dc
dt corresponding to R = 1 (see figure 4.5):

a(t) + c(t) = a0 + c0 = ϑ
(ac)
0 ,

b(t) + c(t) = b0 + c0 = ϑ
(bc)
0 , and

b(t) − a(t) = b0 − a0 = ϑ
(b)
0 .

One out of these three conditions is dependent, since the second line minus
the first line yields the third line. Eventually one finds:

da

dt
= − k a b = − k a (ϑ

(b)
0 − a) . (4.33g)

The ODE is solved by standard techniques and we obtain the solutions

a(t) =
a0 ϑ

(b)
0 exp (−ϑ(b)

0 kt)

ϑ0 + a0

(
1− exp (−ϑ(b)

0 kt)
) for ϑ

(b)
0 > 0 , b0 > a0 ,

a(t) =
a0 |ϑ(b)

0 |
a0 − (a0 − |ϑ(b)

0 |)
(
1− exp (−|ϑ(b)

0 | kt)
)

for ϑ
(b)
0 < 0 , b0 < a0 , and

a(t) =
a0

1 + a0 kt
for ϑ

(b)
0 = 0 , b0 = a0 .

(4.33h)

by direct integration. The three cases differ in the long-time behavior:

limt→∞ a(t) = 0 for ϑ
(b)
0 ≥ 0, b0 > a0 and limt→∞ a(t) = b0− a0 for ϑ

(b)
0 < 0,

b0 > a0.

The reversible bimolecular conversion reaction: A + B→ C + D. The second
case simply consists of a reversible bimolecular conversion reaction that is
decomposed into two elementary reactions of type (4.1i):
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A + B
k

−−−−→ C + D and (4.34a)

C + D
l

−−−−→ A + B . (4.34b)

For the three sets of the chemical reaction network we have

S = {A,B,C,D} , (4.34c)

C = {C1 = A + B,C2 = C + D} , and (4.34d)

R = {R1 = C1 → C2,R2 = C2 → C1} . (4.34e)

The stoichiometric matrix S is of dimension 4× 2:

S =


−1 +1

−1 +1

+1 −1

+1 −1

 . (4.34f)

In deterministic mass action kinetics, v(MA), the variables are the concen-
trations of the molecular species, [A] = a(t), [B] = b(t), [C] = c(t), and
[D] = d(t). In order to solve the kinetic differential equation we require two
rate parameters, k and l, and four initial conditions: a(0) = a0, b(0) = b0,
c(0) = c0, and d(0) = d0. The four variables are stoichiometrically related by
three conservation relations in (4.34a) and (4.34b)

a(t) + b(t) + c(t) + d(t) = a0 + b0 + c0 + d0 ,

a(t) − b(t) = a0 − b0 , and

c(t) − d(t) = c0 − d0 ,

and only one degree of freedom – corresponding to the rank R = 1 of the
stoichiometric matrix – remains: da/dt = db/dt = −dc/ dt = −dd/dt. Ac-
cordingly, we can substitute b(t) = b0 − a0 + a(t), c(t) = c0 + a0 − a(t), and
d(t) = d0 + a0 − a(t) and the ODE for the last remaining variable a(t) takes
on the form:

da

dt
= − k a b + l c d = − k a (ϑ

(b)
0 + a) + l (ϑ

(c)
0 − a)(ϑ

(d)
0 − a) =

= (h− k) a2 − (kϑ
(b)
0 + lϑ

(c)
0 + lϑ

(d)
0 ) a + l ϑ

(c)
0 ϑ

(d)
0 ,

(4.34g)

where the initial conditions are contained in the quantities ϑ
(b)
0 = b0 − a0,

ϑ
(c)
0 = c0 + a0, and ϑ

(d)
0 = d0 + a0.

Equation (4.34g) can be integrated by standard methods to yield an im-
plicit solution of the form t = f(a) but the expression is so clumsy that we dis-
pense here from listing it. The analytical solution for the irreversible forward
reaction are identical with the solutions of the association reaction (4.33h)
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treated in the previous example, since the kinetic ODEs of an irreversible re-
action do not depend on the concentrations on the product side. Clearly, the
expressions are also valid for the irreversible backward reaction by replacing
a↔ c, b↔ d, and k ↔ l.

The Feinberg mechanism (figure 4.7). Our third example is taken directly
from Feinberg [125, 127] and deals with six elementary reactions involving
five chemical species related by the following mechanism:

A
k1

−−−−→ 2 B ,

2 B
l1

−−−−→ A ,

A + C
k2

−−−−→ D ,

D
l2

−−−−→ A + C ,

D
k3

−−−−→ B + E, and

B + E
k4

−−−−→ A + C .

(4.35a)

The three sets defining the chemical reaction network are:

S = {A,B,C,D,E} , (4.35c)

C = {C1 = A,C2 = 2B,C3 = A + C,C4 = D,C5 = B + E} , and (4.35d)

R = {R1 = C1 → C2,R2 = C2 → C1,R3 = C3 → C4,

R4 = C4 → C3,R5 = C4 → C5,R6 = C5 → C3} . (4.35e)

The stoichiometric matrix S for the mechanism (4.35a) is readily obtained:

S =


−1 +1 −1 +1 +1 0

+2 −2 0 0 −1 +1

0 0 −1 +1 +1 0

0 0 +1 −1 0 −1

0 0 0 0 −1 +1

 , (4.35f)

it has the dimension 5 × 6 and its rank is R = 3. The reaction graph corre-
sponding to this mechanism is shown in figure 4.7. The comparison of both
graphs is a nice illustration of one already mentioned property of reaction
graphs: The graph visualizes only the interconversions between reaction com-
plexes and contains no information about the molecular realization of the ki-
netic reaction network, whereas the graphical representation of the reaction
network in contains the full information except the specific initial conditions.
Analytical solutions for the reaction network (4.35a) are not available but
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Fig. 4.8 Relaxation times from multi-mode relaxation. Relaxation times can
be detected readily as a point of inflection in the plot of χ(t) against ln t. Multiple
relaxation times are found easily when the relaxation processes appear well separated
on the time axis. The three curves show two relaxation processes separated by factors
100 (green curve) or 10 000 (blue curve) on the time axis, and three relaxations
with relaxation times 1/100/10 000 (red curve). All amplitudes are chosen 1/3 or 2/3
(second process in the green and the blue curve); the time scale is ln t. In cases where
the individual processes are not so well separated on the time axis the problem to
calculate the relaxation times may be ill-posed [3, p. 252] (see also section 4.1.5).

numerical integration for given initial conditions is easily achieved. Some
qualitative properties will be derived in the forthcoming paragraphs.

Multidimensional relaxation. Chemical relaxation theory applied to a single-
step reactions was presented in section 4.1.1. It can be readily extended to an
arbitrary number of chemical reactions [397]. For K reactions the elements
of the relaxation matrix are of the form

A =

{
aij = −

K∑
k=1

(νki − ν ′ki)
νkj (v̄k)→ − ν ′kj(v̄k)←

x̄j

}
, (4.36)

and we expect to find more than one relaxation mode in the approach to-
wards equilibrium corresponding to more than one relaxation time. In vector
notation with χ = x − x̄ and the thermodynamic equilibrium as reference
state as before the relaxation equation is of the form

dχ

dt
= Aχ and χ(t) = exp (A t)χ(0) . (4.7’)
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The formal exponential function of matrix A in equation (4.7’) is readily
solved by means of an eigenvalue problem. It is illustrative to symmetrize
matrix A by means of a similarity transformation

D = G A G−1 with G =

{
gij =

δij√
x̄i

}
and

D =

{
dij = −

K∑
k=1

(νki − ν ′ki)(νkj − ν ′kj) v̄k√
x̄ix̄j

}
,

since (v̄k)→ = (v̄k)← = v̄k at equilibrium. The matrices D and A have the
same eigenvalues and the fact that A can be transformed to a symmetric
matrix has the consequence that all its eigenvalues are real, and for numerical
diagonalization simple routines can be applied for. For the original matrix A
the diagonalization yields

Λ = B−1 A B , A B = BΛ with Λ =


τ−1
1 0 . . . 0
0 τ−1

2 . . . 0
...

...
. . .

...
0 0 . . . τ−1

n

 .

The diagonal matrix Λ contains the eigenvalues and the matrix B = {bij}
collects the eigenvectors:

bj = (b1j , . . . , bnj)
t with A bj = λj bj =

1

τj
bj ,

which fulfil the simple exponential time dependence

bj(t) = bj(0) exp

(
− t

τj

)
.

Expressed in the original variables χj and using B−1 = H = {hij} for sim-
plicity the results is:

χj(t) =

∑n
k=1 bjk βk(0) exp (−t/τk)∑n

i=1

∑n
k=1 bik βk(0) exp (−t/τk)

with βk(0) =

n∑
l=1

hkl χl(0) (4.37)

Since the rank R of the reaction network is commonly smaller than the num-
ber of chemical species M some of the eigenvalues will vanish: λ = 0. The cor-
responding eigenvectors represent then conservation relations. Alternatively,
the constraints can be used to reduce the number of ODE’s.
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Definition of deficiency. First, we repeat the basic definitions of chemical
reaction network theory and we point out how the relevant properties can be
obtained:

(i) a linkage class is a subset of complexes that are linked be reactions
and the number of linkage classes is denoted by L,

(ii) a reaction network is weakly reversible if and only if a directed arc
leads from every complex to every complex of the network,

(iii) the reaction vectors combine reactants and products in the stoichio-

metric way, ~R = −CR + CP, and
(iv) the rank of a reaction network, R is the largest linearly independent

set that can be found among its reaction vectors.

The linkage classes of a reaction network are obtained straightforwardly: Each
complex is displayed exactly once in the sketch of the network, the complexes
are joined by introducing the reaction arrows into the sketch, and linkage
classes comprise all complexes joined together. The network in figure 4.7, for
example, has L = 2 linkage classes.

Strong and weak reversibility are directly seen in the reaction graph: In a
strongly reversible network all reactions R ∈ R are reversible,

(Cj → Ck ∈ R) =⇒ (Ck → Cj ∈ R) ∀ (Cj ,Ck) ∈ C . (4.38)

Weak reversibility relaxes the condition for strong reversibility in the sense
that it is sufficient to be able to reach every species from every species by a
sequence of reactions. The network in figure 4.7 is weakly reversible.

The rank of a chemical reaction network is defined as

R
.
= rank{CP − CR ∈ RS : CR → CP ∈ R} . (4.39)

We illustrate by means of a simple example: The six reaction vectors of the
network (4.35a),

{2B− A,A− 2B,D− (A + C), (A + C)− D, (B + E)− D, (A + C)− (B + E)},

can be contracted to the linearly independent subset of dimension three

{2B− A, (A + C)− D, (B + E)− D} .

Although the network (4.35a) consists of six reactions, only three of them are
linearly independent and accordingly it has rank R = 3. It is straightforward
to see that every reversible reaction consists of two reactions but only one of
them can be linearly independent. The determination of the rank R in small
systems is properly done by means of the conservation relations but for larger
systems a numerical computation of the rank of the stoichiometric matrix S
is usually much faster.
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The most important quantity of reaction network theory is the deficiency
of a reaction system, which is defined in the following equation:

Deficiency δ
.
= N − L − R , (4.40)

with N being the number of complexes, L the number of linkage classes,
and R the number of degrees of freedom or the rank of the reaction
kinetics.

The deficiency of a chemical reaction network is a nonnegative quantity [126]
and it determines essential features of the reaction system like the existence
of unique equilibria and stationary states.

The deficiency zero theorem. The deficiency zero theorem holds for all chemi-
cal reaction networks {S, C,R} of deficiency zero and makes three statements
[126]:

(i) If the network is not weakly reversible then the ODEs for the reac-
tion system {S, C,R,K} with any arbitrary kinetics K cannot admit
a positive equilibrium, i.e., a stationary point in RM+ ,

(ii) if the network is not weakly reversible then the ODEs for the reac-
tion system {S, C,R,K} with any arbitrary kinetics K cannot admit
a cyclic trajectory containing a positive composition, i.e., a point in
RM+ , and

(iii) if the network is weakly reversible (or reversible) then, for any mass
action kinetics v(MA) = κ ∈ RR+, the ODEs for the mass action sys-
tem {S, C,R, κ} have the following properties: Within each positive
stoichiometric compatibility class there exists exactly one equilib-
rium, this equilibrium is asymptotically stable, and there cannot
exist a nontrivial cyclic trajectory in RM+ .

The third property is a highly important extension of equilibrium thermody-
namics because existence and uniqueness of a stable equilibrium in the interior
of the positive orthant of concentration space is extended from strictly re-
versible to weakly reversible systems, from closed systems to closed and open
systems of deficiency zero. It is worth stressing again that the statements
hold for arbitrary finite dimensions of the reaction system irrespectively of
the particular choice of rate parameters – provided they are nonnegative.

The deficiency one theorem. The results of the deficiency zero theorem
hold for a much wider class of networks than those with deficiency zero.
The extension of the range of validity is encapsulated in the deficiency
one theorem. For the formulation of the theorem it is important to extend
the notion of deficiency to individual linkage classes, which are denoted as
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L = {L1,L2, . . . ,LL}. The number of complexes in linkage class Lj is de-
noted by Nj and since a complex can appear only in one linkage class we

have
∑L
j=1Nj = N . The number of independent degrees of freedom of the

ODE or the rank of a linkage class Lj is denoted by Rj ,

Rj
.
= rank{CP − CR ∈ RS : CR → CP ∈ R ∧ CR ∈ Lj}

and we define:

Deficiency of class Lj : δj = Nj − 1 − Rj . (4.41)

The class deficiency δj is a nonnegative integer like δ. The ranks of the

subsystems need not be additive but they fulfil
∑L
j=1Rj ≥ R and this yields

for the deficiency of the total network

δ ≥
L∑
j=1

δj = N − L −
L∑
j=1

Rj . (4.40’)

It is illustrative to consider zero deficiency networks because they are precisely
those networks that fulfil both of the conditions:

δj = 0 ∀ j = 1, 2, . . . , L , and δ =
∑L
j=1 δj = 0.

Now are in a position to introduce the deficiency one theorem [126].

Let {S, C,R} be a reaction network with L linkage classes, let δ = N −
L−R denote the deficiency of the network, δj = Nj−1−Rj ; j = 1, . . . , L
denote the deficiencies of the individual linkage classes, and assume that
the two following conditions are fulfilled:

δj ≤ 1 ∀ j = 1, 2, . . . , L , and δ =
∑L
j=1 δj (= 0).

If the network is weakly reversible, in particular if it is strongly re-
versible, then for any mass action kinetics κ ∈ R> 0R the ODEs for
the mass action system {S, C,R, κ} sustains precisely one equilibrium
in each positive stoichiometric compatibility class.

Thus, the deficiency one theorem is a powerful tool for the recognition of
reaction system lacking multiple stationary states. In later works the existence
of multiple stationary states came in focus [78, 128] and these studies make a
bridge between applications in chemistry and in biology. We shall come back
to reaction systems with multiple steady states and complex dynamics in the
next chapter 5.
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4.1.4 Theory of reaction rate parameters

Although this monograph aims at analyzing the problems of stochasticity
without touching the question where the input parameters for the models
come from, we make one exception in case of chemical kinetics. The reason is
twofold: (i) In this case we have a well developed theory that allows for trac-
ing chemical kinetics down to first principles from theoretical physics, and (ii)
chemical reaction kinetics is at the same time built upon a true wealth of em-
pirical data that provide a unique proving ground for stochastic models. For
a comprehensive understanding of chemical reactions the solutions of kinetic
differential equations or chemical master equations have to be complemented
by detailed knowledge of the processes at the molecular level. In particular,
we need the frequencies or probabilities π(t, dt) that quantify the event that
a reactant molecule or a reaction complex C of some reaction R, which has
been randomly selected at time t, will react to yield products within the next
infinitesimal time interval [t, t+ dt]. Under two assumptions, (i) spatial homo-
geneity assumed to be achieved by fast mixing, and (ii) thermal equilibrium,
virtually all chemical reactions fulfil the condition

π(t, dt) = γ dt , (4.42)

where γ is the reaction specific, deterministic or probabilistic rate parame-
ter.24 If γ is independent of t, π is simply proportional to dt. The two basic
conditions (i) and (ii) are fulfilled likewise for chemical reactions in the va-
por phase and in dilute aqueous solutions. The rate parameter is a function
of the external conditions like temperature and pressure: γ = γ(T, p, . . .).
In solution, in particular in aqueous solution other external parameters are
important like pH, ionic strength, viscosity, etc.

The task to be solved is to conceive a theory that allows for a deriva-
tion of rate parameters and there dependence on external parameters like
temperature and pressure from first principles of physics and firm empiri-
cal data. Such an ambitious undertaking has been successful or is at least
promising for some disciplines of physics as well as for chemical kinetics but
such a background theory does not exist for most other probabilistic con-
cepts, particularly not for most of biology, for sociology or for economics.
The rate parameters of chemical kinetics and their dependence on external
parameters can be deduced, in principle, from quantum mechanics. Here we
present a brief digression into the molecular theory of reaction rates in or-
der to illustrate how rate parameters originate from a physical background.
Although the rigorous approaches were conceived and tested for reactions
in dilute gases, they are with some modifications regularly and successfully
applied to reaction in solutions. We start by considering two model equations

24 Almost always the probabilistic rate parameter γ is identical with the conventional
deterministic parameter k, and we shall assume that γ can be interchanged with k
whenever needed.
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for the calculation of rate parameters: (i) the empirical Arrhenius equation
conceived in the nineteenth century equation, and (ii) the Eyring equation
that is based on quantum mechanics, in particular transition state theory.
Then we give an overview of calculations of rate parameters from collision
theory of chemical reactions and finally a glance on reactive scattering in the
semiclassical and quantum mechanical approach. In classical mechanics, the
motions of particles satisfy Newton’s laws, whereas in quantum mechanics,
particles are described by the quantum wavefunction, which is a solution of
Schrödinger’s equation. The full quantum mechanical calculations are consis-
tent but require expensive computer time consuming calculations, and hence
they are tractable only in the simplest cases. An approach is called semiclas-
sical if one part of a system is described by quantum mechanics whereas the
other is modeled classically. In the semiclassical theory of chemical reactions
quantum mechanics is used for the description of molecules and classical tra-
jectories are applied for the description of the reaction. In an advanced form
each trajectory is given a quantum phase so that quantum effects such as
interference and tunneling can be described using only classical information.

Model equations. Two equations modeling the temperature dependence of
rate parameters found widespread application: The empirical Arrhenius equa-
tion conceived in the nineteenth century and the Eyring equation being the
result of the transition state theory.

The Arrhenius equation. For reaction R the probabilistic rate parameter and
its temperature dependence is given by

γ(T ) = k(T ) = A exp

(
− ea

kBT

)
. (4.43)

where ea is the activation energy25 and A is the so-called pre-exponential
factor. Equation (4.43) has been proposed for the temperature dependence of
the deterministic rate parameter already in 1884 by the Swedish physicist and
chemist Svante Arrhenius. It is still used for the evaluation of rate parameters
from known temperature dependence of reaction rates, in particular in the
form, ln k = lnA− ea/(kBT ) . The assumption of a temperature independent
pre-exponential factor A can be challenged and more flexible equations are
known as modified Arrhenius equation:

γ(T ) = k(T ) = A

(
T

T0

)n
exp

(
− ea

kBT

)
or (4.43’)

γ(T ) = k(T ) = A exp

(
− ea

kB(T − T0)

)
. (4.43”)

25 The activation energy ea is given in Joule per molecule and this implies usage of
the Boltzmann constant kB = 1.3806488 × 10−23 J K−1. In chemistry it is common
to use kilojoule (kJ) per mole instead of molecule, which we indicate by using Ea for
the activation energy and then kB has to be replaced by the gas constant R = NLkB.
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wherein T0 is a reference temperature. The dimensionless exponent n com-
monly lies in the range −1 ≤ n ≤ 1.

Transition state theory. The theory of the transition state dates back to the
early applications of quantum mechanics to chemistry. Roughly a decade af-
ter the formulation of quantum mechanics by Erwin Schrödinger and Werner
Heisenberg the American physicist Henry Eyring [122] proposed a theory of
chemical reactions, which allows for the calculation of rate parameters and
which is still use more than 65 years after its invention. It provides an alter-
native to the fully empirical reaction parameters of the Arrhenius equation
[270]. The theory deals with reactant molecules, which come together and
form an unstable complex called the transition state and the reaction pro-
gresses further to yield products. The approach can be understood as a kind
of semiempirical theory: The reactant molecules as well as the transition state
are described by quantum mechanics but the motion along the reaction co-
ordinate % (figure 4.9) is treated by classical mechanics and pure quantum
effects like tunneling are not included but can be added (see, e.g., [306]). In
order to be activated for the reaction the reaction complex has to be driven
up the reaction coordinate26 % through energy transfer from other molecular
degrees of freedom or from the environment until the local maximum called
the transition state is reached. Then the reaction complex travels down the
product valley and looses energy that is transferred to other degrees of free-
dom. The transition state is symbolized by double-dagger (‡) and is treated
like a molecular entity except one unstable vibrational mode understood as
the translational motion along the reaction coordinate %. Thermodynamics
is applied to calculate the reaction rate parameter for the reaction

A + B
K‡


 [AB]‡
k‡

−−−−→ products

by making a quasi-equilibrium assumption for the transition state:

K‡ =
[AB‡]

[A] · [B]
. (4.44)

The conventional rate parameter is then obtained from k = k‡ ·K‡ and what
remains, is to find an expression for the rate k‡ with which the transition
state is converted into products.

The transition state is considered as a molecular complex with one uncom-
mon degree of freedom consisting of the motion along the reaction coordinate
%, which leads to products. All other 3n− 7 degrees of freedom – or 3n− 6 in
case of linear geometries – are handled by conventional statistical mechanics
and the equilibrium constant for complex formation is of the form

26 The reaction coordinate is a combination of atomic movements that leads from
reactants to products over the lowest conceivable pass on the energy landscape.



4.1 Chemical reaction kinetics 343

Fig. 4.9 Transition state for the reaction A + BC → AB + C. Reaction
dynamics is visualized as a process along a single coordinate called the reaction
coordinate %. The Gibbs free energy of the reaction complex, ∆G(%), is plotted
against the reaction coordinate and increases during the the approach of the re-
actants until it reaches a (local) maximum on the energy landscape (see figure 4.12)
denoted as transition state. Then through dissipation of free energy to the envi-
ronment the reaction complex progresses downward in the product valley until it
reaches the stable product state. The example presented is an exergonic reaction
since ∆G0 = ∆Greactants −∆Gproducts < 0.

K‡ =
qAB‡

qA qB
e−∆H

‡
0/RT ,

wherein the individual partition functions are denoted by q and the enthalpy
difference between the transition state and the reactants is ∆H‡0 .27 The re-
maining degree of freedom is responsible for product formation and has the

partition function q
(%)

AB‡ . No matter whether this mode is interpreted as a de-
generate vibration with a negative harmonic potential or as a translational

degree of freedom we find k‡ · q(%)

AB‡ = kBT/h with h being Planck’s constant
and the final result is the same:

k = k‡ ·K‡ = κ
kBT

h
e∆S

‡
0/R e−∆H

‡
0/RT . (4.45)

By κ we denote an empirical transmission factor measuring the probability
that the vibrating activated complex decomposes into the product valley,
and activation entropy and activation enthalpy are related to the equilibrium

27 At constant pressure, for example in solution where the volume change ∆V0 of a
reaction is small, the reaction enthalpy ∆H0 takes on practically the same values as
the reaction energy ∆E0.
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constant through:

RT ln K‡ = −∆G‡0 = −∆H‡0 + T ∆S‡0 .

Equation (4.45) is Eyring’s formula for the value of the reaction rate parame-
ter that corresponds to the rate probability γ(A+B). The value of the formula
is twofold: (i) It shows how reaction rate parameters can be derived from
first principles, and (ii) it provides a thermodynamic interpretation of the

steric factor ρ by means of an activation entropy ∆S‡0. Direct calculations of
rate constants, however, are highly inaccurate since energy surfaces cannot
be obtained with sufficient precision apart from a few special cases like the
H+H2 reaction (figure 4.12). It should be mentioned that the simpler Ar-
rhenius approach is often preferred over the application of transition state
theory to interpretations of temperature dependencies in mechanisms involv-
ing biopolymer molecules [465]. There are many possible pitfalls in cases
where the reaction mechanisms of the experimental systems are not known
in sufficient detail.

Molecular collisions. Molecules or atoms have to come together before they
can react, accordingly molecular collisions play a key role in chemical reac-
tions [67], and we present here a short account on molecular collisions (For
an excellent introduction into statistical physics of molecular reactions see,
e.g., [36, pp. 803-1018]). A vapor phase reaction mixture is assumed in which
the molecules behave according to Maxwell-Boltzmann theory. This theory
is based on classical collisions, which implies that molecules are obeying the
laws of Newtonian mechanics, and further it is assumed that the gas is at
thermal equilibrium. It has to be remarked, however, that the application of
classical collision theory to molecular details of chemical reactions can be only
an illustrative and useful heuristic, because the molecular domain falls into
the realm of quantum phenomena and any theory that aims at a derivation of
reaction probabilities from really first principles should be built upon a firm
quantum mechanical basis (see quantum mechanical reaction dynamics).

Molecules change their motions, their internal states, and their natures
in collisions, which are classified as elastic, inelastic or reactive, respectively.
In an elastic collision the collision partners exchange linear momentum and
kinetic energy, and only the directions as well as the absolute values of the
velocities of the collision partners before and after the collision are different
(figure 4.11). In an inelastic collision internal energy, rotational and/or vibra-
tional and in exceptional cases also electronic energy, is transferred between
the reaction partners. Finally, in a reactive collision a chemical reaction takes
place between the reaction partners and the molecular species before and af-
ter the collision are different. An often made assumption in collision theory
is that the colliding objects have spherical geometry, which is apparently a
very crude approximation. Corrections can be made by the consideration of
a geometric factor or by much more elaborate calculations.
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In order to be able to handle the specific properties of individual molecules,
it is necessary to distinguish molecular species, e.g. A, and individual molecules
A.28 In the latter case knowledge of the detailed molecular state ΛA may be
required, for example,

AΛA
with ΛA = (NA, ΣA, nA, JA;mA, rA,vA) (4.46)

where (NA, ΣA, nA, JA) stands for a complete set of molecular quantum
numbers characterizing electronic and spin state (NA, ΣA), vibrational state
(nA), and rotational state (JA) of molecule A. The mass of the molecule
is mA, position (rA) and velocity coordinates (vA) are commonly mea-
sured in a Cartesian labor coordinate system: rA(t) = (xA, yA, zA) and

vA(t) =
(
v

(A)
x , v

(A)
y , v

(A)
z

)
. In the spirit of classical mechanics the position

vector is – apart from spontaneous changes in collisions – a linear function of
time, r(t) = r0 + v · t, and the velocity is constant, v = v0, or in other words
the molecules travel on straight lines with constant speed between collisions.
On this basis we can easily identify the different classes of bimolecular colli-
sions, A + B→, by means of examples where ‘′’ is used to indicate the state
after the collision:

(1) Elastic collisions: AΛA
+ BΛB

→ AΛA
+ BΛB

with mAvA + mBvB =
mAv′A + mBv′B and mA|vA|2 + mB|vB|2 = mA|v′A|2 + mB|v′B|2 corre-
sponding to conservation of linear momentum and kinetic energy. The
set of internal quantum numbers remains unchanged in both molecules,

(2) inelastic collisions: AΛA
+ BΛB

→ AΛ′A
+ BΛ′B where the set of quantum

numbers for internal motions has been changed by the collision, and
(3) reactive collisions: A + B → · · · where the two molecules undergo a

chemical reaction in which the nature of at least one molecule is changed.

The correct description of translational motion in a macroscopic reaction
vessel does not require quantum mechanical treatment29 and hence elastic
collisions are just an exercise in Newtonian mechanics. Internal energy of
molecules is converted into translational energy in inelastic collisions, and a
quantum mechanical approach is needed for detailed modeling. The same is
true for reactive collisions in case one is interested in reactions of molecules in
specific states, otherwise the reaction can described by a mean reaction prob-
ability that averages over a Boltzmann ensemble (for the theory of molecular
collisions see, e.g., [67]).

Maxwell-Boltzmann distribution. The two conditions, (i) perfect mixture and
(ii) thermal equilibrium, can now be cast into precise physical meanings.
Premise (i), spatial homogeneity , requires that the probability of finding the

28 For molecular species we shall also use the notation X1 when we refer to reaction
networks, for example Ξ = (X1,X2, . . .).
29 The individual energy levels of the translational partition function are so close
together that the quantum mechanical summation can be replaced by an integral.
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Fig. 4.10 Interpretation of the Arrhenius factor. The fraction of molecules,
which have a kinetic energy large than ea, calculated according to equation (4.49c)
(red) is shown together with two simple exponential functions f1 = exp(−ea/kBT )
(black) and f2 = exp(−ea/(2kBT ) (blue).

center of an arbitrarily chosen molecule inside a container subregion with
a volume ∆V is equal to ∆V/V . The system is spatially homogeneous on
macroscopic scales but it allows for random fluctuations from homogene-
ity. Formally, requirement (i) asserts that the position of a randomly se-
lected molecule is described by a random variable, which is uniformly dis-
tributed over the interior of the container. Premise (ii), thermal equilibrium,
implies that the Cartesian coordinates of the velocity v =

(
vx, vy, vz

)
with

v =
√
v2 =

√
v2
x + v2

y + v2
z of a randomly chosen particle with mass m are

normally distributed with mean µ = 0 and variance σ2 = kBT/m (kB being
Boltzmann’s constant):

fMB(vi) dvi =

(
m

2πkBT

)1/2

e−mv
2
i /(2kBT ) dvi with i = x, y, z . (4.47)

At zero absolute temperature the velocity is a delta-function at v = 0 and it
becomes steadily broader with increasing temperature. The extension to the
3d case is straightforward: (i) the velocity densities along the three Carte-
sian coordinate axes are independent and the expressions are identical by
equipartition theorem [37], and (ii) the 3d volume element
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dv3 = dvx dvy dvz = v2dv sin θ dθ dφ with

∫ 2π

0

∫ π

0

sin θ dθ dφ = 4π

is evaluated in polar coordinates taking into account spherical symmetry.
Then, we obtain the Maxwell-Boltzmann velocity distribution

fMB(v) dv3 =

√
2

π

v2

α3
e−v

2/(2a2) dv3 and

FMB(v) = erf

(
v√
2α

)
−
√

2

π

v

α
e−v

2/(2a2) ,

(4.48)

where α =
√
kBT/m. The velocity of molecules is commonly characterized

by several averaged values: (i) the mode or the most probable value of the
distribution ṽ, (ii) the expectation value E(v) = 〈v〉, and (iii) the root mean

square velocity derived from the second raw moment,
(
µ̂2

)1/2
=
√
〈v2〉:

ṽ =
√

2kB

(
T

m

)1/2

, 〈v〉 =

√
8kB

π

(
T

m

)1/2

,
√
〈v2〉 =

√
3kB

(
T

m

)1/2

,

with ṽ < 〈v〉 <
√
〈v2〉.

It is worth considering the density of the energy as well because is provides
a rational explanation for the empirical Arrhenius factor. The total energy is
a sum of three independent equal contributions for the three coordinate axes:
e = εx + εy + εz = 3 ε. In one dimension we find

fe1(ε) dε =
1√
πkBT

1√
ε
e−ε/kBT dε , (4.49a)

which by inserting ε = x kBT/2 is easily shown to be a χ2-density of dimen-
sion one:

fχ2
1
(x) dx =

1√
2π

1√
x
e−x/2 dx .

Extension to three dimensions yields

fe(e) de = 2

√
e

π

(
1

kBT

)3/2

e−e/kBT de , (4.49b)

and this expression is equivalent to a χ2-density of dimension three

fχ2
3
(x) dx =

1√
2π

√
x e−x/2 dx .

The equivalence to the χ2-distribution is not surprising since the total en-
ergy results from e = mv2/2 = m(v2

x + v2
y + v2

z)/2, a sum of three squares.
Equations (4.49) can be used to calculate the percentage of molecules which
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have a kinetic energy that is larger than a given reference level ea:

ϕ(ea) =

∫ ∞
ea

fe(e) de = 1 − Fe(ea) , (4.49c)

where Fe(e) is the cumulative distribution function associated with the den-
sity fe(e). In figure 4.10 we show that φ(ea) is not substantially different from
the Arrhenius factor, exp(−ea/kBT ).

We summarize: premises (i) and (ii) assert that the distribution of molec-
ular velocities is isotropic and only a function of mass m and temperature
T . Implicitly, the two conditions guarantee also that the molecular position
and velocity components are all statistically independent of each other. For
practical purposes, we expect the two premises to be valid for any dilute gas
system at constant temperature in which nonreactive molecular collisions oc-
cur much more frequently than reactive molecular collisions. The extension
to dilute solutions is straightforward [37].

Bimolecular reactive collisions. The theory of molecular collisions in dilute
gases is the best developed microscopic model for chemical reactions apart
from the quantum mechanical approach. It is well suited for providing a
rigorous link between molecular motion an chemical kinetics. The rate pa-
rameters of general bimolecular reactions are calculated by means of classical
mechanics (figure 4.11) and the Maxwell-Boltzmann distribution.

The occurrence of a bimolecular reaction

A + B −−−−→ C + . . . (4.50)

has to be preceded by an encounter of a molecule A with a molecule B. First
we calculate the probability of such a collisional encounter in the reaction vol-
ume V . For simplicity molecular species are regarded as spheres with specific
masses and radii, mA and rA for A and mB and rB for B, respectively. A colli-
sion occurs whenever rAB, the center-to-center distance of the two molecules,
becomes as small as the sum of the two radii, (rAB)min = rA + rB. The prob-
ability that a randomly selected pair of Rµ reactant molecules – µ = (A,B)
– at time t will collide within the next infinitesimal time interval [t, t + dt]
is defined by Πµ(t, dt) and the geometry of such a collision is sketched in
figure 4.11. The probability density of the relative velocity v̂ = vA − vB for
the randomly selected pair of reactant molecules, precisely the probability of
v̂ lying within an infinitesimal volume element dv̂3 around v̂ at time t, is
denoted by f

(
v̂(t),µ

)
and obtained from Maxwell-Boltzmann theory (4.48):

f
(
v̂(t),µ

)
dv̂3 =

(
m̂

2π kBT

)3/2

exp
(
−m̂v̂2/(2kBT )

)
dv̂3 .
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Fig. 4.11 Sketch of molecular collisions in the vapor phase. A spherical
molecule A with radius rA moves with a velocity v = vA−vB relative to a spherical
molecule B with radius rB. The upper part of the figure shows the geometry of a
typical elastic collision, for which linear angular momentum, p = m · v, and kinetic
energy Ekin = m·v2/2 are conserved: pA+pB = p′A+p′B andmA·|vA|2+mB·|vB|2 =
mA · |v′A|2 + mB · |v′B|2 where the primed quantities refer to the situation after the
collision. The lower part of the figure shows the geometry of the collision in the
coordinate system of B. If the two molecules are to collide within the next infinitesimal
time interval dt, the center of B has to lie inside a cylinder of radius r = rA + rB and
height |v| dt = v dt. The upper and lower surface of the cylinder are deformed into
identically oriented hemispheres of radius r and therefore the volume of the deformed
cylinder is identical with that of a non-deformed one.

Herein v̂ = |v̂| =
√
v̂2
x + v̂2

y + v̂2
z is the absolute value of the relative velocity

and m̂ is the reduced mass of the two molecules A and B.30

Next we define a set of all combinations of velocities for the reaction part-
ners in the reaction Rµ at time t: Rµ(t) = {Ev̂(t),µ}. Two properties of the

probability densities f
(
v̂(t),µ

)
for different velocities v̂ are important:

(i) The elements of the set Rµ(t) of all combinations of velocities of the re-
actant molecules are mutually exclusive, and

30 In order to handle relative motion of two particles the original system consisting of
particle A with mass mA and velocity vA, and particle B with mass mB and velocity
vB, respectively, is transformed into a system with center of mass (CM) motion and
relative or internal motion where the center of mass has mass M = mA +mB moving
with the velocity vCM = (mAvA +mBvB)/(mA +mB) and the internal motion with
reduced mass m̂ = mAmB/(mA +mB) moving with the velocity v̂.
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(ii) they are collectively exhaustive since v̂ is varied over the entire three
dimensional velocity space: −∞ < (v̂x, v̂y, v̂z) < +∞.
The probability density f

(
v̂(t),µ

)
is related to the probability of a collision

event Ecol by the conditional probability P
(
Ecol(t+ dt)|Ev̂(t),µ

)
. In figure 4.11

we sketch the geometry of a collision event of two randomly selected spheri-
cal molecules A and B, which are assumed to collide within the infinitesimal
time interval [t, t + dt]:31 A randomly selected molecule A moves along the
vector v̂ between A and B and a collision of the two molecules will take place
in the interval [t, t + dt] if and only if the center of molecule B at time t is
situated inside the spherically distorted cylinder indicted in figure 4.11, or
the probability of a collision is tantamount to the probability that the cen-
ter of a randomly selected molecule B is situated within the subregion of V
defined by moving A at time t: P

(
Ecol(t + dt)|Ev̂(t),µ

)
. This subregion has

the volume Vcol = v̂ σAB dt, where σAB = (rA + rB)2π is the reaction cross
section, and by scaling with the total volume V we obtain:32

P
(
Ecol(t+ dt)|Ev̂(t),µ

)
dt =

v̂(t) · σAB

V
dt . (4.51)

The desired probability is calculated through substitution and integration
over the entire velocity space

Πµ(t, dt) =

∞∫∫∫
v=−∞

(
m̂

2π kBT

)3/2

e−m̂v̂
2/(2kBT ) · v̂(t) dt · σAB

V
dv̂3 .

The evaluation of the integral is straightforward and yields

Πµ(t, dt) =

(
8 kBT

πV 2

)1/2
σAB√
m̂

dt . (4.52)

The first factor contains only constants and macroscopic quantities, the vol-
ume V and the temperature T , whereas the molecular parameters, the radii
rA and rB and the reduced mass m̂ appear in the second factor.

A collision is a necessary but not a sufficient condition for a reaction to take
place and therefore we introduce a collision-conditioned reaction probability
pµ that is the probability that a randomly selected pair of colliding Rµ

reactant molecules will indeed react according to Rµ. By multiplication of
independent probabilities and with respect to equation (4.42) we find

31 The absolute time t comes into play because the positions of the molecules, rA
and rB, and their velocities, vA and vB, depend on t.
32 Implicitly in the derivation we made use of the infinitesimally small size of dt. Only
if the distance v̂ dt is vanishingly small, the possibility of collisional interference of a
third molecule can be neglected.
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πµ(t, dt) = γµ dt = pµΠµ(t, dt) = pµ

(
8 kBT

V

)1/2
σAB√
m̂

dt . (4.53)

As required by equation (4.42) γµ is independent of dt and this will be
the case if and only if reaction probability pµ does not depend on dt. This
is highly plausible for the above given definition, and an illustrative check
through the detailed examination of bimolecular reactions can be found in
[169, pp. 413-417].

The Arrhenius factor can be illustrated within the frame of collision the-
ory if we make the assumption that the collision energy has to exceed the
activation energy ea. The fraction of molecules whose kinetic energies exceed
this energy threshold, φ(ea), is readily calculated from the energy distribution
function (4.49b) as shown in equation (4.49c). In figure 4.10 φ(ea) is com-
pared with the conventional Arrhenius factor exp(−ea/kBT ) and the factor
exp(−ea/2kBT ). The second case is rationalized by the idea that both reac-
tion partner contribute an equal share, ea/2 to the reaction energy. Although
there are recognizable differences between the three curves in the figure, the
entirely empirical Arrhenius equation parallels nicely the factor φ(ea) derived
from collision theory.

The results of collision theory for reactive bimolecular encounters can be
summarized in a commonly used form for the rate parameter and its temper-
ature dependence

γµ(T ) = A

(
T

T0

)n
exp

(
− ea

kBT

)
= ζ(T ) ρ exp

(
− ea

kBT

)
. (4.43’)

Herein ζ(T ) is the collision frequency as calculated above

ζ(T ) = σAB

√
8 kBT

πm̂
with σAB = (rA + rB)2 π. (4.54)

The factor ρ is a denoted as steric factor and ea is called the activation en-
ergy of the reaction that is measured here as energy per molecule. Often
concentrations instead of particle numbers are used and this implies multi-
plication by Avogadro’s number. Then the activation energy, Ea = NL ea, is
commonly given in [kJ·mol−1] and the gas constant R = NL kB is used in-
stead of Boltzmann’s constant. The actual number of collisions in the volume
V per time unit is Z = NL V ζ. Comparison with the Arrhenius equation
(4.43’) yields n = 1/2. The exponential temperature dependence of the rate
parameter on temperature is often fulfilled with astonishingly high accuracy
but an interpretation of the steric factor ρ is often unsatisfactory and there-
fore some chemists prefer to stay away from any rationalization of the steric
factor and define it simply as the ratio between the pre-exponential factor
and the collision frequency: ρ = A/ζ(T ).
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Monomolecular reactions. A monomolecular reaction in the strict sense de-
scribes the spontaneous conversion

A −−−−→ C . (4.55)

One molecule A is converted spontaneously into one molecule C. The mono-
molecular reaction has been initially considered as being particularly simple,
because only one type of molecule is involved, but this expectation turned out
to be wrong: Most formally monomolecular reactions follow a bimolecular rate
law at least at sufficiently low concentrations and have to be distinguished
from true monomolecular conversions. It is worth mentioning that even a
class of spontaneous dissociation reactions of small cluster ions, for example
(H3O+)(H2O)n or Cl−(H2O)n with n=2-4, which were considered as the
prototypes of truly monomolecular processes are not strictly spontaneous,
because the loss of ligands seems to be initiated by collisions with the wall of
the reaction vessel [369].

In absence of interaction with an environment the true monomolecular
conversion (4.55) is necessarily driven by some quantum mechanical mecha-
nism similar to the radioactive decay of a nucleus. Time-dependent pertur-
bation theory in quantum mechanics [327, pp. 724-739] shows that almost all
weakly perturbed energy-conserving transitions have linear probabilities of
occurrence in time intervals δt, when δt is microscopically large but macro-
scopically small. Therefore, to a good approximation the probability for a
radioactive nucleus to decay within the next infinitesimal time interval dt is
of the form α dt, were α is some time-independent constant. On the basis of
analogy we may expect πµ(t, dt) the probability for a genuine monomolecular
conversion to be approximately of the form γµ dt with γµ being independent
of dt.

The vast majority of apparently monomolecular reactions, however, fol-
low a different mechanisms and involve a reaction partner in the sense of a
catalyzed bimolecular conversion

A + B −−−−→ C + B or (4.50’)

A + A −−−−→ C + A . (4.50”)

In equation (4.50’) the conversion A −→ C is initiated by a collision of a
molecule A with a molecule B, which acts as a catalyst, since it is not con-
sumed by the process.33 When the collision partner is another molecule A
(4.50”), we are dealing with a monomolecular reaction in the conventional
sense, which is described straightforwardly as a special class of bimolecular
processes.

33 Formally we are dealing with a reaction that is catalyzed by a molecule of the same
or another molecular species and the reaction is related to the spontaneous conversion
by rigorous thermodynamics: Whenever a catalyzed reaction appears in a mechanism
the uncatalyzed process has to be considered as well, no matter how slow it is.
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The first proposal of mechanism (4.50”) for the monomolecular conversion
was made already in 1922 by Frederick Lindemann [291]: He suggested that
the monomolecular conversion is a two step mechanism of the form

A + A
k1

−−−−→←−−−−
l1

A + A∗ and A∗
k2

−−−−→ C (4.56)

with k2 � l1. The Lindemann mechanism with a conventional rate parameter
k1 did not fit the experimental data and has been improved by Cyril Hinshel-
wood [208] by a different interpretation of the activation of molecule A that
was extended to a range of energy values k1(E0→E1) ⇒ k1(E0→E1+δE). Later
on the molecular mechanistic details were improved and the Lindemann-
Hinshelwood mechanism has been substantially extended by Oscar Rice,
Herman Ramsperger [380], and Louis Kassel [240] through the explicit in-
troduction of a transition state A‡:

A + A
k1

−−−−→←−−−−
h1

A + A∗ and

A∗
k2a
−−−−→ A‡

k‡

−−−−→ C .

(4.57)

As in transition state theory the rate parameter k‡ corresponds to the fast
process associated with the reactive mode of the transition state. Since k‡ is
thought to be larger than any other rate parameter, the rate limiting step of
the formation of the product C is the conversion A∗ → A‡ and comparing
Lindemann and RRK mechanism we have k2 ≈ k2a and k2a = k‡[A‡]/[A∗]
from the steady state assumption. Eventually, the theory of monomolecular
reactions got its present form through a reformulation of the transitions state
by Rudolph Marcus and Oscar Rice [305, 307, 308]. The current version of
the so-called RRKM theory of monomolecular reactions theory allows for
a highly accurate and very detailed description of reactions and it can be
readily converted into a stochastic model [288].

Termolecular and other reactions. Termolecular or trimolecular reactions of
the form

A + B + C −−−−→ D + . . . (4.58)

are rare and need not be considered, because collisions of three particles do
not occur with a probability larger than of measure zero. Exceptions are
two classes of reactions: (i) vapor phase association reactions where a third
body is required as collision partner removing energy and (ii) the reaction
of nitrogen monoxide with oxygen or halogens. A characteristic example of a
class (i) reaction is the formation of ozone

O + O2 + N2 −−−−→ O3 + N2 ,
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where the nitrogen molecule removes energy in order to allow for reaching a
bound state of ozone [359]. The typical class (ii) reaction is the oxidation of
nitrogen oxide with molecular oxygen [353]

2 NO + O2 −−−−→ 2 NO2 .

Although nitric oxide oxidation by oxygen is considered as the prototype of
a termolecular reaction two competitive two step mechanism involving only
bimolecular collisions are discussed as well:

NO + NO 
 (NO)2 , (NO)2 + O2 → 2 NO2 or

NO + O2 
 NO3 , NO3 + NO → 2 NO2 .

A comparison of the data for all three mechanistic variants of the reaction are
found in the review [431]. However, there may also be, special situations where
approximations of complicated processes by termolecular events is justified.
One example is a set of three coupled reactions with four reactant molecules
[168, pp. 359-361] where πµ(t, dt) is essentially linear in dt.

Zeromolecular reactions. The last class of reaction to be considered here is
no proper chemical reaction but ,for example, an inflow of material into the
reactor. It is often denoted as a the zeroth order reaction (4.1a):

∗ −−−−→ A . (4.59)

Here, the assumption that the inflow is accompanied by efficient mixing ful-
filling the homogeneity condition is essential, because it guarantees that the
number of molecules entering the homogeneous system per time unit is a
constant, and does not depend on dt.

Quantum mechanical reaction dynamics. For any detailed understanding of
chemical reactions from first physical principles knowledge from quantum me-
chanics is indispensable. Here we direct readers to the great variety of existing
text books (recently published monographs are [23, 396] for basic quantum
mechanics and applications in chemistry, and a quite elaborate text on dy-
namics is found in [310]) and sketch only the basic idea because of its general
importance: In conventional quantum chemistry the fast motions of electrons
are separated from the slow motions of atomic nuclei and the stationary
Schrödinger equation of a molecule or a reaction complex is partitioned into
two equations

Hel Ψ
(n)
el (r) = En(R)Ψ

(n)
el (r) with Hel = Tel + V (r,R) , (4.60a)(

Tnuc + En(R)
)
Ξ(k;n)

nuc (R) = Wk,nΞ
(k;n)
nuc (R) . (4.60b)
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Fig. 4.12 Energy surface of the symmetric bimolecular triatomic exchange
reaction A + BC → AB + C. The best studied example of such a reaction is the
hydrogen isotope exchange reaction D + HD → DH + D for which a highly accurate
energy surface is available. The three atoms lie on a straight line. The model surface
plotted here is

E(x, y) = a/x12 − b/x6 + a/y12 − b/y6 + c/(x+ y)12.
The upper part of the figure shows a 3D-plot of the energy surface with the reaction
path being recognizable as a steep valley. The lower part presents a contour plot of
this surface. The broken white line indicates the reaction coordinate %: In the steep
horizontal valley at the bottom of the figure the atom D is approaching the molecule
HD, then the bond becomes longer and at the saddle point the two bonds are of equal
length. Parameters: a = 10, b = 8, and c = 1.5 × 105, leading to a bond length of
re = 1.165 [l.u.] and a bond energy of ∆E = −1.6 [e.u.]. At the saddle point the
distance is x = y = 1.3856 [l.u.] and the energy amounts to ∆E = −1.1303 [e.u.].
Length and energy are given in arbitrary units, [l.u.] stands for length unit and [e.u.]
for energy unit respectively.
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The positions of all electrons are subsumed in the vector r, and likewise the
nuclei occupy positions denoted by R. Both equations are partial differential
equations and they are coupled through the energy hypersurface En(R) (see
figure 4.12). The Hamilton operator Hel describes the motion of electrons
and consists of the kinetic energy operator of electrons Tel and the electro-
static potential V (r,R) caused by the electric charges of electrons and nuclei,

En(R) is the n-th eigenvalue of the Schrödinger equation (4.60a), and Ψ
(n)
el

is the corresponding eigenfunction. The separation of electronic and nuclear
motion was introduced into quantum mechanics by Max Born and Robert
Oppenheimer in 1927 [48]. Because of the large difference in mass between
electrons and nuclei – being at least three orders of magnitude – and the rea-
sonable assumption that linear momenta of electrons and nuclei are roughly
the same because the forces acting on them are identical – actio equals reactio
– we have

M
dR

dt
= P ≈ p = m

dr

dt
with M � m and hence

dR

dt
� dr

dt
.

Seen from the fast moving electrons nuclei are practically immobile, the to-

tal wave function can be factorized, Φ(r,R) = Ψ
(n)
el (r) · Ξ(k;n)

nuc (R) or, in
other words, the electrons see the nuclei at fixed positions and the nuclei
see the electrons in form of a potential coming from a time-averaged mean
density. Within the Born-Oppenheimer approximation the connecting piece
between the electron density in the quantum state n and nuclear motion but
also chemical reactions is the energy hypersurface En(R). Classical collision
theory (see ‘bimolecular reactive collisions’) did not explicitly account for
energetic aspects of reactions and the consideration of an energy surface is
an appropriate and important extension. Nuclear motion can be modeled by
Newtonian mechanics and the combination of an energy surface of quantum
mechanical origin and classical dynamics is often addressed as semiclassical
collision theory in contrast to the full quantum mechanical approach based
on scattering theory [67].

Despite the spectacular progress in numerical quantum chemistry many
chemical reaction systems and most biologically relevant structures are to
large for systematic computational studies, which frequently have to handle
the motions of up to 100 000 atoms on time scales of tens of nanoseconds.
Hybrid methods combining of quantum mechanical calculations with and
molecular mechanics simulations based on Newtonian mechanics (QM/MM)
seem to be most promising at present [287, 402, 403].

4.1.5 Empirical rate parameters

The rate parameters – often called rate constants despite the fact that they
are no constants in reality and their dependence on external quantities like
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temperature, pressure, pH, ionic strengths and other quantities provides in-
sights into reaction mechanisms – are the first quantities derived from mea-
sured data, and as such they make sense only for a given mechanism. Very
often the mechanism of reaction is not precisely known and then we are con-
fronted with the difficult task to determine the reaction mechanism and the
rate parameters simultaneously. Three different approaches are in common
use: (i) traditional parameter fitting by means of linearized functions of time
dependencies of signals, (ii) parameter fitting by means of computer assisted
minimization of a cost function commonly adapted for a given mechanism,
and (iii) the mathematically and computationally more expensive but profes-
sional method to treat parameter fitting as an inverse problem, which because
of its ill-posedness requires regularization in the search for a solution.

The traditional parameter fitting approach was done by hand and we men-
tion the analysis of first order reactions and binding equilibria as a character-
istic examples. At present more elaborate methods of parameters evaluation
replace the human eye by conventional statistics though employing mean
least square fits.

Superposition of exponential curves. First order reactions and in particular
all relaxation processes (4.7) follow an exponential function

dχ

dt
=

1

τR
χ , χ(t) = χ0 exp(−t/τR) and lnχ(t) = logχ0 −

t

τR
, (4.61)

which plotted on semilogarithmic paper yields a straight line.34

In mathematical fitting methods a large number of noisy experimental
data points is used to determine a few parameters in the sense of a massively
overdetermined problem. Several standard techniques like, for example the
method of least squares [43, 466], are available for fitting data to a linear
relation. Historically the first documented usage of the least square method
is due to the French mathematician Adrien-Marie Legendre who published it
1805 in a monograph [278]. Carl Friedrich Gauß, however, claimed priority
in 1895 by contending that he had used the method already 1795.

In linear regression the dependent variables yi corresponding to measured
data are given by

yj =
m∑
i=1

βi xj i + ηj ; j = 1, . . . , n , (4.62)

where n is the number of measured data and m is the number of independent
parameters βi. In vector notation equation (4.62) takes on the form

y = Xβ + η . (4.62’)

34 We remark that the plot shown in figure 4.8, which was used there to detect
several relaxation processes on different time scales, was a χ(t)/ log t-plot whereas
the semilogarithmic plot used here is a logχ(t)/t-plot.
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The so-called rectangular design matrix,

X = {xj i} =


xt

1

xt
2
...

xt
m

 =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 with xj =


xj 1

xj 2

...
xj n

 .

is multiplied by the parameter vector β and after addition of noise η we
obtain the vector of noisy data y. The basis of the regression is a model func-
tion f(x,β) that defines the relation between the dependent variables y, the
independent variables x, and the parameters β. The noise term η eventually
covers all errors in the measured yj values. Commonly, the errors are assumed
to be independent and normally distributed, f(ηj) = N (ηj ; 0, σ2

j ). We distin-

guish homoscedastic random variables with identical variances, σ2
j = σ2 ∀ j,

and the heteroscedastic case with different variances.
In the least squares fitting method the overdetermined equations are solved

by means of minimizing a cost function,

S =

m∑
j=1

r2
j with rj = yj − f(xj ,β) , (4.63)

which is given the sum of the squares of the residuals rj , which by com-
parison with equation (4.62) are tantamount to the noise. In formal terms

we express the minimization by β̂ = arg minβ∈B S(β) where B is the en-

tire parameter space, and β̂ represents the best choice of parameters within
the frame of the least sum of squares residuals. Linear regression analysis
allows for a computation of the best fit in closed form and in a single step
whereas iterative methods are commonly required in nonlinear problems. We
remark that the term linear refers to the dependence of the dependent vari-
able y on the parameters: The function f need not be linear in the argu-
ment x but only in the parameters βj and, for example, polynomial functions
f(xj ,β) =

∑
i βixj i =

∑
i βi(zj)

i = yj−ηj can be used where we introduced
the nonlinear function by setting xj i = (zj)

i.
In the simplest method called ordinary least squares the error terms ηj are

assumed to have finite and identical variances – a property often characterized
as homoscedastic – and to be uncorrelated with the independent variables
xj i and among each other, and then a analytical solution of the parameter
estimate is available

β̂ = (XtX)−1 Xt y = X+ y (4.64a)

where X+ = (XtX)−1 Xt, the so-called Moore-Penrose pseudoinverse matrix .
The equations (4.64) are called normal equations, and they are the starting
point for the development of numerical techniques for solving linear regression
problems.
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If the assumptions of uncorrelatedness and homoscedasticity of noise are
relaxed the regression problem called generalized least squares can be readily
handled by lines algebra provided the covariance matrix of the noise terms,
Σ = {Σij = cov(ηiηj)} (section 2.3.4), is known:

β̂ = (XtΣ−1X)−1 XtΣ−1 y . (4.64b)

The matrix Σ covers indeed both deviations from the idealized ordinary
case: The diagonal elements, Σjj = σ2

j , take care of heteroscedasticity in case
of uncorrelatedness, and the off-diagonal elements, Σj i, cover correlations
between the noise terms in different data. Often the assumption that the
errors in all measured point have the same normal distribution is not justified
and then equation (4.64b) provides a useful tool for heteroscedastic data sets.

In the light of linear regression we reconsider the determination of the
relaxation time τR of a single exponential. The calculation is straightforward
if we replace in equation (4.61) logχ(tj) ⇔ yj , tj ⇔ xj 1, logχ0 ⇔ β0, and
1/τR ⇔ β1, and then the residuals take on the form

rj = yj − β0 − β1tj ,

which allow for direct evaluation by equations (4.64a,b). The superposition
of exponentials as it happens in case of multiple relaxations (figure 4.8) and
in many other cases gives rise to substantial fitting problems. The Ameri-
can computer scientist Forman Sinnickson Acton [3, 4] characterizes the task
of fitting two exponentials as a notoriously ill-posed problem when the two
relaxation times differ by less than a factor five. We refer to several origi-
nal papers dealing with this subject [65, 90, 222, 268] in detail. Finally, we
mention a method that allows to fit parameters to a continuous spectrum of
infinitely many relaxation processes [377].

Linearization of binding equilibria. The Scatchard equation is presented as
an example of a nonlinear relation that is transformed exactly to yield a
linear plot (figure 4.13), which has been invented for the analysis of binding
equilibria of small ligands to macromolecules. The plot is named after George
Scatchard, who was a chemist at the Massachusetts Institute of Technology
(MIT). Today it is mainly of historical interest but it still has the advan-
tage that the quality of data can be checked easily by visual inspection. In
biochemistry the binding equlibrium A+B
C commonly involves ligand A,
a macromolecules usually being a protein B, and the association complex
C ≡ A · B. We distinguish free concentrations [A] = a, [B] = b, and [C] = c,
and total or initial concentration of ligand and protein, a0 = a + c and
b0 = b+ c, respectively. The equilibrium constant

Kb =
[C]

[A] · [B]
=

c

a · b
or Kd = K =

a · b
c
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Fig. 4.13 The Scatchard plot and fitting of binding constants. The upper
part of the figure shows the hyperbolic binding isotherm of the binding equilibrium
A+B
C according to equation (4.65): The degree of saturation or the binding coef-
ficient, θ = c/b0, is plotted against the free ligand concentration, a. Random scatter
is introduced, for example, through errors in the determination of the free concen-
trations. The lower part presents a Scatchard plot of the same data according to
equation (4.66): θ/a is plotted against θ. Parameter choice: K = 1, a0 = b0 = 1.

can be formulated as binding constant Kb or as dissociation constant Kd.
Biochemists prefer the latter choice and we shall also adopt it here and drop
the subscript: Kd = K. The experimental investigation of binding is conven-
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tionally done in terms of the degree of saturation or the binding coefficient
θ = c/b0 with the property 0 ≤ θ ≤ 1 where θ = 0 refers to no binding and
θ = 1 to complete saturation of the protein. The function θ(a) is generally
characterized as binding isotherm35

θ(a) =
c

b0
=

a

K + a
with

a =
1

2

(
(a0 − b0 −K) +

√
4Ka0 + (a0 − b0 −K)2

)
,

(4.65)

where the free concentration of the ligand, a, is nonlinearly related to the
initial concentrations a0 and b0. The nonlinear relation (4.65) is not suitable
to determine the asymptotic maximum of the binding curve by visual inspec-
tion and to adjust a value to the dissociation constant K (figure 4.13) but
it can be transformed and one of the resulting linear relations is known as
Scatchard plot:

θ

a
=

1

K
(1 − θ) =

1

K
− 1

K
θ . (4.66)

The binding constant is obtained from the slope of the straight line, α = K−1

in the plot and in figure 4.13 we show a typical example. The scatter of points
was obtained by superimposing a random component on the concentration
of the complex C. A derivation of the Scatchard equation starts by dividing
both sides of equation (4.65)by a: θ/a = 1/(K + a) and proceeds as follows:

1

K + a
=

1

K
− 1

K
+

1

K + a
=

1

K
− K + a− a

K(K + a)
=

=
1

K
− a

K(K + a)
=

1

K
− θ

K
. ut

The (θ, θ/K)-plot is linear and linear regression can be applied to the bind-
ing problem. It is worth that the result is exact and we did not perform a
linearization as an approximation.

For current methods in parameter estimation we refer to two monographs
as examples of an enormous literature [341, 437]. Present day numerical anal-
ysis of measured data is mostly based on the application of inverse methods.
We give here a few references to reviews and monographs [21, 113, 114, 425]
and mention one a recent paper on parameter analysis of the multistep re-
action of chlorite with iodide that aims at the determination of the data
sensitive parameters by means of sparsity regularization [266].

35 The notion isotherm points at the fact that the curve is recorded at constant tem-
perature indicating thereby the existence of a pronounced temperature dependence
of the equilibrium parameter.
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4.2 Stochasticity in chemical reactions

There are two frequently applied techniques for analyzing stochasticity in
chemical reaction systems:

(i) modeling and simulation of sample trajectories that correspond to single
experimental recordings, or

(ii) analysis of chemical master equations that provide probability distribu-
tion over the admissible states as functions of time.

Modeling of sample trajectories through the search for solutions of chemical
Langevin equations (section 3.185) is not particularly popular but provides
a powerful technique for the analysis of chemical reactions. Simulations of
kinetic trajectories (section 4.6) is the computer based counterpart of record-
ing experiments. The simulations involve relatively easy mostly time consum-
ing numerical computations, which provide the desired results but in general
they are not very insightful. Solving chemical master equations (section 4.2.1)
would be the method of choice were there not the lack of general methods for
the solution of nonlinear partial differential equations. The probability den-
sities once derived provide direct access to all information on the chemical
processes.

Chemical Langevin and Fokker-Planck equations are based on continuous
stochastic variables that are the counterparts of the concentrations in the
deterministic equations. Chemical master equations and numerical simula-
tions use discrete stochastic variables N (t), which represent particle num-
bers. Hence they can take only nonnegative integer values, n ∈ N≥0, and
the probabilities are given by Pn(t) = P

(
N (t) = n

)
. If a running index for

integers is needed it will be denoted by m.36 Some conventions and sim-
plifications in the notation are introduced: We shall use the forward equa-
tion unless stated differently and assume an infinitely sharp initial density:
P (n, 0|n0, 0) = δn,n0 with n0 = n(0). Then the full notation can be simplified:
P (n, t|n0, 0) ⇒ Pn(t). In addition, the notation Pn(t) indicates already that
t is a continuous variable whereas n is discrete. The expectation value of the
stochastic variable N (t) will be denoted by

E
(
N (t)

)
= 〈n(t)〉 =

∞∑
n=0

n · Pn(t) , (4.67)

and its stationary value, provided it exists, will be expressed as

n̄ = lim
t→∞

〈n(t)〉 . (4.68)

In may cases but not always the stationary expectation value n̄ will be iden-
tical with the long time value of the corresponding deterministic variable.

36 In cases were more running indices are required we shall use n′, m′, etc.
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4.2.1 The chemical master equation

The chemical master equation has been shown to be based on a rigorous mi-
croscopic concept of chemical reactions in the vapor phase within the frame of
classical collision theory [169] provided two general requirements are fulfilled:
(i) a homogeneous mixture as it is assumed to exits through well stirring
and (ii) thermal equilibrium implying that the velocities of molecules follow
a Maxwell-Boltzmann distribution. Daniel Gillespie’s approach focusses on
chemical reactions rather than molecular species and is well suited to handle
reaction networks. In addition the algorithm can be easily implemented for
computer simulation. In section 4.6 we shall discuss the Gillespie algorithm
together with computer program implementations. Although the numerical
approach is straightforward and yields excellent results for specific examples
and small population sizes there is, at the same time, need for an analytical
approach in order to find answer to general questions that cannot be given
by the numerical simulations.

Exact trajectories. The random vector of particle numbers of M different
chemical species at time t, ~X (t) =

(
X1(t), . . . ,XM (t)

)
, is given by ~X (t) =

n(t) =
(
n1(t), . . . ,nM (t)

)
. Reaction events occur at times tk with k ∈ N

and accordingly the number of Xi molecules at the end of the k-th interval,
[tk−1, tk = tk−1 +∆tk], will be given by

n(tk) = n(tk−1) + s or ni(tk) = ni(tk−1) + si ; i = 1, . . . ,M , (4.69)

where si is the i-th component of the single reaction stoichiometric vector
s = (s1, . . . , sM )t. The fully fledged computation of Xi(t) provides a sin-
gle trajectory of the chemical reaction system. The simulation is called ex-
act because the probability distribution obtained by sampling of trajectories
converges statistically to the corresponding solution of the analogue master
equation. In figure 4.14 we show such a single stochastic trajectory for the
A + B → C + D reaction as an example. In section 4.2.3 we shall deal with
the exact simulation of trajectories in a network of K reactions and discuss
the approximations leading to continuous variables ~X (t) = x(t) as used in
stochastic differential equations and Fokker-Planck equations.

Chemical master equations. The general forward master equation has been
written in the form

dPn(t)

dt
=
∑
m

(
W (n|m, t)Pm(t) − W (m|n, t)Pn(t)

)
, (3.83)

where we accounted for the fact that transition probabilities may be time
dependent in certain cases. Here we shall assume that the transition ma-
trix W is time independent. Before we deal with the general single reaction
case we write down the formalism for two specific example: the irreversible
monomolecular conversion and the reversible bimolecular conversion reaction.
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Three conditions are implicitly hidden in the master equation that are
readily adapted for applications to chemical kinetics [169, pp.420,421]:

Condition 1: If ~X (t) = n, then the probability that exactly one reaction R
will occur in the system within the time interval [t, t+ dt[ is equal to

χ h(n) dt + o ( dt) ,

where o ( dt) denotes terms that approach zero with dt faster than dt.

Condition 2: If ~X (t) = n, then the probability that no reaction will occur
within the time interval [t, t+ dt[ is equal to

1 − χ h(n) dt + o ( dt) .

Condition 3: The probability of more than one reaction occurring in the
system within the time interval [t, t+ dt[ is of order o ( dt).

Based on the three conditions an analytical description can be derived for
the evolution of the population vector ~X (t). The initial state of the system

at some initial time t0 is fixed: ~X (t0) = n0. We express the probability
P (n, t+ dt|n0, t0) as the sum of the probabilities of several mutually exclusive

and collectively exhaustive routes from ~X (t0) = n0 to ~X (t+ dt) = n. These
routes are distinguished from one another with respect to the event that
happened in the last time interval [t, t+ dt[:

P (n, t+ dt|n0, t0) = P (n, t|n0, t0) × (1− γ h(n) dt + o ( dt)) +

+ P (n− s, t|n0, t0) ×
(
γ h(n− s) dt + o ( dt)

)
+

+ o ( dt) .

(4.70)

In few cases it is possible to derive an exact solution for the time evolution
of the probability function P (n, t|n0, t0), for example through solution of the
chemical master equation (section 4.3), but a deterministic function for the
differential change of the probability for t ≥ t0 is readily obtained. The three
different routes from ~X (t0) = n0 to ~X (t + dt) = n are obvious from the
balance equation (4.70):

(i) One route from ~X (t0) = n0 to ~X (t + dt) = n is given by the first
term on the right-hand side of the equation: No reaction is occurring in the
time interval [t, t + dt[ and hence ~X (t) = n was fulfilled at time t. The

joint probability for route (i) is therefore the probability to be in ~X (t) = n

conditioned by ~X (t0) = n0 times the probability that no reaction has occurred
in [t, t+ dt[. In other words, the probability for this route is the probability
to go from n0 at time t0 to n at time t and to stay in this state during the
next interval dt.
(ii) An alternative route from ~X (t0) = n0 to ~X (t+ dt) = n is accounted for by
the second term on the right-hand side of the equation: Exactly one reaction
R is occurring in the time interval [t, t+ dt[ and hence ~X (t) = n−s is fulfilled
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at time t. The joint probability for route (ii) is therefore the probability to be

in ~X (t) = n− s conditioned by ~X (t0) = n0 times the probability that exactly
one reaction R has occurred in [t, t+ dt[. In other words, the probability for
this route is the probability to go from n0 at time t0 to n − s at time t by
undergoing a reaction yielding n during the next interval dt.
(iii) The third possibility – neither no reaction nor exactly one reaction – must
inevitably invoke more than one reaction within the time interval [t, t+ dt[.
The probability for such events, however, is o ( dt) or of measure zero.
All routes (i) and (ii) are mutually exclusive since different events are taking
place within the last interval [t, t+ dt[.

The last step to derive the chemical master equation is straightforward:
P (n, t|n0, t0) is subtracted from both sides in equation (4.70), then both sides
are divided by dt, the limit dt ↓ 0 is taken, all o ( dt) terms vanish and finally
we obtain

d

dt
P (n, t|n0, t0) = γ h(n−s)P (n−s|n0, t0) − γ h(n)P (n, t|n0, t0) . (4.71)

Initial conditions are required to calculate the time evolution of the probabil-
ity P (n, t|n0, t0) and for sharp initial conditions we can easily express them
in the form

P (n, t0|n0, t0) = δn,n0 =

{
1 , if n = n0 ,

0 , if n 6= n0 ,
(4.71’)

which is precisely the initial condition used in the derivation of equa-

tion (4.70): P
(
nk, t0|n(0)

k , t0
)

= δ(nk−n(0)
k )∀ k. The assumption of extended

initial distributions is, of course, also possible but the corresponding master
equations become more sophisticated.

Two examples. First we write down the master equation for the simple
monomolecular chemical reaction (4.1c),

A
k

−−−−→ B ,

with the constraint of constant total number of molecules. The two random
variables XA and XB fulfil the condition

XA(t) + XB(t) = n0 .

For XA = n and XB = n0 − n it is straightforward to write down the single
step master equation for the initial conditions P (n, 0) = δ(n− n0)

dPn(t)

dt
= k (n+ 1)Pn+1(t) − k nPn(t) , n = 0, 1, . . . , n0 ,
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with Pn+1(t) = 0 ∀ t ∈ R≥0, which is identical with the simple death mas-
ter equation. Further discussion of the equation and its solution is found in
section 4.3.2.1. For direct comparison with birth-and-death processes it is in-
teresting to characterize the chemical elementary steps in this simple case as
step-up and step-down transitions: w−n = k n and w+

n = 0. We notice that the
process has a built-in absorbing barrier at n = 0 since w−0 = 0 and w+

0 = 0
without any further assumption.

The second example deals with the stochastic description of the reversible
bimolecular conversion reaction (4.34):

A + B
k

−−−−→ C + D and

C + D
l

−−−−→ A + B .

The four random variables, XA(t), XB(t), XC(t), and XD(t), are combined
with three conservation relations

XA(t) + XB(t) + XC(t) + XD(t) = XA(0) + XB(0) + XC(0) + XD(0)

XA(t) − XB(t) = XA(0) − XB(0)

XC(t) − XD(t) = XC(0) − XD(0)

and leave only one degree of freedom. Again and we choose XA(t) as the
independent variable: Pn(t) = P (XA = n). In order to simplify we assume
as initial conditions that only A and B are present at time t = 0, and that
they have sharp values: n0 molecules A, Pn(0) = δn,n0

, and b0 molecules B,
P
(
XB(0) = b

)
= δb,b0 , and we have XB(t) = ϑ0 + XA(t) with ϑ0 = b0 − n0,

and XC(t) = XD(t) = n0−XA(t). Under these conditions the master equation
becomes

dPn(t)

dt
= k (n+ 1)(ϑ0 + n+ 1)Pn+1(t) + l (n0 − n+ 1)2 Pn−1−

−
(
k n (ϑ0 + n) + l (n0 − n)2

)
Pn(t) .

This master equation is based on the step-up and step-down transitions

w−n = k n (ϑ0 + n) and w+
n = l (n0 − n)2 ,

which fulfil
(
w−n0

= k n0(ϑ0 +n0) > 0, w+
n0

= 0
)

and
(
w−0 = 0, w+

0 = l n2
0 > 0

)
and sustain two in-built reflecting barriers at n = n0 and n = 0, respectively,
thus leaving 0 ≤ n ≤ n0, n ∈ N as the physically meaningful accessible
domain. The master equation for the irreversible reaction (4.34a) has been
solved and will be discussed in section 4.3.3.1. The full reversible reaction is
rather very hard to solve and we dispense from further analysis because size
expansion, numerical simulation, and chemical Langevin equation are to be
preferred for practical purposes.
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Fig. 4.14 A stochastic trajectory of the reaction A + B → C + D. The figure
shows a trajectory of the irreversible bimolecular conversion reaction. All four vari-
ables, XJ(t) with J = A (black), J = B (red), J = C,D (blue) depend on each other
because of the three conservation relations discussed in the text and therefore jumps
occur simultaneously at the times tk with k = 1, . . . , 13. In the example shown B
molecules are present in excess. The process comes to an end when the last molecule
A has been consumed by a reaction event or, in other words, the state nA = 0 is an
absorbing barrier. The intervals ∆tk = tk−tk−1 follow a Poisson distribution. Initial
condition: nA(0) = 13, nB(0) = 23, and nC = nD = 0.

Chemical master equation and stoichiometry. In order to describe reactants
and reaction products we introduce a random vector ~X with M components
for the M molecular species:

~X = (X1, . . . ,XM ) with Xi ∈ N .

In the single step birth and death master equation (3.97) the variable n was
undergoing two classes of changes only: step up n → (n + 1) and step down
n → (n − 1). Dealing with a single chemical reaction at sufficient temporal
resolution implies also exclusively single step transitions of the reaction R,
but they involve in general all reactants and product species: n → n± s. In
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other words, if a reaction R occurs at time t, then the random vector ~X ∈ NM
changes according to stoichiometry: ~X (t) = ~X (t − dt) + s. Fundamental in
stochastic reaction kinetics – as in the deterministic case – is the rate function
v(n) = κh(n),37

which takes on the form

v(n)(MA) = κh(n) = κ

M∏
i=1

ni!

(ni − νi)!
. (4.72)

The expression differs from the deterministic rate functions, v(MA) in equa-
tion (4.6), in two aspects: (i) the stochastic rate coefficient is denoted by κ
but as outlined in section 4.1.4 stochastic and deterministic rate parameters
are almost always assumed to be the same, κ = γ = k,38 and (ii) the functions
h(n) are different, because stoichiometric coefficients νi > 1 require explicit
consideration of individual molecules at low particle numbers: The rate is
proportional to the number of distinct subsets of molecules that can perform
the reaction.39

Alternatively, we may consider the reaction as a sequence of events mod-
eled by a continuous time Markov chain were p (τ |n, t)dτ is the so-called
next-reaction density function, which expresses the probability that the next
reaction R will occur in the infinitesimal time interval [t + τ, t + τdτ [. Ev-
ery reaction changes the particle numbers by s and individual trajectories or
sample paths follow an equation with changes at random time instances:

~X (t) = ~X (0) + s Y
(∫ t

0

dτ γn(τ)

)
, (4.73)

where Y(t) is an unit-rate Poisson process with the probability density
πk(τ) = e−ττk/k! . The unit Poisson process Y(t) is a counting process and
provides the times when the jumps in the variable X (t) occur whereas the
stoichiometric parameters s = ν′ − ν give the size including the sign. In this

37 The rate function v(n) = κh(n) is also known as intensity function or propensity
function. The product term in equation (4.72) results from combinatorics of molecular
encounters leading to a binomial coefficient

(
ni
νi

)
. Here, the factor 1/(νi)! has been

absorbed in the stochastic rate coefficient κ in order to obtain an expression that
parallels deterministic kinetics as much as possible. We remark that the alternative
notation with intact binomial factors and κ⇔ κ · νi! is also common.
38 Unless stated otherwise we shall use γ or (kj , lj) also as rate parameters in the
stochastic models. In order to take care of concentration units commonly [mol·l−1],
the deterministic rate parameters have to be converted to dimensionless units counting
particle numbers: k → k/(V NL)|ν|−1 (see also section 4.6).
39 The dimerization 2X→ X2, for example, yields v(MA) = k x2 in the deterministic

case and v
(MA)
n = γ n(n − 1) in the stochastic case. The two expressions become

identical in the limit of large numbers limx→∞ = limn→∞ where we have x = n.
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form both the master equation and the equation for the trajectories can be
extended to mechanisms with multiple reaction steps (section 4.2.2).

Master equation and deterministic kinetics. The chemical master equation (4.71)
allows for computation of expectation values. We illustrate first by means of
our simple example A→ B:

n0∑
n=0

n
dPn(t)

dt
=

d

dt

n0∑
n=0

nPn(t) =
d〈n〉
dt

=

=

n0∑
n=0

n
(
k (n+ 1)Pn+1(t) − k nPn(t)

)
=

= k

n0∑
n=0

n (n+ 1)Pn+1(t) − k

n0∑
n=0

n2 Pn(t) =

= k

n0+1∑
n′=n+1=1

(n′ − 1)n′Pn′(t) − k

n0∑
n=0

n2 Pn(t) =

= k
〈
n2
〉
− k 〈n〉 − k

〈
n2
〉

= − k 〈n〉 .

In this case the macroscopic rate equation is readily derived from the master
equation through interpretation of the expectation value: 〈n〉 is a real number
and up to the factor 1/(V ·NL) represents the concentration of a molecular
species: x = 〈n〉 /(V ·NL) ∈ R≥0, and dx/ dt = −k x.

Coincidence of the expectation value 〈n〉 and the deterministic particle
number n̂ = x (V ·NL) is restricted to cases where the reaction rate function is
linear. A comparison of linear and nonlinear cases has already been presented
and discussed in the closely related situation occurring with jump moments
(sections 3.2.3.1 and 3.2.3.2).

In nonlinear examples the same procedure yields the deterministic equation
form the master equation through multiplication of both sides by ni and
summation over all values of n in the limit of large particle numbers:40

d〈ni(t)〉
dt

= si · 〈γn〉 =⇒ dxi(t)

dt
= si v

(
x(t)

)
. (4.74)

Accordingly, the master equation takes on the form of the conventional ki-
netic equations in this limit. It is important, however, to stress that it is not
sufficient that the total number of particles is large, every molecular species
Xi has to be present in sufficient amounts at all times t in order to make the
influence of fluctuations sufficiently small.

40 Because of the in-built or natural barriers its makes no difference whether the
summation is running over a finite or infinite state space.
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4.2.2 Stochastic chemical reaction networks

Although most studies on stochastic chemical reaction networks (SCRNs) are
done by means of computer simulation, the combined analytical and numeri-
cal approach is more promising since it can give answers to general questions
that cannot be addressed by pure computer work. As an example we men-
tion the generalization of the deficiency zero theorem to master equations [9].
General texts on stochastic modeling are found in [462, 463]. We begin here
with the multivariate chemical master equation and refer to section 4.6 for
numerical simulations.

Multivariate chemical master equation. The master equation for many vari-
ables is readily derived by an extension of equation (4.71) to M molecular
species involved in K reactions:

dPn(t)

dt
=

K∑
µ=1

χµ(n− sµ)Pn−sµ(t) − Pn(t)

K∑
µ=1

χµ(n) , (4.75)

where we introduced vector notation: n = (n1, . . . , nM )t for the particle num-
bers and sµ = ν′µ−νµ with ν′µ = (ν′1µ, . . . , ν

′
Mµ)t, and νµ = (ν1µ, . . . , νMµ)t

for the stoichiometric coefficients. The index ’µ’ refers to individual reactions,
χµ(n) = γµ · hµ(n) is the rate function, and νiµ and ν′iµ are the stoichiome-
try coefficients for species Xi in the j-th reaction. For general considerations
it is simpler to avoid combinations of reactions and, for example, to treat a
reversible reaction a two reaction steps. Stochastic mass action kinetics for
the reaction Rµ is modeled by the rate function

χµ(n) = kµ

M∏
i=1

ni!

(ni − νiµ)!
= kµ

n!

(n− νµ)!
; µ = 1, . . . ,K , (4.72’)

where we applied multi-index notation in the last expression. Obviously we
identify kµ ⇔ γµ and hµ(n)⇔ n!/(n− νµ)!.

A stationary distribution if it exists has to fulfil

Pn

K∑
µ=1

χµ(n) =

K∑
µ=1

χµ(n− sµ)Pn−sµ ∀ n ∈ Ω . (4.76)

The system of equations (4.76) can be solved as shown in section 3.2.3.2.
Now we can also generalize the expression for the trajectory to the reaction

network

~X (t) = ~X (0) +

K∑
µ=1

sµ Yµ
(∫ t

0

dτ γµ

(
~X (τ)

))
, (4.73’)
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where the processes Yµ(t) are independent unit-rate Poisson processes. Ex-
amples of reaction networks will be discussed in section 4.6.

Stochastic version of the deficiency zero theorem. Finally, we mention that
the deficiency zero theorem has been extended to stochastic chemical reac-
tion networks [9]: Assume a stochastic reaction network {S, C,R} with rate
functions (4.72’),

χµ(n) = kµ

M∏
i=1

ni(ni − 1) . . . (ni − νiµ + 1) ,

for which the associated deterministic mass-action system with the same rate
functions, kµ; µ = 1, . . . ,K, has a complex-balanced equilibrium x ∈ RM>0.
Then the stochastically modeled network sustains a stationary probability
distribution, which is a product of Poisson distributions provided the variables
xi or ni are independent:

Pn =

M∏
i=1

x̄nii
ni!

e−x̄i , n ∈ NM , (4.77)

If the domain of the variable n in NM is irreducible, then (4.77) is the unique
stationary distribution.

For dependent variables, for example a = x and b = n0−x in the reversible
reaction A 
 B with k and l as reaction rate parameters, the linear depen-
dencies have to be eliminated, for example by setting n1 = n, n2 = n0 − n,
and with x̄1 = x̄ and kx̄ = l(n0 − x̄) we obtain

Pn = N
x̄n

n!

(n0 − x̄)n0−n

(n0 − n)!
= N

nn0
0

n0!

(
n0

n

)
kn0−n ln

(k + l)n0
, N =

n0!

nn0
0

,

leading to
Pn =

(
n0

n

)
1

(k + l)n0
kn0−n ln . (4.78)

For this reaction the distribution is binomial. Another example, the addition
or association reaction A + B 
 C, is discussed in section 4.3.3.2.

In case the domain is not irreducible the situation is more involved (fig-
ure 4.15). Then, there exist two or more closed, irreducible communicating
equivalence classes, which have their own probability densities:

P
(Γ )

n = NΓ

M∏
i=1

x̄nii
ni!

, ni ∈ Γ (4.79)

with NΓ being a normalization factor. Such a situation occurs in reactions
involving two or more molecules of the same species, for example in the
bimolecular conversion reaction 2A 
 2B (figure 4.15). For odd total numbers
of molecules, n0 = 2µ+1 with µ ∈ N, there are two systems of states (nA, nB)
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Fig. 4.15 Continued on next page.
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Fig. 4.15 Irreducible communicating equivalence classes. The upper part of

the figure sketches the state space for the reaction 2A
k



l

2B with nA(0) + nB(0) = 7.

Because of the simultaneous conversion of two molecules the domain is partitioned
into two closed, irreducible communicating classes: Γ1 = {(0, 7), (2, 5), (4, 3), (6, 1)}
(blue circles) and Γ2 = {(1, 6), (3, 4), (5, 2), (7, 0)} (green diamonds). The picture in
the middle compares the probability densities of both irreducible classes (Γ1, blue
and Γ2, green; k = 2, h = 2) with the density of the corresponding case with an even
number of molecules (nA +nB = 6, black) that has only one irreducible class (In order
to be able to compare directly the last curve has been shifted along the abscissa axis
by ∆n = 1/2). The diagram at the bottom compares the probability densities for
nA(0) + nB(0) = 51 and 50, respectively, for two parameter choices: k = 2, l = 2 and
k = 1, l = 4.

Fig. 4.16 The monomolecular triangle reaction. The sketch shows the fully
reversible mechanism. For weak reversibility one cycle, either (k1, k2, k3) > 0 or
(l1, l2, l3) > 0, is sufficient.

or equivalence classes that do not communicate:

(0, n0) 
 (2, n0 − 2) 
 (4, n0 − 4) 
 . . . 
 (n0 − 1, 1)

(1, n0 − 1) 
 (3, n0 − 3) 
 (5, n0 − 5) 
 . . . 
 (n0, 0) .

Although the distinction of irreducible classes is highly important for method-
ological reasons, it is hardly of empirical significance for chemical reactions,
because the probability densities for different classes are almost identical al-
ready at fairly small particle numbers like n0 = 51 in figure 4.15. This does not
preclude importance in biology where the numbers of regulatory molecules
can be extremely small.

The monomolecular triangle reaction. The monomolecular triangle reaction
(figure 4.16) is on of the two simplest mechanisms with two independent
degrees of freedom. It is straightforward to check that the deficiency of the
mechanism is δ = 0 and accordingly equation (4.77) applies and the station-
ary probability distributions can be calculated. The kinetic equations are
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Fig. 4.17 Stationary density of the monomolecular triangle reaction. The
plots show the stationary joint density Pn1,n2

of the triangle reaction, X1 
 X3 

X3 
 X1 . The upper plot presents the density for the symmetric case, k1 = k2 =
k3 = l1 = l2 = l3 = 1, and the lower plot shows an asymmetric example: k1 = 1.0,
k2 = 2.0, k3 = 10.0, l1 = 1.0, l2 = 0.2, and l3 = 0.1.

dx1

dt
= − (k1 + l3)x1 + l1 x2 + k3 x3 ,

dx2

dt
= − (k2 + l1)x2 + l2 x3 + k1 x1 , and

dx3

dt
= − (k3 + l2)x3 + l3 x1 + k2 x2 .

(4.80)

The sum of the concentrations, c(t) = x1(t) + x2(t) + x3(t), fulfils a conser-
vation relation: c(t) = c0 = const, and the stationary concentrations defined
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by dx1/ dt = dx2/ dt = dx3/ dt = 0 are readily calculated:

x̄1 = (k2k3 + k3l1 + l1l2)
c0
Σ

,

x̄2 = (k3k1 + k1l2 + l2l3)
c0
Σ

,

x̄3 = (k1k2 + k2l3 + l3l1)
c0
Σ

with

Σ = k1k2 + k2k3 + k3l1 + k1l2 + k2l3 + k3l1 +

+ l1l2 + l2l3 + l3l1 ,

(4.81)

which yields x̄1 = x̄2 = x̄3 = c0/3 for the symmetric case, k1 = k2 =
k3 = k and l1 = l2 = l3 = l. For the thermodynamic equilibrium with the
concentrations [Xi] = x̄i we have the condition

K1 =
k1

l1
, K2 =

k2

l2
, K3 =

k3

l3
, and K1K2K3 =

k1 k2 k3

l1 l2 l3
= 1 . (4.82)

The stationary distributions is calculated from equation (4.77):

Pn1,n2,n3
= N

n̄n1
1

n1!

n̄n2
2

n2!

n̄n3
3

n3!
with n̄k = x̄kNLV , k = 1, 2, 3 ,

where the stationary concentrations x̄k have been converted into stationary
particle numbers n̄k. Figure 4.17 shows plots of the two-dimensional proba-
bility density that is centered – as expected – around the stationary point.

The cyclic closure of the mechanism introduces one constraint into the
equilibrium or rate parameters. In addition, we see immediately that existence
of a thermodynamic equilibrium requires that none of the six rate parameters
vanishes: (k1, k2, k3, l1, l2, l3) > 0, and this is a consequence of the principle
of detailed balance, which demands that the flow of each individual reaction
step vanishes: k1x̄1 = l2x̄2 = 0, k2x̄2 = l3x̄3 = 0, and k3x̄3 = l1x̄1 = 0.

Stochastic model of the Michaelis-Menten mechanism. The simple Michaelis-
Menten mechanism, S + E 
 S · E → E + P, has been studied through
solving the corresponding master equation by Péter Arányi and János Tóth
[13]. They obtained an exact solution under the assumption that the reaction
is assumed to occur in a sufficiently small compartment that contains only a
single enzyme molecule E. We remark that single molecule enzyme kinetics
became accessible by experiment through modern spectroscopic techniques
(section 4.4) and we shall discuss the model again in section 4.3.4. Earlier
attempts to analyze the Michaelis-Menten mechanism by stochastic methods
are also acknowledged [30, 228].

The extended mechanism of Michaelis-Menten type, S + E 
 S · E 
 E ·
P 
 E+P, is readily analyzed: The system has one linkage class and consists
of five species, S, E, S ·E, E ·P, and P, in four complexes S + E, S ·E, E ·P,



376 4 Chemical applications

and E+P. The rank of the stoichiometric matrix is three – five concentration
variables, [S] = s, [E] = e, [S·E] = c, [E·P] = d, and [E·P] = p, constrained by
two conservation relations for total enzyme and total substrate plus product,
and accordingly we have δ = 4 − 1 − 3 = 0, the deficiency zero theorem
applies, and we are dealing with one unique stable stationary state. The
equilibrium concentrations are given in equation (4.21) and the probability
densities can be obtained from the stochastic deficiency zero theorem (4.77).
The expressions, however, are too sophisticated to be used in analytical work,
and numerical calculations are of limited usefulness either, because – as said
already – equilibrium conditions are rarely applied in experimental studies
or in biotechnology. Stochastic Michaelis-Menten kinetics will be discussed
again in section 4.3.4 and later in section 4.4 where we are dealing with
single molecule enzyme kinetics.

Finally, we mention that we have presented here only the simplest exam-
ples of reactions for the purpose of illustration but the stochastic chemical
reaction network approach (SCRN) turned out to by very useful for modeling
of real networks in systems biology and we shall encounter examples in the
forthcoming sections.
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4.2.3 The chemical Langevin equation

Stochastic differential equations (SDEs) were introduced in section 3.4 as an
alternative to the Chapman-Kolmogorov approach to handle stochastic pro-
cesses (figure 3.1) and we introduced the chemical Langevin equation and
mentioned some of its most salient features already there. The Chapman-
Kolmogorov approach in its various forms – master equation, Fokker-Planck
equation, and others – aims at modeling the evolution of probability densities,
whereas stochastic differential or Langevin equations (SDEs) concern single
trajectories. Here we present a short derivation of the Langevin equation
applied to chemical kinetics [171] in order to illustrate the implicit approxi-
mations of the approach.

At first, equation (4.69) is generalized to a network of K different reactions
Rj (j = 1, . . . ,K) and we define a time interval ∆t = [t, t + τ ]41 for the
recording of reaction events. The random vector of particle numbers at the
beginning of the time interval is ~X (t) = n(t) and at the end of the interval
we have

n(t+ τ) = n(t) + S · η
(
n(t), τ

)
or

ni(t+ τ) = ni(t) +

K∑
j=1

sij ηj
(
n(t), τ

)
, i = 1, . . . ,M .

(4.83)

with S being the stoichiometric matrix and η = (η1 . . . , ηK)t a random vector
counting the numbers of Rj reaction events, which occurred during the inter-
val [t, t+τ ]. These random numbers obviously depend on the time-dependent
particle numbers and the length of the interval: η = η

(
n(t), τ

)
.

The fully fledged computation of Xi(t+ τ) for arbitrary τ > 0 is definitely
as difficult as a solution of the corresponding master equation (4.71) but
(4.83) allows for the introduction of transparent approximations provided
two conditions (3.184) are fulfilled that we repeat here:

(1) the interval τ has to be sufficiently short such that the rate functions do
not change appreciably during [t, t+ τ ]:

γj
(
~X (θ)

)
≈ γj

(
n(t)

)
∀ θ ∈ [t, t+ τ ] and ∀ j = 1 . . . ,K,

(2) the interval τ has to be long enough that the expected number of oc-
currences of reactions in each reaction channel during the time interval
[t, t+ τ ] must be larger than one:〈

Pj
(
γj
(
n(t)

)
, τ
)〉

= γj
(
n(t)

)
τ � 1 ,∀ j = 1 . . . ,K,

where the quantities Pj(α) are random variables with Poissonian density
(section 2.3.1).

Condition (1) simplifies substantially the equation for the stochastic trajec-
tory: Because of the assumed constancy of γj

(
n(t)

)
during the interval [t, t+τ ]

41 The time interval is the same for all reactions, it is predetermined, and thus it is
different in nature from the time interval in equation (4.69).
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the random variables ηj
(
n(t), τ

)
become statistically independent Poisson

variables Pj
(
γj
(
(n(t)

)
, τ
)

and equation (4.83) can be approximated by

ni(t+ τ) = ni(t) +

K∑
j=1

sij Pj
(
γj
(
n(t)

)
, τ
)
, i = 1, . . . ,M . (4.83’)

The second condition (2) allows to approximate the discrete Poisson variable
P by a continuous random variable with normal distribution N (t) = x(t)
(section 2.3.3) whereby the mean and variance remain the same:

Xi(t+ τ) = xi(t) +

K∑
j=1

sij Nj
(
γj
(
x(t)

)
τ, γj

(
x(t)

)
τ
)
, i = 1, . . . ,M . (4.83”)

At the same time this approximation changed the originally discrete random
variables Xj(t) = nj(t) into continuous variables Xj(t) = xj(t) on the domain
of the nonnegative real numbers: xj ∈ R≥0 ∀ j = 1, . . . ,M . Using the linear
combination theorem for normal variables, X (m,σ2) = m+ σX (0, 1) we can
rewrite this equation and find

Xi(t+ τ) = xi(t) +
K∑
j=1

sij γj
(
x(t)

)
τ +

K∑
j=1

sij

√
γj
(
x(t)

)
τ N (0, 1) ; i = 1, . . . ,M .

Recalling that the probability density of the Wiener processW is the standard
normal distribution we obtain

Xi(t+ dt) = Xi(t) +
K∑
j=1

sij γj
(
~X (t)

)
dt +

K∑
j=1

sij

√
γj
(
~X (t)

)
N (0, 1)( dt)1/2 ;

i = 1, . . . ,M ,

which after rewriting yields the chemical Langevin equation

dxi =

K∑
j=1

sij γj
(
~X (t)

)
dt +

K∑
j=1

sij

√
γj
(
~X (t)

)
dWj(t) ; i = 1, . . . ,M . (4.84)

Each reaction Rj (j = 1, . . . ,K) contributes to fluctuations of particle num-
bers Xi (i = 1, . . . ,M) as a Wiener process Wj : The K contributions are
temporarily uncorrelated, statistically independent white noise terms.

Although the two approximations appear to be contradictory (figure 3.30)
since for approximation (1) τ has to be sufficiently small but at the same
it has to be large enough to fulfil condition (2). Considering, however, par-
ticle numbers of 1020 and more that are typical in conventional chemistry
we realize that there is indeed enough room to have variables, whose size
allows for a sufficiently accurate approximation of a Poissonian by a normal
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distribution and for which changes ∆n = ±1,±2 . . . lead to negligibly small
relative variations. These approximation method also known as τ -leaping will
be discussed in more detail in section 4.6.2.

Equation (4.84) corresponds to a forward Fokker-Planck equation (see sec-
tion 3.4.4), which describes the evolution of the multivariate probability den-

sity of the random vector ~X (t) [171]:

dP (x, t)

dt
= −

M∑
i=1

∂

∂xi

(( K∑
k=1

sijγk(x)

)
P (x, t)

)
+

+
1

2

M∑
i=1

∂2

∂x2
i

(( K∑
k=1

s2
ikγk(x)

)
P (x, t)

)
+

+

M∑
i,j=1 ; i<j

∂2

∂xi∂xj

(( K∑
k=1

siksjkγk(x)
)
P (x, t)

)
(4.85)

The initial conditions are P (x0, t0) = δ(x− x0).
As shown in figure 3.1 the equivalence of Langevin and Fokker-Planck

equations is a bridge built by rigorous mathematics between the single tra-
jectory and the probability density approach in chemical kinetics. This equiv-
alence is based on the usage of continuous variables, which in case of reaction
kinetics is almost always well justified by the large particle numbers in chem-
istry. We mention that a second bridge exists between the numerical simula-
tion of stochastic trajectories and chemical master equations that is mediated
by numerical mathematics on the level of discrete variables [169, 173].
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4.3 Examples of chemical reactions

In this section we shall present exact solutions of chemical master equations
for study cases from three classes of chemical reactions: (i) zero-molecular
reactions in form of the flow in a reactor, (ii) monomolecular reactions with
one reactant, and (iii) bimolecular reactions involving two reactants. Molecu-
larity of a reaction is commonly reflected by the chemical rate law of reaction
kinetics in form of the reaction order. In particular, we distinguish fist order
and second order kinetics, which is typically observed with monomolecular
and bimolecular reactions, respectively. Exceptions are conditions like excess
of one reactant, which leads to an observed reaction order that is smaller
than the molecularity. The most frequently encounter example are pseudo
first order reactions (see section 4.3.3.1). Because of its fundamental impor-
tance in chemistry and biology the autocatalytic elementary step (4.1g) will
be discussed in a separate section 4.3.3.3.

4.3.1 The flow reactor

The flow reactor is introduced as an experimental device that allows for inves-
tigations of systems under controlled conditions away from thermodynamic
equilibrium. The establishment of a stationary state or flow equilibrium in
a flow reactor (CFSTR or CSTR: continuous flow stirred tank reactor; fig-
ure 4.18) is a suitable case study for the illustration of the search for the
solution of a birth-and-death master equation. At the same time the non-
reactive flow of a single compound represents the simplest conceivable pro-
cess in such a reactor. The stock solution contains A at the concentration
[A]in = â = ā [mol·l−1]. The inflow concentration â is equal to the stationary
concentration ā, because no reaction is assumed to take place in the reactor.

Flow in case of the flow reactor in figure 4.18 is understood as volume
flow and expressed in terms of the volume flow rate r that is measured in the
units [l·sec−1].42 Accordingly the inflow of compound A into the reactor is
â · r [mol·sec−1] expressed in concentration after instantaneous mixing with
the content of the reactor. The outflow of the mixture in the reactor occurs
with the same flow rate r.43 The reactor has a volume of V [l] and thus we
have a mean residence time of τv = V · r−1 [sec] of a volume element dV in
the reactor.

42 Volume flow is to be distinguished from mass flow the measure of which is a mass
flow rate r̃ [kg·sec−1]. Mass flow is a scalar quantity, and when it is measured with
respect to a unit area through which the transport takes place, it is called a flux φ
measured in [kg/(m2·sec1)]. Flux in contrast to flow is a vector perpendicular to the
reference unit area [412].
43 The assumption of equal inflow and outflow rate is required because we are dealing
with a flow reactor of constant volume V (CSTR, figure 4.18).
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In- and outflow of compound A into and from the reactor are modeled by
two formal elementary steps or pseudoreactions

? −−−−→ A

A −−−−→ � .
(4.86)

In chemical kinetics the differential equations are almost always formulated
in terms of molecular concentrations. For the stochastic treatment the con-
centrations are replaced by particle numbers, n = a · V ·NL with n ∈ N and
NL being Avogadro’s number.

The particle number of A in the reactor is a stochastic variable N (t) with
the probability Pn(t) = P

(
N (t) = n

)
. The time derivative of the probability

density is described by means of the master equation

∂Pn(t)

∂t
= r

(
n̂ Pn−1(t) + (n+1)Pn+1(t) − (n̂+n)Pn(t)

)
; n ∈ N , (4.87)

where the flow rate could be absorbed by a redefinition of the time axis. Equa-
tion (4.87) is equivalent to a birth-and-death process with the step-up and
step-down transition probabilities w+

n = r n̂ and w−n = r n(t), respectively.
Thus we have a constant birth rate and a death rate which is proportional
to n. Solutions of the master equation can be found in text books listing
stochastic processes with known solutions, for example [176].

Here we derive the solution by means of probability generating functions
as introduced in equation (2.24) (subsection 2.2.1):

g(s, t) =

∞∑
n=0

Pn(t) sn . (2.24’)

The initial state is included in the expression: gn0
(s, t) implies Pn(0) = δn,n0

.
Partial derivatives with respect to time t and the dummy variable s are readily
computed:

∂g(s, t)

∂t
=
∞∑
n=0

∂Pn(t)

∂t
· sn =

= r

∞∑
n=0

(
n̂ Pn−1(t) + (n+ 1)Pn+1(t) − (n̂+ n)Pn(t)

)
sn and

∂g(s, t)

∂s
=

∞∑
n=0

nPn(t) sn−1 .

Proper collection of terms and rearrangement of summations – by taking into
account that w−0 = 0 – yields

∂g(s, t)

∂t
= r n̂

∞∑
n=0

(
Pn−1(t) − Pn(t)

)
sn + r

∞∑
n=0

(
(n+ 1)Pn+1(t) − nPn(t)

)
sn .
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Evaluation of the four infinite sums∑∞

n=0
Pn−1(t) sn = s

∑∞

n=0
Pn−1(t) sn−1 = s g(s, t) ,∑∞

n=0
Pn(t) sn = g(s, t) ,∑∞

n=0
(n+ 1)Pn+1(t) sn =

∂g(s, t)

∂s
, and∑∞

n=0
nPn(t) sn = s

∑∞

n=0
nPn(t) sn−1 = s

∂g(s, t)

∂s
,

and regrouping of terms yields a linear partial differential equation of first
order

∂g(s, t)

∂t
= r

(
n̂(s− 1) g(s, t) − (s− 1)

∂g(s, t)

∂s

)
. (4.88)

A general method to derive solutions called method of characteristics exists
for linear first order partial differential equation [474, pp. 390-396]. The trick
is to reduce the problem of solving a PDE to the task to find solutions for an
ODE. We briefly illustrate this solution technique.

In order to solve the PDE we start with a substitution44

g(s, t) = φ(s, t) en̂ s ,
∂g(s, t)

∂t
=

∂φ(s, t)

∂t
en̂ s , and

∂g(s, t)

∂s
=
(
n̂ φ(s, t) +

∂φ(s, t)

∂s

)
en̂ s , yielding

∂φ(s, t)

∂t
+ r(s− 1)

∂φ(s, t)

∂s
= 0 .

We define a characteristic manifold consisting of curves that are defined by
the tangent vector vt =

(
1, r(s−1)

)
and accordingly the characteristic curves

have to satisfy the ODE:

ds

dt
= r(s− 1) and s− 1 = ert · C ,

where C is the integration constant. The characteristic curves fulfil the equa-
tion e−rt(s− 1) = C and the solutions of the PDE take on the form

φ(s, t) = f(C) = f
(
e−rt(s− 1)

)
and g(s, t) = N f

(
e−rt(s− 1)

)
en̂ s ,

where N is a normalization factor, and f is some arbitrary function. The
factor N is readily calculated for the solution with s = 1:

g(1, t) = 1 ⇒ N f(0) en̂ = 1 , f(0) = 1 , N = e−n̂ ,

44 The substitution is dispensable but leads to simpler expressions.
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Fig. 4.18 The flow reactor. The reactor shown in the sketch is a device for experi-
mental and theoretical chemical reaction kinetics, which is used to carry out chemical
reactions in an open system. The stock solution contains materials, for example A at
the concentration [A]in = â, which are usually consumed during the reaction to be
studied. The reaction mixture is stirred in order to guarantee a spatially homogeneous
reaction medium. Constant volume implies an outflow from the reactor that compen-
sates in volume the inflow. The flow rate r is equivalent to the inverse mean residence
time of solution in the reactor multiplied by the reactor volume, τ −1

v · V = r. The
reactor shown here is commonly called continuously stirred tank reactor (CSTR).

and we obtain
g(s, t) = f

(
e−rt(s− 1)

)
en̂ (s−1) .

In order to determine f we use the initial condition Pn(0) = δn,n0 :

g(s, 0) = f(s− 1) · exp
(
(s− 1)n̂

)
= sn0 ,

f(ζ) = (ζ + 1)n0 · exp (−ζn̂) with ζ = (s− 1) e−rt ,

g(s, t) =
(

1 + (s− 1) e−rt
)n0 · exp

(
−n̂(s− 1) e−rt

)
· exp

(
n̂(s− 1)

)
=

=
(

1 + (s− 1) e−rt
)n0 · exp

{
−n̂(s− 1) (1− e−rt)

}
.

(4.89)
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Fig. 4.19 Establishment of the flow equilibrium in the CSTR. The upper part
shows the evolution of the probability density, Pn(t), of the number of molecules of a
compound A which flows through a reactor of the type illustrated in figure 4.18. The
initially infinitely sharp density becomes broader with time until the variance reaches
its maximum and then sharpens again until it reaches stationarity. The stationary
density is a Poissonian with expectation value and variance, E(N ) = var(N ) = n̂.
In the lower part we show the expectation value E

(
N (t)

)
in the confidence interval

E ± σ. Parameters used: n̂ = 20, n0 = 200, and V = 1; sampling times (upper part):
τ = r · t = 0 (black), 0.05 (green), 0.2 (blue), 0.5 (violet), 1 (pink), and ∞ (red).

From the generating function we compute with somewhat tedious but straight-
forward algebra the probability distribution

Pn(t) =

min{n0,n}∑
k=0

(n0

k

)
n̂n−k ·

e−krt
(
1− e−rt

)n0+n−2k

(n− k)!
· e−n̂ (1−e−rt) (4.90)

with n, n0, n̂ ∈ N0. In the limit t → ∞ we find a non vanishing contribution
to the stationary probability only from the first term, k = 0, and obtain
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lim
t→∞

Pn(t) = P̄n(t) =
n̂n

n!
exp (−n̂) . (4.91)

This is a Poissonian distribution with parameter and expectation value α = n̂.
The Poissonian distribution has also a variance, which is numerically identical
to the expectation value, var(N ) = E(N ) = n̂, and at the stationary state
the distribution of particle numbers fulfils perfectly a

√
n-law.

The time dependent probability distribution allows to compute the expec-
tation value and the variance of the particle number as a function of time

E
(
N (t)

)
= n̂ + (n0 − n̂) · e−rt ,

var
(
N (t)

)
=
(
n̂ + n0 · e−rt

)
·
(
1 − e−rt

)
.

(4.92)

As expected for linear transition probabilities the expectation value coincides
with the solution curve of the deterministic differential equation

dn

dt
= w+

n − w−n = r (n̂− n) and n(t) = n̂ + (n0 − n̂) · e−rt . (4.93)

Since we start from sharp initial densities, variance and standard deviation are
zero at time t = 0. The qualitative time dependence of var

(
N (t)

)
, however,

depends on the sign of (n0 − n̂):

(i) For n0 ≤ n̂ the standard deviation increases monotonously until it
reaches the stationary value

√
n̂ in the limit t→∞, and

(ii) for n0 > n̂ the standard deviation increases until it passes through a
maximum at

t(σmax) =
1

r

(
ln 2 + lnn0 − ln(n0 − n̂)

)
and approaches the long-time value

√
n̂ from above.

In figure 4.19 we show an example for the evolution of the probability density
(4.90). In addition, the figure contains a plot of the expectation value E

(
X (t)

)
inside the band E − σ < E < E + σ. In case of a normally distributed
stochastic variable we find 68.3% of all values within this confidence interval .
In the interval E−2σ < E < E+2σ we would find even 95.4% of all stochastic
trajectories (2.3.3).
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4.3.2 Monomolecular chemical reactions

The reversible mono- or unimolecular chemical reaction can be split into two
irreversible elementary reactions

A
k

−−−−→ B (4.94a)

A
l

←−−−− B , (4.94b)

wherein k and l, are the reaction rate parameters, which depend on tem-
perature, pressure, and other environmental factors. At equilibrium the rate
of the forward reaction (4.94a) is precisely compensated by the rate of the
reverse reaction (4.94b), k · [A] = l · [B], leading to the condition for the
thermodynamic equilibrium:

K =
k

l
=

[B]

[A]
, (4.95)

where the parameter K is the equilibrium constant , which again depends on
temperature, pressure, and other environmental factors like the reaction rate
parameters. In an isolated or in a closed system we have a conservation law:

XA(t) + XB(t)

V ·NL
= [A] + [B] = c(t) = c0 = c̄ = constant , (4.96)

where c is the constant total concentration.
The two irreversible reactions are characterized by vanishing rate parame-

ters, lim l→ 0 or lim k → 0, respectively. It is worth mentioning that zero rate
parameters correspond to an instability in the Gibbs free energy at equilib-
rium, ∆G0 = −RT ln K, and are incompatible with rigorous thermodynam-
ics. Nevertheless, the assumption of irreversibility is a good approximation
in cases where equilibria are lying almost completely on the side of reactants
or products, respectively.

4.3.2.1 Irreversible monomolecular reaction

We start by discussing the simpler irreversible case,

A
k

−−−−→ B , (4.94a’)

which is can be modeled and analyzed in full analogy to the previous case of
the flow equilibrium. We are dealing with two molecular species A and B, but
the process is fully described by a single stochastic variable, XA(t) = n, since
we have the conservation relation (4.96) XA(t) + XB(t) = n0 with n0 = n(0)
being the initial number of A molecules. The reaction is tantamount to a
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Fig. 4.20 Continued on next page.
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Fig. 4.20 Probability density of an irreversible monomolecular reaction.
The three plots on the previous page show the evolution of the probability density,
Pn(t), of the number of molecules of a compound A which undergo a reaction A→B.
The initially infinitely sharp density Pn(0) = δn,n0

becomes broader with time until
the variance reaches its maximum at time t = t1/2 = tmax = ln 2/k and then sharpens
again until it approaches full transformation, limt→∞ Pn(0) = δn,0. On this page we
show the expectation value E

(
XA(t)

)
and the confidence intervals E±σ (68,3%,red)

and E± 2σ (95,4%,blue) with σ2 = var
(
XA(t)

)
being the variance. Parameters used:

n0 = 200, 2000, and 20 000; k = 1 [t−1]; sampling times: 0 (black), 0.01 (green), 0.1
(blue), 0.2 (violet), (0.3) (magenta), 0.5 (pink), 0.75 (red), 1 (pink), 1.5 (magenta), 2
(violet), 3 (blue), and 5 (green). The initial condition for the time dependence of the
expectation value was n0 = 200.

single-step pure death process with w+
n = 0 and w−n = k n.45 The probability

density is defined by Pn(t) = P (XA = n) and the time dependence obeys the
master equation

∂Pn(t)

∂t
= k (n+ 1)Pn+1(t) − k nPn(t) . (4.97)

Equation (4.97) can be solved again by means of the probability generating
function,

g(s, t) =

∞∑
n=0

Pn(t) sn ; |s| ≤ 1 ,

which again fulfils a linear PDE of first order

∂g(s, t)

∂t
− k (1− s) ∂g(s, t)

∂s
= 0 ,

45 We remark that w−n = 0 and w+
n = 0, the conditions for a natural absorbing

barrier (section 5.2.1), are fulfilled at n = 0.
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which can be solved as shown in the previous section 4.3.1 and yields

g(s, t) =
(

1 + (s− 1)e−kt
)n0

. (4.98)

This expression is expanded in binomial form, which introduces an ordering
with respect to increasing powers of s,

g(s, t) = (1− e−kt)n0+
(n0

1

)
se−kt(1− e−kt)n0−1 +

(n0

2

)
se−2kt(1− e−kt)n0−2+

+ . . .+
( n0

n0 − 1

)
sn0−1e−(n0−1)kt(1− e−kt) + sn0e−n0kt .

Comparison of coefficients yields the time dependent probability density

Pn(t) =

(
n0

n

)(
exp (−kt)

)n (
1− exp (−kt)

)n0−n
. (4.99)

It is straightforward to compute the expectation value of the stochastic vari-
able XA, which again coincides with the deterministic solution, and its vari-
ance

E
(
XA(t)

)
= n0 e

−kt ,

var
(
XA(t)

)
= n0 e

−kt (1− e−kt) . (4.100)

The half-life of a population of n0 particles,

t1/2 : E{NA(t)} =
n0

2
= n0 · e−ktmax =⇒ t1/2 = tmax =

1

k
ln 2 ,

is the time of maximum variance or standard deviation, d var
(
XA(t)

)
/ dt = 0

or dσ
(
XA(t)

)
/ dt = 0, respectively. An example of the time course of the

probability density of an irreversible monomolecular reaction is shown in
figure 4.20.

4.3.2.2 Reversible monomolecular reaction

The analysis of the irreversible reaction is readily extended to the reversible
case (4.94) that corresponds to a one step birth-and-death process. Again we
are dealing with a closed system, the conservation relation XA(t)+XB(t) = n0

– with n0 being again the number of molecules of class A initially present,
Pn(0) = δn,n0 – holds and the step-up and step-down transition probabilities
are given by: w+

n = l (n0 − n) and w−n = k n.46 The master equation is now
of the form

46 Here we note the existence of barriers at n = 0 and n = n0, which are characterized
by w−0 = 0, w+

0 = l n0 > 0 and w+
n0

= 0, w−n0
= k n0 > 0, respectively. These

equations fulfil the conditions for reflecting natural boundaries (section 5.2.1).
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Fig. 4.21 Continued on next page.
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Fig. 4.21 Probability density of a reversible monomolecular reaction The
three plots on the previous page show the evolution of the probability density, Pn(t),
of the number of molecules of a compound A which undergo a reaction A
B. The
initially infinitely sharp density Pn(0) = δn,n0

becomes broader with time until the
variance settles down at the equilibrium value eventually passing a point of maximum
variance. On this page we show the expectation value E

(
XA(t)

)
and the confidence

intervals E±σ (68,3%,red) and ±2σ (95,4%,blue) with var
(
XA(t)

)
being the variance.

Parameters used: n0 = 200, 2000, and 20 000; k = 2 l = 1 [t−1]; sampling times: 0
(black), 0.01 (dark green), 0.025 (green), 0.05 (turquoise), 0.1 (blue), 0.175 (blue
violet), 0.3 (purple), 0.5 (magenta), 0.8 (deep pink), 2 (red). The initial condition for
the time dependence of the expectation value was n0 = 200.

∂Pn(t)

∂t
= l(n0 − n+ 1)Pn−1(t) + k(n+ 1)Pn+1(t)−

−
(
kn+ l(n0 − n)

)
Pn(t) .

(4.101)

Making use of the probability generating function g(s, t) we derive the PDE

∂g(s, t)

∂t
=
(
k + (l − k)s− ks2

)∂g(s, t)

∂s
+ n0 l(s− 1) g(s, t) .

The solutions of the PDE are simpler when expressed in terms of parameter
combinations, κ = τ−1

R = k + l and the equilibrium constantK = k/l:

g(s, t) =
(

1 + (s− 1) e−κt − s

K

)n0

=

=

(
K (1− e−κt) + s (Ke−κt + 1)

1 +K

)n0

=

=

n0∑
n=0

((
n0

n

) (
Ke−κt + 1

)n (
K(1− e−κt)

))n0−n sn

(1 +K)n0
.
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The probability density for the reversible reaction is then obtained as

Pn(t) =

(
n0

n

)
1

(1 +K)n0

(
Ke−κt + 1

)n (
K(1− e−κt)

)n0−n
. (4.102)

Taking the limit to infinite time yields the equilibrium density

lim
t→∞

Pn(t) = Pn =

(
n0

n

)
Kn0−n

(1 +K)n0
=

(
n0

n

)
1

(k + l)n0
kn0−n ln , (4.78’)

which is, of course, identical with the expression (4.78’) derived earlier.
Expectation value and variance of the numbers of molecules are readily

computed and introducing the function ω(t) = K exp (−κt) + 1 yields:

E
(
XA(t)

)
=

n0

1 +K
ω(t) ,

var
(
XA(t)

)
=

n0 ω(t)

1 +K

(
1− ω(t)

1 +K

)
,

(4.103)

and the stationary values are

lim
t→∞

E
(
XA(t)

)
= n0

l

k + l
,

lim
t→∞

var
(
XA(t)

)
= n0

k l

(k + l)2
,

lim
t→∞

σ
(
XA(t)

)
=
√
n0

√
k l

k + l
.

(4.104)

This result shows that the
√
N -law is fulfilled up to a factor that is indepen-

dent of N : E/σ =
√
n0 l/

√
k l. We remark that the deterministic solution

a(t) =
a0

1 +K

(
K e−κt + 1

)
coincides exactly with the expectation value

Starting from a sharp distribution, Pn(0) = δn,n0, the variance increases,
may or may not pass through a maximum and eventually reaches the equi-
librium value, σ̄2 = kl n0/(k+ l)2. The time of maximal fluctuations is easily
calculated from the condition dσ2/ dt = 0 and one obtains

tmax var =
1

k + l
ln

(
2 k

k − l

)
. (4.105)

Depending on the sign of (k − l) the approach towards equilibrium passes a
maximum value or not. The maximum is readily detected from the height of
the mode of Pn(t) as seen in figure 4.21 where a case with k > h is presented.
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In order to illustrate fluctuations and their sizes under equilibrium con-
ditions the Austrian physicist Paul Ehrenfest designed a game called Ehren-
fest’s urn model [104], which was indeed played in order to verify the

√
N -law.

Balls, 2N in total, are numbered consecutively, 1, 2, . . . , 2N , and distributed
arbitrarily over two containers, say A and B. A lottery machine draws lots,
which carry the numbers of the balls. When the number of a ball is drawn,
the ball is put from one container into the other. This setup is already suf-
ficient for a simulation of the equilibrium condition. The more balls are in a
container, the more likely it is that the number of one of its balls is drawn
and a transfer occurs into the other container. Just as it occurs with chem-
ical reactions we have self-controlling fluctuations: Whenever a fluctuations
becomes large it creates a force for compensation which is proportional to
the size of the fluctuation.

4.3.3 Bimolecular chemical reactions

Three classes of bimolecular reactions corresponding to the elementary steps
(4.1j), (4.1f), and (4.1g):

2 A
k

−−−−→←−−−−
l

C , (4.106a)

A + B
k

−−−−→←−−−−
l

C and (4.106b)

A + X
k

−−−−→←−−−−
l

2 X . (4.106c)

are accessible in the irreversible limit, l → 0, to full stochastic analysis
[20, 83, 84, 225, 273, 318]. Bimolecularity gives rise to nonlinearities in the
kinetic differential equations and in the master equations and complicates
substantially the analysis. Bimolecular reactions from the first two classes do
not show substantial differences in the qualitative behavior compared to the
corresponding monomolecular case A→ B. The exact coincidence of the ex-
pectation value and the deterministic solution, however, in non longer valid.
For the solution of the master equations we present here the direct PDE
approach as before and compare it to another technique based on Laplace
transforms. Autocatalysis in the form of reaction (4.106c) gives rise to intrin-
sic rate enhancement (section 4.1.1) and different behavior of fluctuations but
still reaction dynamics remains simple in the sense of monotonous approach
towards unique stationary states. Autocatalytic processes of higher molec-
ularity like, for example, the termolecular step in the Brusselator reaction,
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Fig. 4.22 Scaling of particle numbers n and m/2 in dimerization reactions.
Two molecules A react to yield on molecule C and accordingly not all molecules A
can react in case a0 is odd (red). The other irreducible equivalence class with an even
number of A molecules (blue) is disjunct. In other words if XA(t0) is odd or even it
will remain so for all times t.

A + 2X → 3X (4.1m), may give rise to multiple steady states, oscillations of
concentrations, and deterministic chaos (section 5.1).
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Fig. 4.23 Continued on next page.



396 4 Chemical applications

Fig. 4.23 Irreversible dimerization reaction 2A → C. The plot at the top
shows the probability distribution Pn(t) = P

(
XC(t) = n

)
describing the number of

molecules of species C as a function of time and calculated by equation (4.120). The
number of molecules C is given by the distribution Pm(t) = P

(
XC(t) = m

)
. The initial

conditions are chosen to be XA(t) = δ(n, a0), and XC(t) = δ(m, 0) and hence we have
n+ 2m = a0. With increasing time the peak of the distribution moves from right to
left. The state n = 0 is an absorbing state and hence the long time limit of the system
is: limt→∞ XA(t) = δ(n, 0) limt→∞ XC(t) = δ(m,a0/2). Parameters used: a0 = 100
and k = 0.02 [t−1 ·M−1]; sampling times (upper part): t = 0 (black), 0.01 (green), 0.1
(turquoise), 0.2 (blue), 0.3 (violet), 0.5 (magenta), 0.75 (red), 1.0 (yellow), 1.5 (red),
2.25 (magenta), 3.5 (violet), 5.0 (blue), 7.0 (cyan), 11.0 (turquoise), 20.0 (green), 50.0
(chartreuse), and∞ (black). The plot in the middle shows the variance var

(
XA(t)

)
as

a function of time for different initial conditions: k = 1; a0=10 (blue), 20 (green), 50
(yellow), and 100 (red). The plot at the bottom compares stochastic and deterministic
solutions: E

(
XA(t)

)
(black), a(t) (red) and ã(t) (blue); k = 1, a0 = 10. The broken

black line shows the asymptotic tangent to all three curves at t = 0.

4.3.3.1 Direct solution of PDE

Dimerization reaction: 2 A → C. Like the irreversible monomolecular re-
action A → B the dimerization reaction (4.106a) is a pure death process
and when modeled by means of a master equation [318] we have to take
into account that two molecules A vanish at a time to form one C molecule,
and for XA(t) = n(t) an individual jump involves always ∆n = 2. The sto-
ichiometry, which is different from the monomolecular reaction, creates two
irreducible equivalence classes (figure 4.15) comprised of odd or even num-
bers of A molecules, respectively (figure 4.22). In other words when the initial
number of A molecules is odd, a0 = 2µ + 1 with µ ∈ N, XA will always be
odd and the last A molecule will be unable to react, and for an initially even
number of A molecules, a0 = 2µ, XA will always be even and XA = 0 is
allowed:

XA(0) = a0 =⇒ lim
t→∞

XA(t) =

{
1 if a0 = 2µ+ 1

0 if a0 = 2µ
µ ∈ N≥0 .

The master equation is of the form,

dPn(t)

dt
=

1

2
k (n+ 2)(n+ 1)Pn+2(t) − 1

2
k n(n− 1)Pn(t) , (4.106a’)

with Pn(t) = P
(
XA(t) = n

)
with n ∈ N≤0 and Pn(0) = δn,n0 with a0 = n0

and P
(
XC(0) = c

)
= δc,0 as initial conditions. The master equation gives rise

to the following PDE for the probability generating function [318]:

∂g(s, t)

∂t
=

k

2
(1− s2)

∂2g(s, t)

∂s2
. (4.107)
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The analysis of this PDE is more involved than it might appear at a first
glance.

For the initial condition Pn(0) = δn,n0
and proper boundary conditions

exact solutions of equation (4.107) in terms of auxiliary functions are avail-
able:

g(s, t) =

∞∑
j=0

Aj C
− 1

2
j (s)Tj(t) , (4.108)

wherein the parameters and functions are defined by

Aj =
2j − 2

2j
·

Γ (n0 + 1)Γ
(
(n0 − j + 1)/2

)
Γ (n0 − j + 1)Γ

(
(n0 + j + 1)/2

) ,
C
− 1

2
j (s) : (1− s2)

d2C
− 1

2
j (s)

ds2 + j(j − 1)C
− 1

2
j (s) = 0 ,

Tj(t) = exp
(
−1

2
k j(j − 1) t

)
,

The functions C
− 1

2
j (s) are ultraspherical or Gegenbauer polynomials named

after the German mathematician Leopold Gegenbauer [1, ch.22, pp.773-802].
They are solution of the differential equation shown above and belong to the
family of hypergeometric functions. It is straightforward to write down ex-
pressions for the expectation values and the variance of the stochastic variable
XA(t) – µ stands for an integer running index, µ ∈ N:

E
(
XA(t)

)
=

2bn0
2 c∑

j=2µ=2

Aj Tj(t) and

var
(
XA(t)

)
=

2bn0
2 c∑

j=2µ=2

(1

2
(j2 − j + 2)Aj Tj(t) − A 2

j T
2
j (t)

)
.

(4.109)

In order to obtain concrete results these expressions can be readily evaluated
numerically. An example of the time course of the probability density function
is shown in figure 4.23 (For a comparison of the relative widths of the densities
of all three bimolecular reactions see figure 4.28).

There is one interesting detail in the deterministic version of the dimer-
ization reaction. With [A]=a(t) and a(0) = a0, it is conventionally modeled
by the differential equation (4.110a) for which an exact analytical solution
is readily derived. Although particle numbers in chemical reactions are com-
monly so large that a2 is indistinguishable from a (a−1) for practical purposes
it is worth considering the corrected kinetic equation (4.110b) for which we
have also an exact solution:
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Fig. 4.24 Irreversible association reaction A + B → C. The plot shows the
probability distribution Pn(t) = P

(
XC(t) = n

)
describing the number of molecules

of species C as a function of time and calculated by equation (4.119). The initial
conditions are chosen to be XA(t) = δ(a, a0), XB(t) = δ(b, b0), and XC(t) = δ(c, 0).
With increasing time the peak of the distribution moves from left to right. The state
n = min(a0, b0) is an absorbing state and hence the long time limit of the system is:
limt→∞ XC(t) = δ

(
n,min(a0, b0)

)
. Parameters used: a0 = 50, b0 = 51, k = 0.02 [t−1 ·

M−1]; sampling times (upper part): t = 0 (black), 0.01 (green), 0.1 (turquoise), 0.2
(blue), 0.3 (violet), 0.5 (magenta), 0.75 (red), 1.0 (yellow), 1.5 (red), 2.25 (magenta),
3.5 (violet), 5.0 (blue), 7.0 (cyan), 11.0 (turquoise), 20.0 (green), and ∞ (black).

−da

dt
=

1

2
k a2 =⇒ a(t) =

a0

1 + a0 k t/2
and (4.110a)

−dã

dt
=

1

2
k ã(ã− 1) =⇒ ã(t) =

ã0

ã0 + (1− ã0)e−kt/2
. (4.110b)

At not too long times the expectation value of the stochastic solution lies
always between the two solution curves (4.110a) and (4.110b). In the limit
t → 0 all three curves converge to the asymptotic limit for small times:
â(t) = a0(1 − a0 k t/2). At short times the expectation value E

(
XA(t)

)
and

the corrected deterministic curve ã(t) come closer together whereas the ex-
pectation value comes closer to the conventional deterministic curve a(t). At
large times the conventional deterministic curve and the stochastic curve may
even cross.47

Association reaction: A + B → C. In the second example, the association
reaction (4.106b), we are dealing with three dependent stochastic variables
XA(t), XB(t), and XC(t). Following Donald McQuarrie and coworkers [318]
we define the probability Pn(t) = P

(
XA(t) = n

)
and apply the standard

47 This result is an artifact of the unability of the continuous deterministic function
to distinguish between odd and even numbers of molecules.
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initial condition Pn(0) = δn,n0 with n0 = a0, P (XB(0) = b) = δb,b0 , and
P (XC(0) = c) = δc,0. From the laws of stoichiometry and mass conservation
we have XB(t) = b0 − n0 + XA(t) and XC(t) = n0 − XA(t). For simplicity we
denote b0 − a0 = ϑ0. Then the master equation for the chemical reaction is
of the form

∂Pn(t)

∂t
= k (n+ 1) (ϑ0 + n+ 1)Pn+1(t) − k n (ϑ0 + n)Pn(t) . (4.106b’)

We remark that the step-down transition probabilities are no longer linear in
n. The corresponding PDE for the generating function is readily calculated

∂g(s, t)

∂t
= k (ϑ0 + 1)(1− s)∂g(s, t)

∂s
+ k s(1− s) ∂

2g(s, t)

∂s2
. (4.111)

The derivation of solutions for this PDE is quite demanding, but as in case
of the dimerization reaction it can be achieved by separation of variables:

g(s, t) =

∞∑
m=0

Am Zm(s)Tm(t) . (4.112)

We list here only the coefficients and functions of the solution:

Am = (−1)m
(2m+ ϑ0)Γ (m+ ϑ0)Γ (n0 + 1)Γ (n0 + ϑ0 + 1)

Γ (m+ 1)Γ (ϑ0 + 1)Γ (n0 −m+ 1)Γ (n0 + ϑ0 +m+ 1)
,

Zm(s) = Jm(ϑ0, ϑ0 + 1, s) , and

Tm(t) = exp
(
−m(m+ ϑ0) k t

)
.

Herein, Γ represents the conventional gamma function with the definition
Γ (x+ 1) = xΓ (x), and J(p, q, s) are the Jacobi polynomials named after the
German mathematician Carl Jacobi [1, ch.22, pp.773-802], which are solutions
of the differential equation

s(1− s)
d2Jn(p, q, s)

ds2
+
(
q − (p+ 1)s

)dJn(p, q, s)

ds
+ n(n+ p) Jn(p, q, s) = 0 .

These polynomials fulfil the following conditions:

dJn(p, q, s)

ds
= −

n(n+ p)

s
Jn−1(p+ 2, q + 1, s) and

∫ 1

0

sq−1(1− s)p−qJn(p, q, s) J`(p, q, s) ds =
n!
(
Γ (q)

)2
Γ (n+ p− q + 1)

(2n+ p )Γ (n+ p)Γ (n+ q)
δ`,n .

We differentiate twice at the value s = 1 of the dummy variable and find:
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∂g(s, t)

∂s

)
s=1

=

n0∑
m=1

(2m+ ϑ0)Γ (n0 + 1)Γ (n0 + ϑ0 + 1)

Γ (n0 −m+ 1)Γ (n0 + ϑ0 +m+ 1)
Tm(t) , (4.113)

(
∂2g(s, t)

∂s2

)
s=1

=

=

n0∑
m=2

(m− 1)(m+ ϑ0 + 1)(2m+ ϑ0)Γ (n0 + 1)Γ (n0 + ϑ0 + 1)

Γ (n0 −m+ 1)Γ (n0 − ϑ0 +m+ 1)
Tm(t) (4.114)

from which we obtain expectation value and variance

E
(
XA(t)

)
=

(
∂g(s, t)

∂s

)
s=1

and

var
(
XA(t)

)
=

(
∂2g(s, t)

∂s2

)
s=1

+

(
∂g(s, t)

∂s

)
s=1

−

((
∂g(s, t)

∂s

)
s=1

)2

. (2.25’)

As we see in the current example and we shall see again in the next section,
bimolecularity complicates the solution of the chemical master equations sub-
stantially and makes solutions quite sophisticated. We dispense here from the
detailed expressions but provide the results for the special case of vast excess
of one reaction partner, |ϑ0| � n0 > 1, which is known as pseudo first order
condition or concentration buffering . Then, the sums can be approximated
well be the first terms and we find with k′ = ϑ0k:(

∂g(s, t)

∂s

)
s=1

≈ n0
ϑ0 + 2

n0 + ϑ0 + 1
e−(ϑ0+1)kt ≈ n0 e

−k′t and(
∂2g(s, t)

∂s2

)
s=1

≈ n0 (n0 − 1) e−2 k′t ,

and we obtain finally,

E
(
XA(t)

)
= n0 e

−k′t and

var
(
XA(t)

)
= n0 e

−k′t
(

1− e−k
′t
)
,

(4.115)

which is formally the same result as obtained for the irreversible first order
reaction with k ⇒ k′ = ϑ0k.

4.3.3.2 Laplace transform of master equations

Because of its more general applicability we consider here also the solution
of chemical master equations by means of Laplace transform [20, 225, 273],
which is similar to the approach used in section 3.2.4 for analyzing random
walks. The probability density of a master equation, Pm(t), is Laplace trans-
formed

Vm(s) =

∫ ∞
0

exp (− s t)Pm(t) dt ,
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and the time derivative is calculated through integration by parts:∫ ∞
0

dPm(t)

dt
e−s t dt = Pm(t) e−s t

∣∣∣∞
0
−
∫ ∞

0

Pm(t) e−s t(−s) dt =

= s

∫ ∞
0

Pm(t) e−s t dt− Pm(0) = s Vm(s)− Pm(0) .

Thereby we obtain an algebraic equation for the Laplace transform Vm(s),
which can be solved by a standard technique and then the probability density
in obtained through backtransformation by inverse Laplace transform.

The inverse Laplace transformation by Mellin’s fomula is defined by48

f(t) = L−1
(
F (s)

)
.
=

1

2πı
.
ı

lim
ϑ→∞

∫ γ+ı
.
ıϑ

γ−ı.ıϑ
es tF (s) ds . (4.116)

where γ is a real number chosen such that the contour path of integration is
the region of convergence of F (s). If the integral is extended over the positive
real axis, all poles of the function have to lie left to the imaginary axis.
For illustration we repeat first the transformation properties of the simple
exponential function f(t) = exp (−a t):

L
(
e−a t

)
=

1

s+ a
=⇒ L−1

( 1

s+ a

)
= e−a t (4.117)

Here, as required the pole is indeed situated left to the imaginary axis.

Irreversible association reaction: A + B → C. We write down the master
equation in a slightly different form and introduce XC(t) as the stochas-
tic variable counting the number of molecules C in the system: Pm(t) =
P
(
XC(t) = m

)
. With the initial condition Pm(0) = δm,0 and the upper limit

of m, limt→∞ Pm(t) = γ with γ = min{a0, b0} where a0 and b0 are the sharply
defined numbers of A and B molecules initially present, P

(
XA(0) = a

)
= δa,a0 ,

P
(
XB(0) = b

)
= δb,b0 , we have

γ∑
m=0

Pm(t) = 1 , m ∈ Z, and thus Pm(t) = 0 ∀ m /∈ [0, γ]

and the master equation now takes on the form

48 Mellin’s formula is named after the Finnish mathematician Hjalmar Mellin and
represents one of several possible definitions. Another frequently used expression is
Post’s inversion formula of the Polish-American mathematician Emil Leon Post, which
develops the inversion into a derivative of infinite order.
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dPm(t)

dt
= k

(
a0 − (m− 1)

)(
b0 − (m− 1)

)
Pm−1(t)−

− k (a0 −m)(b0 −m)Pm(t) , 0 ≤ m ≤ γ . (4.106b”)

Laplace transform and insertion of Pm(0) = δ(m, 0) leads to

−1 + s V0(s) = − k a0 b0 V0(s) ,

s Vm(s) = k
(
a0 − (m− 1)

)(
b0 − (m− 1)

)
Vm−1(s)−

− k (a0 −m)(b0 −m)Vm(s) , 1 ≤ m ≤ γ , and

s Vγ(s) = k
(
a0 − (γ − 1)

)(
b0 − (γ − 1)

)
Vγ−1(s) .

The solutions in Laplace space expressed by the functions Vm(s) are calcu-
lated by successive iteration, V0(s)→ V1(s)→ · · · → Vγ(s), that yields

Vm(s) =
(a0
m

)(b0
m

)
(m!)2kn

n∏
j=0

1

s+ k(a0 − j)(b0 − j)
, 0 ≤ m ≤ γ , (4.118a)

where the product in the denominator is resolved into partial fractions

n∏
j=0

(
s+ k(a0 − j)(b0 − j)

)−1
=

n∑
j=0

Aj

s+ k(a0 − j)(b0 − j)
with

Aj = (−1)m+jk−m
(a0 + b0 − 2j) (a0 + b0 −m− j − 1)!

j!(m− j)!(a0 + b0 − j)!
,

(4.118b)

which are suitable for inverse Laplace transform.
Exchanging integration and summation for the inverse transformation and

performing the transform yields the final result

Pm(t) = (−1)m
(
a0

m

)(
b0
m

) m∑
j=0

(−1)j
(

1 +
m− j

a0 + b0 −m− j

)
×

×
(
m

j

)(
a0 + b0 − j

m

)−1

e−k(a0−j)(b0−j)t .

(4.119)

An illustrative example is shown in figure 4.24. The difference between the two
irreversible reactions, monomolecular conversion and bimolecular association
(figure 4.20), is indeed not spectacular.



4.3 Examples of chemical reactions 403

Dimerization reaction: 2A → C. The master equation of the dimerization
reaction has been solved by means of a Laplace transform [225] in full anal-
ogy to the procedure described in the previous paragraph deling with the
association reaction. For this goal we rewrite down the master equation in a
slightly different form that takes into account that ∆XA = 2:

∂P2w(t)

∂t
= −

1

2
k (2w)(2w − 1)P2w(t) +

1

2
k (2w + 2)(2w + 1)P2w+2(t) (4.106a”)

with w ∈ Z and Pw(t) = 0 ∀ {w < 0 ∨ w > γ ∨ 2w = 2µ+ 1 with µ ∈ N≥0},

being the condition that all probabilities outside the interval [0, 2γ] as well as
the odd probabilities for odd values of w, P2µ+1 vanish (figure 4.22). Herein
γ = ba02 c denotes the maximal number of C molecules that can be formed.
The probability distribution P2w(t) is derived by means of the Laplace trans-
form

Vw(s) =

∫ ∞
0

exp (− s · t)Pw(t) dt

yielding the set of difference equations

−1 + s q2a0(s) = −1

2
k (2a0)(2a0 − 1) q2a0(s) ,

s q2n(s) = −1

2
k (2n)(2n− 1) q2n(s) +

+
1

2
k (2n+ 2)(2n+ 1) q2n+2(s) , 0 ≤ y ≤ a0 − 1 ,

which again can be solved by successive iteration. It is straightforward to
calculate the Laplace transform for 2µ, the number of molecules of species A
that have reacted to yield C: 2µ = 2(a0 −m) with m = [C] and 0 ≤ m ≤ a0:

q2(a0−m)(s) =

(
k

2

)m (2a0

2m

)
(2m)!

m∏
j=1

(
s+

k

2

(
2(a0 − j)

)
·
(
2(a0 − j)− 1

))−1

,

and a somewhat tedious but straightforward exercise in algebra yields the
inverse Laplace transform:

P2(a0−m)(t) = (−1)m
a0! (2a0 − 1)!!

(a−m)! (2a0 − 2m− 1)
×

×
m∑
j=0

(−1)j
(4a0 − 4j − 1)(4a0 − 2m− 2j − 3)!!

j!(m− j)!(4a0 − 2j − 1)!!
×

× e−k (a0−j)·
(

2(a0−j)−1
)
t .

The substitution i = a0 − j leads to
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P2(a0−m)(t) = (−1)m
a0! (2a0 − 1)!!

(a−m)! (2a0 − 2m− 1)
×

×
a0∑

i=a0−m
(−1)a0−i

(4i− 1)(2a0 − 2m+ 2i− 3)!!

(a0 − i)!(a0 − i+m)!(2a0 + 2i− 1)!!
×

× e−k 2i·
(

2i−1
)
t .

Setting now n = a0−m in accord with the definition of m we obtain the final
result

P2n(t) = (−1)n
a0!(2a0 − 1)!!

n!(2n− 1)!!
×

×
n∑
i=1

(−1)i
(4i− 1)(2n+ 2i− 3)!!

n!(2n− 1)!!
× e−k i(2i−1)t .

(4.120)

The results are illustrated be means of a numerical example in figure 4.23.

Reversible association reaction: A + B 
 C. The reversible association reac-
tion is described by the chemical master equation

dPn(t)

dt
= k (n+ 1) (ϑ0 + n+ 1)Pn+1(t) − k n (ϑ0 + n)Pn(t) +

+ l (n0 − n+ 1)Pn−1(t) − l (n0 − n)Pn(t)

(4.121)

and has been solved by application of linear algebra to the probability density

vector P(t) =
(
Pn(t);n ∈ N, n ∈ [0, a0]

)t
with a0 = n0 for b0 > a0,49 Pn(t) =

P
(
XA(t) = n

)
, Pn(0) = δn,n0

, Laplace transform and its inversion [273]. First
we write the master equation in terms of step-up and step-down transition
probabilities (3.96) whereby for convenience we make a modification of the
time axis k t⇒ t:

w+
n = K (a0 − n) and w−n = n (ϑ0 + n) , (4.122)

with K = l/k being the dissociation constant, and obtain the general form

dPn(t)

dt
=

=


−(w+

0 + w−0 )P0(t) + w−1 P1(t) , if n = 0 ,

+w+
n−1Pn−1(t)− (w+

n + w−n )Pn(τ) + w−n+1Pn+1(t) , if 0 < n < n0 ,

+w+
n−2Pn−2(t)− (w+

n−1 + w−n−1)Pn(t) , if n = n0 ,

which in vector format reads

49 If a0 > b0 we can simply exchange the variables XA(t) and XB(t) without loosing
generality.
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dP(t)

dt
= W ·P(t) , (4.123)

where W is the general tridiagonal transition matrix of a birth-and-death
process

W =

=



−(w+
0 + w−0 ) w−1 0 . . . 0 0

w+
0 −(w+

1 + w−1 ) w−2 . . . 0 0

0 w+
1 −(w+

2 + w−2 ) . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 . . . −(w+
n0−2 + w−n0−2) w−n0−1

0 0 0 . . . w+
n0−2 −(w+

n0−1 + w−n0−1)


.

Laplace transform of the probability density,

Vn(s) =

∫ ∞
0

exp (−s t)Pn(t) dt , (4.124)

yields an algebraic equation for V(s) =
(
Vn(s);n ∈ N, n ∈ [0, a0]

)t
:

sV(s) = W ·V(s) + P0 and V(s)
(
s I − W

)
= P0 , (4.125)

where P0 =
(
P0(0), P1(0), . . . , Pa0(0)

)t
= (0, 0, . . . , 1)t. The formal solution

of this equation is

V(s) =
(
s I − W

)−1 ·P0 , (4.126)

where matrix inversion is performed in the conventional way(
s I − W

)−1
=

1∣∣(s I − W
)∣∣ adj

(
s I − W

)
with ’adj’ denoting the adjugate or classical adjoint matrix.50 The simple
form of P0 makes it possible to obtain V using only the elements of the last

column of the matrix
(
s I − W

)−1
. After some calculations one obtains the

solution in Laplace space [273]:

Vn(s) =
1

(ϑ0 + 1)n n!

a0! b0!

ϑ0!

Dn(s)

Da0−1(s)
, (4.127)

where the polynomials Dn(s) can be constructed recursively:

Dn(s) − (s+ w+
n−1 + w−n−1)Dn−1(s) + w+

n−2 w
−
n−1Dn−2(s) , (4.128)

with D0 = 1 and D1 = s+w+
0 . This recursion, of course, is just an alternative

to (4.118) way to calculate the solution in Laplace space.

50 The adjugate matrix of a square matrix is the transpose of the cofactor matrix
(For details see textbooks of linear algebra, e.g., [416, pp. 231-232]).
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The final step is the inverse Laplace transformation, which can be done
by applying Mellin’s formula (4.116) and integration according to the residue
theorem [14, p. 444]:

Pn(t) =

a0∑
j=0

lim
s→λj

(
(s− λj) exp (s t)Vn(s)

)
,

where the values λj are the eigenvalues of the transition matrix W. Combining
both results yields the final solution:

Pn(t) =
a0! b0!

(ϑ0 + 1)n n! (ϑ0)!

a0∑
j=0

Dn(λj) exp (λjt)(
∂Da0+1(s)

∂s

)∣∣∣
s=λj

, (4.129)

In principle,the exact probability density can be calculated from equation
(4.129) provided the eigenvalues of matrix W are known. In the general case
W is a tridiagonal matrix and the eigenvalues can be obtained only by numer-
ical computation. In some special cases, nevertheless, analytical solutions can
be obtained. We mention two examples (i) the irreversible reaction A+B→ C
and (ii) the stationary or equilibrium density Pn = limt→∞ Pn(t) for the re-
versible reaction A + B 
 C.

For the irreversible reaction the eigenvalues are identical with the diagonal
elements of matrix W, which is upper-triangular51 the eigenvalues coincide
with the diagonal elements in this case:

w+
j = 0 ∀ j ∈ N , j ∈ [0, a0] ⇒ λj = w−j = −j (ϑ0 + j) .

The expression for the probability density [273] then becomes:

Pn(t) =
a0! b0!

(ϑ0 + n)!
×

×
a0∑
j=n

(−1)j−n
(ϑ0 + 2j) (ϑ0 + n+ j − 1)!

(a0 − j)! (j − n)! (b0 + j)!
e−j (ϑ0+j)kt , (4.119’)

where we have restored the original time axis, t⇒ k t. Equations (4.119) and
(4.119’) yield exactly the same density and are mathematically equivalent,
although the expressions are different, since m in (4.119) counts the molecules
C whereas n counts molecules A.

The equilibrium probability density may be calculated by making advan-
tage of an interesting relation between a function and its Laplace transform
known as Laplace initial and final value theorem:

51 A matrix that has no nonzero entries below the main diagonal is called upper-
triangular, and a lower-triangular matrix has only zero elements above the diagonal.
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Fig. 4.25 Continued on next page.
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Fig. 4.25 Equilibrium of the association reaction. The first three figures show
the equilibrium expectation values E

(
X A(K)

)
(black) embedded in the one standard

deviation zone E(X A)± σ(X A) (gray with red borders), in addition the deterministic
solution ā(K) (yellow) and the pseudo first order result ã(K) (green) are shown.
Choice of parameters: a0 = 5, b0 = 5 (upper plot), a0 = 50, b0 = 500 (middle plot),
and a0 = 1000, b0 = 1000 (lower plot). The fourth plot shows the standard deviation

as a function of the equilibrium constants, σ
(
X A(K)

)
. These curves start from σ = 0

for K = 0, pass a maximum and approach zero in the limit K → ∞. Choice of
parameters: a0 = 5, b0 = 5 (black), 6 (red), 7 (yellow), 10 (green), 20 (blue), and 40
(magenta).

lim
s→0

s Vn(s) = Pn(∞) = Pn and lim
s→∞

s Vn(s) = Pn(0) . (4.130)

In order to calculate the equilibrium density we need to know only the limiting
value of the Laplace transformed probability density

lim
s→0

s Vn(s) = lim
s→0

s
a0! b0!

(ϑ0 + n)!n!

Dn(s)

Da0+1(s)
,

in particular we require the constant terms of the polynomials Dn(s), which
can be obtained from the recursion (4.128):

Dn(0) =

n−1∏
j=0

w+
j = Kn a0!

(a0 − n)!
=

(a0 − n+ 1)n
Kn
b

,

where (·)n is the rising Pochhammer symbol and Kb = K−1 = k/l the
association or binding constant. From w+

j = (a0−j)K followsDn(0) > 0 ∀n ∈
[0, a0] and Da0+1 = 0 immediately. After some calculation and consideration
of the normalization condition

∑a0
n=0 Pj(t) = 1 we obtain the final result for

the stationary distribution
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Pn =
(a0 − n+ 1)n

K−n (ϑ0 + 1)n n!
· 1

1F1(−a0;ϑ0 + 1;−K)
, (4.131)

where 1F1(α; γ;x) is the confluent hypergeometric function:

1F1(α; γ;x) =

∞∑
j=0

(α)j
(γ)j

xj

j!
.

It is worth recalling that the result for the equilibrium density, Pn, of the
association reaction can be derived much easier form equation (4.77) through
elimination of the linear dependencies, nA = n, nB = ϑ0 +n, and nC = a0−n:

pn =
x̄nA

A
nA!

x̄nB
B
nB!

x̄nC
C

nC!
, n = (nA, nB, nC) ∈ N3 , and

Pn = N pn with N =

min{a0,b0}∑
i=0

pi

−1

,

(4.132)

where N is the normalization factor. The equilibrium concentrations, x̄A = x̄,
x̄B = ϑ0 + x̄, and x̄C = a0 − x̄, are readily obtained from the relation

K−1 =
[C]

[A] · [B]
=

x̄C

x̄A · x̄B
= Kb ,

which for nA(0) = a0 and nB(0) = b0 with b0 ≥ a0, and nC(0) = 0, yields

x̄ =
1

2

(
a0 − b0 −K +

√
(a0 + b0 +K)2 − 4a0b0

)
(4.133)

for the equilibrium concentration of A. In order to generalize to arbitrary a0

and b0 values we need only replace ϑ0 ⇔ |b0 − a0| and a0 ⇔ min{a0, b0}.
In earlier work on bimolecular chemical reactions expectation value and

variance of XA was derived by means of probability generating functions [84]:

E(X A) = µā = K
a0

ϑ0 + 1
· 1F1(−a0 + 1;ϑ0 + 2;−K)

1F1(−a0;ϑ0 + 1;−K)
and

var(X A) = −µ2
ā − (ϑ0 +K)µā + a0K .

(4.134)

In figure 4.25 we consider the stochastic equilibrium in form of the one stan-
dard deviation band around the expectation value, E(X A) ± σ(X A). As ex-
pected the relative width of this band becomes smaller with increasing num-
bers of molecules in the sense of an approximate

√
N -law. The dependence

of the probability density on the dissociation constant K for fixed values
a0 and b0 yields a monotonous increase of the expectation value E(X A) from

limK→0 E(X A) = 0 to limK→∞ E(X A) = a0. In contrast to the first order sys-
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Fig. 4.26 Continued on next page.
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Fig. 4.26 Equilibrium of the bimolecular conversion reaction. The first two
plots show the equilibrium expectation values E

(
X A(K)

)
(black) embedded in the

one standard deviation zone E(X A)± σ(X A) (gray with red borders), in addition the
deterministic solution ā(K) (yellow) is shown. Choice of parameters: a0 = 5, b0 = 5
(upper plot) and a0 = 1000, b0 = 1000 (middle plot). In the upper plot we see that

the curves for E
(
X A(K)

)
and ā(K) cross at the point K = 1 as indicated by the

blue dotted lines. The third plot shows the standard deviation as a function of the
equilibrium constants, σ

(
X A(K)

)
. These curves start from σ = 0 for K = 0, pass a

maximum and approach zero in the limit K → ∞. Choice of parameters: a0 = 5,
b0 = 5 (black), 10 (red), 20 (yellow), 40 (green), 80 (blue), and 150 (magenta).

tem A 
 B the expectation value E(X A) does not coincide with deterministic
solution:

ā(a0, b0,K) =
1

2

(
a0 − b0 −K +

√
(a0 − b0 −K)2 + 4a0K

)
. (4.133’)

There is a small but recognizable difference between E(X A;K) and ā(K) for
a0 = b0 = 5, which becomes very small already at moderate particle numbers
(a0, b0) > 10 where the two curves coincide within the line width. The limit
of large b0-values is known as pseudo first order condition with

ā ≈ ã(a0, b0,K) = a0
K

b0 +K
for b0 � a0 . (4.135)

A factor of b0 = 100 · a0 is sufficient to make all three curves, E(X A;K),
ā(K), and ã(K) practically indistinguishable.

Variance and standard deviation of E(X A;K) adopt the value zero at both

limits, limK→0 var(X A) = 0 and limK→∞ var(X A) = 0, and pass a maximum
at some intermediate value of K. For constant a0 the height of the maximum
and the position along the K-axis increase with increasing values of b0. We
remark that the equilibrium constant K for the reaction C 
 A + B is not
dimensionless, [K] = [mole × l−1] = [numbers of particles], as it was in the
first order scenario A 
 B, an hence analogous scenarios are expected to be
observed for equilibrium constants that are scaled with particle numbers.

Reversible bimolecular conversion reaction: A + B 
 C + D. For the purpose
of comparison we consider here also the reversible bimolecular conversion
reaction (4.1i). As shown in section 4.2.1 three conservation relations reduce
the four random variables counting the molecules of class A, B, C, and D
to a single one. As initial conditions we choose XA(0) = a0, XB(0) = b0,
XC(0) = c0, and XD(0) = d0, we make the assumptions c0 = 0, d0 = 0, and
introduce b0 − a0 = ϑ0 for the calculations reported here:
XA(t) = n(t) , XB(t) = ϑ0 + n(t) , XC(t) = a0 − n(t) , andXD(t) = a0 − n(t) .
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The equilibrium probability distribution for this system was calculated by
means of the probability generating function [84] and the results for expec-
tation value and variance are:

E(X A) = µā = K
a2

0

ϑ0 + 1
· 2F1(−a0 + 1;−a0 + 1;ϑ0 + 2;K)

2F1(−a0;−a0;ϑ0 + 1;K)
,

var(X A) =

 µ2
ā ·

b20
a0+b0−1 if K = 1 ,

−µ2
ā − ϑ0+2a0K

1−K µā +
a20K
1−K if K 6= 1 .

(4.136)

For the purpose of comparison we calculate the deterministic value too:

ā(a0, b0,K) =
1

2(K − 1)

(
ϑ0 + 2a0K −

√
ϑ2

0 + 4a0b0K
)
, (4.137)

and for Kb = 1 the equation simplifies to ā = a2
0/(a0+b0). The illustrative ex-

ample in figure 4.26 shows an overall picture that is very similar to the associ-
ations reaction with two significant differences: (i) the equilibrium constant is
dimensionless and this implies that the same values of K can be used for par-
ticle numbers and other units to observe the influence on the various phenom-
ena, and (ii) the reaction system exhibits a kind of symmetry at the equilib-
rium constant K = 1, where the expectation value and the deterministic equi-
librium concentration adopt the same values: E(X A; a0, b0, 1) = ā(a0, b0, 1).
As in the previous example the difference between the the stochastic and the
deterministic values becomes very small at relatively small particle numbers,
(a0, b0) > 10, already.

4.3.3.3 Autocatalytic reaction

In this section we are dealing with our last example of a chemical reaction
for which analytical solutions are available: the bimolecular or first order
autocatalytic reaction presented in (4.1g). Here, we present a solution of the
master equation, which makes use of the Laplace transform [20]. As in our
previous examples the backtransformation into probability space when done
analytically provides strong restrictions to the solvable cases.

The reaction for first order autocatalysis in a closed system

A + X
k

−−−−→←−−−−
l

2 X , (4.138)

is described by the chemical master equation
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dPn(t)

dt
= k (n+ 1) (n0 − n− 1)Pn+1(t) +

+ l (n0 − n+ 1) (n0 − n)Pn−1(t)−

−
(
k n (n0 − n) + l (n0 − n) (n0 − n− 1)

)
Pn(t)

(4.139)

with XA(t) = n(t) chosen as the single independent stochastic variable, since
XX(t) = n0 − n(t) or XA(t) + XX(t) = n0. As initial conditions we choose
a0 = n(0) and Pn(0) = δn,n(0) where we require x0 = n0−n(0) = n0−a0 > 0,
because otherwise we obtain dPn(0)/ dt = 0 ∀n ∈ [ 0, n0 − 1], n ∈ N. No
reaction takes place if no autocatalyst is present and then the probability
density is constant. This is readily verified in the master equation where
n0 = n(0) ≡ a0 or x0 = 0 yields

dPn(t)

dt
= k (n+ 1) (n0 − n− 1)Pn+1(t) ,

and Pn+1(0) 6= 0 if and only if n = a0 − 1 where Pa0−1+1(0) = 1 but then
n0− a0 + 1− 1 = 0. Of course, the same result follows from the deterministic
equation: x0 = x(0) = 0 implies no reaction. Another consequence of the
autocatalytic process is the fact that the last molecule X cannot be converted
into an A molecule, because two X molecules are required for the reaction,
and this is reflected by the definition of the probability density.

The master equation can be solved through Laplace transformation in
full analogy to the procedure described for the association reaction [20]. The
transformation is facilitated by a change in the time axis, t ⇒ t/k, by the
introduction of a dimensionless equilibrium constant, K = l/k, as well as
step-up and step down transition probabilities according to (3.96):52

w+
n = K (n0 − n) (n0 − n− 1) and w−n = n (n0 − n) . (4.140)

and the master equation takes on the same form as shown previously

dP(t)

dt
= W ·P(t) , (4.123’)

and the matrix W is identical with the only difference that the state n = n0

does not exist or – better expressed – has probability zero, Pn0
= 0, because

the state with XX = 0 is an absorbing barrier that, however, cannot be reached
from the state XX = 1 for the reason mentioned above.

With the usual definition Pn(t) = 0∀n /∈ [0, n0 − 1] equation (4.123’)
represents a linear system of n0 equations that may be solved by applying a
Laplace transform to the components

52 The difference in the step down transition probabilities is a result of the different
stoichiometry of the association reaction and the autocatalytic reaction as discussed
already in section 4.1.1 and figure 4.1.
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Vn(s) =

∫ ∞
0

Pn(t) e−st dt . (4.124’)

The same procedure as described in the previous section yields the solution

V =
(
s I − W

)−1

·P0 . (4.126’)

The initial condition Pn(0) = δn,a0 simplifies the calculation of the trans-
formed probability density Vn(s) and allows for the derivation of a closed
solution:53

Vn(s) =
(−1)n+a0 Ma0+1,n+1(s)

det(sI−W)
, (4.141)

where Ma0+1,n+1 is a minor of the matrix (sI−W).
For the irreversible reaction A + X → 2X – the case l = K = 0 – the

reverse reaction is precluded and the vectors V and P0 as well as the matrix
W have the dimensions (a0 + 1) × 1 and (a0 + 1) × (a0 + 1), respectively.
The inverse Laplace transformation is performed in analogy to the previous
section. A relevant difference, however, occurs because, of the degeneracy of
some eigenvalues of matrix W.

Since all step-up transitions are forbidden w+
n = 0 ∀n ∈ [0, a0] the matrix

W is upper-diagonal and has the eigenvalues

λj = −w−j ; j = 0, 1, . . . , a0 with λj = λa0−j since w−j = w−a0−j .

Two cases are distinguished: (1) for x0 ≥ a0 the eigenvalues of W are distinct
and (2) degenerate pairs may occur when x0 < a0, in particular all eigenvalues
λj , λn0−j are degenerate for j ∈ [x0, a0] except λn0/2 if n0 is even.

If all eigenvalues of W are distinct, the probability distribution can be
obtained from the Laplace transform by means of the Heaviside expansion
theorem [82]:

Pn(t) =

n0−1∑
j=0

lim
s→λj

(s− λj) est Vn(s) .

The sum covers all eigenvalues of W. The derivation of the expansion theorem
requires non-degeneracy of the roots λj = sj in the general formulation

f(t) = L−1

(
P (s)

Q(s)

)
=

n∑
k=1

P (sk)

Q′(sk)
eskt with Q′(sk) =

dQ(s)

ds

∣∣∣∣
s=sk

,

where P (s) and Q(s) are polynomials in s of degree m and n respectively,
which fulfil n > m. Then follows for every simple root sk of Q(s):

53 In general, the calculation of determinants and minors is highly nontrivial as is
the subsequent inversion of the Laplace transform but thanks to the sharp initial
conditions applied here all steps can be performed analytically.
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Fig. 4.27 Irreversible bimolecular autocatalytic reaction A + X → 2X. The
plot shows the probability distribution Pn(t) = P

(
XA(t) = n

)
describing the number

of molecules of species A as a function of time and calculated by the equations in
table 4.1. Parameter choice: k = 1 [N−1·V·sec−1], a0 = 17, x0 = 5, and sampling
times: t = 0 (black), 0.005 (chartreuse), 0.01 (green), 0.02 (turquoise), 0.03 (blue),
0.04 (violet), 0.06 (purple), 0.08 (magenta), and ∞ (red). In the lower plot we show
the expectation value E

(
XA(t)

)
(black) together with the band E ± σ (red) and the

deterministic expectation value (yellow). The areas with where the calculated values
are probabilistically meaningless, E + σ > a0 and E − σ < 0, are clipped. Parameter
choice: a0 = 20, x0 = 1, and k = 1 [N−1·V·sec−1].
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Res
(
F (s) est , sk

)
= lim

s→sk

s− sk
Q(s)−Q(sk)

P (s) est =
P (sk)

Q′(sk)
eskt .

Extension to the entire domain of s is done by summation.
Degenerate eigenvalues can be handled by singular perturbation theory.

For this goal we replace w−n by

ηj = j (n0 − j + ε) ,

and after some calculation one finds for the solution in the Laplace space

Vn(s|ε) =
(−1)n+a0

∏a0
j=n+1(−ηi)∏a0

i=n(s+ ηi)
. (4.141’)

Inverse Laplace transformation and evaluation of the products yields the
result that still depends on ε:

Pn(t|ε) =

a0∑
j=n

(−1)n+a0
∏a0
i=n+1(−ηi)∏j−1

i=n

∏a0
i=j+1

e−ηjt =

=
(x0 + ε)a0−n

n!

a0∑
j=n

A
(x0,a0)
j,n (ε) e−j(n0−j+ε)t with

A
(x0,a0)
j,n (ε) = (−1)a0+j

(
a0

j

)
(j − n+ 1)n (2j − n0 − ε)

(j + n− n0 − ε)a0−n+1
.

(4.142)

and (x)n = Γ (x+ n)/Γ (x) is the rising Pochhammer polynomial.
The next and final step is the evaluation of the limit ε → 0 where three

different special cases have to be distinguished. For this purpose we define

two auxiliary functions B
(x0,a0)
j,n and C

(x0,a0)
j,n (t):

B
(x0,a0)
j,n = lim

ε→0

(x0 + ε)a0−n
n!

A
(x0,a0)
j,n (ε) ,

The function B
(x0,a0)
j,n is independent of time and appears as coefficient of an

exponential decrease term in the final expression for Pn(t). For convenience
to cases are distinguished:

B
(x0,a0)
j,n =


(−1)j+na0!(n0−n−1)!(x0−j−1)!(n0−2j)

n!(x0−1)!(a0−j)!(j−n)!(n0−j−n)!
if j + n ≤ n0 ,

(−1)a0+ja0!(j+n−n0−1)!(x0−j−1)!(2j−n0)

n!(x0−1)!(a0−j)!(j−n)!(j−x0)!
if j + n > n0 .

(4.143)

The second function C
(x0,a0)
j,n (t) is more involved and results from accounting

for the degeneracies in the eigenvalues:

C
(x0,a0)
j,n (t) = (−1)

n−x0 (n0 − n− 1)!a0!

n!(x0 − 1)!(a0 − j)!(j − n)!(j − x0)!(n0 − j − n)!
·

·
(

(n0 − 2j)
2
t + 2 − (n0 − 2j)(Hj−n −Ha0−j −Hn0−j−n +Hj−x0 )

)
.

(4.144)
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Table 4.1 The probability density of the first order irreversible autocat-
alytic reaction A+X→ 2X. For x0 > a0 all eigenvalues of matrix W are distinct and
the probability density is obtained by a simple sum of the contributions of individual
exponential decay modes. The expressions are taken from [20].

Case Range Probability density Pn(t)

x0 > a0 [0, a0]
∑a0

j=n B
(x0,a0)
j,n e−k j(n0−j)t

x0 ≤ a0 [0, x0[
∑x0−1
j=n B

(x0,a0)
j,n e−k j(n0−j)t +

∑bnc
j=x0

C
(x0,a0)
j,n (t) e−k j(n0−j)t

1+δj,n0−j

[x0, bnc]
∑bnc
j=n

C
(x0,a0)
j,n (t) e−k j(n0−j)t

1+δj,n0−j
+
∑n0−n+1
j=n B

(x0,a0)
j,n e−k j(n0−j)t

]bnc, a0]
∑a0

j=n0−n+1 B
(x0,a0)
j,n e−k j(n0−j)t

By Hn we denote here the harmonic numbers: Hn =
∑n
k=1

1
k . The derivation

of the final expressions is technically quite involved since the case with degen-
eracies of eigenvalues has to be split in subcases requiring different handling
of summations and we refer to the literature for details [20]. In table 4.1 we
present the probability densities for the different cases and subcases. There
we have already transformed back to the original time t ⇒ k t. An example
of the time dependent probability density Pn(t) of the irreversible first order
autocatalytic reaction is shown in figure 4.27.

The expectation value of the number of molecules A can be computed also
by means of auxiliary functions with some labor [20]. Direct calculation of
mean and variance, however, is less sophisticated:

E
(
XA(t)

)
=

a0∑
n=0

nPn(t) and

var
(
XA(t)

)
=

a0∑
n=0

n2 Pn(t) − E
(
XA(t)

)2

.

An illustrative example is shown in figure 4.27 where we can see also a sub-
stantial difference between the deterministic solution and the expectation
value.

In principle, the master equation of the reversible first-order autocatalytic
reaction (4.123) could be handled by the same procedure as the irreversible
reaction. In the irreversible case the eigenvalues of matrix W are available
in analytical form. Since this does not seem to be possible for the reversible
case, little is gained by the Laplace transform. We discuss A + X 
 2X
as an example for numerical simulations in section 4.6.4. There we discuss
in detail also the differences between the stochastic and the deterministic
solutions. The stationary solution of the reversible reaction is, nevertheless,
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Fig. 4.28 Probability densities of bimolecular reactions. Compared are the
widths of the densities P

(
XA(tm)

)
in the middle of the state space that were calculated

with equations Parameter choice: (tm = 0.09, k = 1) for A + X → 2X (black),
(tm = 0.4375, k = 0.1) for A + B → 2C (blue), and (tm = 0.525, k = 0.1) for
2 A→ 2C (red).

readily computed by applying the results for the longtime limit:

0 = W · P̄ with n ∈ [0, n0[ and K > 0 , (4.123’)

which can be done for any stationary univariate master equation by means
of (3.100). By inserting the expressions from (4.140) we find

P̄ (auto)
n =

(
n0

n

)
Kn

(1 +K)n0 −Kn0
(4.145)

This result is to be compared with the equilibrium of the monomolecular
reaction A 
 X that was calculated in section 4.3.2.2

P̄ (mono)
n =

(
n0

n

)
Kn

(1 +K)n0
.

We recognize the difference of the density distributions for the two reactions
at equilibrium is the fact that a single X molecule cannot be converted into
an A molecule and a different normalization is required. This deviation dis-
appears with increasing values of n0 as fast as n(n− 1) approaches n2.

In figure 4.28 we compare the width of the probability densities of all three
irreversible bimolecular reactions studied here: A + X → 2X, A + B → C,
and 2 A → C. All three reactions start from a sharp distribution, Pn(0) =
δn,a0, and progress to a sharp distribution, limt→∞ Pn(t) = δn,0. In order to
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make the densities comparable, we consider them in the middle of the state
space, E

(
XA(t)

)
≈ a0/2. The autocatalytic process is characterized by two

differences in comparison with the other two reactions: (i) the distribution is
much broader and (ii) the time at which the distribution passes the middle
of the state space is much shorter. Both findings are a result of the self-
enhancement in autocatalysis. Fluctuations are larger and the rate of the
reaction is accelerated.

4.3.4 Stochastic enzyme kinetics

Michaelis-Menten kinetics is more complex than the the examples treated
here so far, since even the simple mechanism, S + E 
 C → E + P with C
denoting the enzyme-substrate complex, C ≡ S·E, cannot be reduced without
approximation to a problem with a single independent variable. Instead, we
have to deal with two random variables, for example XS and XE, counting
substrate and enzyme molecules, respectively, and with a bivariate probability
density: Pe,n(t) where e denotes the number of free enzyme molecules E and
n represents the number of substrate molecules S. The analytical model we
introduce here is taken from the literature [13]. It is based on the assumption
that only a single enzyme molecule – free or bound in the complex, E or C,
respectively54 – is present, and this is interpreted as the consideration of a
sufficiently small volume such that it contains one or no enzyme molecule.
Present day spectroscopic techniques made it possible to observe and study
single enzyme molecules (section 4.4.1) and the model presented here found
a physical realization in experimental setups with single enzyme molecules
that are immobilized in compartments or on membranes.

The basic steps of irreversible substrate to product conversion, S → P,
are:

. . .
k2
→nS + E

k1·n


l1

(n− 1) S + C
k2
→ (n− 1) S + E + P

k1·(n−1)



l1

. . . ,

where n is not the stoichiometric coefficient but the number of substrate
molecules that are ready for conversion. In figure 4.29 we show the entire
state space for a single enzyme molecule, e ∈ {0, 1} and n ∈ [0, n0], n ∈ N. It
is straightforward to write down a master equation for this scheme:

dPe,n(t)

dt
= l1(2− e)Pe−1,n−1(t) + k2(2− e)Pe−1,n(t) +

+ k1(e+ 1)(n+ 1)Pe+1,n+1(t)−

−
(
k1 e n+ (l1 + k2)(1− e)

)
Pe,n(t) ,

(4.146)

54 Since we mean here molecules rather than molecular species we use normal instead
of bold fonts. The diagram sketches the state space and is called a reaction scheme
in order to point at the difference to a reactions mechanism.
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Fig. 4.29 Scheme of the Michaelis-Menten mechanism with a single en-
zyme molecule. We show the irreversible conversion of n substrate molecules into
n product molecules that occurs in 2n individual reaction steps. The boxes contain
the numbers of molecules of the four species: substrate S (blue), enzyme E (red),
enzyme-substrate complex C ≡ S ·E (purple), and product P (black). All states in the
third column are identical with the states of the first column in the next row except
the initial and the final state and hence the reaction scheme consists of a single line.

with the initial conditions Pe,n(0) = δe,1 · δn,n0 .55 Since the conversion steps
are irreversible the final state is determined by the limiting density

lim
t→∞

Pe,n(t) = δe,1 · δn,0 ,

all substrate molecules S are converted into product P and the enzyme is in
the free state E.

A solution of the master equation (4.146) can be derived by means of the
marginal probability generating functions:56

ge(s, t) =

n0+e−1∑
n=0

sn Pe,n(t) with e ∈ {0, 1}, t ≥ 0 . (4.147)

Equations (4.146) and (4.147) are converted into a system of partial differ-
ential equations:

55 Here and in the following paragraphs all probability densities and generating func-
tions with index values outside the domains, e /∈ {0, 1} and n /∈ [0, n] are zero.
56 This approach is meaningful in case one of the two random variables is restricted to
very few values, here XE = {0, 1}. The use of marginal densities avoids the occurrence
of second order partial derivatives that create the difficulties encountered in solving
the master equations of second order reactions.
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∂ge(s, t)

∂t
= k1(e+ 1)

∂ge+1(s, t)

∂s
− k1 e s

∂ge(s, t)

∂s
−

− (l1 + k2)(1− e) ge(s, t) +

+ (l1 + k2)(2− e)s ge−1(s, t) with e ∈ {0, 1} .

(4.148)

The solution of the PDE (4.148) is obtained in terms of a pair of generating
functions:

g0(s, t) = γ1 e
−l1(s−1)/k2 · e−k2t + γ2

l1 + k2

l1s+ k2
e−(k1+k2)t +

+

2∑
i=1

∞∑
n=0

χ
(n)
i

(
k2 − (k2 + λ

(n)
i ) s

−λ(n)
i

)q(n)
i +1

eλ
(n)
i t ,

(4.149a)

g1(s, t) = γ0 − γ1 e
−l1(s−1)/k2 · e−k2t − γ2

l1 + k2

l1s+ k2
e−(k1+k2)t−

−
2∑
i=1

∞∑
n=0

χ
(n)
i

(
k2 − (k2 + λ

(n)
i ) s

−λ(n)
i

)q(n)
i +1

eλ
(n)
i t ,

(4.149b)

where the various coefficients γi and χ
(k)
i are to be determined from the

conditions:

g0(1, t) + g1(1, t) = 1 , g0(s, 0) = 0 , and g1(s, 0) = sn0 .

The eigenvalues of the (2n0 + 1) × (2n0 + 1) transition probability matrix
corresponding to the master equation (4.146) are obtained from n0 quadratic
equations:

λ2 +
(
l1 + k1(n+ 1) + k2

)
λ + k1k2 (n+ 1) = 0 ∀ n = 0, 1, . . . n0 − 1 ,

including a trivial eigenvalue λ = 0:

λ
(n)
1,2 = −1

2

((
k1(n+1)+ l1 +k2

)
∓
√(

k1(n+ 1) + l1 + k2

)2 − 4k1k2(n+ 1)
)

The exponents q
(n)
i are readily obtained from the eigenvalues:

q
(n)
i = −

(
λ

(n)
i

)2
+ (l1 + k1 + k2)λ

(n)
i + k1k2

k1

(
k2 + λ

(n)
i

) .

Although the calculations can be quite involved in practice, the coefficients
γ1 and γ2 vanish if l1 6= 0, the summations over n contain finite numbers of

terms, the q
(n)
i -values are in the range [0 ≤ q(n)

i ≤ n0−1], and the eigenvalues

λ
(n)
i are distinct real numbers.
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Fig. 4.30 The Michaelis-Menten reaction with single molecules. The full
curves in the upper plot shows the expectation values for observing the substrate
molecule E

(
XS(t)

)
(black), the substrate-enzyme complex E

(
XC(t)

)
(green), and the

product molecule E
(
XP(t)

)
(red), which are compared with the corresponding func-

tions s(t), c(t), and p (t) (broken curves) obtained by integration of the kinetic dif-
ferential equations (section 4.1.2) for the same conditions. The lower plot presents
the one standard deviation error band around the expectation value of the substrate
concentration: E

(
XS(t)

)
± σ

(
XS(t)

)
. The gray hatched zone is the probabilistically

meaningful part of the error band.
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The probability densities are obtained from the generating functions in
the conventional way:

Pe,n(t) =
1

n!

∂nge(s, t)

∂sn

∣∣∣
s=0

,

As an example demonstrate the usage of single molecule probabilities the
densities for a single enzyme molecule and n0 substrate molecules restricted
to the conversion of the first substrate molecule are calculated [115]:

P0,n0−1(t) =
k1 n0

λ
(n0−1)
2 − λ(n0−1)

1

(
eλ

(n0−1)
2 t − eλ

(n0−1)
1 t

)
and

P1,n0(t) =
λ

(n0−1)
1 + k1 n0

λ
(n0−1)
2 − λ(n0−1)

1

eλ
(n0−1)
2 t − λ

(n0−1)
2 + k1 n0

λ
(n0−1)
2 − λ(n0−1)

1

eλ
(n0−1)
1 t .

The calculation of the time of the expected appearance of the first product
molecule, ϑ, is a first passage time problem. The probability of recording a
product molecule, PP(t), is simply the probability of having neither a sub-
strate molecule S nor an enzyme-substrate complex C given by the expression
PP(t) = P

(
XP(t) = 1

)
= 1 − P1,n0

(t) − P0,n0−1(t). The expectation value of
the time ϑ is then obtained from

〈ϑ〉 =

∫ ∞
0

t
dPP(t)

dt
dt = −

∫ ∞
0

t

(
dP1,n0

(t)

dt
+

dP0,n0−1(t)

dt

)
dt .

After some calculations we obtain the final result

〈ϑ〉 =
k1 n0 + l1 + k2

k1k2 n0
=

1

k1 n0
+

l1
k1k2 n0

+
1

k2
, (4.150)

which is easily interpreted: The appearance of the (first) molecule P takes
long if (i) the binding rate constant k1 multiplied by the initial number of
substrate molecules is small, or if (ii) the dissociation of the enzyme substrate
complex C → S + E is fast as expressed by a large value of l1, or if (iii) the
rate constant of product formation, k2, is small.

For the purpose of illustration and comparison with the deterministic
model we consider the one enzyme molecule plus one substrate molecule in
figure 4.30:

P00(t) =
k1

λ
(0)
2 − λ

(0)
1

(
eλ

(0)
2 t − eλ

(0)
1 t
)

and

P11(t) =
λ

(0)
1 + k1

λ
(0)
2 − λ

(0)
1

eλ
(0)
2 t − λ

(0)
2 + k1

λ
(0)
2 − λ

(0)
1

eλ
(0)
1 t .

These probability densities are identical with the expectation values for the
different states in the last line of figure 4.29, since the random variables can
take on only the values zero and one for n0 = 1:
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E
(
XS(t)

)
= P11(t), E

(
XC(t)

)
= P00(t) and E

(
XP(t)

)
= 1− P11(t)− P00(t) ,

and in the single molecule case the three variances are readily calculated to

be: var
(
X (t)

)
= E

(
X (t) − E

(
X (t)

))2

. In figure 4.30 the time dependence

of the probabilities is compares with the curves obtained by integration of
the kinetic differential equations (section 4.1.2): We find a remarkably good
agreement despite the fact that the expectation values refer to single molecule
events. The variance, however, is so large that the curves E

(
X (t)

)
± σ
(
X (t)

)
extend also outside the probabilistic domain: 0 ≤ E

(
X (t)

)
≤ 1. Then, it is

advisable to restrict the one standard deviation error zone to the meaningful
domain.57

57 The same over- and undershooting of the E
(
X (t)

)
± σ

(
X (t)

)
curves has also been

observed in previously discussed cases. For most systems, however, the meaningless
parts of the one standard deviation error band are negligibly small.
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4.4 Fluctuations and single molecules investigations

The rapid advancements of molecular spectroscopy with respect to signal
intensity and temporal resolution within the second half of the twentieth
century became the basis for entirely new developments. The old dream to
be able to watch single molecules in action and to record single events be-
came true first with the electric current flowing true membranes: The patch-
clamp technique made it possible to register opening and closing of single
ion channels [188, 345]. Another breakthrough was more general and came
from fluorescence spectroscopy: Signals from single molecules were recorded
in solution [210, 386] and in the solid state [332, 355] (for reviews see, e.g.,
[267, 366, 455]), and set the stage the analysis of single molecules. By means
of fluorescence the motions of single molecules can now be traced routinely
at high spatial and temporal resolution and in highly heterogeneous envi-
ronments like living cells. A third approach came from applications of scan-
ning tunneling microscopy [42] and opened the possibility for mechanical
manipulation of single molecules by means of atomic force microscopy [473].
Particularly illustrative in this context is the mechanochemistry of single
nucleic acid molecules [194, 282]. In essence, the single particle approaches
may be grouped into three classes: (i) methods to record the states of single
molecules in solution, (ii) methods to track the motions of single particles
in space, and (iii) methods to manipulate single particles mechanically. The
literature on successful single molecule experiments is enormous. Here, we
shall focus on two selected issues that require the stochastic methods pre-
sented in this monograph, biochemical kinetics of single enzyme molecules,
a new method that provides new insights into the mechanism of enzymatic
catalysis, and fluorescence correlation spectroscopy, a general technique that
allows for recording of single particles.

4.4.1 Single molecule enzymology

The possibility to record signals from single protein molecules and to follow
their time dependence is the basis for experimental single molecule enzy-
mology. The insight into the mechanistic details gained by single molecule
studies provide answers to a number of questions of the kind: Are all enzyme
molecules in the same conformation and do they react with the same rate
parameters or are we dealing with conformational fluctuations, which give
rise to dynamical disorder? or Are the fluctuations in enzyme turnover and
substrate to product conversion in enzymatic reactions larger than in the case
of catalysis by small molecules? In this section we shall present stochastic
treatments of the two extended versions of Michaelis-Menten kinetics shown
in figure 4.2 and begin with scheme A [378].
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Extended Michaelis-Menten mechanism (scheme A). The enzyme molecule
can exist in three conformational states, E, S ·E, and E ·P (figure 4.2, scheme
A), and the random variable X (t) fluctuates between the three states S1 = E,
S2 = C ≡ S·E, and S3 = D ≡ E·P. The probabilities for the enzyme molecule
to be in one of the three states at time t are denoted by

PE(t) =P
(
X (t) = E

)
, PC(t) = P

(
X (t) = C

)
, PD(t) = P

(
X (t) = D

)
with PE(t) + PC(t) + PD(t) = 1 .

(4.151)

As in section 4.1.2 we make the assumption of constant substrate and prod-
uct concentration: k1 = k′1[S]0 = k′1s0 and l3 = l′3[P]0 = l′3p0. Then, the
time dependence of the probabilities is determined by the linear ODE (4.22).
Because of the conservation relation it is obtained a superposition of two
exponential functions as follows directly from linear algebra:

dP

dt
= H ·P with P =

PE
PC
PD

 and H =

−k1 − l3 l1 k3

k1 −k2 − l1 l2
l3 k2 −k3 − l2

 .

Solutions of the ODE are obtained in terms of an eigenvalue problem where
Λ is a diagonal matrix containing the eigenvalues λ1,2 and λ0 = 0:

P(t) = B · %(t) with B−1 ·H ·B = Λ ,

d%

dt
= Λ · % and %(t) = exp (Λt)%(0),

where % = (%0, %1, %2)t contain the right-hand eigenvectors of the matrix H.
Backtransformation into the original probabilities eventually yields:

P(t) = B · exp (Λ t) ·
(

B−1 ·P(0)
)
.

The eigenvalues of matrix H have been calculated already for the deter-
ministic system (4.23). Both eigenvalues have negative real parts and the
asymptotically stable stationary state (4.21) corresponds to the macroscopic
thermodynamic equilibrium. Here, we are computing normalized probabili-
ties (for the sake of simplicity we use numbers instead of letters as indices,
1 ≡ S1 ≡ E, 2 ≡ S2 ≡ C, 3 ≡ S3 ≡ D, and find [378]:

P̄1 =
k2k3 + k3l1 + l1l2

N
,

P̄2 =
k3k1 + k1l2 + l2l3

N
,

P̄3 =
k1k2 + k2l3 + l3l1

N
with

N = k1k2 + k2k3 + k3k1 + k1l2 + k2l3 + k3l1 + l1l2 + l2l3 + l3l1.

(4.152)
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The third eigenvalue λ0 = 0 indicates a linear dependence that is given by
the conservation of probabilities: P1 +P2 +P3 = 1. Apart from normalization,
equation (4.152) is formally identical to equation (4.82).

Recording single enzyme trajectories provides information on steady states
and on transient kinetics, which is commonly expressed in terms of transition
probabilities: Pij(t, t + ∆t) = P

(
X (t + ∆t) = Sj | X (t) = Si

)
denoted the

probability that the enzymes is in state ’j’ at time t+∆t provided it was in
state ’i’ at time t. In the steady state of a Markov process transition proba-
bilities are independent of time t: Pij(t, t + ∆t) = Pij(∆t) (section 3.1.3.3).
The diagonal and off-diagonal stationary transition probabilities of the single
molecule Michaelis-Menten mechanism are whereby we use indices modulo 3:

Pjj =−
kj + lj−1 + λ2(1− P̄j)

λ1 − λ2
eλ1∆t+

+
kj + lj−1 + λ1(1− P̄j)

λ1 − λ2
eλ2∆t + P̄j ,

Pj,j+1 =
kj + λ2 P̄j+1

λ1 − λ2
eλ1∆t +

kj + λ1 P̄j+1

λ1 − λ2
eλ2∆t + P̄j+1,

Pj,j−1 =
lj−1 + λ2 P̄j−1

λ1 − λ2
eλ1∆t +

kj + λ1 P̄j−1

λ1 − λ2
eλ2∆t + P̄j−1,

j = 1, 2, 3, 1, 2, . . . = (i mod 3) + 1 , i = 0, 1, 2, 3, 4, . . . .

(4.153)

It is straightforward to consider the transition probabilities for vanishing time
intervals where we find as expected:

lim
∆t→0

Pjj(∆t) = 1 and lim
∆t→0

Pj,j+1(∆t) = lim
∆t→0

Pj,j−1(∆t) = 0 ,

the off-diagonal elements corresponding to proper transitions converge to
zero.

In the case of single enzyme kinetics the conversion of substrate into prod-
uct can be modeled by a biassed continuous time random walk [378] on the
finite lattice shown in figure 4.31.58 Three states are characterized by the
same number of substrate molecules: (n,C), (n,D), and (n,E), and hence the
number of substrate molecules is a random variable X (t) with the probability

Pn(t) = P (X (t) = n) = P (E)
n (t) + P (C)

n (t) + P (D)
n (t) ,

where the superscripts refer to the state of the enzyme. In other words the
three stochastic variables XE(t), XC(t), and XD(t) are lumped together in the
variable X (t). As initial condition we assume X (0) = n0 substrate molecules
and no product. A state of the system is fully characterized by n, the number
of substrate molecules, and the state of the enzyme, E, C or D. Since we are
dealing with a single enzyme molecule, the state space can be arranged as

58 By ’biassed’ we express the fact that individual steps may have different weights.
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Fig. 4.31 Stochastic dynamics of substrate to product conversion [378].
The extended Michaelis-Menten mechanism (figure 4.2A) is applied to model the
stochasticity of the substrate to product conversion. The single enzyme molecule
occurs in three conformations: (i) free enzyme (E), (ii) enzyme bound to substrate
(C), and (iii) enzyme bound to product (D). Because of the restriction to a single
enzyme molecules the state space is a one dimensional array, and the stochastic model
can be simplified to a (biassed) continuous time random walk.

a one dimensional lattice (see figure 4.31), and the stochastic process is a
biassed continuous time random walk on this lattice. The bias is introduced
by the transition probabilities, which differ for the individual transitions.
Applying the same notation for the rate parameters as in the deterministic
kinetic equation, we obtain for the probabilities:

dP
(E)
n (t)

dt
= l1P

(C)
n−1(t) + k3P

(D)
n (t) −

(
k′1n+ l′3(n0 − n)

)
P (E)
n (t),

dP
(C)
n (t)

dt
= k′1(n+ 1)P (E)

n (t) + l2P
(D)
n (t) − (k2 + l1)P (C)

n (t) ,

dP
(D)
n (t)

dt
= l′3(n0 − n)P (E)

n (t) + k2P
(C)
n (t) − (k3 + l2)P (D)

n (t) .

(4.154)

The equilibrium distribution of the probabilities is readily calculated and
reported in the literature [378, 427]:

P̄ (E)
n =

n0!Kn0−n

(n0 − n)!n!

1

Q
,

P̄ (C)
n =

n0!Kn0−n−1

(n0 − n− 1)!n!
K1

1

Q
, and,

P̄ (D)
n =

n0!Kn0−n−1

(n0 − n− 1)!n!
K1K2

1

Q
, with,

K1 =
k1

l1
; K2 =

k2

l2
; K3 =

k3

l3
; K = K1K2K3 ;

Q =
1 +K + n0 κ

(1 +K)n0−1
with κ = K1(1 +K2) .

(4.155)



4.4 Single molecule techniques 429

Expectation value and variance of the number of substrate molecules at equi-
librium can be derived from the function Q:

E(n) = n0 −
∂ ln Q(K)

∂ ln K
=

n0 +K

1 +K
− K + n0 κ

1 +K + n0 κ
and

var(n) =
∂2 ln Q(K)

∂ ln K2
=

n0K

(1 +K)2
+

K + n0 κ

(1 +K + n0 κ)2
.

(4.156)

It is straightforward to calculate the values of the moments for large numbers
of substrate molecules:

E(n) =
n0

1 +K
and var(n) =

n0K

(1 +K)2
for large n0 .

It is worth mentioning that precisely these expressions were obtained for the
binomial distribution with the replacements n ⇔ n0, p ⇔ 1/(1 + K), and
q ⇔ K/(1 +K) in equation (2.36).

Extended Michaelis-Menten mechanism (scheme B). An alternative exten-
sion of the simple Michaelis-Menten mechanism that is suitable for handling
single-molecule reactions (figure 4.2, scheme B) does not consider the enzyme-
product complex E · P explicitly but instead introduces a conformational
change of the enzyme molecule after product release, E0 → E, and this intro-
duces a second linkage class:

S + E
k′1

−−−−→←−−−−
l1

S · E
k2

−−−−→←−−−−
l′2

E0 + P and

E0

k3

−−−−→←−−−−
l3

E .

(4.157)

Again we use the prime in the notation in order to simplify writing of the
rate parameters under pseudo-first order conditions: k1 = k′1s0 and l2 = l′2 p0.
Empirical evidence shows that the assumption of irreversible reaction steps
2 and 3 with l2 ≈ 0 and l3 ≈ 0 fits well the available data, and therefore the
validity of the original Michaelis-Menten equation (4.14) is retained. In single
molecule enzymology it is reasonable to assume that individual turnovers do
not change substantially the substrate concentration, [S] = s0. Then, the
linear ODE describing the probabilities of the single enzyme molecule to be
in one of the three states has only two degrees of freedom because of the
normalization relation PE + PC + PE0 = 1:
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Fig. 4.32 Single enzyme turnover. The plots illustrate the single enzyme
molecules mechanism (4.157). Since the stochastic variables are restricted to the val-
ues {0, 1}, the expectation value is identical to the probability E(X ) =

∑
n nPn = P1

and equation (4.158) describes the evolution of the expectation values. In the upper
plot we show the equilibration of the three variables in case of multiple turnovers. The
lower plot concerns the completion of a single turnover that is achieved by setting
k3 = 0. The lower plot shows the integration of equation (4.158) with no recovery
of the enzyme being tantamount to setting k3 = 0. The enzyme cycle is arrested in
state XE0

= 1. Parameter choice: k1 = k2 = 1; upper plot: k3 = 1, l1 = 0.3; lower
plot k3 = 0, l1 = 0.1. Color code: [E] black, [C] = [S · E] red, and [E0] blue.
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Fig. 4.33 Density of the first cycle waiting time T . The plot shows the density
of the time T required to complete the first turnover cycle, E↔ C→ E0 → E, which
is represented by the superposition of two exponential curves (4.160’):

f(t) = αβ
β−α

(
exp (−αt)− exp (−βt)

)
, with α = k1[S] and β = k2.

This definition requires α 6= β and implies that the fast exponential is going up and
the second one goes down since the denominator changes sign at α = β.

dPE(t)

dt
= + k3 PE0(t) + l1 PC(t) − k1 PE(t) ,

dPC(t)

dt
= + k1 PE(t) − (k2 + l1)PC(t) ,

dPE0(t)

dt
= + k2 PC(t) − k3 PE0(t) .

(4.158)

Since the stochastic variables can adopt only two values, X ∈ {0, 1}, the
probabilities are identical with the expectation values:

E
(
X (t)

)
= 0 · P0(t) + 1 · P1(t) = P1(t) .

Instead of dwelling further into the solutions of equation (4.158) we use it
to study the first enzyme turnover cycle: With the assumption k3 = 0 –
no recovery of the enzyme – the equations are tailored for the calculation
of a kind of first passage time, the time T that measures the time of the
completion of the first turnover cycle. In other words T is the time when
the enzyme molecule is the first time in conformation E0. Figure 4.32 shows
solution curves of (4.158) without and with the assumption of vanishing k3.

The first cycle completion time T is a random variable with the density
fT (t):
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Fig. 4.34 A multistate model for enzyme reactions [262]. The extended
Michaelis-Menten mechanism (figure 4.2, scheme B) is augmented by the assump-
tion that the enzyme molecule can exist in a multitude of n distinct conformations,
which differ in all their kinetic constants. The current theory of protein folding [354]
predicts the existence of a multitude of hierarchically ordered conformations and
single-molecule experiments are consistent with it.

T : fT (t) dt = P (t < T ≤ t+ dt with

∫ ∞
0

fT (t) dt = 1 . (4.159)

We can also interpret the density fT (t)∆t as the probability that the enzyme
molecule reaches the conformation E0 in the time interval between t and
t+∆t, which can be easily calculated:

∆PE 0(∆t) = k2 PC ∆t and lim ∆t→ 0 : fT (t) =
dPC

dt
= k2 PC(t) .

From the solution of equation (4.158) follows:

fT (t) =
k1[S] · k2

2d

(
e(b+d)t − e(b−d)t

)
, (4.160)

the waiting time fT (t) is a superposition of two exponential curves, a faster
rising exponential and a slower decaying one (figure 4.33). In the limit of ir-
reversibility of the first reaction, lim l1 → 0, the mechanism is simple the
sequence of two (pseudo) first order reaction steps and the waiting time
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distribution becomes the convolution of the waiting times for the two in-
dividual steps: fT (t) = (f1 ⊗ f2)(t) or fT (t) =

∫ t
0

dτf1(t − τ)f2(τ). Pro-

vided S + E → S · E and S · E → E0 + P are Poisson processes with
f1 = k′1[S] exp (−k′1[S] t) and f2 = k2 exp (−k2t) we obtain

fT (t) =
k′1[S] k2

k2 − k′1[S]

(
e−k

′
1[S] t − e−k2t

)
, (4.160’)

the faster exponential being the rising function and the slower exponential
the decaying function.

The two extension of the simple Michaelis-Menten mechanism in a way
remind of the debate on allosteric mechanisms of enzyme control in the
nineteen sixtieth and seventieth. It had been developed for multimeric pro-
teins59 but the basic physical interpretation is essentially the same for a
monomeric enzyme. The Koshland-Némethy-Filmer mechanism postulated
by Daniel Koshland, and worked out for cooperative binding together with
George Némethy and David Filmer of induced fit assumes that the protein
changes shape on ligand binding. In other words, there is only a single confor-
mation for the free protein molecules and all complexes with ligands have their
specific protein structures. The Monod-Wyman-Changeaux mechanism [333]
named after Jacques Monod, Jeffries Wyman, and Jean-Pierre Changeaux is
based on the assumption that two or more enzyme conformations exist also
in the absence of the ligand and ligand binding shifts the equilibrium between
the states of the protein (For a more detailed but still short account on the
Koshland and the Monod mechanism see [135, pp. 291-304]). Comparing with
the two extensions of the extended Michaelis-Menten mechanism discussed
here we recognize Koshland’s principle of induced fit in scheme A and the
Monod mechanism reflected by the two protein conformations E and E0 in
scheme B. In contrast to binding in monomeric enzymes cooperative binding
in multimeric proteins can lead to reaction rate profiles, v([S]), that are in-
compatible with the Michaelis-Menten mechanism [33, p. 267] or [34, p. 291]
because they are S̀ -́shaped or sigmoid in some cases.

A multitude of distinct enzyme conformations differing in the rate param-
eters (figure 4.34) gives rise to dynamical disorder : The enzyme as well as
the enzyme-substrate complex fluctuate randomly between n different con-
formational states but under a variety of conditions the form of the Michaelis-
Menten equation is retained at the ensemble average level [262]. Some condi-
tions of general relevance are:

(i) in the limit in which the interconversion rates of the enzyme substrate
complexes, S · Ek, are slower than the catalytic rates, (βij) < (k2j) for
i, j = 1, . . . , n,

(ii) in the limit in which the interconversion rates between enzyme confor-
mations are much larger than all other rates, and

59 Multimeric proteins contain several, identical or different, subunits. The protein
in the focus was hemoglobin that is a tetramer.
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(iii) in the limit in which all Michaelis constants for individual reaction chan-
nels are practically the same, (k21 + l11)/k11 ≈ (k22 + l12)/k12 ≈ . . . ≈
(k2n + l1n)/k1n .

If condition (i) is fulfilled and the interconversion rates between the enzyme
conformations are sufficiently small, the disorder becomes quasi-stationary
and then the density of the waiting time can be approximated by a linear
superposition of channel waiting times

fT (t) =
1∑n
i=1 wi

n∑
i=1

wi
k1[S] k2

2di

(
e(bi+di)t − e(bi−di)t

)
, (4.161)

where the coefficients wi define the weights with which the individual channels
contribute to the waiting time distribution in the ensemble.

Meanwhile dynamic disorder in enzyme reaction has been found and an-
alyzed in an impressively large number of single-molecule experiments (see,
e.g., [100, 101, 279, 442], and in addition the results obtained thereby fit well
into the current theory of protein folding [151, 354]. Finally we mention that
single-molecule enzymology shed new light on the mechanism of allosteric reg-
ulation of monomeric enzymes [199] and gave a clear hint that the different
enzyme conformations exist also in absence of binding partners.

4.4.2 Fluorescence correlation spectroscopy

Correlation spectroscopy aims at measuring the fluctuations of a spectro-
scopic signal at thermodynamic equilibrium and consequently, its interpre-
tation requires a theory of stochastic processes. Fluctuations are measured
in a given volume V and by the

√
N -law the relative amplitude of fluctua-

tions is the larger the smaller the number of molecules in the sample volume
is, and this means small volumes and low concentrations facilitate the ob-
servation. In essence, fluorescence correlation spectroscopy (FCS) measures
the numbers of molecules in a defined volume as a function of time. A few
decades ago fluctuation spectroscopy was impossible since the signals were
simply to weak. Two basic technical advances in fluorescence spectroscopy
and microscopy made it possible to observe and evaluate fluorescence fluctu-
ations: (i) application of high-power lasers and (ii) confocal microscopy. The
spectacular improvement in laser technology raised the signal to noise ratio
by several orders of magnitude and as said allows for the recording of signals
of single molecules. The second advancement concerns the invention of the
confocal microscope and provides the possibility of confining the molecule
to be observed to very small volumes. Recordings of ≈ 1 × 10−15 l became
possible that correspond to cubes with an edge length of 1 µm. The auto-
correlation function (section 3.1.4) is fairly easily accessible experimentally
because technical devices called autocorrelators have been built [358], which
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record directly the autocorrelation through data sampling of the process un-
der investigation.

The quantity that is commonly derived from fluctuation measurements
is a characteristic time, either a relaxation time of a chemical reaction, a
relaxation time of a translational or a rotational diffusion process or the resi-
dence time of a flow in the volume of observation. The theoretical basis for the
computation of rate parameters or diffusion coefficients from fluorescence cor-
relation data is the fluctuation-dissipation theorem: The parameters, which
determine the linear return to equilibrium of the system after a macroscopic
perturbation are identical with the rates at which spontaneous fluctuations
decay [265]. Originally, fluorescence correlation spectroscopy has been used
to measure relaxation times of chemical reactions of the class A + B → C,
in particular the binding of a fluorescent dye to a biomolecule, for example
ethidium bromide to DNA [300]. Since the chemical reaction is almost al-
ways coupled to diffusion (see ’bimolecular reactive collisions’) fluorescence
correlation provides at the same time information on binding and diffusion.

The lower time limit for processes that can be observed by fluorescence is
given by the rate of fluorescence excitation and emission of the photon. This
basic photophysical process leads to the antibunching term in the autocorre-
lation function

GF (τ) = (1 − AF exp (−τ/τF ) with AF = 1 .

The excited state need not emit the fluorescence photon it can also undergo
a transition to a non-fluorescent or dark triplet state and this yields another
term in the autocorrelation function

GT (τ) = (1 + AT exp (−τ/τT ) with AT =
ϑ

1− ϑ
,

where ϑ is the fraction of molecules being trapped in the triplet state. Un-
der commonly fulfilled conditions the relaxation times fulfill the conditions
τD,R � τT � τF , the autocorrelation function can be factorized in the sense
of figure 4.8 and we obtain

G(τ) = GF (τ)×GT (τ)×GR,D(τ) .

In other words on the characteristic timescales for fluorescence spectroscopy
we need only consider the contributions of chemical reactions and diffusion
where the diffusion time commonly sets the upper limit for the timescale of
observable processes, and accordingly we shall write G(τ) for GR,D(τ).

Theory of particle number correlations. The theory of concentration corre-
lations has been developed in the nineteen sixtieth and seventieth for the
application of inelastic light scattering to chemical kinetics of macromolecu-
lar kinetic reactions (see [44] and references therein). The adaptation of the
theory to investigations of fluorescence correlation that, in essence, involves
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Fig. 4.35 Geometry of fluorescence measurements. A sketch of the beam waist
in a fluorescence measurement with a confocal microscope. The active volume element
containing the fluorescent sample in a prolate ellipsoid with a Gaussian intensity
profile I(r) = I0 exp

(
−2(x2 +y2)/w2

xy−2z2/w2
z

)
with r = (x, y, z) and wz > wxy =

wx = wy. The laser beam is oriented in the z-direction.

a drastic reduction of both the reaction volume and the concentration was
done a few years later [12, 112]. In bulk solutions the four most important
processes that can be analyzed by means of the autocorrelation function are:
(i) directed laminar flow through the observation volume, (ii) translational
diffusion, (iii) rotational diffusion, and (iv) chemical reaction. In addition,
diffusion in natural and artificial membranes has been studied and in vivo
measurements of molecules labelled with fluorescence markers were made in
cells. Under the conditions of fluorescence correlation experiments diffusion
is strongly coupled to chemical reactions and hence, fluctuation of concen-
trations in space and time have to be considered. The role of fluctuations is
illustrated by means of a brief account of the theory [264].

The sample contains M different chemical species, X1, . . . ,XM , represented
by random variables, X1, . . . ,XM with the concentrations x1(r, t), . . . , xM (r, t),
which are assumed to be functions of space and time. The sample is assumed
to be at thermodynamic equilibrium: 〈Xj(r, t)〉 = xj(r, t) = x̄j(r, t), and pre-
cisely x̄j expresses the mean-square fluctuations of x̄j(r, t) in a unit volume
following Poisson statistics. The fluctuations understood as deviations from
the equilibrium values are denoted as in sections 4.1.1 and 4.1.3:

χj(r, t) = δxj(r, t) = xj(r, t) − x̄j ,

and used as variables to describe the linear response to displacements from
equilibrium. In systems combining diffusion and chemical reactions the fluc-
tuations fulfill

∂χi(r, t)

∂t
= Di∇2χi(r, t) +

M∑
j=1

Aijχj(r, t) ; i = 1, . . . ,M , (4.162)

with Di being the diffusion coefficient of Xi and A = {Aij} being the relax-
ation matrix (4.36).
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Next the correlations between concentrations have to expressed in terms
of the solutions χi(r, t) of this linear PDE for the appropriate boundary
conditions given by the geometry of the fluorescence experiment (figure 4.35)
and initial conditions χj(r, 0) with j = 1, . . . ,M . The correlation function of
the concentrations of two chemical species Xj and Xl at times t and t+ τ and
positions r1 and r2,

Cj l(r1, r2, τ) = 〈χj(r1, t)χl(r2, t+ τ)〉 ,

measures the probability to find a molecule of species Xj at position r1 at
time t and a molecule of species Xl at position r2 a time interval ∆t = τ later.
Three conditions are assumed to be fulfilled: (i) microscopic reversibility,

Cj l(r1, r2, τ) = Cj l(r1, r2,−τ) = Cj l(r1, r2, |τ |) ,

(ii) strong or at least weak stationarity,

Cj l(r1, r2, τ) = 〈χj(r1, 0)χl(r2, τ)〉 , and (4.163)

(iii) lack of zero-time correlations between the positions of different molecules
no matter whether they belong to the same or to different species:

〈χj(r1, 0)χk(r3, 0)〉 = x̄j δjk δ(r1 − r3) . (4.164)

Condition (iii) is fulfilled in ideal chemical solutions where there is no in-
teraction between molecules except the collisions discussed in section 4.1.4.
In other words the correlation lengths are much smaller than the distances
between particles.

Solutions χj(r, t) with the initial conditions χj(r, 0) are derived by means
of spatial Fourier transform. Inserting the expressions for the transformed
derivatives

F
(
∂u

∂x

)
= −ı.ı qx F(u) and F

(
∂2u

∂x2

)
= − q2

x F(u)

into equation (4.162) yields a linear ODE that can be readily solved by means
of an eigenvalue problem (see section 4.1.3):

dx̂i(q, t)

dt
=

M∑
j=1

Rij x̂j(q, t) with R = {Rij = Aij −Di q
2 δij} , (4.165)

with the Fourier transform of the concentrations defined by

x̂i(q, t) =
1

(2π)3/2

∫ ∞
−∞

dr eı
.
ıq·r χi(r, t) .
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Diagonalization of the reaction-diffusion matrix, Λ = B−1·R·B with B = {bij}
and B−1 = H = {hij} yields the solution in frequency space

x̂i(q, t) =

M∑
k=1

bik βk(0) eλk t with βk(0) =

M∑
j=1

hkj x̂j(q, 0) .

Insertion in equation (4.163) and exchange of Fourier transform and ensemble
average yields

〈χj(r1, 0)χl(r2, τ)〉 =
1

(2π)3/2

∫ ∞
−∞

dq e−ı
.
ı q·r 〈χj(r1, 0) x̂l(q, τ)〉 =

=
1

(2π)3/2

∫ ∞
−∞

dq e−ı
.
ı q·r

M∑
k=1

blk e
λk τ)

M∑
i=1

hki 〈χj(r1, 0) x̂i(q, 0)〉 =

=
1

(2π)3

∫ ∞
−∞

dq e−ı
.
ı q·r

M∑
k=1

blk e
λk τ)

M∑
i=1

hki

∫ ∞
−∞

dr eı
.
ı q·r 〈χj(r1, 0)χi(r3, 0)〉 .

Making use now of equation (4.164) we get the final result:

Cjl(r1, r2, τ) = 〈χj(r1, 0)χl(r2, τ)〉 =

=
1

(2π)3
x̄j

∫ ∞
−∞

dq eı
.
ı q·(r1−r2)

M∑
k=1

blk hkj exp (λk τ)) .
(4.166)

It is easily verified that the correlation function fulfils the expected symmetry
property Cj l(r1, r2, τ) = Clj(r1, r2, τ) and Cj l(r1, r2, τ) = Cj l(r2, r1, τ). The
correlation function is proportional to the equilibrium concentration and de-
creases with increasing time delay, ∆t = τ , since the eigenvalues λk = −τ−1

Rk
of the relaxation matrix are negative: In particular, the eigenvalues for diffu-
sion are always negative, λ = −D q2, the same is essentially true for chemical
reactions, where some but never all eigenvalues might be zero. For vanish-
ing delay the autocorrelation function becomes a Dirac delta-function as ex-
pected: limτ→0 Cjj(r1, r2, 0) = x̄jδ(r1 − r2) (4.164).

Fluorescence correlation measurements. The quantity measured in fluores-
cence experiments is the number of photons n(t) emitted by the sample and
collected in the detector

n(t) = ∆t

∫
dr I(r)

M∑
i=1

Qixi(r, t) .

Herein, I(r) is the distribution of the light performing the excitation of the
sample, and Qi is the specific molecular parameter consisting of two factors,
(i) the absorption cross section and (ii) the fluorescence quantum yield of
molecules Xi. Then the fluctuation in the photon count is



4.4 Single molecule techniques 439

δn(t) = n(t) − n̄ = δt

∫ ∞
−∞

dr I(r)

M∑
i=1

Qi χi(r, t) , (4.167)

and its average or equilibrium value is obtained by Fourier transform and
integration:

n̄ = ∆t

∫
dr I(r)

M∑
i=1

Qix̄i(r, t) = (2π)3/2 Î(0)∆t

M∑
i=1

Qixi(r, t) ,

where Î(q) = (2π)−3/2
∫

dr e−ı
.
ıq·rI(r). Making use of the ergodicity of the

system we can write the fluorescence autocorrelation function as

G(τ) =
1

n̄2
〈δn(0) δn(τ)〉 =

=
(∆t)2

n̄2

∫
dr1 I(r1)

∫
dr2 I(r2)

∑
j,l

QjQl 〈χj(r1, 0)χl(r2)〉 =

=
(∆t)2

n̄2

∫
dq |I(q)|2

∑
j,l

QjQlx̄j

M∑
k=1

blkhkj e
λkτ .

The expression is completed by inserting a Gaussian intensity profile for the
illumination of the sample (figure 4.35):

I(r) = I0 exp

(
− 2 (x2 + y2)

w2
xy

− 2z2

w2
z

)
, (4.168)

which has the shape of a prolate ellipsoid with the shorter axes in the x- and
y-direction and the longer axis in the z-direction, wx = wy = wxy < wz, and
ω = wz/wxy � 1. Fourier transformation yields

I(q) =
I0 wxy wz

8
exp

(
−
w2
xy

8
(q2
x + q2

y) − w2
z

8
z2

)
,

and eventually we obtain the final equation for the autocorrelation function:

G(τ) =
1

(2π)3
1(∑M

i=1Qix̄i
)2 ·

·
∞∫
−∞

dq exp

(
−
w2
xy

4
(q2x + q2y) −

w2
z

4
q2z

)
M∑
j=1

M∑
l=1

QjQlx̄j

M∑
k=1

blkhkj e
λkτ .

(4.169)

We remark that according to (4.165) the eigenvalues λk and the eigenvec-
tors depend on q and for each particular case the q-dependence has to be
calculated from the relaxation dynamics.
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Fig. 4.36 Inclusion complexes of pyronines in cyclodextrin [6]. The autocor-
relation curves G(τ) were calculated from equation (4.173) with the parameters given
in [6]: NG +NC = 1, τG = 0.25 ms, τC = 0.60 ms, ω = 5, K = 2 mM−1, Q = 0.5, and
h = 500 ms−1, and the cyclodextrin concentrations [H]0 were: 12 (black), 6 (red), 3
(yellow), 2 (green), 1 (black), 0.5 (green), 0.3 (blue), 0.1 (green), 0.03 (yellow), 0.01
(red), and 0 mM (black).

Examples of fluorescence correlations. The simplest conceivable example ana-
lyzed by fluorescence correlation is the diffusion of a single chemical species X
with the concentration [X] = x(r, t) and χ(r, t) = x(r, t)−x̄. Equation (4.162)
becomes a simple diffusion equation

∂χ(r, t)

∂t
= D∇2χ(r, t) and χ̂(q, t) = χ̂(q, 0) exp (−Dq2 t) .

The single eigenvalue of matrix R is λ = −Dq2, the eigenvector is trivially
b = h = 1 and insertion into (4.169) yields

G(τ) =
(2π)−3

Q2x̄2

∞∫
−∞

dqQ2x̄ e
−
(
w2
xy
4 (q2x+q2y)+

w2
z
4 q2z+D(q2x+q2y+q2z)t

)
=

=
1

N̄

(
1 +

τ

τD

)−1(
1 +

τ

ω2τD

)−1/2

with N̄ = x̄ V .

(4.170)
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Herein N̄ is the number of molecules X in the effective sampling volume
V = π3/2w2

xywz, τD = w2
xy/(4D) is the characteristic diffusion time across

the illuminated ellipsoid, and ω2τD = w2
z/(4D) is the diffusion time along

the ellipsoid. Each degree of freedom in diffusion contributes a factor (1 −
τ/τ ′D)−1/2 where τ ′D = (ω′)2τD and ω′ is a factor depending on the geometry
of the illuminated volume. For an extended prolate ellipsoid we have wz �
wxy and then the autocorrelation function for diffusion in two dimensions

G(τ) =
1

N̄

(
1 +

τ

τD

)−1

(4.171)

is also a good approximation for the three-dimensional case: The relaxation of
the fluctuation of the number of molecules in the sampling volume is approx-
imately determined by the diffusion in the smaller dimensions. Recording of
the autocorrelation function provides two results: (i) G(0) = N̄−1

X , the num-
ber of particles in the beam waist, and (ii) D = w2

xy/4τD the translational
diffusion coefficient of X.

The extension to M diffusing chemical species, X1, . . . ,XM , is straightfor-
ward [264]:

G(τ) =
1(∑M

i=1QiN̄i
)2 M∑

j=1

Q2
jN̄j

(
1 +

τ

τDj

)−1(
1 +

τ

ω2 τDj

)−1/2

, (4.172)

the amplitude of the contribution of each species is weighted by its fluores-
cence quantum yield Qj , N̄j is the mean number of molecules Xj in the beam
waist, and Dj is its diffusion coefficient.

The coupling between translational diffusion and chemical reactions leads
to a more complex expression for the autocorrelation function. An excellent
theoretical and experimental treatment is found in the literature [6]: the for-
mation of inclusion complexes of pyronines with cyclodextrin,

G + H
k

−−−−→←−−−−
h

C with K = k/h .

The fluorescent guest molecule G binds to the non-fluorescent host H and
forms a fluorescent inclusion complex C. Conditions are chosen under which
the host concentration is much larger than the guest concentration: [H0] ≈
[H]� [G]. It is useful to introduce a mean diffusion time τ̄D, which is calcu-
lated from a weighted mean diffusion coefficient:

τ̄D =
w2
xy

4D̄
with D̄ = xGDG + xHDH ,

where xG = NG/(NG +NC) and xC = NC/(NG +NC). Then the autocorrela-
tion function is of the form
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GR(τ) =
1

NG +NC

(
1 +

τ

τ̄D

)−1(
1 +

τ

ω2τ̄D

)−1/2(
1 +ARe

− τ
τR

)
, (4.173)

where relaxation amplitude and relaxation time are given by:

AR
(
[H]
)

=
NGNC(QG −QC)2

(QGNG +QCNC)2
=
K[H]0(1−Q)2

(1 +QK[H]0)2
and

τR
(
[H]
)

=
(
h(1 +K[H]0)

)−1
with Q =

QC

QG
, K[H]0 =

NC

NG
.

The relaxation curves were recalculated with the parameter values given in
[6] and the result is shown in figure 4.36. The family of curves calculated
for different value of total cyclodextrin concentration, [H]0, shows two relax-
ation processes, the faster one corresponding to the association reaction with
a relaxation time τR and the slower process caused by diffusion of the two
fluorescent species, the guest molecule G and the inclusion complex C. The
amplitude of the chemical relaxation process AR([H]) increases first with
increasing cyclodextrin concentration, AR([H]) ≈ K[H]0(1 − Q)2 for small
values of [H], passes a maximum at [H]0 = 1/(QK), and then decreases ac-
cording to AR([H]) ≈ (1−Q)2/(Q2[H]0) for large [H]0 values. Coupling of the
chemical reaction with the diffusion process gives results in non-monotonous
dependence of the relaxation amplitude on the host concentrations.

Provided parameter estimation can be done successfully (see section 4.1.5)
fluorescence correlation spectroscopy allows for the determination of other-
wise hard to obtain data: (i) the local concentration in the beam waist through
G(0), (ii) local translational diffusion coefficients from diffusion relaxation
times, τD = w2

xy/(4D), and (iii) relaxation times of chemical reactions, τR.
Rotational diffusion constants can also be derived from fluorescence correla-
tion [103, 459] and provide direct information on the size of molecules. In par-
ticular, the formation of molecular aggregates can be detected by determining
the molecular radius. Technical advances in laser technique and microscopes
allowed for a dramatic increase in resolution such that autocorrelation data
from single molecules can be detected now [285, 319, 381].
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4.5 Scaling and size expansions

Master equations when applied to real world chemical systems encounter seri-
ous limitations with respect to solvability, both analytic and numerical. As we
have seen the analytical approach becomes extremely sophisticated already
for single step bimolecular reactions (section 4.3.3) and numerical simula-
tions cannot be carried out with reasonable resources when particle numbers
become large (see section 4.6). In contrast Fokker-Planck and stochastic dif-
ferential equations are much easier to handle and accessible to upscaling.
In the section dealing with chemical Langevin equations (section 4.2.3) we
discussed the approximating assumptions that allow for a transition from
discrete particle numbers to continuous concentrations.

In this section we shall discuss ways to relate chemical master equations
to Fokker-Planck equations. In particular, we shall solve master equations
through approximation methods based on expansions in suitable parameters
as we mentioned one case already in section 4.2.1 in form of the expansion
of master equations in Taylor series with the jump moments being the coeffi-
cients. Truncation after the second term yields a Fokker-Planck equation. It
is important to note that every diffusion process can be approximated by a
jump process but the reverse is not true: Similarly as we saw in case of the
transition from master to Langevin equations, there are master equations for
which no approximation by a Fokker-Planck equation exists. A particularly
useful expansion technique based on system sizes has been introduced by
Nicholas van Kampen [438, 439]. This expansion method can be used, for ex-
ample, to handle and discuss fluctuations without calculating solutions with
full population sizes.

4.5.1 Kramers-Moyal expansion

The two physicists Hendrik Anthony Kramers and José Enrique Moyal pro-
posed a general expansion of master equations, which is a kind of Taylor
expansion in jump moments (section 3.2.3.1) applied to the integral equiva-
lent of the master equation60

∂P (x, t)

∂t
=

∫
dz
(
W (x|z, t)P (z, t) − W (z|x, t)P (x, t)

)
, (4.174)

Starting point is the probability of the transition from the probability density
at time t to the probability density at time t+ τ :

P (x, t+ τ) =

∫
dzW (x, t+ τ |z, t)P (z, t) . (4.175)

60 A comprehensive presentation of different ways to derive series expansions leading
to Fokker-Planck equation is found in [383, pp. 63-76].
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We aim at the derivation of an expression for the differential dP , which
requires knowledge of the transition probabilities W (x, t + τ |z, t) – at least
for small τ – and knowledge of the jump moments αn(z, t, τ):

αn(z, t, τ) =
〈(
X (t+ τ)−X (t)

)n〉 ∣∣∣
X (t)=z

=

=

∫
dx (x− z)nW (x, t+ τ |z, t) .

(4.176)

Here X (t) = z implies that the random variable X (t) adopts the sharp value
z at time t. Next we introduce z = x − ∆x into the integrand in equation
(4.174) and expand a Taylor series in ∆x around the value x+∆x:

W (x, t+ τ |z, t)P (z, t) =

= W
(
(x−∆x) +∆x, t+ τ |(x−∆x), t

)
P
(
(x−∆x), t

)
=

=

∞∑
n=0

(−∆x)n

n!

∂n

∂xn

(
W (x+∆x, t+ τ |x, t)P (x, t)

)
.

Insertion into (4.175) and integration yields

P (x, t+ τ) =

∫
d(∆x)

∞∑
n=0

(−∆x)n

n!

∂n

∂xn

(
W (x+∆x, t+ τ |x, t)P (x, t)

)
=

=

∞∑
n=0

(−1)n

n!

∂n

∂xn

∫
d(∆x) (∆x)n

(
W (x+∆x, t+ τ |x, t)P (x, t)

)
=

=

∞∑
n=0

(−1)n

n!

∂n

∂xn
αn(x, t, τ)P (x, t) .

For the derivation of a convenient expression we perform a Taylor expansion
of the jump moments

αn(x, t, τ)

n!
=

∞∑
k=0

τk

k!
Θ

(n)
k with Θ

(n)
k =

1

n!

∂kαn
∂τk

.

and truncate after the linear term in τ . Since Θ
(n)
0 has to vanish because the

transition probability fulfils the initial condition W (x, t|x−∆x, t) = δ(∆x)
we find,

αn(x, t, τ)

n!
= Θ

(n)
1 τ + O(τ2) ,

with the linear term baring the only nonzero coefficient. Therefore we can

drop the subscript, Θ(n) ≡ Θ(n)
1 , move the term with n = 0 to the l.h.s., and

divide by τ :
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P (x, t+ τ)− P (x, t)

τ
=

∞∑
n=1

(−1)n
∂n

∂xn

(
Θ(n) P (x, t)

)
.

Performing the limit τ → 0 finally yields the expansion of the master equation

∂P (x, t)

∂t
=

∞∑
n=1

(−1)n
∂n

∂xn

(
Θ(n) P (x, t)

)
.

We remark that the above given derivation corresponds to a forward stochas-
tic process and in addition to this forward there exists also a backward
Kramers-Moyal expansion.

Assuming explicit time independence of the transition matrix and the jump
moments we obtain the conventional form of the Kramers-Moyal expansion

∂P (x, t)

∂t
=

∞∑
n=1

(−1)n

n!

∂n

∂xn

(
αn(x)P (x, t)

)
with

αn(x) =

∞∫
−∞

(z − x)n W (x, z − x) dz .

(4.177)

In case the Kramers-Moyal expansion is terminated after the second term the
result is a Fokker-Planck equation of the form:

∂P (x, t)

∂t
= − ∂

∂x

(
α 1(x)P (x, t)

)
+

1

2

∂2

∂x2

(
α 2(x)P (x, t)

)
. (4.178)

The two jump moments represent the conventional drift and diffusion terms:
α1(x) ≡ A(x) and α2(x) ≡ B(x). We remark that we used nowhere the
condition of a one-step birth and death processes and therefore (4.178) is
generally valid.

4.5.2 Small noise expansion

For large particle numbers noise fulfilling a
√
N -law may be very small and

advantage of this fact can be made in small noise expansions of stochastic
differential and Fokker-Planck equations. Then the SDE can be written as:

dx = a(x) dt + ε b(x) dW (t) , (4.179a)

where the solution is assumed to be of the form

xε(t) = x0(t) + ε x1(t) + ε2 x2(t) + . . . (4.179b)
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Solutions can be derived term by term and x0(t), for example, is the solu-
tion of the deterministic differential equation, dx = a(x) dt with the initial
condition x0(0) = c0.

In the small noise limit a suitable Fokker-Planck equation is of the form

∂P (x, t)

∂t
= − ∂

∂x

(
A(x)P (x, t)

)
+

1

2
ε2 ∂2

∂x2

(
B(x)P (x, t)

)
, (4.180a)

where the variable x and the probability P (x, t) density are scaled

ξ =
x− x0(t)

ε
and Pε(ξ, t) = ε P (x, t|c0, 0) , (4.180b)

and the probability density is assumed to be of the form

Pε(ξ, t) = P (0)
ε (ξ, t) + ε P (1)

ε (ξ, t) + ε2 P (2)
ε (ξ, t) + . . . (4.180c)

This innocent looking approach has to face two problems: (i) There is no
guarantee that the two expansion series (4.179b) and (4.180c) converge, and
(ii) explicit calculations based on the series expansions are commonly quite
sophisticated [157, pp.169-184].

For the purpose of illustration we consider one special example, the
Ornstein-Uhlenbeck process, which is exactly solvable (see section 3.2.2.3).
The stochastic differential equations is of the form

dx = − k x dt + ε dW (t) . (4.181)

In the limit ε → 0 the stochastic part disappears and the resulting ODE
remains first order in time and we are dealing with a non-singular limit. The
exact solution of (4.181) for the initial condition x(0) = c0 is

xε(t) = c0 exp (−k t) + ε

∫ t

0

exp
(
−k(t− τ)

)
dW (τ) . (4.182)

This case is particularly simple since the partitioning according to the series
expansion (4.179b) is straightforward

x0(t) = c0 exp (−k t) and x1(t) =

∫ t

0

exp
(
−k(t− τ)

)
dW (τ) ,

and x0(t) is indeed the solution of the ODE obtained by setting ε = 0 in the
SDE (4.181).

Now we consider the corresponding Fokker-Planck equation

∂P (x, t)

∂t
=

∂

∂x

(
k xP (x, t)

)
+

1

2
ε2 ∂

2P (x, t)

∂t2
, (4.183)

with the exact solution being a Gaussian with x0(t) as expectation value
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E
(
x(t)

)
= α(t) = c0 exp (−k t) and

var
(
x(t)

)
= ε2 β(t) = ε2 1− exp (−2k t)

2k
,

(4.184)

and hence

Pε(x, t| c0, 0) =
1

ε

1√
2πβ(t)

exp

(
1

ε2

(
x− α(t)

)2
2β(t)

)
. (4.184’)

In the limit ε→ 0 we obtain again the deterministic solution:

lim
ε→0

Pε(x, t| c0, 0) = δ
(
x− α(t)

)
,

which is the first order solution of the corresponding SDE and a deterministic
trajectory along the path x(t) = c0 exp (−kt). In the limit ε → 0 the second
order differential equation (4.183) is reduced to a first order equation, this
implies a singularity and singular perturbation theory has to be applied.
The probability density, however, cannot be expanded straightforwardly in a
power series in ε, and the introduction of a scaled variable is needed before:

ξ =
(
x − α(t)

) /
ε or x = α(t) + ε ξ .

Now we can write down the probability density in ξ up to second order,

Pε(ξ, t|0, 0) = Pε(x, t|c0, 0) · dx

dξ
=

1√
2πβ(t)

exp

(
− ξ2

2β(t)

)
.

Scaling has eliminated the singularity as the probability density for ξ does
not contain ε: The distribution of the scaled variable ξ is a Gaussian with
mean zero and variance β(t). The standard deviation from the deterministic
trajectory α(t) is of order ε as ε goes to zero. The coefficient of ε is the
random variable ξ. As it should be there is no difference in the interpretation
between the Fokker-Planck and the stochastic differential equation.

4.5.3 Size expansion of the master equation

Although quite a few representative examples and model systems can be
analyzed by solving one step birth-and-death master equations exactly (sec-
tion 4.3), the actual applicability of this technique to specific problems of
chemical kinetics is rather limited. In order to apply a chemical master equa-
tion to a problem in practice one is commonly dealing with at least 1012

particles. Upscaling discloses one particular issue that of size expansions that
becomes obvious in the transition from master equations to Fokker-Planck
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equations. The sample volume V is the best estimator of system size in con-
densed matter. Two classes of quantities are properly distinguished:

(i) intensive properties that are independent of system size, and
(ii) extensive properties that grow proportional to system size.

Examples of intensive properties are temperature, pressure, density or concen-
trations, whereas volume, particle numbers, energy or entropy are extensive
properties. In upscaling from say 1000 to 1012 particles extensive properties
grow by a factor of 109 whereas intensive properties remain the same. Some
pairs of properties – one extensive and one intensive – are of particular impor-
tance, for example particle number X or n and concentration a = XA/(V ·NL)
or mass M and (volume) density % = M/V , respectively. The system size
that is used for scaling will be denoted by Ω, and if not stated otherwise we
shall assume Ω = V ·NL. Properties describing the evolution of the system
are modelled by variables and again we distinguish extensive and intensive
variables. In case of the amount of a chemical compound, [A], we have the
particle number n(t) ∝ Ω as the extensive variable and the concentration
a(t) = n(t)/Ω as the intensive variable, and we indicate this correspondence
by n =̂ a.61 The system size Ω itself is, of course, also an extensive property,
the special extensive property, which has be chosen as reference.

Approximation methods have been developed, which turned out to be
particularly illustrative and useful in the limit of sufficiently large systems.
The Dutch theoretical physicist Nicholas van Kampen [439, 441] expands
the master equation in the inverse square root of system size Ω. A discrete
random variable XA with the probability density Pn(t) = P

(
XA(t) = n(t)

)
is considered in the limit to macroscopic description. The limit of interest
is a large value of Ω at fixed a, which is tantamount to the transition to a
macroscopic system.

The transition probabilities are reformulated as

W (n|m) ≡ ω(
m

Ω
;∆n) with ∆n = n−m ,

and scaled according to the assumption

W (n|m) = Ω ω
(m
Ω

;∆n
)

= Ω ω
(
a;∆n

)
. (4.185)

The essential trick in the van Kampen expansion is that the size of the jump is
expressed in term of an extensive quantity, ∆n, whereas the intensive variable

61 In order to improve clearness in the derivation of the size expansion we shall use the
lowercase letters a, b, c, . . . for intensive variables and the lowercase letters n,m, p, . . .
for extensive variables. When dealing with atoms, molecules or compounds intensive
variables will continuous and mostly concentrations whereas the extensive variables
are understood as particle numbers. In order to avoid misunderstanding we introduce
the symbol ‘ =̂ ’ to express the relation between conjugate intensive and extensive
variables, for example % =̂M .
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a = n/Ω is used for the calculation of the evolution of the system, a(t). The
expansion is made now in a new variable z, which is defined by

a = Ω φ(t) + Ω1/2 z or z = Ω−1/2 a − Ω1/2 φ(t) . (4.186)

where the function φ(t) is still to be determined. The change of variables
transforms the probability density Π(a, t) and its derivatives according to

Π(a, t) = Π
(
Ωφ(t) +Ω1/2z, t

)
= P (z, t) ,

∂nP (z, t)

∂zn
= Ωn/2

∂nΠ(a, t)

∂an
, and

∂P (z, t)

∂t
=

∂Π(a, t)

∂t
+Ω

dφ(t)

dt

∂Π(a, t)

∂a
=

∂Π(a, t)

∂t
+Ω1/2 dφ(t)

dt

∂P (z, t)

∂z
.

The derivative moments αn(a) are now proportional to the system size Ω
and therefore we scale them accordingly: αn(a) = Ω α̃n(x). In the next step
the new variable z is introduced into the Kramers-Moyal expansion (4.177):

∂Π(a, t)

∂t
=

∂P (z, t)

∂t
− Ω1/2 dφ(t)

dt

∂P (z, t)

∂z
=

=

∞∑
n=1

(−1)n
Ω 1−n/2

n!

∂n

∂zn

(
α̃n
(
φ(t) +Ω−1/2 z

)
P (z, t)

)
,

∂P (z, t)

∂t
= Ω1/2 ·

(
dφ(t)

dt
− α̃1

(
φ(t)

)) ∂P (z, t)

∂z
+ Ω 0 ·

(
· · ·
)
. . . .

For general validity of an expansion all terms of a certain order in the ex-
pansion parameter must vanish. We make use of this property to define φ(t)
such that the terms of order Ω1/2 are eliminated by demanding

dφ(t)

dt
= α̃ 1

(
φ(t)

)
. (4.187)

This equation is an ODE determining φ(t) and, of course, it is in full agree-
ment with the deterministic equation for the expectation value of the random
variable and thus φ(t) is indeed the deterministic part of the solution.62

The next step is an expansion of α̃n
(
φ(t)+Ω−1/2z

)
in Ω−1/2 and reorder-

ing of terms yielding

∂P (z, t)

∂t
=

∞∑
m=2

Ω−(m−2)/2

m!

m∑
n=1

(−1)n
(
m

n

)
α̃m−nn

(
φ(t)

) ∂n
∂zn

(
zm−nP (z, t)

)

62 As shown in equations (3.94) and (3.102) this result is only true for linear first
jump moments or for the linear approximation to the first jump moments (see below).
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Fig. 4.37 The size expansion of a stochastic variable X (t). The variable n
is partitioned according to into a macroscopic part and the fluctuations around it,
n(t) = Ωφ(t) + Ω1/2x(t), wherein Ω is a size parameter, for example the size of
the population or the volume of the system (Equilibrium fluctuations are shown in
black). Computations: Ωφ(t) = 5n0(1− 0.8e−kt) with n0 = 2 and k = 0.5; p (n, t) =

Ω1/2x(t) = e−(n−Ωφ(t))2/(2σ2)/
√

2πσ2 with σ = 0.1, 0.17, 0.24, 0.285, 0.30.

In taking the limit of large system size Ω all terms vanish except the one
with m = 2 and we find the result

∂P (z, t)

∂t
= − α̃(1)

1

(
φ(t)

) ∂
∂z

(
z P (z, t)

)
+

1

2
α̃ 2

(
φ(t)

) ∂2

∂z2
P (z, t) , (4.188)

where α
(1)
1 stands for the linear part of the drift term. In figure 4.37 we show a

specific example of partitioning a process n(t) into a macroscopic part Ωφ(t)
and fluctuations Ω1/2x(t) around it.

It is straightforward to compare with the result of the Kramers-Moyal
expansion (4.177) truncated after two terms:

∂P (x, t)

∂t
= − ∂

∂x

(
α 1(x)P (x, t)

)
+

1

2

∂2

∂x2

(
α 2(x)P (x, t)

)
.
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The change of variables ξ = x/Ω leads to

∂P (ξ, t)

∂t
= − ∂

∂ξ

(
α̃ 1(ξ)P (ξ, t)

)
+

1

2Ω

∂2

∂ξ2

(
α̃ 2(ξ)P (ξ, t)

)
.

Through application of small noise theory (section 4.5.2) with ε2 = Ω−1 and
using the substitution ξ = Ω1/2

(
x−φ(t)

)
one obtains the lowest order Fokker-

Planck equation, which is exactly the same as the lowest order approximation
in the van Kampen expansion. This result has an important consequence:
If we are only interested in the lowest order approximation we may use the
Kramers-Moyal equation, which is much easier to derive than the van Kampen
equation.

Eventually, we found a procedure to relate master equations and Fokker-
Planck equations in an approximation that closes the gap between micro-
scopic stochasticity and macroscopic behavior. It should be stressed, however,
that the range of validity of a Fokker-Planck equation derived from a master
equation is not independent of the kind of limiting procedure applied. If the
transition is made by means of rigorous equations in a legitimate limit to con-
tinuous variables (section 4.5.4), the full nonlinear dependence of α1(x) and
α2(x) can be seriously analyzed. If, on the other hand, an approximately valid
approximation like the small noise approximation is applied it is appropriate
to consider only the linearization of the drift term and individual solutions of
this equations are represented by the trajectories of the stochastic equation:

dz = α̃
(1)
1

(
φ(t)

)
z dt +

√
α̃ 2

(
φ(t)

)
dW (t) . (4.189)

The choice of the best way of scaling also depends on the special case to be
studied and we close this section by presenting a few examples: (i) the flow
reactor,(ii) the reversible first order chemical reaction, and (iii) the birth and
death process in epidemiology.

Equilibration in the flow reactor. The problem we are reconsidering here is the
time dependence of a single chemical substance A in a device for performing
chemical reactions under controlled conditions as described in section 4.3.1.
The concentration of A in the reactor, a(t), starts from some initial value
a0 = a(0) and, after flow equilibrium has been established, limt→∞ a(t) = ā, it
adopts the value ā = â, where â is the concentration of A in the stock solution
flowing into the reactor (figure 4.18). The flow in and out of the reactor is con-
trolled by the flow rate r commonly measured in volume·time−1 = [cm3/sec]
and it represents the reciprocal mean residence time of the solution in the
reactor: τ−1

v = r/V with V being the total volume of the reactor.
The number of particles A in the reactor is a stochastic variable, NA(t),

with the probability density Pn(t) = P
(
NA(t) = n

)
. It is – at the same time

– the discrete extensive variable: nA(t) = n(t) with n ∈ N. The concentration
is the continuous intensive variable: a(t) = n(t)/V ·NL with Ω = V ·NL. The
equilibration of the reactor can be described by the master equation
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∂Pn(t)

∂t
= W (n|n− 1)Pn−1(t) + W (n|n+ 1)Pn+1(t)−

−
(
W (n− 1|n) +W (n+ 1|n)

)
Pn(t) ; n ∈ N , (4.87’)

with the elements of the tridiagonal transition matrix W given by

W (n|m) = r
(
δn,m+1 n̂ + δn,m−1 n

)
. (4.190)

The only nonzero contribution of the first term requires n = m + 1 and
describes an increase by one of the particle number in the reactor through
inflow that corresponds to the step-up transition probability w+

n = rn̂. The
nonzero contribution of the second term, n = m − 1, deals with the loss
of a particle A through outflow in the sense of a step-down transition with
the probability w−n = rn. The equilibration of the flow reactor thus can be
understood as a linear death process with immigration expressed by a positive
constant term, rn̂.

The reformulation of the transition matrix (4.185) in the sense of van
Kampen’s expansion leads to

W (a;∆n) = Ω
(
r â δ∆n,+1 + r a δ∆n,−1

)
with ∆n = n−m. Calculation of the first two jump moments yields

α1(n) =

∞∑
m=0

(m− n)W (m|n) = r(n̂− n) = Ω r(â− a) ,

α2(n) =

∞∑
m=0

(m− n)2W (m|n) = r(n̂+ n) = Ω r(â+ a) ,

and the deterministic equation with φ(t) = a(t) = n(t)/Ω is of the form

da

dt
= r (â − a) and a(t) = â +

(
a(0)− â

)
e−rt ,

where we recall that the equilibrium concentration of A in the reactor is equal
to the influx concentration: ā = â. Following the procedure of van Kampen’s
expansion we define

n = Ω φ(t) + Ω1/2 z or z = Ω−1/2n − Ω 1/2 φ(t) (4.186’)

and obtain the Fokker-Planck equation

∂P (z, t)

∂t
= r

∂

∂z

(
z P (z, t)

)
+
r

2

∂2

∂z2

((
â + a(t)

)
P (z, t)

)
, (4.191)

which leads to the expectation value and variance in the scaled variable z:
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E
(
z(t)

)
= z(0) e−rt ,

var
(
z(t)

)
=
(
â + a(0) e−rt

)
(1− e−rt) .

Since the partition of the variable n in equation (4.186’) is arbitrary we can
assume z(0) = 063 Transformation into the extensive variable, the particle
number n yields

E
(
n(t)

)
= n̂ +

(
n(0)− n̂

)
e−rt ,

var
(
n(t)

)
=
(
n̂ + n(0) e−rt

)
(1− e−rt) .

(4.192)

The stationary solution of the Fokker-Planck equation is readily calculated

P̄ (z) =
1√
2π â

exp

(
− z

2

2â

)
and it represents the approximation of the exact stationary Poisson density
by means of a Gaussian as mentioned in (2.40):

P̄ (n) =
n̂n

n!
exp (−n̂) ≈ 1√

2π n̂
exp

(
− (n− n̂)2

2n̂

)
.

A comparison of the different expansion techniques is made in the next para-
graph where we consider the simple chemical reaction A
B with compound
B buffered that gives rise to a master equation that is formally identical to
that for the equilibration of the flow reactor.

The chemical reaction A
B. The reversible monomolecular conversion re-
action is considered under large excess of compound B: The concentration
[B] = b0 = nB/Ω is constant or in a condition named buffered. The stochastic
variable counts the number of molecules A in the system: [A] = NA(t) with the
probability distribution PnA(t) = Pn(t) = P

(
NA(t) = n

)
and a(t) = n(t)/Ω.

The elements of transition matrix of the master equation (4.87’) are:

W (n|m) = δn,m+1 l nB + δn,m−1 k n , (4.190’)

where k and l are the rate parameters for the forward and backward reac-
tion, respectively. By replacing the constant terms lnB ⇔ rn̂ and k ⇔ r
we recognize that the two problems, flow reactor and buffers reaction A
B,
are formally identical. By application of van Kampen’s expansion the solu-
tions are derived in precisely the same way as in the previous paragraph.
With n = Ωφ(t) + Ω1/2z we obtain for the deterministic solution and the
Fokker-Planck equation,

63 The assumption z(0) = 0 implies z(t) = 0 and hence the corresponding stochastic
variable Z(t) describes the fluctuations around zero.
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Fig. 4.38 Comparison of expansions of the master equation. The reaction
A
B with compound B buffered, [B] = b = b0 = nB/Ω, is chosen as example and the
exact stationary solution (black) is compared with the results of the Kramers-Moyal
expansion (red) and the van Kampen size expansion (blue). Parameter choice: V = 1,
k1 = 2, l1 = 1, nB = 40.

dφ(t)

dt
= lb0 − k φ(t) and φ(t) = φ(0) e−k t +

lb0
k

(1− e−k t) .

∂P (z)

∂t
= k

∂

∂z

(
z P (z)

)
+

1

2

∂2

∂z2

((
lb0 + k φ(t)

)
P (z)

)
,

respectively.
The expectation value of z is E

(
z(t)

)
= z(0)e−k t. It vanishes with the

usual assumption z(0) = 0, for the variance var
(
z(t)

)
we find

var
(
z(t)

)
=

(
lb0
k

+ φ(0)

)
(1− e−kt) ,
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and for the solutions in the variable n with n(0) = Ω φ(0) we obtain

E
(
n(t)

)
= Ω φ(t) = n(0) e−kt +

l1 nB

k
(1− e−kt) ,

var
(
n(t)

)
= Ω var

(
z(t)

)
=

(
l1 nB

k
+ n(0)

)
(1− e−kt) .

Finally, we compare the stationary state solutions obtained from the van
Kampen expansion and from the Kramers-Moyal expansion with the exact
solution. The size expansion yields

P̄ (z) =
1√

πκ
2

(
1 + erf(

√
κ
2 )
) exp

(
− (n− κ)2

2κ

)
, (4.193a)

where we use κ = lnB/k and replaced z ⇔ n. The result of the truncated
Kramers-Moyal expansion is calculated from the stationary solution (3.82) of
a Fokker-Planck equation with A(n) = α1(n) = l nB − k n and B(n) = α2 =
l nB + k n. with those derived from the Kramers-Moyal expansion

P̄ (n) = N · (l nB + k n)−1+4 l nB/k e−2n , (4.193b)

where the normalization factor N is still to be determined for the special
case. The exact solution is identical with the result derived for the flow reac-
tor (4.91),

P̄ (n) =

(
l nB/k

)n
exp
(
−l nB/k

)
n!

=
κn e−κ

n!
, (4.193c)

which is a Poissonian. A comparison of numerical plots is shown in figure 4.38.
It is remarkable how well the truncated Kramers-Moyal expansion agrees with
the exact probability density. It is easy to understand therefore that it is much
more popular than the size expansion, which is much more sophisticated. We
remark that the major difference between the van Kampen solution and the
other two curves results in essence from the approximation of a Poissonian
by a Gaussian (see figure 2.8).
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4.5.4 From master to Fokker-Planck equations

Finally, we summarize this section by mentioning another general scaling
method [157, pp. 273-274] that reminds of the transition from continuous
time random walks to diffusion, which has been discussed in section 3.2.4:
The master equation (3.104) is converted to the partial differential equation
of the Wiener process equation (3.55), a Fokker-Planck equation without drift
by taking the limit of infinitesimally small steps at infinite frequency, and
which is formally identical with the 1d diffusion equation. In this transition
the step size was chosen to be l = l0 ·ε and the probability to make a step was
ϑ = ϑ0/ε

2. During the transition the jumps become simultaneously smaller
and more probable and both changes are taken care by a scaling assumption,
which is based on the usage of a scaling parameter ε: The average step size is
proportional to ε and so is the variance of the step size,64 and thus decreases
with ε whereas the jump probabilities increase as ε becomes smaller.

Here we perform the transition from master equations to Fokker-Planck
equations in a more general way and illustrate by means of examples that a
diffusion process can always be approximated by a master equation whereas
the reverse is not true. First the elements of the transition matrix are rewrit-
ten in terms of a new variable η = (z−x−A(x) ε)/

√
ε, where A(x) represents

the general drift term. The transition probabilities we written in the form

Wε(z |x) = ε−3/2 φ(η, x) (4.194)

where the function φ(η, x) is given by the concrete example to be studied
and, in addition, fulfils the relations∫

dη φ(η, x) = I and

∫
dη η φ(η, x) = 0 .

We define consistent expressions for the first three jump moments (4.176),

α 0(x)
.
=

∫
dzWε(z|x) =

I

ε
(4.195a)

α 1(x)
.
=

∫
dz (z − x)Wε(z|x) = A(x) I (4.195b)

α 2(x)
.
=

∫
dz (z − x)2Wε(z|x) =

∫
dη η2 φ(η, x) . (4.195c)

These expressions are obtained from the definitions of the variable η and the
two integrals of φ(η, x) and, in case of (4.195c) through neglect of the term
of order O(ε) = A(x)2I ε in the limit ε → 0. For taking this limit we shall
assume further that the function φ(η, x) vanishes sufficiently fast as y → ∞
in order to guarantee that

64 This is automatically fulfilled when the steps follow a Poisson distribution.
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lim
ε→0

Wε(z|x) = lim
η→∞

((
x

z − x

)3

φ(η, x)

)
= 0 for z 6= x .

Very similar to the derivation of the differential Chapman-Kolmogorov equa-
tion in section 3.2 we may choose some twice differentiable function f(z) and
show that

lim
ε→0

〈
∂f(z)

∂t

〉
=

〈
α 1(z)

∂f(z)

∂z
+

1

2
α 2(z)

∂2f(z)

∂z2

〉
.

Applying this result to the probability P (x, t) result has the consequence that
in the limit ε→ 0 the master equation

∂P (x, t)

∂t
=

∫
dz
(
W (x|z)P (z, t) − W (z|x)P (x, t)

)
(4.196a)

becomes the Fokker-Planck equation

∂P (x, t)

∂t
= − ∂

∂x

(
α 1 P (x, t)

)
+

1

2

∂2

∂x2

(
α 2 P (x, t)

)
. (4.196b)

Accordingly, one can construct a Fokker-Planck limit for the master equation
if and only if the requirements imposed by the three jump moments αp,
p = 0, 1, 2 (4.195) can be met. In case these criteria are not fulfilled, there is
no approximation possible as illustrated now by means of examples.

Continuous time random walk. The master equation introduced in subsec-
tion 3.2.4,

dPn(t)

dt
= ϑ

(
Pn+1(t) + Pn−1(t) − 2Pn(t)

)
with Pn(t0) = δn,n0

as initial condition, is to be converted to a Fokker-Planck equation. First we
remember that the steps were embedded in a continuous spatial coordinate,
x = n · l, and accordingly the walk started at the point for x0 = n0 · l. The
elements of the transition matrix W are of the general form

W (z|x) = ϑ (δz,x−l + δz,x+l) ,

and by means of the three integrals over the scaled transition moments∫ ∞
−∞

dη φ(η, x) = ε 2ϑ ,

∫ ∞
−∞

dη η φ(η, x) = (l − l)ϑ = 0 ,∫ ∞
−∞

dη η2 φ(η, x) = 2 l2 ϑ ,

where the second integral vanishes because of the intrinsic symmetry of the
random walk. The first three jump moments are readily calculated from equa-
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tion (4.195)
α 0(x) = 2ϑ, α 1(x) = 0, α 2(x) = 2 l2 ϑ .

With the introduction of the variable η we got a natural way of scaling step
size and jump probability: Assume we began with some some discrete system
(l0, ϑ0), reduce the step size according to l2 = ε·l20 and raise the probability by
ϑ = ϑ0/ε. Then, the diffusion coefficient D = (l20 · ε) · (ϑ0/ε remains constant
in the scaling process. With D = l2 · ϑ = l20 · ϑ0 we obtain a Fokker-Planck
equation, the familiar stochastic diffusion equation

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (3.55’)

The final result obtained is exactly the same as in section 3.2.4, although there
we used a much simpler intuitive procedure instead of the transformation
(4.194).

Poisson process. The Poisson process can be viewed as a random walk re-
stricted to one direction and therefore taking place in a the (upper) half-plane
with the master equation

dPn(t)

dt
= ϑ

(
Pn+1(t) − Pn(t)

)
with Pn(t0) = δn,n0

The notation used in section 3.2.2.4 is slightly modified: α ⇔ ϑ, and with
x = n · l we find for the transition matrix W:

W (x|z) = ϑ δz,x+l .

The calculation of the moments is exactly the same as in case of the previous
example:

α 0(x) = ϑ, α 1(x) = l ϑ, α 2(x) = l2 ϑ .

In this case there is no way to define l and ϑ as functions of ε such that both
α 1(x) and α 2(x) remain finite in the limit l → 0. Applying, for example,
the same model assumption as made for the one-dimensional random walk
we find l2 = l20 ε and ϑ = ϑ0/ε, and hence limε→0 l

2 · ϑ = D as before but
limε→0 lϑ = limε→0 l0 · ϑ0/

√
ε = ∞. Accordingly, there is no Fokker-Planck

limit for the Poisson process within the transition moment expansion scheme.

General birth-and-death master equations. Crispin Gardiner provides also an
scaling analysis leading to the general Fokker-Planck equation. The starting
point is a master equation with the transition probability matrix

Wε(z|x) =

(
A(x)

2ε
+
B(x)

2ε2

)
δz,x+ε +

(
−A(x)

2ε
+
B(x)

2ε2

)
δz,x−ε , (4.197)

where Wε(z|x) is positive at least for sufficiently small ε: Wε(z|x) > 0 if
B(x) > ε |A(x)|. Under the assumption that this is fulfilled for the entire do-
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main of the variable x, the process takes place on an x-axis that is partitioned
into integer multiples of ε.65 In the limit ε → 0 the birth-and-death master
equation is converted into a Fokker-Planck equation with

α 0(x) = B(x)
/
ε2, α 1(x) = A(x), α 2(x) = B(x) and

lim
ε→0

Wε(z |x) = 0 for z 6= x .
(4.198)

Nevertheless, the imagination of jumps converging smoothly into a continuous
distribution is no longer valid, because the zeroth moment α 0(x) diverges
with 1/ε2 and not with 1/ε as required by equation (4.195a). Notwithstanding
there exists a limiting Fokker-Planck equation, because the limiting behavior
of α 0(x) has no influence since it does not show up in the final equation

∂P (x, t)

∂t
= − ∂

∂x

(
A(x)P (x, t)

)
+

1

2

∂2

∂x2

(
B(x)P (x, t)

)
. (3.47 ’)

Equation (4.198) provides a tool for the simulation of a diffusion process
by an approximating birth-and-death process. The method, however, fails
for B(x) = 0 for all possible ranges of x since then Wε(z, x) cannot fulfil the
criterion of being nonnegative. Otherwise there is no restriction on the side of
the Fokker-Planck equation, since equation (4.197) is completely general. As
said the converse is not true: There are jump processes and master equations,
which cannot be approximated by Fokker-Planck equations through scaling.
The Poisson process discussed above may serve as an example.

Summarizing this section we compare the size expansion described in sec-
tion 4.5.3 and the moment expansion presented here: In the size expansion
(4.188) system size Ω was considered as a parameter and lim Ω → ∞ has
been the transition of interest that leads to the macroscopic or determinis-
tic equations. In the moment expansion, equations (4.195) and (4.196b), the
system size was assumed to be constant and the transition concerned the
resolution of the jump size that was increased from coarse grained to smooth
or continuous variables, lim ε→ 0.

65 We remark that the scaling relations (4.194) and (4.197) not the same but both
lead to a Fokker-Planck equation.
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4.6 Numerical simulation of chemical master equations

Historically the basis for numerical simulation of master equations was laid by
the works of Andrey Kolmogorov and Willy Feller: Kolmogorov [258] intro-
duced the differential equation describing Markov jump processes and Feller
[129] defined the conditions under which the solutions of the Kolmogorov
equations fulfilled the conditions for proper probabilities. In addition, he was
able to prove that the time between consecutive jumps is exponentially dis-
tributed and that the probability of the next event is proportional to the de-
terministic rate. In other words, he provided evidence that sampling of jump
trajectories leads to a statistically correct representation of the stochastic
process. Joe Doob extended Feller’s derivation beyond the validity for pure
jump processes [93, 94]. The implementation of a stochastic simulation algo-
rithm for the Kolmogorov equations is due to David Kendall [241] and was
applied to studies of epidemic outbreaks by Maurice Bartlett [31]. More than
twenty years later, almost at the same time when the Feinberg-Horn-Jackson
theory of chemical reaction networks was introduced, the American physicist
and mathematical chemist Daniel Gillespie [166, 167, 169, 173] revived the
formalism and introduced a popular simulation tool for stochastic chemical
reactions. His algorithm became popular as a simple and powerful tool for
the calculation of single trajectories. In addition he showed that the chemical
master equation and the simulation algorithm can be put together on a firm
physical and mathematical basis [169]. Meanwhile the Gillespie algorithm be-
came an essential simulation tool in chemistry and biology. Here we present
the concept and the implementation of the algorithm, and demonstrate the
usefulness by means of selected examples.

4.6.1 Basic assumptions

Gillespie’s general stochastic model is introduced here by means of the same
definitions and notations as used in the theory of chemical reaction networks
(section 4.1.3): A set of M different molecular species, Ξ = {X1,X2, . . . ,XM}
in a homogeneous medium are interconverted through K elementary chemical
reactions R = {R1,R2, . . . ,RK}. Two conditions are assumed to be fulfilled
by the system: (i) The content of a container with constant volume V is
thought to be well mixed and spatially homogeneous (CSTR in figure 4.18),
and (ii) the system is assumed to be in thermal equilibrium at constant tem-
perature T . The primary goals of the simulation are the computation of
the time courses of the stochastic variables – Xk(t) counting the number of
molecules Xk of species K at time t – and the description of the evolution of
the entire molecular population. The computations yield exact trajectories
of the type shown in figure 4.14 (section 4.2.1). Within the frame of the two
conditions for choosing a proper time interval for τ -leaping (sections 4.2.3
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and 4.6.2) the trajectories provide solutions that correspond to the proper
stochastic differential equations.

Variables, reactions, and stoichiometry. The entire population of a reaction
system involving M species in K reactions is described by an M -dimensional
random vector counting the numbers of molecules of individual species Xk,

~X (t) =
(
X1(t),X2(t), . . . ,Xk(t) . . . XM (t)

)
.

Molecules are discrete quantities and the random variables are discrete in the
calculation of exact trajectories as well as in the chemical master equation:
n =

(
n1(t),n2(t), . . . ,nM (t)

)
. Three quantities are required to fully char-

acterize a particular reaction channel Rµ: (i) the specific probabilistic rate
parameter, γµ, (ii) the kinetic functions hµ(n), and (iii) the stoichiometric
matrix S.

In section 4.1.4 we derived the fundamental fact that a scalar rate parame-
ter γµ, which is independent of dt, exists for each elementary reaction channel
Rµ with µ = 1, . . . ,K that is accessible to the molecules of a well-mixed and
thermally equilibrated system in gas phase or solution, such that

γµ dt = probability that a randomly selected combination of

Rµ reactant molecules at time t will react within

the next infinitesimal time interval [t, t+ dt[ .

(4.199)

In addition to γµ we shall require a function hµ(n) where the vector n(t)
contains the exact numbers of all molecules at time t,

hµ(n) ≡ the number of distinct combinations of Rµ reactant

molecules in the system when the numbers of molecules

of species Xk are exactly nk with k = 1, . . . ,M ,

(4.200)

and the stoichiometric matrix S = {skµ; k = 1, . . . ,M, µ = 1, . . . ,K}, an
M ×K matrix of integers, where

skµ ≡ the change in the Xk molecular population caused by the

occurrence of one Rµ reaction.
(4.201)

The functions hµ(n) and the matrix S are derived from the stoichiometric
equations (4.5) of the individual reaction channels as shown in section 4.1
and illustrated here by means of an example:

R1 : X1 + X2 −−−−→ X3 + X4 ,

R2 : 2 X1 −−−−→ X1 + X5 , and (4.202)

R3 : X3 −−−−→ X5 .
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In particular we find for the functions hµ(n)66

h1(n) = n1 n2 ,

h2(n) = n1 (n1 − 1) , and

h3(n) = n3 ,

and for the stoichiometric matrix S

S =


−1 −1 0
−1 0 0
+1 0 −1
+1 0 0
0 +1 +1

 ,

where the rows refer to molecular species, X = (X1,X3,X4,X5), and the
columns to individual reactions, R = (R1,R2,R3). The product side is con-
sidered in the stoichiometric matrix S by a positive sign of the stoichiometric
coefficients whereas reactants are accounted for by a negative sign. Some-
times we shall make use of vectors corresponding to individual reactions Rµ:
sµ = (s1µ, . . . , sMµ)t. It is worth noticing that the functional form of hµ is
determined exclusive by the reactant side of Rµ. For mass action kinetics
there is only one difference between the deterministic and the stochastic ex-
pressions: Since the particles are counted exactly in the latter approach we
have to use n(n−1) instead of n2 because n−1 is significantly different from
n only in small systems.

It is illustrative to consider the relation to conventional deterministic chem-
ical kinetics. If we denote the concentration vector of the molecular species
X by x = (x1, . . . , xM )t and the flux or rate vector by ϕ = (ϕ1, . . . , ϕM )t

the kinetic equation can be expressed by

dx

dt
= S · ϕ . (4.203)

The individual elements of the flux vector in mass action kinetics are

ϕµ = kµ

n∏
k=1

x
νkµ
k = kµ xνµ for

ν1µ X1 + ν2µ X2 + . . . + νMµ XM −→

66 As mentioned before there are two ways for taking appropriate account of combina-
torics: (i) h(n) =

∏
i

(
ni
νi

)
and γ/νi! as rate parameter or (ii) h(n) =

∏
i ni!/(ni−νi)!

and γ. We use here version (ii) unless stated otherwise.
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wherein the factors νkµ are nonnegative integers, the stoichiometric coeffi-
cients on the reactant side of the stoichiometric equations.

Reactions events. The probability of occurrence of reaction events within
an infinitesimal time interval dt fulfils three general conditions for master
equations that were formulated and discussed in section 4.2.1. Here we repeat:
Condition 1: If ~X (t) = n, then the probability that exactly one Rµ will occur
in the system within the time interval [t, t+ dt[ is equal to

γµ hµ(n) dt + o( dt) ,

where o( dt) denotes terms that approach zero with dt faster than dt.

Condition 2: If ~X (t) = n, then the probability that no reaction will occur
within the time interval [t, t+ dt[ is equal to

1 −
∑
µ

γµ hµ(n) dt + o( dt) .

Condition 3: The probability of more than one reaction occurring in the
system within the time interval [t, t + dt[ is of order o( dt). We express
the probability P (n, t + dt|n0, t0) as the sum of the probabilities of sev-

eral mutually exclusive and collectively exhaustive routes from ~X (t0) = n0

to ~X (t + dt) = n. These routes are distinguished from one another by the
event that happened in the last time interval [t, t+ dt[:

P (n, t+ dt|n0, t0) = P (n, t|n0, t0) ×

(
1−

K∑
µ=1

γµ hµ(n) dt + o( dt)

)
+

+
K∑

µ=1

P (n− sµ, t|n0, t0) ×
(
γµ hµ(n− sµ) dt + o( dt)

)
+

+ o( dt) .

(4.204)

The different routes from ~X (t0) = n0 to ~X (t+ dt) = n are obvious from the
balance equation (4.204): All routes (i) and (ii) are mutually exclusive since
different events are taking place within the last interval [t, t+ dt[. The routes
subsumed under (iii) can be neglected because they occur with probability
of measure zero.

From (4.204) follows straightforwardly the multivariate chemical master
equation, which is the reference for trajectory simulation: P (n, t|n0, t0) is
subtracted from both sides in equation (4.204), then both sides are divided
by dt, the limit dt ↓ 0 is taken, all o( dt) terms vanish and finally we obtain

d

dt
P (n, t|n0, t0) =

K∑
µ=1

(
γµ hµ(n− sµ)P (n− sµ|n0, t0)−

− γµ hµ(n)P (n, t|n0, t0)
)
.

(4.205)
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Initial conditions are required to calculate the time evolution of the proba-
bility P (n, t|n0, t0) and we can easily express them in the form

P (n, t0|n0, t0) =

{
1 , if n = n0 ,

0 , if n 6= n0 ,
(4.205’)

which is the same as the sharp initial probability distribution used in the

derivation of equation (4.204): P
(
nk, t0|n(0)

k , t0
)

= δ
nk,n

(0)
k

for the molecular

particle numbers at t = t0. The assumption of extended initial distributions
is, of course, also possible but the corresponding master equations become
more sophisticated.
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4.6.2 Tau-Leaping and higher-level approaches

One general problem of all stochastic simulations with medium and large
particle numbers is the enormous consumption of computer time. The neces-
sary but prohibitive amounts of computer capacities are even required when
only a single species is present at high particle numbers and this is almost
always the case even in the fairly small biological systems within cells. The
clear advantage of the stochastic simulation algorithm is at the same time the
ultimate cause for its failure to handle most systems in practice: Considering
explicitly every single event makes the simulation exact but guides it directly
into the computer time requirement trap.

Tau-leaping. In the section on chemical Langevin equations 4.2.3 τ -leaping
has been discussed for justifying the usage of stochastic differential equations
in chemical kinetics. Here we mention τ -leaping it as an attempt to accelerate
the simulation algorithm, which is based on the same idea of lumping together
all events happening with a predefined time interval [t, t + τ [ [172, 173]. In
contrast to the three implementation of the Monte Carlo step in the origi-
nal Gillespie simulation algorithm – direct, first-reaction and next-reaction
method, which are exact since the consider every event precisely at its time of
occurrence – τ -leaping is an approximation whose degree of accuracy depends
on the choice of the time interval τ . Assume, for example, τ is chosen so small
that only no reaction step or a single reaction step are taking place within the
interval [t, t+ τ [, then a calculated trajectory obtained by the exact method
is indistinguishable for the results of the τ -leaping simulation, which is then
exact as well. Choosing a large value of τ , however, will introduce some error
that will increase with the size of τ .

The approach is cast into a solid mathematical form through defining a
function P(κ1, . . . , κK |τ ; n, t[ which given ~X (t) = n, measures the proba-
bility that exactly κj reaction events will occur in the reaction channel Rj

with j = 1, . . . ,K. This function P is the joint probability density of the
integer random variables Kj (τ ; n, t), which represent the numbers counting
how often the reaction channel Rj is firing in the time interval [t, t + τ [. In
order to be able to calculate P(κ1, . . . , κK |τ ; n, t) with a reasonable effort, an
approximation has to be made that determines an appropriate leap size.

Leap condition: The time interval τ has to be chosen so small that none of
the K propensity functions αj(n, t); j = 1, . . . ,K will change appreciably67

in the interval [t, t+ τ [.

Provided the leap condition is fulfilled and the reaction probability functions
remains essentially constant, αj(n) ≈ const ∀ j = 1, . . . ,K within the en-
tire time interval, then αj(n) dt is the probability that a reaction Rj will
take place during any infinitesimal interval dt inside [t, t+ τ [, irrespectively

67 Appreciably expresses here the relative change and excludes alterations of macro-
scopically noninfinitesimal size (see section 4.2.3).
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Fig. 4.39 Discrete and continuous time in chemical reactions. .

what happens in the other reaction channels. The events in the individual
reaction channels are independent, the random variables follow a Poissonian
distribution

Kj(τ ; n, t) = πκj (αj t) = (αj t)
κj
eαjt

κj !
,

and this yields for the probability distribution

P(κ1, . . . , κK |τ ; n, t) =

K∏
j=1

πκj (αj t) . (4.206)

Each event in the channel Rj changes the population by sj = ν′j − νj and
accordingly we can easily express the change in the population during the
entire interval [ti, ti + τi[ and the whole trajectory from t0 to tN by

λi =

K∑
j=1

κj sj and ~X(tN ) = ~X (t0) +

N−1∑
i=0

λi , (4.207)

where we have already assumed that the leap size τ is variable and can be
adjusted to the progress of the reaction.

Tau-leap algorithm: A τ -leap algorithm starts from an initial set of variables,
~X (t0) = n(t0) = n(0), then for each j = 1, . . . ,K a sample value κj of
the random variable Kj is drawn form the Poissonian πκj

(
αj(n(0), t0)

)
and

time and the population vector are advanced by increments, t1 = t0 + τ
and ~X (t1) = n1 = n(0) + λ0. Then progressive iterations, ti = ti−1 + τ aa
well as ni = ni−1 + λi−1, are performed until one reaches the final time
tN . What is still missing to complete the τ -leap algorithm is an method to
determine the loop sizes τi; i = 0, . . . , N . The obvious condition is effective
infinitesimality of the increments, |αj(n+λ)−αj(n)|, for all reaction channels:
j = 1, . . . ,K. To find optimal procedures is the major part of the art of doing
τ -leap simulations and we refer here to the enormous literature [8, 10, 60, 61,
62, 63, 221, 283, 379, 398, 470] where also many other papers dealing with
the choice of the best time interval are found.

The τ -leaping method is not only a valuable computational approach, it
can also be seen as providing a link between the chemical master equation
(CME) and the chemical Langevin equation (CLE) in the sense that coarse
graining of time intervals of size τ is introduced (section 4.2.3).
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Fig. 4.40 Partitioning of the time interval [t, t+ τ + dτ [. The entire interval is
subdivided into (k+ 1) nonoverlapping subintervals. The first k intervals are of equal
size ε = τ/k and the (k + 1)-th interval is of length dτ .

Hybrid methods. Another class of techniques applied to speeding-up stochas-
tic simulations are hybrid methods [203]. A hybrid algorithm, in essence,
treats fast varying variables macroscopically and restricts the stochastic de-
scription to the slowly changing particle numbers. Thereby the major com-
puter time wasting part of the algorithm is eliminated: Fast variation of
numerically large variables requires an enormously large number of individ-
ual jumps. Since fluctuations are relatively small by the

√
N relation their

neglect causes a relatively small error.

4.6.3 The simulation algorithm

The chemical master equation in the form (4.205) is the basis of the simulation
algorithm [173] and it is important to realize how the simulation tool fits
into the general theoretical framework of the chemical master equation. The
simulation algorithm is not based on the probability function P (n, t|n0, t0)
but on another related probability density p (τ,µ|n, t), which expresses the

probability that given ~X (t) = n the next reaction in the system will occur in
the infinitesimal time interval [t+τ, t+τ+dτ [, and it will be an Rµ reaction.

The probability function p (τ,µ|n, t) is the joint density function of two
random variables: (i) the time to the next reaction, τ , and (ii) the index of
the next reaction, µ. The possible values of the two random variables are
given by the domain of the real variable 0 ≤ τ <∞ and the integer variable
1 ≤ µ ≤ K. In order to derive an explicit formula for the probability density
p (τ,µ|n, t) we introduce the quantity

α(n) =

K∑
µ=1

γµ hµ(n)
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and consider the time interval [t, t + τ + dτ [ to be partitioned into k + 1
subintervals, k > 1. The first k of these intervals are chosen to be of equal
length ε = τ/k, and together they cover the interval [t, t + τ [ leaving the
interval [t + τ, t + τ + dτ [ as the remaining (k + 1)-th part (figure 4.40).

With ~X (t) = n the probability p (τ,µ|n, t) describes the event no reaction
occurring in each of the k ε-size subintervals and exactly one Rµ reaction in
the final infinitesimal dτ interval. Making use of conditions 1 and 2 and the
multiplication law of probabilities we find

p (τ,µ|n, t) =
(

1 − α(n) ε + o(ε)
)k(

γµ hµ(n) dτ + o(dτ)
)

Dividing both sides by dτ and taking the limit dτ ↓ 0 yields

p (τ,µ|n, t) =
(

1 − α(n) ε + o(ε)
)k
γµ hµ(n)

This equation is valid for any integer k > 1 and hence its validity is also
guaranteed for k → ∞. Next we rewrite the first factor on the right-hand
side of the equation

(
1 − α(n) ε + o(ε)

)k
=

(
1 − α(n) kε + k o(ε)

k

)k
=

=

(
1 − α(n) τ + τ o(ε)/ε

k

)k
,

and take now the limit k → ∞ whereby we make use of the simultaneously
occurring convergence o(ε)/ε ↓ 0:

lim
k→∞

(
1 − α(n) ε + o(ε)

)k
= lim

k→∞

(
1− α(n) τ

k

)k
= e−α(n) τ .

By substituting this result into the initial equation for the probability density
of the occurrence of a reaction we find

p (τ,µ|n, t) = α(n)
γµ hµ(n)

α(n)
e−α(n) τ =

= γµ hµ(n) e−
∑K

ν=1 γνhν(n) τ .

(4.208)

Equation (4.208) provides the mathematical basis for the stochastic simu-

lation algorithm. Given ~X (t) = n, the probability density consists of two
independent probabilities where the first factor describes the time to the next
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reaction and the second factor the index of the next reaction. These factors
correspond to two statistically independent random variables η1 and η2.

Pseudorandom numbers. In order to implement equation (4.208) for computer
simulation we consider probability densities of two unit-interval uniform ran-
dom variables η1 and η2 in order to find the conditions to be imposed on a
statistically exact sample pair (τ,µ): η1 has an exponential density function
with the decay constant α(n),

τ =
1

α(n)
ln
(
1
/
η1

)
, (4.209a)

and taking m to be the smallest integer which fulfils

µ = inf

{
m
∣∣∣ m∑
µ=1

γµ hµ(n) > α(n) η2

}
. (4.209b)

After the values for τ and µ have been determined the action advance the
state vector ~X (t) of the system is taking place:

~X (t) = n −→ ~X (t+ τ) = n + sµ .

Repeated application of the advancement procedure is the essence of the
stochastic simulation algorithm. It is important to realize that this advance-
ment procedure is exact as far as η1 and η2 are obtained by fair samplings
from a unit interval uniform random number generator or, in other words,
the correctness of the procedure depends on the quality of the random num-
ber generator applied. Two further issues are important: (i) The algorithm
operates with internal time control that corresponds to real time of the chem-
ical process, and (ii) contrary to the situation in differential equation solvers
the discrete time steps are not finite interval approximations of an infinites-
imal time step and instead, the population vector ~X (t) maintains the value
~X (t) = n throughout the entire finite time interval [t, t+dτ [ and then changes

abruptly to ~X (t + τ) = n + sµ at the instant t + τ when the Rµ reaction
occurs. In other words, there is no blind interval during which the algorithm
is unable to record changes.

Nonuniformly distributed random numbers. In equation (4.209a) the desired
distribution of the pseudorandom variable was built into the expression and
the input η1 was drawn from the uniform distribution. The general approach
to derive a continuous random variable with the (cumulative) distribution
function FX is called inverse transform sampling : If X has the distribution
FX then the random variable Y = FX (X ) is uniformly distributed on the unit
interval, Y : FY = U ∈ [0, 1], and this statement can be inverted such that
F−1
X (Y) = FX . The following three step procedure can be used to calculate

pseudorandom variables for an invertible distribution function F :

(i) generate a pseudorandom variable u from U ∈ [0, 1],
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Table 4.2 The combinatorial functions hµ(n) for elementary reactions. Re-
actions are ordered with respect to reaction order, which in case of mass action is
identical to the molecularity of the reaction. Order zero implies that no reactant
molecule is involved and the products come from an external source, for example
from the influx in a flow reactor. Orders 0, 1, 2, and 3 mean that zero, one, two or
three molecules are involved in the elementary step, respectively.

No. Reaction Order hµ(n)

1 ∗ −→ products 0 1

2 A −→ products 1 nA

3 A + B −→ products 2 nAnB

4 2 A −→ products 2 nA(nA − 1)

5 A + B + C −→ products 3 nAnBnC

6 2 A + B −→ products 3 nA(nA − 1)nB

7 3 A −→ products 3 nA(nA − 1)(nA − 2)

(ii) compute the value x = F−1(u) such that u = F (x), and
(iii) take x as the pseudorandom variable drawn form a distribution given

by F .

The procedure is used for the generation of the often required normally dis-
tributed pseudorandom numbers and is called Box-Muller transform [50] af-
ter the two mathematicians George Edward Pelham Box and Mervin Edgar
Muller. Generalizations to discrete variables and arbitrary invertible distri-
bution functions are found in the monograph [89].

Structure of the simulation algorithm. The time evolution of the population in
described by the vector ~X (t) = n(t), which is updated after every individual
reaction event. Reactions are chosen from the set R = {Rµ;µ = 1, . . . ,K}
defined by the reaction mechanism and the reaction probabilities are con-

tained in a vector α(n) =
(
γ1h1(n), . . . , γKhK(n)

)t
, which is also updated

after every individual reaction event (A classification of reactions according
to molecularity is repeated in table 4.2). Updating is performed by adding
the stoichiometric vector sν of the chosen reaction Rν : n(t+ dτ) = n(t) + sν
where sν represents a column of the stoichiometric matrix S.

The algorithm comprises five steps:

(i) Step 0. Initialization: The time variable is set to t = 0, the initial values
of all N variables X1, . . . ,XN for the species – Xk for species Xk – are
stored, the values for the K parameters of the reactions Rµ, γ1, . . . , γK ,
are stored, and the combinatorial expressions are incorporated as factors
for the calculation of the reaction rate vector α(n) according to table 4.2
and the probability density P (τ,µ). Sampling times, t1 < t2 < · · · and
the stopping time tstop are specified, the first sampling time is set to
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t1 and stored and the pseudorandom number generator is initialized by
means of seeds or at random.

(ii) Step 1. Monte Carlo step: A pair of random numbers is created (τ,µ) by
the random number generator according to the joint probability function
P (τ,µ). In essence two explicit methods can be used: the direct method
and the first-reaction method.

(iii) Step 2. Propagation step: (τ,µ) is used to advance the simulation time
t and to update the population vector n, t → t + τ and n → n + sµ,
then all changes are incorporated in a recalculation of the reaction rate
vector a.

(iv) Step 3. Time control : Check whether or not the simulation time has been
advanced through the next sampling time ti, and for t > ti send current
t and current n(t) to the output storage and advance the sampling time,
ti → ti+1. Then, if t > tstop or if no more reactant molecules remain
leading to hµ = 0 ∀ µ = 1, . . . ,K, finalize the calculation by switching
to step 4, and otherwise continue with step 1.

(v) Step 4. Termination: Prepare for final output by setting flags for early
termination or other unforseen stops and send final time t and final n
to the output storage and terminate the computation.

A caveat is needed for the integration of stiff systems where the values of
individual variable can vary by many orders of magnitude and such a situation
might caught the calculation in a trap by slowing down time progress.

The Monte Carlo step. Pseudorandom numbers are drawn from a random
number generator of sufficient quality whereby quality is meant in terms of
no or very long recurrence cycles and a the closeness of the distribution of the
pseudorandom numbers r to the uniform distribution on the unit interval:

0 ≤ a < b ≤ 1 =⇒ P (a ≤ η ≤ b) = b − a .

With this prerequisite we discuss now two methods which use two output
values η of the pseudorandom number generator to generate a random pair
(τ,µ) with the prescribed probability density function P (τ,µ).

The direct method. The two-variable probability density is written as the
product of two one-variable density functions:

P (τ,µ) = P1(τ) · P2(µ|τ) .

Here, P1(τ) dτ is the probability that the next reaction will occur between
times t + τ and t + τ + dτ , irrespective of which reaction it might be, and
P2(µ|τ) is the probability that the next reaction will be an Rµ given that
the next reaction occurs at time t+ τ .

By the addition theorem of probabilities, P1(τ) dτ is obtained by summa-
tion of P (τ,µ) dτ over all reactions Rµ:
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P1(τ) =

K∑
µ=1

P (τ,µ) . (4.210)

Combining the last two equations we obtain for P2(µ|τ)

P2(µ|τ) = P (τ,µ)
/ K∑

ν

P (τ,ν) (4.211)

Equations (4.210) and (4.211) express the two one-variable density functions
in terms of the original two-variable density function P (τ,µ). From equa-
tion (4.208) we substitute into P (τ,µ) = p (τ,µ|n, t) through simplifying the
notation by using

αµ ≡ γµhµ(n) and α =

K∑
µ=1

αµ ≡
K∑
µ=1

γµhµ(n)

and find

P1(τ) = α exp (−α τ) , 0 ≤ τ <∞ and

P2(µ|τ) = P2(µ) = αµ
/
α , µ = 1, . . . ,K .

(4.212)

As indicated, in this particular case, P2(µ|τ) turns out to be independent
of τ . Both one variable density functions are properly normalized over their
domains of definition:∫ ∞

0

P1(τ) dτ =

∫ ∞
0

α e−α τ dτ = 1 and

K∑
µ=1

P2(µ) =

K∑
µ=1

αµ
α

= 1 .

Thus, in the direct method a random value τ is created from a random number
on the unit interval, η1, and the distribution P1(τ) by taking

τ = − ln η1

α
. (4.213)

The second task is to generate a random integer µ̂ according to P2(µ|τ) in
such a way that the pair (τ,µ) will be distributed as prescribed by P (τ,µ).
For this goal another random number, η2, will be drawn from the unit interval
and then µ̂ is taken to be the integer that fulfils

µ−1∑
ν=1

αν < η2 α ≤
µ∑
ν=1

αν . (4.214)

The values α1, α2, . . . , are cumulatively added in sequence until their sum
is observed to be equal or to exceed η2α and then µ̂ is set equal to the
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index of the last αν term that had been added. Rigorous justifications for
equations (4.213) and (4.214) are found in [166, pp.431-433]. If a fast and
reliable uniform random number generator is available, the direct method
can be easily programmed and rapidly executed. This it represents a simple,
fast, and rigorous procedure for the implementation of the Monte Carlo step
of the simulation algorithm.

The first-reaction method. This alternate method for the implementation
of the Monte Carlo step of the simulation algorithm is not quite as efficient
as the direct method but it is worth presenting here because it adds insight
into the stochastic simulation approach. Adopting again the notation αν ≡
γνhν(n) it is straightforward to derive

Pν(τ) dτ = αν exp (−αν τ) dτ (4.215)

from (4.199) and (4.200). Then, Pν(τ) would indeed be the probability at
time t for an Rν reaction to occur in the time interval [t+ τ, t+ τ + dτ [ were
it not for the fact that the number of Rν reactant combinations might have
been altered between t and t+ τ by the occurrence of other reactions. Taking
this into account, a tentative reaction time τν for Rν is generated according
to the probability density function Pν(τ), and in fact, the same can be done
for all reactions {Rµ}. We draw a random number ην from the unit interval
and compute

τν = − ln ην
αν

, ν = 1, . . . ,K . (4.216)

From these K tentative next reactions the one, which occurs first, is chosen
to be the actual next reactions:

τ = smallest τν for all ν = 1, . . . ,K ,

µ = ν for which τν is smallest .
(4.217)

Daniel Gillespie [166, pp.420-421] provides a straightforward proof that the
random (τ,µ) obtained by the first reaction method is in full agreement with
the probability density P (τ,µ) from equation (4.208).

It is tempting to try to extend the first reaction methods by letting the
second next reaction be the one for which τν has the second smallest value.
This, however, is in conflict with correct updating of the vector of particle
numbers, n, because the results of the first reaction are not incorporated into
the combinatorial terms hµ(n). Using the second earliest reaction would, for
example, allow the second reaction to involve molecules already destroyed in
the first reaction but would not allow the second reaction to involve molecules
created in the first reaction.

The next-reaction method. In the next reaction method one makes use of
all reaction times τν that were calculated for the next reaction step as in the
first reaction method [164]. Three expensive actions taking time proportional
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to the number of reactions K are performed in every iteration step of the
first-reaction method: (i) updating all K values αµ, (ii) generating a putative
reaction time τν for every ν, and (iii) identifying the shortest putative τµ. The
next-reaction method is somewhat more involved but avoids the time-wasting
calculations of future random times that are not used after the reaction event
has occurred, it has been proven to be exact in the same sense as he direct
and the first-reaction method.

The basic idea of the next-reaction method is to reuse the already cal-
culated times τν wherever this is appropriate. There is however one impor-
tant caveat: Monte Carlo simulations, in general, assume random numbers
that are statistically independent, and therefore reuse of random numbers
and quantities derived from them is illegitimate. In the specific case of the
next-reaction algorithm, however, it has been verified by proof that all puta-
tive reactions times can be reused except the time τµ of the reaction, which
was executed. By means of a dependency graph that follows directly from
the reaction mechanism only the minimal number of αµ-values are updated.
Storage of all τν -times together with the αν -values is required and efficient
implementations of the next-reaction are using special data structures [164].

Thus, the first-reaction method is just as rigorous as the direct method
and it is probably easier to implement in a computer code than the direct
method. From a computational efficiency point of view, however, the direct
method is preferable because for K ≥ 3 it requires fewer random numbers
and hence the first reaction methods is wasteful. This question of economic
use of computer time is not unimportant because stochastic simulations in
general are taxing the random number generator quite heavily. For K ≥ 3 and
in particular for large K the direct method is probably the method of choice
for the Monte Carlo step. The next-reaction method is exact too and can
be seen as a more efficient extension of the first reaction method, which for
sufficiently large M and K beats also the direct method in efficiency, because
it requires asymptotically only one random number per reaction event.

Computer codes. An early computer code of the simple version of the algo-
rithm described – still in FORTRAN – is found in [166]. Meanwhile many
attempts were made in order to speed-up computations and allow for simula-
tion of stiff systems (see e.g. [60]. A recent review of the simulation methods
also contains a discussion of various improvements of the original code [173].

Several computer codes in different languages including C++ are now
available on the internet and unless one aims at an efficient program for
some special task it does not pay to write another code unless for educa-
tional purposes. The simulations reported here were performed with a Math-
ematica 7,8 implementation that runs with small modifications also under
Mathematica 9. Other equally efficient and user friendly implementations are
available for Matlab and other high-level user interfaces. A didactic intro-
duction is found in [207] and sample programs for Matlab are available from
http:personal.strath.ac.uk/d.j.higham/algfiles.html.
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xCellerator project [407]
StochKit [281] [388]
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Fig. 4.41 The reversible bimolecular reaction A + B 
 2C. The figure shows
the expectation value E

(
(nA(t)

)
(black) embedded between the curves E(nA)±σ(nA)

(red) together with the deterministic solution n̂A(t) = a(t) (yellow) and n̂C = c(t)
(green). Parameter choice: k =, l =, nC(0) = 0, and nA(0) = 15, nB(0) = (upper plot)
and nA(0) = 1500, nB(0) = (lower plot).

4.6.4 Examples of simulations

In this section we shall be dealing with some selected examples of numerical
simulations using the Gillespie algorithm.

Reversible bimolecular reaction A + B 
 2C. Recalling our results from sec-
tion 4.3.3 the major obstacle for driving analytical solutions was the tridiago-
nal structure of the transition matrix W that did not allow for the derivation
of analytical expressions for the eigenvalues, and we could only derive results
for the equilibrium distribution. In order to be able to compare a process as
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close as possible to the simple autocatalytic reaction A+X 
 2X with choose
here A + B 
 2C.

The results of the computations with two different sample sizes are shown
in figure 4.41. Starting from sharp initial conditions at t = t0, Pn(0) = δn,n0

and with small particle numbers, nA = n = 15, the one standard deviation
band increases in width until it reaches the equilibrium value. The determin-
istic solution n̂(t) differs slightly but significantly from the expectation value
E
(
n(t)

)
, which is in full agreement with the previous analysis since the first

jump moment α1 is not linear in n. The deviation between the two curves
is readily explained: The stochastic reverse reaction, 2C → A + B fulfils the
rate function χ(MA)

← (n) = γh(n) = l nC(nC − 1) in mass action kinetics and
is slower than the deterministic rate function v(MA)

← = l n2
C (see figure 4.23).

The stochastic and deterministic rate functions of the reversible reaction are:

χ(MA)
→ − χ(MA)

← = − k nA · nB + l n2
C − l nC and

v(MA)
→ − v(MA)

← = −k nA · nB + l n2
C .

The deterministic rate is smaller and hence the curve n̂(t) is flatter. At suf-
ficiently high particle numbers all four curves, n̂ , E(n) , E(n)± σ(n), almost
coincide within the thickness of the lines again in full agreement with the
expectation σ ∝

√
n.

The extended Michaelis-Menten reaction. The extended mechanism of Michaelis-
Menten type enzyme catalysis (figure 4.2, version A)

S + E
k1

−−−−→←−−−−
l1

SE
k2

−−−−→←−−−−
l2

EP
k3

−−−−→←−−−−
l3

E + P

is dealing with five species involved in three reaction steps, and accordingly
we have two conservation relations:

s0 + p0 = s + c + d + p and e0 = e + c + d ,

with s = [S], e ≡ [E], p = [P], c ≡ [SE], and d ≡ [PE].

Autocatalysis and fluctuations. Analytical results for the irreversible auto-
catalytic reaction A + X→ 2X have been discussed already in section 4.3.3.3.
Here, we present and analyze the results of numerical simulations of the re-
versible autocatalytic process A+X 
 2X in order to work out the difference
between ordinary and autocatalytic processes. One feature is particularly ev-
ident and can be explained easily: When starting from the comparable initial
conditions, stochastic process requires more time than the conventional ODE
solution in the approach towards equilibrium. Although the deterministic
curve lies within the one standard deviation-zone, E(t)±σ(t), the convergence
of the stochastic solution towards the deterministic limit with increasing num-
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Fig. 4.42 Continued on next page.
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Fig. 4.42 The extended Michaelis-Menten reaction. The fully reversible mech-
anism shown as version A in figure 4.2 is simulated in form of a single trajectory with
large excess of substrate. The plot at the top shows the number of substrate and prod-
uct molecules, s(t) (blue), and product, p(t) (black), the plot in the middle presents
particle numbers for the two complexes [S ·E] = c(t) (yellow) and [E ·P] = d(t) (red),
and the bottom plot eventually shows the number of free enzyme molecules, e(t),
which almost always takes on only four different values: e ∈ {0, 1, 2, 3}.

Fig. 4.43 Enzyme-substrate binding. The binding step preceding the enzymatic
reaction is assumed to be faster than the conversion of substrate into product.

bers of molecules, n0, is not evident for population sizes up to N = 10 000.
In figure 4.44 we present the autocatalytic process for the comparison of
the stoichiometrically closely related bimolecular reactionA + B 
 2C dis-
cussed above. The expectation values of the stochastic processes show the
same qualitative behavior as the solutions of conventional kinetics shown in
figure 5.1:

The uncatalyzed reversible process A + B 
 2C shows the well-known
hyperbolic approach towards stationarity whereas self-enhancement of auto-
catalysis in A + X 
 2X leads to sigmoid or S-shaped curves (figure 4.44).
The difference between the two processes becomes even more apparent when
fluctuation are taken into account: The remarkable effect of fluctuation en-
hancement in autocatalysis broadens substantially the one-standard devia-
tion envelope: At n̄ ≈ 10 we observe a band in the autocatalytic process that
is approximately twice as broad as the one in the uncatalyzed reaction. At
larger particle numbers n̄ ≈ 1000 the difference is dramatic: The one standard
deviation band is still large in the autocatalytic reaction whereas fluctuation
have been reduced tenfold and became very small autocatalysis-free system.
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A

B

C

Fig. 4.44 Continued on next page.
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D

E

F

Fig. 4.44 Continued on next page.
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Fig. 4.44 The role of fluctuations in autocatalytic reactions. The figure con-
sists of six individual plots derived from the autocatalytic reaction A + X 
 2X. The
first three plots (A,B, and C) show the reversible reaction and the R↔ together
with the two irreversible reaction steps, R→ and R←, with total particle numbers
N = nA + nX = 20 and the other three plots (D,E, and F) show the tree reactions,
R↔, R→ and R←, in a population of one hundredfold size, N = 2000. In plot B
the analytical solution is compared with computer simulations performed with the
Gillespie algorithm (broken lines and light gray area).
Parameter choice: k = l = 1 mole−1l−1sec−1, initial conditions: (nA(0) = 19, nX(0) =
1) or nX(0) = 20 and (nA(0) = 9999, nX(0) = 1) or nX(0) = 10000, color code:
E
(
nA(t)

)
black, E± σ

(
nA(t)

)
red, n̂A(t) yellow, and n̂C(t) green.

In order to learn more about the origin of the fluctuation enhancement the
reversible reaction, R↔, was resolved into the two irreversible steps,

R→: A + X→ 2X and R← :2X→ A + X .

The forward reaction step R→ shows the characteristic features of the au-
tocatalytic process whereas the reverse reaction R← resembles a normal
non-autocatalytic reaction where the fluctuation obey the

√
n-law of the

fluctuation-dissipation theorem. Not unexpectedly it is the X → 2X element
of the process that gives rise to self-enhancement.

Eventually we mention that the autocatalytic reaction with buffered con-
centration of [A] = a0, corresponding to an open system

X
ka0
−−−−→ 2 X , (4.218)

has been studied already by Max Delbrück [87]. The stochastic process is
identical to a simple birth process with birth rate λ · n = ka0 and will be
discussed in the context of other birth-and in section 5.2.1. Enhancement of
fluctuations to macroscopic level is observed as a characteristic for uncon-
strained autocatalytic growth.

Higher order autocatalysis: Bistability and Oscillations. So far all chemical
reactions were approaching either a unique thermodynamic equilibrium or
a stationary state depending on the embedding of the system giving rise to
a closed od an open state, respectively. First order autocatalytic systems
exhibited some features that are otherwise uncommon in chemical kinetics,
the characteristic example is self-enhancement of fluctuations. Here we con-
sider more prominent nonlinear phenomena in chemistry, two or more sta-
ble steady states and oscillations [387]. An example of a simple mechanism
showing bistability consists of a embedding of the termolecular autocatalytic
reaction step (4.1m), A + 2X � 3X in the flow reactor. In order to be con-
sistent with chemical thermodynamics the uncatalyzed A�X is added. The
occurrence of oscillations in concentrations is demonstrated and analyzed of
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two chemical model systems, the Brusselator and the Oregonator. The former
mechanism was conceived as a simple model that allows for the occurrence
of oscillations and spatial pattern formation in a chemical reaction network
whereas the latter was postulated as a simplified model mechanism of the
Belousov-Zhabotinsky reaction. We use both systems here for the purpose of
illustrating the influence of stochasticity on complex dynamics, in particular
on simple bifurcations.

As mentioned in the introduction of chemical elementary step reactions
termolecular reaction steps are based on highly improbable encounters of
three molecules and therefore excluded in conventional reaction kinetics and
indeed, the fully resolved multistep mechanisms of higher order autocatalytic
reactions involve only mono and bimolecular steps. We mention in this con-
text a beautiful mathematical exercise consisting of the tasks to find the
smallest reaction systems exhibiting oscillation resulting from a Hopf bifur-
cation68 [461] or showing bistability [460].

Bistabile reaction networks. The termolecular autocatalytic reaction step
(4.1m) together with the corresponding uncatalyzed reaction in the flow re-
actor give rise to the mechanism:

?
r·a0
−−−−→ A , (4.219a)

A
κ k1

−−−−→←−−−−
κ l1

X , (4.219b)

A + 2 X
k1

−−−−→←−−−−
l1

3 X , (4.219c)

A
r

−−−−→ � (4.219d)

X
r

−−−−→ � , (4.219e)

which corresponds to an overall conversion of A into X. The kinetic differential
equations, [A] = a and [X] = x,

da

dt
= −(k1 a − l1 x)(κ + x2) + r(a0 − a) and

dx

dt
= +(k1 a − l1 x)(κ + x2) − r x ,

(4.220)

68 The Hopf or Poincaré-Andronov-Hopf bifurcation is named after Henri Poincaré,
the German-US-American mathematician Eberhard Hopf and the Russian physicist
Aleksandr Andronov, and occurs, in essence, when a complex conjugate pair of eigen-
values crosses the real axis, λ1,2 = α± β and α < 0 =⇒ alpha > 0 [404, p.48 ff.].
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Fig. 4.45 Continued on next page.
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Fig. 4.45 Analysis of bistability in chemical reaction networks. The reaction
mechanism (4.219) sustains three stationary states, S1(x̄ = x̄1), S2(x̄ = x̄2), and
S3(x̄ = x̄3), in the range r(x̄min) < r(x̄) < r(x̄max) with x̄1 < x̄2 < x̄3. The
two states S1 and S3 are asymptotically stable and S2 is an unstable saddle point.
The plot in the middle shows the solution curves a(t) (blue) and x(t) (red) starting
from initial conditions just above the unstable state, x(0) = x̄2 − δ, and the system
converges to state S1. Analogously, the plot at the bottom starts at x(0) = x̄2 + δ
and the trajectory ends at state S1. Parameter choice: k1 = 1.0× 10−10 [t−1 ·M−2],
l1 = 1.0× 10−8 [t−1 ·M−2], κ = 106 [M2], a0 = 10 000 [M] and r = 0.23 [t−1]. Steady
state concentrations: x̄1 = 525.34 [M], x̄2 = 2918.978 [M], and x̄3 = 6456.67 [M].
Initial conditions: x(0) = 2918.97 [M] (middle plot) and x(0) = 2918.98 [M] (bottom
plot).

lead to d(a+ x)/ dt = da/dt + dx/ dt = r
(
a0 − (a+ x)

)
with the stationary

solution ā + x̄ = a0 and sustain one or three steady states (ā = a0 − x̄, x̄)
that fulfil the implicit equation [368, pp.18-27]

r(x̄) =
1

x̄

(
κk1a0 − x̄ κ(k1 + l1) + x̄2 k1a0 − x̄3 (k1 + l1)

)
. (4.221)

In case we are dealing with three stationary states, S1(x̄ = x̄1), S2(x̄ = x̄2),
and S3(x̄ = x̄3), S1 and S3 are asymptotically stable and the saddle S2 sep-
arates the two basins of attraction, x < x̄2 and x > x̄2, respectively. The
subdomains with one or three real and positive solutions for x̄ are sepa-
rated by two saddle-node bifurcations at x̄min and x̄max, which are calculated
straightforwardly from69

dr(x̄)

dx̄
= 0 =⇒ x̄3

crit 2(k1 + l1) − x̄2
crit k1a0 + κk1a0 = 0 .

As shown in figure 4.45 the integration of the ODE (4.220) reflects precisely
the position of S2.

Stochasticity is readily introduced into the bistable system through Gille-
spie integration and sampling of trajectories. The results are shown in fig-
ure 4.46: At sufficiently small numbers of molecules we observe the system
switching back and forth between the two stable states, S1 and S3, and an
increase in system size changes the scenario in the sense that the system
remains in essence in one stable state after it has reached it but identical
initial conditions yield either stable state, S1 or S3, and the dependence on
initial conditions C0 can only be described probabilistically: PS1

(C0) versus
PS3(C0). Further increase in system size eventually results in a situation like

69 In general we obtain three solutions for x̄crit, two of them, x̄min and x̄max are
situated on the positive x̄ axis and correspond to horizontal tangents in the x̄, r(x̄)-
plot (figure 4.45). The corresponding vertical tangents in the r, x̄(r)-plot separate the
domains with one solution, 0 ≤ r(x̄) ≤ r(x̄min) and r(x̄max) ≤ r(x̄) < ∞, and three
solutions, r(x̄min) ≤ r(x̄) ≤ r(x̄max).
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Fig. 4.46 Continued on next page.
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Fig. 4.46 Stochasticity in bistable reaction networks. The figure shows three
trajectories calculated by means of the Gillespie algorithm with different numbers of
molecules: a0 = 100 (top plot), a0 = 1000 (middle plot) and a0 = 10 000 (bottom
plot). For small system sizes a sufficiently long trajectory switches back and forth be-
tween the two stable states S1 and S3 (top plot). For larger values of a0 (middle plot)
either to S1 or to S3 with a ration of the probabilities of approximately 0.56/0.44. At
the largest population size (bottom plot) we encounter essentially the same situation
as in the deterministic case: the initial conditions determine the state towards which
the system converges.

in the deterministic case: Every stable state Sk has its well defined basin of
attraction Bk and in case the initial conditions are situated within the basin,
C0 ∈ Bk the system converges to the attractor Sk. An elegant test for bista-
bility consists in a series of simple experiments: The system in one stable
stationary state, S1 or S3, is perturbed by additions of increasing quantities
of one compound, the system return to the stable state for small perturba-
tions but approaches the other stable state when the perturbation exceeds a
certain critical limit. Closely related to this phenomenon is chemical hyster-
sis that can be easily illustrated by means of figure 4.45: The formation of
the stationary state is studied as a function of the flow rate r. Starting from
thermodynamic equilibrium at r = 0 solution is the the flow reactor state
approaches state S1 until the flow rate r(x̄max) is reached. Then, further in-
crease of r causes the system to jump to state S3, because S1 has lost its
stability. Alternatively, when the flow rate r is decreased coming from higher
values where S3 is the only stable state, S3 remains stable until the flow
rate r(x̄min) and the solution in the reactor jumps to S1. Chemical hystere-
sis implies that different states are passed in the bistable region when going
upwards of downwards in the parameter causing bistability.

An experimental reaction mechanism showing bistability is provided by a
combination of the Dushman reaction [96],

IO−3 + 5 I− + 6 H+ −−−−→←−−−− 3 I2 + 3 H2O ,

and the Roebuck reaction [385],

I2 + H3AsO3 + H2O −−−−→←−−−− 2 I− + H3AsO4 + 2 H+ ,

that leads to the overall reaction equation

IO−3 + 3 H3AsO3
−−−−→←−−−− I− + 3 H3AsO4 ,

the oxidation of arsenous acid by iodate. Careful studies of the Dushman-
Roebuck reaction in the flow reactor revealed all the features of bistability
described here by means of the simpler example [86, 193]. We mention that
bistability and hysteresis has also been studied theoretically and experimen-
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tally in case of the even more complex Belousov-Zhabotinsky reaction de-
scribed in the paragraph on the Oregonator model [26, 147, 158]. In all these
examples the nonlinear phenomena originate from multistep mechanisms with
only monomolecular and bimolecular reaction steps.

Brusselator. The Brusselator mechanism has been invented in Ilya Pri-
gogine’s and his group in Brussels [277]. The goal was to find the simplest
possible hypothetical chemical system that can sustains oscillations in homo-
geneous solution and spatial Turing patterns [432] when coupled to diffusion.
For this purpose the overall reaction

A + B −−−−→←−−−− D + E ,

is split into four reaction steps:

A
k1

−−−−→←−−−−
l1

X (4.222a)

2 X + Y
k2

−−−−→←−−−−
l2

3 X (4.222b)

B + X
k3

−−−−→←−−−−
l3

Y + D (4.222c)

X
k4

−−−−→←−−−−
l4

E . (4.222d)

As said step (4.222b) is the key to the interesting phenomena of nonlinear
dynamics. Compounds A and B are assumed to be present in buffered con-
centrations, [A] = a0 = a and [B] = b0 = b, and for the sake of simplicity we
consider the case of irreversible reactions, l1 = l2 = l3 = l4 = 0. Then the ki-
netic differential equations for the deterministic description of the dynamical
system are:

dx

dt
= k1a0 + k2 x

2y − k3b0 x − k4 x and

dy

dt
= k3b0 x − k2 x

2y .

(4.223)

The Brusselator sustains a single steady state S = (x̄, ȳ) and conventional
bifurcation analysis yields the two eigenvalues λ1,2. Without loosing general-
ity the analysis is simplified largely by setting all rate constants equal one,
k1 = k2 = k3 = k4 = 1:
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Fig. 4.47 Continued on next page.
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Fig. 4.47 Analysis of the Brusselator model. The figure presents integrations
of the kinetic differential equation 4.223 in the oscillatory regime (top plot) and in
the range of stability of the stationary point S = (a, b/a) (middle plot). Although the
integration starts at the origin (0,0), a point that lies relatively close to the stationary
state (10,10), the trajectory performs a full refractory cycle before it settles down at
the stable point. The plot at the bottom is an enlargement of the middle plot and
illustrates the results of a complex conjugate pair of eigenvalues with negative real
part: damped oscillations. Parameter choice: κ1 = k1 · a0 = 10, κ2 = k2 = 0.05,
κ3 = k3 · b0 = 6.5, and κ4 = k4 = 1 (top plot), κ2 = k2 = 1 and κ3 = k3 · b0 = 100
(middle plot and bottom plot); initial conditions: x(0) = 0 and y(0) = 0; color code:
x(t) red and y(t) blue.

S = (x̄, ȳ) =

(
a,
b

a

)
and λ1,2 =

1

2

(
b− a2 − 1±

√
(b− a2 − 1)2 − 4a2

)
,

The eigenvalues form a pair complex conjugate values in the parameter range
(a− 1)2 < b < (a+ 1)2 and the real part vanishes at b = a2 + 1. Accordingly,
we are dealing with a Hopf bifurcation at b = a2 + 1 with λ1,2 = ±2ı

.
ı a. In

figure 4.47 we show computer integrations of the ODE (4.223) illustrating
the analytical results. For the sake of simplicity we have chosen irreversible
reactions and incorporated constant concentrations into the rate constants:
κ1 = k1a0, κ2 = k2, κ3 = k3b0, and κ4 = k4.

Introducing stochasticity into the Brusselator model complicates the bi-
furcation scenario. At low particle numbers corresponding to a high level of
parametric noise the Hopf bifurcation disappears leaving a scenario of more
or less irregular oscillations on both sides of the deterministic position of the
bifurcation. Ludwig Arnold created the illustrative expression: “Parametric
noise destroys the Hopf bifurcation” [17, 18]. Increase in system size allows
for the appearance of the stable point attractor on one side of the Hopf bi-
furcation (figure 4.48).

The oscillations exhibited by the Brusselator are characteristic for so-called
excitable media in which a reservoir is filled more or less slowly with a con-
sumable compound until a process rapidly consuming this material is ignited.
In case of the Brusselator the consumable is the compound Y and its con-
centration is raised until the autocatalytic process 2X+Y→3X is triggered by
an above threshold concentration of Y. Fast consumption of Y results in a
rapid increase of X that completes the wave by reducing the concentration
of Y to a small value (figure 4.49). The easiest way to visualize an excitable
medium is provided by the example of wildfires: Wood grows slowly until it
reaches a density that can sustain spreading fire. After triggered by natural
causes or arson the fire consumes all the wood and thereby initiates the basis
for the next refractory period. Oscillatory chemical reactions do not need an
external trigger since an internal fluctuation is sufficient to initiate the decay
phase.
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Fig. 4.48 Continued on next page.
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Fig. 4.48 Stochasticity in the Brusselator model. The figure shows three
stochastic simulations of the Brusselator model. The top plot shows the Brussela-
tor in the stable regime at low numbers of molecules (a0 = 10) but no settling down
of the trajectories near the steady state can be observed. At sufficiently high numbers
of molecules (a0 = 1000) the behavior of the stochastic Brusselator is close to the
deterministic solutions (figure 4.47) in the oscillatory regime (middle plot) and in the
range of fixed point stability the stochastic solutions fluctuate around the stationary
values (bottom plot). Parameter choice: κ1 = 10, κ2 = 0.01, κ3 = 1.5, κ4 = 1 (top
plot), κ1 = 1000, κ2 = 1 × 10−6, κ3 = 3, κ4 = 1 (middle plot), and κ1 = 1000, κ2 =
1 × 10−6, κ3 = 1.5, κ4 = 1 (bottom plot); iniital conditions: x(0) = y(0) = 0; color
code: x red and y blue.

Oregonator. The prototype of an oscillatory chemical reaction and the first
example that became popular in history is the Belousov-Zhabotinsky reac-
tion, which is described by the overall process of the cerium catalyzed reaction
of malonic acid by bromate ions in dilute sulfuric acid. We mention the reac-
tion here in order to present one example showing how complicated chemical
reaction networks can be in reality:

3 H2M + 4 BrO−3 −→ 4 Br− + 9 CO2 + 6 H2O . (4.224a)

Malonic acid is written here as CH2(CO2H)2 ≡ H2M. The process can be
split into three overall reactions that follow the reaction equations

Fig. 4.49 Refractory cycle in the Brusselator model. The figure presents an
enlargement from a stochastic trajectory calculated with the parameters applied in the
top plot of figure 4.48. It illustrates a refractory cycle consisting of filling a reservoir
of compound Y (blue) that is quickly emptied by conversion of Y to X after ignition
triggered by a sufficiently large concentration of Y.
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Fig. 4.50 Analysis of the Oregonator model. The kinetic ODEs of the Oreg-
onator model (4.225f) are integrated and the undamped oscillations in the open
system (with buffered concentrations of A and B) are shown in the top plot. The
supply of A is limited in the bottom plot that mimics the closed system. As A is
consumed the oscillations become smaller an eventually die out. Parameter choice:
κ1 = 2, κ2 = 0.1, κ3 = 104, κ4 = 0.016, and κ5 = 26: initial concentrations
x(0) = 100, y(0) = 1000, and z(0) = 2000; color code: x(t) green, y(t) red, z(t)
blue, and a(t) black.

2 Br− + BrO−3 + 3 H+ + 3 H2M −→ 3 HBrM + 3 H2O , (4.224b)

4 Ce3+ + BrO−3 + 5 H+ −→ 4 Ce4+ + HBrO + 2 H2O , and (4.224c)
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Fig. 4.51 Continued on next page.
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Fig. 4.51 Stochasticity in the Oregonator model. The figure shows stochastic
simulations of the Oregonator model at different population sizes: x(0) = 5 · ϑ ,
y(0) = 10 · ϑ (red), and z(0) = 20 · ϑ with ϑ = 1 (previous page, top plot), ϑ = 10
(previous page, middle plot), and ϑ = 100 (previous page, bottom plot). A simulation
of the Oregonator in a system that is closed with respect to compound A is shown
on this page (ϑ = 10, a(0) = 10 000). The parametrization was adopted from [167]:
x̄ = 5, ȳ = 10, and z̄ = 20 were used for the concentrations, and ρ̄1 = 0.2 · ϑ2 and
ρ̄2 = 5 · ϑ2 for the reaction rates at the unstable stationary point, and this yields for
the rate parameters, κ1 = 0.02ϑ, κ2 = 0.1, κ3 = 1.04ϑ, κ4 = 0.016ϑ, and κ5 = 0.26ϑ.
Color code: x(t) green, y(t) red, z(t) blue, and a(t) black.

2 Ce4+ + 2 H2M + HBrM + HBrO + 2 H2O −→

−→ 2 Ce3+ + 2 Br− + 3 HOHM + 4 H+ .
(4.224d)

The third reaction (4.224d) is complemented by the fragmentation of hy-
droximalonic acid to carbon dioxide and accompanied by further reduction
of bromate to bromide. In detail the reaction mechanism is even more com-
plicated and a network of about 20 reaction steps has been derived from the
available data [99].

For a complete theoretical analysis the reaction network of the Belousov-
Zhabotinsky reaction in too complicated and therefore a simplified model,
the Oregonator model has been conceived by US American physical chemists
Richard Noyes and Richard Field in order to allow for a combined analytical
and numerical study of a system that mimics closely the properties of the
Belousov-Zhabotinsky reaction [137, 350]:
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A + Y
k1

−−−−→←−−−−
l1

X + P (4.225a)

X + Y
k2

−−−−→←−−−−
l2

2 P (4.225b)

A + X
k3

−−−−→←−−−−
l3

2 X + 2 Z (4.225c)

2 X
k4

−−−−→←−−−−
l4

A + B (4.225d)

B + Z
k5

−−−−→ 1

2
f Y . (4.225e)

The corresponding kinetic ODEs for irreversible reactions and buffered con-
centration of A and B with [X] = x, [Y] = y, and [Z] = z are:

dx

dt
= k1a y − k2 xy + k3a x − 2k4 x

2 ,

dy

dt
= − k1a y − k2 xy +

1

2
k5b z , and

dz

dt
= 2k3a x − k5b z .

(4.225f)

Two features of the model are remarkable: (i) It is low-dimensional – three
variables [X], [Y], and [Z] when A and B are buffered – and does not contain a
termolecular step, and (ii) it makes use of a non-stoichiometric factor f . The
Oregonator model has been successfully applied to reproduce experimental
findings on fine details of the oscillations in the Belousov-Zhabotinsky reac-
tion but failed to predict the occurrence of deterministic chaos. In later works
new models on this reaction have been developed that were successful also in
this aspect [152, 185].

In figure 4.50 we show numerical integrations of equation (4.225f) in the
open system with constant input materials and in a closed system with lim-
ited supply of A. Interestingly the oscillations give rise to a step consumption
of the resource. In his seminal paper on the simulation algorithm and its ap-
plications Daniel Gillespie [167] provided a stochastic version of the Oregona-
tor, which we are applying here to demonstrate the approach of the stochastic
simulations towards the deterministic solution with increasing population size
(figure 4.51).
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theory of Lévy flights. In: R. Klages, G. Radons, I.M. Sokolov (eds.)
Anomalous Transport: Foundations and Applications, chap. 5, pp. 129–162.
Wiley-VCH Verlag GmbH, Weinheim, DE (2008)

67. Child, M.S.: Molecular Collision Theory. Dover Publications, Mineola, NY
(1996). Originally publisher: Academic Press, London 1974.

68. Chung, K.L.: A Course in Probability Theory, Probability and Mathematical
Statistics, vol. 21, second edn. Academic Press, New York (1974)

69. Chung, K.L.: Elementary Probability Theory with Stochastic Processes, 3rd
edn. Springer-Verlag, New York (1979)

70. Cochran, W.G.: The distribution of quadratic forms in normal systems, with
applications to the analysis of covariance. Math. Proc. Cambridge Phil. Soc.
30, 178–191 (1934)

71. Conrad, K.: Probability distributions and maximum entropy. Expository
paper, University of Connecticut, Storrs, CT (2005)

72. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: A. Condon, D. Harel, J.N. Kok, A. Salomaa, E. Winfree
(eds.) Algorithimc Bioprocesses, Natural Computing Series, vol. XX, pp.
543–584. Springer-Verlag, Berlin (2009)

73. Cooper, B.E.: Statistics for Experimentalists. Pergamon Press, Oxford (1969)
74. Cortina Borja, M., Haigh, J.: The birthday problem. Significance 4, 124–127

(2007)
75. Cover, T.M., Thomas, J.A.: Elements of Information Theory, second edn. John

Wiley & Sons, Hoboken, NJ (2006)
76. Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Methuen,

London (1965)
77. Cox, R.T.: The Algebra of Probable Inference. The John Hopkins Press,

Baltimore, MD (1961)
78. Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex

enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA 103, 8697–8702
(2006)

79. Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford, UK (1956)
80. Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory.

Sinauer Associates, Sunderland, MA (1970). Reprinted at The Blackburn
Press, Caldwell, NJ, 2009

81. Cull, P., Flahive, M., Robson, R.: Difference Equations. From Rabbits to
Chaos. Undergraduate Texts in Mathematics. Springer, New York (2005)

82. Dalla Valle, J.M.: Note on the Heaviside expansion formula.
Proc. Natl. Acad. Sci. USA 17, 678–684 (1931)

83. Darvey, I.G., Ninham, B.W.: Stochastic models for second-order chemical
reaction kinetics. Time course of reactions. J. Chem. Phys. 46, 1626–1645
(1967)

84. Darvey, I.G., Ninham, B.W., Staff, P.J.: Stochastic models for second-order
chemical reaction kinetics. The equilibirum state. J. Chem. Phys. 45,
2145–2155 (1966)

85. Darvey, I.G., Staff, P.J.: Stochastic approach to first-order chemical reaction
kinetics. J. Chem. Phys. 44, 990–997 (1966)

86. DeKepper, P., Epstein, I.R., Kustin, K.: Bistability in the oxidatiion of arsenite
by iodate in a stirred flow reactor. J. Am. Chem. Soc. 103, 6121–6127 (1981)

87. Delbrück, M.: Statistical fluctuations in autocatalytic reactions.
J. Chem. Phys. 8, 120–124 (1940)



References 571

88. Demetrius, L., Schuster, P., Sigmund, K.: Polynucleotide evolution and
branching processes. Bull. Math. Biol. 47, 239–262 (1985)

89. Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag, New
York (1986)

90. Djermoune, E.H., Tomczak, M.: Statistical analysis of the Kumaresan-Tufts
and matrix pencil methods in estimating damped sinusoids. In: F. Hlawatsch,
G. Matz, M. Rupp, B. Wistawel (eds.) Proceedings of the XII. European
Signal Processing Conference, vol. II, pp. 1261–1264. Technische Universität
Wien, Wien (2004)

91. Domingo, E., Parrish, C.R., John J, H. (eds.): Origin and Evolution of Viruses,
second edn. Elsevier, Academic Press, Amsterdam, NL (2008)
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Bull. Acad. Imp. Sci. St. Pétersbourg 13, 359–386 (1900)



580 References

299. Lyapunov, A.M.: Nouvelle forme du théorème sur la limite des probabilités.
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Boston, MA (2013). Unfinished manuscript. Online at
academic2.american.edu/∼jpnolan.

348. Novitski, C.E.: On Fisher’s criticism of Mendel’s results with the garden pea.
Genetics 166, 1133–1136 (2004)



582 References

349. Novitski, C.E.: Revision of Fisher’s analysis of Mendel’s garden pea
experiments. Genetics 166, 1139–1140 (2004)

350. Noyes, R.M., Field, R.J., Körös, E.: Oscillations in chemical systems. I.
Detailed mechanism in a system showing temporal oscillations.
J. Am. Chem. Soc. 94, 1394–1395 (1972)

351. Nyman, J.E.: Another generalization of the birthday problem. Mathematics
Magazine 48, 46–47 (1975)

352. Øksendal, B.K.: Stochastic Differential Equations. An Introduction with
Applications, sixth edn. Springer-Verlag, Berlin (2003)

353. Olbregts, J.: Termolecular reaction of nitrogen monoxide and oxygen. A still
unsolved problem. Internat. J. Chem. Kinetics 17, 835–848 (1985)

354. Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding:
The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)

355. Orrit, M., Bernard, J.: Single pentacene molecules detected by fluorescence
exitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990)

356. Oster, G.F., Perelson, A.S.: Chemical reaction dynamics. Part I: Geometrical
structure. Arch. Rational Mech. Anal. 55, 230–274 (1974)

357. Park, S.Y., Bera, A.K.: Maximum entropy autoregressive conditional
heteroskedasticy model. J. Econometrics 150, 219–230 (2009)

358. Paschotta, R.: Field Guide to Laser Puls Generation. SPIE Press, Bellingham,
WA (2008)

359. Patrick, R., Golden, D.M.: Third-order rate constants of atmospheric
importance. Internat. J. Chem. Kinetics 15, 1189–1227 (1983)

360. Pearson, E.S., Wishart, J.: “Student’s” Collected Papers. Cambridge
University Press, Cambridge, UK (1942). Cambridge University Press for the
Biometrika Trustees

361. Pearson, J.A.: Advanced Statistical Physics. University of Manchester,
Manchester, UK (2009). URL: http://www.joffline.com/

362. Pearson, K.: Contributions to the mathematical theory of evolution. II. Skew
variation in homogeneous material. Phil. Trans. Roy. Soc. London A 186,
343–414 (1895)

363. Pearson, K.: On the criterion that a given system of deviations form the
probable in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling. Philosophical
Magazine Series 5 50(302), 157–175 (1900)

364. Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)
365. Peirce, C.S.: Vol.7: Science and philosophy and Vol.8: Reviews,

correspondence, and bibliography. In: A.W. Burks (ed.) The Collected Papers
of Charles Sanders Peirce, vol. 7-8. Belknap Press of Harvard University Press,
Cambridge, MA (1958)

366. Peterman, E.J.G., Sosa, H., Moerner, W.E.: Single-molecule flourescence
spectrocopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem.
55, 79–96 (2004)

367. Philibert, J.: One and a half century of diffusion: Fick, Einstein, before and
beyond. Diffusion Fundamentals 4, 6.1–6.19 (2006)

368. Phillipson, P.E., Schuster, P.: Modeling by Nonlinear Differential Equations.
Dissipative and Conservative Processes, World Scientific Series on Nonlinear
Science A, vol. 69. World Scientific, Singapore (2009)

369. Plass, W.R., Cooks, R.G.: A model for energy transfer in inelasitc molecular
collisions applicable at steady state and non-steady state and for an arbitrary
distribution of collision energies. J. Am. Soc. Mass Spectrom. 14, 1348–1359
(2003)

370. Pollard, H.: The representatioin of e−x
λ

as a Laplace intgeral.
Bull. Am. Math. Soc. 52, 908–910 (1946)



References 583

371. Popper, K.: The propensity interpretation of the calculus of probability and of
the quantum theory. In: S. Körner, M.H.L. Price (eds.) Observation and
Interpretation in the Philosophy of Physics: Proceedings of the Ninth
Symposium of the Colston Research Society. Butterworth Scientific
Publications, London (1957)

372. Popper, K.: The propensity theory of probability. Brit. J. Phil. Sci. 10, 25–62
(1960)

373. Poznik, G.D., Henn, B.M., Yee, M.C., Sliwerska, E., Lin, A.A., Snyder, M.,
Quintana-Murci, L., Kidd, J.M., Underhill, P.A., Bustamante, C.D.:
Sequencing Y chromosomes resolves discrepancy in time to common ancestor
of males versus females. Science 341, 562–565 (2013)

374. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical
Recipes. The Art of Scientific Computing. Cambridge University Press,
Cambridge, UK (1986)

375. Price, R.: LII. an essay towards soliving a problem in the doctrine of chances.
By the late Ref. Mr. Bayes, communicated by Mr. Price, in a letter to John
Canton, M.A. and F.R.S. Phil. Trans. Roy. Soc. London 53, 370–418 (1763)

376. Protter, P.E.: Stochastic Intergration and Differential Equations, Applications
of Mathematics, vol. 21, second edn. Springer-Verlag, Berlin (2004)

377. Provencher, S.W., Dovi, V.G.: Direct analysis of continuous relaxation spectra.
J. Biophys. Biochem. Methods 1, 313–318 (1979)

378. Qian, H., Elson, E.L.: Single-molecule enzymology: Stochastic
Michaelis-Menten kinetics. Biophys. Chem. 101-102, 565–576 (2002)

379. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic
chemically reacting systems: The implicit τ -leaping method. J. Chem. Phys.
119, 12,784–12,794 (2003)

380. Rice, O.K., Ramsperger, H.C.: Theories of unimolecular gas reactions at low
pressures. J. Am. Chem. Soc. 49, 1617–1629 (1927)

381. Rigler, R., Mets, U., Widengren, J., Kask, P.: Fluorescence correlation
spectroscopy with high count rate and low-background-analysis of
translational diffusion. Eur. Biophys. J. 22, 169–175 (1993)

382. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and
Engineering, second edn. Cambridge University Press, Cambridge, UK (2002)

383. Risken, H.: TheFokker-Planck Equation. Methods of Solution and
Applications, 2nd edn. Springer-Verlag, Berlin (1989)

384. Robinett, R.W.: Quantum Mechanics. Classical Results, Modern Systems, and
Visualized Examples. Oxford University Press, New York (1997)

385. Roebuck, J.R.: The rate of the reaction between arsenious acid and iodine in
acid solution, the rate of the reverse reaction, and the equilibrium between
them. J. Phys. Chem. 6, 365–398 (1901)

386. Rotman, B.: Measurement of activity of single molecules of β-d-galactosidase.
Proc. Natl. Acad. Sci. USA 47, 1981–1991 (1961)

387. Sagués, F., Epstein, I.R.: Nonlinear chemical dynamics. J. Chem. Soc., Dalton
Trans. 2003, 1201–1217 (2003)

388. Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: StochKit2:
Software for discrete stochastic simulation of biochemical systems with events.
Bioinformatics 27, 2457–2458 (2011)

389. Scher, H., Shlesinger, M.F., Bendler, J.T.: Time scale invariance in transport
and relaxation. Physics Today 44(1), 26–34 (1991)

390. Schilling, M.F., Watkins, A.E., Watkins, W.: Is human height bimodal? The
American Statistician 56, 223–229 (2002)
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426. Tavaré, S.: Line-of-descent and genealogical processes, and their application in
population genetics models. Theor. Popul. Biol. 26, 119–164 (1984)

427. Taylor, H.M., Karlin, S.: An Introduction to Stochastic Modeling, third edn.
Academic press, San Diego, CA (1998)

428. Thiele, T.N.: Om Anvendelse af midste Kvadraters Methode i nogle Tilfælde,
hvor en Komplikation af visse Slags uensartede tilfædige Feijlkilder giver
Feijlene en ’systenatisk’ Karakter. Vidensk. Selsk. Skr. 5. rk., naturvid. og
mat. Afd. 12, 381–408 (1880). In Danish.

429. Thompson, C.J., McBride, J.L.: On Eigen’s theory of the self-organization of
matter and the evolution of biological macromolecules. Math. Biosci. 21,
127–142 (1974)

430. Tolman, R.C.: The Principle of Statistical Mechanics. Oxford University Press,
Oxford, UK (1938)

431. Tsukahara, H., Ishida, T., Mayumi, M.: Gas-phase oxidation of nitric oxide:
Chemical kinetics and rate constant. Nitric Oxide: Biology and Chemistry 3,
191–198 (1999)

432. Turing, A.M.: The chemical basis of morphogenesis.
Phil. Trans. Roy. Soc. London B 237(641), 37–72 (1952)

433. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion.
Phys. Rev. 36, 823–841 (1930)

434. Ullah, M., Wolkenhauer, O.: Family tree of Markov models in systems biology.
IET Systems Biology 1, 247–254 (2007)

435. Ullah, M., Wolkenhauer, O.: Stochastic Approaches for Systems Biology.
Springer, New York (2011)

436. van den Berg, T.: Calibrating the Ornstein-Uhlenbeck-Vasicek model.
Sitmo – Custom Financial Research and Development Services,
www.sitmo.com/article/calibrating-the-ornstein-uhlenbeck-model/
(2011). Retrieved April 20, 2014.

437. van den Bos, A.: Parameter Estimation for Scientists and Engineers. John
Wiley & Sons, Hoboken, NJ (2007)

438. van Kampen, N.G.: A power series expansion of the master equation.
Can. Chem. Phys. 39, 551–567 (1961)



586 References

439. van Kampen, N.G.: The expansion of the master equation. Adv. Chem. Phys.
34, 245–309 (1976)

440. van Kampen, N.G.: Remarks on non-markov processes. Brazilian Journal of
Physics 28, 90–96 (1998)

441. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, third edn.
Elsvier, Amsterdam (2007)

442. van Oijen, A.M., Blainey, P.C., Crampton, D.J., Richardson, C.C.,
Ellenberger, T., Xie, X.S.: Single-moleucles kinetics of λ exconuclease reveal
base dependence and dynamic disorder. Science 301, 1235–1238 (2003)

443. Vasicek, O.: An equlibrium characterization of the term structure. J. Financial
Economics 5, 177–188 (1977)

444. Venn, J.: On the diagrammatic and mechanical representation of propositions
and reasonings. The London, Edinburgh, and Diblin Philosophical Magazine
and Journal of Science 9, 1–18 (1880)

445. Venn, J.: Sybolic Logic. MacMillan, London (1881). Second edition, 1984.
Reprinted by Lenox Hill Pub. & Dist. Co., 1971

446. Venn, J.: The Logic of Chance. An Essay on the Foundations and Province of
the Theory of Probability, with Especial Reference to its Logical Bearings and
its Application to Moral and Social Science, and to Statistics, third edn.
MacMillan and Co., London (1888)

447. Verhulst, P.: Notice sur la loi que la population pursuit dans son accroisement.
Corresp. Math. Phys. 10, 113–121 (1838)

448. Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E.: Lévy flights and
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additivity
σ, 24, 47

algebra
σ, 46, 50, 69
Borel, 51

antibunching term, 435
approach

quantum mechanical, 341
semiclassical, 341

approximation
Poisson-normal, 111, 299
steady state, 323
Stirling’s, 96, 121, 298

assumption
scaling, 239

asymptotic frequencies, 528
Avogadro’s constant, 3, 5

balancing
complex, 330
detailed, 231, 330

barrier, see boundary
Bernoulli trials, 179
bifurcation

Hopf, 483, 490
saddle-node, 485
subcritical, 501
transcritical, 501

bijection, 49
bit, 92
boundary

absorbing, 273, 388
natural, 275, 369, 388, 389
reflecting, 273, 389

Brownian motion, 4, 186, 208
buffer, 400, 453

cardinality (set theory), 19
characteristic manifold, 382
characteristics, method of, 382

closure, 25
coalescent theory, 553
coefficient

binding, 361
collisions

classical, 344
elastic, 344
inelastic, 344
nonreactive, 348
reactive, 344, 348

collisions, molecular, 306
compatibility class

stoichiometric, 327
complement (set theory), 20
condition

final, 185, 264
growth, 292
initial, 171, 185, 264
Lindeberg’s, 124
Lipschitz, 292
Lyapunov’s, 123

confidence interval, 111, 385
convergence

pointwise, 56, 63
uniform, 56

convolution, 189, 241, 433, 518
coordinates

labor, 345
correction

Bessel, 154
correlation

coefficient, 85
covariance, 85

sample, 155
cumulant, 90, 101

decomposition
Wold’s, 213

deficiency, 337
one, 338
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zero, 338
density

joint, 83, 177
spectral, 191

density matrix
classical, 203

deterministic chaos, 6
diagram

Venn, 21
difference (set theory), 20
difference equation, 537
diffusion, 206

anomalous, 261
diffusion coefficient, 5, 238
disjoint sets (set theory), 21
disorder, dynamical, 433
displacement

mean square, 262
distribution

Bernoulli, 108
bimodal, 86
binomial, 108
chi-squared, 132
Erlang, 224, 272
exponential, 141
geometric, 142
heavy-tailed, 147
joint, 44, 114
log-normal, 131
logistic, 144
marginal, 44, 45, 76
Maxwell-Boltzmann, 347
normal, 71, 90, 109, 206
Poisson, 105, 141
ratio, 148
stable, 109, 151, 252
strictly stable, 252
Student’s, 136
symmetric stable, 252
uniform, 27, 48

double factorial, 113
dynamics

complex, 6

energy

activation, 341
ensemble average, 192
entropy

information, 92
thermodynamic, 92

equation
Arrhenius, 341
backward, 265, 266
Chapman-Kolmogorov, 193, 281
chemical Langevin, 466
chemical master, 365, 463
differential C.K., 196
diffusion, 200, 205
Fokker-Planck, 199, 281, 308
forward, 265
Langevin, 198, 263, 279, 308
Liouville, 201
master, 200, 308, 363
reaction-diffusion, 176
stoichiometric, 309

equations
normal, 358

equilibrium
binding, 359
constant, 312, 386
thermal, 346

ergodicity, 192
error function, 71
estimator, 153
event, 7, 26

space, 50
system, 49

excitable medium, 490
exit problem, 265
expectation value, 30, 60, 74, 82
exponent

characteristic, 254

factor
geometric, 344

flow
dilution, 531
mass, 380
volume, 380

flow reactor, 380, 451, 492, 531
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fluctuations
natural, 3, 5

flux, 380
fractal, 243, 250
frequentism

finite, 13
hypothetical, 13

function
association, 323
autocorrelation, 189, 434
autocovariance, 185, 190
characteristic, 98, 102
cumulant generating, 98
cumulative distribution, 30, 37,

39, 86
density, 69, 78, 203
Dirac delta, 36
distribution, 70
Gamma, 134
Heaviside, 33
indicator, 35, 62
logistic, 144
measurable, 61
Mittag-Leffler, 257
moment generating, 98, 100
nonanticipating, 286
probability generating, 98
probability mass, 27, 35
signum, 34
simple, 61
tent, 37
transition, 245

generator
infinitesimal, 530
random number, 214, 469
set theory, 51

genetics
Mendelian, 10

half-life, 141
harmonic number, 417
heavy tail, 147, 249, 261
heteroscedasticity, 358
homogeneity, spatial, 345

homoscedasticity, 358
hysteresis, chemical, 487

immigration, 452
independence

stochastic, 41, 75, 115
induced fit, 433
inequality

Cauchy-Schwarz, 85
median-mean, 86, 141

infinite divisibility, 252
information

content, 92
inhibition

product, 316
integral

improper, 61, 65
Itō, 68
Lebesgue, 58
Riemann, 58
Stieltjes, 58, 282
stochastic, 282
Stratonovich, 287

integrand, 58
integration

Cauchy-Euler, 291
integrator, 58
intensity function, see rate func-

tion
intersection (set theory), 20
isotherm, 361

jump length, 239

kinetics
higher level, 315
mass action, 309
Michaelis-Menten, 316

kinetics, fractional, 244
Kleene star, 25
Kronecker delta, 219
kurtosis, 88

excess, 90

Lévy flights, 261
law
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deterministic, 10
Hook’s, 313
large numbers, 125
statistical, 10

least squares
generalized, 359
ordinary, 358

limit
almost certain, 55
in distribution, 56, 122
in probability, 55
mean square, 55, 284
stochastic, 55

linear span, 328
linkage class, 330
location parameter, 254
logarithm

law of iterated, 127
Loschmidt’s constant, 3

macroscopic infinitesimal, 301
Markov chain, see process, Markov
martingale, 179, 234

local, 284
mass action, 311, 462
matrix

adjugate, 405
complex, 327
diffusion, 198
fitness, 531
idempotent, 528
mean, 526
mutation, 531
pseodoinverse, 358
stochastic, 531
stoichiometric, 327, 329
tridiagonal, 406
upper-triangular, 406
value, 531

matrix, bistochastic, 531
maximum likelihood, 165
mean

displacement, 5
sample, 153
value, 10

measure
Borel, 46
complete, 47
Lebesgue, 46, 53

mechanics, statistical, 306
median, 86
memory effect, 173
memorylessness, 142
method

direct, 471
first reaction, 473
next reaction, 473

mitochondrial Eve, 553
mode, 86
model

moving average, 213
molecularity, see reaction, molecu-

larity of
moment

centered, 84
factorial, 107
jump, 227, 232, 369, 443
low, 302
raw, 84, 113
sample, unbiased, 154

motion
Brownian, 279

noise
additive, 280
colored, 192
multiplicative, 290
real, 290
small, 445
white, 191, 282, 290

notation
multi-index, 312

null hypothesis, 9, 27
numbers

irrational, 46
natural, 22
rational, 22, 46, 54
real, 22

operator
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linear, 82

p-value, 160
parameter

rate, 141
survival, 141

pivotal quantity, 138
Pochhammer symbol, 99, 408, 416,

548
powerset, 24, 26, 47, 50
preimage, 61
principle of

detailed balance, 184, 330
indifference, 13, 27, 93
maximum entropy, 95

probability
classical, 13
conditional, 39
density, 26, 60, 69
distribution, 60, 70
elementary, 73
evidential, 13
frequency, 13
inverse, 18, 166
joint, 44, 75
measure, 24
physical, 13
posterior, 18, 166
prior, 18, 166
propensity, 15
transition, 225
triple, 31, 69

problem
forward, 306
inverse, 307
parameter identification, 307, 357

process
Lévy, 244
adapted, 182, 285
ambivalent, 258
AR(1), 216
AR(n), 212
autoregressive, 212
Bernoulli, 25, 108
birth-and-death, 228, 308

càdlàg, 34, 210
compensated Poisson, 248
compound Poisson, 248
counting, 224, 368
death-and-birth, 228
diffusion, 295
elementary, 308
Galton-Watson, 518
Gaussian, 212, 216
Markov, 173, 183, 281, 308
Markov homogeneous, 184, 246
Markov stationary, 184
nonanticipating, 182, 285
Pareto, 249
Poisson, 105, 141, 219, 248
recurrent, 234
stationary, 184
transient, 234
unit Poisson, 224, 368
Wiener, 186, 191, 204, 263, 285,

291
process ambivalent, 261
product, reaction, 309, 328
propensity function, see rate func-

tion
property

extensive, 97, 448
intensive, 97, 448

pseudorandom number, 14
pseudoreaction, 381

quantile, 86

random drift, 4
random walk

continuous time, 234
one dimension, 234
one-sided, 219

rate function, 312
rate parameter

deterministic, 311
probabilistic, 340, 386

reactant, 309, 328
reaction

2A→ C, 396, 403
A + BC→ AB + C, 355



INDEX 593

A + 2X→ 3X, 310, 394
A + B 
 2C, 476
A + B 
 C, 404
A + B 
 C + D, 332, 411
A + B→ C, 331, 398, 401
A + X 
 2X, 477
A + X→ 2X, 412, 477
A 
 B, 371, 389, 453
A→ B, 386
bimolecular, 309, 380
complex, 327
coordinate, 343
cross section, 350
extent of, 313
molecularity of, 308, 380
monomolecular, 309, 352, 380
order, 380
propensity, 298
pseudo first order, 380, 400, 411,

429
termolecular, 309, 353
vector, 337
zero-molecular, 309, 380

reaction scheme, 419
reaction system, 329
real time, 185
regression, linear, 357
relaxation

chemical, 313, 320, 335
vibrational, 308

reversibility
strong, 330
weak, 337

sample
point, 19, 50
space, 19, 50

sample path, see trajectory
sampling

inverse transform, 469
scale parameter, 254
scaling, 456
Scatchard plot, 359
scattering

reactive, 341

selection
random, 511

self-information, 92
semimartingale, 35, 284
sequence

random, 14
set

null, 47
sets

Borel, 47, 51
Cantor, 54
countable, 22
dense, 46
disjoint, 21
empty, 19
uncountable, 22
Vitali, 49, 54

shape parameter, 254
sigmoid, 479
singleton, 39
skewness, 88
skewness parameter, 254
slowing down

critical, 523
space

concentration, 325
genotype, 176
phase, 174, 201
state, 225

spectrum, 189
standard deviation, 84

sample, 153
stationarity

second order, 185
strong, 184
weak, 184

statistics
Bayesian, 17
inferential, 132

step
elementary, 308
rate determining, 324

stochastic process, 173
independent, 178
separable, 177
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stationary, 216
string

empty, 25
subdiffusion, 257, 261
submartingale, 182
subset, 19
subspace

stoichiometric, 327
superdiffusion, 261
supermartingales, 182
symmetric difference (set theory),

21
system

closed, 338, 386, 389
isolated, 97, 386
open, 309, 338, 383, 497

tail, heavy, see heavy tail
tau-leaping, 379, 465
telescopic sum, 56, 513
test statistic, 159
theorem

central limit, 38, 71, 109, 123,
148, 256

compound probabilities, 41
convolution, 189
de Moivre-Laplace, 121
deficiency one, 338
deficiency zero, 338, 371
final value, 406
fluctuation-dissipation, 435
Heaviside expansion, 414
initial value, 406
mutliplication, 83
Perron-Frobenius, 527
Wiener-Khinchin, 191

theory
large sample, 124, 128
Maxwell-Boltzmann, 348
transition state, 342

time
arrival, 222
computational, 263
extinction, 271, 510
first passage, 265, 511

mean waiting, 223, 243
real, 263
sequential extinction, 511
waiting, 238, 240

time homogeneity, 225
time series, 189
trajectory, 174
transform

Fourier, 102, 189, 242
inverse Laplace, 101, 402
Laplace, 101, 242, 400, 412

transform, Fourier, 210
transition

step-down, 230, 366
step-up, 230, 366

transition state, 342
translation, 53
trimolecular, see termolecular

uncertainty
deterministic, 6
quantum mechanical, 6

uncorrelatedness, 115
unimolecular, see monomolecular
union (set theory), 20
universality exponent, 243
universality exponents, 242

variable
continuous, 70
discrete, 70
extensive, 448
intensive, 448
random, 31
stochastic, 28

variance, 30, 74, 84
sample, 153

vector
drift, 198
random, 114
rate, 462

volume
generalized, 53

Y-chromosomal Adam, 554
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Notation

Mathematical symbols:

symbol usage interpretation

{ } {A,B, . . .} a set consisting of elements A,B, . . .

∅ empty set

Ω entire sample space, universe

| {A | C(A)} elements of A, which fulfil condition C(A)

: {A : C(A)} elements of A, which fulfil condition C(A)

◦ T2 ◦ T1(·) composition, sequential operation on (·)

∗ f(t) ∗ g(t) convolution,
(
f ∗ g

)
(t) =

∫∞
−∞ f(τ) g(t− τ)dτ

.
= a

.
= b definition

d−→ lim
n→∞

〈f(Xn)〉 d−→ 〈f(X )〉 convergence in distribution

⊗ e1 ⊗ e2 ⊗ e3 Cartesian product used for 3d-space⊗n
k=1 e1 ⊗ . . .⊗ en Cartesian product used for nd-space

→

⇒

log logarithm in general and logarithm to base 10

ln natural logarithm or logarithm to base e

ld logarithm to base 2

Selected mathematical functions:

symbol usage interpretation

π π(α) Poisson distribution

N N (µ, σ2) normal distribution

U U(Ω) uniform distribution over sample space Ω
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Vectors and matrices:

ek (0, . . . , 1, . . . , 0) unit vector in the direction of the k-th coordinate

Number systems:

natural numbers N {0, 1, 2, 3, · · · }

N>0 {1, 2, 3, · · · }

integers Z {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }

Z>0 = N>0 {1, 2, 3, · · · }

Z≥0 = N {0, 1, 2, 3, · · · }

Z<0 {−1,−2,−3, · · · }

Z≤0 {0,−1,−2,−3, · · · }

rational numbers Q {mn | (m,n) ∈ Z ∧ n 6= 0}

real numbers R {x |x is rational or irrational}

complex numbers C {z = a+ b ı
.
ı | (a, b) ∈ R , ı.ı =

√
−1}

Variables:
symbols functions

discrete variables i, j, k, (l), n,m, . . . , T fk , Pk(t) , . . .

continuous variables x, y, z, . . . , r, s, t f(x) , P (x, t) , . . .

random variables A,B, . . . ,X ,Y,Z
discrete (K,M,N , . . .) ∈ N f(N ) = fn , . . .

continuous (X ,Y,Z, . . .) ∈ R f(X ) = f(x) , . . .

Quantities:

numbers of particles of A,B, . . . , NA, NB, . . . ,

Avogadro constant NL = 6.02214179× 1023 mol−1
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Chemical and biological species: variables

specific entities: A,B, . . . , a = [A], b = [B], . . . ,

autocatalytic entities: X,Y, . . . , x = [X], y = [Y], . . . ,

unspecific entities: X1,X2, . . . , x1 = [X1], x2 = [X2], . . . ,

Thermodynamics: symbol reference state

energy:

entropy:

enthalpy:

Gibbs free energy: ∆G0

chemical potential:

Kinetics: symbol usage

rate function: vµ(n) = γµhµ(n) reaction Rµ

rate parameter: γµ reaction Rµ

kµ, lµ deterministic kinetics

κµ, λµ stochastic kinetics

stoichiometric factor: hµ(n) =
∏M
j=1 n

νjµ
j reaction Rµ
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usage of · and ×
numbers and spaces: N, N>0, Z, Q, R, Rn
logical operators: ∀, →, =⇒
scaling parameter: σ
support: ’supp’, for example in

⋃
supp

definition: ’:=’
proportional to: ’∝’
vectors and matrices: transposition ’t’
unit matrix: I
linear span: ’span’: span(S) =

{∑k
i=1 λiui|k ∈ N, ui ∈ S, λi ∈ K

}
, S is a

finite subset of a vector space U over a field K.
concentration vectors: x = (a, b, . . .) = ([A], [B], . . .)

random vector: ~X = (X1, . . . ,XM ),
discrete realization: n = (n1, . . . ,nM ),
continuous realization: x = (x1, . . . , xM )
reaction rate: v

(
x(t)

)
, v
(
x(t)

)



Notation 603

Units and conversion factors
volume: liter 1 l = 1 dm3 = 0.001 m3

particle numbers: N
Arbitrary units: [l.u.] . . . length unit



604 Notation

Frequently used transforms:

Fourier transform: F
(
f(x)

)
(k) = f̃(k) = 1√

2π

∞∫
−∞

f(x) eı
.
ı k x dx

Laplace transform: L
(
f(t)

)
(s) = f̂(s) =

∞∫
0

e−st f(t) dt

Fourier-Laplace transform:

LF
(
f(x, t)

)
(k, s) =

ˆ̃
f(k, s) = 1√

2π

∞∫
0

∞∫
−∞

e−st eı
.
ı k x f(x, t) dx dt
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