


Complexity in Molecular Systems
Peter Schuster

Institut fur Theoretische Chemie, Universitat Wien, Austria

and
The Santa Fe Institute, Santa Fe, New Mexico, USA

Academia Europaea — Klaus Tschira Foundation
,complexity*

Heidelberg, 25.— 26.04.2008



Web-Page for further information:

http://www.tbi.univie.ac.at/~pks



Autocatalytic chemical reactions
Replication and biological information

Quasispecies and error thresholds
Neutral networks in evolution
Evolutionary optimization

Genetic regulation and metabolism



1. Autocatalytic chemical reactions
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Reactions in the continuously stirred tank reactor (CSTR)
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Reversible first order reaction in the flow reactor
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Autocatalytic second order reaction and uncatalyzed reaction in the flow reactor
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Autocatalytic third order reaction and uncatalyzed reaction in the flow reactor




2X+Y — 3X
B+X — Y4+CO

X — D
The Brusselator model X = 1- (b+1)X + aX?Y
G. Nicolis, 1. Prigogine. Y — X — (.I.XQY

Self-organization in nonequilibrium

systems. From dissipative structures
to order through fluctuations.

John Wiley & Sons, New York 1977



Mechanism for the bromate—sulfite—ferrocyanide reaction

Number Reaction

(B1) BrO,” + HSO,” — HBrO, + SO~

(B2) HBrO, + Br™ + H* — 2HOBr

(B3) HOBr + Br + H* — Br, + H,0

(B4) Br, + H,O—HOBr + Br” + H

(B3) 2HBrO, — BrO,” + HOBr + H*

(B6) Br, + HSO,” + H,0 — 2Br™ + SO~ + 3H"

(B7) H* + SO,*~ — HSO,"

(B8) HSO,” — H* + SO,*"

(B9) BrO,” + 2F¢(CN),*~ + 3H* — HBrO, + 2Fe(CN),*~ +
H,O

Reaction mechanism of an autocatalytic reaction
F. Sagués, I.R. Epstein. Dalton Trans. 2003:1201-1217.



Mechanism of the chlorite-iodide and related reactions?

Number Reaction Rate law
(M1) ClO, + I — ClO,” + l, vy =6 x 10°[CIO,][17]
(M2) L+ H,O—HOI+1 +H" vy, = 1.98 x IO_E[IZ]I[HJ'] — 3.67 x 10°[HOI[17]
Vop = 3.52 X 10'3[1 ] — 3.48 x 10°[H,O1*][I7]
(M3 HCIO, + 17 + H" — HOI + HCl v, = T.8[HCIO,][17]
(M4 HCIO, + HOI — HIO, + HOCI v, = 6.9 x 107 [HCIO,[HOI]
(M35) HCIO, + HIO, — 10, + HOCl + H” vs = 1.5 x 10°[HCIO,[HIO,]
(Mé6) HOCl 4+ I — HOI + CI™ ve=4.3 x 10°HOCI][17]
(MT) HOCI + HIO, — 10, + CI~ + 2H* v; = 1.5 x 10°[HOCI|[HIO,]
(MB) HIO, + I + HY —= 2HOI vy = 1.0 x 10°[HIO][I"[H*] — 22[HOTJ
(M9) 2HIO, — 10, + HOIL + H* Ve = 25[HIO,?
(M10) HIO, + H,OIT —10,” + 1" + 3H* v = 1IO[HIO,[H,O17]
(M11) HOClI+ CI"+ H" = Cl, + H,O vy = 2.2 % 10°HOCI[CIT][H*] — 22[Cl,)
(M12) Cl, + I, + 2H,0 — 2HOI + 2C1” 4+ 2H" vip= 1.5 % 10°7[ClY][1,]
(M13) Cl, + HOI + H,0 — HIO, + 2C1~ + 2H" v, = 1.0 % 10°[CLJ[HOI]
Rapid equilibria

(M14) HCl0, = ClO,” + HT K4 =[CIO, [H'[HCIO,] = 2.0 1072

(M15) H,OI" —=HOI + H" K,s =[HOI[H")[H, O] = 3.4 % 1072

(M16) L+1I"—I;" K, =3 YL =74 x 10

“ All concentrations in M, times in s.

Reaction mechanism of an autocatalytic reaction
F. Sagués, I.R. Epstein. Dalton Trans. 2003:1201-1217.



Reaction mechanism of the
Belousov-Zhabotinskii reaction

D. Edelson, R.J. Field, R. M. Noyes.
Internat.J.Chem.Kin. 7:417-432, 1975
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Br +2H*+Br0; = HOBr+ HBO,

Br +HBrO, + H* = JHOBr

Br + HOBe + H* = Bry + Hy0

H* + CH, (COOH 1, = {(OH),C =CHCOOH + H*

Bry + (OH),C=CHCOOH = H* + B¢~ + BrCH{COOH }4

HOBr + (OH ),C=CHCOOH = H,0 + BrCH {(COOH ),

HBrO, +BrO;  +H* = 2Br0, - +H,0

BrOy - +Ce (II1) + H* = Ce (IV ) + HBrQ,

Ce(IV)+BrO;  + Hy0 = BrOy +IH* + Ce (111)

2HBrO, = HOBr+ BrO,  +H*

Ce (IV) + CH, (COOH }; — CHICOOH ), +Ce (H1} + H*

-CH(COOH ); +Ce (IV ) + Hy;0 — HOCH(COOH ), + Ce (I} + H*

Ce (1V) + BrCH (COOH ); + H,0 = Br ™ + HOCICOOH ), +Ce (111} + H*
-CH (COOH ), + BrCH (COOH ), + H;0 — HOC(COOH ), +CH, (COOH ), +Br~ 4+ HY
HOCICOOE ), +CefIV) — O =CI(COOH ), +Ce (I} + H*

HOC(COOH ), + BrCH (COOH ), + H,0 — HOCH (COOH ), + Br~ + HOC (COOH), + H*

. Ce(IV)+ HOCH (COOH }; — HOCICOOH ), +Ce {1} + H*

. CellV)+0=C{COO0H ), ~ 0 =C(CO0- ) {COOH ) +Ce (i1} +H*

. O=C(C00- }COOH )+ Ce (TV ) + H,0 — HCOOH + Ce (111) + H* + 2CO,
. O=C(CO0- }(COOH ) 4+ BrCH ICODH ) +H,0 —

HOC(COOH ), + 0 =C{COOH ), +Br~ +H*
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Pattern formation in the Belousov-Zhabotinskii reaction
F. Sagués, I.R. Epstein. Dalton Trans. 2003:1201-1217.
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Deterministic chaos in a chemical reaction
F. Sagués, I.R. Epstein. Dalton Trans. 2003:1201-1217.



({)C —— b ]
> o \
- — DZACI + E((jl?(jer-"?CTz); 2‘:1?21"'171‘ - L4 .
ot
x e,
D, ... diffusion coefficient of substance 71"

Calculated and experimental Turing patterns

R.A. Barrio, C. Varea, J.L. Aragon, P.K. Maini,
Bull.Math.Biol. 61:483-505, 1999

R.D. Vigil, Q. Ouyang, H.L. Swinney,
Physica A 188:15-27, 1992

V. Castets, E. Dulos, J. Boissonade, P. De Kepper,
Phys.Rev.Letters 64:2953-2956, 1990




2. Replication and biological information



James D. Watson, 1928-, and Francis H.C. Crick, 1916-2004
Nobel prize 1962

1953 — 2003 fifty years double helix

The three-dimensional structure of a
short double helical stack of B-DNA




FT-A-G-G-C-T-A-T-A-A-LC-C--—-G-C—~

A = Adenine (G = Guanine

T = Thymine @ = Cytosine

HD-E-©- 145 > 0-0-00 60
i ,5}_ | I I 1 1 LI 1
<~ O -A- T-T- €)= ©) = b E)_I

Deoxyribonucleic acid - DNA

Base complementarity and conservation of genetic information



Plus strand ey =—y—yy—————————- - === e == ——@
AUGGUACAUCAUGA cuu
Template induced synthesis
Plus strand sy=—r—pp—p—————————- == =~ — @
AUGGUACAUCAUGA CUUG
, UACC AU
Minus strand @-t=—te—te—t——— G
Template induced synthesis
Pl I T —————————— e —r——10
. AUBEUACAUCAUGA CUUG

UACCAUGUAGUACU

Minus strand @+
Complex dissociation lT

GAAC

Plus strand  =re——pr—p—p—f——r—rr
AUGGUACAUCAUGA
+

, UACCAUGUAGUACWU
Minus strand @ t——tm——t—te—t e

'I'I'I'l.
CUUG

GAAC

Complementary replication is
the simplest copying mechanism
of RNA.

Complementarity is determined
by Watson-Crick base pairs:

G=C and A=U



n + F] Xm /dt = fz Xy - X] d
() L > DG dx, /dt = f, x| - X, @

A + (1) > (1) - D)

(DzZifixi; ZiXiZI;

Complementary replication as the simplest molecular mechanism of reproduction

1=1,2



i nd  nai S —
s]o‘ . . kASn P l'llEPﬂ
\ﬂ 2
- & DSyt
RFPI‘EPJ
/
“or1/” Bp
!
JfllEFJ,-‘l s kJ"S'
3 kASj
&W —
IEP ks,
PP
2 2sk453 Kasi
0S3 1
i k IEs
53 zlEP kAsz DS2 o1
k iEs's?
szkopzl sz

Kinetics of RNA replication

C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr.
Biochemistry 22:2544-2559, 1983
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(A)

(A)

(A)

(A)

(A)

dx; /dt = fix; - x; ® =x; (fj- D)

O = Zj 1‘3 Xj 3 Zj Xj = l1; 1=1,2,..n

[L]=x;=20; 1=1,2,..,n;

[A] = a = constant
f, = max {f;; j=1,2,...,n}

Xm(t) = 1 for t — e

Reproduction of organisms or replication of molecules as the basis of selection



Selection equation: [I;]=x,2>0, f>0

dx;

E:Xi(fi ~p) =120y YU x =L g=30 fix =T

Mean fitness or dilution flux, ¢ (t), is a non-decreasing function of time,

d_¢:Zn: fi%:f——(f)2 = var{f }>0

Solutions are obtained by integrating factor transformation

X (t) = X;(0)-exp (fit) i—12..

Z?:lxj(o)-exp(fjt)’

N
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time
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3. Quasispecies and error thresholds



SN SRS WS SN RSN SN RN EEEN SN N CHEN IS R | !Ill.
AUGGUACAUCAUGA CuuaaG
parent sequence
: 9
AUGGUACAEUCAUGA CuuG
L]
e — Y Y T |E. T T T i s et ! T i I.
CAAGCUAGAACCGU GCCA

parent sequences

T L T T T T T T T T T T L] T T T T L) .
AUGGUACAUUAUGA CUUG
point mutation

T LS L LS L L L L Ll T T T LJ L] r T Ls T L T T T .
AUGGUACAUCAUGCAUGA CUUG
insertion

SR S TET. ST T T I T T llil.
AUGGUACAUGA CuUuG

deletion
— o
AUGGUACAIAACCGU GCCA
1
CAAGCUAGUCAUGA CUUG

recombination

Variation of genotypes through mutation and recombination



T T T LI .
AUGGUACAUUAUGA CUUG
point mutation

||||||||||||||||||||||||||||||||

T T T T . T T T L .
AUGGUACAUCAUGA CUUG AUGGUACAUCAUGCAUGA CUUG
parent sequence insertion

uuuuuuuuuuu

T L] L] L] ‘
AUGGUACAUGA CUUG
deletion

Variation of genotypes through mutation
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M + (X > X3 + (X,
J f Qj J J
£ Quj l
Xn = X_]

Chemical kinetics of replication and mutation as parallel reactions
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The replication-mutation equation



Mutation-selection equation: [I;] =x; 20, f,>0,Q; 2

dXi n :
E:ZMQH %= %@, 1=12 Z—l' L= Z‘l J J:

Solutions are obtained after integrating factor transformation by means
of an eigenvalue problem

Z ik eXp(/I t) ] i
X (t): =0  1=12,---.n; C, (0) = i—1hki X, (0)
Zilekzogjk 'Ck( )-exp(4t) 2

W+ 1{,Q,; i, j=L.2,---.n}; L=1{¢,: i, j=L2,-.nf; L =H=1{h; i, j=1,2,---,n

L*W-L = A = {4;k=0,1,--,n-1}



Matrix W and Frobenius theorem:

Wy W2 ... UWyip
wop Wa2 ... UWap

W o=

Wn1 Wp2 ... Wy

Primitive matrix W:

A nonnegative square matrix W = {w;;} is said to be a primitive matrix if
there exists k such that W* > 0 | i.e., if there exists k such that for all 7, 7,
the (7, 7) entry of W¥ is positive.
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AUGGUACAUCAUGA CUuG AUGGUACAUUAUGA CUUG

parent sequence point mutation

Variation of genotypes through point mutation



Uniform error rate model:

Qij — de(Xé,Xj) (1 _ p) (n—dH()(z.__)(j})

di(X;, X;) ... Hamming distance
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Master sequence

Formation of a quasispecies

in sequence space
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Master sequence

Formation of a quasispecies

in sequence space
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Master sequence
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Formation of a quasispecies

in sequence space



Uniform distribution in

sequence space
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Koy womads: Palymisciosticde replivanion; Chasi - ipevies; Povst mutition: Mutunr clan: Stochastic replication

A model For polynucleotide replication is presented and analyzed by means of pertusbation theory. Twn hasis ssumptions
aliorw handling of sequences up 10 a chain length of » = 80 explicitly: poim mutatioss ase restricied so @ two-sdig model asd
individual sequences are subsumed into stant clawics. Pervarbation theory is in evcellent agreement with the evact revults for

long encugh sequmees (r > 201

L. Introduction

Eigen [8] proposed a formal kinctic equation
{eq. 1) which describes self-replication under the
constraint of constant total population size:
'{‘-:'-i.-;n.r‘.-%a.a-l....u' i
By x, we denote the population number of con-
centration of the self-replicating element 1, ie.
x,=[1,]. The total population size or wal con-
centration ¢ = E,x, is kept constant by proper ad-
Jjustment of the constraint ¢: ¢ = EF w, x,. Char-
acteristically, this constraint has been called “con-
stant organization”, The relative values of diagonal

* Dedicated to the lize Professor BLL Jones who was among
the first 80 & rigerous mathematical snabysis om the prob.
fems described here

*s Thes paper b considered as part 11 of Model Studies on
RMA eeplication. Past 1 i by Gassner and Schuster | 14]
* AN summations tsroughout this papee run from | 10 % unles.
specified duffermcly: £ =7, and L, . =B/ +EL .0
respectively.

00014627, /82 /T000-000,/ 50275 © 1982 [evier Becmsedical Pres

(w;, ) and off-disgonal (w, . { = () rates, as we shall
see in detail in section 2, arc related to the accu-
racy of the replication process, The specific prop-
erties of eq. | anc essentially basad on the fact that
it leads to exponential growth in the absence of
constriints (¢ = 0) and competitors (n = 1}.

The non-linear differential equation, eq. 1 - the

finearity is introduced by the defi of'e

ar constant ion — shows a
feature: it beads to selection of a defined ensemble
of self-replicating elements above a certain acca-
racy threshold. This ensemble of a master and its
mast frequent mutants is a so-called *quasi-species”
9], Below this threshold, however, no selection
takes place and the frequencies of the individual
elements are determined exclusively by their statis-
tical weights.

Rigorous mathematical analysis has been per-
formed on eq. | [7,15,24,26]. In particular, it was
shown that the non-lincarity of eq. | can be re-
maoved by an appropriate transformation. The -
genvalue problem of the linear differential equa-
tion obtained thereby may be solved approxi-
mately by the conventional perturbation technigue

1.0

min

¥i05 Quasispecies >i< Uniform distribution ——
i
\
i =l(2s)
i ,//zlfza},zlize}
! // El23)=(29)

s (PR
—Z1(21)El(29)

{20, =](30)
090

0.05
—— Errorrate p=1-g——

0.10

Quasispecies as a function of the replication accuracy q
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v elseyier comy oo me vinsres

Preface

Antiviral strategy on the horizon

Error catasirophe had its concepmal ongins mthe middle of
the 20Eth cennoy, when the consequences of muations oo
enrvines imvolved in protein syothesis, 25 a theory of agmg.
In those times biological processes were generally perceived
differently from today Infections diseasas were regardad as
3 fleating muizance which would be eliminared through the
use of antibiotcs and sntviral agems. MMicretdal varation,
although kpown in some cases, was not thought to be a signif-
icant problem for dissase control. Vanation in differentiated
orzanisms was seen 3s resulfing essentially from exchanges
of genetic marerial associatad with sexual reproduction.
The problem was to wmweil the mechanisms of inbentance,
expression of genstic miommation and meabolism. Few saw
that genetic change is ocouwTing at pressnt in 2l organisms,
and sl fawer recognized Darwinian principles as essential
to the biology of pathogenic viruses and cells. Population
genaticists rarely used bacieria or vinuses as experimental
svstems to define concepts in biological evolution. The extent
of zenetic polymorphisin among individuals of the same
biological species came as & surprise when the first results
on comparison of electrophoretic mobility of enzymes were
obtained. With the advent of in vimo DINA recombination,
and rapid mucleic acid sequencing technigues, melecular
analvses of genomes remforced the conclusion of exreme
inter-individual genetic variation within the same specias.
ow, due largely to spectacular progress in comparative
zenomics, we seg cellular DMAs, both prokaryotic and
eukaryotic, as highly dyoanuic. Most cellular processes, in-
clnding such essential mionmation-bearing and wansfaring
events 35 genome replication, ranscription and translation,
are increasmely perceived as mherapely macourate. Vinsas,
and in particular B3A vimses, are smong the most exireme
examnples of exploitation of replication macouracy for
survival.

Emor catastrophe, or the loss of meaningful genstic infor-
mation throngh excess genetic vananon, was fommlated in
quantitatve terms as & cansequence of quasispecies theary,
which was first developed to explain self-organization and
adaprablity of primitive replicons in early stages of life. Be-
cently. 3 concepmal extension of emor camasmophe thar could
be defined as “induced gepetic deterioration’ has emergad as

028 - sesa frons =narer & 2004 Elcoviar BV, All dghic recarved.
& viraeres. 2004.11.001

a possible antiviral swrategy. This is the topic of the cwment
special issue of Firws Research.

Few would nowadays doubt that one of the major obsta-
cles for the cowtrol of viral disease is short-tenm adaprability
af viral pathogens Adaprability of vimses follows the same
Darwinian principlas thar have shaped biological evolution
over eons, that is, repeated rounds of reproduction with ge-
netic variation, compefition and selection. often perturbed
oy random events such as stanstical fuctuations n popu-
latton size. However, with viruses the consaquences of the
operation of these very same Darwinian principlas are felt
within very shor times. Short-term evolution (within hours
and days) canbe also observed with some cellular pathogans,
with suisets of nonnal cells, and cancer calls. The nature of
FIMA viral pathogens begs for altematmes antiviral strategias,
and forcing the vims to cross the critical error threshold for
maintensnce of genstic miormation is one of them

The comtributions to this vehune bhave been chosen o
raflecy differenr lines of evidence (both theorstical and
experimental) on which anriviral desizns based on genanc
deterioration inflicted upon vimses are belng consmucted.
Theoretical smudies bave explored the copying Sdelity
condittons that must be fulfilled by any mformation-earing
replication system for the essental genetic information fo
fre wansmitred o progeny. Closely related to the thearerical
developments have been mumerous experimental smdies
on gquasispecies dypamics and their nmltple biological
manifestations. The latter can be summarized by saying
thar BINA wvimses, by virue of existing a3 mutant specira
rather than dafined zensric antities, ramarkably expand their
potential 1o overcoms selactive pressures intended oo limit
their replication. Indead, the use of antiviral inhibitors in
clinical practice and the design of vaccimes for 3 mumber of
major BEIA vims-associatad diseases, are currently presided
Try 2 senss of uncemainty. Another line of growing researchis
the enzymolezy of copying fdeliny by viral raplicazes, aimed
at undarstanding the molecular basis of nmragenic activitas.
Ermor catastrophe as a potential pew antiviral swrategy re-
caived an important inpalse by the ohservation thar riavirin
(2 licensed avtiviral micleoside analogue) may be exerting, in
sOLe systems, its antiviral activity through epbanced nnrage-

11 Frofave / Virus Research J07 (2005) §13-016

nesis. This has encovraged investizations oo new mutagenic
base analogues, some of them usad m anticancer chemother-
apy. Some chapters nuunmarize these important biochemical
smudies on cell enty pathways and metabolism of mutagenic
agents, that may find pew applications as antiviral agents.
This volume mmtends to be basically 2 progress repoat, an
inmroduction to 4 new svenue of research, and a realistic ap-
pratzal of the many issues that remzin to be imvestigated. In
this raspect, I can envisags (pot without mamy uncermainties)
at l=ast three lines of needed research: (i) One on further un-
derstanding of quasispectes dvnamics in infected individusls
%o leam more on how to apply combinations of virus-specific
mmatazens and inhtbitors in an effective way, finding synar-
Zistic combinations snd aveiding antazomistic ones as wall
a5 sevare clinical side effects. (1) Another on a desper undar-
standing of the metabolisin of nyta zenic azents, in partioular
base and nucleoside spalogues. This includes identification
of the mansporters that carry them into cells, an understand-
ing of their metabolic processing. inracellular stability and
alterations of nucleotde pools, among other tssues, (i) Sull
anpther line of needed ressarch is the development of new
mutagenic agents specific for vimses, showing no (or im-
ited) towicity for cells. Some advances may come from links
with apticancer research, but others should result from the
desizns of new molecules, based on the stactures of viral
polymerases. [ really hope that the reader finds this jssue not
only to be an interesting and usefinl review of the currant sini-

ation in the field, bus also a stinulating exposure to the major
problems to be faced.

The idea to prepare this special issue came a5 & kind imvia-
tion of Ulrich Diasselbergar, former Editor of Fims Research,
and then taken enthnsiastically by Luds Enjusnes, recently ap-
pointed as Edior of Firus Research. I take this oppormmity
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Mutant class

0

1
Binary sequences can be encoded
by their decimal equivalents:

2
C=0 and G =1, for example,

3 "0" =00000=CCCCC,

"14" = 01110 = CGGGC,

"29" = 11101 = GGGCQG, etc.

Every point in sequence space is equivalent

Sequence space of binary sequences with chain lengthn =5
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4. Neutral networks in evolution



UUUAGCCAGCGCGAGUCGUGCGGACGGGGUUAUCUCUGUCGGGCUAGGGCGC

1st / GUGAGCGCGGGGCACAGUUUCUCAAGGAUGUAAGUUUUUGCCGUUUAUCUGG

2nd

UUAGCGAGAGAGGAGGCUUCUAGACCCAGCUCUCUGGGUCGUUGCUGAUGCG

3rd trial >
5th CAUUGGUGCUAAUGAUAUUAGGGCUGUAUUCCUGUAUAGCGAUCAGUGUCCG
\) GUAGGCCCUCUUGACAUAAGAUUUUUCCAAUGGUGGGAGAUGGCCAUUGCAG

Inverse folding

The inverse folding algorithm searches for sequences that form a given RNA structure.
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Neutral network
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Neutral networks

A =0.01, s =877

Error threshold: Individual sequences
n=10,0=11,d=1.0

Relative concentration X(p)

0.5

0.4

0.3

0.2

Relative concentration Xx(p)

0.1

0.2
0.175
0.15
0.125
0.1
0.075
0.05
0.025

0 0.005 0.01 0.015 0.02

——Errorrate p—>

5
N\
N\
AN
N\

[P

0 0.005 0.01 0.015 0.02

——Error rate p—>



Bulletin of Mathemarical Biology Yol. 50, No. 6, pp. 635-660, 1988, 0092-8240/8853.00 + 0.00
Printed in Great Britain. Pergamon Press ple
Socicty for Mathematical Biology

STATIONARY MUTANT DISTRIBUTIONS AND
EVOLUTIONARY OPTIMIZATION

® PEeETER SCHUSTER and JORG SWETINA
Institut fiir theoretische Chemie
und Strahlenchemie der Universitit Wien,
Wiihringerstrafie 17,
A 1090 Wien,
Austria

Molecular evolution is modelled by erroneous replication of binary sequences. We show how the
selection of two species of equal or almost equal selective value is influenced by its nearest
neighbours in sequence space. In the case of perfect neutrality and sufficiently small error rates
we find that the Hamming distance between the species determines selection. As the error rate
increases the fitness parameters of neighbouring species become more and more important. In
the case of almost neutral sequences we observe a critical replication accuracy at which a drastic
change in the “quasispecies”, in the stationary mutant distribution occurs. Thus, in frequently
mutating populations fitness turns out to be an ensemble property rather than an attribute of the
individual.

In addition we investigate the time dependence of the mean excess production as a function of
initial conditions. Although it is optimized under most conditions, cases can be found which are
characterized by decrease or non-monotonous change in mean excess productions.

1. Introduction. Recent data from populations of RNA viruses provided
direct evidence for vast sequence heterogeneity (Domingo et al., 1987). The
origin of this diversity is not yet completely known. It may be caused by the low
replication accuracy of the polymerizing enzyme, commonly a virus specific,
RNA dependent RNA synthetase, or it may be the result of a high degree of
selective neutrality of polynucleotide sequences. Eventually, both factors
contribute to the heterogeneity observed. Indeed, mutations occur much more
frequently than previously assumed in microbiology. They are by no means
rare events and hence, neither the methods of conventional population genetics
(Ewens, 1979) nor the neutral theory (Kimura, 1983) can be applied to these
virus populations. Selectively neutral variants may be close with respect to
Hamming distance and then the commonly made assumption that the
mutation backflow from the mutants to the wilde type is negligible does not
apply.

A kinetic theory of polynucleotide evolution which was developed during the
past 15 years (Eigen, 1971; 1985; Eigen and Schuster, 1979; Eigen et al., 1987;
Schuster, 1986); Schuster and Sigmund, 1985) treats correct replication and
mutation as parallel reactions within one and the same reaction network

635
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5. Evolutionary optimization
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Stock Solution —>

Q

Reaction Mixture ——

Replication rate constant:
f.=v/ [0+ Adg ]
Ads = dyy(S,.S,)

Selection constraint:

Population size, N =# RNA
molecules, is controlled by
the flow

N(t)zﬁi\/ﬁ

Mutation rate:

p = 0.001 / site x replication

The flowreactor as a
device for studies of
evolution in vitro and
in silico
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6. Genetic regulation and metabolism
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Abstract

Regulation of gene activities is studied by means of P isted math ical analysis of ordinary differential equations (ODEs)
derived from binding equilibria and chemical reaction kinetics. Here, we present resulls on cross- regulauon of two genes t]lrough
activator and/or repressor binding. Arbitrary (differentiable) binding function can be used but ions are p i for
gene—regulator complexes with integer valued Hill coefficients up to n = 4. The dynamics of gene regulation is derlvcd from bifurcation
patterns of the underlying systems of kinetic ODEs. In particular, we present analytical exy for the p values at which
one-dimensional (transcritical, saddle-node or pitchfork) and/or t ional (Hopf) bifurcati occur. A classification of
regulatory states is introduced, which makes use of the sign of a ‘regulatory determinant’ D (being the determinant of the block in the
Jacobian matrix that contains the derivatives of the regulator hmdmg I'uucuons] (i) systems with D <0, observed, for example, if both
proteins are activators or repressors, lo give rise to !l ions only and lead to bistability for n=2 and (ii) systems
with D=0, found for com\nnauons ol‘ activation and repression, sustain a Hopf bifurcation and undamped oscillations for n>2. The
infl of basal T ivity on the bifurcation patterns is described. Binding of multiple sut can lead to richer dynamics
than pure activation or repression states if intermediates between the unbound state and the I'ully saturated DNA initiate transcription.

Then, the regulatory determinant D can adopt both signs, plus and minus.

@ 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Theoretical work on gene regulation goes back to the
1960s (Monod et al., 1963) soon after the first repressor
protein had been discovered (Jacob and Monod, 1961). A
little later the first paper on oscillatory states in gene
regulation was published (Goodwin, 1965). The interest in
gene regulation and its mathematical analysis never ceased
(Tiwari et al., 1974; Tyson and Othmer, 1978; Smith, 1987)
and saw a great variety of different attempts to design
models of genetic regulatory networks that can be used in
systems biology for computer simulation of gen(etic and

*Corresponding author. Institut fiir Theoretische Chemic der Uni-
versitiit Wien, Wiihringerstrafie 17, A-1090 Wien, Austria,
Tel: +431427752743; fax: +43 1427752793,
E-mail address; ph

bi.univie.ac.at (P. Schuster),

022-5193/% - see front matter @ 2007 Elsevier Lid. All rights reserved.
doi:10.1016/5.jtbi, 2007.01.004

met)abolic networks.! Most models in the literature aim at
a minimalist dynamic description which, nevertheless, tries
to account for the basic regulatory functions of large
networks in the cell in order to provide a better under-
standing of cellular dynamics. A classic in general
regulatory dynamics is the monograph by Thomas and
D'Ari (1990). The currently used mathematical methods
comprise application of Boolean logic (Thomas and
Kaufman, 2001b; Savageau, 2001; Albert and Othmer,
2003), stochastic processes (Hume, 2000) and deterministic
dynamic models, examples are Cherry and Adler (2000),
Bindschadler and Sneyd (2001) and Kobayashi et al. (2003)
and the recent elegant analysis of bistability (Craciun et al.,

! Discussion and analysis of d genetic and lic networks
has become so frequent and intense that we suggest to use a separale term,
genabolic networks, for this class of complex dynamical systems.
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The bacterial cell as an example for the
simplest form of autonomous life

The human body:

1014 cells = 1013 eukaryotic cells +
~ 9x10%3 bacterial (prokaryotic) cells,
and = 200 eukaryotic cell types

The spatial structure of the
bacterium Escherichia coli




E. coli: Genome length 4x106 nucleotides

Number of cell types 1
Number of genes 4 460
Man:  Genome length 3x%10° nucleotides
Number of cell types 200
Number of genes ~ 30 000

Complexity in biology
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The difficulty to define
the notion of ..gene".

Helen Pearson,

Nature 441: 399-401, 2006

WHAT IS A GENE?

The idea of genes as beads on a DNA string is fast fading. Protein-coding sequences have no
clear beginning or end and RNA is a key part of the information package, reports Helen Pearson.

‘! ene’ is not a typical four-letter

word, It is not offensive. It is never

bleeped out of TV shows. And

where the meaning of most four-

letter words is all too clear, that of gene is not.

The more expert scientists become in molecu-

lar genetics, the less easy it is to be sure about
what, if anything, a gene actually is.

Rick Young, a geneticist at the Whitehead
Institute in Cambridge, Massachusetts, says
that when he first started teaching as a young
professor twa decades ago, it took him about
two hours to teach fresh-faced undergraduates
what a gene was and the nuts and bolts of how
it worked. Today, he and his colleagues need
three months of lectures to convey the concept
of the gene, and that's not because the students
are any less bright. “It takes a whole semester
to teach this stuff to talented graduates,” Young
says. “It used to be we could give a one-off def-
inition and now it's much more complicated.”

In classical genetics, a gene was an abstract
concept — a unit of inheritance that ferried a
characteristic from parent to child. As bio-
chemistry came into its own, those character-
istics were associated with enzymes or proteins,
one for each gene. And with the advent of mol-
ecular biology, genes became real, physical
things — sequences of DNA which when con-
verted into strands of so-called messenger
RNA could be used as the basis for building
their associated protein piece by piece. The
great coiled DNA molecules of the chromo-
somes were seen as long strings on which gene
sequences sat like discrete beads.

This picture is still the working model for
many scientists. But those at the forefront of
genetic research see it as increasingly old-fash-
ioned — a crude approximation that, at best,
hides fascinating new complexities and, at
worst, blinds its users to useful new paths
of enquiry.

Information, it seems, is parceled out along
chromosomes in a much more complex way
than was originally supposed. RNA molecules
are not just passive conduits through which the
gene's message flows into the world but active
regulators of cellular processes. In some cases,
RNA may even pass information across gener-
ations — normally the sole preserve of DNA.

An eye-opening study last year raised the
possibility that plants sometimes rewrite their
DNA on the basis of RNA messages inherited
from generations past'. A study on page 469 of
this issue suggests that a comparable phenom-
enon might occur in mice, and by implication
in other mammals®, If this type of phenome-
non is indeed widespread, it "would have huge
implications,” says evolutionary geneticist

Laurence Hurst at the University of Bath, UK.

“All of that information seriously challenges
our conventional definition of a gene” says
molecular biologist Bing Ren at the University
of California, San Diego. And the information
challenge is about to get even tougher. Later
this year, a glut of data will be released from
the international Encyclopedia of DNA Ele-
ments (ENCODE) project. The pilot phase of
ENCODE involves scrutinizing roughly 1% of
the human genome in unprecedented detail;
the aim is to find all the

NEWS FEATURE

viously unimagined scope of RNA.

The one gene, one protein idea is coming
under particular assault from researchers who
are comprehensively extracting and analysing
the RNA messages, or transcripts, manufac-
tured by genomes, including the human and
mouse genome. Researchers led by Thomas
Gingeras at the company Affymetrix in Santa
Clara, California, for example, recently studied
all the transcripts from ten chromosomes
across eight human cell lines and worked out

precisely where on the chro-

sequences that serve a useful “We've come to the mosomes each of the tran-
purpose and explain what realization that the scripts came from’,

that purpose is. “When we
started the ENCODE project

genome is full of

The picture these studies
int is one of

I had a different view of overlapping transcripts.”  mind-boggling complexity.

what a gene was,” says con- — Phillip Kapra

tributing researcher Roderic

Guigo at the Center for Genomic Regulation
in Barcelona, “The degree of complexity we've
seen was not anticipated.”

Under fire
The first of the complexities to challenge molec-
ular biology’s paradigm of a single DNA
sequence encoding a single protein was alterna-
tive splicing, discovered in viruses in 1977 (see
‘Hard to track) overleaf). Most of the DNA
sequences describing proteins in humans havea
modular arrangement in which exons, which
carry the instructions for making proteins, are
interspersed with non-coding introns. In alter-
native splicing, the cell snips out introns and
sews together the exons in various different
orders, creating messages that can code for dif-
ferent proteins. Over the years geneticists have
also documented overlapping genes, genes
within genes and countless other weird arrange-
ments (see ‘Muddling over genes, overleaf).
Alternative splicing, however, did not in itself
require a drastic reappraisal of the notion of a
gene; it just showed that some DNA sequences
could describe more than one protein. Today's
assault on the gene concept is more far reach-
ing, fuelled largely by studies that show the pre-

o AN
Spools of DNA (above) still harbour surprises, with
one protein-coding gene often overlapping the next.

ov Instead of discrete genes
dutifully mass-producing
identical RNA transcripts, a teeming mass of
transcription converts many segments of the
genome into multiple RNA ribbons of differing
lengths. These ribbons can be generated from
both strands of DNA, rather than from just one
as was conventionally thought. Some of these
transcripts come from regions of DNA prev
ously identified as holding protein-coding
genes, But many do not. “Its somewhat revolu-
tionary,’ says Gingeras’s colleague Phillip
Kapranov, “We've come to the realization that
the genome is full of overlapping transcripts”

Other studies, one by Guigo’ team', and one
by geneticist Rotem Sorek’, now at Tel Avi
University, Israel, and his colleagues, have
hinted at the reasons behind the mass of tran-
scription. The two teams investigated occa
sional reports that transcription can start at a
[DNA sequence associated with one protein
and run st through into the gene for a
completely different protein, producing a
fused transcript. By delving into databases of
human RNA transcripts, Guigo’s team esti-
mate that 4-5% of the DNA in regions con-
ventionally recognized as genes is transcribed
in this way. Producing fused transcripts could
be one way for a cell to generate a greater vari-
ety of proteins from a limited number of
exons, the researchers say.

Many scientists are now starting to think
that the descriptions of proteins encoded in ~
DNA know no borders — that each sequence
reaches into the next and beyond. This idea
will be one of the central points to emerge
from the ENCODE project when its results are
published later this year.

Kapranov and others say that they have doc-
umented many examples of transcripts in
which protein-coding exons from one part of
the genome combine with exons from another

399




ENCODE stands for

ENCyclopedia Of DNA Elements.

ENCODE Project Consortium.
Identification and analysis of functional
elements in 1% of the human genome by
the ENCODE pilot project.

Nature 447:799-816,2007
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