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1. Replication and selection



James D. Watson, 1928-, and Francis H.C. Crick, 1916-2004
Nobel prize 1962

1953 — 2003 fifty years double helix

The three-dimensional structure of a
short double helical stack of B-DNA
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Deoxyribonucleic acid - DNA

Base complementarity and conservation of genetic information
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.Replication fork' in DNA replication

The mechanism of DNA replication is ,semi-conservative®
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Complementary replication is
the simplest copying mechanism
of RNA.

Complementarity is determined
by Watson-Crick base pairs:

G=C and A=U
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A Principle of Natural Self-Organization

Part A: Emergence of the Hypercye
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Chemical kinetics of molecular evolution

M. Eigen, P. Schuster, "The Hypercycle’, Springer-Verlag, Berlin 1979
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Complementary replication as the simplest molecular mechanism of reproduction

1=1,2



Equation for complementary replication:  [Ii]=x, 20, f;>0;i=1,2

dx, x,

dt :f2X2_X1¢, F: f1X1—X2¢, ¢=f1X1+f2X2 T

Solutions are obtained by integrating factor transformation

J F21(7(0)-exp (ft)+7,(0)-exp (- 1))
() 7(0)-exp(ft) — (T, —/F,) 72(0)- exp(-

7.(0) =4/ £,%.0)++/ T, %,(0), 7, (0) =/ f, x,(0)—/ F, %, (0), T =/ f, T,

Xa(t)=
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X, (t)—> and x,(t)— as exp(-ft)—0
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Kinetics of RNA replication

C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr.
Biochemistry 22:2544-2559, 1983
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dx; /dt = fix; - x; ® =x; (fj- D)

O = Zj 1‘3 Xj 3 Zj Xj = l1; 1=1,2,..n

[L]=x;=20; 1=1,2,..,n;

[A] = a = constant
f, = max {f;; j=1,2,...,n}

Xm(t) = 1 for t — e

Reproduction of organisms or replication of molecules as the basis of selection



Selection equation: [I;]=x,2>0, f>0

dx;

E:Xi(fi ~p) =120y YU x =L g=30 fix =T

Mean fitness or dilution flux, ¢ (t), is a non-decreasing function of time,

d_¢:Zn: fi%:f——(f)2 = var{f }>0

Solutions are obtained by integrating factor transformation

X (t) = X;(0)-exp (fit) i—12..

Z?:lxj(o)-exp(fjt)’

N
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Selection between three species with

time
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2. Mutation, quasispecies and error thresholds
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recombination

Variation of genotypes through mutation and recombination
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Variation of genotypes through mutation
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Chemical kinetics of replication and mutation as parallel reactions
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The replication-mutation equation



Mutation-selection equation: [I;] =x; 20, f,>0,Q; 2

dXi n :
E:ZMQH %= %@, 1=12 Z—l' L= Z‘l J J:

Solutions are obtained after integrating factor transformation by means
of an eigenvalue problem

Z ik eXp(/I t) ] i
X (t): =0  1=12,---.n; C, (0) = i—1hki X, (0)
Zilekzogjk 'Ck( )-exp(4t) 2

W+ 1{,Q,; i, j=L.2,---.n}; L=1{¢,: i, j=L2,-.nf; L =H=1{h; i, j=1,2,---,n

L*W-L = A = {4;k=0,1,--,n-1}
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parent sequence point mutation

Variation of genotypes through point mutation



Uniform error rate model:

Qij — de(Xé,Xj) (1 _ p) (n—dH()(z.__)(j})

di(X;, X;) ... Hamming distance
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Master sequence

Formation of a quasispecies

in sequence space
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Master sequence

Formation of a quasispecies

in sequence space
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Master sequence
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Formation of a quasispecies

in sequence space



Uniform distribution in

sequence space
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< Stationary mutant distribution >
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The error threshold in replication
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Preface

Antiviral strategy on the horizon

Error catasirophe had its concepmal ongins mthe middle of
the 20Eth cennoy, when the consequences of muations oo
enrvines imvolved in protein syothesis, 25 a theory of agmg.
In those times biological processes were generally perceived
differently from today Infections diseasas were regardad as
3 fleating muizance which would be eliminared through the
use of antibiotcs and sntviral agems. MMicretdal varation,
although kpown in some cases, was not thought to be a signif-
icant problem for dissase control. Vanation in differentiated
orzanisms was seen 3s resulfing essentially from exchanges
of genetic marerial associatad with sexual reproduction.
The problem was to wmweil the mechanisms of inbentance,
expression of genstic miommation and meabolism. Few saw
that genetic change is ocouwTing at pressnt in 2l organisms,
and sl fawer recognized Darwinian principles as essential
to the biology of pathogenic viruses and cells. Population
genaticists rarely used bacieria or vinuses as experimental
svstems to define concepts in biological evolution. The extent
of zenetic polymorphisin among individuals of the same
biological species came as & surprise when the first results
on comparison of electrophoretic mobility of enzymes were
obtained. With the advent of in vimo DINA recombination,
and rapid mucleic acid sequencing technigues, melecular
analvses of genomes remforced the conclusion of exreme
inter-individual genetic variation within the same specias.
ow, due largely to spectacular progress in comparative
zenomics, we seg cellular DMAs, both prokaryotic and
eukaryotic, as highly dyoanuic. Most cellular processes, in-
clnding such essential mionmation-bearing and wansfaring
events 35 genome replication, ranscription and translation,
are increasmely perceived as mherapely macourate. Vinsas,
and in particular B3A vimses, are smong the most exireme
examnples of exploitation of replication macouracy for
survival.

Emor catastrophe, or the loss of meaningful genstic infor-
mation throngh excess genetic vananon, was fommlated in
quantitatve terms as & cansequence of quasispecies theary,
which was first developed to explain self-organization and
adaprablity of primitive replicons in early stages of life. Be-
cently. 3 concepmal extension of emor camasmophe thar could
be defined as “induced gepetic deterioration’ has emergad as

028 - sesa frons =narer & 2004 Elcoviar BV, All dghic recarved.
& viraeres. 2004.11.001

a possible antiviral swrategy. This is the topic of the cwment
special issue of Firws Research.

Few would nowadays doubt that one of the major obsta-
cles for the cowtrol of viral disease is short-tenm adaprability
af viral pathogens Adaprability of vimses follows the same
Darwinian principlas thar have shaped biological evolution
over eons, that is, repeated rounds of reproduction with ge-
netic variation, compefition and selection. often perturbed
oy random events such as stanstical fuctuations n popu-
latton size. However, with viruses the consaquences of the
operation of these very same Darwinian principlas are felt
within very shor times. Short-term evolution (within hours
and days) canbe also observed with some cellular pathogans,
with suisets of nonnal cells, and cancer calls. The nature of
FIMA viral pathogens begs for altematmes antiviral strategias,
and forcing the vims to cross the critical error threshold for
maintensnce of genstic miormation is one of them

The comtributions to this vehune bhave been chosen o
raflecy differenr lines of evidence (both theorstical and
experimental) on which anriviral desizns based on genanc
deterioration inflicted upon vimses are belng consmucted.
Theoretical smudies bave explored the copying Sdelity
condittons that must be fulfilled by any mformation-earing
replication system for the essental genetic information fo
fre wansmitred o progeny. Closely related to the thearerical
developments have been mumerous experimental smdies
on gquasispecies dypamics and their nmltple biological
manifestations. The latter can be summarized by saying
thar BINA wvimses, by virue of existing a3 mutant specira
rather than dafined zensric antities, ramarkably expand their
potential 1o overcoms selactive pressures intended oo limit
their replication. Indead, the use of antiviral inhibitors in
clinical practice and the design of vaccimes for 3 mumber of
major BEIA vims-associatad diseases, are currently presided
Try 2 senss of uncemainty. Another line of growing researchis
the enzymolezy of copying fdeliny by viral raplicazes, aimed
at undarstanding the molecular basis of nmragenic activitas.
Ermor catastrophe as a potential pew antiviral swrategy re-
caived an important inpalse by the ohservation thar riavirin
(2 licensed avtiviral micleoside analogue) may be exerting, in
sOLe systems, its antiviral activity through epbanced nnrage-

11 Frofave / Virus Research J07 (2005) §13-016

nesis. This has encovraged investizations oo new mutagenic
base analogues, some of them usad m anticancer chemother-
apy. Some chapters nuunmarize these important biochemical
smudies on cell enty pathways and metabolism of mutagenic
agents, that may find pew applications as antiviral agents.
This volume mmtends to be basically 2 progress repoat, an
inmroduction to 4 new svenue of research, and a realistic ap-
pratzal of the many issues that remzin to be imvestigated. In
this raspect, I can envisags (pot without mamy uncermainties)
at l=ast three lines of needed research: (i) One on further un-
derstanding of quasispectes dvnamics in infected individusls
%o leam more on how to apply combinations of virus-specific
mmatazens and inhtbitors in an effective way, finding synar-
Zistic combinations snd aveiding antazomistic ones as wall
a5 sevare clinical side effects. (1) Another on a desper undar-
standing of the metabolisin of nyta zenic azents, in partioular
base and nucleoside spalogues. This includes identification
of the mansporters that carry them into cells, an understand-
ing of their metabolic processing. inracellular stability and
alterations of nucleotde pools, among other tssues, (i) Sull
anpther line of needed ressarch is the development of new
mutagenic agents specific for vimses, showing no (or im-
ited) towicity for cells. Some advances may come from links
with apticancer research, but others should result from the
desizns of new molecules, based on the stactures of viral
polymerases. [ really hope that the reader finds this jssue not
only to be an interesting and usefinl review of the currant sini-

ation in the field, bus also a stinulating exposure to the major
problems to be faced.

The idea to prepare this special issue came a5 & kind imvia-
tion of Ulrich Diasselbergar, former Editor of Fims Research,
and then taken enthnsiastically by Luds Enjusnes, recently ap-
pointed as Edior of Firus Research. I take this oppormmity
to thank Ulrich, Luis and the Editor-in-Chiaf of Firus Re-
seareh, Brian Maly, for their contitmed mtsrest and support
to the research on vims evolution over the vears.

My thanks go also to the 19 authors who despite their busy
schadules have taken time to prepare excellent mamiscripts,
to Elsevier staff for their prompt responses to mv requests,
and, Last ur not least. to Ms. Lucis Homillo from Centro de
Biologia Meleoular “Saverg Ochoa™ for her patient desling
with the correspondence with awthors and the final organiza-
tion of the issue.

Estsban Domingo

Universidod durdnoma de Madrid

Canmro de Biolegia Malecular “Savero Ochoa™
Conzgio Suparior de Imestigaciones Clanrjficas
Canioblance and Faldeolmos

Madrid, Spain

Tel:+ 34 01 297 B4250/9; fax: +34 91 407 4728
E-may address. edonungedchmouam.es
Anrailable enline 8 December 2004
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A model for polynucleaiide replication is presented and analyred by means of periusbation theory. Twn basic suumptions
alow handling of sequences up 10 & chain length of » = B0 explicitly: poim mulatioes ase restricted 10 8 two-digit model and
individual squences are subsumed inio mstant clatics. Pertsrbation theory is in excellent sgreement with the exact rowults for

long encugh sequences (r > 201

L. Introduction

Eigen [8] proposed a formal kinctic equation
{eq. 1) which describes self-replication under the
constraint of constant total population siee:

dx =
et L L . i

By x, we denote the population number of con-

cen
x,=[1,]. The total population size or wal con-
centration ¢ = E,x, is kept constant by proper ad-
Justment of the constraint ¢ ¢ = L w, x,_ Char-
acteristically, this constraint has been called *con-
stant organization”, The relative values of diagonal

* Dedicated to the lize Professor BLL Jones who was among
the first 80 do rigorous mathersatical analysis om the prob-
Bems described here

*s Thes paper b considered as part 11 of Model Studies on
NA eplication. Past 1 i by Gassner and Schuster | 14]
¥ AN summations throughout this papes run from 1 1o & unles
specified dufferencly: =17, and L,
respectively.

00014627, /82 /T000-000,/ 50275 © 1982 [evier Becmsedical Pres

) and off-diagonal {w) . ¢ = /) rates, as we shall
see in detail in section 2, are related to the accu-
racy of the replication process, The specific prop-
erties of eq. | anc essentially basad on the fact that
it leads to exponential growth in the absence of
constriints ¢ = 0) and competitors (n = 1),
The non-lincar differential equation, eg. 1 - the
i s duced by the defi aof ¢

at constant
Feature: it beads to selection of a defined ensemble
of self-replicating elements above a certain accu-
racy threshold. This ensemble of a master and its
mast frequent mutants is 4 so-called ‘quasi-species’
9], Below this threshold, however, no selection
takes place and the frequencies of the individual
elements are determined exclusively by their statis-
tical weights.

Rigorous mathematical analysis has been per-
formed on eq. | [7,15.24,26]. In particular, it was
shown that the non-lincarity of eq. | can be re-
moved by an appropriate transformation. The «i-
genvalue problem of the linear differential equa-
tion obtained thereby may be solved approxi-
mately by the conventional perturbation technique

Single peak fitness landscape:

¥i05+
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=l(2s)
/ Elau)Fl(26)
l(23)=l1(29)

El(22),=](28)

-E1(21)=l(29)

0.05
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Quasispecies as a function of the mutation rate p

f,=0=10

Mutation rate p =

= 1(20)=1(30)
090
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3. Sequences, structures and neutrality



5-End 3-End
Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA N = 4n

- ®
.
.« "
. ®
.
o
.
. "
"
. "
.-

Secondary structure

Symbolic notation 5-End ((((((---((((------- M)-(((((------- 1)) S L R M)-MN)):---- 3-End Ng < 3"

Criterion: Minimum free energy (mfe)

Rules: _(_)_ e {AU,CG,GC,GUUA,UG)

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

1st / GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

2nd

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

3rd trial >
5th CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG
\) GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Inverse folding

The inverse folding algorithm searches for sequences that form a given RNA structure.
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Structure space

Sequence space



Sequence space of binary sequences of chain length n=5



Mutant class Coding: C=0 and G=1

0 00000 =CCCCC
1 00001 =CCCCG, ....
2 00011 =CCCGG, ....
3 00111 =CCGGG, ....
4 01111 =CGGGG, ....
5 11111 =GGGGG

Sequence space of binary sequences of chain length n=5



Mutant class
0 0

] //l\\ﬂi 1 Binary sequences are encoded
by their decimal equivalents:
/ \ C=0and G=1
</ 7

"0" =00000=CCCCC,

3 "14" = 01110 = CGGGC,

K TXRNZLIUZ,
W% "29" = 11101 = GGGCG,
15<\2‘7/730 4 “31" = 11111 = GGGGG, etc.

Sequence space of binary sequences of chain length n=5



GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space



GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space



GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space



GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space



Y

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space
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G
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCACUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space
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G
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCACUGGACG GGCUAUCGUACGUGUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule in sequence and shape space



GGCUAUCGUAUGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUAGACG
GGCUAUCGUACGUUUACUCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGCUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCCAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUGUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAACGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCUGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCACUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG
GGCUAGCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGCCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule
In sequence and shape space



Number Mean Value Variance

Degree of Neutrality: 50125 0.334167 0.006961

Number of Structures: 1000 52.31 85.30
1 (CCCC-CCCC-- - - - - D)) D D)) ED) ) FD ) R 50125
2 (- -G - - - - D)D) D DD D I D ) J 2856
3 (((((((((( (e D)D) D)D) D)D) ) XD ) Fi I 2799
S (((EERET D)) B9 ) ) ) 19D ) IS ) FIS sy 2417
S (CCCC-CCCC- - - - - )DDD 25D ) ) 1) ) FD ) JErINNp—_— 2265
6 (CCCC-CCCCC-CCC------ DD ED)DD)) D)) XD ) F I 2233
7 (CCCC--CCC--CCCam - - - D)D) D)) D) ) ) ) JEFINIRNpIp— 1442
8 (CCCC-CCCC--CCmnmamans )DEED) D) EDD ) IS ) IS 1081
9 (CC(C--CCCC--CCC-n---- D)D) NS D)) IS ) D ) F - 1025
10 CCCCC-CCCC-- - - - )DD D)D) D IS D)) ) Fr 1003
11 . (CCC-CCCC-- - - - - - D)D) D)D) IS D ) ) F 963
12 (CCCC-CCC- - - CCC- - - - - D)D) EEEDD D IS ) ) D ) I 860
13 (CCCC-CCCC--CCC-- - - - )DD D)D) IS D IS ) ) FI 800
14 CCCCC-CCCC---CCamm - - D)D) D 1) ) D ) ISP 548
N (AT D)D) D D) ) FD ) JEFISINpp 362
16 ((C-(C-CCCC--CCC-- - - - D)D) D)) D I ) i) ) IEFNINpI 337
17 (- CCC-CCCC-- - - - - D)D) D)) D IS ) ) D ISP 241
18 ((CCC- - - )33033)) ) 15D ) XD ) Fi I y—— 231
19 (CCC--CCCC-- - - - D)D) EED D)) IS ) ) ) Iy 225
20 (C----CCCC--CCCammm - - )))-D)))-- - ) ) L 202

Shadow — Surrounding of an RNA structure in shape space — AUGC alphabet

eNeoNoNoNoNoNoNoNoNoNoNolNoNoNoNoloNoNoNe

Std.Dev.

0.083434
9.24

.334167
-019040
.018660
.016113
.015100
-014887
-009613
.007207
.006833
.006687
-006420
-.005733
-005333
.003653
.002413
.002247
.001607
-001540
-001500
.001347




4. Realistic fitness landscapes
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5. Replicating networks
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Neutral network

A =0.01, s =367

Error threshold: Individual sequences
n=10,0=11,d=1.0
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Neutral networks

A =0.01, s =877

Error threshold: Individual sequences
n=10,0=11,d=1.0
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STATIONARY MUTANT DISTRIBUTIONS AND
EVOLUTIONARY OPTIMIZATION

® PEeETER SCHUSTER and JORG SWETINA
Institut fiir theoretische Chemie
und Strahlenchemie der Universitit Wien,
Wiihringerstrafie 17,
A 1090 Wien,
Austria

Molecular evolution is modelled by erroneous replication of binary sequences. We show how the
selection of two species of equal or almost equal selective value is influenced by its nearest
neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates
we find that the Hamming distance between the species determines selection. As the error rate
increases the fitness parameters of neighbouring species become more and more important. In
the case of almost neutral sequences we observe a critical replication accuracy at which a drastic
change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently
mutating populations fitness turns out to be an ensemble property rather than an attribute of the
individual.

In addition we investigate the time dependence of the mean excess production as a function of
initial conditions. Although it is optimized under most conditions, cases can be found which are
characterized by decrease or non-monotonous change in mean excess productions.

1. Introduction. Recent data from populations of RNA viruses provided
direct evidence for vast sequence heterogeneity (Domingo et al., 1987). The
origin of this diversity is not yet completely known. It may be caused by the low
replication accuracy of the polymerizing enzyme, commonly a virus specific,
RNA dependent RNA synthetase, or it may be the result of a high degree of
selective neutrality of polynucleotide sequences. Eventually, both factors
contribute to the heterogeneity observed. Indeed, mutations occur much more
frequently than previously assumed in microbiology. They are by no means
rare events and hence, neither the methods of conventional population genetics
(Ewens, 1979) nor the neutral theory (Kimura, 1983) can be applied to these
virus populations. Selectively neutral variants may be close with respect to
Hamming distance and then the commonly made assumption that the
mutation backflow from the mutants to the wilde type is negligible does not
apply.

A kinetic theory of polynucleotide evolution which was developed during the
past 15 years (Eigen, 1971; 1985; Eigen and Schuster, 1979; Eigen et al., 1987;
Schuster, 1986); Schuster and Sigmund, 1985) treats correct replication and
mutation as parallel reactions within one and the same reaction network

635
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Neutral network

A =0.05, s=877

Neutral networks
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Neutral networks with
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6. RNA structure optimization



Stochastic simulation of evolution
of RNA molecules
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Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant:
f.=v/ [0+ Adg ]
Ads = dyy(S,.S,)

Selection constraint:

Population size, N =# RNA
molecules, is controlled by
the flow

N(t)zﬁi\/ﬁ

Mutation rate:

p = 0.001 / site x replication

The flowreactor as a
device for studies of
evolution in vitro and
in silico



Randomly chosen
initial structure >

Phenylalanyl-tRNA
as target structure




50

(%))
3
. 40+
@
2
8
% Quasistationary epochs
o 30 R
c N\
ko # 1 X%
A2 7 I\ N
b #* i % %
o / | \ O\
2  20- 7 | L T
3] 7 \ \
2 i | \
» k | \ N\
\ ¥
5 v \ \
© g N N\
()] 10 I )
>
< Evolutionary trajectory \
0 T T T T T
0 250 500 750 1000 1250

Time (arbitrary units)

In silico optimization in the flow reactor: Evolutionary Trajectory



dejs Aejal jo Jaquinpn

Q
o
=
¢
during a g < 5.
long quasi-stationary epoch ‘g 2
B = ‘ Evolutionary trajectory
g 2
o
[}
z 10 : :
0 250 500

entry
exit

entry
exit

entry

10

exit

Time (arbitrary units)

GGUAUGGGCGUUGAAUAGUAGGGUUUAAACCAAUCGGBCAACGAUCUCGUGUGCGCAUUUCAUAUCCCGUACAGAA
CCCCCCCCCCCCen et e (CCevdd)eninnns )DD DD R CEllaen s 55 IDDDDDDDDDDD R
GGUAUGGGCGUUGAAUAAUAGGGUUUAAACCAAUCGGCCAACGAUCUCGUGUGCGCAUUUCAUAUBCCAUACAGAA
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Transition inducing point mutations leave the
change the molecular structure molecular structure unchanged

Neutral genotype evolution during phenotypic stasis
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7. Experiments with RNA



Evolutionary design of RNA molecules
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-
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Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 111 hgasc is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements
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