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Charles Darwin,  
1809 - 1882 

survival of the fittest 



Motoo Kimura, 
1924 - 1994 

Charles Darwin,  
1809 - 1882 

Sewall Wright,  
1889 - 1988 

survival of the fittest fitness landscape 

survival of the survivor 
 

„random drift“ 



Armand Janet (1895). Condsidérations méchanique sur l‘évolution et le 
problème des espéces. In Comptes Rendue des 3me Congrès International 
de Zoologie, pages 136-145. Leyden, NL. 

The contribution is by one Armand Janet of Toulon, France, "former naval 
engineer" and delegate from the "Socièté de Spéléologie." It would be hard 
to find a more unlikely source for an important addition to Darwin's theory. 
The originality of Janet's solution to the puzzling lack of intermediate forms 
in the fossil record is even more striking when we discover that, of the many 
other prominent French zoologists attending the same congress, none 
participated in the section on evolution. In fact, it appears Janet's paper may 
be the only original theoretical contribution to Darwinian theory to come out 
of France before 1900.  

J. Wynne McCoy (1979). The Origin of the „Adaptive Landscape“ Concept. The 
American Naturalist 113: 610-613. 

The concept of an „adaptive landscape“ 



The multiplicity of gene replacements with two alleles on each locus 

+ ……..  wild type 
a ..........  alternative allele  
               on locus A 
                    : 
                    : 
                    : 
abcde … alternative alleles 
                on all five loci  

Sewall Wright. 1988. Surfaces of selective value revisited. American Naturalist 131:115-123 

Sewall Wright, 1889 - 1988 



Evolution is hill climbing of populations or subpopulations 

Sewall Wright. 1988. Surfaces of selective value revisited. American Naturalist 131:115-123 



Sewall Wright‘s shifting balance model of evolution 

Evolution in three phases: 

(i) random genetic drift and partitioning of the global population into subpopulations, 
 

(ii) adaptive selection within subpopulations, and 
 

(iii) adaptive selection between subpopuolations. 

phase (i):   fitness decreases 
 
phase (ii):  fitness increases 
 
phase (iii): fitness increases 



p ...... mutation rate per site  
and replication  

DNA replication and mutation 



mutation matrix 
fitness landscape 

Manfred Eigen 
1927 -  
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Mutation and (correct) replication  as parallel chemical reactions 
 

M. Eigen. 1971. Naturwissenschaften 58:465,  
M. Eigen & P. Schuster.1977-78. Naturwissenschaften 64:541, 65:7 und 65:341 
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Manfred Eigen 
1927 -  



quasispecies 

The error threshold in replication and mutation 



Selma Gago, Santiago F. Elena, Ricardo Flores, Rafael Sanjuán. 2009, Extremely high mutation rate 
of a hammerhead viroid. Science 323:1308. 

Mutation rate and genome size 
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Autocatalysis A + X  2 X in the flow reactor 

A ,  X 

E     



The paramuse or Crow-Kimura model of reproduction and mutation 

μrW +=



FQW ⋅=

The quasispecies model of reproduction and mutation 



*     A 

Xi     Xj + Xi 

Xj     

A     

Quasispecies formation in the flow reactor 



Quasispecies formation in the flowreactor 

A ,  X0 ,  X1 ,  X2 ,  X3 



Quasispecies model in the flowreactor 

A ,  X0 ,  X1 ,  X2 ,  X3 



Quasispecies formation in the flow reactor 

single trajectory 

expectation values of 100 trajectories 

A ,  X0 ,  X1 ,  X2 ,  X3 
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A ,  X0 ,  X1 ,  X2 ,  X3 

Quasispecies formation in the flow reactor 

expectation values from 1000 trajectories 



fluctuations:  E     
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Single peak landscape 

Model fitness landscapes I 



Error threshold on the 
single peak landscape 



Model fitness landscapes II 

Linear and multiplicative fitness 

Thomas Wiehe. 1997. Model dependency of error 
thresholds: The role of fitness functions and  
contrasts between the finite and infinite sites 
models. Genet. Res. Camb. 69:127-136 



The linear fitness landscape does not show an error threshold 



Q5:  the space of binary sequences of chain lenght l = 5 



Evolution as a global phenomenon in genotype space 



AGCUUAACUUAGUCGCU 

1 A-G 1 A-U 

1 A-C 







             # structures         9                7                 6                   9            15             3 



many genotypes                   one phenotype     



Fitness landscapes became experimentally accessible! 
 
Protein landscapes: Yuuki Hayashi, Takuyo Aita, Hitoshi Toyota, Yuzuru Husimi, 
Itaru Urabe, Tetsuya Yomo. 2006. Experimental rugged fitness landscape in protein 
sequence space. PLoS One 1:e96. 
 
RNA landscapes: Sven Klussman, Ed. 2005. The aptamer handbook. Wiley-VCh, 
Weinheim (Bergstraße), DE. 
Jason N. Pitt, Adrian Ferré-D’Amaré. 2010.  Rapid construction of empirical RNA 
fitness landscapes. Science 330:376-379. 
 
RNA viruses: Esteban Domingo, Colin R. Parrish, John J. Holland, Eds. 2007. 
Origin and evolution of viruses. Second edition. Elesvier, San  Diego, CA. 
 
Retroviruses:  Roger D. Kouyos, Gabriel E. Leventhal, Trevor Hinkley, Mojgan 
Haddad, Jeannette M. Whitcomb, Christos J. Petropoulos, Sebastian Bonhoeffer. 
2012. Exploring the complexity of the HIV-I fitness landscape. PLoS  Genetics 
8:e1002551 
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The simplified model 



Rugged fitness landscapes over individual binary sequences with n = 10 

„realistic“ landscape 
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“experimental computer biology”:    
(i) choose seeds, e.g., s  {000, … , 999},           
(ii) compute landscape,  f(Sj), j = 1, … , N,           
(iii) compute and analyze quasispecies, (p,d)      



Error threshold: Individual sequences 
 

n = 10,  = 2, s = 491 and d = 0, 0.5, 0.9375  

Quasispecies with increasing 
random scatter  d 

d = 0 d = 0.5 

d = 0.9375 



Error threshold on ‚realistic‘ landscapes 
 

n = 10,  f0 = 1.1, fn = 1.0, s = 637 

d  = 0.5 

Choice of random scatter: 
 

s = 637 

d = 0.995 

d = 1.0 



d = 1.0 

Error threshold on ‚realistic‘ landscapes 
 

n = 10,  f0 = 1.1, fn = 1.0, s = 919 

Choice of random scatter: 
 

s = 919 

d = 0.5 

d = 0.995 



Determination of the dominant mutation flow:  d = 1 , s = 613 



Determination of the dominant mutation flow:  d = 1 , s = 919 



Predictions of the strong quasispecies concept 
 
1. A strong quasispecies is dominated by a clan of 

mutationally coupled closely related sequences. 
 

2. A four-membered clan consists of the master sequence 
being the fittest sequence, its fittest one error mutant, 
the fittest two-error mutant that has to lie in the one-
error neighborhood of the fittest one-error mutant, and 
the fourth sequence completing the mutationally coupled 
quartet. 
 
 
 

3. A strong quasispecies is stable against changes in the 
mutation rate and hence provides an evolutionary 
advantage over conventional quasispecies.    



fitness landscape 

Correct replication and mutation as parallel chemical reactions 
 

mutation matrix 
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Mutation flow component and mutation flow 



Definition of the mutation flow 



Mutational flux balance and quasispecies 



Mutational flux balance and quasispecies 

mutational flux balance 



Exact quasispecies:  l = 50, f0 = 10, fj = 1  j ≠ 0  



Zero mutation backflow 



Zero mutation backflow:  l = 50, f0 = 10, fj = 1  j ≠ 0  



Zero mutation backflow:  l = 50, f0 = 10, fj = 1  j ≠ 0  



Zero mutation backflow:  l = 50, f0 = 10, fj = 1  j ≠ 0  



Zero mutation backflow:  l = 50, f0 = 10, fj = 1  j ≠ 0  



Strong quasispecies: l = 10,  f0 = 1.1, fn = 1.0, d = 1.0, s = 919 



Zero mutational backflow: l = 10,  f0 = 1.1, fn = 1.0,  f4 = 1.09659,  f516 = 1.09703 



Strong quasispecies: comparison 
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Motoo Kimura’s population genetics of 
neutral evolution.  

Evolutionary rate at the molecular level. 
Nature 217: 624-626, 1955. 

The Neutral Theory of Molecular Evolution. 
Cambridge University Press. Cambridge, 
UK, 1983. 

Motoo Kimura, 1924 - 1994 



Fixation of mutants in neutral evolution (Motoo Kimura, 1955) 

The average time of replacement of a dominant genotype in a population 
is the reciprocal mutation rate, 1/, and therefore independent of 
population size. 
 
Fixation leads to selection of a single variant in the sense of „survival of 
the survivor“. 



Pairs of neutral sequences in replication networks 
 

P. Schuster, J. Swetina. 1988. Bull. Math. Biol. 50:635-650 
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A fitness landscape including neutrality 



Neutral network: Individual sequences 
 

n = 10,  = 1.1, d = 1.0 



Neutral network: Individual sequences 
 

n = 10,  = 1.1, d = 1.0 



Consensus sequences of a 
quasispecies of two strongly 
coupled sequences of  
Hamming distance  
dH(Xi,,Xj) = 1 and 2.  



Neutral networks with increasing  :   = 0.10, s = 229 

Adjacency matrix 
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The quasispecies and the error threshold concepts 
 
1. Realistic landscapes combine two seemingly conflicting features:    

(i) ruggedness and (ii) neutrality. 
 

2. The ostensible contradiction between ruggedness and neutrality is 
resolved by the sequence-structure relation of biopolymers. 
 

3. Rugged landscapes and all landscapes with sufficient “steepness” 
sustain error thresholds in the sense that an almost uniform 
distribution of variants is approached already far away from the 
point of random replication defined by equal rates for correct 
replication and mutation.    
 

4. Provided certain requirements on the fitness values of one and two 
error mutants of the master sequence are fulfilled, the populations 
form especially stable quasispecies. 
 

5. In stable quasispecies or in the corresponding neutral clusters clans 
of sequences replace the single survivors – deterministic or random.  
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Perspectives of molecular evolution 
 
1. Populations with high and low mutation rates are described 

within the same model based on the quasispecies concept. 
 

2. Accurate predictions on in vitro evolution and virus evolution 
can be made wherever fitness parameters are available. 
 

3. The modeling approach can be extended in qualitative terms to 
other prokaryotic and eukaryotic populations provided enough 
data are available.    
 

4. The mechanism of reproduction can be extended to more 
complex mechanisms like sexual reproduction and reproduction 
including epigenetic effects.  
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