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Complex networks in cellular regulation
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The reaction network of cellular metabolism published by Boehringer-Mannheim.



The citric acid
or Krebs cycle
(enlarged from

previous slide).
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The reaction network of cellular metabolism published by Boehringer-Mannheim.



E. coli: Genome length 4x106 nucleotides
Number of cell types 1
Number of genes 4 460

Four books, 300 pages each

vl -

EF6691.5¢0 KV X15+0K 2i68%ms |

Man:  Genome length 3x%10° nucleotides
Number of cell types 200
Number of genes ~ 30 000

A library of 3000 volumes,
300 pages each

Complexity in biology




2. Experimental data and modeling in biology



From qualitative data to quantitative modeling

Genomics, transcriptomics, proteomics

v

Metabolomics, functional genomics

l

Computational systems biology
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Analysis by gel electrophoresis

Jeff Rogers, Gerald F. Joyce.
RNA 7:395-404, 2001
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The same section of the microarray is shown in three independent hybridizations. Marked spots refer to: (1) protein
disulfide isomerase related protein P5, (2) IL-8 precursor, (3) EST AA057170, and (4) vascular endothelial growth factor.

Gene expression DNA microarray representing 8613 human genes used to study transcription in the
response of human fibroblasts to serum.

V.R.lyer et al., Science 283: 83-87, 1999




Embryonic stem cell

Pfosfa‘te

0)

BHIGH

0g,(rat

— l LOW

Hsiao, L.L. et al.,
Physiol.Genomics 2001

SOM-based “GEDI maps” Affymetrix, ~ 7000 genes

(Eichler, G.S. et al., Bioinformatics 2003) Drawings by Stuart A, Kauffman, 2009
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A pH-modulated, self-replicating peptide

Shao Yao, Indraneel Ghosh, Reena Zutshi, Jean Chmielewski.
J.Am Chem.Soc. 119:10559-10560, 1997
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The elements of the simulation tool
MiniCellSim

SBML: Bioinformatics 19:524-531, 2003;
CVODE: Computers in Physics 10:138-143, 1996
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Stefan Bornholdt. Less is more in modeling large genetic networks. Science 310, 449-450 (2005)



3. Parameter determination and reverse engineering



Kinetic differential equations

dx

- = fOGK); X=(X--X%,); kK=(k.. . K,)

Reaction diffusion equations
OX

= D V*x + f(x;k)
ot

General conditions: T, p,pH, I, ...
Initial conditions:  X(0)

Boundary conditions:
boundary ... S, normal unit vector ...0

Dirichlet : ~ x° =g(r,t)

Neumann : o =0-Vx®=g(r,1)
ou

The forward problem of chemical reaction kinetics (Level 1)



Kinetic differential equations

‘z: = F06K); x=0x-..%,) s k=(ky.... k)

Reaction diffusion equations
ox _ D V2x + f (x; k)
ot

Genome: Sequence Ig

General conditions: T, p,pH, I, ..
Initial conditions:  x(0)

Boundary conditions :
boundary ... S, normal unit vector ... 0

Dirichlet :  x° = g(r,t)

Neumann : X _ U-Vx*=g(r,t)
ou

The forward problem of biochemical reaction kinetics (Level I)



Genome: Sequence Ig

The inverse problem of biochemical
reaction Kinetics (Level I)

Kinetic differential equations

dx

o f(x;K); X=(%,0 .o, ) K=(Ky,o. K )

Reaction diffusion equations
oX

=D Vi +f(x:k
- (x;k)

General conditions: T, p,pH, I, ..
Initial conditions :  X(0)

Boundary conditions :
boundary... S, normal unit vector... i
Dirichlet:  x°® =g(r,t)

aL( =0-vx*=g(r,1)

Neumann:



Kinetic differential equations

dx

ap = Tk x=06 %) k= k)

Reaction diffusion equations
O0X

= D V*x +f(x;k)
ot

General conditions: T, p,pH, I, ...
Initial conditions :  x(0)

Genome: Sequence Ig

Boundary conditions :
boundary ... S, normal unit vector .. ¢

Dirichlet: ~ x° = g(r,t)

Neumann: 2% — 0-Vx® =g(r, t)
ou

The forward problem of bifurcation analysis (Level 1)




Genome: Sequence g

The inverse problem of bifurcation
analysis (Level II)

Kinetic differential equations
dx

pri fOGK); X=(Xe 0 X,) s K=(Ky,en oK)

Reaction diffusion equations
oX

2 =D V+f(x:k
ot + f(X;k)

General conditions: T, p,pH, I, ..
Initial conditions: X (0)

Boundary conditions:
boundary ... S, normal unit vector... i

Dirichlet:  x° =g(r,t)

Neumann: 9% _ 0-Vx®=g(r,t)
u



4. Gene regulation dynamics
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Three states of a gene regulated by activator and repressor
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Abstract

Regulation of gene activities is studied by means of P isted math ical analysis of ordinary differential equations (ODEs)
derived from binding equilibria and chemical reaction kinetics. Here, we present resulls on cross- regulauon of two genes t]lrough
activator and/or repressor binding. Arbitrary (differentiable) binding function can be used but ions are p i for
gene—regulator complexes with integer valued Hill coefficients up to n = 4. The dynamics of gene regulation is derlvcd from bifurcation
patterns of the underlying systems of kinetic ODEs. In particular, we present analytical exy for the p values at which
one-dimensional (transcritical, saddle-node or pitchfork) and/or t ional (Hopf) bifurcati occur. A classification of
regulatory states is introduced, which makes use of the sign of a ‘regulatory determinant’ D (being the determinant of the block in the
Jacobian matrix that contains the derivatives of the regulator hmdmg I'uucuons] (i) systems with D <0, observed, for example, if both
proteins are activators or repressors, lo give rise to !l ions only and lead to bistability for n=2 and (ii) systems
with D=0, found for com\nnauons ol‘ activation and repression, sustain a Hopf bifurcation and undamped oscillations for n>2. The
infl of basal T ivity on the bifurcation patterns is described. Binding of multiple sut can lead to richer dynamics
than pure activation or repression states if intermediates between the unbound state and the I'ully saturated DNA initiate transcription.

Then, the regulatory determinant D can adopt both signs, plus and minus.

@ 2007 Elsevier Ltd. All rights reserved.

K 5; Basal iption; Bif analysis; Coop

binding; Gene regulation; Hill coefficient; Hopf bifurcation

1. Introduction

Theoretical work on gene regulation goes back to the
1960s (Monod et al., 1963) soon after the first repressor
protein had been discovered (Jacob and Monod, 1961). A
little later the first paper on oscillatory states in gene
regulation was published (Goodwin, 1965). The interest in
gene regulation and its mathematical analysis never ceased
(Tiwari et al., 1974; Tyson and Othmer, 1978; Smith, 1987)
and saw a great variety of different attempts to design
models of genetic regulatory networks that can be used in
systems biology for computer simulation of gen(etic and

*Corresponding author. Institut fiir Theoretische Chemic der Uni-
versitiit Wien, Wiihringerstrafie 17, A-1090 Wien, Austria,
Tel: +431427752743; fax: +43 1427752793,
E-mail address; ph

bi.univie.ac.at (P. Schuster),

022-5193/% - see front matter @ 2007 Elsevier Lid. All rights reserved.
doi:10.1016/5.jtbi, 2007.01.004

met)abolic networks.! Most models in the literature aim at
a minimalist dynamic description which, nevertheless, tries
to account for the basic regulatory functions of large
networks in the cell in order to provide a better under-
standing of cellular dynamics. A classic in general
regulatory dynamics is the monograph by Thomas and
D'Ari (1990). The currently used mathematical methods
comprise application of Boolean logic (Thomas and
Kaufman, 2001b; Savageau, 2001; Albert and Othmer,
2003), stochastic processes (Hume, 2000) and deterministic
dynamic models, examples are Cherry and Adler (2000),
Bindschadler and Sneyd (2001) and Kobayashi et al. (2003)
and the recent elegant analysis of bistability (Craciun et al.,

! Discussion and analysis of d genetic and lic networks
has become so frequent and intense that we suggest to use a separale term,
genabolic networks, for this class of complex dynamical systems.
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Hill coefficient: n

1 S, E S S

2 E, B(E,P) S S, B(PL,P2)
3 E,B(EP) S,0 S, B(PL,P,)
4 E,B(EP) S,0 S, B(P1,P2)

S... stable point attractor
E... extinction

O... oscillations

B... bistability
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The repressilator: M.B. Ellowitz, S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature 403:335-338, 2002



Stable stationary state

Hopf bifurcation
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Limit cycle oscillations
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Fading oscillations
caused by a stable
heteroclinic orbit
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5. Inverse bifurcation analysis



The bifurcation manifold



Defininition of the forward operator F(p)



Iterative solution for min J(p)
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1+ 1

l mod n

a=a,p=p,h=h0=0

p; = (a, 3)
(10=%,0) < (8,h) < (1071, 2)

Inverse bifurcation analysis of the repressilator model

S. Miiller, J. Hofbauer, L. Endler, C. Flamm, S. Widder, P. Schuster. A generalized
model of the repressilator. J. Math. Biol. 53:905-937, 2006.
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Inverse bifurcation analysis of the repressilator model

J. Lu, H.W. Engl, P. Schuster. Inverse bifurcation analysis: Application to simple
gene systems. AMB Algorithms for Molecular Biology 1:11, 2006.
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A simple dynamical cell cycle model

J.J. Tyson, A. Csikasz-Nagy, B. Novak. The dynamics of cell cycle regulation.
Bioessays 24:1095-1109, 2002
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A simple dynamical cell cycle model

J.J. Tyson, A. Csikasz-Nagy, B. Novak. The dynamics of cell cycle regulation.
Bioessays 24:1095-1109, 2002



14¢ 14¢

! o 12}
12 ( IS/Nz.——
10 2 10

- e 8 T IsN

E2F1

E2F1
F -

Inverse bifurcation analysis of a dynamical cell cycle model

J. Lu, H.W. Engl, P. Schuster. Inverse bifurcation analysis: Application to simple
gene systems. AMB Algorithms for Molecular Biology 1:11, 2006.



6. Current challenges in biology



Explanation of important global properties

homeostasis
robustness
stability against mutation

self-repair or regeneration



The bacterial cell as an example for a \ \
simple form of autonomous life \

Escherichia coli genome:

4 million nucleotides
4460 genes

The structure of the bacterium Escherichia coli



Evolution does not design with
the eyes of an engineer,
evolution works like a tinkerer.

Frangois Jacob. The Possible and the Actual.
Pantheon Books, New York, 1982, and

Evolutionary tinkering. Science 196 (1977),
1161-1166.




The difficulty to define
the notion of ..gene".

Helen Pearson,

Nature 441: 399-401, 2006

WHAT IS A GENE?

The idea of genes as beads on a DNA string is fast fading. Protein-coding sequences have no
clear beginning or end and RNA is a key part of the information package, reports Helen Pearson.

‘! ene’ is not a typical four-letter

word, It is not offensive. It is never

bleeped out of TV shows. And

where the meaning of most four-

letter words is all too clear, that of gene is not.

The more expert scientists become in molecu-

lar genetics, the less easy it is to be sure about
what, if anything, a gene actually is.

Rick Young, a geneticist at the Whitehead
Institute in Cambridge, Massachusetts, says
that when he first started teaching as a young
professor twa decades ago, it took him about
two hours to teach fresh-faced undergraduates
what a gene was and the nuts and bolts of how
it worked. Today, he and his colleagues need
three months of lectures to convey the concept
of the gene, and that's not because the students
are any less bright. “It takes a whole semester
to teach this stuff to talented graduates,” Young
says. “It used to be we could give a one-off def-
inition and now it's much more complicated.”

In classical genetics, a gene was an abstract
concept — a unit of inheritance that ferried a
characteristic from parent to child. As bio-
chemistry came into its own, those character-
istics were associated with enzymes or proteins,
one for each gene. And with the advent of mol-
ecular biology, genes became real, physical
things — sequences of DNA which when con-
verted into strands of so-called messenger
RNA could be used as the basis for building
their associated protein piece by piece. The
great coiled DNA molecules of the chromo-
somes were seen as long strings on which gene
sequences sat like discrete beads.

This picture is still the working model for
many scientists. But those at the forefront of
genetic research see it as increasingly old-fash-
ioned — a crude approximation that, at best,
hides fascinating new complexities and, at
worst, blinds its users to useful new paths
of enquiry.

Information, it seems, is parceled out along
chromosomes in a much more complex way
than was originally supposed. RNA molecules
are not just passive conduits through which the
gene's message flows into the world but active
regulators of cellular processes. In some cases,
RNA may even pass information across gener-
ations — normally the sole preserve of DNA.

An eye-opening study last year raised the
possibility that plants sometimes rewrite their
DNA on the basis of RNA messages inherited
from generations past'. A study on page 469 of
this issue suggests that a comparable phenom-
enon might occur in mice, and by implication
in other mammals®, If this type of phenome-
non is indeed widespread, it "would have huge
implications,” says evolutionary geneticist

Laurence Hurst at the University of Bath, UK.

“All of that information seriously challenges
our conventional definition of a gene” says
molecular biologist Bing Ren at the University
of California, San Diego. And the information
challenge is about to get even tougher. Later
this year, a glut of data will be released from
the international Encyclopedia of DNA Ele-
ments (ENCODE) project. The pilot phase of
ENCODE involves scrutinizing roughly 1% of
the human genome in unprecedented detail;
the aim is to find all the
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viously unimagined scope of RNA.

The one gene, one protein idea is coming
under particular assault from researchers who
are comprehensively extracting and analysing
the RNA messages, or transcripts, manufac-
tured by genomes, including the human and
mouse genome. Researchers led by Thomas
Gingeras at the company Affymetrix in Santa
Clara, California, for example, recently studied
all the transcripts from ten chromosomes
across eight human cell lines and worked out

precisely where on the chro-

sequences that serve a useful “We've come to the mosomes each of the tran-
purpose and explain what realization that the scripts came from’,

that purpose is. “When we
started the ENCODE project

genome is full of

The picture these studies
int is one of

I had a different view of overlapping transcripts.”  mind-boggling complexity.

what a gene was,” says con- — Phillip Kapra

tributing researcher Roderic

Guigo at the Center for Genomic Regulation
in Barcelona, “The degree of complexity we've
seen was not anticipated.”

Under fire
The first of the complexities to challenge molec-
ular biology’s paradigm of a single DNA
sequence encoding a single protein was alterna-
tive splicing, discovered in viruses in 1977 (see
‘Hard to track) overleaf). Most of the DNA
sequences describing proteins in humans havea
modular arrangement in which exons, which
carry the instructions for making proteins, are
interspersed with non-coding introns. In alter-
native splicing, the cell snips out introns and
sews together the exons in various different
orders, creating messages that can code for dif-
ferent proteins. Over the years geneticists have
also documented overlapping genes, genes
within genes and countless other weird arrange-
ments (see ‘Muddling over genes, overleaf).
Alternative splicing, however, did not in itself
require a drastic reappraisal of the notion of a
gene; it just showed that some DNA sequences
could describe more than one protein. Today's
assault on the gene concept is more far reach-
ing, fuelled largely by studies that show the pre-

o AN
Spools of DNA (above) still harbour surprises, with
one protein-coding gene often overlapping the next.

ov Instead of discrete genes
dutifully mass-producing
identical RNA transcripts, a teeming mass of
transcription converts many segments of the
genome into multiple RNA ribbons of differing
lengths. These ribbons can be generated from
both strands of DNA, rather than from just one
as was conventionally thought. Some of these
transcripts come from regions of DNA prev
ously identified as holding protein-coding
genes, But many do not. “Its somewhat revolu-
tionary,’ says Gingeras’s colleague Phillip
Kapranov, “We've come to the realization that
the genome is full of overlapping transcripts”

Other studies, one by Guigo’ team', and one
by geneticist Rotem Sorek’, now at Tel Avi
University, Israel, and his colleagues, have
hinted at the reasons behind the mass of tran-
scription. The two teams investigated occa
sional reports that transcription can start at a
[DNA sequence associated with one protein
and run st through into the gene for a
completely different protein, producing a
fused transcript. By delving into databases of
human RNA transcripts, Guigo’s team esti-
mate that 4-5% of the DNA in regions con-
ventionally recognized as genes is transcribed
in this way. Producing fused transcripts could
be one way for a cell to generate a greater vari-
ety of proteins from a limited number of
exons, the researchers say.

Many scientists are now starting to think
that the descriptions of proteins encoded in ~
DNA know no borders — that each sequence
reaches into the next and beyond. This idea
will be one of the central points to emerge
from the ENCODE project when its results are
published later this year.

Kapranov and others say that they have doc-
umented many examples of transcripts in
which protein-coding exons from one part of
the genome combine with exons from another
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ENCODE stands for

ENCyclopedia Of DNA Elements.

ENCODE Project Consortium.
Identification and analysis of functional
elements in 1% of the human genome by
the ENCODE pilot project.

Nature 447:799-816, 2007
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Web-Page for further information:

http://www.tbi.univie.ac.at/~pks
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