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Populations adapt to their environments
through multiplication, variation, and
selection - Darwins natural selection.

All forms of (terrestrial) life descend
from one common ancestor - phylogeny
and the tree of life.



Darwin’s natural selection

The tree of life

From evolution /n vitro to biotechnology
Genotypes with multiple functions

How complex is biology?



1. Darwin's natural selection



Genotype, Genome

Collection of genes
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Evolution explains
the origin of species and
their interactions




Three necessary conditions for Darwinian evolution are:

1. Multiplication,
2. Variation, and

3. Selection.

Variation through mutation and recombination operates on the genotype
whereas the phenotype is the target of selection.

One important property of the Darwinian scenario is that variations in the
form of mutations or recombination events occur uncorrelated with their
effects on the selection process.
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2. The tree of life
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Charles Darwin, The Origin of Species, 6th edition.

Everyman‘s Library, Vol.811, Dent London, pp.121-122.
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Genotype, Genome
GCGGATTTAGCTCAGTTGGGAGAGCGCCAGACTGAAGATCTGGAGGTCCTGTGTTCGATCCACAGAATTCGCACCA

Quantitative Biochemistry
biology molecular biology £
‘the new biology is structural biOIOQY é H|gh|y specific
the chemistry of molecular evolution 2| environmental
living matter’ molecular genetics 5| conditions
8 systems biology £
bioinfomatics &
epigenetics DV
John Kendrew
Phenotype

evolution of RNA molecules,
ribozymes and splicing,
the idea of an RNA world,
selection of RNA molecules,
RNA editing,
the ribosome is a ribozyme,
small RNAs and RNA
switches.

Molecular evolution
Linus Pauling and
Emile Zuckerkandl

The exciting RNA story

James D. Watson und
Francis H.C. Crick

Hemoglobin sequence

Gerhard Braunitzer Max Perutz



James D. Watson, 1928-, and Francis H.C. Crick, 1916-2004
Nobel prize 1962

The geometry of the double helix is compatible
only with the base pairs:

AT, TA, CG, and GC

The three-dimensional structure of a
short double helical stack of B-DNA



The structure of DNA suggests a mechanism for reproduction
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The logics of DNA replication



point mutation

The molecular mechanism of mutation
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WIOTED KIMLES

Motoo Kimuras population genetics of
neutral evolution.

Evolutionary rate at the molecular level.
Nature 217: 624-626, 1955.

The Neutral Theory of Molecular Evolution.

Cambridge University Press. Cambridge,
UK, 1983.

THE NEUTRAL THEORY
OF MOLECULAR EVOLUTION

MOTOO KIMURA

National Institute of Genetics, Japan

CAMBRIDGE UNIVERSITY PRESS
Cambridge

London New York New Rochelle
Melbourne Sydney



What is neutrality ?

Selective neutrality =
= several genotypes having the same fitness.

Several genotypes = one phenotype



Fig. 4.2. Percentage amino acid differences when the o hemoglobin
chains are compared among eight vertebrates together with their
phylogenetic relationship and the times of divergence.
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Results from molecular evolution:

* The molecular machineries of all present day cells are very
similar and provide a strong hint that all life on Earth descended
from one common ancestor (called ,last universal common
ancestor", LUCA).

» Comparison of DNA sequences from present day organisms allows
for a reconstruction of phylogenetic trees, which are (almost)
identical with those derived from morphological comparison of
species and the paleontologic record of fossils.



3. From evolution /n vitro to biotechnology



Three necessary conditions for Darwinian evolution are:

1. Multiplication,
2. Variation, and

3. Selection.

Variation through mutation and recombination operates on the genotype
whereas the phenotype is the target of selection.

One important property of the Darwinian scenario is that variations in the
form of mutations or recombination events occur uncorrelated with their
effects on the selection process.

All conditions can be fulfilled not only by cellular organisms but also by
nucleic acid molecules in suitable cell-free experimental assays.



Evolution of RNA molecules based on Q3 phage

D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a
self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

S.Spiegelman, An approach to the experimental analysis of precellular evolution.
Quart.Rev.Biophys. 4 (1971), 213-253

C.K.Biebricher, Darwinian selection of self-replicating RNA molecules. Evolutionary
Biology 16 (1983), 1-52

G.Bauer, H.Otten, J.S.McCaskill, Travelling waves of in vitro evolving RNA.
Proc.Natl.Acad.Sci.USA 86 (1989), 7937-7941

C.K.Biebricher, W.C.Gardiner, Molecular evolution of RNA in vitro. Biophysical
Chemistry 66 (1997), 179-192

G.Strunk, T.Ederhof, Machines for automated evolution experiments in vitro based on
the serial transfer concept. Biophysical Chemistry 66 (1997), 193-202

F.Ohlenschlager, M.Eigen, 30 years later — A new approach to Sol Spiegelman‘s and
Leslie Orgel‘s in vitro evolutionary studies. Orig.Life Evol.Biosph. 27 (1997), 437-457



Reviews G. F. Joyes

DOI: 10.1002/anie. 200701 369

Forty Years of In Vitro Evolution™*
Gerald F. Joyce*®

Evolution in the test tube:

G.F. Joyce, Angew.Chem.Int.Ed. Angewandte
46 (2007), 6420-6436

6420 wwwangewandteorg D 2007 Wiy WEH Wiy S & Co KCak Warbar Arges: Cheee. . Fd 2000, 46, Sgpo- 448



RNA sample
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Stock solution: QB RNA-replicase, ATP, CTP, GTP and UTP, buffer

Application of serial transfer technique to evolution of RNA in the test tube
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Mutation and (correct) replication as parallel chemical reactions

M. Eigen. 1971. Naturwissenschaften 58:465,
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ORIGIN AND
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Edited by
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JOHN J. HOLLAND
Molecular evolution of viruses




Evolutionary design of RNA molecules

A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands.
Nature 346 (1990), 818-822

C. Tuerk, L. Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA
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D.P. Bartel, J.W. Szostak, Isolation of new ribozymes from a large pool of random sequences.
Science 261 (1993), 1411-1418

R.D. Jenison, S.C. Gill, A. Pardi, B. Poliski, High-resolution molecular discrimination by RNA.
Science 263 (1994), 1425-1429

Y. Wang, R.R. Rando, Specific binding of aminoglycoside antibiotics to RNA. Chemistry &
Biology 2 (1995), 281-290

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside
antibiotic-RNA aptamer complex. Chemistry & Biology 4 (1997), 35-50
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tobramycin

B3 CcO®c NN cOHDcOHCcOcaMEc ¢

RNA aptamer, n = 27

Formation of secondary structure of the tobramycin binding RNA aptamer with K, =9 nM

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-
RNA aptamer complex. Chemistry & Biology 4:35-50 (1997)



The three-dimensional structure of the
tobramycin aptamer complex

L. Jiang, A. K. Suri, R. Fiala, D. J. Patel,
Chemistry & Biology 4:35-50 (1997)
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Application of molecular evolution to problems in biotechnology



Artificial evolution in biotechnology and pharmacology

G.F. Joyce. 2004. Directed evolution of nucleic acid enzymes.
Annu.Rev.Biochem. 73:791-836.

C. Jackel, P. Kast, and D. Hilvert. 2008. Protein design by
directed evolution. Annu.Rev.Biophys. 37:153-173.

S.J. Wrenn and P.B. Harbury. 2007. Chemical evolution as a
tool for molecular discovery. Annu.Rev.Biochem. 76:331-349.



Results from laboratory experiments in molecular
evolution:

- Evolutionary optimization does not require cells and occurs in
molecular systems too.

» In vitro evolution allows for production of molecules for
predefined purposes and gave rise to a branch of biotechnology.

* Direct evidence that neutrality is a major factor for the
success of evolution.



4. Genotypes with multiple functions



What is conformational multiplicity ?

Conformational multiplicity =
= several structures formed by one sequence.

One genotype = several phenotypes
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5. How complex is biology?



Three-dimensional structure of the
complex between the regulatory

protein cro-repressor and the binding
site on A-phage B-DNA
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The bacterial cell as an example for \ \
the simplest form of autonomous life w

Escherichia coli genome:

4 million nucleotides
4460 genes

The structure of the bacterium Escherichia coli



E. coli: Genome length 4x106 nucleotides

Number of cell types 1
Number of genes 4 460
Man:  Genome length 3x%10° nucleotides
Number of cell types 200
Number of genes ~ 30 000

Complexity in biology
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Alan C. Wilson.1985. The molecular
basis of evolution.
Scientific American 253(4):148-157.
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Evolution does not design with
the eyes of an engineer,
evolution works like a tinkerer.

Frangois Jacob. The Possible and the Actual.
Pantheon Books, New York, 1982, and

Evolutionary tinkering. Science 196 (1977),
1161-1166.
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A model for the genome duplication in yeast 100 million years ago

Manolis Kellis, Bruce W. Birren, and Eric S. Lander. Proof and evolutionary analysis of ancient genome
duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617-624, 2004
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The difficulty to define
the notion of ..gene".

Helen Pearson,

Nature 441: 399-401, 2006

WHAT IS A GENE?

The idea of genes as beads on a DNA string is fast fading. Protein-coding sequences have no
clear beginning or end and RNA is a key part of the information package, reports Helen Pearson.

‘! ene’ is not a typical four-letter

word, It is not offensive. It is never

bleeped out of TV shows. And

where the meaning of most four-

letter words is all too clear, that of gene is not.

The more expert scientists become in molecu-

lar genetics, the less easy it is to be sure about
what, if anything, a gene actually is.

Rick Young, a geneticist at the Whitehead
Institute in Cambridge, Massachusetts, says
that when he first started teaching as a young
professor twa decades ago, it took him about
two hours to teach fresh-faced undergraduates
what a gene was and the nuts and bolts of how
it worked. Today, he and his colleagues need
three months of lectures to convey the concept
of the gene, and that's not because the students
are any less bright. “It takes a whole semester
to teach this stuff to talented graduates,” Young
says. “It used to be we could give a one-off def-
inition and now it's much more complicated.”

In classical genetics, a gene was an abstract
concept — a unit of inheritance that ferried a
characteristic from parent to child. As bio-
chemistry came into its own, those character-
istics were associated with enzymes or proteins,
one for each gene. And with the advent of mol-
ecular biology, genes became real, physical
things — sequences of DNA which when con-
verted into strands of so-called messenger
RNA could be used as the basis for building
their associated protein piece by piece. The
great coiled DNA molecules of the chromo-
somes were seen as long strings on which gene
sequences sat like discrete beads.

This picture is still the working model for
many scientists. But those at the forefront of
genetic research see it as increasingly old-fash-
ioned — a crude approximation that, at best,
hides fascinating new complexities and, at
worst, blinds its users to useful new paths
of enquiry.

Information, it seems, is parceled out along
chromosomes in a much more complex way
than was originally supposed. RNA molecules
are not just passive conduits through which the
gene's message flows into the world but active
regulators of cellular processes. In some cases,
RNA may even pass information across gener-
ations — normally the sole preserve of DNA.

An eye-opening study last year raised the
possibility that plants sometimes rewrite their
DNA on the basis of RNA messages inherited
from generations past'. A study on page 469 of
this issue suggests that a comparable phenom-
enon might occur in mice, and by implication
in other mammals®, If this type of phenome-
non is indeed widespread, it "would have huge
implications,” says evolutionary geneticist

Laurence Hurst at the University of Bath, UK.

“All of that information seriously challenges
our conventional definition of a gene” says
molecular biologist Bing Ren at the University
of California, San Diego. And the information
challenge is about to get even tougher. Later
this year, a glut of data will be released from
the international Encyclopedia of DNA Ele-
ments (ENCODE) project. The pilot phase of
ENCODE involves scrutinizing roughly 1% of
the human genome in unprecedented detail;
the aim is to find all the

NEWS FEATURE

viously unimagined scope of RNA.

The one gene, one protein idea is coming
under particular assault from researchers who
are comprehensively extracting and analysing
the RNA messages, or transcripts, manufac-
tured by genomes, including the human and
mouse genome. Researchers led by Thomas
Gingeras at the company Affymetrix in Santa
Clara, California, for example, recently studied
all the transcripts from ten chromosomes
across eight human cell lines and worked out

precisely where on the chro-

sequences that serve a useful “We've come to the mosomes each of the tran-
purpose and explain what realization that the scripts came from’,

that purpose is. “When we
started the ENCODE project

genome is full of

The picture these studies
int is one of

I had a different view of overlapping transcripts.”  mind-boggling complexity.

what a gene was,” says con- — Phillip Kapra

tributing researcher Roderic

Guigo at the Center for Genomic Regulation
in Barcelona, “The degree of complexity we've
seen was not anticipated.”

Under fire
The first of the complexities to challenge molec-
ular biology’s paradigm of a single DNA
sequence encoding a single protein was alterna-
tive splicing, discovered in viruses in 1977 (see
‘Hard to track) overleaf). Most of the DNA
sequences describing proteins in humans havea
modular arrangement in which exons, which
carry the instructions for making proteins, are
interspersed with non-coding introns. In alter-
native splicing, the cell snips out introns and
sews together the exons in various different
orders, creating messages that can code for dif-
ferent proteins. Over the years geneticists have
also documented overlapping genes, genes
within genes and countless other weird arrange-
ments (see ‘Muddling over genes, overleaf).
Alternative splicing, however, did not in itself
require a drastic reappraisal of the notion of a
gene; it just showed that some DNA sequences
could describe more than one protein. Today's
assault on the gene concept is more far reach-
ing, fuelled largely by studies that show the pre-

o AN
Spools of DNA (above) still harbour surprises, with
one protein-coding gene often overlapping the next.

ov Instead of discrete genes
dutifully mass-producing
identical RNA transcripts, a teeming mass of
transcription converts many segments of the
genome into multiple RNA ribbons of differing
lengths. These ribbons can be generated from
both strands of DNA, rather than from just one
as was conventionally thought. Some of these
transcripts come from regions of DNA prev
ously identified as holding protein-coding
genes, But many do not. “Its somewhat revolu-
tionary,’ says Gingeras’s colleague Phillip
Kapranov, “We've come to the realization that
the genome is full of overlapping transcripts”

Other studies, one by Guigo’ team', and one
by geneticist Rotem Sorek’, now at Tel Avi
University, Israel, and his colleagues, have
hinted at the reasons behind the mass of tran-
scription. The two teams investigated occa
sional reports that transcription can start at a
[DNA sequence associated with one protein
and run st through into the gene for a
completely different protein, producing a
fused transcript. By delving into databases of
human RNA transcripts, Guigo’s team esti-
mate that 4-5% of the DNA in regions con-
ventionally recognized as genes is transcribed
in this way. Producing fused transcripts could
be one way for a cell to generate a greater vari-
ety of proteins from a limited number of
exons, the researchers say.

Many scientists are now starting to think
that the descriptions of proteins encoded in ~
DNA know no borders — that each sequence
reaches into the next and beyond. This idea
will be one of the central points to emerge
from the ENCODE project when its results are
published later this year.

Kapranov and others say that they have doc-
umented many examples of transcripts in
which protein-coding exons from one part of
the genome combine with exons from another

399




ENCODE stands for

ENCyclopedia Of DNA Elements.

ENCODE Project Consortium.
Identification and analysis of functional
elements in 1% of the human genome by
the ENCODE pilot project.

Nature 447:799-816, 2007
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Web-Page for further information:
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