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1. Charles Darwins pathbreaking thoughts



Populations adapt to their environments
through multiplication, variation, and
selection - Darwin's ,natural selection”.

All forms of (terrestrial) life descend
from one common ancestor - phylogeny
and the tree of life.



Three necessary conditions for Darwinian evolution are:

1. Multiplication,

2. Variation, and

3. Selection.

Biologists distinguish the genotype - the genetic information - and
the phenotype - the organisms and all its properties. The genotype is
unfolded in development and yields the phenotype.

Variation operates on the genotype - through mutation and
recombination - whereas the phenotype is the target of selection.

One important property of the Darwinian mechanism is that variations
in the form of mutation or recombination events occur uncorrelated to
their effects on the selection of the phenotype.
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Charles Darwin, The Origin of Species, 6th edition.

Everyman‘s Library, Vol.811, Dent London, pp.121-122.
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Fig. 4.2. Percentage amino acid differences when the o hemoglobin
chains are compared among eight vertebrates together with their
phylogenetic relationship and the times of divergence.
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2. Evolution without cellular life



RNA sample
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Stock solution: QB RNA-replicase, ATP, CTP, GTP and UTP, buffer

D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a
self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

Application of serial transfer fo RNA evolution in the test tube



Reproduction of the original figure of the
serial transfer experiment with QB RNA

D.R.Mills, R,L,Peterson, S.Spiegelman,
An extracellular Darwinian experiment
with a self-duplicating nucleic acid
molecule. Proc.Natl.Acad.Sci.USA

58 (1967), 217-224
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Fig. 9. Scrial transfer experiment. Each o-25 ml standard reaction mixture
contained 40 xg of Q/f replicase and **P-UTP, The first reaction (o transfer)
was initiated by the addition of o2 pug ts-1 (temperature-sensitive RNA)
and incubated at 35 °C for 20 min, whereupon o002 ml was drawn for
counting and 0'02 ml was used to prime the second reaction (first transfer),
and so on. After the first 13 reactions, the incubation periods were reduced
to 1§ min (transfers 14-29). Transfers 30-38 were incubated for 1o min.
Transfers 39-52 were incubated for 7 min, and transfers 53-74 were incu-
bated for § min. The arrows above certain transfers (o, 8, 14, 29, 37, 53,and
%3) indicate where o'co1-o0'1 ml of product was removed and used to prime re-
actions for sedimentation annlysis on sucrose. The insct examines both infec-
tious and total RNA. The rcsults show that biologically competent RNA ceases
to appear ufter the 4th transfer (Mills ez al. 1967).
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.Replication fork" in DNA replication

The mechanism of DNA replication is ,semi-conservative®
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Complementary replication is
the simplest copying mechanism
of RNA.

Complementarity is determined
by Watson-Crick base pairs:

G=C and A=U
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Kinetics of RNA replication

C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr.
Biochemistry 22:2544-2559, 1983
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Plus strand
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Template induced synthesis
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A point mutation is caused by
an incorrect incorporation of
a nucleobase into the growing
chain during replication:

Uu—C
A— G

plus strand

minus strand

Replication and mutation are
parallel chemical reactions.



Stock solution:

Stock Solution —>

U

activated monomers, ATP, CTP, GTP,
UTP (TTP);

a replicase, an enzyme that performs
complemantary replication;

buffer solution

G.Strunk, T.Ederhof, Machines for
automated evolution experiments in vitro
based on the serial transfer concept.
Biophysical Chemistry 66 (1997), 193-202

F.Ohlenschlager, M.Eigen, 30 years later —
A new approach to Sol Spiegelman‘s and
Leslie Orgel‘s in vitro evolutionary
studies. Orig.Life Evol.Biosph. 27 (1997),
437-457

Reaction Mixture —>
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Evolutionary design of RNA molecules
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D.P. Bartel, J.W. Szostak, Isolation of new ribozymes from a large pool of random sequences.
Science 261 (1993), 1411-1418

R.D. Jenison, S.C. Gill, A. Pardi, B. Poliski, High-resolution molecular discrimination by RNA.
Science 263 (1994), 1425-1429

Y. Wang, R.R. Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry &
Biology 2 (1995), 281-290

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside
antibiotic-RNA aptamer complex. Chemistry & Biology 4 (1997), 35-50
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The SELEX technique for the preparation of ..aptamers” through applied evolution
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RNA aptamer, n = 27

Formation of secondary structure of the tobramycin binding RNA aptamer with K, =9 nM

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-
RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)




A ribozyme switch

E.A.Schultes, D.B.Bartel, Science
289 (2000), 448-452
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One Sequence, Two Ribozymes:
Implications for the Emergence
of New Ribozyme Folds

Erik A. Schultes and David P. Bartel*

We describe a single RMA sequence that can assume either of two ribozyme
folds and catalyze the two respective reactions. The two ribozyme folds share
no evolutionary history and are completely different, with no base pairs (and
prabably no hydrogen bonds) in common. Minor variants of this sequence are
highly active for one or the other reaction, and can be accessed from prototype
ribozymes through a series of neutral mutations. Thus, in the course of evo-
lution, new RNA folds could arise from preexisting folds, without the need to
carry inactive intermediate sequences, This raises the possibility that biological
RMAs having no structural or functional similarity might share a common
ancestry. Furthermore, functional and structural divergence might, in some
cases, precede rather than follow gene duplication.

Related protein or RNA sequences with the
same folded conformation can often perform
very different biochemical functions, indi

ate isolates have the same fold and function, it
is lhnught that l.hey descended from a common
gh a series of mutational variants

that new biochemical functions can arise ﬁ'om
preexisting folds. But what evolutionary mech-
anisms give rise to sequences with new macro-
molecular folds? When considering the origin
of new folds, it is useful to picture, among all
sequence possibilities, the distribution of se-
quences with a particular fold and function.

that were eech functional. Hence, sequence het-
erogeneity among divergent isolates implies the
existence of paths through sequence space that
have allowed neutral drift from the ancestral
sequence to each isolate. The set of all possible
neutral paths composes a “neutral network,”
connecting in sequence space those widely dis-
persed seq sharing a particular fold and

This distribution can range very far in seq
space (1), For example, only seven nucleotides
are strictly conserved among the group I self-

activity, such that any sequence on the network
can potentially access very distant sequences by
neutral ions (3-5).

splicing introns, yet secondary (and p ly
tertiary) structure within the core of the ri-
bozyme is preserved (2). Because these dispar-

Mhitet Institute for Biomedical Research and De-
partment of Biology, Massachusetts Institute of Tech-
nology, 9 Cambridge Center, Cambridge, MA 02142,
USA

*To whom correspond, should be d. E-
mail: dbartel@wi.mit.edu

Theoretical analyses using algorithms for
predicting RNA secondary structure have
suggested that different neutral networks are
interwoven and can approach each other very
closely (3, 5-&). Of particular interest is
whether ribozyme neutral networks approach
each other so closely that they intersect, If so,
a single sequence would be capable of fold-
ing into two different conformations, would
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have two different catalytic activities, and
could access by neutral drift every sequence
on both networks. With intersecting net-
works, RNAs with novel structures and ac-
tivities could arise from previously existing
rlhozymcs, without the need to carry non-

as lutionary inter-
mediates. l-icre, we explore the proximity of
neutral networks experimentally, at the level
of RNA function. We describe a close appo-
sition of the neutral networks for the hepatitis
delta virus (HDV) self-cleaving ribozyme
and the class III self-ligating ribozyme.

In choosing the two ribozymes for this in-
vestigation, an important criterion was that they
share no evolutionary history that might con-
found the evolutionary interpretations of our
results. Chuosmg at least one artificial -
b dependent evolutionary his-
tories. The class 111 hgasc is a synthetic ri-
bozyme isolated previously from a pool of ran-
dom RNA sequences (9). It joins an oligonu-
cleotide substrate to its 5' terminus. The
prototype ligase sequence (Fig. 1A) is a short-
ened version of the most active class 11l variant
isolated after 10 cycles of in vitro selection and

lution. This minimal retains the
activity of the full-length isolate (10). The HDV
ribozyme carries out the site-specific self-cleav-
age reactions needed during the life cycle of
HDV, a satellite virus of hepatitis B with a
circular, single-stranded RNA genome (17).
The prototype HDV construct for our study
(Fig. 1B) is a shortened version of the antige-
nomic HDV ribozyme (/2), which undergoes
self-cleavage at a rate similar to that reported
for other antigenomic constructs (13, 14).

The prototype class III and HDV ribozymes
have no more than the 25% sequence identity
expected by chance and no fortuitous strue-
tural similarities that might favor an intersec-
tion of their two neutral networks. Neverthe-
less, seq; can be designed that simul
neously satisfy the base-pairing requirements

21 JULY 2000 WVOL 289 SCIENCE www.sciencemag.org
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ribozyme of hepatitis-0-virus (B)
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HDV fold

Ligase fold

An RNA molecules which is 88

nucleotides long and can form both

structures
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Artificial evolution in biotechnology and pharmacology

G.F. Joyce. 2004. Directed evolution of nucleic acid enzymes.
Annu.Rev.Biochem. 73:791-836.

C. Jackel, P. Kast, and D. Hilvert. 2008. Protein design by
directed evolution. Annu.Rev.Biophys. 37:153-173.

S.J. Wrenn and P.B. Harbury. 2007. Chemical evolution as a
tool for molecular discovery. Annu.Rev.Biochem. 76:331-349.



Results from evolution experiments:

* Replication of RNA molecules /n vitro gives rise to exponential
growth under suitable conditions.

‘Evolutionary optimization does not require cells and occurs as
well in cell-free molecular systems.

» In vitro evolution allows for production of molecules for
predefined purposes and gave rise to a branch of biotechnology.



3. Chemical kinetics of molecular evolution
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Chemical kinetics of replication and mutation as parallel reactions
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Master sequence

Formation of a quasispecies

in sequence space
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Fitness landscapes showing error thresholds

Fitness values f{(Iy)

Fitness values f(Iy)

012345678 9101112131415 1023
Sequences
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Sequences
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Results from kinetic theory of molecular evolution:

‘Replicating ensembles of molecules form stationary populations
called quasispecies, which represent the genetic reservoir of
asexually reproducing species.

» For stable inheritance of genetic information mutation rates

must not exceed a precisely defined and computable error-
threshold.

*The error-threshold can be exploited for the development of
novel antiviral strategies.



4. Consequences of neutrality



What is neutrality ?

Selective neutrality =
= several genotypes having the same fitness.

Structural neutrality =
= several genotypes forming molecules with
the same structure,
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5-End 3-End
Sequence GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYAUCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA N = 4n

- ®
.
.« "
. ®
.
o
.
. "
"
. "
.-

Secondary structure

Symbolic notation 5-End ((((((---((((------- M)-(((((------- 1)) S L R M)-MN)):---- 3-End Ng < 3"

Criterion: Minimum free energy (mfe)

Rules: _(_)_ e {AU,CG,GC,GUUA,UG)

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs
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Structure space
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A fitness landscape including neutrality
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Frequency

Fig. 3.1. Behavior of mutant genes following their appearance in a
finite population. Courses of change in the frequencies of mutants
destined to fixation are depicted by thick paths. N_ stands for the
effective population size and v is the mutation rate.

4N, 1/v
f“,bcfv\?-w;{ﬂ\‘ R A W

Time e——

The average time of replacement of a dominant genotype in a population
is the reciprocal mutation rate, 1/v, and therefore independent of

population size.

Is the Kimura scenario correct for virus populations?

Fixation of mutants in neutral evolution (Motoo Kimura, 1955)
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STATIONARY MUTANT DISTRIBUTIONS AND
EVOLUTIONARY OPTIMIZATION

® PEeETER SCHUSTER and JORG SWETINA
Institut fiir theoretische Chemie
und Strahlenchemie der Universitit Wien,
Wiihringerstrafie 17,
A 1090 Wien,
Austria

Molecular evolution is modelled by erroneous replication of binary sequences. We show how the
selection of two species of equal or almost equal selective value is influenced by its nearest
neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates
we find that the Hamming distance between the species determines selection. As the error rate
increases the fitness parameters of neighbouring species become more and more important. In
the case of almost neutral sequences we observe a critical replication accuracy at which a drastic
change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently
mutating populations fitness turns out to be an ensemble property rather than an attribute of the
individual.

In addition we investigate the time dependence of the mean excess production as a function of
initial conditions. Although it is optimized under most conditions, cases can be found which are
characterized by decrease or non-monotonous change in mean excess productions.

1. Introduction. Recent data from populations of RNA viruses provided
direct evidence for vast sequence heterogeneity (Domingo et al., 1987). The
origin of this diversity is not yet completely known. It may be caused by the low
replication accuracy of the polymerizing enzyme, commonly a virus specific,
RNA dependent RNA synthetase, or it may be the result of a high degree of
selective neutrality of polynucleotide sequences. Eventually, both factors
contribute to the heterogeneity observed. Indeed, mutations occur much more
frequently than previously assumed in microbiology. They are by no means
rare events and hence, neither the methods of conventional population genetics
(Ewens, 1979) nor the neutral theory (Kimura, 1983) can be applied to these
virus populations. Selectively neutral variants may be close with respect to
Hamming distance and then the commonly made assumption that the
mutation backflow from the mutants to the wilde type is negligible does not
apply.

A kinetic theory of polynucleotide evolution which was developed during the
past 15 years (Eigen, 1971; 1985; Eigen and Schuster, 1979; Eigen et al., 1987;
Schuster, 1986); Schuster and Sigmund, 1985) treats correct replication and
mutation as parallel reactions within one and the same reaction network

635



Neutral network dH =1
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random fixation in the sense of
Motoo Kimura

Pairs of genotypes in neutral replication networks
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....... ACAUGCGAA --:---
....... AUAUACGAA -------
....... ACAUGCGCA -------
....... GCAUACGAA -
....... ACAUGCURAA ------
....... ACAUGCGAG -
....... ACACGCGAA -------
....... ACGUACGAA --:---
....... ACAUAGGAA -
....... ACAUACGAA -

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 1.
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....... ACAUGCGAA -
....... AUAUACGAA -------
....... ACAUACGCA -------
....... GCAUACGAA -------
....... ACAUACUAA -------
....... ACAUACGAG -«
....... ACACGCGAA -
....... ACGUACGAA -
....... ACAUAGGAA ------
....... ACAUACGAA -

Consensus sequence of a quasispecies of two strongly coupled sequences of
Hamming distance d,,(X;,X;) = 2.
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5. Modeling optimization of molecules



Evolution in silico

W. Fontana, P. Schuster,
Science 280 (1998), 1451-1455

random individuals. The primer pair used for ganomic
DNA - amplification  1s 5 -TCTCCCTGGATTCT-
CATTTA-3' (forward) and 5'-TCTTTGTCTTCTGT-
TCCACC-3 (reverse). Reactions were performed in
25 l using 1 uret of Tag DNA polymerass with each
primer at 0.4 uM; 200 uM each dATP, dTTP, dGTP,
and dCTP; and PCR butfer [10 mM tris-HCI (pH 8.3),
50 mM KCL,.1.5 mM MgCL] in a cycle condition of
84°C for 1 min and then 35 cycles of 84°C for 30 s,
55°C for 30 5, and 72°C for 30 s followed by 72°C for
B min. PCR products were purified (Qiagen), digested
with Xmn |, and separated in a 2% agarose gel.

32 Ammmlﬂm&yaﬁmmwmn\rw
result in degradation of the transcript [L. Maguat,
Am. J, Hum, Genet. 59, 279 (1996)].

33, Data not shown; a dot blot with poly (A} RNA from
50 human tissues (The Human ANA Master Biot,
7770-1, Clontech Laboratories) was hybridized with
a proba from exons 29 1o 47 of MYD15 using the
same congition as Northemn biot analysis (13).

34, Smith-Magenis syndrome (SMS) is due 1o deletions
of 17p11.2 of various sizes, the smallest of whict
includes MYO15 and perhaps 20 other genes [(6);
K-S Chen, L. Potockd, J. R, Lupski, MRDD Res, Rev.
2, 122 (1996)]. MYD15 expression is easily datected
in the pituitary gland (data not shown). Haploinsuffi-
ciency for MYQ15 may explain a portion of the SMS

phenotype such as short stature. Moreover, a few
SMS patients have sensorineural hearing loss, pos-
sibly becausa of a point mutation in MYOT5 in trans
to the SMS 17p11.2 deletion.
R. A, Fridell, data not shown.
K. B. Avraham et al., Nature Genel. 11, 369 (1995);
X-Z. Liu ef al,, ibid. 17, 268 (1997); F. Gibson et af,,
Nature 374, 62 (1895); D. Wedl af al., ibid., p. 60.
37, RNA was from cochiea lab-
yrinths) obtained from human fetuses at 18 o 22
b ol A i ath auidel

g8

tin
established by the Human Research Committea at
the Brigham and Women's Hospital. Only samples
without evidence of degradation wera pocled for
poly (A)* selection over oligo{dT) columns. First-
strand cONA was prepared using an Advantage RT-
for-PCR kit (Clontech Laboratonies). A portion of the
first-strand cONA (4%) was amplified by PCR with
Advantage cONA polymarase mix (Clontech Labora-
tories) using human MYD15-specific obgonuclectide
primers (forward, 5 -GCATGACCTGCCGGCTAAT-
GGG-3'; reverse, 5'-CTCACGGCT TCTGCATGGT-
GCTCGGECTGGEE-3'). Cycling conditions were 40 5
at 94°C; 40 s at 667C (3 cycles), 60°C (5 cyclas), and
55°C (29 cycles); and 45 s at 68°C. PCR products.
were visualized by ethidium bromide staining after
fractionation in a 1% agarose gel. A 688-bp PCR

Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

Todistinguish continuous from discontinuous evelutionary change, a relation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in ANA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been puncruated by discontinuous transi-
tions at the level of phenortypes (1). Qur
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest compurationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
BNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yer, secondary structures are empir-

Ingtitut for Theoretische Chemie, Universitat Wien, Wihr-
Ingerstrassa 17, A-1090Wien, Austria, Santa Fe Institute,
1309 Hyde Park Road, Santa Fe, NM 87501, USA, and
International Institute for Applied Systems Analysis
(lASA), A-2361 Laxenburg, Austria,

ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake af brevity, we shall refer ro second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutar-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

8 REPORTS

product is expected from amplification of the human

MYO15 cDNA. Ampification of human genomic

DINA with this primer pair would result in a 2903-bp
t.

38. We are grateful lo the people of Bengkala, Bal, and
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some 17 cosmid Bbrary, For technical and computa-
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son, A, Gupta, E. Sorbello, R. Torkzadeh, C. Vamer,
M. Waker, G. Boutfard, and 5, Beckstrom-Stem-
berg (Mational Institutes of Health Intramural Se-
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hya, and S. Winata for assistance in Bali, and T,
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the similarity between its shape and the
targer. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A, Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (in\-'crscly related o fitness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, thart is, flat periods of
no apparent adaptive progress, interrupted
by sudden approaches roward the target
structure (7). However, the dominant
shapes in the population not only change at
tht.'se murkud events I)lll undergu st'vcral
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are relared by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are

www.sciencemag.org * SCIENCE = VOL. 280 = 19 MAY 19958 1451



Structure of
randomly chosen Phenylalanyl-tRNA as
initial sequence target structure




Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant
(Fitness):
=y / o+ Adg ¥]
Ads ¥ = dy(S,.S.)

Selection pressure:
The population size,
N = # RNA moleucles,

Is determined by the flux:

N(t)zﬁi\/ﬁ

Mutation rate:

p =0.001/ Nucleotide x Replication

The flow reactor as a device for
studying the evolution of molecules
in vitro and in silico.
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Transition inducing point mutations leave the
change the molecular structure molecular structure unchanged

Neutral genotype evolution during phenotypic stasis



Evolutionary trajectory

Spreading of the population
on neutral networks

Drift of the population center
In sequence space
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Cost function
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This preservation of favourable individual differences
and variations, and the destruction of those which are injurious,
I have called Natural Selection, or the Survival of the Fittest.
Variations neither useful nor injurious would not be affected by
natural selection, and would be left either a fluctuating element,
as perhaps we see in certain polymorphic species, or would
ultimately become fixed, owing to the nature of the organism
and the nature of the conditions.

Charles Darwin. The Origin of Species. Sixth edition. John Murray. London: 1872



Neutrality in molecular structures and its role in
evolution:

* Neutrality is an essential feature in biopolymer structures at the
resolution that is relevant for function.

* Neutrality manifests itself in the search for minimum free energy
structures.

» Diversity in function despite neutrality in structures results from
differences in suboptimal conformations and folding kinetics.

* Neutrality is indispensible for optimization and adaptation.
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