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Charles Darwin, 1809 - 1882 



The five concepts ofDarwin‘s theory of evolution from the 
„Origin of Species“, 23.11.1859 

Ernst Mayr. 1991. One long argument. Harvard University Press.   

1. evolution – the fact as such 
 

2. common descent – all organisms have a common 
ancestor 
 

3. multiplication of species – the formation of new 
species from existing ones 
 

4. gradualism – all changes happen in (very) small steps 
 

5. natural selection – adaptation to the environment as 
a result of the fact that only few individuals can 
master the competition for limited resources 



Stephen J. Gould,  
1941 - 2002 Niles Eldredge, 1943 - 

The concept of punctuated equilibrium 



Gradualism versus punctualism in butterfly species formation 



Elisabeth Vrba, 1943 - 

A speciation model based on 
punctuated equilibrium 
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Bacterial evolution under controlled conditions: A twenty years experiment. 
 

Richard Lenski, University of Michigan, East Lansing 

Richard Lenski,  1956 - 



Bacterial evolution under controlled conditions: A twenty years experiment. 
 

Richard Lenski, University of Michigan, East Lansing 



The twelve populations of Richard Lenski‘s long time evolution experiment  



Epochal evolution of bacteria in serial transfer experiments under constant conditions 
S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants. 
Science 272 (1996), 1802-1804 

1 year 
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The twelve populations of Richard Lenski‘s long time evolution experiment 
Enhanced turbidity in population A-3  



Innovation by mutation in long time evolution of Escherichia coli in constant environment 

Z.D. Blount, C.Z. Borland, R.E. Lenski. 2008. Proc.Natl.Acad.Sci.USA 105:7899-7906 



Innovation by mutation in long 
time evolution of Escherichia 
coli in constant environment 
 

Z.D. Blount, C.Z. Borland, R.E. 
Lenski. 2008. 
Proc.Natl.Acad.Sci.USA 
105:7899-7906 



Contingency of E. coli evolution experiments 
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What is neutrality ? 
 
 
Selective neutrality =  
= several genotypes having the same fitness. 
 
 
Structural neutrality = 
= several genotypes forming molecules with 
the same structure. 





Charles Darwin. The Origin of Species. Sixth edition. John Murray. London: 1872  



Motoo Kimura‘s population genetics of 
neutral evolution.  

 

Evolutionary rate at the molecular level. 
Nature 217: 624-626, 1955. 

The Neutral Theory of Molecular Evolution. 
Cambridge University Press. Cambridge, 
UK, 1983. 



Fixation of mutants in neutral evolution (Motoo Kimura, 1955) 

The average time of replacement of a dominant genotype in a population 
is the reciprocal mutation rate, 1/, and therefore independent of 
population size. 



Motoo Kimura. The Neutral Theory of 
Molecular Evolution. Cambridge 
University Press. Cambridge, UK, 1983. 

The molecular clock of evolution 



Manfred Eigen 
1927 -  
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Mutation and (correct) replication  as parallel chemical reactions 
 

M. Eigen. 1971. Naturwissenschaften 58:465,  
M. Eigen & P. Schuster.1977. Naturwissenschaften 64:541, 65:7 und 65:341 



The continuously stirred tank reactor 
(CSTR) as a tool for studies on in vitro 

evolution and computer simulation. 

Stock solution:  
activated monomers, ATP, CTP, GTP, UTP; 
a replicase, an enzyme that performs 
complementary replication; 
buffer solution 



quasispecies 

The error threshold in replication and mutation 



A model fitness landscape that was accessible to computation in the nineteen eighties 

single peak landscape 



Stationary population or 
quasispecies as a function 
of the mutation or error 
rate p 

Error rate  p = 1-q
0.00 0.05 0.10

Quasispecies Uniform distribution



              Realistic fitness landscapes 
 

 
1.Ruggedness: nearby lying genotypes may 
develop into very different phenotypes 

 
2.Neutrality: many different genotypes give rise to 
phenotypes with identical selection behavior  

 
3.Combinatorial explosion: the number of possible 
genomes is prohibitive for systematic searches 

and hence, any successful and applicable theory of molecular 
evolution must be able to predict evolutionary dynamics from a 
small or at least in practice measurable number of fitness values. 
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Definition of RNA structure 



A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs 

Criterion:   Minimum free energy (mfe) 

Rules:     _ ( _ ) _     {AU,CG,GC,GU,UA,UG} 

N = 4n 

NS < 3n 



many genotypes                   one phenotype     



AGCUUAACUUAGUCGCU 

1 A-G 1 A-U 

1 A-C 





Motoo Kimura 

Is the Kimura scenario correct for frequent mutations? 



Pairs of neutral sequences in replication networks 
 
P. Schuster, J. Swetina. 1988. Bull. Math. Biol. 50:635-650 
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A fitness landscape including neutrality 



Neutral network: Individual sequences 
 

n = 10,  = 1.1, d = 1.0 



Neutral network: Individual sequences 
 

n = 10,  = 1.1, d = 1.0 



Consensus sequences of a 
quasispecies of two strongly 
coupled sequences of  
Hamming distance  
dH(Xi,,Xj) = 1 and 2.  



Neutral networks with increasing  :   = 0.10, s = 229 

Adjacency matrix 
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Evolution of RNA molecules as a Markow process and its analysis by means of the relay series 
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Computer simulation of RNA optimization 
 
Walter Fontana and Peter Schuster, 
Biophysical Chemistry 26:123-147, 1987 
 
Walter Fontana, Wolfgang Schnabl, and 
Peter Schuster, Phys.Rev.A 40:3301-3321, 1989 



Walter Fontana, Wolfgang Schnabl, and 
Peter Schuster, Phys.Rev.A 40:3301-3321, 1989 



Evolution in silico 
 
W. Fontana, P. Schuster,  
Science 280 (1998), 1451-1455 



Phenylalanyl-tRNA as 
target structure 

Structure of 
randomly chosen 
initial sequence 



The flow reactor as a device for 
studying the evolution of molecules 

in vitro and in silico. 

Replication rate constant 

(Fitness): 

fk =  / [ + dS 
(k)] 

dS 
(k) = dH(Sk,S) 

 

Selection pressure: 

The population size,  

N = # RNA moleucles,  

is determined by the flux: 

 
 

Mutation rate: 

p = 0.001 / Nucleotide  Replication  

NNtN ±≈)(



Spreading of the population 
on neutral networks 

Drift of the population center 
in sequence space 

Evolutionary trajectory 



First adaptive phase in RNA structure optimization 



First adaptive phase in RNA structure optimization: RNA structures 



First adaptive phase in RNA structure optimization: RNA sequences 

Transition inducing point mutations 
change the molecular structure 

Neutral point mutations leave the 
molecular structure unchanged 



First adaptive and quasistationary phase in RNA structure optimization 

7                       8                       9                      10 



Neutral genotype evolution during phenotypic stasis  

Neutral point mutations leave the 
molecular structure unchanged 

Transition inducing point mutations 
change the molecular structure 

28 neutral point mutations during a 
long quasi-stationary epoch 







Spreading and evolution of a population on a neutral network:  t = 150 
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Spreading and evolution of a population on a neutral network :  t = 170 



Spreading and evolution of a population on a neutral network :  t = 200 



Spreading and evolution of a population on a neutral network :  t = 350 



Spreading and evolution of a population on a neutral network :  t = 500 



Spreading and evolution of a population on a neutral network :  t = 650 



Spreading and evolution of a population on a neutral network :  t = 820 



Spreading and evolution of a population on a neutral network :  t = 825 



Spreading and evolution of a population on a neutral network :  t = 830 



Spreading and evolution of a population on a neutral network :  t = 835 



Spreading and evolution of a population on a neutral network :  t = 840 



Spreading and evolution of a population on a neutral network :  t = 845 



Spreading and evolution of a population on a neutral network :  t = 850 



Spreading and evolution of a population on a neutral network :  t = 855 



A sketch of optimization on neutral networks 



Neutrality explains both 

punctuation and contingency 
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