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1. Computation of RNA equilibrium structures
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5-End 3-End
Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA N = 4n
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Secondary structure

Symbolic notation 5-End ((((((---((((------- M)-(((((------- 1)) S L R M)-MN)):---- 3-End Ng < 3"

Criterion: Minimum free energy (mfe)

Rules: _(_)_ e {AU,CG,GC,GUUA,UG)

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs
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Base pairing No nearest neighbor pair rule No base triplet rule No pseudoknot rule

Base pairs € {AU,CG,GC,GU,UA UG}

Conventional definition of RNA secondary structures
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H-type pseudoknot
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Counting the numbers of structures of chain length n = n+1

M.S. Waterman, T.F. Smith (1978) Math.Bioscience 42:257-266



Impossible (extremely high free energies)
for steric reasons

High free energies because of lack of stacking and
very rare in minimum free energy structures

Restrictions on physically acceptable mfe-structures: A>3 andc >2



Size restriction of elements: (i) hairpin loop Mioop = 4
(ii) stack Ny =0
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Recursion formula for the number of physically acceptable stable structures
|.L.Hofacker, P.Schuster, P.F. Stadler. 1998. Discr.Appl.Math. 89:177-207



RNA sequence: GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

Biophysical chemistry:
thermodynamics and

Kinetics
RNA folding:
Structural biology,
spectroscopy of
biomolecules,
understanding Empirical parameters

molecular function

RNA structure
of minimal free
energy

Sequence, structure, and design




Free energy AGY

5’-end 3’-end

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGAGCGUCCCAUCGGUACUCCA

Suboptimal conformations

(h)
SO

Minimum of free energy

The minimum free energy structures on a discrete space of conformations



hairpin loop

hairpin
"7’ hairpin loop 'V‘z

stack
- R
free end
hairpin loop stack
hairpin
2 loop
hairpin %; -
Elements of RNA secondary loop

structures as used in free
energy calculations

AGSOOZ Zgij,kl+ Zh(nl) + Zb(nb)"‘ Zi(ni) e 0

stacks of hairpin bulges internal
base pairs loops loops
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An example of a dynamic programming 1G|" "uttes 3 3 4 4 56 6
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base pairs 4G * 0112223455
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Back tracking yields the structure(s). 5 G » O . .

7C * x 0 12 2 2.2 3
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Minimum free energy computations are based on empirical energies



2. Inverse folding and neutral networks



RNA sequence: GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

Iterative determination

of a sequence for the
given secondary
structure Biotechnology,

RNA structure
of minimal free
energy

Sequence, structure, and design

Inverse Folding
Algorithm

Inverse folding of RNA:

design of biomolecules
with predefined
structures and functions
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Compatible

Compatibility of sequences and structures



Incompatible
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3
5-end

Compatible

Compatibility of sequences and structures



Inverse folding algorithm

- ->L-=>0L20->.--= — ... — 1

So— 5= 5,2 5,—= 5,25. 25> 5,,—=>..=5

s = M () and Adg(S,,Sy41) = ds(Sy41,Sy) - ds(SSp) < 0

M ... base or base pair mutation operator

ds (S;,S;) .- distance between the two structures S;and S;

,uUnsuccessful trial® ... termination after n steps



Initial trial sequences

Stop sequence of an
unsuccessful trial

Approach to the target structure S, in the inverse folding algorithm



Minimum free energy
criterion

UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

1st / GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

2nd
3rd trial >

4th
5th \ CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG
\ GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Inverse folding

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

The inverse folding algorithm searches for sequences that form a given RNA
secondary structure under the minimum free energy criterion.



Space of genotypes:  I={lq, Iy, I3, l4, ..., In} ; Hamming metric
Space of phenotypes:  S={Sq, Sy, S3, Sy, ..., Spq} ; metric (not required)

N >> M

v(lj) = Sk

Gy =y (S UL 1| w(ly) =S, }

A mapping v and Its inversion
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Sequence space



3. Evolutionary optimization of structure



Structure of
andomly chosen Phenylalanyl-tRNA as
initial sequence target structure




Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

random individuals. The primer pair used for ganomic
DNA - amplification  1s 5 -TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32 Ammmlﬂm&yaﬁmmwmn\rw
result in degradation of the transcript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o deletions
of 17p11.2 of various sizes, the smallest of whict
includes MYO15 and perhaps 20 other genes [(6);
K-S Chen, L. Potockd, J. R, Lupski, MRDD Res, Rev.
2, 122 (1996)]. MYD15 expression is easily datected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYQ15 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few
SMS patients have sensorineural hearing loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.
R. A, Fridell, data not shown.
K. B. Avraham et al., Nature Genel. 11, 369 (1995);
X-Z. Liu ef al,, ibid. 17, 268 (1997); F. Gibson et af,,
Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.
37, RNA was from cochiea lab-
yrinths) obtained from human fetuses at 18 o 22
b ol A i ath auidel

g8

tin
established by the Human Research Committea at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over oligo{dT) columns. First-
strand cONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5 -GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090Wien, Austria, Santa Fe Institute,
1309 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(lASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

8 REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DINA with this primer pair would result in a 2903-bp
t.

38. We are grateful lo the people of Bengkala, Bal, and
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tional assistance, we thank N. Dietrich, M. Fergus-
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berg (Mational Institutes of Health Intramural Se-
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Battey for helpfd comments on this manuscript,
Supported by the National Institute on Deafness and
Other Communication Disorders (NMIDCD) (201 DC
D0035-01 and Z01 DC 00038-01 to T.BF. and
E.RW. and RO1 DC 03402 to C.C.M.), the National
Institute of Child Health and Human Development
(RO1 HD30428 to S.A.C) and a National Science
Foundation Graduate Research Fellowship to F.J.P.
This paper is dedicated to J. B. Snow Jr. on his
retirement as the Director of the MIDCD.

9 March 1998; accepted 17 April 1598

the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (in\-'crscly related o fitness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)lll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are relared by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are

www.sciencemag.org * SCIENCE = VOL. 280 = 19 MAY 19958 1451



Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series



Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant:
f.=v/ [0+ Adg ]
Ads = dyy(S,.S,)

Selection constraint:

Population size, N =# RNA
molecules, is controlled by
the flow

N(t)zﬁi\/ﬁ

Mutation rate:

p = 0.001 / site x replication

The flowreactor as a
device for studies of
evolution in vitro and
in silico
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In silico optimization in the flow reactor: Evolutionary Trajectory
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Transition inducing point mutations leave the
change the molecular structure molecular structure unchanged

Neutral genotype evolution during phenotypic stasis



Cost function

start of optimization

f

end of optimization

start of optimization

f

end of optimization

Genotype space




Cost function

start of optimization start of optimization

target —7

Genotype space
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A sketch of optimization on neutral networks



Randomly chosen
initial structure >

Phenylalanyl-tRNA
as target structure
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4. Suboptimal conformations and kinetic folding
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RNA secondary structures derived from a single sequence
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An algorithm for the computation of
all suboptimal structures of RNA
molecules using the same concept for
retrieval as applied in the sequence
alignment algorithm by

M.S. Waterman and T.F. Smith.
Math.Biosci. 42:257-266, 1978.
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Complete Suboptimal Folding
of RNA and the Stability of
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INTRODUCTION

The smucnrs of BEINA molecules can be discussed at
an empimcally well esablished level of resclution
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Enoom a5 secondary strucnare. It refers 1o a topology
of binary contacts arising from specific base pairing,
rather than a geometry cast o terms of coordinates
and distances (see Fizure 1). The driving force behind

CCC (00€-3523:00020143-21
145



An algorithm for the computation of
RNA folding kinetics

RNA (2000}, £:325-33E, Cambridge Universty Prass, Prinied In e LSA,
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RNA folding at elementary step resolution

CHRISTOPH FLAMM,' WALTER FONTANA 2® IVO L. HOFACKER,

and PETER SCHUSTER'

'Instibut *0r Theoretiscne Chemie und Molekulare Strusturblciogle, Universias Wisn, A-1030 Wisn, Ausira

2Zania Fe Insitube, Zania Fe, New Mexco 87301 USA

ABSTRACT

We study the stochastic folding kinetics of RNA sequences inte secondary structures with a new algorithm based on
the formation, dissociation, and the shifting of individual base pairs. We discuss folding mechanisms and the cor-
relation between the barrier structure of the conformational landscape and the folding kinetics for a number of
examples based on artificial and natural sequences, including the influence of base modification in tRNAs.

Heywords: conformational spaces; foldability; RNA folding kinetics; RMA secondary structure

INTRODUCTION

The conformational diversity of nucleic acids or pro-
teins is delimited by the loose random coil and the
compact native state that is frequently the mos: stable
or minimum free energy (mfe) conformation, Let us call
a specific interaction betwesn two sagments of the chain
a “contact” A random coil then is best charactenzed by
the absence of contacts, whereas the mfe conforma-
tion maximizes their energetic contributions, Several
different types of contacts are found in three-dimensional
structures, Their energetics is not well undersiood, which
makes the modeling of RNA folding from random coils
imto full structures too ill-defined to be tackled at presant.

Fortunately, for single-stranded nucleic acid mol-
ecules, the simpler coarse-grained notion of secondary
struciure is accessible to mathaematical analysis and
computation, Te a theorist the secandary structure is the
topology of binary contacts that arises from specific base
pairing (Watsen—Crick and GU; s=e Figurs 1 and the next
section), [t doss notrefer to a twio- or three-dimensional
geometry cast in terms of distances, Secondary struc-
ture farmation is driven by the stacking betwesn con-
tiguous base pairs, Howewver, any formation of an
energetically favorable double-stranded region implies
the simultansous formation of an energetically unfavar-
able loop, This frusirated energetics leads to a vast com-

Reprin? request to: Chitsboph Flamm, Insliut Tor Thearetische Che-
mie und Moleulare Strukborbiologle, Wahringersirasse 17, A-1020
Wien, Austra: e-mall: xioS@ibl. univie.ac at,

*Present address: Insthute for Advanced Study, Program In Theo-
refical Sialogy, 210 Oiden Lane, Prncetan, Mew Jersay DES40, USA,
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binatorics of stack and loop arangements spanning the
conformational repertoire of an individual RMA seguence
at the secondary structure level,

The secondary struciure is not only an abstiract tool
convenient for theorists, |t also comresponds to an ac-
tual state that provides a geomefric, kinetic, and
thermodynamic scaffold for tertiary structure forma-
tion, and constitutes an intermediate on the folding
path from randem coil to full structure, With rising
termperature, terfiary contacts usually disappear first
and double helices melt later (Banerjes et al,, 1983
The free energy of secondary struciure formation ac-
counts for a large fraction of the free energy of full
structure formation, These roles put the secondary
structure in correspondence with funciional proper-
ties of the terfiary struciure, Consequently, selection
pressures become observable at the secondary struc-
ture level in terms of evolutionanly conserved base
pairs (Guell, 1823), Maoreover, insights inta the pro-
cass of secondary structure formation can be ex-
tended to several types of tertiary contacts with roughly
conserved local geometrizs, such as non-Watson—
Crick base pairs, base triplets and quartets, or end-
on-end stacking of double helices,

Ta provide a frame for our kinetic treatment of RMNA
folding, we give a short account of the formal issuss
surrounding conformational spaces, folding trajecio-
ries, and falding paths for RNA secondary structures,
We then introduce the kinetic folding algorithm as a
stochastic precess in the conformation space of a se-
quence, and discuss applications 1o several selected
problams that cannot be swdisd adequately with the
thermodynamic approach alone,



The Folding Algorithm

A sequence | specifies an energy ordered set of
compatible structures €(1):

e) = {S,.S,, ..., S, O}

] m?

A trajectory ¥, (1) is a time ordered series of
structures in €(1). A folding trajectory is
defined by starting with the open chain O and
ending with the global minimum free energy
structure S, or a metastable structure S, which
represents a local energy minimum:

2,() = {0,SQ),...,S(t-1),S (),

S(t+1) , ..., S,}
() ={0,S(1),...,S(t1),S (1),
S(t+1) , ..., S.}

Kinetic equation

PSR, 0-Ry0)- YRR YK,
k=01,...,m+1

Transition rate prameters Pij(t) are defined by

Py(t) = Py(t) ky = P(t) exp(-AG/2RT) / 3,
Pi() = Py(t) ky = P(t) exp(-AG,/2RT) / 3;

m+2
>, = Zk;’kii exp(-AG, ;/2RT)

The symmetric rule for transition rate parameters is due
to Kawasaki (K. Kawasaki, Diffusion constants near
the critical point for time dependent Ising models.
Phys.Rev. 145:224-230, 1966).

Formulation of kinetic RNA folding as a stochastic process and by reaction kinetics
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ABSTRACT

There is little experimental knowledge on the
sequence dependent rate of hairpin formation in
AMA. We have therefore designed AMA sequences
that can fold into either of two mutually exclusive
hairpins and have determined the ratio of folding
of the two conformations, using structure probing.
This folding ratio reflects their respective folding
rates. Changing one of the two loop sequences from
a purine- to a pyrimidine-rich loop did increase its
tolding rate, which corresponds well with similar
observations in DMNA hairpins. However, neither
changing one of the loops from a regular non-
GMNRA tetra-loop into a stable GNRA tetra-loop, nor
increasing the loop size from 4 to 6 nt did affect the
tolding rate. The folding kinetics of these RMAs have
also been simulated with the program ‘Kinfold'.
These simulations were in agreement with the
experimental results if the additional stabilization
energies for stable tetra-loops were not taken into
account. Despite the high stability of the stable
tetra-loops, they apparently do not affect folding
kinetics of these RNA hairpins. These results show
that it is possible to experimentally determine
relative folding rates of hairpins and to use these
data to improve the computer- N

metastahle structunes exist that are actually not misfolded, bat
functionally important. In addition, a single RN A sequence
can exhibit two catalytic activities reslting from two differ-
ent stroctres ( 11).

To understand how a folding RNA chain chooses betwesn

different aliemative stroctores it is important to know which
iructursl, th dynamic and kineic g contrel the
folding of the varions stroctoral elements. Today, thermo-
dynamic parameters of most of the RNA secondary structural
elements are known (12,13), whereas kinetic parameies of
RNA folding are scarce (8, 14-17). It has been shown that the
rate-determining step of hairpin formationis dependent oncan-
cellation of the positive loop energy by the stacking interaction
hetween the first closing base pairs (16, 18) and that ocal hair-
pin formation is favoured over long-distance siroctusal ele-
ments, becanse of the spatisl proximity of the opposing base
pairing parmners (1,15). Little is known, however, abot the
effects of the nuckotide sequence and the size of hairpin
loops and of the nature of the closing base pairson folding kin-
etics. Even less i known about the effects of bolges, inermal
loops and other secondary stractural elements.

Despite this lack of quantitative lnowledge, great progress
has been made in predicting folding ronies of RNA using
compater simolatins, based on exiting  themodynamic
parameters and statistical polymer physics (24,19-25)
These predictions, however, have rarely boen verified experi-
mentally. As a result it is sill difficalt to estimate which of
the poiential hairpins in a given RNA sequence will fold pre-

of the folding kinetics of stem—loop st

1y and which are kinetically disfavoured. Therefore,

INTRODUCTION

RMNA chains can fold inte complex secondary and teniary
structures,  which often correspond  to e minimom
encrgy of equilibiom stroctore. Some RNAs, however,
fold into long-lasting non-equilibriom conformations, which
are known as metastable structures (1-83. Most of these
structuses are not bickgically active and are thas ermed
misfolded (2, 10). However, in a number of biological sysems

the prediction of a correct ble structure in a given
BNA molecule, even if it is suspectad to have kinstically
Favourable metastable hairpine, has not always been straijght-
forward (4,6,26) (1. H. A. Nagel, I. Meller-Jensen, C. Flamm,
E. I distams, J. Besnard, L L. Hofacker, A. P. Guliyaey,
M. H. de Smit, P. K. Schuster, K. Gerdes and C. W. A. Plaij,
manuscript submitted).

To d ine kinetic i illy, we have
developed an approach in which the kinetic folding ratios
of two nutaally exclusive hairping in a given RNA saquence
can be measored by structure probing. Although, this
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-

Mhitet Institute for Biomedical Research and De-
partment of Biology, Massachusetts Institute of Tech-
nology, 9 Cambridge Center, Cambridge, MA 02142,
USA
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Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 111 hgasc is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements

21 JULY 2000 WVOL 289 SCIENCE www.sciencemag.org
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