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1. Replication and mutation



James D. Watson, 1928- , and Francis Crick, 1916-2004,
Nobel Prize 1962

G=C and A=T

The three-dimensional structure of a
short double helical stack of B-DNA
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.Replication fork' in DNA replication

The mechanism of DNA replication is ,semi-conservative*
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Complementary replication is
the simplest copying mechanism
of RNA.

Complementarity is determined
by Watson-Crick base pairs:

G=C and A=U
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A Principle of Natural Self-Organization
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Chemical kinetics of molecular evolution

M. Eigen, P. Schuster, 'The Hypercycle’, Springer-Verlag, Berlin 1979




Stock Solution —>

Reaction Mixture ——

Stock solution: )

activated monomers, ATP, CTP, GTP,
UTP (TTP);

a replicase, an enzyme that performs
complemantary replication;

buffer solution

Flow rate: =1y’

The population size N, the
number of polynucleotide
molecules, is controlled by

the flow r

N(t)zﬁi\/ﬁ

The flowreactor is a device for
studies of evolution in vitro and
in silico.




n + F] Xm /dt = fz Xy - X] d
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A + (1) > (1) - D)
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Complementary replication as the simplest molecular mechanism of reproduction

1=1,2



Equation for complementary replication:  [[]=x,20, f,>0;1=1,2

dx dx 7
d—tlzfzxz_xl¢ —2=fix,=x, 4, ¢=fix;+fox,=f

Solutions are obtained by integrating factor transformation

. ( \/f(%( ) eXp(ft)'I'?/z( ) exp( ft))
A ) 1(0)-explf1) = (=) 7(0)- expl(-

7.(0) =1/ £, 5,(0)++/ £, %,(0), 7, (0) =1/ £ X, (0) =/ £, %, (0), £ =/ fi

Jf
Vh+

Jh
N

x, (1) —>

and x,(7)—>

as exp(—ft)—0




(A) + [T, > (I + 1
f5
(A) + I > L + 1 dx; /dt = fix; - x; ® =x; (fj- D)
O=% fix;; Tjxj=1; ij=12..n
¢ [L]=x;=20; 1=1,2,..,n;
(A + [ 1 > I, + 1 [A] = a = constant
f, = max {f;; j=1,2,...,n}
] 5 X (t) = 1 for t — oo
A + (1, - > 1) + 1,
f, 5
A + 1, > 1, + 1

Reproduction of organisms or replication of molecules as the basis of selection



Selection equation: [I]=x;>20, ;>0

dx,
dt

=5l -9) i=t2ns Flw=t ¢=3 fx =1

Mean fitness or dilution flux, ¢ (t), is a non-decreasing function of time,

Solutions are obtained by integrating factor transformation

o @ewln
a > x,(0)exp(fe) o

-.,n
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Selection between three species with

time

,,=2,and f; =3




. ¥ § ¥ ¥ 7 % ¥ ¥ ¥ ¥ F ¥ ¥ ill‘.
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parent sequence
: ®
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parent sequences
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point mutation

T LS L LS L L L L Ll T T T LJ L] r T Ls T L T T T .
AUGGUACAUCAUGCAUGA CUUG
insertion

SR S TET. ST T T I T T II|I.
AUGGUACAUGA CuUuG

deletion
AUGGUACAIAACCGU GCCA
1
.|-||||k:-|r||- llll.
CAAGCUAGUCAUGA CUUG

recombination

Variation of genotypes through mutation and recombination
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A+ X, —— 2X;,: i=1,....n : replication
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.
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. |
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Origin of the replication-mutation equation from the flowreactor



Stationary solutions of the flow reactor:

extinction

M

T
da _ N 5 -
dt Z
i=1
T T n
dx; _ ~ ~ 5 _ "
—L =0 =a E kiQjix; —rxj; c = v, k= iz
dt , , c
i=1 i=1
de -
— = (0= ¢ (?a — ;r)
dt
Stationary solutions: 1. active state Stationary solutions: 2.
r < kag ro> 1:?(1.0
- r
a = —= 5
a = a
L 0
N kag — 71 r; = 07 7=1,2,...
c = _
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Origin of the replication-mutation equation from the flowreactor



2. Quasispecies and error thresholds
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Q1 Xy + (X
fj Qp2 -

M o+ (X > X)) + X
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Chemical kinetics of replication and mutation as parallel reactions



dxl.

dt

=>" £0,%—-x, @ with ®=)" fx,

and 3 x, =1

0, =01- p)! D) pnGeE0 .y error rate per digit

d,(X;,X,)...Hamming distance between X, and X,

211 QU‘ =1

The replication-mutation equation



Mutation-selection equation: [1.]=x,;>0, f,>0, 0,20

dtizzjzlijjixj_xi¢> i=1,2,,m; Zi:lxi:l; ¢:Z:Flfjxj:f

Solutions are obtained after integrating factor transformation by means
of an eigenvalue problem

( ) - ngk Ck(O) exp(/l t)

S S, (0) explit)

i=12,,n; ¢(0)=)" h,x(0)

W= f,0,5 6 j=1,2,an s L=, 0,j=12,nf; L =H =1{hy; i, j=1,2,---n

L''W-L = A = {A4;k=0,1,--,n—1}



Matrix W and Frobenius theorem:

Wy W2 ... UWyip
wop Wa2 ... UWap

W o=

Wn1 Wp2 ... Wy

Primitive matrix W:

A nonnegative square matrix W = {w;;} is said to be a primitive matrix if
there exists k such that W* > 0 | i.e., if there exists k such that for all 7, 7,
the (7, 7) entry of W¥ is positive.



Perron-Frobenius theorem applied to the value matrix W

W is primitive: (i) A is real and strictly positive
(i) 2, >|4,| forall k=0
(iii) A, is associated with strictly positive eigenvectors
(iv) A, is a simple root of the characteristic equation of W

(v-vi) eftc.

W is irreducible: (i), (iii), (iv), etc. as above
(i) A, =|4,|forall k=0



Decomposition of matrix W

Wy Wiz ... Wiy
Wy Wao ... Way

w= | 7 7| =QF with

Wp1 Wy ... Wyy

Qi Qi ... G, fi 0

Qz 1 Q.M , Qz and F = , fz

Q”l (‘2”2 Q:rm 0 0



Uniform error rate model:

Qij — de(Xé,Xj) (1 _ p) (n—dH()(z.__)(j})

di(X;, X;) ... Hamming distance



ce
en
ter Scqu

S

Ma

X E
.,.",,N,,N,,,..,.,,
3@33?
33333,

333333, %
3333333, %
3@333333?
oooo¢¢o¢¢o¢oo¢oo¢¢
333333333
ff&?ffé&?f.

//ff: ,3333 &

\ $$$$ S

:333'03 $

43333 8

4333

433
fo,?o

0D
al)l |
onenu

Uol



Master sequence

Formation of a quasispecies

in sequence space
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Master sequence
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Formation of a quasispecies

in sequence space



Uniform distribution in

sequence space
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SELF-REPLICATION WITH ERRORS
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A MODEL FOR POLYNUCLEOTIDE REPLICATION ==
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Koy womads: Palymisciosticde replivanion; Chasi - ipevies; Povst mutition: Mutunr clan: Stochastic replication

A model For polynucleotide replication is presented and analyzed by means of pertusbation theory. Twn hasis ssumptions
aliorw handling of sequences up 10 a chain length of » = 80 explicitly: poim mutatioss ase restricied so @ two-sdig model asd
individual sequences are subsumed into stant clawics. Pervarbation theory is in evcellent agreement with the evact revults for

long encugh sequmees (r > 201

L. Introduction

Eigen [8] proposed a formal kinctic equation
{eq. 1) which describes self-replication under the
constraint of constant total population siee:
‘{‘.:'-i,-);.,r.,-%..a-l....u' i
By x, we denote the population number or con-
centration of the self-replicating element 1, ie.
x,=[1,]. The total population size or wal con-
centration ¢ = £, x, is kept constant by proper ad-
Jjustment of the constraint ¢: ¢ = EF w, x,. Char-
acteristically, this constraint has been called “con-
stant organization”, The relative values of diagonal

* Dedicated to the lize Professor BLL Jones who was among
the first 80 & rigerous mathematical snabysis om the prob.
fems described here.

*s Thes paper b considered as part 11 of Model Studies on
RMA eeplication. Past 1 i by Gassner and Schuster | 14]
* AN summations tsroughout this papee run from | 10 % unles.
specified duffermcly: £ =7, and L, . =B/ +EL .0
respectively.

M1 4621,/H2,D000-0000,/ 0273 © 1982 Ebevier Beomedical Pres

(w;, ) and off-disgonal (w, . { = () rates, as we shall
see in detail in section 2, arc related to the accu-
racy of the replication process, The specific prop-
erties of eq. | anc essentially basad on the fact that
it leads to exponential growth in the absence of
constriints (¢ = 0) and competitors (n = 1}.

The non-linear differential equation. eg. 1 - the

linearity is by the defi af $

at constant ion - shows a
feature: it beads to selection of a defined ensemble
of self-replicating elements above a certain acca-
racy threshold. This ensemble of a master and its
mast frequent mutants is a so-called *quasi-species”
[9]. Below this threshold, however, no selection
takes place and the frequencies of the individual
elements are determined exclusively by their statis-
tical weights.

Rigorous mathematical analysis has been per-
formed on eq. | [7,15,24,26]. In particular, it was
shown that the non-lincarity of eq. 1 can be re-
maoved by an appropriate transformation. The -
genvalue problem of the linear differential equa-
tion obtained thereby may be solved approxi-
mately by the conventional perturbation technigue

1.0

jidi Quasispecies >i< Uniform distribution ——>
I
i
I
.: =l(2s)
: /21{2:.},21{26}
: L/ El(23),=](27)

=), =)
—Z1(21)El(29)

=120, =](30)
0.90

0.05
—— Errorrate p=1-q——

0.10

Quasispecies as a function of the replication accuracy q



Chain length and error threshold

Q-c = (I-p)"c 21 = n-In(l-p)=>-Inc
Ino
n ..constant: p_ .~ —
n
Ino
p..constant: n = = ——
P
O=(-p)" ... replication accuracy
p ... errorrate
n ... chain length
Jm

superiority of master sequence

O':(l_xm)zjimjpj
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3. Fitness landscapes and randomization
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Mutant class

0
1
Binary sequences can be encoded
by their decimal equivalents:
2
C=0 and G =1, for example,
3 "0" =00000=CCCCC,
"14" = 01110 = CGGGC,
4 "29" = 11101 = GGGCGQG, etc.

Every point in sequence space is equivalent

Sequence space of binary sequences with chain length n =5
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Relative concentration x(p)
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STATIONARY MUTANT DISTRIBUTIONS AND
EVOLUTIONARY OPTIMIZATION

® PEeETER SCHUSTER and JORG SWETINA
Institut fiir theoretische Chemie
und Strahlenchemie der Universitit Wien,
Wiihringerstrafie 17,
A 1090 Wien,
Austria

Molecular evolution is modelled by erroneous replication of binary sequences. We show how the
selection of two species of equal or almost equal selective value is influenced by its nearest
neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates
we find that the Hamming distance between the species determines selection. As the error rate
increases the fitness parameters of neighbouring species become more and more important. In
the case of almost neutral sequences we observe a critical replication accuracy at which a drastic
change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently
mutating populations fitness turns out to be an ensemble property rather than an attribute of the
individual.

In addition we investigate the time dependence of the mean excess production as a function of
initial conditions. Although it is optimized under most conditions, cases can be found which are
characterized by decrease or non-monotonous change in mean excess productions.

1. Introduction. Recent data from populations of RNA viruses provided
direct evidence for vast sequence heterogeneity (Domingo et al., 1987). The
origin of this diversity is not yet completely known. It may be caused by the low
replication accuracy of the polymerizing enzyme, commonly a virus specific,
RNA dependent RNA synthetase, or it may be the result of a high degree of
selective neutrality of polynucleotide sequences. Eventually, both factors
contribute to the heterogeneity observed. Indeed, mutations occur much more
frequently than previously assumed in microbiology. They are by no means
rare events and hence, neither the methods of conventional population genetics
(Ewens, 1979) nor the neutral theory (Kimura, 1983) can be applied to these
virus populations. Selectively neutral variants may be close with respect to
Hamming distance and then the commonly made assumption that the
mutation backflow from the mutants to the wilde type is negligible does not
apply.

A kinetic theory of polynucleotide evolution which was developed during the
past 15 years (Eigen, 1971; 1985; Eigen and Schuster, 1979; Eigen et al., 1987;
Schuster, 1986); Schuster and Sigmund, 1985) treats correct replication and
mutation as parallel reactions within one and the same reaction network

635
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. 1 ~ - _
(1) lincar f_s-cafe(d) = 100(1 — d/‘l)ﬁ T~ _ inverse function
_ 80 k- - ~
2 il £2(d) = 1001=4/! R N
(2) exponential  f{ . (d) = . = : . sigmoid function
zr 60 L . . . ' AN
; 1 [ ' linear function \
(3) rational L (d) = ——————, £ \ \
) S seated) = G671 d/l Z 4L _ ,
z \ "'~,,cxponcnliul function -
« . — ne E \ '
(4) sigmoid  f7 . (d) = 10074/ o= I
. _rational function
(5) inverse  f>_,.(d) =100 — 100%/" + 1. S I U TR
0 10 20 30 40 50 60

distance (arbitrary units)

Anne Kupczok, Peter Dittrich, Determinats of simulated RNA evolution.
J.Theor.Biol. 238:726-735, 2006



4. |Lethal mutations
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Lethal mutants and Frobenius theorem:
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* — A s influx
k1 Q11 ) )
A+ X, —— 2X;; : replication
JIf]. le . .
A+Xy — Xi+X, j=2,....n : mutation
.
A —— 0 : outflux
.
X, —— 0; 7=1,....n s outflux
mn
da
il —a E F1Qxy +1(ag—a) = —akyzy + 7(ag—a)
gt
d,

— = aQpr1 — ra;
dt ! ’



Stationary solutions: 1. active state

k1 Q11 ao
,
k1 Qu
A r
= Qu (a0 —a) = Quap — P
1
r
= Qi (ag—a) = Qn (a.o — ) ;7 =2,3,...,n
’ ! k1@

Stationary solutions: 2. extinction
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diI?j
dt

Find () such that a(t) = a = const.

T
= “ = —a Z 2[3-1(;2‘.’-,:1 €T -+ ?’(EL) ((1-0 — (_I)
Jj=1
_ T
——Fkyxy f1 = ka; E T, = ¢ = ag— a
do — @ i=1

S
T
Zi:l X

X j

= f1ax, (le - ?)

fl(ﬁgjliljl — il,‘-j

Stationary solutions:

n

i_,‘r = (2_;1 Zfl = (2_}3 C

i=1



5. Ruggedness of natural landscapes
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5'-End 3-End
Seq uence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA N
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5-End 3-End
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Secondary structure

Symbolic notation 5-End ((((((---((((------- M)-(((((------- 1)) S L R M)-MN)):---- 3-End Ng < 3"

Criterion: Minimum free energy (mfe)

Rules: _(_)_ e {AU,CG,GC,GUUA,UG)

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs
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GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space
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One error neighborhood — Surrounding of an RNA molecule in sequence and shape space
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One error neighborhood — Surrounding of an RNA molecule in sequence and shape space
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One error neighborhood — Surrounding of an RNA molecule
in sequence and shape space



Number Mean Value Variance Std.Dev.

Degree of Neutrality: 50125 0.334167 0.006961 0.083434
Number of Structures: 1000 52.31 85.30 9.24
1 (CCCC-CCCC- - G- - - - DD D)) ) D) ) FD ) Fr——— 50125 0.334167
2 (- -G - - - - D)D) D DD D I D ) J 2856 0.019040
3 (((((((((( (e D)D) D)D) D)D) ) XD ) Fi I 2799 0.018660
S (((EERET D)) B9 ) ) ) 19D ) IS ) FIS sy 2417 0.016113
S (CCCC-CCCC- - - - - )DDD 25D ) ) 1) ) FD ) JErINNp—_— 2265 0.015100
6 (CCCC-CCCCC-CCC------ DD ED)DD)) D)) XD ) F I 2233 0.014887
7 (CCCC--CCC--CCCam - - - D)D) D)) D) ) ) ) JEFINIRNpIp— 1442 0.009613
8 (CCCC-CCCC--CCmnmamans )DEED) D) EDD ) IS ) IS 1081 0.007207
9 (CC(C--CCCC--CCC-n---- D)D) NS D)) IS ) D ) F - 1025 0.006833
10 CCCCC-CCCC-- - - - )DD D)D) D IS D)) ) Fr 1003 0.006687
11 . (CCC-CCCC-- - - - - - D)D) D)D) IS D ) ) F 963 0.006420
12 (CCCC-CCC- - - CCC- - - - - D)D) EEEDD D IS ) ) D ) I 860 0.005733
13 (CCCC-CCCC--CCC-- - - - )DD D)D) IS D IS ) ) FI 800 0.005333
14 CCCCC-CCCC---CCamm - - D)D) D 1) ) D ) ISP 548 0.003653
N (AT D)D) D D) ) FD ) JEFISINpp 362 0.002413
16 ((C-(C-CCCC--CCC-- - - - D)D) D)) D I ) i) ) IEFNINpI 337 0.002247
17 (- CCC-CCCC-- - - - - D)D) D)) D IS ) ) D ISP 241 0.001607
18 ((CCC- - - )33033)) ) 15D ) XD ) Fi I y—— 231 0.001540
19 (CCC--CCCC-- - - - D)D) EED D)) IS ) ) ) Iy 225 0.001500
20 (C----CCCC--CCCammm - - )))-D)))-- - ) ) L 202 0.001347

Shadow — Surrounding of an RNA structure in shape space — AUGC alphabet



6. Simulation of stochastic phenomena



Structure of
andomly chosen Phenylalanyl-tRNA as

initial sequence target structure




Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

ST T AT T T

random individuals. The primer pair used for ganomic
DNA - amplification  1s 5 -TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32 Ammmlﬂm&yaﬁmmwmbin\rand
result in degradation of the franscript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o deletions
of 17p11.2 of various sizes, the smallest of which

2, 122 (1996)). MYD15 expressicn s easily detected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYOT5 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few

SMS patients have sensorineural hearing loss, pos-

sibly becausa of a point mutation in MYOT5 in trans

to the SMS 17p11.2 deletion.

R. A, Fridell, data not shown.

K. B. Avraham et al., Nature Genel. 11, 369 (1995);

X-Z. Liu ef al,, ibid. 17, 268 (1997); F. Gibson et af,,

Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.

37. RNAwas from cochiea lab-
ymths; nblamad rmem nurnen I'etusss al 1E| to 22

g8

established by the Humnn Rasearch Oomrnlltae at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over oligo{dT) columns. First-
strand cONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5'-GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090 Wien, Austria, Santa Fe Institute,
1399 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(IASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

d REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DNA with this primer pair would result in a 2803-bp
t.

38. We are grateful lo the people of Bengkala, Bal, and
the two families from India, We thank J. R Lupski
and K_-S. Chen for providing the human chroma-
some 17 cosmid Bbrary, For technical and computa-
tional assistance, we thank N. Dietrich, M. Fergus-
son, A, Gupta, E. Sorbello, R. Torkzadeh, C. Vamer,
M. Waker, G. Boutfard, and 5, Beckstrom-Stem-
berg (Mational Institutes of Health Intramural Se-
quencing Center). We thank .J. T, Hinnant, L N. Ar-
hya, and S. Winata for assistance in Bali, and T,
Barber, 5. Sullivan, E. Green, D. Drayna, and J.
Battey for helpfd comments on this manuscript,
Supported by the National Institute on Deafness and
Other Communication Disorders (NMIDCD) (201 DC
D0035-01 and Z01 DC 00038-01 to T.BF. and
E.RW. and RD1 DC 03402 to ©.C.M.), the National
Institute of Child Health and Human Development
(RO1 HD30428 to S.A.C) and a National Science
Foundation Graduate Research Fellowship 1o F.J.P.
This paper is dedicated to J. B. Snow Jr. on his
retirement as the Director of the MIDCD.

9 March 1998; accepted 17 April 1998

the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (inversely related to fimess) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)Kll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are relared by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are

www.sciencemag.org * SCIENCE = VOL. 280 = 19 MAY 19958 1451



Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant
(Fitness):
f,=7/[o+ Adg ®]
Adg 9= dy(S,.8,)

Selection pressure:
The population size,
N =# RNA moleucles,

is determined by the flux:

N(t)zﬁi\/ﬁ

Mutation rate:

p =0.001 / Nucleotide x Replication

The flow reactor as a device for
studying the evolution of molecules
in vitro and in silico.
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In silico optimization in the flow reactor: Evolutionary Trajectory
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Transition inducing point mutations leave the
change the molecular structure molecular structure unchanged

Neutral genotype evolution during phenotypic stasis



Randomly chosen
initial structure _ >

Phenylalanyl-tRNA
as target structure




Evolutionary trajectory

Spreading of the population
on neutral networks

Drift of the population center
in sequence space

Hamming Distance to Target
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Spreading and evolution of a population on a neutral network: t= 150



Spreading and evolution of a population on a neutral network : t=170



Spreading and evolution of a population on a neutral network : t =200
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Spreading and evolution of a population on a neutral network : t =350
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Spreading and evolution of a population on a neutral network : t =500
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Spreading and evolution of a population on a neutral network : t= 650
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Spreading and evolution of a population on a neutral network : t= 820
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Spreading and evolution of a population on a neutral network : t= 825
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Spreading and evolution of a population on a neutral network : t = 830



Spreading and evolution of a population on a neutral network : t= 835



Spreading and evolution of a population on a neutral network : t = 840



Spreading and evolution of a population on a neutral network : t= 845



Spreading and evolution of a population on a neutral network : t =850



Spreading and evolution of a population on a neutral network : t= 855
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Anne Kupczok, Peter Dittrich, Determinats of simulated RNA evolution.
J.Theor.Biol. 238:726-735, 2006



Cost function

start of optimization

f

end of optimization

start of optimization
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Genotype space
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A sketch of optimization on neutral networks
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Probability of a Relay Run to reach the target structure
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7. Biology in its full complexity
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Abstract

Regulation of gene activities is studied by means of P isted math ical analysis of ordinary differential equations (ODEs)
derived from binding equilibria and chemical reaction kinetics. Here, we present resulls on cross- regulauon of two genes t]lrough
activator and/or repressor binding. Arbitrary (differentiable) binding function can be used but ions are p i for
gene—regulator complexes with integer valued Hill coefficients up to n = 4. The dynamics of gene regulation is derlvcd from bifurcation
patterns of the underlying systems of kinetic ODEs. In particular, we present analytical exy for the p values at which
one-dimensional (transcritical, saddle-node or pitchfork) and/or t ional (Hopf) bifurcati occur. A classification of
regulatory states is introduced, which makes use of the sign of a ‘regulatory determinant’ D (being the determinant of the block in the
Jacobian matrix that contains the derivatives of the regulator hmdmg I'uucuons] (i) systems with D <0, observed, for example, if both
proteins are activators or repressors, lo give rise to !l ions only and lead to bistability for n=2 and (ii) systems
with D=0, found for com\nnauons ol‘ activation and repression, sustain a Hopf bifurcation and undamped oscillations for n>2. The
infl of basal T ivity on the bifurcation patterns is described. Binding of multiple sut can lead to richer dynamics
than pure activation or repression states if intermediates between the unbound state and the I'ully saturated DNA initiate transcription.

Then, the regulatory determinant D can adopt both signs, plus and minus.

@ 2007 Elsevier Ltd. All rights reserved.

K 5; Basal iption; Bif analysis; Coop

binding; Gene regulation; Hill coefficient; Hopf bifurcation

1. Introduction

Theoretical work on gene regulation goes back to the
1960s (Monod et al., 1963) soon after the first repressor
protein had been discovered (Jacob and Monod, 1961). A
little later the first paper on oscillatory states in gene
regulation was published (Goodwin, 1965). The interest in
gene regulation and its mathematical analysis never ceased
(Tiwari et al., 1974; Tyson and Othmer, 1978; Smith, 1987)
and saw a great variety of different attempts to design
models of genetic regulatory networks that can be used in
systems biology for computer simulation of gen(etic and

*Corresponding author. Institut fiir Theoretische Chemic der Uni-
versitiit Wien, Wiihringerstrafie 17, A-1090 Wien, Austria,
Tel: +431427752743; fax: +43 1427752793,
E-mail address; ph

bi.univie.ac.at (P. Schuster),

022-5193/% - see front matter @ 2007 Elsevier Lid. All rights reserved.
doi:10.1016/5.jtbi, 2007.01.004

met)abolic networks.! Most models in the literature aim at
a minimalist dynamic description which, nevertheless, tries
to account for the basic regulatory functions of large
networks in the cell in order to provide a better under-
standing of cellular dynamics. A classic in general
regulatory dynamics is the monograph by Thomas and
D'Ari (1990). The currently used mathematical methods
comprise application of Boolean logic (Thomas and
Kaufman, 2001b; Savageau, 2001; Albert and Othmer,
2003), stochastic processes (Hume, 2000) and deterministic
dynamic models, examples are Cherry and Adler (2000),
Bindschadler and Sneyd (2001) and Kobayashi et al. (2003)
and the recent elegant analysis of bistability (Craciun et al.,

! Discussion and analysis of d genetic and lic networks
has become so frequent and intense that we suggest to use a separale term,
genabolic networks, for this class of complex dynamical systems.
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The reaction network of cellular metabolism published by Boehringer-Ingelheim.
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The bacterial cell as an example for the
simplest form of autonomous life

The human body:

1014 cells = 1013 eukaryotic cells +
~ 9x1013 bacterial (prokaryotic) cells,
and = 200 eukaryotic cell types

The spatial structure of the
bacterium Escherichia coli
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ANALYTICAL DYNAMICS OF NEURON PULSE
PROPAGATION
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The four-dimensional Hodgkin-Huxley equations describe the propagation in space and time of
the action potential v(z) along a neural axon with z = z + ct and ¢ being the pulse speed. The
potential v(z), which is parameterized by the temperature, is driven by three gating functions,
m(z), n(z) and h(z), each of which obeys formal first order kinetics with rate constants that
are rep as nonli functions of the potential v. It is shown that this system can be
analytically simplified (i) in the number of gating functions and (ii) in the form of associated rate
functions while retaining to close approximation quantitative fidelity to computer solutions of
the exact equations over the complete temperature range for which stable pulses exist. At a given
temperature we record two solutions (T’ < Tax) corresponding to a high-speed and a low-speed
branch in speed-temperature plots, e(T), or no solution (T’ > Trax). The pulse is considered as
composed of two contiguous parts: (i) a pulse front extending from v(0) = 0 to a pulse maximum
v = Vinax, and (ii) a pulse back extending from Vinax through a pulse minimum Viiq to a final
regression back to v(z — 00) = 0. An approximate analytic solution is derived for the pulse
front, which is predicted to propagate at a speed c(T) = 120364 (T°C) cm/sec, © = 37" in
close agreement with computer solution of the exact Hodgkin—Huxley equations for the entire
pulse. These results provide the basis for a derivation of two-dimensional differential equation
systems for the pulse front and pulse back, which predict the pulse maximum and minimum over
the operational temperature range 0 < T < 25°C, in close agreement with the exact equations.
Most neuron dynamics studies have been based on voltage clamp experiments featuring external
current injection in place of self-generating pulse propagation. Since the behaviors of the gating
functions are similar, it is suggested that the present approximations might be applicable to
such situations as well as to the dynamics of myelinated fibers.

]

Keywords: Hodgkin—Huxley equations; action potentials; neuron models; nonlinear dynamics;
neuron pulse propagation.

1. Neuron Pulse Propagation and
the Hodgkin—-Huxley Equations

Conductance mechanisms for the propagation of
a pulse along an unmyelinated neural axon were
encapsulated within a predictive theory by the
equations of Hodgkin and Huxley [1952]. These

equations became the prototype for description of
neural pulse propagation and provide the basis for
all subsequent conduction models of neural behav-
ior. The Hodgkin-Huxley equations relate the prop-
agating action potential v to sodium, potassium
and leak conductances Ina, [k, lieak causing the

*Permanent Address; Department of Physics, Box 390, University of Colorado, Boulder, CO 80309, USA E-mail:

phillipe@colorado.edu



V [mV]

100

50

-50

T=18.5C;0=1873.33 cm / sec




Paired Cerebral
Hemispheres

Basal Ganglia

Diencephalon
Midbrain

Ty

«— Medulla Oblongata

The human brain

10'! neurons connected by = 1013 to 10!4 synapses




Acknowledgement of support

Fonds zur Forderung der wissenschaftlichen Forschung (FWF)
Projects No. 09942, 10578, 11065, 13093
13887, and 14898

Universitat Wien

Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF)
Project No. Mat05

Jubildumsfonds der Osterreichischen Nationalbank
Project No. Nat-7813

European Commission: Contracts No. 98-0189, 12835 (NEST)

Austrian Genome Research Program — GEN-AU: Bioinformatics
Network (BIN)

Osterreichische Akademie der Wissenschaften
Siemens AG, Austria

Universitit Wien and the Santa Fe Institute



Coworkers

Peter Stadler, Birbel M. Stadler, Universitit Leipzig, GE

Paul E. Phillipson, University of Colorado at Boulder, CO

Universitat Wien

Heinz Engl, Philipp Kiigler, James Lu, Stefan Miiller, RICAM Linz, AT
Jord Nagel, Kees Pleij, Universiteit Leiden, NL
Walter Fontana, Harvard Medical School, MA

Christian Reidys, Christian Forst, Los Alamos National Laboratory, NM

Ulrike Gobel, Walter Griiner, Stefan Kopp, Jaqueline Weber, Institut fiir
Molekulare Biotechnologie, Jena, GE

Ivo L.Hofacker, Christoph Flamm, Andreas Svrcek-Seiler, Universitit Wien, AT

Kurt Griunberger, Michael Kospach , Andreas Wernitznig, Stefanie Widder,
Stefan Wuchty, Universitit Wien, AT

Jan Cupal, Stefan Bernhart, Lukas Endler, Ulrike Langhammer, Rainer Machne,
Ulrike Miickstein, Hakim Tafer, Thomas Taylor, Universitit Wien, AT



Web-Page for further information:

http://www.tbi.univie.ac.at/~pks






	Evolution and MoleculesBasic questions of biology seen with phsicists‘ eyes. Peter Schuster
	Coworkers

