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1. Forward and inverse problems in biology



Kinetic differential equations

dx
Tt = f(OGK); X=X - X,) 5 kK=(K.. K )

Reaction diffusion equations

ox _ D V*x + f(x; k)
ot

General conditions: T, p,pH,I, ...
Initial conditions:  X(0)

Boundary conditions:
boundary ... S, normal unit vector ...0

Dirichlet : ~ x® = g(r,1)

Neumann : ox =0-Vx®=g(r,t)
ou

The forward problem of chemical reaction kinetics (Level I)



Kinetic differential equations

d
di‘ = F06K); X=X %) K=(K,e oK)

Reaction diffusion equations
X

ox _ D V*x + f (x; k)

ot

Genome: Sequence Ig

General conditions: T, p,pH,I, ..
Initial conditions:  X(0)

Boundary conditions :
boundary ... S, normal unit vector ... {i

Dirichlet :  x° = g(r,t)

Neumann : % =0-Vx*=g(r,t)
ou

The forward problem of biochemical reaction kinetics (Level I)



Genome: Sequence I

The inverse problem of biochemical
reaction kinetics (Level I)

Kinetic differential equations

C;: = F(GK); X=(X,.. X, ) K=(K;,.. K,)
Reaction diffusion equations
ox _ D V’x + f(x;k)
ot

General conditions : T, p,pH, I, ...
Initial conditions :  X(0)

Boundary conditions :
boundary... S, normal unit vector... U

Dirichlet: ~ x° =g(r,1)

Neumann : O =0-Vx*=g(r,t)
ou



Genome: Sequence Ig

Kinetic differential equations

dx
E = f(x;k); x=(%5. . 5%,) s k=(kys- . 5 K,,)

Reaction diffusion equations

L D V?x +f(x; k)
ot

:

The forward problem of bifurcation analysis (Level II)



Kinetic differential equations
dx

e f (k) x=(x,...x,) s k=(k,,...k,)

Reaction diffusion equations

ox 2
— =DVx+f(x:k
7 x+f(x;k)

Genome: Sequence Ig

The inverse problem of bifurcation
analysis (Level II)



2. Regulation kinetics and bifurcation analysis



A model genome with 12 genes
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States of gene regulation in a bacterial expression control system — Jacob - Monod model
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Abstract

Regulation of gene activities is studied by means of P isted math ical analysis of ordinary differential equations (ODEs)
derived from binding equilibria and chemical reaction kinetics. Here, we present resulls on cross- regulauon of two genes t]lrough
activator and/or repressor binding. Arbitrary (differentiable) binding function can be used but ions are p i for
gene—regulator complexes with integer valued Hill coefficients up to n = 4. The dynamics of gene regulation is derlvcd from bifurcation
patterns of the underlying systems of kinetic ODEs. In particular, we present analytical exy for the p values at which
one-dimensional (transcritical, saddle-node or pitchfork) and/or t ional (Hopf) bifurcati occur. A classification of
regulatory states is introduced, which makes use of the sign of a ‘regulatory determinant’ D (being the determinant of the block in the
Jacobian matrix that contains the derivatives of the regulator hmdmg I'uucuons] (i) systems with D <0, observed, for example, if both
proteins are activators or repressors, lo give rise to !l ions only and lead to bistability for n=2 and (ii) systems
with D=0, found for com\nnauons ol‘ activation and repression, sustain a Hopf bifurcation and undamped oscillations for n>2. The
infl of basal T ivity on the bifurcation patterns is described. Binding of multiple sut can lead to richer dynamics
than pure activation or repression states if intermediates between the unbound state and the I'ully saturated DNA initiate transcription.

Then, the regulatory determinant D can adopt both signs, plus and minus.

@ 2007 Elsevier Ltd. All rights reserved.

K 5; Basal iption; Bif analysis; Coop

binding; Gene regulation; Hill coefficient; Hopf bifurcation

1. Introduction

Theoretical work on gene regulation goes back to the
1960s (Monod et al., 1963) soon after the first repressor
protein had been discovered (Jacob and Monod, 1961). A
little later the first paper on oscillatory states in gene
regulation was published (Goodwin, 1965). The interest in
gene regulation and its mathematical analysis never ceased
(Tiwari et al., 1974; Tyson and Othmer, 1978; Smith, 1987)
and saw a great variety of different attempts to design
models of genetic regulatory networks that can be used in
systems biology for computer simulation of gen(etic and

*Corresponding author. Institut fiir Theoretische Chemic der Uni-
versitiit Wien, Wiihringerstrafie 17, A-1090 Wien, Austria,
Tel: +431427752743; fax: +43 1427752793,
E-mail address; ph

bi.univie.ac.at (P. Schuster),

022-5193/% - see front matter @ 2007 Elsevier Lid. All rights reserved.
doi:10.1016/5.jtbi, 2007.01.004

met)abolic networks.! Most models in the literature aim at
a minimalist dynamic description which, nevertheless, tries
to account for the basic regulatory functions of large
networks in the cell in order to provide a better under-
standing of cellular dynamics. A classic in general
regulatory dynamics is the monograph by Thomas and
D'Ari (1990). The currently used mathematical methods
comprise application of Boolean logic (Thomas and
Kaufman, 2001b; Savageau, 2001; Albert and Othmer,
2003), stochastic processes (Hume, 2000) and deterministic
dynamic models, examples are Cherry and Adler (2000),
Bindschadler and Sneyd (2001) and Kobayashi et al. (2003)
and the recent elegant analysis of bistability (Craciun et al.,

! Discussion and analysis of d genetic and lic networks
has become so frequent and intense that we suggest to use a separale term,
genabolic networks, for this class of complex dynamical systems.
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Cross-regulation of two genes
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Qualitative analysis of cross-regulation of two genes: Stationary points
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Hill coefficient: n
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A generalized model of the repressilator

Stefan Miiller - Josef Hothauer - Lukas Endler -
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Abstract The repressilator is a regulatory cycle of n genes where each gene
represses its successor in the eycle: 1 4 2 H .-+ 4 n - 1. The system is mod-
elled by ODEs for an arbitrary number of identical genes and arbitrarily strong
repressor binding. A detailed mathematical analysis of the dynamical behavior
is provided for two model systems: (i) a repressilator with leaky transcrip-
tion and single-step cooperative repressor binding, and (ii) a repressilator with
auto-activation and cooperative regulator binding. Genes are assumed to be
present in constant amounts, transcription and translation are modelled by sin-
gle-step kinetics, and mRNAs as well as proteins are assumed to be degraded by
first order reactions. Several dynamical patterns are observed: multiple steady
states, periodic and aperiodic oscillations corresponding to limit cycles and
heteroclinic cycles, respectively. The results of computer simulations are com-
plemented by a detailed and complete stability analysis of all equilibria and of
the heteroclinic cycle.

Keywords  Gene regulatory network - Negative feedback loop - Repressilator -
Stability analysis - Hopf bifurcation - Heteroclinic cycle
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An example analyzed and simulated by MiniCellSim

The repressilator: M.B. Ellowitz, S. Leibler. A synthetic oscillatory network of transcriptional

regulators. Nature 403:335-338, 2002
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full two gene system:
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full two gene system:
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full three gene system:
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3. Reverse engineering of dynamical systems
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Abstract

Background: Bifurcation analysis has proven to be a powerful methed for understanding the
qualitative behavior of gene regulatory networks. In addition to the more traditional forward
problem of determining the mapping from parameter space to the space of model behavior, the
inverse problem of determining model parameters to result in certain desired properties of the
bifurcation diagram provides an attractive methodology for addressing important biological
problems. These include understanding how the robustness of qualitative behavior arises from
system design as wall as providing a way to engineer biological networlks with qualitative properties.

Results: We demonstrate that certain inverse bifurcation problems of biclogical interest may be
cast as optimization problems imvolving minimal distances of reference parameter sets o
bifurcation manifolds. This formulation allows for an iterative solution procedure based on
performing a sequence of eigen-system computations and one-parametsr continuations of
solutions, the latter being a standard capability in existing numerical bifurcation sofware. As
applications of the proposed method, we show that the problem of maximizing regions of a given
qualitative behavior as well as the reverse engineering of bistable gene switches can be modelled
and efficiently solved.

In the study of such systems, an important goal is to
understand how the observed physiological behavior
arises out of gene network topology and parameters p.
Some of these questions may be studied via examining the
bifircation manifolds T of the ODE system, which partition

| Background

The use of mathematical models provides tools for the
analysis of complex molecular interactions aiming at an
understanding of processes occurring in living cells. For
many problems in cellular control, stochastic effects and

time-delays can be ignored and systems of first-order ordi-
nary differential equations (ODEs) can adequately model
the underlying processes. Denoting by x and p the hio-
chemical concentrations and parameters, respectively, the
instantaneous change in x is described by the vector field f:

i =flxnp) (1)

the parameter space into regions of different qualitative
behavior (seee.g.. [ 1] for a general overview to bifurcation
theory). From ODE models and measured parameters, the
forward problem of computing the bifurcation diagram has
contributed significantly towards elucidating the complex
mechanisms underlying cellular processes. For instance,
mathematical and symbaolic bifurcation analysis hasled to
an understanding of the possible dynamical behaviors

Page 1 of 16
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J. Lu, HW. Engl, P. Schuster. Inverse bifurcation analysis: Application to simple gene systems.
AMB Algorithms for Molecular Biology 1, no.11, 2006.



The bifurcation manifold



Defininition of the forward operator F(p)






Iterative solution for min J(p)



ALGORITHM: LOCMINDIST (2, (p;, ps), v, €, )

0-’—

e Set initial parameter: p’ — p, = T

e FOR j =1, 1jmcrnt:
1. From p and z, continue along parameter ray {(p; + rv,ps): » € B4}, until bifur-
cation point p” detected
2. Compute normal vector at bifurcation point p*: v — N, (p®)

3. Update: parameter iterate p/ — p*
ODE solution at bifurcation point x7 — z(p®)

4. Terminate if |p? — p?=Y|/|p°]| < €

END

e Return [(p?, p,), 27]

ALGORITHM: APPLYF (Zinit, (Pi.ps)s€)

e 7 — INITODESOLN(Zmit, p)

¢ Generate initial search vectors V'« {v1,v9, -+, Umax |
e FOrRj=1, - ,dim(V)
[F7,27] +« LOCMINDIST(Zinit, p, v, €)
dj — |[F7—pl
END
® Jm — ArgMIN;_q .. dgim(v) 9;
e Return [F/m, 29 ;0]




ALGORITHM: INVERSE BIFURCATION

e Inputs:

— SBML document

— Initial parameter p; € P;, ps € P,. ODE solution xj,;¢
— Parameter bounds piow, pupp € R™

— Tolerances €505, €optim > 0

— Step-size constraint Appa.. € R™

— Nonlinear constraints ¢ : P; — RF

e Constrained optimization step:
For j=1, . jmax
— [F, 2, 2init] — APPLYFE (Zinit, (pi,Ps ). €)
— " — AprPLYFDERIVADI(F, z)
— ¢ — AprprLYC(F . 1)
— " — ArpLYCDERIVADI(F. F'", x)
pe. H] — SQPSTEP(F, F'". Plow. Pupp- ¢ ¢ H. Apmax)
— Jip1 — [|[F(p) —pl
— Terminate if [(J;41 — J;)/Jo| < €optim

END
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Switch or oscillatory behavior in Escherichia coli

Bor—1(far—1 — Tor—1)
Bap (o1 — Tak),

k=123
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;

B for 232" < B

Lg12 .gd14 e LU12 414 A
x5ty for B < agtai <M
M for 29229 > M
\ 2 4
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Inverse bifurcation analysis of switch or oscillatory behavior in Escherichia coli

J. Lu, H.W. Engl, P. Schuster. Inverse bifurcation analysis: Application to simple

gene systems. AMB Algorithms for Molecular Biology 1:11, 2006.




, +0; | —yi, 2=0,---,n—1
1 +;1?_?i1 z o | |

mod n

o =a, ﬂi :189 hi :hﬂé‘i :5

Pi — [:ﬂf . -}} _ -
(10=%,0) < (8,h) < (1071, 2)
Ps — [h hJ

Inverse bifurcation analysis of the repressilator model

S. Miiller, J. Hofbauer, L. Endler, C. Flamm, S. Widder, P. Schuster. A generalized
model of the repressilator. J. Math. Biol. 53:905-937, 2006.



3 3
2 ol
1} 1
= dist=0.4226 =
o IST=U. o
8 8
dist=1.6846
_1 L _1
-2} -2
-3 A 5 %0 2 4 5
log, , o log,, o

Inverse bifurcation analysis of the repressilator model

J. Lu, H.W. Engl, P. Schuster. Inverse bifurcation analysis: Application to simple
gene systems. AMB Algorithms for Molecular Biology 1:11, 2006.



d - [E2F1] J,
E[pRB]_ k  +[E2F1] J,, +[pRB] ~ s [PRB]

a2 + [E2F1[ J,
2 +[E2F1)* J,, +[pRB

d
E[EzF 1] = kP +k 1 ] — Perrr [E2F 1]

J, Js

—APl F_+k,, [E2F1
AP1]=F, + Ky ]J15+[pRB J11+[pRB]

~ Gpr [AP]

A simple dynamical cell cycle model

J.J. Tyson, A. Csikasz-Nagy, B. Novak. The dynamics of cell cycle regulation.
Bioessays 24:1095-1109, 2002



14¢
12} S ph 5
1
10} 1
I
I
- 8 iSN2 :
N 1
L 6' i :
1 i
L
4F i’..:l :
5 v !
G, phase TC G1'b"héi’s'e'-""-n.-.. _i SNI
——-—.— IIIIIIIIIIIIII rerrrrrrrrrrrrnen e rnnrnnonnl
O » » » ]
0 1 2 3 3 4
Fm (x10 )
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Abstract A brief review on biochemical Kkinetics
in the twentieth century mainly concerned with en-
zyme kinetics and cooperative processes is presented.
Molecular biology and, in particular, structural biol-
ogy provided the basis for modeling biological
phenomena at the molecular level. Structure was rec-
ognized as the ultimate and only level at which
biological processes find an explanation that is satis-
factory for chemists and physicists. A new epoch in
biology was initiated by successful extensions of the
molecular approach from individual molecules and
reactions to the cellular and organismic level. Starting
with sequencing of whole genomes in the 1980s more
and more technigues became available that are suit-
able for upscaling from molecules to cells. A series
of research programs was initiated: genomics deal-
ing with sequencing the DNA of whole organisms,
proteomics considering all proteins of a cell and their
interactions, metabolomics studying all metabolic re-
actions of a cell or an organism, and functional geno-
mics or systems biology aiming at an exploration of
the dynamics of complete biological entities. At the
same time computational facilities have experienced
an unexpected development in speed of calculations

Correspondence: Peter Schuster, Institute of Theoretical
Chemistry, University of Wienna, Wihringer Strafie 17,
A-1090 Wien, Austna. E-mail: pks@tbiunivie.ac.at

and storing devices. At present computer simulations
of whole cells at molecular resolution are within
reach. The challenge for the theorist in biology is to
develop methods for handling the enormously com-
plex networks of gene regulation and metabolism in
such a way that biological questions can be addressed.
This goal cannot be achieved by dynamical systems
theory alone. What is needed is a joint effort from
different mathemnatical disciplines supported by em-
pirical knowledge and tools from discrete mathe-
matics to informatics. Two sections with selected
examples from our own laboratory dealing with struc-
tural bioinformatics of RNA and with a dynamical
systerns approach to gene regulation are added.

Keywords Biochemical kinetics; Dynamical systems; RNVA
bicinformatics; RNA secondary structures; Systems biology.

Chemical reactions, molecular structures,
and cellular biology

In this section a historically motivated review of dif-
ferent mathematical techniques applied to problems
in biochemistry and molecular biology is presented
in three parts: (i) dynamical systems derived from
chemical reaction kinetics, (ii) free energy optimi-
zation problems in predictions and design of bio-
polymer structures, and (iii) methods from discrete
mathematics applied in the comparison and analysis
of sequence data.
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