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RNA as transmitter of genetic information RNA as adapter molecule RNA is the catalytic subunit in
supramolecular complexes

DNA

RNA as catalyst
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RNA as working copy of genetic information

The ribosome is a ribozyme !
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The RNA world as a precursor of
the current DNA + protein biology RNA is modified by epigenetic control

RNA editing, alternative splicing

RNA as carrier of genetic information
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RNA viruses and retroviruses
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RNA evolution in vitro
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Evolutionary biotechnology
RNA aptamers, artificial ribozymes,
allosteric ribozymes
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Gene regulation by
small interfering RNAs

RNA — The magic molecule




ENCODE stands for

ENCyclopedia Of DNA Elements.

ENCODE Project Consortium.
Identification and analysis of functional
elements in 1% of the human genome by
the ENCODE pilot project.

Nature 447:799-816, 2007
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Minimum free energy structures of RNA
Suboptimal structures of RNA

Kinetic folding and RNA switches
Chemistry of Darwinian evolution
Consequences of neutrality

Evolutionary optimization of RNA structure



1. Minimum free energy structures of RNA
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Secondary structure

Symbolic notation 5-End ((((((---((((------- M)-(((((------- 1)) S L R M)-MN)):---- 3-End Ng < 3"

Criterion: Minimum free energy (mfe)

Rules: _(_)_ e {AU,CG,GC,GUUA,UG)

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs



S =¥(X)) f. =®(S.) ,
sequence —> structure —- function

The paradigm of structural biology



What is neutrality ?

Selective neutrality =
= several genotypes having the same fitness.

Structural neutrality =
= several sequences forming molecules with
the same structure,



RNA sequence GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

Biophysical chemistry:
thermodynamics and

Kinetics
RNA folding:
Structural biology,
spectroscopy of
biomolecules,
understanding Empirical parameters

molecular function

RNA structure
of minimal free
energy

Sequence, structure, and design



Free energy AGY

5"-end 3’-end

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA
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The minimum free energy structures on a discrete space of conformations
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Structure space
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Space of genotypes: 0= {Xq, X, X3, Xy, ... , XN} ; Hamming metric
Space of phenotypes: S= {Sy, S5, S3, S4, ... , S} ; metric (not required)

N> M

V(X)) =S¢

Gy =y (S = 1 X WX =S ¢

A mapping V¥ and its inversion



Gr=vy (S = {I; | y() =Sy }

2 Ai(k)
Xk _ j€|Gyl
|Gl
Alphabet size « :
K .
2 0.5 AU,GC,DU
Aj=12/27=0444 3 | 0423 | AUG,UGC
4 0.370 AUGC
M > Agp ... network Gy is connected
A <Ag - ... network Gy is not connected

Connectivity threshold: A, =1-x "1/(e-1)

Degree of neutrality of neutral networks and the connectivity threshold



Giant Component

A multi-component neutral network formed by a rare structure: A <A,



A connected neutral network formed by a common structure: A > A,



GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space
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GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space
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GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



GGCUAUCGUAUGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUAGACG
GGCUAUCGUACGUUUACUCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGCUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCCAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUGUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAACGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCUGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCACUGGACG
GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG
GGCUAGCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG
GGCUAUCGUACGUUUACCCAAAAGCCUACGUUGGACCCAGGCAUUGGACG

One error neighborhood — Surrounding of an RNA molecule of
chain length n=50 in sequence and shape space



Number Mean Value Variance Std.Dev.

Degree of Neutrality: 50125 0.334167 0.006961 0.083434
Number of Structures: 1000 52.31 85.30 9.24
1 CCCCC-CCCC--CCC--- - - - D)D) D IS ) I ) JEFINNp—— 50125 0.334167
2 (G- -CCCam - - - D)D) D)) DI ) ) F I 2856 0.019040
3 (CCCCCCCCC--CCC-- - - - - DD D D)D) D) ) 2799 0.018660
SN (@A (@@ D)) F DD ) IS ) D I ) Iyt 2417 0.016113
S5 (CCCC-CCCC-CCCC- - - - - )DD) D)D) EDD ) I ) N 2265 0.015100
6 (CCCC- CCCCC-CCC-- - - - )DDED)D D) EDD ) I ) I 2233 0.014887

Shadow — Surrounding of an RNA structure in shape space:
AUGC alphabet, chain length n=50




Results from RNA minimun free energy structures:

* RNA minimum free energy structures show neutrality: Many
sequences fold into the same (secondary) structure.

* The single base mutation neighborhood contains structures
from neutral sequences and a great variety of other structures:
Biopolymer landscapes are rugged.



2. Suboptimal structures of RNA
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GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG
(CCCC- CCCC- - (- - - - - - ))EED))DEDDDED) B e

---------- (((((E(CERR (C((CEEDD DD EEED ) B DD D)D)
---------- (CCCCC-CC-- - - CCCCC---22DD)---D)---DD)D))
- - (CC-(CCC- - CCC- - - - - 2))--33))-2))--((((---))))- - -
(A (R ((CRr D)) EEDDDDEDDDED) Bl CEEEEEEE )-
(G (G (CEErrre DOEEDDIDEDDDED ) B
(G (CR(((C (CEEEEE D)EED) DD EED) EERED ) ) EEREREEE

GGCUAUCGUACGUUUACACAAAAGUCUACGUUGGACCCAGGCAUUGGACG
(CCCC- CCCC- - (- - - - - - ))EEDD)DEDD)ED) EEEE R RS

- (CC-(C- - CCCC-- (G- - - - D)EEDDDDEED) EERED D) FEREREEE
-CCC-- - - - (CC(--CC---- - - D) EESIDDICCERED)))) EEEEEEEE
- - (CC-(CCC- - CCC- - - - - 2))--33))-2))--((((---))))- - -
(CCCC- CCCC-- (- - - - - - D)) EEDDDDEDD)ED) Bl CEEEEEEE )-
(O (O (CEErr DOEEDDIDEDDDED ) B D
- (CC- - - (- - (G- - - - - D)EED) DD EEED ) EEED ) ) EEREEEEE

GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAAUGGACG
(CCCC- CCCC- - (- - - - - - ))EEDD)DEDDDED) B e

- - (CC-CCCC- - CCC- - - - - 2)--333)-))--((C- - - - - )))---
---------- (CCCCC-CC-- - - (CCC-----22D)---2)---D)0))))
---------- (CCCCC-CC- - - - (CCCC---22DD) - --D)---D)D)))
(CCCC- CCCC-- (- - - - - - 2))--332)-2))- (- - - - - ))----
(- (CC- CCCC--(((- - - - - - 2))--332)-2))- (- - - - - )))---
- (CCC- (- - CCC- - - - - 23)--322)-2))- (- - - - - )))---
----- (CC-CCCC--CC- -+ 2222220000000 - - (CC-----))) - - -
(- (CC- CCCC- - (- - - - - - 23)--222)-2))--((C-- - - - )))-)-
----- (- -CCCC--CC--- 222229000 --0) - (((-----))) - -

------ (RN () ) I )5 )
(A (R ((CRr M- MNIN N )-
(G (] (CEErrre DOEEDDDDEDDDED ) B
- (CC- (- - CCCC- - (G- - - - - D)EED) DD EED) EERED D) FEREEEEE
------ (SR (CEER (D)D) BRI B))
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At equilibrium and temperature 7" the conformations form a Boltzmann ensemble that
contains §; with the Boltzmann weight y;(T') = g; exp(\—(a; — Eg]/RT)/Q(T}. where R is
the Boltzmann constant for 1 mole, R = Ny - kg, and Q(T) is the partition function

O(T) =y giexp(—(s; — )/ RT ).
yi(T) = g; exp(—(e; —€0)/RT)/Q(T)

P(X.T)=> w(T)AS) or pi(X,.T)=> y(T)ai;(S)
k k

A(S,) ... adjacency matrix of structure S,
p; (X, T) ... base pairing probability
X ...sequence

Usage of the partition function to anayze the spectrum of suboptimal states



CGUCCCGUCUCUUCCGAGCGCCAGGA

- - (CCCC- (- - -

- - CCC- (- - -
- - - CCCC- (- - -
----- (- (- - -
- - - (- CCCC(- - -
- - (CC- - (- - -
C- G- (- - -

-)))))---3))
-)))-))--)))
-2))))---))-
3))) ) EEREE
-)))-))--))-
-)))---)-)))
-)))))--)-)-
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CGUCCCGUCUCUUCCGAGCGCCAGGA

5

CGUCCCGUCUCUUCCGAGCGCCAGGA
mfe-weight. 0.46336

Suboptimal structures and partition function
of a small RNA molecule: n =26
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CGGCCGGAGCGGAUAUGCCUAAAGGU

- - CCCCC- (- - -
--CCC- - - - -
- - CCC- G- - -
- - CCC- - (- - -
- - (CC- - (- - - -
- - (CC- G- (- - -
C-(C----2)-)--
-- (- - - ((
---(CC---))) -
- - (CCCC- (- - - -
--CCC-- - - -
R (CEErE ))
--(CC-C- (- - -
- - (CC--CC-C- -
S ((CET
- - (CC-- (- - - -
(- - (- - - -

9)))) EEE

.70

.60
.50
.30
.30
.10
-90
-90
-90
.70
.60
.60
.50
.50
.30
.30
.30
.20

CGGCCGGAGCGGAUAUGCCUAAAGGU
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CGGCCGGAGCGGAUAUGCCUAAAGGU
mfe-weight: 0.13642

Suboptimal structures and partition function
of a small RNA molecule: n =26
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CGUCCCGUCUCUUCCGAGCGCCAGGA

n

CGUCCCGUCUCUUCCGAGCGCCAGGA
mfe-weight: 0.09514

Suboptimal structures and partition function
of a small RNA molecule: n =26
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Structure Sy

Structure Sq

Intersection of two compatible sets: -

The intersection of two compatible sets is always non empty: C, N C, ¢ J
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GENERIC PROPERTIES OF COMBINATORY
MAPS: NEUTRAL NETWORKS OF RNA
SECONDARY STRUCTURES!
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Random graph theory is used to model and analyse the relationships between sequences and
secondary structures of RNA molecules, which are understood as mappings from sequence
space into shape space. These maps are non-invertible since there are always many orders of
magnitude more sequences than structures. Sequences folding into identical structures form
neutral networks. A neutral network is embedded in the set of sequences that are compatible
with the given structure. Networks are modeled as graphs and constructed by random choice
of vertices from the space of compatible sequences. The theory characterizes neutral
networks by the mean fraction of neutral neighbors (A). The networks are connected and
percolate sequence space if the fraction of neutral nearest neighbors exceeds a threshold
value (A > A*). Below threshold (A < A*), the networks are partitioned into a largest “giant”
component and several smaller components. Structures are classified as “common” or
“rare” according to the sizes of their pre-images, i.e. according to the fractions of sequences
folding into them. The neutral networks of any pair of two different common structures
almost touch each other, and, as expressed by the conjecture of shape space covering
sequences folding into almost all common structures, can be found in a small ball of an
arbitrary location in sequence space. The results from random graph theory are compared to
data obtained by folding large samples of RNA sequences. Differences are explained in
terms of specific features of RNA molecular structures. © 1997 Society for Mathematical
Biology

THEOREM 5. INTERSECTION-THEOREM. Let s and s' be arbitrary secondary
structures and C[s). C[s'] their corresponding compatible sequences. Then,

Cls]InC[s'] # 2.

Proof. Suppose that the alphabet admits only the complementary base pair [XY] and we
ask for a sequence x compatible to both s and s'. Then j(s,s') = D,, operates on the set of
all positions {x,,...,x,}. Since we have the operation of a dihedral group, the orbits are
either cycles or chains and the cycles have even order. A constraint for the sequence
compatible to both structures appears only in the cycles where the choice of bases is not
independent. It remains to be shown that there is a valid choice of bases for each cycle,
which is obvious since these have even order. Therefore, it suffices to choose an alternating
sequence of the pairing partners X and Y. Thus, there are at least two different choices for
the first base in the orbit. |

Remark. A generalization of the statement of theorem 5 to three differ-
ent structures is false.

Reference for the definition of the intersection
and the proof of the intersection theorem



Results from RNA suboptimal structures:

* Neutral RNA sequences differ with respect to their spectra of
suboptimal structures.

» Suboptimal RNA structures with low free energies contribute
substantially to the partition function.

- Nature selects for stable structures in the sense that the
contribution of the mfe structure to the partition function is
large.

* For every pair of structures it is possible to find a sequence that
can form both. This is not (always) true for three structures.



3. Kinetic folding and RNA switches
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The Folding Algorithm

A sequence | specifies an energy ordered set of
compatible structures €(1):

e) = {S,.S,, ..., S, O}

m ]

A trajectory ¥, (1) is a time ordered series of
structures in €(1). A folding trajectory is
defined by starting with the open chain O and
ending with the global minimum free energy
structure S, or a metastable structure S, which
represents a local energy minimum:

2,() = {0,SQ),...,S(t-1),S (),

S(t+1) , ..., S,}
() ={0,S(1),...,S(t1),S (1),
S(t+1) , ..., S.}

Master equation

PSR, 0-R0)- X AR YK,
k=01,...,m+1

Transition probabilities Pij(t) = PM{Si—>Sj} are
defined by

Py(t) = Py(t) ky = P(t) exp(-AG/2RT) / 3,
Pi() = Py(t) ky = P,(t) exp(-AG,/2RT) / 3;

m+2
DI Zk:l’kii exp(-AG,;/2RT)

The symmetric rule for transition rate parameters is due
to Kawasaki (K. Kawasaki, Diffusion constants near
the critical point for time dependent Ising models.
Phys.Rev. 145:224-230, 1966).

Formulation of kinetic RNA folding as a stochastic process
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GGGUGGAACCACGAGGUUCCACGAGGAACCACGAGGUUCcuUcCcC
3 13 G 23 33 44

v N\

1D 2D
cc® cc® cG>
A A A A G/IA A
CG C=G CG
C-G CsG C-G
AU A=U U=A
AU A=U U-A
G=C G=C G-C
G-C G=C AG CA
U-A/G A=U
3G=C——GsC_44 1DBGC _ op
cGs3
5°C r 28 CG, A~ A
CG
1 C=G
-28.6 kcal-mol A=U
-28.2 kcal-mol™ A=U
G=C
G-C
U U
3G=C
An experimental G as
. 5 3
RNA switch JN1LH
-28.6 kcal-mol™
J.H.A. Nagel, C. Flamm, I.L. Hofacker, K. Franke, -31.8 kcal-mol™

M.H. de Smit, P. Schuster, and C.W.A. Pleij.

Structural parameters affecting the kinetic competition of RNA
hairpin formation. Nucleic Acids Res. 34:3568-3576 (2006)
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A ribozyme switch

E.A.Schultes, D.B.Bartel, Science
289 (2000), 448-452
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-

Mhitet Institute for Biomedical Research and De-
partment of Biology, Massachusetts Institute of Tech-
nology, 9 Cambridge Center, Cambridge, MA 02142,
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Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 111 hgasc is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements

21 JULY 2000 WVOL 289 SCIENCE www.sciencemag.org
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Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase (A) and a natural cleavage
ribozyme of hepatitis-0-virus (B)
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The sequence at the intersection:

HDV fold

Ligase fold

An RNA molecules which is 88

nucleotides long and can form both

structures
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A natural metabolic
riboswitch

The purine riboswitch

M. Mandal, B. Boese, J.E. Barrick, W.C. Winkler, and R.R. Breaker. 2003.
Molecular Cell. 11:1419-1420, Cell 113:577-586.
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The purine riboswitch: Molecular Cell. 2003. 11:1419-1420.
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“ON" STATE “OFF” STATE

Sensor region

The thiamine-pyrophosphate riboswitch

S. Thore, M. Leibundgut, N. Ban.
Science 312:1208-1211, 2006.




Results from RNA folding kinetics:

* In addition to the minimum free energy structure RNA
molecules can exist in one, Two or more long-lived metastable
structures.

* RNA switches are molecules with two or more long-lived
conformations that allow for metabolic control.



4. Chemistry of Darwinian evolution



Plus strand ey =—y—yy—————————- - === e == ——@
AUGGUACAUCAUGA cuu
Template induced synthesis
Plus strand sy=—r—pp—p—————————- == =~ — @
AUGGUACAUCAUGA CUUG
, UACC AU
Minus strand @-t=—te—te—t——— G
Template induced synthesis
Pl I T —————————— e —r——10
. AUBEUACAUCAUGA CUUG

UACCAUGUAGUACU

Minus strand @+
Complex dissociation lT

GAAC

Plus strand  =re——pr—p—p—f——r—rr
AUGGUACAUCAUGA
+

, UACCAUGUAGUACWU
Minus strand @ t——tm——t—te—t e

'I'I'I'l.
CUUG

GAAC

Complementary replication is
the simplest copying mechanism
of RNA.

Complementarity is determined
by Watson-Crick base pairs:

G=C and A=U
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Complementary replication as the simplest molecular mechanism of reproduction
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Chemical kinetics of replication and mutation as parallel reactions
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Fitness values (1)

Hamming distance dy(I,.1p)

A fitness landscape showing an error threshold
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A model For polynucleotide replication is presented and analyzed by means of pertusbation theory. Twn hasis ssumptions
aliorw handling of seqences up 10 8 chain length of » = B0 explicitly: poimt mutaticen are restricied 10 @ two-dig model asd
individual squences are subsumed inio mstant clatics. Pertsrbation theory is in excellent sgreement with the exact rowults for

long enough sequemers (v > 200

L. Introduction

Eigen [8] proposed a formal kinctic equation
{eq. 1) which describes self-replication under the
constraint of constant total population size:

d, =
et R IR Tei=l ! i

By x, we denote the population number or con-
centration of the self-replicating element 1, ie.
x,=[1,]. The 1otal population size or total con-
centration ¢ = £, x, is kept constant by proper ad-
Jjustment of the constraint ¢: ¢ = EF w, x,. Char-
acteristically, this constraint has been called “con-
stant organization”, The relative values of diagonal

* Dedicated to the lize Professor BLL Jones who was among
the first 80 & rigenus mathemsatical snalysis om the prob-
fems described here

** This paper i considered as part. 1l of Model Studies on
RMA eeplication. Past 1 i by Gassner and Schuster | 14]
* AN summations tsroughout this papee run from | 10 % unles.
specified duffermcly: £ =7, and L, . =B/ +EL .0
respectively.

00014627, /82 /T000-000,/ 50275 © 1982 [evier Becmsedical Pres

(w;, ) and off-disgonal (w, . { = () rates, as we shall
see in detail in section 2, arc related to the accu-
racy of the replication process, The specific prop-
erties of eq. | anc essentially basad on the fact that
it leads to exponential growth in the absence of
constriints ¢ = 0) and competitors (n = 1),
The non-linear differential equation, eq. 1 - the
finearity is introduced by the defi of'e
ar constant ion — shows a
feature: it beads to selection of a defined ensemble
of self-replicating elements above a certain acca-
racy threshold. This ensemble of a master and its
mast frequent mutants is a so-called *quasi-species”
9], Below this threshold, however, no selection
takes place and the frequencies of the individual
elements are determined exclusively by their statis-
tical weights.

Rigorous mathematical analysis has been per-
formed on eq. | [7,15,24,26]. In particular, it was
shown that the non-lincarity of eq. | can be re-
maoved by an appropriate transformation. The -
genvalue problem of the linear differential equa-
tion obtained thereby may be solved approxi-
mately by the conventional perturbation technigue

T min
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Stationary population or quasispecies as a function of the mutation or error rate p
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Anwendung der seriellen Uberimpfungstechnik auf RNA-Evolution in Reagenzglas



Evolutionary design of RNA molecules
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The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)




Starting molecule

Error-prone PCR, .
DNA shuffling, Creating
degenerate codons diversity
In vitro
— gene
expression
Display/sorting Screening/
techniques, selection for
s function
some display, surface display,
FACS FACS
RT-PCR, Gene
o PCR amplification
In vitro

Christian Jackel, Peter Kast, and
Donald Hilvert.

Protein design by directed evolution.
Annu.Rev.Biophys. 37:153-173, 2008
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Artificial evolution in biotechnology and pharmcology

G.F. Joyce. 2004. Directed evolution of nucleic acid enzymes.
Annu.Rev.Biochem. 73:791-836.
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Results from replication kinetics and molecular
evolution in laboratory experiments:

- Evolutionary optimization does not require cells and occurs in
molecular systems too.

» In vitro evolution allows for production of molecules for
predefined purposes and gave rise to a branch of biotechnology.

* Novel antiviral strategies were developed from known molecular
mechanisms of virus evolution.



5. Consequences of neutrality
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Frequency

Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N, stands for the

effective population size and v is the mutation rate.
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Motoo Kimura

Is the Kimura scenario correct for frequent mutations?



Bulletin of Mathemarical Biology Yol. 50, No. 6, pp. 635-660, 1988, 0092-8240/8853.00 + 0.00
Printed in Great Britain. Pergamon Press ple
Socicty for Mathematical Biology

STATIONARY MUTANT DISTRIBUTIONS AND
EVOLUTIONARY OPTIMIZATION

® PEeETER SCHUSTER and JORG SWETINA
Institut fiir theoretische Chemie
und Strahlenchemie der Universitit Wien,
Wiihringerstrafie 17,
A 1090 Wien,
Austria

Molecular evolution is modelled by erroneous replication of binary sequences. We show how the
selection of two species of equal or almost equal selective value is influenced by its nearest
neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates
we find that the Hamming distance between the species determines selection. As the error rate
increases the fitness parameters of neighbouring species become more and more important. In
the case of almost neutral sequences we observe a critical replication accuracy at which a drastic
change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently
mutating populations fitness turns out to be an ensemble property rather than an attribute of the
individual.

In addition we investigate the time dependence of the mean excess production as a function of
initial conditions. Although it is optimized under most conditions, cases can be found which are
characterized by decrease or non-monotonous change in mean excess productions.

1. Introduction. Recent data from populations of RNA viruses provided
direct evidence for vast sequence heterogeneity (Domingo et al., 1987). The
origin of this diversity is not yet completely known. It may be caused by the low
replication accuracy of the polymerizing enzyme, commonly a virus specific,
RNA dependent RNA synthetase, or it may be the result of a high degree of
selective neutrality of polynucleotide sequences. Eventually, both factors
contribute to the heterogeneity observed. Indeed, mutations occur much more
frequently than previously assumed in microbiology. They are by no means
rare events and hence, neither the methods of conventional population genetics
(Ewens, 1979) nor the neutral theory (Kimura, 1983) can be applied to these
virus populations. Selectively neutral variants may be close with respect to
Hamming distance and then the commonly made assumption that the
mutation backflow from the mutants to the wilde type is negligible does not
apply.

A kinetic theory of polynucleotide evolution which was developed during the
past 15 years (Eigen, 1971; 1985; Eigen and Schuster, 1979; Eigen et al., 1987;
Schuster, 1986); Schuster and Sigmund, 1985) treats correct replication and
mutation as parallel reactions within one and the same reaction network

635
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Results from replication kinetics and RNA neutral
networks:

* RNA sequences with Hamming distance d =1 and d = 2 form
strongly coupled replication ensembles. For d > 2 random drift in
the sense of Kimura's theory occurs.

* Direct evidence that neutrality is increasing the repertoire of
structures and properties in populations.

* Implication for virus replication in infected hosts.



Neutrality in evolution

Charles Darwin: ., ... neutrality might exist..."

Motoo Kimura: ., ... neutrality is unaviodable and represents
the main reason for changes in genotypes and leads to
molecular phylogeny ..."

Current view: , ... neutrality is essential for successful
optimization on rugged landscapes ..."

Proposed view: ., ... neutrality provides the genetic reservoir in
the rare and freguent mutation scenario ..."



6. Evolutionary optimization of RNA structure



Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

random individuals. The primer pair used for ganomic
DNA - amplification  1s 5 -TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32 Ammmlﬂm&yaﬁmmwmn\rw
result in degradation of the transcript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o deletions
of 17p11.2 of various sizes, the smallest of whict
includes MYO15 and perhaps 20 other genes [(6);
K-S Chen, L. Potockd, J. R, Lupski, MRDD Res, Rev.
2, 122 (1996)]. MYD15 expression is easily datected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYQ15 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few
SMS patients have sensorineural hearing loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.
R. A, Fridell, data not shown.
K. B. Avraham et al., Nature Genel. 11, 369 (1995);
X-Z. Liu ef al,, ibid. 17, 268 (1997); F. Gibson et af,,
Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.
37, RNA was from cochiea lab-
yrinths) obtained from human fetuses at 18 o 22
b ol A i ath auidel

g8

tin
established by the Human Research Committea at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over oligo{dT) columns. First-
strand cONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5 -GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090Wien, Austria, Santa Fe Institute,
1309 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(lASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

8 REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DINA with this primer pair would result in a 2903-bp
t.
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (in\-'crscly related o fitness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)lll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are relared by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are
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Structure of
randomly chosen Phenylalanyl-tRNA as
initial sequence target structure




Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant
(Fitness):
=y / o+ Adg ¥]
Ads ¥ = dy(S,.S.)

Selection pressure:
The population size,
N = # RNA moleucles,

Is determined by the flux:

N(t)zﬁi\/ﬁ

Mutation rate:

p =0.001/ Nucleotide x Replication

The flow reactor as a device for
studying the evolution of molecules
in vitro and in silico.
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In silico optimization in the flow reactor: Evolutionary Trajectory
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Transition inducing point mutations leave the
change the molecular structure molecular structure unchanged

Neutral genotype evolution during phenotypic stasis



Randomly chosen
initial structure >

Phenylalanyl-tRNA
as target structure
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A sketch of optimization on neutral networks



Results from /n silico simulation of RNA evolution:

» Evolutionary optimization occurs on two time scales: Fast
adaptive phases and random walk on neutral networks.

* Neutral networks are essential for searching sequence space.
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