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Beispiele fiir die Groien- und Formenvielfalt von Zel-
len. In der Natur kommen GroBenunterschiede von
1: 500 000 vor. Wahrend manche Mikrokokken nur
eine Lange von 0,15 - 0,2 um aufweisen, gibt es
einzelne Pflanzenzellen von einer Ldnge bis zu 30
cem. Die Axone von Nervenzellen aus dem Riicken-
mark des Menschen konnen bis zu einem Meter lang
werden. 1 - Pllanzenzelle; 2 - die Griinalge Micraste-
rias crux melitensis; 3 - menschliche Epithelzellen; 4 -
Eizelle des Menschen; 5 - Samenzellen; 6 - Pyrami-
denzelle der GroBhirnrinde; 7 - groBe motorische
Ganglienzelle des Riickenmarks; 8 - Knochenzellen;
9 - Erythrozyten; 10 - Granulozyten; 11 - Leberzellen;
12 - Fettzellen; 13 - Abschnitt einer quergestreiften
Muskelfaser; 14 - glatte Muskelzellen; 15 - Stdbchen-
bakterien (stark vergroBert); 16 - Mikrokokken.




Die prokaryotische Zelle



Transmissions-Elektronenmikroskop (TEM)




Elektronenmikroskopische Schnitte durch
Escherichia coli Bakterien
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Die pflanzliche eukaryotische Zelle



Zellmembran und Zellwand
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Penicillin G: 41 Atome
Molgewicht 334.4 Da

Molekulare Struktur von Penicillin
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Proteinkristallographie Molekulare Struktur Elektronendichtemodellierung



James D. Watson, 1928- , and Francis Crick, 1916- ,
Nobel Prize 1962

1953 — 2003 fifty years double helix

The three-dimensional structure of a
short double helical stack of B-DNA
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Verarbeitung der biologischen Information in der Zelle
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Der Mechanismus der DNA Replication
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Translation - RNA — Protein
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The reaction network of cellular metabolism published by Boehringer-Mannheim.



Die molekulare Struktur des Komplexes aus
dem Regulationsprotein cro-repressor und
der spezifischen Bindungsstelle an der A-

Phagen B-DNA




A model genome with 12 genes
1 2 3 4 5 6 7

AR

o

14

B Regulatory gene \%
B Structural gene

Sketch of a genetic and metabolic network

o

Regulatory protein or RNA
/ @ » Enzyme

. Metabolite




E. coli: Genomlange 4x10° Nucleotides
Zahl der Zelltypen 1
Zahl der Gene 4 460

Mensch: Genomlange 3x%10° Nucleotides
Zahl der Zelltypes 200
Zahl der Gene ~ 30 000

Komplexitat in der Biologie
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Die Schwierigkeit einer
Definition des Begriffs
\\Genll.

Helen Pearson,
Nature 441: 399-401, 2006

WHAT IS A GENE?

The idea of genes as beads on a DNA string is fast fading. Protein-coding sequences have no
clear beginning or end and RNA is a key part of the information package, reports Helen Pearson.

I ene’ is not a typical four-letter

word, It is not offensive. It is never

bleeped out of TV shows. And

where the meaning of most four-

letter words is all too clear, that of gene is not.

The more expert scientists become in molecu-

lar genetics, the less easy it is to be sure about
what, if anything, a gene actually is.

Rick Young, a geneticist at the Whitehead
Institute in Cambridge, Massachusetts, says
that when he first started teaching as a young
professor twa decades ago, it took him about
two hours to teach fresh-faced undergraduates
what a gene was and the nuts and bolts of how
it worked. Today, he and his colleagues need
three months of lectures to convey the concept
of the gene, and that's not because the students
are any less bright. “It takes a whole semester
to teach this stuff to talented graduates,” Young
says. “It used to be we could give a one-off def-
inition and now it's much more complicated.”

In classical genetics, a gene was an abstract
concept — a unit of inheritance that ferried a
characteristic from parent to child. As bio-
chemistry came into its own, those character-
istics were associated with enzymes or proteins,
one for each gene. And with the advent of mol-
ecular biology, genes became real, physical
things — sequences of DNA which when con-
verted into strands of so-called messenger
RNA could be used as the basis for building
their associated protein piece by piece. The
great coiled DNA molecules of the chromo-
somes were seen as long strings on which gene
sequences sat like discrete beads.

This picture is still the working model for
many scientists. But those at the forefront of
genetic research see it as increasingly old-fash-
ioned — a crude approximation that, at best,
hides fascinating new complexities and, at
worst, blinds its users to useful new paths
of enquiry.

Information, it seems, is parceled out along
chromosomes in a much more complex way
than was originally supposed. RNA molecules
are not just passive conduits through which the
gene's message flows into the world but active
regulators of cellular processes. In some cases,
RNA may even pass information across gener-
ations — normally the sole preserve of DNA.

An eye-opening study last year raised the
possibility that plants sometimes rewrite their
DNA on the basis of RNA messages inherited
from generations past'. A study on page 469 of
this issue suggests that a comparable phenom-
enon might occur in mice, and by implication
in other mammals®, If this type of phenome-
non is indeed widespread, it "would have huge
implications,” says evolutionary geneticist

Laurence Hurst at the University of Bath, UK.

“All of that information seriously challenges
our conventional definition of a gene” says
molecular biologist Bing Ren at the University
of California, San Diego. And the information
challenge is about to get even tougher. Later
this year, a glut of data will be released from
the international Encyclopedia of DNA Ele-
ments (ENCODE) project. The pilot phase of
ENCODE involves scrutinizing roughly 1% of
the human genome in unprecedented detail;
the aim is to find all the

NEWS FEATURE

viously unimagined scope of RNA.

The one gene, one protein idea is coming
under particular assault from researchers who
are comprehensively extracting and analysing
the RNA messages, or transcripts, manufac-
tured by genomes, including the human and
mouse genome. Researchers led by Thomas
Gingeras at the company Affymetrix in Santa
Clara, California, for example, recently studied
all the transcripts from ten chromosomes
across eight human cell lines and worked out

precisely where on the chro-

sequences that serve a useful “We've come to the mosomes each of the tran-
purpose and explain what realization that the scripts came from’,

that purpose is. “When we . The picture these studies
started the ENCODE project genome s full of int is one of

I had a different view of overlapping transcripts.”  mind-boggling complexity.

what a gene was,” says con-
tributing researcher Roderic
Guigo at the Center for Genomic Regulation
in Barcelona, “The degree of complexity we've
seen was not anticipated.”

Under fire
The first of the complexities to challenge molec-
ular biology’s paradigm of a single DNA
sequence encoding a single protein was alterna-
tive splicing, discovered in viruses in 1977 (see
‘Hard to track) overleaf). Most of the DNA
sequences describing proteins in humans havea
modular arrangement in which exons, which
carry the instructions for making proteins, are
interspersed with non-coding introns. In alter-
native splicing, the cell snips out introns and
sews together the exons in various different
orders, creating messages that can code for dif-
ferent proteins. Over the years geneticists have
also documented overlapping genes, genes
within genes and countless other weird arrange-
ments (see ‘Muddling over genes, overleaf).
Alternative splicing, however, did not in itself
require a drastic reappraisal of the notion of a
gene; it just showed that some DNA sequences
could describe more than one protein. Today's
assault on the gene concept is more far reach-
ing, fuelled largely by studies that show the pre-

! el
Spools of DNA (above) still harbour surprises, with
one protein-coding gene often overlapping the next.

— Phillip Kaprano'

ov Instead of discrete genes
dutifully mass-producing
identical RNA transcripts, a teeming mass of
transcription converts many segments of the
genome into multiple RNA ribbons of differing
lengths. These ribbons can be generated from
both strands of DNA, rather than from just one
as was conventionally thought. Some of these
transcripts come from regions of DNA prev
ously identified as holding protein-coding
genes, But many do not. “Its somewhat revolu-
tionary,’ says Gingeras’s colleague Phillip
Kapranov, “We've come to the realization that
the genome is full of overlapping transcripts”

Other studies, one by Gui§u'5n:am'. and one
by geneticist Rotem Sorek’, now at Tel Avi
University, Israel, and his colleagues, ha
hinted at the reasons behind the mass of tran-
scription. The two teams investigated occa
sional reports that transcription can start at a
[DNA sequence associated with one protein
and run straight through into the gene for a
completely different protein, producing a
fused transcript. By delving into databases of
human RNA transcripts, Guigo’s team esti-
mate that 4-5% of the DNA in regions con-
ventionally recognized as genes is transcribed
in this way. Producing fused transcripts could
be one way for a cell to generate a greater vari-
ety of proteins from a limited number of
exons, the researchers say.

Many scientists are now starting to think =
that the descriptions of proteins encoded in ~
DNA know no borders — that each sequence
reaches into the next and beyond. This idea
will be one of the central points to emerge
from the ENCODE project when its results are
published later this year.

Kapranov and others say that they have doc-
umented many examples of transcripts in
which protein-coding exons from one part of
the genome combine with exons from another

e

399




ENCODE stands for

ENCyclopedia Of DNA Elements.

ENCODE Project Consortium.
Identification and analysis of functional
elements in 1% of the human genome by
the ENCODE pilot project.

Nature 447:799-816,2007
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Development of the fruit fly drosophila melanogaster: Genetics, experiment, and imago
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